David Gonzalez

Implementing
Modern DevOps

Enabling IT organizations to deliver faster and smarter

LI Packb

Implementing Modern DevOps

Enabling IT organizations to deliver faster and smarter

David Gonzalez

BIRMINGHAM - MUMBAI

Implementing Modern DevOps
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1290917

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-687-7

www.packtpub.com

http://www.packtpub.com

Author
David Gonzalez

Reviewer
Joakim Verona

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Divya Poojari

Content Development Editor
Sharon Raj

Technical Editor
Prashant Chaudhari

Credits

Copy Editor
Stuti Srivastava

Project Coordinator
Virginia Dias

Proofreader
Safis Editing

Indexer
Pratik Shirodkar

Graphics
Kirk D'Penha

Production Coordinator
Deepika Naik

About the Author

David Gonzalez is an enthusiastic engineer and author of a book called Developing
Microservices with Node.js; as microservices don't work without platform automation, he
wrote this book to deliver the best possible deal to the readers of both books.

He is a Google Developer Expert (a nomination from Google to certain experts in several
areas) in Kubernetes (GKE), who enjoys being pushed out of his comfort zone in order to
sharpen his skills. Java, Node.js, Python, and DevOps--as well as a holistic approach to
security--are part of the skill set that has helped him deliver value across different start-ups
and corporations.

Nowadays, he is a consultant at nearForm, enabling companies to deliver the best possible
solution to their IT problems or proposals, as well as an avid speaker at conferences, such as
RebelCon and Google I/O Extended, among others.

About the Reviewer

Joakim Verona is a consultant with expertise in continuous delivery and DevOps. He has
worked with all aspects of systems development since 1994. He has actively contributed as
the lead implementer of complex multilayered systems, such as web systems, multimedia
systems, and mixed software/hardware systems. His wide-ranging technical interests led
him to the emerging field of DevOps in 2004, where he has stayed ever since. Joakim
completed his master's in computer science at Linkdping Institute of Technology. He has
also worked as a consultant in a wide range of assignments in various industries, such as
banking and finance, telecom, industrial engineering, press and publishing, and game
development. He is also interested in the Agile field and is a certified Scrum master, Scrum
product owner, and Java professional.

He has also technically reviewed Practical DevOps.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1786466872.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872
https://www.amazon.com/dp/1786466872

To my wife, Ester. No matter how many crazy ideas I have, you are always there to
support and push me forward. This book wouldn’t have been possible without you.

To our daughter, Elena. Always remember, we raised you to be happy, not perfect. No
matter what path you follow, we will be there, helping you.

Table of Contents

Preface 1
Chapter 1: DevOps in the Real World 6
What is DevOps? 7
DevOps origins 8
DevOps and corporations 9
Traditional release management 10
Chain of communication 11
The cost of fixing a bug 12
Releasing new versions 13
Modern release management 15
Agile development and communication 16
Releasing new versions 18
DevOps and microservices 19
DevOps: Organizational alignment 20
What to expect from this book 22
Summary 23
Chapter 2: Cloud Data Centers - The New Reality 24
Amazon Web Services 25
EC2 - computing service 26
Launching an instance 28
Relational Database Service 32
Networking in AWS and EC2 32

Storage in AWS and EC2 35
Amazon S3 36
Amazon ECR and ECS 37
Creating a cluster 38

Other services 44
Route 53 44
CloudFront 45

Amazon ElasticCache 45

Amazon RDS 45
DynamoDB 46
Google Cloud Platform 46
Google Compute Engine 48

Standard machine types 48

Table of Contents

High-memory machine types 49
High-CPU machine types 49
Shared-core machine types 50

Custom machines and GPU processing 50
Launching an instance 51
Networking 54
Google Container Engine 55
Setting up a cluster 56

Other Google Cloud Platform products 59
Google App Engine 59

Machine Learning APIs 60

Big data 60

Other cloud providers 61
Heroku 61
DigitalOcean 62
Azure 62
Summary 63
Chapter 3: Docker 64
Docker architecture 65
Docker internals 68
Docker client 72
Building Docker images 76
Dockerfile reference 79
Docker registries 80
Public registries 81
Private registries 82
Docker volumes 83
Docker networking 86
User-defined networks 89
Docker Compose 90
Summary 92
Chapter 4: Continuous Integration 93
Software development life cycle 94
Testing types 97
Traditional Cl servers 98
Bamboo 99
Jenkins 103
Secrets Management 110
Modern Cl servers 115
Drone ClI 115

[ii]

Table of Contents

Installing Drone
Running builds

116
118

Other features 122
Summary 123
Chapter 5: Infrastructure as Code 124
Google Cloud Platform SDK - gcloud 125
Creating resources with Google Cloud SDK 126
Terraform 130
Creating resources 132
Remote state management 137
Modifying your infrastructure 138
Terraform variables 140
Terraform outputs 142
Summary 145
Chapter 6: Server Provisioning 146
Server provision software 147
Chef 147
Puppet 149
Ansible 150
Ansible 154
Ansible configuration 163
Ansible variables, remote facts and templates 164
Ansible variables 165

Ansible remote facts 171

Ansible templates 174

Flow control 176

Roles 180
Ansible Tower 186
Summary 188
Chapter 7: Docker Swarm and Kubernetes - Clustering Infrastructure 190
Why clustering ? 191
Docker Swarm 196
Kubernetes 197
Kubernetes logical architecture 199
Setting up a cluster in GCP 203
Kubernetes building blocks 210
Pods 211
Deploying a pod 212

Replica Sets 217

[iii]

Table of Contents

Deployments 224
Services 230

Other Building Blocks 235

Daemon Sets 236

PetSets 237

Jobs 238

Secrets and configuration management 238
Kubernetes- moving on 241
Summary 241
Chapter 8: Release Management — Continuous Delivery 242
Playing against the statistics 243
The test system 244
ISO date and UTC date services 245
Aggregator service 248
Pushing the images to Google Container Registry 252
Setting up a continuous delivery pipeline for images 256
Setting up Jenkins 262
Continuous delivery for your application 268
Regular release 274
Blue-green deployment 281
Canary deployment 283
Summary 286
Chapter 9: Monitoring 287
Introduction 287
Types of monitoring 288
Blackbox monitoring 288
Whitebox monitoring 289
Monitoring third-party tools 290
Pingdom 291
Logentries 292
AppDynamics 298
Stackdriver 300
Monitoring applications 300
Monitoring Kubernetes clusters 307
Summary 315
What is next? 315
Appendix A: 316
Chapter 1: DevOps in the Real World 316
Chapter 2: Cloud Data Centers - The New Reality 318

[iv]

Table of Contents

Index

Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:

Docker

Continuous Integration
Infrastructure as Code

Server Provisioning

Docker Swarm and Kubernetes - Clustering Infrastructure
Release Management — Continuous Delivery

Monitoring

332
335
346
351
361
376
388

397

[v]

Preface

DevOps is the newest revolution in deploying software quickly and efficiently. With a set of
automation tools, an orchestration platform, and a few processes, companies can speed up
the release cycle of their IT systems by enabling the engineers to do more with fewer
resources and become more engaged in the business process.

What this book covers

Chapter 1, DevOps in the Real World, shows the place of DevOps in the current engineering
department of IT companies and how to align resources to maximize delivery potential.

Chapter 2, Cloud Data Centers, compares the different cloud solutions for managing
resources (VMs, networks, disks, and so on) on the cloud and on demand.

Chapter 3, Docker, teaches about Docker and some of its internals in order to better
understand how containerization technologies work.

Chapter 4, Continuous Integration, talks about continuous integration technologies that can
be used to execute tests across your applications as well as many other actions, as we will
see in Chapter 8, Release Management — Continuous Delivery.

Chapter 5, Infrastructure as Code, shows how to describe our infrastructure in a way that can
be managed as code and apply the SDLC best practices to it in order to ensure its integrity.

Chapter 6, Server Provisioning, shows how to use Ansible to manage the configuration of
remote servers in order to facilitate the maintenance of a large number of servers that, even
though we are going to focus on Kubernetes, are good to know.

Chapter 7, Docker Swarm and Kubernetes - Clustering Infrastructure, briefly visits Docker
Swarm and then points your attention toward Kubernetes, the most modern container
orchestration technology, which is used across the biggest corporations in the world, such
as Google.

Preface

Chapter 8, Release Management — Continuous Delivery, shows how to set up a continuous
delivery pipeline on Google Cloud Platform with Kubernetes and Jenkins.

Chapter 9, Monitoring, shows how to monitor our software and servers to be the first ones
to know about a potential outage very quickly and fix it (potentially) before impacting our
customers.

What you need for this book

In order to follow this book and its contents, you will need a trial account on Google Cloud
Platform and an editor (I used Atom but any other editor will work) as well as Node.js
installed on your local machine. You will also need to install Docker locally in order to test
the different examples. We will use Google Container Engine (GKE) for the Kubernetes
examples but if you want to play locally with Kubernetes, Minikube can also be used,
although you need a fairly powerful computer.

Who this book is for

This book is for engineers who want to step up in the DevOps ladder, particularly if they
want to master Kubernetes and containers. People of mid-level skills are ideal readers.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "The next
lines of code read the link and assign it to the Beaut i fulSoup function." A block of code is
set as follows:

resource "google_compute_address" "my-first-ip" {
name = "static-ip-address"

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

resource "google_compute_address" "my-first-ip" {
name = "static-ip-address"

}

[2]

Preface

Any command-line input or output is written as follows:

docker commit 329b2£9332d5 my-ubuntu

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter.”

0 Warnings or important notes appear like this.
8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files emailed directly to you. You can download the
code files by following these steps:

1. Log in or register to our website using your email address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.

[3]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

N oUW

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Implementing-Modern-DevOps. We also have other code bundles from
our rich catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/ImplementingModernDevOps_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

[4]

https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/Implementing-Modern-DevOps
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ImplementingModernDevOps_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[5]

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

DevOps in the Real World

In the past few years, the software world has evolved at a very high pace. One of my
favorite examples of evolution is FinTech, a new field whose name comes from the fusion of
finance and technology. In this field, companies tend to build financial products in a
disruptive way up to a point that they are threatening the big traditional banks and putting
them in jeopardy.

This happens mainly due to the fact that big companies lose the ability to be cost-effective in
their IT systems and banks are fairly big companies. It is not strange that banks still run
their systems in an IBM mainframe and are reluctant to move to the cloud, and it is also not
strange that the core components of the banks are still COBOL applications that haven't
been renewed since the 90s. This wouldn't be bad if it wasn't because a small number of
talented engineers with an AWS or Google Cloud Platform account can actually build a
service that could virtually replace some bank products such as currency exchange or even
a broker.

This has become a norm in the last few years, and one of the keys for the success of small
companies in FinTech is partially due to DevOps and partially due to its scale. Usually, big
companies commoditize the IT systems over time, outsourcing them to third parties that
work on price, pushing the quality aside. This is a very effective cost-cutting measure, but it
has a downside: you lose the ability to deliver value quickly.

In this chapter, we are going to put DevOps into perspective and see how it can help us
create cost-effective work units that can deliver a lot of value in a very short period of time.

DevOps in the Real World Chapter 1

What is DevOps?

There is a famous quote by Henry Ford, the creator of Ford (the popular car-maker brand):
“If I had asked people what they wanted, they would have said faster horses.”

This is what happened with the traditional system administrator role: people were trying to
solve the wrong problem.

By the wrong problem, I mean the lack of proper tools to automate the intervention in
production systems, avoiding the human error (which is more common than you may
think) and leading to a lack of communication continuity in the processes of your company.

Initially, DevOps was the intersection of development and operations as well as QA. The
DevOps engineer is supposed to do everything and be totally involved in the SDLC
(software development life cycle), solving the communication problems that are present in
the traditional release management. This is ideal and, in my opinion, is what a full stack
engineer should do: end-to-end software development, from requirement capture to
deployments and maintenance.

Nowadays, this definition has been bent up to a point where a DevOps engineer is basically
a systems engineer using a set of tools to automate the infrastructure of any company. There
is nothing wrong with this definition of DevOps, but keep in mind that we are losing a very
competitive advantage: the end-to-end view of the system. In general, I would not call this
actor a DevOps engineer but an Site reliability engineering (SRE). This was a term
introduced by Google few years back, as sometimes (prominently in big companies), is not
possible to provide a single engineer with the level of access required to execute DevOps.
We will talk more about this role in the next section, SRE model.

In my opinion, DevOps is a philosophy more than a set of tools or a procedure: having your
engineers exposed to the full life cycle of your product requires a lot of discipline but gives
you an enormous amount of control over what is being built. If the engineers understand
the problem, they will solve it; it is what they are good at.

[7]

DevOps in the Real World Chapter 1

DevOps origins

In the last few years, we have gone through a revolution in IT: it sparkled from pure IT
companies to all the sectors: retail, banking, finance, and so on. This has led to a number of
small companies called start-ups, which are basically a number of individuals who had an
idea, executed it, and went to the market in order to sell the product or the service to a
global market (usually). Companies such as Amazon or Alibaba, not to mention Google,
Apple, Stripe or even Spotify, have gone from the garage of one of the owners to big
companies employing thousands of people.

One thing in common in the initial spark with these companies has always been corporate
inefficiency: the bigger the company, the longer it takes to complete simple tasks.

2500

2000

1500
—ire

1000 m——Time

Example of corporate inefficiency graph

This phenomenon creates a market on its own, with a demand that cannot be satisfied with
traditional products. In order to provide a more agile service, these start-ups need to be
cost-effective. It is okay for a big bank to spend millions on its currency exchange platform,
but if you are a small company making your way through, your only possibility against a
big bank is to cut costs by automation and better processes. This is a big drive for small
companies to adopt better ways of doing things, as every day that passes is one day closer
to running out of cash, but there is a bigger drive for adopting DevOps tools: failure.

Failure is a natural factor for the development of any system. No matter how much effort
we put in, failure is always there, and at some point, it is going to happen.

[8]

DevOps in the Real World Chapter 1

Usually, companies are quite focused on removing failure, but there is a unwritten rule that
is keeping them from succeeding: the 80-20 rule:

e It takes 20% of time to achieve 80% of your goals. The remaining 20% will take
80% of your time.

Spending a huge amount of time on avoiding failure is bound to fail, but luckily, there is
another solution: quick recovery.

Up until now, in my work experience, I have only seen one company asking "what can we
do if this fails at 4 A.M. in the morning?" instead of "what else can we do to avoid this
system from failing?", and believe me, it is a lot easier (especially with the modern tools) to
create a recovery system than to make sure that our systems won't go down.

All these events (automation and failure management) led to the development of modern
automation tools that enabled our engineers to:

¢ Automate infrastructure and software
¢ Recover from errors quickly

DevOps and corporations

DevOps fits perfectly into the small company world (start-ups): some individuals that can
access everything and execute the commands that they need to make the changes in the
system quickly. Within these ecosystems is where DevOps shines.

This level of access in traditional development models in big companies is a no-go. It can be
an impediment even at a legal level if your system is dealing with highly confidential data,
where you need to get your employees security clearance from the government in order to
grant them access to the data.

It can also be convenient for the company to keep a traditional development team that
delivers products to a group of engineers that runs it but works closely with the developers
so that the communication is not an issue.

SREs also use DevOps tools, but usually, they focus more on building and running a
middleware cluster (Kubernetes, Docker Swarm, and so on) that provides uniformity and a
common language for the developers to be abstracted from the infrastructure: they don't
even need to know in which hardware the cluster is deployed; they just need to create the
descriptors for the applications that they will deploy (the developers) in the cluster in an
access-controlled and automated manner in a way that the security policies are followed up.

[9]

DevOps in the Real World Chapter 1

SRE is a discipline on its own, and Google has published a free ebook about it, which can be
found at https://landing.google.com/sre/book.html.

I would recommend that you read it as it is a fairly interesting point of view.

Traditional release management

Through the years, companies have pushed the development of their IT systems out of their
business core processes: retail shop business was retail and not software but reality has
kicked in very quickly with companies such as Amazon or Alibaba, which can partially
attribute their success to keeping their IT systems in the core of the business.

A few years ago, companies used to outsource their entire IT systems, trying to push the
complexity aside from the main business in the same way that companies outsource the
maintenance of the offices where they are. This has been successful for quite a long time as
the release cycles of the same applications or systems were long enough (a couple of times a
year) to be able to articulate a complex chain of change management as a release was a big
bang style event where everything was measured to the millimeter with little to no
tolerance for failure.

Usually, the life cycle for such projects is very similar to what is shown in the following
diagram:

Requirements

N

Design

N

Implementation

N

Verification

N,

Maintenance

X

[10]

https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html

DevOps in the Real World Chapter 1

This model is traditionally known as waterfall (you can see its shape), and it is borrowed
from traditional industrial pipelines where things happen in very well-defined order and
stages. In the very beginning of the software industry, engineers tried to retrofit the
practices from the traditional industry to software, which, while a good idea, has some
drawbacks:

¢ Old problems are brought to a new field
¢ The advantages of software being intangible are negated

With waterfall, we have a big problem: nothing moves quickly. No matter how much effort
is put into the process, it is designed for enormous software components that are released
few times a year or even once a year. If you try to apply this model to smaller software
components, it is going to fail due to the number of actors involved in it. It is more than
likely that the person who captures the requirements won't be involved in the development
of the application and, for sure, won't know anything about the deployment.

Chain of communication

I remember that when I was a kid, we used to play a game called the crazy phone. Someone
would make up a story with plenty of details and write it down on paper. This person read
the story to another person, who had to capture as much as possible and do the same to the
next person, up until we reached the end of the number of people playing this game. After
four people, it was almost guaranteed that the story wouldn't look anywhere close to the
initial one, but there was a more worrying detail: after the first person, the story would
never be the same. Details would be removed and invented, but things would surely be
different.

This exact game is what we are trying to replicate in the waterfall model: people who are
working on the requirements are creating a story that is going to be told to developers, who
are creating another story that is going to be told to QA so that they can test that the
software product delivered matches with a story that was in two hands (at the very least)
before reaching them.

As you can see, this is bound to be a disaster but hold on, what can we do to fix it? If we
look at the traditional industry, we'll see that they never get their designs wrong or, at least,
the error rate is very small. The reason for that (in my opinion) is that they are building
tangible things, such as a car or a nuclear reactor, which can easily be inspected and believe
me or not, they are usually simpler than a software project. If you drive a car, after a few
minutes, you will be able to spot problems with the engine, but if you start using a new
version of some software, it might take a few years to spot security problems or even
functional problems.

[11]

DevOps in the Real World Chapter 1

In software, we tried to ease this problem by creating very concise and complex diagrams
using Unified Modeling Language (UML) so that we capture the single source of truth and
we can always go back to it to solve problems or validate our artifacts. Even though this is a
better approach, it is not exempt from problems:

¢ Some details are hard to capture in diagrams
¢ People in the business stakeholders do not understand UML
¢ Creating diagrams requires time

Particularly, the fact that the business stakeholders do not understand UML is the big
problem here. After the capture of requirements, changing them or even raising questions
on lower levels (development, operations, and so on) requires involving some people, and
at least one of them (the business stakeholder) does not understand the language of where
the requirements were captured. This wouldn't be a problem if the project requirements
were spot on since the first iteration, but in how many projects have you been involved
where the requirements were static? The answer is none.

The cost of fixing a bug

Once we have made it clear that we have a communication problem, bugs are expected to
arise during our process. Either a misalignment with the requirements or even the
requirements being wrong usually leads to a defect that could prevent us from deploying
the application to production and delay everything.

In waterfall, fixing a bug is increasingly possible in every step we take. For example, fixing
a bug in the requirements phase is very straightforward: just update the
diagrams/documentation, and we are done. If the same bug is captured by a QA engineer in
the verification phase, we need to:

¢ Update the documents/diagrams
¢ Create a new version of the application

[12]

DevOps in the Real World Chapter 1

e Deploy the new version to the QA environment

Cost of Fixing a Bug

Requiremants
Design
Implementation Cest of Fixing a Bug

Verification

Mainenance

a) 10 15 20 25

If the bug is caught in production, you can imagine how many steps are involved in fixing
it, not to mention the stress, particularly if the bug compromises the revenue of your
company.

Releasing new versions

A few years ago, I used to work in a company where the production rollouts steps were
written in a Microsoft Word document command by command along with the explanation:

e Copy this file there: cp a.tar b.tar

o Restart the server xyz with the command: sudo service my-server restart

This was in addition to a long list of actions to take to release a new version. This happened
because it was a fairly big company that had commoditized its IT department, and even
though their business was based on an IT product, they did not embed IT in the core of their
business.

[13]

DevOps in the Real World Chapter 1

As you can see, this is a very risky situation. Even though the developer who created the
version and the deployment document was there, someone was deploying a new WAR (a
Java web application packed in a file) in a production machine, following the instructions
blindly. I remember asking one day: if this guy is executing the commands without
questioning them, why don’t we just write a script that we run in production? It was too
risky, they said.

They were right about it: risk is something that we want to reduce when deploying a new
version of the software that is being used by some hundred thousand people on a single
day. In fairness, risk is what pushed us to do the deployment at 4 A.M. instead of doing it
during business hours.

The problem I see with this is that the way to mitigate the risks (deploy at 4 A.M in the
morning when no one is buying our product) creates what we call, in IT, a single point of
failure: the deployment is some sort of all or nothing event that is massively constrained by
the time, as at 8 A.M.,, the traffic in the app usually went from two visits per hour to
thousands per minute, around 9 A.M. being the busiest period of the day.

That said, there were two possible outcomes from the rollout: either the new software gets
deployed or not. This causes stress to the people involved, and the last thing you want to
have is stressed people playing with the systems of a multi-million business.

Let’s take a look at the maths behind a manual deployment, such as the one from earlier:

Description Success Rate
Detach server 1 from the cluster 99.5%
Stop Tomcat on server 1 99.5%

Remove the old version of the app (the WAR file) [98%
Copy the new version of the app (the WAR file) |98%

Update properties in configuration files 95%
Start Tomcat 95%
Attach server 1 to the cluster 99.5%

This describes the steps involved in releasing a new version of the software in a single
machine. The full company system had a few machines, so the process would have to be
repeated a number of times, but let's keep it simple; assume that we are only rolling out to a
single server.

[14]

DevOps in the Real World Chapter 1

Now a simple question: what is the overall failure rate in the process?

We naturally tend to think that the probability of a failure in a chained process such as the
preceding list of instructions is the biggest in any step of the chain: 5%. That is not true. In
fairness, it is a very dangerous, cognitive bias. We usually take very risky decisions due to
the false perception of low risk.

Let's use the math to calculate the probability of failure:

The preceding list is a list of dependent events. We cannot execute step number 6 if step 4
failed, so the formula that we are going to apply is the following one:

P(T) = P(Al)*P(A2)...*P (An)
This leads to the following calculation:

P(T) = (99.5/100) * (99.5/100) * (98/100) * (98/100) * (95/100) * (95/100)
* (99.5/100) = 0.8538

We are going to be successful only 85.38% of the times. This translated to deployments,
which means that we are going to have problems 1 out of 6 times that we wake up at 4 A.M.
to release a new version of our application, but there is a bigger problem: what if we have a
bug that no one noticed during the production testing that happened just after the release?
The answer to this question is simple and painful: the company would need to take down
the full system to roll back to a previous version, which could lead to loss of revenue and
customers.

Modern release management

A few years ago, when I was in the middle of a manual deployment at 4 A.M., I remember
asking myself "there has to be a better way". Tools were not mature enough, and the
majority of the companies did not consider IT the core of their business. Then, a change
happened: DevOps tools started to do well in the open source community and companies
started to create continuous delivery pipelines. Some of them were successful, but a big
majority of them failed for two reasons:

¢ Release management process
e Failure in the organizational alignment

[15]

DevOps in the Real World Chapter 1

We will talk about organizational alignment later on in this chapter. For now, we are going
to focus on the release management process as it needs to be completely different from the
traditional release management in order to facilitate the software life cycle.

In the preceding section, we talked about different phases:

¢ Requirements

e Design

¢ Implementation
Verification

Maintenance

We also explained how it works well with gigantic software where we group features into
big releases that get executed in a big bang style with all or nothing deployments.

The first try to fit this process into smaller software components was what everyone calls
agile, but no one really knew what it was.

Agile development and communication

In the traditional release management, one of the big problems was the communication:
chains of people passing on messages and information, as we've seen, never ends well.

Agile encourages shorter communication strings: the stakeholders are supposed to be
involved in the software development management, from the definition of requirements to
the verification (testing) of the same software. This has an enormous advantage: teams
never build features that are not required. If deadlines need to be met, the engineering team
sizes down the final product sacrificing functionality but not quality.

Deliver early and deliver often is the mantra of agile, which basically means defining an
Minimum Viable Product (MVP) and delivering it as soon as it is ready in order to deliver
value to the customers of your application and then delivering new features as required.
With this method, we are delivering value since the first release and getting feedback very
early on in the product life.

In order to articulate this way of working, a new concept was introduced: the sprint. A
sprint is a period of time (usually 2 weeks) with a set of functionalities that are supposed to
be delivered at the end of it into production so that we achieve different effects:

e Customers are able to get value very often

[16]

DevOps in the Real World Chapter 1

¢ Feedback reaches the development team every 2 weeks so that corrective actions
can be carried on

e The team becomes predictable and savvy with estimates

This last point is very important: if our estimates are off by 10% in a quarter release, it
means that we are off by two weeks, whereas in a two weeks sprint, we are off only by 1
day, which, over time, with the knowledge gained sprint after sprint, means the team will
be able to adjust due to the fact that the team builds a database of features and time spent
on them so that we are able to compare new features against the already developed ones.

These features aren't called features. They are called stories. A story is, by definition, a well-
defined functionality with all the info for the development team captured before the sprint
starts, so once we start the development of the sprint, developers can focus on technical
activities instead of focusing on resolving unknowns in these features.

Not all the stories have the same size, so we need a measurement unit: the story points.
Usually, story points do not relate to a time-frame but to the complexity of it. This allows
the team to calculate how many story points can be delivered at the end of the sprint, so
with time, they get better at the estimates and everybody gets their expectations satisfied.

At the end of every sprint, the team is supposed to release the features developed, tested,
and integrated into production in order to move to the next sprint.

The content of the sprints are selected from a backlog that the team is also maintaining and
preparing as they go.

The main goal is to meet everyone's expectations by keeping the communication open and
be able to predict what is being delivered and when and what is needed for it.

There are several ways of implementing the agile methodologies in our software product.
The one explained earlier is called Scrum, but if you look into other development
methodologies, you'll see that they all focus on the same concept: improving the
communication across different actors of the same team.

If you are interested in Scrum, there is more info at https://en.wikipedia.org/wiki/

Scrum_ (software_development).

[17]

https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)

DevOps in the Real World Chapter 1

Releasing new versions

As explained earlier, if we follow the Scrum methodology, we are supposed to deliver a
new version every 2 weeks (the duration of a sprint in the majority of the cases), which has
a dramatic impact on the resources consumed. Let's do the maths: quarter versus bi-weekly
releases:

e In quarter releases, we release only four times a year in addition to emergency
releases to fix problems found in production.

e In bi-weekly releases, we release once every 2 weeks in addition to emergency
releases. This means 26 releases a year (52 weeks roughly) in addition to
emergency releases.

For the sake of simplicity, let's ignore the emergency releases and focus on business as usual
in our application. Let's assume this takes us 10 hours to prepare and release our software:

¢ Quarter releases: 10 x 4 =40 hours a year
¢ Bi-weekly releases: 10 x 26 = 260 hours a year

As of now, releasing software is always the same activity, no matter whether we do it every
quarter or every day. The implication is the same (roughly), so we have a big problem: our
bi-weekly release is consuming a lot of time and it gets worse if we need to release fixes for
problems that have been overlooked in QA.

There is only one solution for this: automation. As mentioned earlier, up until 2 years ago
(around 2015) the tools to orchestrate automatic deployments weren't mature enough. Bash
scripts were common but weren't ideal as bash is not designed to alter the state of
production servers.

The first few tools to automate deployments were frameworks to manage the state of
servers: Capistrano or Fabric wrapped ssh access and state management in a set of
commands on Ruby and Python, which allowed the developers to create scripts that,
depending on the state of the servers, were executing different steps to achieve a goal:
deploying a new version.

These frameworks were a good step forward, but there were bigger problems with them: a
solution across different companies usually solves the same problem in different ways,
which implies that DevOps (developers + ops) engineers need to learn how to handle this in
every single company.

[18]

DevOps in the Real World Chapter 1

The real change came with Docker and orchestration platforms, such as Kubernetes or
Docker Swarm. In this book, we will look at how to use them, particularly Kubernetes, to
reduce the deployment time from 10 hours (or hours in general) to a simple click, so our 260
hours a year become a few minutes for every release.

This also has a side-effect, which is related to what we explained earlier in this chapter:
from a very risky release (remember, 85.38% of success) with a lot of stress, we are moving
toward a release that can be patched in minutes, so releasing a bug, even though it is bad,
has a reduced impact due to the fact that we can fix it within minutes or even roll back
within seconds. We will look at how to do this in chapter 8, Release Management —
Continuous Delivery.

Once we are aligned with these practices, we can even release individual items to
production: once a feature is ready, if the deployment is automated and it gets reduced to a
single click, why not just roll out the stories as they are completed?

DevOps and microservices

Microservices are a big trend nowadays: small software components that allow companies
to manage their systems on vertical slices of functionality, deploying features individually
instead of bundling them in a big application, which can be problematic in big teams as the
interaction across functionalities often leads to collisions and bugs being released into
production without anyone noticing.

An example of quite a successful company using microservices is Spotify. Not only at the
technical level but at the business level, they have organized things to be able to orchestrate
a large number of services to provide a top class music streaming service that pretty much
never fails, and if it does, it is a partial failure:

e Playlists are managed by a microservice; therefore, if it goes down, only playlists
are unavailable.

e If the recommendations are not working, the users usually don't even notice it.

This comes at a huge cost: operational overhead. Splitting an application into many requires
a proportional amount of operations to keep it running, which can be exponential if it is not
handled well. Let's look at an example:

¢ Our system is composed of five applications: A, B, C, D, and E.

[19]

DevOps in the Real World Chapter 1

e Each of them is a microservice that is deployed individually and requires around
5 hours a month of operations (deployments, capacity planning, maintenance,
and so on)

If we bundle all five applications together into a single big application, our maintenance
cost goes down drastically to pretty much the same as any of the previously mentioned
microservices. The numbers are clear:

¢ 25 hours a month for a microservices-based system
¢ 5 hours a month for a monolithic application

This leads to a problem: if our system grows up to hundreds (yes, hundreds) microservices,
the situation becomes hard to manage as it consumes all our time.

The only solution to this is automation. There will always be an operational overhead, but
with automation, instead of adding 5 hours a month per service, this time will decrease
with time, as once we have automated our interventions, there is pretty much no time
consumed by new services as everything happens as a chain of events.

In chapter 8, Release Management — Continuous Delivery, we are going to set up a continuous
delivery pipeline to demonstrate how this is possible, and even though we will have some
manual steps for sanity, it is possible to fully automate the operations on a microservices
environment running in a cluster such as Kubernetes.

In general, I would not advise any company to start a project based on microservices
without proper automation in place and more specifically, if you are convinced that the
system will grow over time, Kubernetes would be a very interesting option: it gives you the
language that other platforms lack, such as load balancers, routing, ingress, and more. We
will dive deep into Kubernetes in the upcoming chapters.

All these activities are supposed to be part of the DevOps engineer's day-to-day work
(among many others), but first, there is a problem that we need to solve: how to align our
company resources to be able to get the most from the DevOps engineer figure.

DevOps: Organizational alignment

Up until now, we have looked at how the modern and traditional release life cycle works.
We have also defined what a DevOps engineer is and also how they can help with
Microservices, which, as explained, are not viable without the right level of automation.

[20]

DevOps in the Real World Chapter 1

Apart from technicalities, there is something that is extremely important for the DevOps
culture to succeed: organizational alignment.

The traditional software development used to divide teams into different roles:

¢ Business analysts

¢ Developers

¢ System administrators
¢ QA engineers

This is what we call horizontal slices: a team of system administrators has a few contact
points with the developers so that they get enough information to deploy and maintain
software.

In the modern release life cycle, this simply does not work. Instead of horizontal slices of
our company, we need to get vertical slices: a team should be composed of at least one
member of every horizontal team. This means having developers, business analysts, system
administrators, and QA engineers together...well, not 100%.

With the DevOps philosophy, some of these roles become irrelevant or need to evolve. The
idea is that a single team is able to build, deploy, and run an application on its own without
anything external: this is called cross-functional autonomous team.

In my professional experience, cross-functional teams are the best organization for
delivering high-quality reliable products. The product is run by people who build;
therefore, they know it inside out. A combination of analysts (depending on the nature of
the business), developers, and DevOps engineers is all you need to deliver high-quality
software into production. Some teams might as well include a QA engineer, but in general,
automated testing created by DevOps and developers should be the holy grail: it is
impossible to release software in a continuous delivery manner without having good code
coverage. I am a big fan of the analyst being the one that tests the software as he/she is the
person who knows the best the requirements and is, therefore, the most indicated to
validating them.

The DevOps engineer plays a cross-cutting role: they need to know how the application is
built (and possibly be part of its development), but their focus is related to the operation of
the app: security, operational readiness, infrastructure, and testing should be their day-to-
day job.

[21]

DevOps in the Real World Chapter 1

I have also seen teams built entirely by DevOps engineers and analysts without any pure
developers or QAs. In this variant, the DevOps engineers are responsible for the
infrastructure part as well as the application development, which can be very challenging
depending on the complexity of the system. In general, every case needs to be studied in
isolation as DevOps is not a one size fits all product.

What to expect from this book

Now that we have introduced DevOps, it is time to specify what are we going to learn in
this book. It will be mainly focused on the Google Cloud Platform and the DevOps tools
around it. There are several reasons for this:

e The trial period of GCP is more than enough to go through the entire book
e Itis a very mature product
e Kubernetes is a big part of GCP

You will learn the fundamentals of the DevOps tools and practices, which provide enough
detail to allow you to search for extra information when needed but up to a point where
you can use the learnings straight away in your company.

It will be strongly focused on the ops part of DevOps as there is enough literacy in
application development, and that hasn't changed in the DevOps world. Needless to say,
we are not going to show how to write tests for your application, which is a fundamental
activity to ensure the stability of our systems: DevOps does not work without good code
coverage and automated testing.

In general, the examples are simple enough to be followed by people at the entry level of
DevOps, but if you want to go deeper into some aspects of GCP, there is a good collection
of tutorials available at https://cloud.google.com/docs/tutorials.

The book is structured in an incremental way: first, the Docker fundamentals will be shown
just after a walkthrough of the different cloud providers but before going deep into
configuration management tools (specifically, Ansible) and containers' orchestration
platform (mainly Kubernetes).

[22]

https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials
https://cloud.google.com/docs/tutorials

DevOps in the Real World Chapter 1

We will end up setting up a continuous delivery pipeline for a system that manages
timezoned timestamps called Chronos, which I use for talks for several reasons:

e It has pretty much no business logic
e [t is based on microservices
e It pretty much covers all the required infrastructure

You can find the code for Chronos on the following GitHub repository at https://github.
com/dgonzalez/chronos.

The majority of the examples can be repeated in your local machine using a virtualization
provider such as VirtualBox and MiniKube for the Kubernetes examples, but I'd encourage
you to sign up for the trial on Google Cloud Platform as it provides you (at the time of
writing this) with $300 or 1 year of resources to spend freely.

Summary

On this chapter we have seen how we should align our resources (engineers) to deliver low
cost and high impact IT systems. We have seen how a poor communication can lead into a
defective release process deadlocking our rollouts and making the system quite inefficient
from the business point of view. Through the rest of the book, we are going to look at tools
that can help us not only to improve this communication but also enable our engineers to
deliver more top quality functionality with lower costs.

The first of these set of tools are described on the next chapter: the cloud data centers. These
data centers allow us to create resources (VMs, networks, load balancers...) from their pool
of resources in order to satisfy our needs of specific hardware, at a very reasonable price
and flexibility. These type of cloud data centers are being adopted more and more by the
modern (and not so modern) IT companies, which is leading to the creation of a set of tools
to automate pretty much everything around the infrastructure.

[23]

https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos

Cloud Data Centers - The New
Reality

In the last few years, there has been a shift toward cloud systems, which enable the
companies to scale in an easy and cheap way depending on the needs. They also enable
companies to take advantage of something called Infrastructure as Code (IAC), which
basically allows you to treat your physical resources (servers and routers) that previously
had to be bought according to the needs as code that you can review, run, and re-run to
adapt the infrastructure to your requirements.

In this chapter, we are going to walk through the main cloud providers, taking a look at
their main strengths and weak points in order to form a clear picture of what they offer and
how we can, as engineers, take advantage of it.

Out of all the providers in the market, we are going to focus on these two:

e Amazon Web Services (AWS)
¢ Google Cloud Platform

We are also going to talk a bit about these:

e Heroku
o Azure
¢ DigitalOcean

Cloud Data Centers - The New Reality Chapter 2

We should have an open minded attitude, as all of them can offer a different and valuable
set of features, something that should not be overlooked.

We are going to introduce Kubernetes, which is, in my humble opinion, the answer to
many problems in the modern DevOps world.

Amazon Web Services

Amazon is by far the biggest online retailer with an almost worldwide presence. Everyone
has heard about Amazon and the possibilities that this type of store present to the busy
society of the 21st century: they offer home delivery of pretty much anything that can be
bought in a conventional store.

Amazon was founded in 1994 by Jeff Bezos, and since then, it has grown consistently every
year, offering more and more products and services, but at some point, they got into the
cloud computing business. It makes sense that a big company such as Amazon needs a lot
of processing power, is reliable, and is able to adapt to the necessities of the business
quickly.

Initially, the cloud services were an internal solution to satisfy the high availability needs of
the business as well as have the capacity to grow in a uniform way. This created a lot of
expertise within the company in building a top notch Infrastructure as a Service (IaaS) that,
at some point, they realized could be sold to customers.

By 2006, there was nothing in the market to compete with them, so they were in the sweet
spot for a successful start.

I remember I was only in college when the first two services, EC2 and EC3, were introduced
in a conference.

EC2 allowed you to create virtual machines on the cloud with an API that was manipulated
through a command-line interface as well as a web interface that would act as a monitor of
your resources.

S3 was a key value (kind of) storage that allowed you to store immense sets of data at a very
low price manipulated through the command-line interface as well.

It really was a revolution. It was a complete paradigm shift: now you could ask for more
resources as you need. This was as simple as an API call, and there you go: three new

machines ready to be used in 2 minutes. The following screenshot is a list of services on
AWS:

[25]

Cloud Data Centers - The New Reality

Chapter 2

“ Group

D

Trusted Advisor

Machine Leaming

) Compute @g Developer Tools -D'D"[Analytics E Application Services
EC2 CodeCommit Athena Step Functions
EC2 Container Service CodeBuild EMR SWF
Lightsail & GodeDeploy CloudSearch API| Gateway
Elastic Beanstalk CodePipeline Elasticsearch Service Elastic Transcoder
Lambda Kinesis
Batch Data Pipeline .
Management Tools Quicksight % @ Messaging
CloudWatch sas
£ storage CloudFormation SNS
53 CloudTrail €2 Antificial Inteligence SES
EFS Config Lex
Glacler OpsWorks Polly ‘ .
Storage Gateway Service Catalog Rekognition @ Businees Productivity

WorkDocs

Managed Services WorkMail
B Database Application Discovery Service o .
RDS %P Internet Of Things])
DynamoDB AWS loT L:,\ Desktop & App Streaming
ElastiCache Security, Identity & Compliance WorkSpaces
Redshift 1AM 2. Game Development AppStream 2.0
Inspector = _
£ Networking & Content Delivery Gartificate Manager gLt
e Directory Service
\é\:dme WAF & Shield [— Mobile Services
Compliance Reports Mobile Hub
Direct Connect Comnio
e Device Farm
Mobile Analytics
&y Migration Pinpoint
DMS
Server Migration
Snowball

A-Z

Catalog of services in AWS at January 2017

In the last few years, Amazon has been adding services very often, up until a point where it
is hard to keep up with the pace. In this chapter, we are going to walk through the main
services (or what I consider the most useful), showing their features and areas of
application.

EC2 - computing service

The first element that a cloud system has to provide to the users is computing power. EC2
stands for Elastic Compute Cloud, and it allows you to create machines on the cloud with a
few clicks.

[26]

Cloud Data Centers - The New Reality

Chapter 2

This is what the EC2 interface looks like:

7] Services -

Placement Groups
Key Pairs

Network Interfaces

Load Balancers

Target Groups

Launch Configurations

Auto Scaling Groups

Resource Groups v *

[\® dagonza @ mycompany + Frankfurt + Support

Service Status: EU Central (Frankfurt):

@ EU Central (Frankfurt): No events
This service is operating normally

Availability Zone Status:

@ eu-central-1a:
Availability zone is operating normally

) eu-central-1b:
Availability zone is operating normally

Service Health Dashboard

EC2 Dashboard Resources ¢
Events Console Home
T You are using the following Amazon EC2 resources in the EU Central (Frankfurt) region:
Tags
Reports 1 Running Instances 0 Elastic IPs
Limits 0 Dedicated Hosts 6 Snapshots
12 Volumes 0 Load Balancers
. 8 Key Pairs 15 Security Groups
Instances
0 Placement Groups
Spot Requests
Reserved Instances x
Dedicated Hosts Just need a simple virtual private server? Get everything you need to jumpstart your project - compute, storage, and
networking — for a low, predictable price. Try Amazon Lightsail for free.

AMIs

Create Instance
Bundle Tasks

To start using Amazon EC2 you will want to launch a virtual server, known as an Amazon EC2 instance.
Volumes Launch Instance
Snapshots.

Note: Your instances will launch in the EU Central (Frankfurt) region
Security Groups Service Health ' Scheduled Events ¢
Elastic IPs

Account Attributes

Supperted Platforms
VPG

Default VPG
vpc-7316fl11a

Resource |D length management

Additional Information

Getting Started Guide
Documentation

All EC2 Resources
Forums

Pricing

Contact Us

EC2 interface

EC2 was launched on August 25, 2006 (beta version), and it has evolved a lot since then. It
provides the user with different sizes of machines and is available across the globe (11
different regions as of today). This means that the user can spin up machines in different
parts of the globe for high availability and latency purposes, enabling the engineers of your
company to build multi-zone applications without coordinating teams across the globe.

They also provide different types of instances optimized for different tasks so that the users
can tailor the infrastructure to their needs. In total, there are 24 different type of instances,
but they are also grouped by type, which we will walk through later on in this chapter.

Let’s look at an example of how to launch an instance.

[27]

Cloud Data Centers - The New Reality Chapter 2

Launching an instance
The first thing you need to do is go to the AWS EC2 interface.

1. Now click on the Launch Instance button, which will bring you to the following
screen:

Step 1: Choose an Amazon Machine Image (AMI) Cancel and Exit
An AMI is a template that contains the software configuration (operating system, application server, and applications) required to launch your instance. You can select an AMI provided by AWS, our user community, or
the AWS Marketplace; or you can select one of your own AMIs.

Quick Start 110 31 of 31 AMIs

My AMIs Amazon Linux AMI 2016.09.1 (HVM), SSD Volume Type - ami-211adade

Amazon Linux The Amazon Linux AMI is an EBS-backed, AWS-supported image. The default image includes AWS command line tools, Python, Ruby, Perl, and

64-bit
S TR Java. The repositories include Docker, PHP, MySQL, PostgreSQL, and other packages. !
Community AMIs Root device type: ebs Virtualization type: hvm
[Red Hat Enterprise Linux 7.3 (HVM), SSD Volume Type - ami-e4c63e8b m
Free tieronly (j

Red Hat Red Hat Enterprise Linux version 7.3 (HVM), EBS General Purpose (SSD) Volume Type

[t covi ot

Root device type: ebs Virtualization type: hvm

) SUSE Linux Enterprise Server 12 SP2 (HVM), SSD Volume Type - ami-c425e4ab

SUSE Linux SUSE Linux Enterprise Server 12 Service Pack 2 (HVM), EBS General Purpose (SSD) Volume Type. Public Cloud, Advanced Systems Management,

64-bit
Web and Scripting, and Legacy modules enabled.

Root device type: ebs Virtualization type: hvm

@ Ubuntu Server 16.04 LTS (HVM), SSD Volume Type - ami-fe408091

Ubuntu Server 16.04 LTS (HVM),EBS General Purpose (SSD) Volume Type. Support available from Canonical
(http://www.ubuntu.com/cloud/services).

Root device type: ebs Virtualization type: hm

B4-bit

-~ Microsoft Windows Server 2016 Base - ami-425d9c2d

Windows Microsoft Windows 2016 Datacenter edition. [English]

[t covi ot

Root device type: ebs Virtualization type: hm

Are you launching a database instance? Try Amazon RDS. Hide
. ‘Amazon Relational Database Service (RDS) makes it easy to set up, operate, and scale your database on AWS by automating time-consuming database
o &5 management tasks. With RDS, you can easily deploy Amazon Aurora, MariaDB, MySQL, Oracle, PostgreSQL, and SQL Server databases on AWS.
mazon Aurora is a MySQL-compatible, enterprise-class database at 1/10th the cost of commercial databases. Learn more about RDS
Launch a database using RDS

> Microsoft Windows Server 2016 Base with Containers - ami-955697fa m

Windows Microsoft Windows 2016 Datacenter edition with Containers. [English] 4-bit
[e | o

Root device type: ebs Virtualization type: hvm

2. This is where you can choose the image to run. As you can see, the image is the
operating system that will run on top of the EC2 Instance. In Amazon jargon, this
image is called Amazon Machine Image (AMI), and you can create your own
ones and save them for later usage, allowing you to ship prebuilt software. For
now, choose Ubuntu Server 16.04 by clicking on Select.

3. The next screen is about the size of the image. AWS offers quite a big variety of
sizes and types of images. This parameter drastically affects the performance of
the application regarding the network, memory, and CPU performance as well as

[28]

Cloud Data Centers - The New Reality

Chapter 2

the I/O of the machine.
4. Let’s look at the different types:

Type Description
Burstin T2 are general-purpose instances for burst processing. They provide a baseline level of CPU for peaks of processing
instancegs power, but these peaks are available on an accumulative basis: while idle, the CPU accumulates credits that can be

used during high demand periods, but once these credits are used, the performance goes back to the baseline level.

General purpose

M3 is a general-purpose instance with dedicated resources (no burst credits). It provides a good balance between
CPU, memory, and network resources, and it is the minimum instance for production applications that need solid
performance.

M4 follows the same philosophy as M3 but with an updated hardware: Amazon Elastic Block Store (Amazon EBS)
optimized and a better CPU as well as enhanced networking are the highlights of this instance type.

The compute optimized instances in AWS are C3 and C4. In the same way as the M instances, C4 is a hardware

Compute upgrade of the C3. These types of instances are prepared for intensive CPU work, such as data processing and
Optimized analysis or demanding servers. C4 also comes with an enhanced network system, which is very helpful for high
networking traffic applications.
As you can guess, AWS also provides memory optimized instances that can be used for applications that need high
memory usage. Applications based on Apache Spark (or big data in general), in memory databases and similar,
benefit the most from these type of instances. In this case, the memory optimized instances are divided into two
Memory sub-families:X1: These are large scale enterprise grade instances. X1 can be used for the most demanding
Optimized applications in the enterprise ecosystem and it is the flagship of the memory intensive instances and is only used
for very large applications.R3/R4: Even though are more modest than X1, R instances are well capable of handling
the majority of day-to-day memory intensive applications. Cache systems, in memory databases, and similar
systems are the best use cases for X and R instances.
Some applications, such as Artificial Intelligence (AI), have specific computing requirements, such as Graphical
A Processing Unit (GPU) processing or reconfigurable hardware. These instances are divided into three families:P2:
ccelerated . S oy . .
Computin GPU compute instances. These are qptlmlzec'l to carry sp.emfm processing tasks, such as breaking passworqls
puting .
Instances through brute force as well as machine learning applications (they usually rely on GPU power).G2: Graphical

processing instances. Rendering videos as well as ray tracing or video streaming are the best use cases for these
instances.

5. As you can see, there is an instance for every necessity that the user can have. For
now, we are going to choose a small instance first because we are just testing
AWS and second because AWS has a free tier, which enables you to use the
t2.micro instances for up to 1 year without any charge, as shown in the
following screenshot:

[29]

Cloud Data Centers - The New Reality Chapter 2

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group 7. Review
Step 2: Choose an Instance Type
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run applications. They have varying combinations of CPU, memory, storage, and
networking capacity, and give you the flexibility to choose the appropriate mix of resources for your applications. Learn more about instance types and how they can meet your computing needs.

Filter by: = All instance types v Current generation v Show/Hide Columns

Currently selected: t2.micro (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB memory, EBS only)

Family Type v vCPUs (i v Memory (GiB) Instance Storage (GB) i EBS-Optimized Available (i Network Performance (i
General purpose t2.nano 1 05 EBS only - Low to Moderate
a General purpose 1 1 EBS only - Low to Moderate
General purpose 1 2 EBS only - Low to Moderate
General purpose 2 medium 2 4 EBS only - Low to Moderate
General purpose 12.large 2 8 EBS only - Low to Moderate
General purpose 12.xlarge 4 16 EBS only - Moderate
General purpose 12.2xlarge: 8 32 EBS only - Moderate
General purpose m4.large 2 8 EBS only Yes Moderate
General purpose m4.xlarge 4 16 EBS only Yes High
General purpose mé.2xlarge 8 32 EBS only Yes High
General purpose mé.4xlarge 16 64 EBS only Yes High
General purpose m4.10xlarge 40 160 EBS only Yes 10 Gigabit
General purpose m4.16xlarge 64 256 EBS only Yes 20 Gigabit
m3.medium 1 375 1x4(SSD) - Moderate
ma3.large 2 75 1x 32 (SSD) - Moderate
m3.xlarge 4 15 2 x 40 (SSD) Yes High
8 30 2 x 80 (SSD) Yes High

6. Now we have two options. Click on Review Instance Launch or Configure
Instance Details. In this case, we are going to click on Review Instance Launch,
but by clicking on Configure Instance Details, we can configure several
elements of the instance, such as networking, storage, and so on.

[30]

Cloud Data Centers - The New Reality Chapter 2

7. Once you click on Review Instance Launch, the review screen shows up. Click
on Launch and you should get presented with something similar to what is
shown in the following screenshot:

Select an existing key pair or create a new key pair

A key pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

[Create a new key pair
Key pair name

Download Key Pair

‘You have to download the private key file (*.pem file) before you can continue. Store
itin a secure and accessible location. You will not be able to download the file
again after it's created.

8. Just assign a name to the key-pair name and click on the Download Key Pair
button, which will download a .pen file that we will use later on to access via
ssh to the instance.

9. Once you have specified the key pair, click on Launch Instance, as shown in the
preceding screenshot, and that's all. After a few checks, your image will be ready
for installing the required software (this usually takes a couple of minutes).

[31]

Cloud Data Centers - The New Reality Chapter 2

This is the bare minimum needed to create a running instance in AWS. As you can see, the
full process is very well explained on the screen and in general, if you know the basics of
DevOps (ssh, networking, and device management), you don't really need much help
creating instances.

Relational Database Service

What we have shown in the previous section are EC2 machines that can be used to install
the required software. There is another service that allows you to administer high
availability databases (MySQL, PostgreSQL, Maria DB, and Aurora as well as Oracle and
SQL Server) across regions. This service is called RDS and it stands for Relational Database
Service.

One of the big headaches with relational databases is the high availability configuration:
master-master configuration is something that is usually expensive and out of reach of
small companies. AWS has raised the bar with RDS offering multi-region high availability
databases with a few clicks.

Networking in AWS and EC2

AWS provides fine-grain control at the networking level. As with any physical data center,
you can define your own networks, but AWS has a higher-level abstraction concept: The
Virtual Private Cloud.

Amazon Virtual Private Cloud (Amazon VPC) is a segment of the AWS cloud that allows
you to group and segregate your resources in subnetworks to organize and plan your
infrastructure matching your requirements. It also allows you to create a VPN between
AWS and your physical data center to extend the latter one, adding more resources from
AWS. Also, when you create a resource in EC2, you have the possibility of creating the
resource in your custom defined subnet within your VPC.

[32]

Cloud Data Centers - The New Reality Chapter 2

Before jumping into what a VPC looks like, let's first explain how AWS works regarding the
geographical distribution of resources. AWS provides you with different data centers in
different regions such as Europe, Asia, and the US. As an example, let's take EU West,
which has three different availability zones:

Service Health C’

Service Status:

& EU West (Ireland):
This service is operating normally

Availability Zone Status:

@ eu-west-1a:
Availability zone is operating normally

& eu-west-1b:
Availability zone is operating normally

@ eu-west-1c:
Availability zone is operating normally

The concept of region in AWS is basically a geographical area where the AWS data center
lives. Knowing this information enables us to build global scale applications that serve the
traffic from the closest data center in order to improve latency. Another very good reason
for this geographical distribution is the data protection laws in several countries. By being
able to choose where our data lives, we can enforce the compliance with the laws.

Inside of these geographical regions, sometimes, we can find availability zones. One
availability zone is basically a physically separated data center that ensures the high
availability of our system, as in the case of a catastrophe in one of the data centers, we can
always fall back on the other availability zones.

Let's see how the regions and availability zones look:

[33]

Cloud Data Centers - The New Reality

Chapter 2

a
Amazon Web Services
' s
Region Availability Region Availability
Zone Zone
Availability Availability Availability Availability
Zone Zone Zone Zone
A oy . vy
-

Now that we understand how AWS works from the geographical perspective, let's dig
deeper into what a VPC is in terms of regions and availability zones.

A VPC is a logically separated segment of the AWS cloud that is private to the user, can
hold resources, and spans across all the availability regions in an AWS zone. Inside of this
VPC, we can define different subnets (public and privates in different availability zones)
and define which machines are reachable from the Internet: AWS allows you to create
routing tables, Internet gateways, and NAT gateways among other common networking
resources that enable the user to build anything that they can build in a physical data
center.

It would take a full book just to talk about the networking in AWS. We will go deeper into
some concepts in the rest of the chapters of this book, but if you really want to dive deep
into the networking side of AWS, you can find more data and examples at http://docs.

aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html.

AWS also provides a very powerful element: Elastic Load Balancing (ELB). An ELB is a
modern version of the classic hardware load balancer. It enables us to health-check
resources and only get the healthy ones into the pool. Also, AWS comes in two flavors:
classic load balancer and application load balancer. The first version is, as the name
suggests, an application load balancer that distributes the traffic depending on health
checks and does not understand the data being transmitted, whereas the application load
balancer can route the traffic based on advanced policies dependent on the information of
the request. ELBs can also handle the full HTTPS flow so that we can carry the SSL
termination in the load balancer and allow our applications to offload the
encryption/decryption to them.

[34]

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html

Cloud Data Centers - The New Reality Chapter 2

Storage in AWS and EC2

Up until now, we have exposed how to create machines and networking infrastructure in
AWS. One important thing when building applications is the storage of the data. By default,
when we launch a machine in EC2, there are two types of storage that can be associated
with the machine in the root volume in order to run the operating system:

e Instance storage backed images

e Amazon Elastic Block Store (Amazon EBS) storage backed images

The first one, instance storage backed images, relies on the storage associated with the
image to mount and run the root volume. This means that the data stored in the image will
be lost once the machine is terminated (these type of images do not support the stop action;
they just support termination).

The second type of instances are the ones backed by EBS. Elastic Block Store is the name
that AWS gives to its storage capabilities. With EBS, the user can create and destroy
volumes (block devices) as needed as well as snapshots: we can create a copy of a running
image before carrying a risky operation so we can restore it if something goes wrong.

The type of storage can vary depending on our needs: you can create things from magnetic
block devices to SSD drives as well as general-purpose units that can cover a lot of the use
cases in all the applications.

In general, all the instances are backed by EBS as the fact that the storage is a logically
segregated from compute enables us to do things such as resizing an instance (for example,
creating a more powerful instance) without losing the data.

Several volumes can be mounted into the same EC2 instance that gets exposed to it as if a
physical device were attached to it, so if we are using a Linux-based image (such as
Ubuntu), we can use the mount command to mount the devices into folders.

[35]

Cloud Data Centers - The New Reality Chapter 2

Amazon S3

Amazon Simple Storage Service (Amazon S3) is, as described by its name, a simple way of
storing a large amount of data on the cloud at a very low cost with a nice set of features.
Unlike EC2 storage based on devices with predefined size, Amazon S3 is practically a key
value storage that enables us to identify data with a key. Unlike other key value storage
technologies, S3 is prepared to store from tiny to very large objects (up to 5 terabytes) with
very low response times and that are accessible anywhere.

In the same way as EC2, Amazon S3 is a feature that has the concept of regions, but S3 does
not understand availability zones: the S3 service itself manages to get the objects stored on
different devices, so you don't need to worry about it. The data is stored in an abstraction
called buckets that, if we try to compare S3 with a filesystem, would be the equivalent to a
folder but with one catch: the bucket name has to be unique across all the regions on your
AWS account so we can't create one bucket called Documents in two different regions.

Another advantage of S3 is that AWS provides a REST API to access objects in a very simple
way, which makes it fairly easy to use it as storage for the modern web.

One of the best use cases that I've come across in my professional life for S3 is the
management of a large number of documents in a financial institution. Usually, when
companies are dealing with money, they have to onboard the customers to a process called
Customer Due Diligence (CDD). This process ensures that the customers are who they
claim to be and that the money is coming from a valid source. The company also has to
keep the documents for a minimum of 6 years due to financial regulations.

In order to carry on this investigation, the users need to send documents to the company,
and Amazon S3 is the perfect match for it: the customer uploads the documents to the
website of the company, which in reality is pushing the documents to S3 buckets (one per
customer) and replicating them across regions with the Amazon S3 replication feature.
Also, S3 provides another interesting feature for this model: links to objects that expire
within a time frame. Basically, this enables you to create a link that is valid only for a period
of time so that if the person reviewing documents exposes the link to a third party, S3 will
reply with an error, making it really hard to leak documents accidentally (the user could
always download it).

Another interesting feature of S3 is the possibility of integrating it with Amazon Key
Management System (Amazon KMS), another feature provided by AWS), so all our objects
in S3 are encrypted by a key stored in KMS that can be transparently rotated periodically.

[36]

Cloud Data Centers - The New Reality Chapter 2

Amazon ECR and ECS

Containers are the new norm. Every single company that I've come across in the last few
years is using or considering using containers for their software. This enables us to build
software with the microservices principles in mind (small individual software components
running independently) as it provides a decent level of abstraction from the configuration
and deployment of different apps: basically, the entire configuration is stored in a container
and we only need to worry about how to run it.

Amazon, as one of the pioneers of the microservices architectures, has created its own
image registry and cluster (service).

As we will see in depth in chapter 3, Docker, is built around two concepts: images and
containers. An image is a definition of an application (configuration + software), whereas a
container is an instance of the running image. The image is built through a Dockerfile (a
description of the image with a very basic script language) and stored in a registry, in this
case, Amazon EC2 Container Registry (ECR), our private registry in the AWS
infrastructure. We don't need to worry about availability or managing resources; we just
choose the region where our containers are going to run and push our images into that
repository.

Then, from our host running Docker, the image is pulled and the container is instantiated.
This is simple and effective, but there are a few considerations:

e What happens when our host does not have enough resources to run as many
containers as we want?

e What happens if we want to ensure the high availability of our containers?

e How do we ensure that the containers are restarted when they fail (for some
reason)?

¢ How can we add more hardware resources to our system without downtime?

All those questions were trickier a few years ago but are simple now: Amazon EC2
Container Service (Amazon ECS) will take care of it for us. ECS is basically a cluster of
resources (EC2 machines) that work together to provide a runtime for our containers to be
executed.

Within ECS, when creating a new service, we specify parameters such as how many replicas
of our container should be running at the same time as well as what configuration (image)
our container is supposed to use. Let's see how it works.

[371]

Cloud Data Centers - The New Reality Chapter 2

Creating a cluster

First, we are going to create a cluster in the AWS console and see how it works.

1. Go to the Amazon ECS page and click on Get started button (the only button in
the screen as you haven't created any resources yet):

Select options to configure
Get started by running a sample app with EC2 Container Service (ECS), setting up a private image repository with EC2 Container Registry (ECR), or both.
Iwantto & Deploya sample application onto an Amazon ECS Cluster
Amazon ECS will set up an autoscaling group and help you create other resources to facilitate cluster management.
' Store container images securely with Amazon ECR

Create and manage a new private image repository and use the Docker CLI to push and pull images. Access to the
repository s managed through AWS Identity and Access Managerment.

Cancel Continue

2. Make sure that the two checkboxes are ticked before continuing. We want to
deploy a sample application to ECS but also we want to store the images in ECR.

3. The next screen is key: this is where we define the repository of our image, which
will determine the repository URI that will be used for pushing images from our
local machine using Docker.

IS!ep 1: Configure repository Configure repository

This wizard will guide you through the steps of creating a repository in EC2 Container Registry. Learn more

Repository name* | devops-test (1]

Namespaces are optional, and they can be included in the repository name with a slash (for example,
namespace/repa)

Repository URI 711655675495.dkr.ecr.eu-central-
1.amazonaws.com/devops-test

Permissions

As the owner, you have access to this repository by default. After completing this wizard, you can grant others permission to access this
repository in the console.

*Required Cancel Previous

[38]

Cloud Data Centers - The New Reality Chapter 2

4. Just use devops-test as the repository name, and our repository URI will look
very similar to the one shown in the preceding screenshot.

5. Step number 2 (out of 6) is a series of commands provided by AWS to log in into
ECR and push the images of our project. In this case, we are going to use a very
simple application in Node. js:

var express = require ('express');
var app = express{();

app.get ('/', function (req, res) {
res.send('Hello World!");
1)

app.listen (3000, function () {
console.log('Example app listening on port 3000!");
1)

6. Save the code from earlier in a file called index. js within a folder called
devops—test on your local machine. As we are using express, we need to install
the required dependency. Just execute the following command:

npm init

7. After a few questions (just press Enter a few times and it should work), a file
called package. json should be created. Now we need to install express for our
program to run:

npm install —--save express

8. And voila! Our package. json file should have a line describing the required
dependency:

{
"name": "code",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo "Error: no test specified"
&& exit 1",
"start": "node index.js"
}I
"author": "",
"license": "ISC",
"dependencies": {

[39]

Cloud Data Centers - The New Reality Chapter 2

"express": ""4.14.1"
}
}

9. This file allows us to reinstall the dependencies whenever required without
having to do it manually; it also allows us to specify a command that will be run
when we execute npm start (a standard way of running a Node app using
npm). Add the line and highlight it, as shown in the preceding code, as we will
need it later (don't forget the semicolon from the previous line).

10. Now we need to write our Dockerfile. A Dockerfile, as we will see in Chapter 3,
Docker, is a file that describes what our Docker image looks like. In this case, we
are going to reconstruct the steps needed to run the node application in a Docker
container:

FROM node:latest

RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app

COPY package.json /usr/src/app/
RUN npm install

COPY . /usr/src/app

EXPOSE 3000
CMD ["npm", "start"]

11. Don't try to understand the file; we will go deeper into this later on this book. Just
save it with the name Dockerfile in the folder mentioned previously, devops-
test. By now, your devops-test folder should look like this:

=+ devops-test 1s
Dockerfile index.js node_modules package.json

= devops-test ||

[40]

Cloud Data Centers - The New Reality Chapter 2

12. Now we are ready to follow step 2 in the ECS setup. Be aware that the following
image is regarding my user in AWS; your user will have different parameters, so
use yours instead of copying from the preceding screenshot:

Build, tag, and push Docker image

Now that your repository exists, you can push a Docker image by following these steps:

@ Successfully created repository

711655675495.dkr.ecr.eu-central-1.amazonaws.com/devops-test

To install the AWS CLI and Docker and for more information on the steps below, visit the ECR documentation page.

1) Retrieve the docker login command that you can use to authenticate your Docker client to your registry:

aws ecr get-login --region eu-central-1

2) Run the docker login command that was returned in the previous step.

3) Build your Docker image using the following command. For information on building a Docker file from scratch see the instructions
here. You can skip this step if your image is already built:

Cancel Next step

Once you finish it, a new version of the image with your app image should
be installed in your private ECR.

[41]

Cloud Data Centers - The New Reality Chapter 2

14.

15.

The next step (step 3) is creating what AWS calls a task definition, which is
basically the configuration for one instance of our containers: how much memory
we are going to use, which image we are going to run, and what ports we are
going to expose in the container. Just leave the default memory but change the
port to 3000, as it is the port that we used in the preceding example (the node
application). This is typical docker parameter and we will learn more about it in
the next chapter, where we will dive deeper into docker.

Once you are ready, click on next and we will be with step 4. This step is where
we are going to configure a service. By service, we mean the number of instances
of our container are we going to keep alive and how are we going to expose
them: using a load balancer or just in the EC2 instances that are part of the
cluster. We will also be able to specify which IAM (AWS credential system) is
going to be used for registering and deregistering running instances:

[42]

Cloud Data Centers - The New Reality Chapter 2

Step 1: Configure repository
Step 2: Build, tag, and push Docker image
Step 3: Create a task definition
| step 4: Configure service
Step 5: Configure cluster

Step 6: Review

Configure service

Create a name for your service and set the desired number of tasks to start with. A service auto-recovers any stopped tasks to
maintain the desired number that you specify here. Later, you can update your service to deploy a new image or change the running
number of tasks. Learn more

Service name* sample-webapp [}
Desired number of = 2 [i]
tasks*

Elastic load balancing

Create an Elastic Load Balancing load balancer and configure your service to run behind it. Learn more

Container name: host = sample-app:80 A]
port

Configure the listener protocol and port for your load balancer. The ELB health check field is automatically populated to match the
protocol and port of your load balancer.

ELB listener protocol* HTTP - & ELB listener port* = 80 (i}
ELB health check http:80/ [:]

Service IAM role

The Amazon EGCS service scheduler makes calls to the Amazon EC2 and Elastic Load Balancing APIs on your behalf to register and
deregister container instances with your load balancers. If you do not have the ecsServiceRole already, we can create one for you.

Select IAM role for ecsServiceRole v O
service

*Required Cancel Previous m

[43]

Cloud Data Centers - The New Reality Chapter 2

16. We just leave everything by default except two parameters:
¢ The desired number of tasks: set to 2

e In the ELB section, we just select sample-app: 80 (or the option that
isn't No ELB so AWS provisions an ELB for us)

17. Click on the Next step, where we are going to define what our cluster is going to
look like:
e The number of nodes

e The size of the nodes

18. Once we are ready, just review and launch the instance. After a few minutes, our
cluster should be up and running and ready to work with our deployed task.

You can access the instance of the task that we created in the load balancer provisioned by
the cluster itself on the port 3000. As you can see, ECS makes the task of setting up a
container cluster simple.

In this book, we are going to give special attention to Kubernetes and Docker Swarm mainly
because they are platform agnostic technologies, but I believe that Amazon ECS is a very
valid technology to be considered when building a new container-based system.

Other services

As you can see, the list of services in AWS is pretty much endless. We have visited the ones
that I consider the most important, and in the following chapters, we will visit some of them
that are also interesting, but unfortunately, we cannot go in deep through all of them.
However, AWS is pretty good in terms of the documentation, and every service always
comes with quite a comprehensive explanation on how to use it.

In this section, we are going to touch base with some services that, even though are quite
important, are not core to the development of this book.

Route 53

Route 53 is the DNS service in AWS. It is a global and scalable DNS service that allows you
to perform some advanced operations:

® Register domain names
¢ Transfer domain names from other registrars
e Create traffic routing policies (such as failovers across regions)

[44]

Cloud Data Centers - The New Reality Chapter 2

e Monitor the availability of your applications (and reroute the traffic to healthy
instances).

With Route 53, we can link domain names to AWS resources, such as load balancers, S3
buckets, and other resources, enabling us to expose a human-readable name for our
resources (mainly VMs) created within our AWS instance.

CloudFront

CloudFront solves one of the biggest problems that low traffic websites experience when a
spike in visits happens: it provides a cache in a way that makes us wonder whether AWS is
the one that serves the data and not our server. Basically, CloudFront intercepts the request
to our host, renders the page, and keeps it for up to 24 hours so our site offloads the traffic
to AWS. It is designed for serving static content, as the second time that the user hits the
same URL, the cached version will be served instead of hitting your server again.

It is highly recommended that you use CloudFront for the brochure site of your company so
that you can serve all the traffic with a very small machine, saving some money in resources
but also being able to improve your uptime when a traffic spike hits your site.

Amazon ElasticCache

Amazon ElasticCache, as the name suggests, is a distributed and scalable in-memory cache
system that can be used to store cached data within our applications.

It solves one of the biggest problems that we can face when building an application that
relies on a cache for storing and retrieving data: high availability and a consistent
temporary datastore.

Amazon RDS

RDS stands for Relational Database Service. With RDS, you can provision DB instances
with a few clicks that could be used to store data: Oracle, MySQL, and MariaDB are some of
the options that we have for RDS. It leverages the high availability to the underlying DB
system, which might be a problem if we are looking to rely on AWS for it, but it is usually
acceptable as high availability in SQL databases is a complicated subject.

[45]

Cloud Data Centers - The New Reality Chapter 2

DynamoDB

DynamoDB is a fine piece of engineering. It is a NoSQL database that is fine-tuned down to
the millisecond of latency at any scale. It stores objects instead of rows (SQL cannot be used)
and is a good candidate for storing a big amount of data in a schema-less fashion.
DynamoDB, in essence, is very similar to MongoDB, but there is a basic difference:
DynamoDB is a service provided by AWS and can run only within AWS, whereas
MongoDB is a software that can be installed anywhere, including AWS. From the functional
point of view, the majority of use cases for MongoDB are valid for modeling DynamoDB
databases.

Google Cloud Platform

Google has always been at the top of the hill when it comes to technology. Surprisingly,
Google didn't have a federated layer of services; instead, it offered every service separately,
which was far from ideal in providing a solid platform for developers to build applications
on top of it. In order to solve that, they released Google Cloud Platform, which is a
collection of services (infrastructure as a service, platform as a service, containers and big
data, as well as many other features) that enables developers and companies to build highly
reliable and scalable systems with some of the most up-to-date features, such as Kubernetes
and a set of unique machine learning APIs.

The interface is also one of the main points in Google Cloud: it offers you a web console
where you basically have an available ssh Terminal that is connected to all your services,
and you can operate from there without the need for any configuration on your local
machine. Another good point in the interface is the fact that they use the terminology in the
traditional sysadmin world, making the learning curve easy for the majority of the services.

[46]

Cloud Data Centers - The New Reality Chapter 2

= Google Cloud Platform kubemetes-node-e2e-ma... -

ﬁ Home Dashboard /' CUSTOMISE

Il Dashboard

= e © Project info & Compute Engine Google Cloud Platform
kubernetes-node-e2e-images CPU(%) ~ status

Project ID: kubernetes-node-e2e-images All services normal
No. 57087965569

0.2

; - GotoCloud status dashboard

> Manage project settings 015 AN

01

= Billin
ReSOurces 4 Mar, 10:00 4 Mar, 10:46 g
® cPu: 0.044 $3.67
{&} Compute Engine Approximate charges so far this month
2instances
~> Go to the Compute Engine dashboard = View detailed charges
=— Trace
I APIs @ Error Reporting

No trace data from the last 7 days Requests (requests/sec)
No sign of any errors. Have you set up Error
Reporting?
~> Get started with Stackdriver Trace
015 [\ ~> Setup Error Reporting

N4
Y Getting Started 005 / 7\
[) 2 News

In the same way as AWS, Google Cloud Platform allows engineers to create resources
across the globe in regions and zones in order to ensure the high availability of our systems
as well as the compliance with local laws.

But the real jewel in the crown is their container engine. I am a big fan of container
orchestration. Nowadays, everyone is gravitating toward microservices-based systems, and
it is not strange to see companies hitting the wall of the operational reality of a
microservices-based system: this is impossible to manage without orchestration tools. From
all the potential choices on the market (Amazon ECS, Docker Swarm, and DCOS), there is
one in particular that has been a game changer in my life: Kubernetes.

Kubernetes is the answer to the question that I raised during the writing of my first book
(Developling Microservices with Node.js): how can we efficiently automate the operations in a
microservices environment by providing a common ground between development and
operations? Kubernetes has incorporated all the expertise from working with containers
that Google has accumulated through the years in order to create a product that provides all
the necessary components for the efficient management of deployment pipelines.

In this book, we are going to place a special emphasis on Kubernetes, as in my opinion, it is
the solution to many of the problems that teams have today when scaling up in members
and resources.

[47]

Cloud Data Centers - The New Reality Chapter 2

In order to start working with GCP, Google offers a trial version of 300 USD credit or 60
days free of charge test, which is more than enough to get your head around the majority of
the services and, of course, more than enough to follow the examples of this book and play
around with the majority of the concepts that we are going to be exposing. I would
recommend that you activate your trial period and start playing around: once the credit is
used or the 60 days are over, Google requires explicit confirmation to activate the billing so
there is not going to be any extra charge in your account (this is the case at the time of
writing this).

Google Compute Engine

Google Compute Engine is the equivalent of EC2 in Amazon Web Services. It allows you to
manage instances of machines, networks, and storage with a simplicity that I have never
seen before. One of the downsides that I found when ramping up with AWS is the fact that
they have created abstractions with names that are not very intuitive: Virtual Private Cloud,
Elastic Block Storage, and many more. This is not a big deal as AWS is well known in the
market, but Google got the message and has named its resources in a very intuitive way,
facilitating the onboarding of new people into the platform with little to no effort.

Regarding the machine types, Google Cloud Platform provides a simplified and limited set
of machines when compared to AWS but enough variety to satisfy our needs. One of the
features to keep in mind with Google Cloud Platform is the fact that the hardware improves
with the size of the instance, which means that the 64 cores machines get a better CPU than
the two core machines.

Google Cloud Platform also provides a CLI tool to interact with the resources in GCP from
a Terminal. In order to install it, just access this URL: https://cloud.google.com/sdk/.

Then, follow the instructions depending on your operating system.

Standard machine types

The standard machines are the most common to be used by any application. They offer a
balance between CPU and memory that suits the majority of the tasks in all the projects that
you can possibly imagine. These types of machines offer 3.75 GB of RAM for every single
virtual CPU. Let's look at a few examples:

Name CPUs [Memory
nl-standard-1 |1 3.75 GB

[48]

https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/

Cloud Data Centers - The New Reality Chapter 2

nl-standard-2 |2 7.50 GB

nl-standard-64 |64 240 GB

As you can see, the naming convention is fairly straightforward and is easy in order to
guess the machine RAM and the number of CPUs out of the canonical name.

High-memory machine types

These machines are optimized for memory-intensive applications. They come with an extra
amount of RAM for every virtual CPU that allows you to go the extra mile regarding
memory power.

Every machine of the high-memory type comes with 6.5 GB of RAM for every single virtual
CPU, and here are a few examples:

Name CPUs | Memory
nl-highmem-2 |2 13
nl-highmem-8 |8 52
nl-highmem-64 |64 416

These machines come with a massive amount of RAM and are well suited for distributed
caches, databases, and many other types of applications that require a high memory
consumption relative to the CPU power.

High-CPU machine types

As the name states, high-CPU machines are instances that hold a high CPU/memory ratio
with only 0.9 GB of RAM for every virtual CPU, which indicates that they are well suited
for saving some money on high-intensive CPU tasks (as we cut down on a lot of memory).
Here are some examples of these machines:

Name CPUs | Memory
nl-highcpu-2 |2 1.8 GB
nl-highcpu-8 |8 7.2 GB

nl-highcpu-64|64 57.6 GB

[49]

Cloud Data Centers - The New Reality Chapter 2

As you can see, the only difference between the standard or high memory machines is that
these machines are built with less amount of RAM, which allows us to save money on a
resource that won't be used in some applications that are able to create machines with more
CPUs at the same price. High-CPU machines are well suited for applications that require
high CPU and low memory consumption, such as mathematical processing or other types
of calculations.

Shared-core machine types

Sometimes, we really don't need a dedicated machine for our process, so Google Cloud
offers shared machines that you can use for it. In my opinion, the shared-core machines are
not suited for production usage, but they could well serve a prototype or experimenting
with different resources. Here are the two types of machines:

Name CPUs | Memory
fl-micro|0.2 0.6

gl-small|0.5 1.7

As you can see, there are only two options with different RAM and CPU power. I
personally use these machines when I want to experiment with new software or new
products of the Google Cloud Platform.

Don't forget that these are bursting machines that are only suited for short burst of intensive
processing and not for sustained resource consumption as the CPU is shared across
different applications.

Custom machines and GPU processing

Sometimes, we need an extra amount of something on our machines, which is usually not in
the predefined machine instances of other providers, but in this case, Google Cloud
Platform comes to the rescue with an amazing feature: custom machine types.

With custom machine types in Google Cloud Platform, we can get the benefit of the
upgraded hardware of the large machines in a resource-modest machine or create specific
configurations that suit our needs.

One of the best examples that we can find for custom machines is when we want to add
some GPU processing to our mix. In Google Cloud, GPUs can be attached to any non-
shared (£1 or g1) machine on demand. With the ability to create our custom machine types,
we can define how many GPUs we want to burst our processing power in.

[50]

Cloud Data Centers - The New Reality Chapter 2

In general, when I design a system, I try to stick to the standard types as much as possible in
order to simplify my setup, but there is nothing wrong in creating custom machine types
aside from the fact that we can easily fall in the premature optimization of our system,
which is probably one of the biggest problems that you can find when working in IT.

Launching an instance

In Google Cloud Platform, everything is grouped in projects. In order to create resources,
you need to associate them with projects, so the first step to launch an instance is to create a
project. In order to do that, just select the new project button when entering the Google
Cloud Platform interface the first time or in the drop-down in the top bar when you have
already created one project:

1. For the examples of this book, I am going to create a project called
Implementing Modern DevOps, which I will to be using for running all the
examples:

New Project

Project name

| Implementing Modern Devops|

Your project ID will be fair-portal-160618 Edit

CANCEL CREATE

[51]

Cloud Data Centers - The New Reality Chapter 2

2. Once we have created our project, we proceed to create a new VM instance. Even
though it is possible to create instances with more than 64 cores (with the custom
machine types), we are going to stick to the standard ones in order to save costs.
Proceed to create the instance with the default values (just change the name):

Google Cloud Platform Implementing Modern De... ~

EE} Compute Engine & Create an instance

B VMinstances Name

| my-test-instance |

&, Instance groups
Zone

[E Instance templates us-central1-c . $25.95 per month estimated
Effective hourly rate $0.036 (730 hours per month)
a Disks Machine t
ype
Details
Snapshots 1VvCPU - 3.75 GB memory Customise
] Images Upgrade your account to create instances with up to 64 cores

ZZ Metadata
Boot disk

B Health checks
7‘ New 10 GB standard persistent disk

B Zones Image
Debian GNU/Linux 8 (jessie) Change
® Operations
=) Quotas Identity and APl access
Service account
& Settings No service account ae
Access scopes
Select a service account to enable API access
<l
Lhttos://console.cloud.google.com/compute/2project=fair-portal-160618&authuser=1

3. There are two details that I really like from Google Cloud Platform:
¢ How easy they name their resources and make everything clear to
understand

e How transparent they are with the pricing

4. While creating a virtual machine in Google Cloud Platform, these two
characteristics are present: the form to create a machine has only a few fields,
and it gives you the cost of the machine per month (so there are no surprises).

5. In the same way as AWS, Google Cloud Platform allows you to select the region
and the zone (remember, a physically separated data center) where your instance
is going to live in order to ensure the high availability of the overall system.

6. Also, this (not in the preceding figure) allows you a couple of clicks in two
checkboxes in order to allow the http and https traffic into the instance from
the outer world. This is just as simple and effective.

[52]

Cloud Data Centers - The New Reality Chapter 2

7. You can also configure other things, such as networking, ssh keys, and other
parameters that we are going to skip for now. Just click on the Create button (at
the bottom of the form) and wait until the machine is fully provisioned (it
might take up to few minutes), and you should see something similar to what
is shown in the following screenshot:

Google Cloud Platform Implementing Moder De... ~

ﬁ Compute Engine VM instances [CREATE INSTANCE & IMPORT VM C REFRESH

VM instances
a Columns ~ Q@ Labels

Instance groups
Name ~ Zone Recommendation Internal IP External IP Connect
[E] Instance templates @& my-testinstance europe-west1-b 10.132.0.2 35.187.84.77 @ -
@ Disks
B Snapshots
[s] Images
ZZ Metadata
Health checks

Zones

Operations

(NG - +]

Quotas

-]

Settings

8. One of the most appealing features of Google Cloud Platform is how curated
their usability is. In this case, you can see a column in your machine description
called Connect that allows you to connect to the machine in a few different ways:

e SSH

¢ The gcloud command (a command-line tool from GCP)
¢ Using another ssh client

[53]

Cloud Data Centers - The New Reality Chapter 2

9. We are going to select SSH (the default one) and click on the SSH button. A
popup should appear on the screen, and after a few seconds, we should see
something similar to an ssh Terminal, which is a Terminal in our machine:

Google Cloud Platform Implementing Modern De... -

ﬁj& Compute Engine VM instances [CREATE INSTANCE & IMPORT VM C REFRESH

B VMinstances

Colimne v @ lahale

[NOX J nodearth@my-test-instance: ~
¢4 Instance groups

@ Secure https://ssh.cloud.google.com/projects/fair-portal-160618/zones/europe-west1-b/inst...

2] Instance templates

0] Disks The programs included with the Debian GNU/Linux system are free software;
‘the exact distribution terms for each program are described in the

2] Snapshots individual files in /usr/share/doc/*/copyright.

Bl Images Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
nodearth@my-test-instance:~$

ZZ Metadata
B Health checks
0§ Zones
® Operations
=)

Quotas

£ Settings

This is a very neat and useful feature that basically enables the engineer to avoid carrying a
set of cryptographic keys that are always a risk as if they get leaked, your machines are
exposed.

Networking

One thing I cannot stress enough about the Google Cloud Platform is how it simplifies the
concepts and make them look similar to the real-world physical data center concepts. The
case of the networking was not an exception: all the concepts and names can be mapped
one to one to real world physical network concepts.

[54]

Cloud Data Centers - The New Reality Chapter 2

In Google Cloud, we can implement any required design that follows the principles of the
IP networking (the same as AWS) with pretty much a few clicks. Another interesting feature
that Google Cloud offers (along with other providers such as AWS) is the possibility of
extending your data center into the cloud with a VPN network taking the benefits of the
cloud products but achieving the level of security required by the most sensitive data that
you could imagine.

Google Container Engine

The Google Container Engine (GKE) is a proposal from Goog]le for the container
orchestration making use of one of the most powerful container clusters available in the
market: Kubernetes.

As we will discuss further in chapter 7, Docker Swarm and Kubernetes- Clustering
Infrastructure, Kubernetes is a feature-full cluster used for deploying and scaling container-
based applications in a controlled manner, with a special emphasis on defining the common
language between development and operations: a framework that blends development and
operation concepts into a common ground: a YAML (or JSON) description of resources.

One of the big problems of Kubernetes is ensuring high availability. When you deploy a
cluster on premises or in a cloud provider, making use of the computing power (EC2 in
AWS or Compute Engine in GCP), you are responsible for upgrading the cluster version
and evolving it with the new releases of Kubernetes. In this case, Google Cloud Platform,
through the container engine, has solved the operational problem: GCP keeps the master
and is responsible for keeping it up to date and the users upgrade the nodes when a new
version of Kubernetes is released, which allows us to articulate different procedures for
upgrading our cluster.

[551]

Cloud Data Centers - The New Reality Chapter 2

Setting up a cluster

In chapter 7, Docker Swarm and Kubernetes- Clustering Infrastructure, you are going to learn
how to operate Kubernetes, but it is worth teaching you how to set up a cluster in the GKE
in this chapter in order to show how easy it is before diving deep into the core concepts of
Kubernetes:

1. First, go to Container Engine within Google Cloud Platform:

Google Cloud Platform Implementing Modern De... ~

@ Container Engine Container clusters

% Container clusters
B Container Registry
Container Engine

Container clusters

Containers package an application so it can be easily deployed to
run in its own isolated environment. Containers are managed in
clusters that automate VM creation and maintenance. Learn more

(WEEICENGLENEAGTEEM o Take the quickstart

2. Asyou can see, there are no clusters set up, so we have two options:
¢ Create a new container cluster

e Take the quickstart

3. We are just going to click on Create a container cluster and follow up the
onscreen instructions (a form) in order to set up our cluster:

[561]

Cloud Data Centers - The New Reality Chapter 2

= Google Cloud Platform Implementing Modem De... -

@ Container Engine & Create a container cluster

A container cluster is a managed group of uniform VM instances for running

i Containsrcliisters Kubernetes. Learn more

B Container Registry Name

cluster-1

Description (Optional)

Zone

us-centrall-a -

Machine type

1vCPU - 3.75 GB memory Customise

Upgrade your account to create instances with up to 64 cores

Node image

gci -
Size

3

Total cores 3 vCPUs

Total memory 11.25GB

|

4. Ensure that Zone is the closest to your geographical area (even though right now
it doesn't really matter) and the size is 3. This parameter, the size, is going to ask
GCP to create 3 instances in the Compute Engine in order to set up the cluster
plus a master that is managed by GCP itself. Regarding the image, we have two
options here, gci or container—vm. In this case, again, it doesn't really matter as
it is just a test cluster, but just note that if you want to use NFS or any other
advanced filesystem, you will need to use container-vm.

5. Click on Create, and after few minutes, you should see two things:
¢ The cluster is created in the Google Container Engine section

¢ Three new VMs are provisioned in the Compute Engine section

[571

Cloud Data Centers - The New Reality Chapter 2

6. This is a very smart setup because with some commands using the google cloud
platform command tool (gcloud), we can scale up or down or cluster as well as
change the size of our instances in order to satisfy our needs. If you explore the
cluster (by clicking on its name), you will find a Connect to the clusterlink, which
leads to a screen with instructions to connect to the Kubernetes dashboard.

Connect to the cluster

Configure kubectl command line access by running the following command

$ gcloud container clusters get-credentials cluster-1 \

\ --zone us-centrall-a --project fair-portal-160618

Then start a proxy to connect to the Kubernetes control plane:
$ kubectl proxy II_J

Then open the Dashboard interface by navigating to the following location in
your browser:

http://localhost:8001/ui

7. Sometimes, these instructions fail, and that is because gcloud is badly
configured. If you find an error trying to configure the access to the cluster, run
the following command:

gcloud auth login <your email>

8. Then, follow the instructions. Assuming that you have already configured the
Google Cloud SDK, everything should work fine, and after running the kubect1
proxy command, you should be able to access the Kubernetes dashboard
athttp://localhost:8001/ui.

9. In order to test whether everything works as expected, just run a simple image in
Kubernetes (in this case, a busybox image):

kubectl run -i busybox —--image=busybox

[581]

Cloud Data Centers - The New Reality Chapter 2

10. If we refresh the dashboard (http://localhost:8001/ui) while running the
Kubernetes proxy (as specified earlier), we should see something similar to what
is shown in the following figure in the Deployments section:

= kubernetes Workloads > Deployments + CREATE
Admin
Deployments "
Namespaces
Nodes Name Labels Pods Age Images
Persistent Volumes Q busybox run: busybox 1/1 a minute busybox
e
Namespace
default ¥

Workloads

Deployments
Replica Sets

Replication Controllers

This indicates that the deployment (a Kubernetes concept that we will explore in chapter 7,
Docker Swarm and Kubernetes- Clustering Infrastructure) was successful.

Other Google Cloud Platform products

Google Cloud platform is not only Compute Engine and Container Engine, but it is also a
collection of services that are very interesting for different purposes. As things are limited in
scope, we won't see the majority of them and will only focus on the ones that are more
relevant to the DevOps world.

Google App Engine

Up until now, we have been working with a side of DevOps called IaaS. Google Cloud
platform also offers something called Platform as a Service (PaaS). In an IaaS model, we
need not worry about the underlying infrastructure: provisioning machines, installing the
software, patching the software. With Google App Engine (or any other major PaaS), we
forget about the ops of our infrastructure and focus on the development of our application,
leveraging the underlying infrastructure to Google. Instead of launching a machine and
installing Java to run our Spring Boot-based application, we just specify that we want to run
a Java application, and GCP takes care of everything else.

[591]

Cloud Data Centers - The New Reality Chapter 2

This product, the Google App Engine, fits the necessity of the majority of the small to mid
sized projects, but in this book, we are going to focus on the DevOps that maintaining an
Taa$S involves.

Google App Engine also provides us with features such as user management, which is a
recurring problem in all the applications.

Machine Learning APlIs

Google has always been famous for its innovation across the technology products that it has
released. It has changed how people use e-mail with Gmail and how people use phones
with Android.

Regarding Machine Learning, they are also shaking up the world with an innovative set of
APIs that people can use to process images (with the vision APIs), translate documents
(with the translations API), and analyze large amounts of text with the natural language
APIL

One of the most amazing uses that I have seen of the vision APl is a company that had to do
some level of photo ID verification for its customers. There was a huge problem of people
uploading invalid images (random images or even images with part of the face covered or
similar), so we used the vision API to recognize images that contained a face without facial
hair, hat, or any other accessories aside from glasses.

The result was that the people doing the ID verification focused just on valid images instead
of having to classify them as valid or invalid before proceeding to the verification.

Big data

Big data is now a big thing. Everybody is trying to take the advantage of big data to explore
new areas of business or unleash their potential in traditional businesses.

Google Cloud Platform offers a set of big data APIs that enable the users to carry on pretty
much any task in large sets of data. With tools such as BigQuery, a data analyst can run
queries on terabytes of information in seconds without setting up a massive scale
infrastructure.

[60]

Cloud Data Centers - The New Reality Chapter 2

In general, the big data APIs from Google are what is called no-ops tools in the DevOps
world: they don't require maintenance from users as they leverage it into Google. This
means that if a big query requires a lot of processing power, Google is the one responsible
for transparently offering this power to the user.

Other cloud providers

Unfortunately, there is a limit to the number of concepts we can develop in a book, and in
this case, we are going to focus on AWS and GCP, as they are the most feature-full cloud
providers in the market.

I always try to adopt an open mindset regarding technology, and there are three providers
that I think you should know about:

¢ DigitalOcean
e Heroku
o Azure

They have a lot to offer and they all are up to speed with the new trends of DevOps and
security.

Heroku

Heroku's battle horse is this phrase: build apps, not infrastructure. That is a powerful
message. Basically, Heroku is going full throttle with the PaaS concept Platform as a
Service, allowing you to avoid maintaining the underlying infrastructure: just specify what
you want to run (for example, a Node.js application) and the scale.

With this powerful philosophy, Heroku allows you to easily deploy instances of your
application, databases, or communication buses, such as Kafka, with a few clicks and
without all the hassle of having to provision them with a DevOps tool, such as Ansible,
Chef, or similar.

Heroku is one of the cloud providers preferred by start-ups as you can save a lot of time as
opposed to using AWS or Google Cloud Platform, as you just need to focus on your
applications, not the infrastructure.

[61]

Cloud Data Centers - The New Reality Chapter 2

DigitalOcean

DigitalOcean is a provider that, even though not as well-known as AWS or GCP, offers a
very interesting alternative to small to mid sized organizations to run their cloud systems.
They have developed a very powerful concept: the droplet.

Basically, a droplet is a component that can run your software and be connected to different
networks (private or public) through some configuration.

In order to assemble a droplet, we just need to define a few things:

e The image (the operating system or one-click images)
e The size
e The region

And once you have chosen your configuration, the droplet starts running. This is very
simple and effective, which is usually what companies look for.

Azure

Azure is the Microsoft push for cloud systems and one of the providers that has grown the
most in the last couple of years. As expected, Azure is a ;particularly good platform for
running Windows-based applications, but that's not to say we can overlook its capability of
running Linux applications as well.

The catalog of products is as complete as the catalog for AWS or Google Cloud Platform,
and there is absolutely no reason not to choose Azure as a cloud provider for your systems.

Azure is also one of the newest providers (it became widely available in 2013) in the market,
so it has the advantage of being able to solve problems that other providers have presented.

[62]

Cloud Data Centers - The New Reality Chapter 2

Summary

Up until now, we showcased the features of AWS and GCP and introduced some other
providers that are very interesting choices when building our systems. One of the
advantages of having a good number of competitors in the market is the fact that each one
of them has their own strong points and we can combine them by making use of VPN,
creating a big and extended virtual data center across different providers.

Through the rest of the book, we are going to give special attention to AWS and GCP, as
they have the most interesting characteristics for a DevOps book (not to overlook the rest of
them, but remember, things are limited in terms of space).

We are also going to take a special interest in container clusters such as Kubernetes or
Docker Swarm as they are, without any kind of doubt, the future.

[63]

Docker

For many years, the contact point between development and operations has been always a
source of problems when deploying a new version of an application to production.
Different languages generate different types of artifacts (war or JAR for Java, the source
code for Node.js.), which led to heterogeneity in the procedures when rolling out new
versions.

This heterogeneity led into bespoke solutions to roll out versions, which are pretty much
sorceries with weird habits, such as deploying at 4 a.m. to avoid an outage in the system
and creating error-prone bash scripts that are harder to maintain than the software itself.
The problem, aside from the complexity, is that new hires need to ramp up into your
systems, and this always introduces a level of risk that we are not aware of for the majority
of the time until something goes very wrong.

Docker came to the rescue. With Docker, we can generate a deployable artifact, which is not
only the software that you built but also its runtime. If you are deploying a Java application,
with Docker, you will bundle the application plus the version of Java that is going to be
running your application.

This sounds like a dream: a controlled environment that gets promoted as an artifact from
development to QA and later production (sometimes stopping in preproduction for a sanity
check) that is repeatable and the only thing that changes across environments is the
configuration, usually injected via environment variables. It is not a dream; it is the reality
in 2017, and in this chapter, we are going to accelerate from 0 to the speed of light on when
it comes to running containers in Docker and building images.

Docker Chapter 3

In this chapter, we will cover the following topics:

The Docker architecture
The Docker client
Building docker images

Docker registries
e Volumes

Docker networking

Docker Compose

We will also stop at docker-compose, a tool used to run several containers in combination,
so we can compose our system in the development machine, simulating our production
configuration or, at the very least, approaching the interconnection of components, but
before that, we are going to also dive deep into Docker networking: how can we choose the
most appropriate networking for our system and what are the main differences between the
different networks that Docker offers?

Another interesting feature of Docker is how the images get built: basically, we choose a
base image (we will look at how to build one), and with a reduced set of commands, we can
build a Docker file which is basically a script that instructs Docker on how to build our
image with the configuration that we need.

Docker architecture

One of my preferred ways of learning is through experimentation. In order to explain the
Docker architecture, we are going to show an example, but first, we need to install Docker
itself. In this case, I am working with Mac, but at https://docs.docker.com/engine/
installation/, you can find the distribution that suits your needs with a very clear set of
instructions (usually a package that needs to be installed).

Once you have installed Docker, run the following command:

docker run hello-world

Once it finishes, the output should be very similar to the following one:

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

78445dd45222: Pull complete

Digest:
sha256:c5515758d4c5e1e838e9¢cd307£6c6a0d620b5e07e6£927b07d05£6d12alac8d7

[65]

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

Docker

Chapter 3

Status: Downloaded newer image for hello-world:latest
Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

1.
2.
3.

The Docker client contacted the Docker daemon.
The Docker daemon pulled the hello-world image from the Docker Hub.

The Docker daemon created a new container from that image, which runs the
executable that produces the output you are currently reading.

The Docker daemon streamed that output to the Docker client, which sent it to
your Terminal.

To try something more ambitious, you can run an Ubuntu container with the following:

$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID at https://cloud.

docker.com/.
For more examples and ideas, visit: https://docs.docker.com/engine/userguide/.

As you can see, the hello-world image gives you some insights into what is going on
when running the preceding command.

Some new concepts have been introduced here:

e Docker Hub: This is a central repository, which is public and private, where

users can push images that they build locally. A Docker registry is used to carry
the images across different stages of the deployment pipeline (or even between
systems).

Layer: Docker images are composed of layers. A layer is basically an ordered
filesystem difference. A Docker image is a stack of these layers leading into the
final image. When you change a file in an existing image, a new layer is created,
but the rest of the layers of the images are reused so we can save a lot (believe me,
a lot) of space.

Docker daemon: Docker follows a client-server architecture. In this case, the
Docker daemon is the server part that can be operated via a Representational
State Transfer (REST) APL

Docker client: Docker client is a Command-Line Interface (CLI) used to operate
a Docker daemon. It might be a local daemon or a remote one.

[66]

https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/userguide/

Docker Chapter 3

The last three concepts are the key for drafting the architecture of Docker. Take a look at the
following figure:

Linux Host

Docker Client Docker Dasmon

Internet

B2.112.42.57

Docker Dasmon

Idv

The client/server architecture predominates the software. You might think that this is an
overkill for a system such as Docker, but it actually gives you a lot of flexibility. For
example, in the previous diagram, we can see how the Docker CLI (the client) is able to
manage a local instance of the Docker daemon but is also able to talk to a remote daemon
by setting an environment variable called DOCKER_HOST, in this case, to the value of
62.112.42.57.

[67]

Docker Chapter 3

One of the key points of Docker is that it completely leverages the virtualization to the
Linux kernel, making it impossible to run (as of today) Docker on Windows or even Mac as
it uses the capabilities of the Linux kernel. The solution to this is to create a virtual machine
with Linux that runs the Docker daemon, and the CLI will talk to the virtual machine to run
Docker commands.

In Mac, for example, the old versions of Docker use a distribution called Boot 2Docker that
runs the Docker daemon, whereas the newer versions of Docker use something called
HyperKit, which is a lightweight virtualization solution for Mac.

Docker for Windows uses a different type of virtualization that is equivalent to the one in
Mac so all the assumptions made for Mac are valid for Windows.

Docker internals

Up until now, we have seen how Docker works regarding the overall architecture, but what
happens at the operating system level in the Docker daemon?

Roughly explained, Docker provides you with only a runtime for your applications: you
can limit the number of cores and the amount of memory to be used by the container, but at
the end of the day, the kernel running your container is going to be the same as the kernel
running your host machine.

The proof of that is in the way Docker organizes images: it calculates filesystem differences
and packs them in layers that can be reused. Let's pull a fairly big image (not the hello-
world from the preceding example):

docker pull ubuntu

This will produce the following output:

Using default tag: latest

latest: Pulling from library/ubuntu

d54efb8db41ld: Pull complete

£8b845f45a87: Pull complete

e8db7b£f7¢c39f: Pull complete

9654c40e9079: Pull complete

6d9ef359eaaa: Pull complete

Digest:
sha256:dd7808d8792c9841d0b460122f1acf0a2dd1£56404£8d1e56298048885e45535
Status: Downloaded newer image for ubuntu:latest

[68]

Docker Chapter 3

As you can see, Docker has pulled five layers, which basically tells us that the Ubuntu
image was built in five steps (not quite true, but it is a good approach). Now we are going
to run an instance of Ubuntu. In Docker, an instance of an image is what we call a container,
and the main difference between an image and a container is the top writable layer (layers
in Docker are stacked in the read-only mode to compose the image, such as the diffs in
several patch files). Let's demonstrate this:

docker run -it ubuntu /bin/bash

The preceding command runs /bin/bash in an instance of the Ubuntu image. The i and t
flags allow you to use the container as if it were a virtual machine allocating a virtual TTY
(t flag) and creating the interactive session (i flag). Now, you can see how your prompt has
changed to something like the following;:

root@329b2£9332d5: /#

It does not necessarily have to be the same, but it should be similar. Note that your prompt
is now a root prompt, but don't get too excited; it is just inside the container.

Create a file to alter the filesystem:
touch test.txt

Now you can disconnect from the container with the exit command.

As you can see, the prompt is back to your system prompt, and if you run docker ps, you
can see that there are no running containers, but if you run docker ps -a (show all the
containers, not just the running ones), you should see something similar to this:

CONTAINER IDV IMAGE COMMAND CREATED STATUS PORTS NAMES

329b219332d5 ubuntu "/bin/bash" About a minute ago Exited (@) 4 seconds ago gracious_spence

This is a container that has been created from an image but is not running anymore. As we
said earlier, the only difference between this container and the image is the top writable
layer. In order to prove this, we are going to create a new image out of the container that we
ran a few minutes ago:

docker commit 329b2£9332d5 my-ubuntu

In this case, I am using the reference 329b. because it is the one shown in the preceding
image (the output of docker ps -a), but you need to change the hash to the one shown in
your output. In fairness, you don't need to type it all; just few characters will do the job. If
everything went well, the command should output a SHA256 checksum and return the
control to you. Now run docker images (to list the images in your Docker) and the output

[69]

Docker Chapter 3

should be similar to the following:

[70]

Docker Chapter 3

CONTAINER IDI IMAGE COMMAND CREATED STATUS PORTS NAMES

329b2f9332d5 ubuntu "/bin/bash" About a minute ago Exited (@) 4 seconds ago gracious_spence

As you can see, there is a new image called my-ubuntu that we just created.

Now we want to check the difference between the ubuntu image and the my-ubuntu
image. In order to do that, we need to inspect the layers for each image and see the
difference. The command we are going to use to accomplish this task is docker history,
with the name of the image as the third parameter.

First, for the ubuntu image:

CREATED SIZE
/bin/sh #(nop) CMD ["/bin/bash™] 0B
/bin/sh mkdir -p /run/systemd &% echo '... 7 B
/bin/sh sed -i 's/MA\s*\(deb.*universe\... 1.9 kB
/bin/sh rm -rf /var/lib/apt/lists/* @B
/bin/sh set -xe &% echo '#!/bin/sh' >... 745 B
/bin/sh #(nop) ADD file:efb254bc677d66d... 130 MB

Then for my—ubuntu: image (just created from ubuntu):

IMAGE CREATED CREATED BY SIZE
2309b9c4202b days ago /bin/bash 5B
B@ef2e@8ed3fa weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] @B
<missing> weeks ago /bin/sh -c mkdir -p /run/systemd &% echo '... 7B

<missing>
<missing>
<missing>

weeks ago /bin/sh -c rm -rf /var/lib/apt/lists/* 08B
weeks ago /bin/sh -c set -xe && echo '"#!/bin/sh' >... 745 B
weeks ago /bin/sh -c #(nop) ADD file:efb254bc677d66d... 130 MB

3
2
2
<missing> 2 weeks ago /bin/sh -c sed -i 's/A#\s*\(deb.*universe\... 1.9 kB
2
2
2

Quite illuminating. The image my-ubuntu ;is the same image as ubuntu except for the top
writable layer that we just created by logging in to the machine and creating a file. This is
very smart because even though both of the two images use around 130 MB of space, the
only extra space used for the second image is the top layer that, in this case, uses only 5
bytes, leading to a usage of 130 MB and 5 bytes for the two images. This also has a side-
effect in line with what we talked earlier: a container is the exact same thing as an image but
with a different top writable layer, so running an instance of the container uses only 5 bytes
of space. As you can see, the engineers that created Docker thought about everything!

[71]

Docker Chapter 3

The way in which how Docker stores the images in the hard drive is the responsibility of
the storage driver: Docker can make use of different drivers and store the images in
different ways (and places, such as S3 in AWS), but the most common use case, the default
driver, stores the images on the hard drive, creating one file per layer with the checksum of
the layer as the name of the file.

Docker client

We have made use of the Docker client already in the previous section, but we need to go a
bit deeper into the options that the Docker CLI can offer. My favorite way of learning is
through experimentation, and what we are going to be doing through this section is
building concepts from top to bottom (more decomposing, than building), so I advise you to
read the full section in the order without skipping parts, as the latter examples will be based
on the previous ones.

If you have dug into Docker a bit before, you can see that the commands are quite verbose
and not as intuitive as you might think. The most common use case is the following
combination:

docker run -i -t <docker-image>

This command basically does one simple thing: it runs a container in the interactive mode
and allocates pseudo-tty. This allows us to interact with the container executing the
commands (not on every image, but it is true for all the base images of Linux distributions).
Let's see what that means:

docker run -i -t ubuntu

This should return a prompt similar to the following one:

root@248ff3bcedc3: /#

What just happened? The prompt changed to root with a strange number in the host
section. We are in the container. Basically, now we can run commands that are going to be
run within the container. To exit the container, just type exit and the control should be
returned in the terminal to your host machine, leaving the container running in the
background.

[72]

Docker Chapter 3

The majority of the time, the preceding command suits our needs, but sometimes, we want
to run the container in the background: imagine that you spin up a Jenkins server and you
don't want to have your Terminal attached to it. In order to do that, we just need to add the
~d option (daemon) and drop -i and -t:

docker run -d jenkins

Once the image is pulled and it starts running, the control is returned to your Terminal. The
last line in the output, and it should be a long string of characters similar to the following
one:

9f6a33eb6bdad4c4e050£3a5dd113b717£07cc97e2fdc5e2c73a2d16613bd540b

This is the hash of the running container. If you execute docker ps, the following output
(similar) will be produced:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

9f6a33ebbbda jenkins “/binstini -- fusr..."” 5 seconds ago Up Z seconds 8080/tcp, 50000/tcp competent_rosalind

Note that the value under CONTAINER ID in the screenshot matches the
tirst few digits of the hash from the preceding command.

Now in theory, we have a running instance of Jenkins that, as you can see in the preceding
image, is listening on port 8080 and port 50000. Let's try to browse
http://localhost:8080 with an internet browser. Nothing. Basically, our browser
cannot open that URL.

This is because we haven't told to Docker to bind the container ports to the local ports of the
host machine. In order to do that, we need to first stop the container and then start it again
with a special parameter.

Time to learn how to stop containers. We have two options here:

¢ Stop the container: With the stop option, we send SIGTERM to the main process
within the container and wait for it to finish (for a grace period). Then, we send
SIGKILL.

e Kill the container: With the kill option, we send SIGKILL to the main process in
the container, which forces an immediate exit without being able to save the state.

[73]

Docker Chapter 3

In this case, which one you choose is irrelevant, but please be careful. When you are
running in a production environment, make sure it's fine to kill a container before doing
that, as with the stop option, we are giving the running software the option to save the
current transactions and exit gracefully. In this case, I am going to kill the container:

docker kill 9f6a

Docker is smart. I did not need to specify the full container identifier, as with only a few
characters, Docker is able to identify the container (or the image in other commands) and
kill it.

If you remember from previous examples, when we kill a container, we have a layer left
that leads into a dead container that we can explore, adding the -a option to the docker

ps command. For this example, we are going to remove this layer as well with the following
command:

docker rm 9f6a
That's it. The container never existed in our host.

Now, going back to the Jenkins example, we want to run Jenkins in a way that we can
access the running instance from our browser. Let's modify the preceding command and
explain why:

docker run -p 8080:8080 —p 50000 —-d jenkins

After a few seconds, if we go to http://localhost:8080 in a browser, we should see the
initial configuration for Jenkins, which asks for the initial password to be able to proceed.

Let's explain the previous command first. We can see a new option: -p. As you can guess, -
p comes from the port. In fairness, you could change —p for ——port, and everything will
work as expected. With the —p option, we map ports from the host, your machine, to the
container. In this case, we are mapping port 8080 from the host to port 8080 and port

50000 of the host to port 50000 of the container, but how can we map a different port in the
host? Well, it is fairly simple:

docker run -p 8081:8080 —p 50001:50000 —-d jenkins
After running the preceding command, we have two instances of Jenkins running:

e The first one is exposed in port 8080 of your machine
¢ The second one is exposed in port 80801 of your machine

[74]

Docker Chapter 3

Note that even though we don't use port 50000, I have changed it to 50001 as your
machine's port 50000 is already busy with the first instance of Jenkins that we ran earlier
on.

As you can see, Jenkins is asking for a password, and the initial web page in
http://localhost:8080 states that this password is in the logs or in the filesystem.
Focusing on the logs, with Docker, we can fetch the logs for any container registered by the
daemon at any time. Let's try this:

docker logs 11872

In my case, the running instance of Jenkins on port 80801 has an ID that starts with 11872.
Executing the previous command should retrieve the starting log of Jenkins that we can use
for troubleshooting or, in this case, to recover the password to initialize Jenkins.

Another interesting and common option in Docker is passing environment variables to an
application running inside the container. If you think about it, there are only three ways in
which we can configure an application within a Docker container:

¢ Environment variables
e A volume with data
e Fetching the configuration from the network

Let's take a look at the official MySQL image from the Docker Hub:

® https://hub.docker.com/_/mysqgl/

MySQL is a popular database server that has also been dockerized. If you read a bit
through the documentation, one of the config options is the root password for the MySQL
database. In fairness, the quick start example points to the right direction:

docker run —-—-name some-mysql —e MYSQL_ROOT_PASSWORD=my-secret-pw —-d mysql

The new option here is —e. This option allows you to pass an environment variable to the
container with the value that you want to specify after =. After running the preceding
command, we are going to run another command:

docker inspect caa40cc7d45f

[75]

https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mysql/

Docker Chapter 3

In this case, caa40cc7d45f is the ID that results from running MySQL on my machine
(yours should be different). There should be a huge JSON output in the terminal, but one
section in particular, Config, has a subsection called Env , which should look very similar to
the following one:

;ﬁév": [
"MYSQL_ROOT_PASSWORD=my-secret—-pw",
"no_proxy=*.local, 169.254/16",
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"GOSU_VERSION=1.7",
"MYSQL_MAJOR=5.7",
"MYSQL_VERSION=5.7.17-1debian8"

] ’

There it is. The preceding environment variable that we passed, MYSQL_ROOT_PASSWORD, is
now accessible from within the container as the environment variable.

In the docker inspect command, there is a lot of very valuable information. Just have a
read through, as you might be surprised with how familiar you are with the majority of the
info: it is mainly Linux terminology.

So far, we have visited the most common commands as of January 2017. As you know, the
software evolves very quickly, and by the time you are reading this book, new versions
(such as secrets) have already been added to Docker. The best way to check what is going
on is through the documentation on http://www.docker.com which, in my opinion, is quite
comprehensive. There is also a reference of the commands of your current Docker
installation available under the docker help command.

Building Docker images

In the previous sections, we built an image using the commit command of Docker.
Although it works, I can see a big problem with it: it is not repeatable. There is no easy way
of rebuilding the image once and over again when the software installed in the image is
patched due to new vulnerabilities or versions.

In order to solve this problem, Docker provides a better way of building images:
Dockerfiles.

[76]

http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com
http://www.docker.com

Docker Chapter 3

A Dockerfile is a file that contains a set of ordered commands required to leave the image,

ready to be used. Things such as installing software or upgrading the version of the kernel
as well as adding users are common activities that can be carried in a Dockerfile. Let's look
at an example:

FROM node:latest

RUN mkdir -p /app/
WORKDIR /app/

COPY package.json /app/
RUN npm install

COPY . /app

EXPOSE 8080
CMD ["npm", "start"]

If you have been in the IT field for a few years, you really don't need an explanation on
what it is going on, but let's make sure that we are all on the same page:

e We are creating our image based on the latest Node.js image.
¢ A new folder is created in /app. Our application will be installed there.
¢ The working directory is set to this new folder.

¢ Copy package. json and install the Node.js dependencies. Remember that we
have already set up the working directory to /app, so the RUN command will be
run in the /app folder.

e Copy the rest of the source code.
¢ Expose port 8080 to the outer world.
e Run npm start.

It is very simple once you have done it few times. One thing to keep in mind that might
drive beginners crazy is this: CMD versus RUN.

In the preceding Dockerfile, sometimes, we use RUN, and sometimes, we use CMD, but both
of them seem to do the same thing: run a command. There is one difference:

e RUN: This will run the command when building the image

e cMD: This will run the command when the container based on the generated
image starts

[77]

Docker Chapter 3

Also, RUN (generally) creates a new layer, whereas CMD uses the writable layer of the
container.

Now, it's time to test the Dockerfile from earlier. Before building the image, we need to
build a small Node.js application that is going to be used as the software running in the
image. Create a new folder with three files:

® package.json

® index.js

¢ Dockerfile (the one from before)

The content of package . json will be as follows:

{

"name": "test",
"version": "1.0.0",
"description": "Test",
"main": "index.js",
"scripts": {

"start": "node index.js"
}I

"author": "Test",
"license": "MIT"

}
The content of index. js will be as follows:

console.log('Hello world!')

And now, with the preceding files and the Dockerfile described before in the same folder,
run the following command:

docker build . -t my—-node—-app

After a few seconds, your image would be ready for use. Let's check it. If you list your
images with the docker images command, you should see an image called my-node-app.
Now create a container based on the image:

docker run my-node-app

You should see something similar to the following:

npm info it worked if it ends with ok

npm info using npm@4.1.2

npm info using node@v7.7.4

npm info lifecycle test@l.0.0~prestart: test@l.0.0

[78]

Docker Chapter 3

npm info lifecycle test@l.0.0~start: test@1.0.0

> test@1.0.0 start /app

> node index.js

hello world!

npm info lifecycle test@l.0.0~poststart: test@1.0.0
npm info ok

As you can see in the highlighted section, the output of running our application is here.

Dockerfile reference

As you can see in the previous section, Dockerfiles are very simple, and if you have any
queries, the official documentation for the Dockerfile language is very comprehensive.

In general, the language used for creating Dockerfiles is very similar to the batch processing
language of windows (. bat files) from a few years ago.

Let's look at the most used commands:

This instruction is used to specify the base image. Every single Docker
FROM image is created starting from a base image (you can create base images
from a running Linux distribution).

As you can guess, COPY allows you to copy files and folders inside the
COPY image. For example, we could copy our application, a war file, or any other
artifact that will be packed with the image once it is distributed.

This does the exactly the same thing as COPY but with three differences:

* The origin of the files could be a URL that gets downloaded before copying
* The origin of the files could be a packed file (such as a TAR file) that will be
unpacked in the image filesystem

ADD

This runs a command in the image. For example, it can be used to install
RUN software in the image. It always creates a new layer in the Docker image, so
be careful and keep the RUN commands to a minimum.

This is the default command to be run when the image gets instantiated as a
container. As you can see in the preceding example, we are using CMD to
CMD execute npm start, which runs node index. s (refer to package. json).
It does not create a new layer as it uses the top writable layer to store the
changes.

[79]

Docker Chapter 3

ENTRYPOINT is similar to CMD, but it overrides the default command on a
docker image that is /bin/sh -c.In order to override an specified entry
point, you need to pass the ——entrypoint flag when running an instance
of the image. ENTRYPOINT is ideal for configuring containers as command-
line tools, as you can pack a fairly complex command with a fairly complex
setup in a single container.

ENTRYPOINT

With MAINTAINER, you can specify who is the maintainer of the image (also

MAINTAINER))
specify the email).

This exposes the port specified in the first parameter so that the container
EXPOSE can listen to it. It actually does not expose the port in the docker client host,
forcing the user to pass the —p flag in order to access the given port.

With these commands, you can build pretty much anything that you want, and particularly
with RUN, this allows the user to run any command within the container that enables us to
run scripts (python, bash, and ruby.) or even install software using package managers.

Aside from the preceding instructions, the Dockerfile language also comes with support for
adding environment variables, volumes, and a few other features that make it quite
powerful.

Docker registries

In the previous section, we created a new image with our application installed and ready to
be used (in this case, a very simple Hello world Node.js application).

Now, we need to distribute the image so it can be installed in all the stages of our
deployment pipeline or even used by other developers. Docker is interesting for running
applications but it is also a very interesting choice to create command-line tools that other
developers can benefit from.

In order to distribute images, we have to rely on exporting/importing the image or using a
registry. A registry is basically a software that allows us to store and distribute Docker
images. There are two types of registries:

o Public registries
¢ Private registries

[801]

Docker Chapter 3

Let's take a look at the different registry types.

Public registries

The most known of the public registries is Docker Hub. It is the official and default registry
that every Docker installation knows of. Also, it offers private repositories, but the most
interesting feature is the fact that all the official images are available on Docker Hub.

Let's see how can we use it. First, you need to create an account. Once you are registered,
create a new repository:

dagonzadub - modern-devops

A test for implementing modern DevOps

A test for implementing modern DevOps|

Visibility
public -

This repository hosts an image called modern-devops, and we are going to push one image
into it. Once it is created, you can see that Docker Hub suggests that you pull the image
with the following command:

docker pull dagonzadub/modern-devops

[81]

Docker Chapter 3

In your case, dagonzadub will need to be replaced with your username. Obviously, we are
not going to pull an image that is not there yet, so let's push an image. In the previous
section, we created an image called my-node-app. We are going to use this image to test
Docker Hub. Docker relies on a tag system to know where to push the image or where to
pull from. As we are working with the default registry, we don't need to specify the URL,
but we need to specify the user and the repository name. If you haven't deleted the image
created in the previous section, run the following command:

docker tag my-node—app dagonzadub/modern-devops

And then, run this command:

docker push dagonzadub/modern-devops

After a few seconds (depending on your upload speed, even minutes), your image is
available on Docker Hub. As we marked it as public, everybody can pull and use your
image.

Private registries

But what happens if we want to store our images in our private registry within our
infrastructure?

Well, we have some options. If we are using cloud providers, such as Google Cloud
Platform or Amazon Web Services, they provide a Docker registry that is only accessible
from within your account, and you can specify the region in which your images live
(remember, the type of data that we are handling might be under strict compliance rules
about where we should store the data).

In AWS, the container registry is called EC2 Container Registry (ECR), and in GCP, it is
called a container registry. If your infrastructure is in one of these private clouds, I
encourage you to use it as you can leverage the access to the access controls provided by the
platforms.

Sometimes, we might find ourselves in a situation where we cannot use a cloud provider as
our system has to be built on premises. This is when we need to use a private on-premises
Docker registry.

Nowadays, there are quite a few options, but it is highly likely that the market widens in
the coming months or years as the companies are using Docker more and more.

[82]

Docker Chapter 3

From all the range of registries, there are three that I find particularly interesting:

Quay: This is a complete registry in the current market (at the time of writing this). It has
some interesting features, but the one that is probably the most interesting is the ability to
scan the images searching for security vulnerabilities in the installed software. It can also
build images based on changes in your git repository, so if your Dockerfile is altered in
GitHub, Quay will automatically trigger a build and deploy the new version of the image.
Quay is not free, so a license has to be paid in order to use it.

Registry: This is the plain name for a plain concept. It is the official implementation of the
registry API and comes packed in a container. It has no interface or access controls by
default, but it does the job. It also provides storage management drivers, so we can deploy
our images to S3 or Google Cloud Storage buckets as well as many other options. Registry is
free and can be pulled from Docker Hub.

Docker Trusted Registry: This is part of the enterprise version of Docker. Like pretty much
any other commercial registry, it provides static container analysis as well as storage
management drivers. Docker Trusted Registry (DTR) is not free, so a license has to be paid
for in order to use it.

Docker volumes

So far, we have seen how to create images, how to store the images in a registry, and how
Docker images work in general (layers and containers versus images).

An important part of any application is the storage. In general, Docker applications should
be stateless, but with the new orchestration software, such as Kubernetes, Docker Swarm,
and similar, every day, more and more engineers are moving toward containerized
databases.

Docker solves this problem in a very elegant way: you can mount a folder from the local
machine into the container as if it were a normal folder.

This is a very powerful abstraction as it leverages the ability to push data out of the
container to be saved into a Network Attached Storage (NAS) or any other storage
technology (it is possible to use a bucket in the Google Cloud Storage or S3 as the volume
mounted in a container).

Let's start with the basics. Just run a MySQL database:

docker run —-—-name my-mysql —e MYSQL_ROOT_PASSWORD=my-secret-pw -d
mysql:latest

[83]

Docker Chapter 3

This works. It actually does what is expected: it launches a container with a mysql instance
in it. The problem is that all the data is going to be written to /var/1lib/mysql and this
folder is mapped to the top writable layer of the container (remember, in the previous
section, we explained the difference between a container and an image). The only way to
save data is actually committing the changes and create a new image that is not manageable
and, of course, this not the way you want to do it. Think about it: if you remove a file in
Docker, you are doing it in the top layer, which is the only one writable, so in reality, you
are not removing the file; you are just hiding it. The file is in one of the layers using the
space but it is not visible. Docker records differences and a layer itself is a set of differences
from the previous stacked layers (think about how Git works; it is the same principle).
Instead of committing the changes into a new image, we are going to mount a folder from
our docker host into the container. Let's alter the previous command a bit:

docker run —--name my-mysql-2 -v /home/david/docker/data:/var/lib/mysql -e
MYSQL_ROOT_PASSWORD=my-secret-pw —-d mysql:latest

Now we have a new flag, -v, followed by the data: /var/lib/mysql value. The meaning
of the command is very simple: mount the /home /david/data folder into the
/var/lib/mysql path of my container.

As you can guess, the data folder, in my case, /home/david/data, should be present in
your current directory, so if it wasn't present, create it or modify the path to suit your setup
and launch the container. This use case can only be achieved through the -v flag: mount a
selected folder from the host into the container.

Now, execute 1s inside the data folder (in the Docker host):

1ls /home/david/data

You can see how mysqgl has actually written data files corresponding to the databases
created in bootstrap.

Docker volumes are not limited to one per container, so you can replicate the -v flag as
many times as you need in order to match your requirements.

Another way of mounting a shared folder between the container and the host is just
specifying the path inside the container:

docker run —--name my-mysql-3 -v /var/lib/myysql —e MYSQL ROOT_PASSWORD=my-—
secret-pw —-d mysql:latest

This command will mount a folder from our Docker host into the container, but the folder
in the docker host will be managed by the storage driver and docker itself:

docker inspect my-mysql-3

[84]

Docker Chapter 3

The output is familiar. We have seen it before in the previous sections, but now we are
looking for different information. We are actually looking for a section called Mounts,
which looks like this (at least similar to it):

"Mounts": [

{

"Type": "volume",

"Name":
"572c2303b8417557072d5dc351£25d152e6947¢c1129f596£08e7e8d15ea2b220",
"Source":

"/var/lib/docker/volumes/572c2303b8417557072d5dc351£25d152e6947¢c1129£f596£08
e7e8dl5ea2b220/_data",

"Destination": "/var/lib/mysql",
"Driver": "local",

"Mode n . " ",

"RW": true,

"Propagation": ""

}
]

This is also possible through the VOLUME instruction in a Dockerfile.

The preceding JSON is telling us which local folder is going to be mounted in the container
(the Source value of the JSON) and provides an interesting insight: the volume has been
named by docker (the Name value of the JSON).

This means that Docker tracks the volumes that are (or have been) mounted in any
container and can be listed through an API call:

docker volume 1s

This should produce output similar to the following:

DRIVER VOLUME NAME
local 13b66aa9f9c20c5a82¢c38563a585¢c041ea4a832e0b98195¢c610b4209%ebeed444
local 572c2303b8417557072d5dc351£25d152e6947¢c1129£596£08e7e8d15ea2b220
local 695d7cbc47881078£435e466b1dd060be703eda394ccb95bfa7al8f64dc13d4l
local b0£f4553586bl7b4bd2£f888al7ba2334ealeb6cf0776415e20598594feb3e05952

As you can guess, we can also create volumes through an api call:

docker volume create modern-devops

[85]

Docker Chapter 3

This volume is created in the same way as the previous example: it is up to Docker to
decide which folder on the local machine is going to be mounted in the specified path in the
container, but in this case, first, we are creating the volume and then mounting it to a
container. You can even inspect the volume:

docker volume inspect modern-devops
And this should return you something similar to the following:

[
{

"Driver": "local",

"Labels": {},

"Mountpoint": "/var/lib/docker/volumes/modern-devops/_data",
"Name": "modern-devops",

"Options": {1},

"Scope": "local"

}
]

Now we can use this named resource and mount it into our containers, just referencing the
name:

docker run —--name my-mysql-4 -v modern-devops:/var/lib/myysql -e
MYSQL_ROOT_PASSWORD=my-secret—-pw —d mysql:latest

The last (but not least) interesting use case in volumes helps us share the configuration
across different containers. Just imagine that you have a fairly complex setup that leads to a
gigantic Docker command with several -v. Docker provides us with a much simpler way of
sharing volume configuration across containers:

docker run —-—-name my-mysql-5 —--volumes—-from my-mysql-4 -e
MYSQL_ROOT_PASSWORD=my-secret-pw —d mysqgl:latest

This is very simple and intuitive: my-mysql-5 will spawn with the volume configuration of
my-mysqgl—4.

Docker networking

Networking is an important part of Docker. By default, Docker comes with three networks
that we can inspect by executing the following command:

docker network 1ls

[86]

Docker Chapter 3

This should produce output similar to the following:

NETWORK ID DRIVER
96e541123c53 bridge

931d65d41ab@ host
49d59417736¢ null

Let's explain the different networks:

¢ bridge: This is the default network. It is an entirely different stack from the host
machine with a different IP range in the bridge mode (the host machine acts as a
router for the containers in this network). The containers created without
specifying the network are attached to the default bridge network.

e host: In this network, containers share the network stack with the Docker host. If
you inspect the configuration in the container, you will find that it is the exactly
the same as in the Docker host.

¢ none: This is easy to guess; the container gets attached to no network: just the
loopback interface in the container.

Now it is time to look at some examples. We are going to use busybox, which is the swiss
army knife of the Docker images. It has several Unix tools that we could benefit from, but in
this case, the characteristic that is going to benefit us is the fact that it is a functional Linux
on a reduced space.

Let's run the following command:

docker run -it busybox /bin/sh

If you have followed the previous sections, by now, you can understand the outcome: we
gain root access to a running container.

The next step is to execute i fconfig inside the container. It should give us two interfaces:
- eth0 - 172.17.0.2

- lo - 127.0.0.1

The IP might change, but you should see these two interfaces. Comparing the IP with the IP
in your Docker host, we can validate the fact that the container is running in the bridge
network as the IP and network are completely different; in my case, the IP on my Docker
hostis 10.0.0.12.

Now, let's spawn another container with busybox in a different terminal:

[871]

Docker Chapter 3

docker run -it busybox /bin/sh

[881]

Docker Chapter 3

By now, we should have two busybox instances running, and they should have consecutive
IPs, in my case, 172.17.0.2 and 172.17.0. 3. If you go back to the terminal of the first
instance of busybox, you can ping the second container by IP. This is because they both
belong (or are connected to) the same network, which is the default bridge one.

In order to run the containers in the host network, we just need to pass —~—network=host
flag to the docker run command and that's it; our container is sharing the network stack
with the Docker host, but be careful, if you are on Mac or Windows. The Docker host is a
virtual machine so don't attempt to access it through localhost; you will need to find the IP
of the virtual machine running docker.

User-defined networks

It is also possible to create custom and isolated networks in Docker. This is interesting from
the security point of view, as it enables us to segregate different containers on the network
level so we can enforce a higher level of access control.

In order to create a network, we just need to execute the following command:

docker network create my-network

And that's it. Well, that is a simplistic approach, but it works as expected. As you know,
networking is a complicated subject, so Docker provides options to customize ranges,
masks, and other parameters. The user-defined networks are of the type bridge.

Once the network is created, you can run new containers in that network, as follows (on a
new terminal):

docker run -it —--network=my-network busybox /bin/sh

As expected, these containers will be isolated from the other networks. In this case, the two
containers are launched in the bridge network. In my case, the third container (the one just
launched) has the IP 172.19.0. 2, whereas the two launched in the bridge network are
172.17.0.2and 172.17.0. 3. Issuing a ping command between containers in different
networks results in 100% packet loss.

[891]

Docker Chapter 3

Docker Compose

The majority of the time, Docker is synonymous to microservices. Running a big monolithic
application in Docker does not make too much sense as the whole Docker Engine is thought
to be running big applications split into different and smaller services. There is no technical
limitation to running a monolithic app on Docker, but when the orchestration software
comes into place (in the following chapters), it really defeats the purpose of
containerization.

When dealing with microservices, it is very common to have several services running at the
same time when developing, as the new services will lean on the existing ones to execute
operations.

In order to achieve this setup, Docker facilitates a tool called docker-compose that, by
creating a YAML file with the definition of our containers, can spawn a full ecosystem of
containers.

Docker compose used to be very popular in the beginning of Docker. Nowadays, it is still
widely used, but its space has been slowly reduced to development stages as the container
orchestration tools in Kubernetes have taken over the production space.

Let's look at how Docker Compose works:

version: '2'
services:

my_app:
build:
depends_on:

- db

db:

image: postgres

The preceding YAML file is a docker-compose definition. As you can guess, there are two
components:

¢ A web application (the current folder)
¢ A database (postgres)

Save the file to a folder with the name docker—compose.yaml.

This is a typical case of an application connecting to a database. In order to simplify this,
our application is just going to be a dummy application (no database connection) with the
following code:

let dns = require('dns')
dns.lookup('db', (err, result) => {
console.log('The IP of the db is: ', result)

[90]

Docker Chapter 3

H)
{

"name": "modern-devops",
"version": "1.0.0",
"description": "Test",
"main": "index.js",
"scripts": {

"start": "node index.js"
}I

"author": "",

"license": "ISC"

}

package. json

And our Dockerfile is very simple:

FROM node:onbuild

This Dockerfile will install the required dependencies and run npm start in the root of our
app folder.

As you can see, the application is very simple, and it only tries to resolve the name db
instead of connecting to the database (in fairness, we didn't even specify the ports for
connecting to it). We are going to demonstrate how docker-compose wires up the
containers. By now, there should be four files in the work folder:

e index.js
e package. json
Dockerfile

® docker—-compose.yaml

Going back to our docker-compose file, we can see that in the my_app definition, we ask to
build the current folder (build the image described by the Dockerfile), and we specify that
the container itself is dependent on another container called db. This makes Docker take
action and connect the two containers, being able to reach db from my-app by name. In
order to achieve this, there is an entry created in /etc/hosts with the IP of db, so we my—
app will be able to resolve it. Docker compose is very easy to understand: it is nearly self-
explanatory, and the fact that it makes use of YAML makes everything so much more
readable. Now we need to run it:

docker—-compose up

[91]

Docker Chapter 3

Once it finishes, there should be a quite a long output, but there are some lines that indicate
our success:

my_app_1l | > my_app@Rl.0.0 start /usr/src/app
my _app_1l | > node index.]js

my_app_1 |

my _app_1l | The IP of the db is 172.20.0.2

my_app_1l | npm info lifecycle my_app@Rl.0.0~poststart:my_app@1.0.0
web_1 | npm info ok

The highlighted section tells us that my_app is able to reach db by IP as they are on the same
bridge network. Let's see what happened here:

¢ Docker built the image for the current folder (as specified in my_app) from the
Dockerfile

¢ Docker pulled the postgres image from the Docker Hub

¢ Docker started the images in order: first db and second my_app, as specified in
the dependencies

In this book, we are going to give a special emphasis to orchestration technologies, and then
we will come back to Docker Compose in chapter 5, Infrastructure as Code, where we will
take a deep dive into Docker Swarm, which is where compose becomes really helpful.

Summary

In this chapter, we walked through Docker from the internals to the command-line interface
to operate a Docker host. Now, we have enough knowledge to understand the
consequences and benefits of running Docker in production. We have not looked into how
to develop Docker plugins as well as different storage drivers, as unfortunately, we have a
limited amount of space in this book to introduce the most interesting concepts, but we
have dived deep enough into Docker to be able to learn more from the resources (official
documentation, videos, and so on) available to us on the Internet.

In the next chapter, we will have a look on how to automate tasks around our software:
running tests, building images and many other tasks that shouldn't be done manually. This
automation is called continuous integration because allows our team to integrate new
features on a seamless way.

[92]

Continuous Integration

When building software, quality assessment is something that usually is pushed toward the
end of the life cycle, just before the release. When the team is working in a 6-months release
cycle, the drawbacks are not as obvious as when the release cycle is just a few days old (or
even hours!), but from my experience, I can tell you that getting early feedback in your
software is crucial in order to raise the quality to a good level we are comfortable to live
with.

There is a misconception in the software that puts the average software project in danger:
the software has to be perfect. This is totally incorrect. Think about some of these real-world
systems: the engine of your car, a nuclear plant, the water purification system in major
cities, and so on; human lives depend upon all of them and they fail. A fair amount of
money is spent on these systems without being able to ensure the total safety, so what
makes you think that the software that your company writes will be perfect?

Instead of investing resources in making your software perfect, the experience has taught
me (through the hard path) that it is a lot better to invest the resources in building the
software in a way that makes it easy for the engineers to fix the problems as quickly as
possible, being able to shorten the release cycles with enough level of confidence. In this
chapter, we are going to examine the key components of the continuous integration:

¢ Software development life cycle

e Traditional CI servers:
e Bamboo

¢ Jenkins

e Modern CI servers:
e Drone

Continuous Integration Chapter 4

This has the objective of building an effective continuous integration pipeline to ensure
reliability and enables us to deliver faster.

Software development life cycle

The software development life cycle is the diagram of our day to day activity as software
engineers wait, this book is about DevOps; what are we doing talking about software
engineering? Well, in theory, DevOps is the role of the IT activity that covers the full life
cycle of a software component, from the inception to the release and further maintenance.
Nowadays, many companies are hiring DevOps engineers on the basis of hiring system
administrators on steroids that even though it works, it completely misses the biggest
advantage of the DevOps role: having someone on the team with exposure to all the aspects
of the software so that problems can be solved quickly without involving people from
different teams in the majority of the cases.

Before proceeding further, let's take a look at how the software development life cycle
works:

[94]

Continuous Integration

Chapter 4

Requirement
Analysis

Development

Release

@lenance

[95]

Continuous Integration Chapter 4

This is the most classical and studied software development life cycle in IT literacy,
something that everyone has gone through in college and everyone has as a mental model
of even if we have not seen it before. Nowadays, with the agile methodologies, people tend
to think that the model is obsolete. I think it is still a very valid model, but what it has
changed is the scale and the involvement of the different stakeholders through the previous
diagram. Let's take a brief look at the objectives of every step in a top-to-bottom approach:

¢ Requirement analysis: This is where we are going to encounter the majority of
the problems. We need to find a common language between people outside of IT
(accountants, marketers, farmers, and so on) and people in IT, which often leads
to different problems around terminology and even business flows being
captured incorrectly.

¢ Design: In this phase, we are going to design our flows in a language that the IT
crowd can understand straight away, so they will be able to code efficiently.
Often, this phase overlaps with the requirement analysis (if the stakeholder is
into IT) and that is desirable as diagrams are the perfect middle language that we
are looking for.

e Development: As the name suggests, this is where the software is built. This is
what developers do well: build technical artifacts that work and work well--
according to a potentially flawed specification. This is where we need to be
clever: no matter what we do, our software is going to be imperfect, and we need
to plan accordingly. When we are working in agile environments, deliver early
and deliver often is the mantra followed to minimize the impact of a wrong
specification so that the stakeholders can test the product before the problem is
too big to be tackled. I also believe that involving the stakeholders early enough
is a good strategy, but it is not a silver bullet, so no matter what we do, our
software has to be modular so we can plug and play modules in order to
accommodate new requirements. In order to ensure the functionality of our
modules on their own, we write unit tests that can be run quickly in order to
ensure that the code is doing what it is supposed to do.

¢ Testing: This is where continuous integration lives. Our continuous integration
server will run the testing for us when appropriated and inform us about the
potential problems in our application as quickly as possible. Depending on the
complexity of our software, our testing can be very extensive in this phase, but in
general, the continuous integration server focuses on running integration and
acceptance (that said, the integration server usually runs all the tests as the unit
tests should be inexpensive to run).

[96]

Continuous Integration Chapter 4

¢ Release: In this phase, we deliver the software to what we call production; people
start using the software, and no matter how much effort we put in the previous
phases, there will be bugs and that is the reason why we planned our software to
be able to fix the problems quickly. In the release phase, we can create something
that we will see later on in this book, called Continuous Delivery (CD) pipelines,
which enables the developers to execute the build-test-deploy cycle very quickly
(even a few times a day).

¢ Maintenance: There are two types of maintenance: evolutive and corrective.
Evolutive maintenance is where we evolve our software by adding new
functionalities or improving business flows to suit the business needs. Corrective
maintenance is the one where we fix bugs and misconceptions. We want to
minimize the latter but we cannot totally avoid it.

Testing types

In the previous section, we talked about different types of tests:

¢ Unit tests: What we call white box tests are what mock the dependencies and test
the business flow of a particular piece of code.

e Integration tests: These are designed to test the integration between different
components of an application and they do not test the business logic extensively.
Sometimes, when the software is not very complex, the integration tests are used
as unit tests (especially in dynamic languages), but this is not the most common
use case.

¢ Acceptance tests: Designed to test business assumptions, these are usually built
on the principle of what we know as user stories describing situations with the
style of being given an assumption.

Every test has a different objective, and they work well together, but keep the following
diagram in your mind:

[97]

Continuous Integration Chapter 4

Integration
Tests

Unit Tests

This is what I call the pyramid of testing, and there are years of experience (not only mine)
behind it: your software should have a whole bunch of unit testing, fewer integration tests,
and some acceptance tests. This ensures that the majority of your business logic is covered
by the unit tests and the integration and acceptance tests are used for more specific
functions. Also, the integration and acceptance tests are usually more expensive, so
minimizing their its usage is usually something that's recommended (but not at the cost of
dropping the test coverage).

When working with a CI server, usually, the developer runs the unit tests on his computer
as they are quick and should spot a big amount of the potential problems, leaving the
integration and acceptance tests to the CI server, which will run while the developer is
working on other tasks.

Traditional Cl servers

In this section, we are going to walk through the most traditional CI servers:

e Bamboo
¢ Jenkins

[98]

Continuous Integration Chapter 4

They have been around for quite a while and even though they are heavily used in the
enterprise world, they are losing some grasp against the new and more modern CI servers
such as Drone or Travis (although Travis has been around for a while, it has been
reinvented to work on the cloud).

Bamboo

Bamboo is a proprietary CI server that is developed by Atlassian. Atlassian is a software
company that specializes in tools for developers. Products such as JIRA and Bitbucket are
created by Atlassian and they are well known in the IT world. Bamboo is their proposal for
CI activities, and it is quite popular as it integrates fairly well with their other products.

Let's install it. In order to do that, please visit Bamboo's home page at https://confluence.
atlassian.com/bamboo/ and follow the instructions in the quick start guide. As you can see,
the installation is quite simple, and after generating the evaluation license and some steps
(express installation), you should have bamboo running on your local computer:

A Your Bamboo maintenance expires in 29 days. For continued access to support and updates, renew your maintenance. Remind me later or never remind me again.

{3Bamboo MyBamboo Build ~ Deploy~ Create ~

Build Dashboard

Let's get building! o

Now that the installation and the setup of Bamboo is complete, it's (‘ C
time to create your first build plan. ‘)

Build plans hold all the instructions to build, test and assemble o
your software. Whenever you make a change to your code, O

Bamboo triggers your build plan and notifies you of the result.

)

Create your first build plan (w] O

A Powered by a free Atlassian Bamboo evaluation license. Please consider purchasing it today.

If you click on the button labeled Create your first build plan, you can see how easy it is to
set up jobs in Bamboo. In this case, we can use one of the open source projects that I created
in the past called Visigoth, a load balancer with circuit breaking capabilities used for
interconnecting microservices. The GitHub repository is located at https://github.com/
dgonzalez/visigoth.

[991]

https://confluence.atlassian.com/bamboo/
https://confluence.atlassian.com/bamboo/
https://confluence.atlassian.com/bamboo/
https://confluence.atlassian.com/bamboo/
https://confluence.atlassian.com/bamboo/
https://confluence.atlassian.com/bamboo/
https://confluence.atlassian.com/bamboo/
https://confluence.atlassian.com/bamboo/
https://confluence.atlassian.com/bamboo/
https://confluence.atlassian.com/bamboo/
https://confluence.atlassian.com/bamboo/
https://github.com/dgonzalez/visigoth
https://github.com/dgonzalez/visigoth
https://github.com/dgonzalez/visigoth
https://github.com/dgonzalez/visigoth
https://github.com/dgonzalez/visigoth
https://github.com/dgonzalez/visigoth
https://github.com/dgonzalez/visigoth
https://github.com/dgonzalez/visigoth
https://github.com/dgonzalez/visigoth
https://github.com/dgonzalez/visigoth

Continuous Integration Chapter 4

Fork it into your GitHub repository if you want to modify it. Visigoth is a single component
that does not interact with others, so only unit tests were created for it. Enter the clone URL
of the repository into the appropriate field, in this case, Git repository, and submit the form.

If you have the Time-based One-Time Password (TOTP) protection in
your GitHub account, you might need to choose Git repository with no
authentication instead of GitHub repository in the source part of the form
to create a test plan.

Once you finish creating the plan, it will ask you to add tasks to your test plan, which, at the
moment, is only checking out the source code from Git. In this case, Visigoth is a Node.js
application, and as such, the tests are run by executing the npm test command. In order to
run the command, we need to add two tasks of the t ype command. The first task will be
used to install the dependencies of the application and the second one to run the tests. Let's
add the first one:

Source Code Checkout .
. Command configuration How to use the Command
Checkout Default Repository task

Task description

NPM install

Final tasks Are always executed even if a previous task fails

Disable this task
Drag tasks here to make them final
Executable

Add task NPM 4 Add new executable
Argument
install --development
Argument you want to pass to the command. Arguments with spaces in them must be quoted.

Environment variables

Extra environment variables. e.g. JAVA_OPTS="-Xmx256m -Xms128m". You can add multiple parameters

separated by a space

Working sub directory

Specify an alternative sub-directory as working directory for the task.

w Cance'

As you can see, I have added one executable by clicking on Add new executable by
specifying the path where NPM is, which can be found by executing which npmin the
terminal of the machine where you installed Bamboo.

[100]

Continuous Integration Chapter 4

You will need to install Node.js on the same machine where you installed
Bamboo in order to run the tests. The current LTS version will work fine
with it, but Visigoth was tested with Node 6.x.

Now we are going to add the second command, which will execute npm test in order to
run the tests. This command will only be executed if the two previous steps (checking out
the code [Checkout Default Repository) and installing the dependencies (NPM install)] are
successful:

Source Code Checkout

. Command configuration How fo use the Command
Checkout Default Repository task
Task description
Command
NPM install NPM test
Disable this task
Final tasks Are always executed even if a previous task fails Executable
NPM 4 Add new executable
Drag tasks here to make them final v
Argument

Add task

test
Argument you want to pass to the command. Arguments with spaces in them must be quoted

Environment variables

Extra environment variables. e.g. JAVA_OPTS="-Xmx256m -Xms128m". You can add multiple parameters

separated by a space.

Working sub directory

Specify an alternative sub-directory as working directory for the task.

m Cance'

Once you save the task, we have completed all the actions that we need to execute in order
to run the tests in Visigoth. Now, the only thing left is to run the job:

[101]

Continuous Integration Chapter 4

{3Bamboo MyBamboo Build~ Deploy~ Reports~ Create Search a @~ k- . -

Build projects / Test / Test Plan

Build #7 [ONONONORONONC) ®Run~ $#Actions ~

Test plan

© #7 was successful — Manual run by David Gonzalez

Summary Tests Commits Artifacts Logs Metadata

Build result summary

Details
Completed 17 Apr 2017, 1:19:52 AM — 2 seconds ago
Duration 12 seconds
Labels None ¢
Agent Default Agent

Revision 'bal8bacd.. &

Successful since #6 (14 minutes before)

If everything is correct, you should get a green badge and a message of success. As you can
see, my build failed in previous runs as I was adjusting the CI server to run Visigoth.

You can check the logs of the job to see how many tests were successful and other useful
information. If you explore this even further, you can see how Bamboo also offers different
types of tasks, such as mocha test runners, which allows Bamboo to understand the result of
the tests. At the moment, with the current configuration, if any of the tests fails, Bamboo
won't be able to understand which one failed. I'd suggest you to play around with different
configurations and even different applications to get yourself familiar with it. As you can
see by yourself, the interface is very friendly, and usually, it is quite simple to achieve your
desired setup by creating new tasks.

By default, Bamboo creates something called trigger. A trigger is an action that leads to a
test plan being executed. In this case, if we change the GitHub repository from where the
job was created, the test plan will be triggered to verify the changes, ensuring the
continuous integration of new code.

Another interesting type of trigger is the time-based one. This type of trigger allows us to
run the build overnight, so if our tests take several minutes or even hours to run, we can do
it when no one is using the server. This type of trigger has saved me from bugs derived
from the daylight time savings hour adjustment, causing some tests to fail due to code
fragments not handling the change across different time zones well.

[102]

Continuous Integration Chapter 4

In general, Bamboo can deal with every situation, and it has adapted to the modern times:
we can even build Docker images and push them to remote registries once the tests have
passed in order to be deployed later on. Bamboo is also able to take actions in the post-build
phase, for example, alerting us if the build failed overnight with an email or other
communication channels.

Jenkins

I'have worked with Jenkins for quite a while now, and I have to say that I feel really
comfortable working with it as I know it is free, open source, and also highly customizable.
It has a powerful and well-documented API that enables users to automate pretty much
anything related to continuous integration. In chapter 8, Release Management — Continuous
Delivery, we are going to set up a continuous delivery pipeline with Jenkins in order to be
able to release new versions of an application in a transparent manner once the test results
are satisfactory, enabling our team to focus on development and automating all the
deployment-related activities.

Jenkins is also modular, which enables developers to write plugins to extend functionalities,
for example, sending messages to a Slack channel if the build fails or running Node.js
scripts as a part of a job.

On the scalability side, Jenkins, like Bamboo, can be scaled to hundreds of nodes through a
master/slave configuration so that we can add more power to our CI server in order to
execute some tasks in parallel.

On its own, Jenkins will be enough to provide contents for a couple of books, but we are
going to visit what we need to set up automated jobs for testing our applications. It is also
possible to write plugins for Jenkins, so virtually, there is no limit to what it can do.

Let's focus on the operational side of Jenkins for now. In order to run Jenkins, we have two
options:

e Running it as a Docker container
e Installing it as a program in your CI server

[103]

Continuous Integration Chapter 4

For now, we are going to install Jenkins, using its Docker image as it is the simplest way of
running it and it fits our purpose. Let's start. The first thing is running a simple instance of
Jenkins from the command line:

docker run -p 8080:8080 —p 50000:50000 jenkins

This will run Jenkins, but be aware that all the information about configuration and builds
executed will be stored within the container, so if you lose the container, all the data is lost
as well. If you want to use a volume to store the data, the command that you need to
execute is as follows:

docker run —-—-name myjenkins —-p 8080:8080 —p 50000:50000 -v
/var/jenkins_home jenkins

This will create a volume that you can reuse later on when upgrading to new versions of
Jenkins or even restarting the same container. After running the command, the logs will
show something similar to what is shown in the following figure:

3fe 3k 3k 3k sk e e 2k ok ok ok ok ok sk ok 3k ke ke 2k ok ok ke ok ok 3k ok sk sk ke ke ok ok ok ok ok ok sk sk sk ke ke ok ok ok ok ok ok 3k ok sk ke ke sk ok ok ok ok ok sk ke ok
3fe 3k 3k 3k sk e e 2k ok ok ok ok ok sk ok 3k ke ke 2k ok ok ke ok ok 3k ok sk sk ke ke ok ok ok ok ok ok sk sk sk ke ke ok ok ok ok ok ok 3k ok sk ke ke sk ok ok ok ok ok sk ke ok
35 3¢ 3k sk s e s sk ok ok ke sk sk 3k sk sk ke ke sk sk ok ok sk sk 3k 3k sk s sk sk sk sk ok ok sk sk sk sk sk ke sk sk sk ok ok sk sk 3k sk sk ke sk sk ok ok ok ok sk sk sk ok

Jenkins initial setup is required. An admin user has been created and a password generated.
Please use the following password to proceed to installation:

a364152cd16247118e9556d3889%e3cac

This may also be found at: /var/jenkins_home/secrets/initialAdminPassword

3k sk sk sk sk e 3k ok ok ok ok ok sk sk sk sk ok sk ok sk 3k ok ok ok sk sk sk sk e sk sk sk ok ok ok sk sk sk sk ok sk ok sk ok ok ok ok sk sk sk ok sk ok ok sk ok ok sk sk sk ok
3k 3k 3k sk sk e 3k sk ok ok ok ok sk sk sk sk ok ke ok sk sk ok ok ok sk sk sk sk e sk sk sk ok ok ok sk sk sk sk ok sk ok sk ok ok ok ok sk sk sk ok sk ok ok sk ok ok sk sk sk ok
3F¢ 3k 3k 3k 3k ke 3k 2k ok ok ok ok ok sk ok 3k e ke 2k ok ok ke ok ok 3k ok sk sk ke ke ok ok ok ok ok ok sk ok sk e ke 2k ok ok ok ok ok ok ok sk ok ke sk ok ok ok ok sk sk ke ok

[104]

Continuous Integration Chapter 4

This is the initial password for Jenkins and it is necessary in order to set up the instance.
After a few seconds, the logs of the container will stop, which means your Jenkins server is
ready to be used. Just open the browser and go to http://localhost:8080/, and you
will see something similar to this:

Getting Started

Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a password has been written
to the log (not sure where to find it?) and this file on the server:

/var/jenkins_home/secrets/initialAdminPassword

Please copy the password from either location and paste it below.

Administrator password

This is where you can enter Administrator password, which we saved earlier, and click on
the Continue button. The next screen will ask you whether it should install the suggested
plugins or whether you want to select which plugins to install. Choose the suggested
plugins. After a few minutes, it will let you create a user and that's it. Jenkins is up and
running in a container:

[105]

Continuous Integration Chapter 4

()] David Gonzalez | log out

Jenkins ENABLE AUTO REFRESH
New Item ‘#add description
& People Welcome to Jenkins!

. Build History
Please create new jobs to get started.

% Manage Jenkins

&. My Views

4. Credentials

Build Queue =

No builds in the queue.

Build Executor Status =

1 Idle
2 ldle

Now we are going to create a new job. We are going to use the same repository as we used
with Bamboo so we can compare the two integration servers. Let's click on Create a new
project. You should be presented with the following form:

Enter an item name
’ Test]

» Required field

Freestyle project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be even used for
something other than software build.

Vs
—

Pipeline
Orchestrates long-running activities that can span multiple build slaves. Suitable for building pipelines (formerly known as workflows) and/or
organizing complex activities that do not easily fit in free-style job type.

External Job

This type of job allows you to record the execution of a process run outside Jenkins, even on a remote machine. This is designed so that you can
use Jenkins as a dashboard of your existing automation system.

o (X

Multi-configuration project
Suitable for projects that need a large number of different configurations, such as testing on multiple environments, platform-specific builds, etc.

£

5 a container that stores nested items in it. Useful for grouping things together. Unlike view, which is just a filter, a folder creates a separate

Jace, so you can have multiple things of the same name as long as they are in different folders.

[106]

Continuous Integration Chapter 4

Just enter a name for the project and choose the first option: Freestyle project. Jenkins has
different types of projects. Freestyle project is a type of project where we can define the
steps, as we did in Bamboo. Another interesting option is the type Pipeline where we can,
through a DSL (known as Domain Specific Language), define a set of steps and stages,
creating a pipeline that can be saved as code.

The following screen is where we configure the project. We are going to use Git with the
repository hosted at https://github.com/dgonzalez/visigoth.git.

You can use your fork if you previously forked it while working with Bamboo. Your
configuration should be similar to the what is shown in the following screenshot:

Source Code Management

None

O Git

Repositories :
Repository URL https://github.com/dgonzalez/visigoth.git 2
Credentials Source Code Management

Advanced...

Add Repository
Branches to build n
Branch Specifier (blank for 'any') */master Y

Add Branch

«
P
S

m feely ‘ -

[107]

https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git
https://github.com/dgonzalez/visigoth.git

Continuous Integration Chapter 4

Now we need to install the dependencies of Visigoth with the npm install --
development command and execute the tests with the npm test command, but we are
running Jenkins from a container and this container does not have Node.js installed. We are
going to use our Docker knowledge to install it. Inspecting the Dockerfile of the Jenkins
image in the Docker Hub, we can verify that it is based on Debian Jessie (it is based on
Open]DK but that is based on Debian Jessie) so we can install the required software in it.
The first thing that needs to be done in order to install software is gain root access to the
container. As you learned in chapter 2, Cloud Data Centres - The New Reality, we can execute
commands on the running container. Let's run the following command:

docker exec —u 0 -it eaaef41£f221b /bin/bash

This command executes /bin/bash in the container with the ID eaaef41£221b (it will
change in your system as it is unique per container) but with the user that matches the user
ID 0, in this case, root. We need to do this because the Jenkins image defines and uses a new
user called jenkins with a known UID and GID so if the —u 0 flag is not passed, the
/bin/bash command will be executed by the user jenkins.

Once we are root in the container, proceed to install Node.js:

curl -sL https://deb.nodesource.com/setup_7.x | bash -

And once the execution of the previous command is finished, run the following one:

apt—-get install -y nodejs build-essentials

And that's it. From now on, our Jenkins container has an installation of Node.js available to

run Node.js scripts. That said, we should avoid installing software in production containers.
Our containers should be immutable artifacts that do not change through their life cycle, so
what we should do is commit the changes in this image and tag it as a new version in order
to release it into our production container. As we don't have a production container, we are

making the changes as we go.

Our containers in production should be immutable artifacts: if we need to
change their status, we create a new version of the image and redeploy it
instead of modifying the running container.

[108]

Continuous Integration Chapter 4

Once Nodejs is installed, we can just exit the root shell within the container and go back to
Jenkins to complete our tasks. As we did with Bamboo, here are our tasks in order to run
our tests:

Execute shell ()

Command /usr/bin/npm install --development

See the list of available environment variables

Advanced...

Execute shell (2]

Command /usr/bin/npm test

See the list of available environment variables

Advanced...
m Aeely

In the very bottom of the job configuration, there is a section called post-build actions. This
section allows you to execute actions once the job is finished. These actions include sending
e-mails, adding commit messages to the Git repository, among others. As we previously
mentioned, Jenkins is extensible and new actions can be added by installing new plugins.

Jenkins can also parametrize builds with input from the user.

Once you have added these two steps to the build, just click on Save and we are all set: you
now have a fully functional Jenkins job. If we run it, it should successfully run the tests on
Visigoth.

[109]

Continuous Integration Chapter 4

Secrets Management

One of the possibilities of the CI server is the ability to talk to third-party services that
usually rely on some sort of credentials (such as access tokens or similar) to authenticate the
user. Exposing these secrets would be discouraged as they could potentially cause major
harm to our company.

Jenkins handles this in a very simple way: it provides a way to store credentials in a safe
way that can be injected into the build as environment variables so that we can work with
them.

Let's look at some examples. First, we need to create the secrets in Jenkins. In order to do
that, we have to go to Manage Jenkins from the home page.

Once we are there, you should see a screen very similar to this one:

C $search ® David Gonzalez | log out

Jenkins Credentials System Global credentials (unrestricted)

% Back to credential domains

@= Add Credentials Uy Global credentials (unrestricted)

Credentials that should be available irrespective of domain specification to requirements matching.
Name Kind Description
This credential domain is empty. How about adding some credentials?
lcon: SML

Page generated: Apr 18, 2017 6:27:56 PM UTC REST APl Jenkins ver. 2.46.1

We are using the Global credentials store as we just want to showcase how it works, but
Jenkins allows you to box credentials so you can restrict access across different usages. In
Jenkins, credentials, aside from being injected into the build context, can be connected to
plugins and extensions so that they can authenticate against third-party systems.

[110]

Continuous Integration Chapter 4

Now, we click on Add Credentials on the left-hand side:

(€] David Gonzalez | log out

Jenkins Credentials System Global credentials (unrestricted)
& Back to credential domains Kind = Username with password 4
@= Add Credentials Scope Global (Jenkins, nodes, items, all child items, etc) o fij}

Determines where this credential can be used.

System
This credential is only available to the object on which the credential is associated. Typically
you would use system-scoped credentials for things like email auth, slave connection, etc,
i.e. where the Jenkins instance itself is using the credential. Unlike the global scope, this
significantly restricts where the credential can be used, thereby providing a higher degree of
confidentiality to the credential.

Global
This credential is available to the object on which the credential is associated and all objects
that are children of that object. Typically you would use global-scoped credentials for things
that are needed by jobs.

In general, a credential is defined in one place (for example in the credentials configuration page
under "Manage Jenkins"), then used in another place (for example when connecting to a new SSH
slave.) The scope allows you to say "this credential is only used by these places" by looking at the
relationship between the two locations.

(from Credentials Plugin)

Username

®

localhost:8080

There are some fields that we need to fill before proceeding, but they are very basic:

¢ Kind: This is the type of secret that we want to create. If you open the drop-
down, there are several types, from files to certificates, walking through
usernames and passwords.

¢ Scope: This is the scope of our secret. The documentation is not 100% clear (at
least not in the first read) but it allows us to hide the secret from certain stances.
There are two options: Global and System. With Global, the credentials can be
exposed to any object within Jenkins and its child, whereas with System, the
credentials can be exposed only to Jenkins and its nodes.

[111]

Continuous Integration Chapter 4

The rest of the fields are dependant on the type of secret. For now on, we are going to create
aUsername with password secret. Just select it in the dropdown and fill in the rest of the
details. Once it is created, it should show in the list of credentials.

The next step is to create a job that is bound to those credentials so we can use them. Just
create a new freestyle project, as we saw in the beginning of this section, but we are going to
stop on the screen where we can configure the job, precisely in the Build Environment
section:

Jenkins test-credentials

Build Environment

Build Environment

Delete workspace before build starts
Abort the build if it's stuck

Add timestamps to the Console Output

)
)

Use sectret text(s) or file(s)

r

Allows you to take credentials of various sorts and use them from shell build steps and the like. Each binding will
define an environment variable.

(from Credentials Binding Plugin)

Bindings

Add ~

Secret ZIP file
E Secret file
Secret text

Username and password (conjoined)

| Username and password (separated)

localhost:8080/job/test-credentials/configure#

[112]

Continuous Integration Chapter 4

Now select Username and password (conjoined). Conjoined username and password
means that we get the full secret (the username and the password) in a single variable,
whereas with separated, we get the secret split in two variables: one for the username and
another one for the password.

Once we select it, the form to create the binding is fairly simple:

Bindings

~
/]
J

Username and password (conjoined)

a
N

—~N
|
7

Variable MY_CREDENTIALS <

P
S

Credentials © Specific credentials Parameter expression

(=)
)

david/****** (My secret) § = &= Ade

Add ~

We get to choose the Variable where we want to store the secret and we also get to choose
which secret. There is a radio button that lets you choose between Parameter expression or
Specific credentials as we can parametrize the job to get input from the user on the
triggering screen. In order to showcase how well thought Jenkins is, we are going to add a
Build step that uses the secret by just echoing it into the logs:

[113]

Continuous Integration Chapter 4

Username and password (conjoined) C))
Variable MY_CREDENTIALS @
Credentials © Specific credentials Parameter expression @)

david/****** (My secret) § = &= Ade

Add ~
Build
Execute shell '@'

Command echo $MY CREDENTIALS

See the list of available environment variables

Advanced...
m Apply

Click on the Save button to save the job and run it. Once the job execution finishes, go to the
result and click on Console Output. If you were expecting to see the secret in here, Jenkins
has a surprise for you:

Qi search @ David Gonzalez | log out

Jenkins test-credentials #1

& Back to Project

Status @ Console Output

. Changes

Started by user David Gonzalez
E Console Output Building in workspace /var/jenkins_home/workspace/test-credentials
[test-credentials] $ /bin/sh -xe /tmp/hudson5079708686033652258.sh
+ echo **x*
*okokk

View as plain text

_~ Edit Build Information
Finished: SUCCESS

(O Delete Build

[114]

Continuous Integration Chapter 4

The secret has been masked in order to prevent exposure to unauthorized users. This is not
bullet proof, as someone could easily dump the secret from a test within an application
checked out by Jenkins, but it adds some level of security in there, leaving the rest to the
code reviews and processes.

Modern CI servers

One thing that is clear in IT is that the market moves very fast, and every few years, a new
trend breaks what was considered the perfect solution for a problem. CI software is not an
exception to this. In the last few years (taking into account that this book was written in
2017), Infrastructure as Code has drawn a lot of attention to the DevOps world, but in CI, its
equivalent is Pipelines as Code.

Jenkins and Bamboo have added support for declarative pipelines recently, but they are not
built around them.

Drone CI

Drone is probably the newest CI server in the market. I decided to introduce it in this
chapter as it was a big revelation to me when I found out about it working in nearForm Ltd.
By that time, I was well used to Jenkins and it suited every single use case that I could come
across in my professional life, from CI to continuous delivery and sometimes even as a
bastion host using a feature called callback URL, where a job could be triggered by sending
an HTTP request to a specific URL.

Drone is built around the concept of containers. Everything in Drone is a container, from
the server to where the test runs, but the most interesting part is that even the plugins are
containers. This makes it easy to write new plugins for executing custom actions, as the only
requirement is that the containers return 0 as the exit code if it was successful and a
nonzero exit code if it was not successful.

For Jenkins or Bamboo, writing a plugin requires a few hours of testing and reading
documentation. For Drone, we just need to know how to build a Docker image and what
task we want to accomplish.

[115]

Continuous Integration Chapter 4

Be aware that Drone is still in the version 0.5 and moves very quickly, so by the time you
read this book, Drone might have changed significantly, but I wanted to include it as I think
it is a very promising software.

Installing Drone

In order to install Drone, we are going to use docker-compose, and it is going to be
configured to work with GitHub.

Drone, like Docker, follows a client-server architecture, so we can find two differentiated
components, the server and the CLI. The first part we are going to proceed with is with the
server. Take a look at the following docker-compose file:

version: '2'

services:

drone-server:

image: drone/drone:0.5

ports:

- 80:8000

volumes:

- ./drone:/var/lib/drone/

restart: always

environment:

— DRONE_OPEN=true

— DRONE_GITHUB=true

- DRONE_GITHUB_CLIENT=${DRONE_GITHUB_CLIENT}
- DRONE_GITHUB_SECRET=${DRONE_GITHUB_SECRET}
- DRONE_SECRET=${DRONE_SECRET}

drone—agent:

image: drone/drone:0.5
command: agent
restart: always

depends_on: [drone-server]

volumes:

- /var/run/docker.sock:/var/run/docker.sock
environment:

— DRONE_SERVER=ws://drone-server:8000/ws/broker
-~ DRONE_SECRET=${DRONE_SECRET}

[116]

Continuous Integration Chapter 4

There are two containers running in the preceding Docker Compose file: a server and an
agent. Up until version 0.4, Drone master could execute builds, but after that, an agent is
needed to run builds. There are some secrets that we need to configure before proceeding
that are being passed into compose via environment variables (with the ${VAR_NAME }
notation):

e DRONE_GITHUB_CLIENT: As we specified earlier, we are going to use GitHub as
the origin of our source code to be tested. This is provided on GitHub when
registering a new OAuth application needed for Drone. You can create OAuth
applications in the settings section of GitHub. Be careful; one of the parameters
that you need in order to create a GitHub OAuth application is the callback URL.
In this case, we are going to use http://localhost/authorize as we are
working on our local machine.

® DRONE_GITHUB_SECRET: In the same way as DRONE_GITHUB_CLIENT, this is
provided when a new OAuth application is created on GitHub.

e DRONE_SECRET: This is an arbitrary string shared with the agent and the master.
Just create a simple string, but when running a drone in production, make sure
that the string is long enough so it cannot be guessed.

In order to get Drone working with the GitHub integration, we need to receive callbacks
from GitHub. Once we have all the values, we just need to run the following command:

DRONE_GITHUB_CLIENT=your—-client DRONE_GITHUB_SECRET=your—-secret
DRONE_SECRET=my-secret docker-compose up

In one line, we are setting the three variables that we need, apart from running docker-
compose up. If everything went as expected, when you browse http://localhost, you
should see a window similar to the following one:

£02

Welcome to Drone. Please login to proceed.

Login

[117]

Continuous Integration Chapter 4

If you click on login, Drone should redirect you to GitHub for authorization and then
GitHub will redirect you to the callback URL specified when creating the OAuth
application, which is your local Drone installation, http://localhost/authorize.
Sometimes, it might require some tweaking, but in general, it is very easy to make it work.
As you can see, Drone leverages the authentication to GitHub so a GitHub account is
required to log in.

Now we are going to proceed with the CLI. It is as easy as visiting http://readme.drone.
i0/0.5/install/cli/ and choosing the right version for your platform, in my case, macQOS.
Just place the binary in the path and you are ready to go. In order to configure the location
of the Drone server, you need to specify two environment variables:

e DRONE_SERVER: This is the URL to your Drone server, in this case,
http://localhost

® DRONE_TOKEN: Once you are logged into Drone, navigate to Account and click on
Show token. This is the value that you need

Once you have set up the two variables, execute the following command:

drone info

This should show your GitHub username and the e-mail that you used to register.

Running builds

Drone has a different philosophy when it comes to running builds: it reacts to changes in
the code on the remote repository by triggering the pipeline. Let's create a super simple
repository with a very simple Node.js application. I have created it on my GitHub account
in order to make everything easier: https://github.com/dgonzalez/node-example—-drone/.
Just fork it into your own account, and you are good to go.

[118]

http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
http://readme.drone.io/0.5/install/cli/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/
https://github.com/dgonzalez/node-example-drone/

Continuous Integration Chapter 4

The first thing that we need to do is activate the project in your local Drone installation. Just
go to Account, and in the list of repositories, activate node-example-drone. Now it should
show in the home screen in a manner similar to the following screenshot:

@ dgonzalez / node-example-drone @

Badges Settings

dgonzalez/node-example-drone

This repository does not have any builds yet.

Now we are facing a small problem: Drone was created to trigger builds using a webhook
delivered from GitHub into our Drone server. As we are working in a private network, we
need to somehow expose our server to the Internet. In this case, we are going to use a
service called Ngrok (http://www.ngrock.com) in order to expose Drone to the internet,
which is not necessary when working in a production environment as it should be
accessible over the internet (or at least through a proxy). Just follow the instructions, and
once you run it in the Terminal, it should look very similar to what is shown in the
following screenshot:

ngrok by @inconshreveable (Ctr1+C to quit)

Account David Gonzalez (Plan: Free)

Version 2.2.4

Region United States (us)

Web Interface http://127.0.0.1:4040

Forwarding http://852cc48a.ngrok.io -> localhost:80
Forwarding https://852cc48a.ngrok.io -> localhost:80

Connections ttl opn rtl rts p50 p90
4 0 0.01 0.01 121.98 122.97

HTTP Requests

200 0K
/static/favicon.ico 200 0K
/ws/feed 101 Switching Protocols
/static/drone.svg 200 0K
/api/user/feed 401 Unauthorized
/static/app.js 200 0K
/static/app.css 200 0K
/ 200 0K

[119]

http://www.ngrock.com
http://www.ngrock.com
http://www.ngrock.com
http://www.ngrock.com
http://www.ngrock.com
http://www.ngrock.com
http://www.ngrock.com
http://www.ngrock.com
http://www.ngrock.com

Continuous Integration Chapter 4

This specifies which host is being forwarded to your local address, in my case,
http://852cc48a.ngrok.io. Just open it in your browser and check whether Drone is
accessible from there.

One thing left to do is edit the webhook that Drone installed in our GitHub repository when
we activated it. You will find it in the repository settings on GitHub. Just edit the webhook
to change the URL from http://localhost to your Ngrok URL, in my case,
http://852cc48a.ngrok.io

Executing pipelines

Now the setup is complete, before doing anything else, take a look at the .drone.yaml file
of the forked repository:

debug: true
pipeline:
build:
image: node
commands :
— npm install —--development
- npm test

This is our pipeline, and as you can guess, it gets committed alongside our code into our
repository. Drone is going to execute the instructions in this pipeline when GitHub delivers
the webhook into our Drone installation. As Drone works with containers, the first thing
that Drone is going to do is create an image based on the node (as we specified) and run the
following operations:

e It installs the dependencies
o It runs the tests

If the exit code of the container that executes these commands is 0, our build is successful
and you can test it by pushing some changes to your GitHub repository and watching how
Drone reacts to them.

There is also another way to re-trigger builds (not for the first time) via the CLI interface.
Open the Terminal, and after configuring the environment variables previously stated (if
you haven't done it yet), run the following command:

drone build list dgonzalez/node—example-drone

[120]

Continuous Integration Chapter 4

This will return a list of all the previously executed builds. Just change dgonzalez to your
username, as you can see in the web interface. In order to rerun a previous build, we can
run the following command:

drone build run dgonzalez/node-example-drone 1

This command fires off a build in Drone that was already built. This is particularly useful
when you suspect that the build failed due to external factors.

Sometimes, the webhook fails (particularly with the setup that we have
with Ngrok), but GitHub allows you to debug that in the webhooks
section of your repository.

This is the simplest case of a pipeline. As mentioned earlier, Drone is based on plugins, and
those plugins are also Docker images. The list is quite comprehensive and can be found at
https://github.com/drone-plugins.

Let's assume that we want to push our image to the Google Container Registry in Google
Cloud. We are going to use the plugin called drone-gcr from https://github.com/drone-
plugins/drone-gcr. Here is our pipeline:

debug: true
pipeline:
build:
image: node
commands :
- npm install --development
- npm test
publish:
gcr:
repo: myrepo/node-example-drone
token: >

{
}

What we have here is a two-stage pipeline: it first executes the tests, and once they are
successful, it deploys the image to Google Cloud Registry. We have different phases in the
pipeline that we can use:

e Build: For building the tests and the related commands
¢ Publish: Used to publish the artifact in a remote repository

[121]

https://github.com/drone-plugins
https://github.com/drone-plugins
https://github.com/drone-plugins
https://github.com/drone-plugins
https://github.com/drone-plugins
https://github.com/drone-plugins
https://github.com/drone-plugins
https://github.com/drone-plugins
https://github.com/drone-plugins
https://github.com/drone-plugins
https://github.com/drone-plugins
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr
https://github.com/drone-plugins/drone-gcr

Continuous Integration Chapter 4

¢ Deploy: Very useful for continuous integration as it allows us to deploy our
software in a continuous delivery manner

¢ Notify: Used to send notifications via email, slack, or any other channel

For example, if we wanted to send a Slack notification, we would just need to add the
following lines to our pipeline:

notify:
image: plugins/slack
channel: developers
username: drone

Remember, YAML is sensitive to tabs and spaces so notify needs to be at
the same level as publish or build.

Other features

At the time of writing this, Drone is being actively developed, with new features being
added and along with some major reworks. It also offers other features, such as secret
management and support services.

With secret management, we can inject secrets that get encrypted and stored in a database
and only injected into builds that have been cryptographically signed by our drone CLI
with a valid token from our Drone server.

Drone also offers support services, which are services that run alongside your tests. This is
very helpful when our integration tests depend on a database or when we need to spin
third-party software such as Hashicorp Vault or a service discovery infrastructure such as
Consul or Eureka.

It is expected that in future, Drone will have more features, but at the moment, it is going
through major changes as it is being actively developed (unlike more mature servers, such
as Jenkins, that have been around for a while).

[122]

Continuous Integration Chapter 4

Summary

In this chapter, we walked through three different CI tools:

e Bamboo, a commercial tool
e Jenkins, an industry standard open source tool
¢ Drone, a cutting-edge technology CI server

We discussed the key features of Jenkins that we are going to use going forward in this
book, but we also showcased how Drone has leveraged the concept of containers into a very
powerful CI system that, even though not mature yet, I expect to become the norm in the
coming years.

The important concepts that we need to be aware of were explained, but to summarize, we
use our integration server to run our tests for us so we can offload developers from doing
that but also run the tests overnight in order to ensure that the daily build is stable.

In the next chapter, we will visit what the community has called Infrastructure as Code:
basically, a way of dealing with our infrastructure as if code was, managing resources on a
very elegant way.

[123]

Infrastructure as Code

In the previous chapters, we demonstrated how the new cloud data centers can help us
create online resources (virtual machines, Docker repositories, cryptographic keys) in a very
easy way, shortening the hardware provisioning cycle from weeks (buying, shipping, and
installing new computers) to seconds. We have also seen that there are different providers
in the market that can offer us very similar features with different strong points that we can
take advantage of when building our systems.

You learned how to create resources through the web interface that they offer, but how
scalable is that? Creating resources manually prevents us from keeping an automated
inventory of resources that can be used for security purposes as well as manage our
infrastructure as if it were software components.

In this chapter, you are going to learn how to build resources in the cloud first, through the
SDK provided by the cloud data center vendor and then by a software component called
Terraform, which is an industry standard for managing online resources. We are going to
focus on Google Cloud Platform for several reasons:

The command-line interface, in my opinion, is easier to use.

The Google Cloud Platform trial covers a good bunch of resources that you can use to
experiment with throughout this book as you can create pretty much any resource in the
full set of products.

At the time of writing this (April 2017), Google Cloud Platform is the best value for money
when it comes to cloud data centers.

That said, AWS, Azure or any other provider also offer a very interesting range of trial
accounts, but unfortunately, we cannot cover everything in a single book.

Infrastructure as Code Chapter 5

Google Cloud Platform SDK - gcloud

Google offers us a very comprehensive SDK that can be used for operating Google Cloud
Platform as well as installing software components related to cloud operations.

The first thing we need to do is install gcloud.

There are installers for Windows but, in general, for Unix-based systems (Linux and Mac
mainly), we have an interactive installer that can be executed from the command line and
the unattended mode (for automatic provisioning).

The different options can be found at https://cloud.google.com/sdk/downloads.

In order to install it (in my case, on Mac), the first thing we need to do is run the following
command:

curl https://sdk.cloud.google.com | bash

This will initiate the interactive installed in the online mode: we will be asked a number of
questions during the installation process.

The first one is the installation directory. By default, this is the home of the user, but you
can change it to the folder of your choice. Once you have selected the folder, it will start
downloading and installing the required base components.

The question is whether you want to help improve the Google Cloud SDK through the
collection of anonymized data. Just answer as per your preferences.

Now, Google Cloud SDK will start installing the core components.

Your current Cloud SDK version is: 152.0.0
Installing components from version:

These components will be installed.
e E |

Name | Version |

2.0.24
2.0.24
2017.03.24

BigQuery Command Line Tool

BigQuery Command Line Tool (Platform Specific)
Cloud SDK Core Libraries (Platform Specific)

Cloud Storage Command Line Tool (Platform Specific) 4.23
Default set of gcloud commands

gcloud-deps (Mac 0S X, x86_64) 2017.03.31
[E——————

I
I
I
Cloud Storage Command Line Tool | 4.25
|
|
|

For the latest full release notes, please visit:
https://cloud.google. com/sdk/release_notes

[125]

https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads

Infrastructure as Code Chapter 5

As you can see in the preceding figure, Google SDK installs few packages that will be used
to operate the basic services on Google Cloud Platform. Once it is finished (no need to do
anything), it will ask you whether you want to modify the PATH variable of your system or
not. Just reply Y and press Enter so that the gc1oud command is available from the console.
It will ask you in which file you want to modify the PATH variable. Usually, the default
option that the installer provides you with is good enough. Before changing the file, the
Google Cloud SDK installer will create a backup of the file with the same name with the
.backup extension so you can revert the changes.

And we are done. It will ask you to start a new shell for the changes to take effect. Close
your Terminal and open it again to check whether the gc1oud command is available.

Now that we have installed Google Cloud SDK, it is time to configure the authentication.
Execute the following command:

gcloud init

It will ask you to log in, so reply yes, which will open a browser window asking you to
enter your Google credentials. Enter the ones associated with your trial account (if you
didn't sign for the trial, do it before configuring your credentials). If you had a project
already created in the Google Cloud Platform, it will ask you in the console to choose which
one to use. In my case, I had one configured from chapter 2, Cloud Data Centers — The New
Reality, so I selected the one called implementing-modern-devops in my case.

The next topic is configuring the Google Compute Engine. Reply yes and select your
availability zone. In my case, anywhere in Europe will work for me.

After this step, we are done. The prompt will tell us that we have a configuration called
'default’ created. This means that the Google Cloud SDK can work with multiple credentials
but, in this case, we are going to work with just one set of credentials and a single project.

Creating resources with Google Cloud SDK

Once we are set up, it is time to start creating resources. As you can guess, the commands
for creating resources can be quite complicated or extremely simple depending on your
requirements. Luckily, Google engineers have thought about it when creating the interface
for Google Cloud Platform.

[126]

Infrastructure as Code Chapter 5

The first thing you need to do is log in to your Google Cloud Platform account. Once you
are there, go to Compute Engine and fill the form to create a new resource. Enter the name
of the instance, choose your closest region (Europe in my case), machine type (the default
one will do), APT access (we don't need that but the default is OK) and Allow HTTP traffic
and Allow HTTPS traffic. Before clicking on create, take a look at the following screenshot:

Google Cloud Platform Implementing Modern De... ~

EE} Compute Engine & Create an instance
B VMinstances Name
| my-test-instance |
& Instance groups
Zone
[E] Instance templates ECEnaIe . $25.95 per month estimated
i Effective hourly rate $0.036 (730 hours per month)
g Disks Machine
type
Details
Snapshots 1vCPU - 3.75 GB memory Customise
] Images Upgrade your account to create instances with up to 64 cores
ZZ Metadata
Boot disk
B Health checks
b New 10 GB standard persistent disk
B Zones ‘ | ‘ Image
Debian GNU/Linux 8 (jessie) Change
@® Operations
(] Quotas Identity and API access
Service account
& Settings No service account -
Access scopes
Select a service account to enable API access
<l
httos://console.cloud.gooale.com/compute/?project=fair-portal-160618&authuser=1 |

[127]

Infrastructure as Code Chapter 5

If you take a look at the very bottom, below the Create button, there are two links:

¢ REST equivalent
e Command line

For now, we are going to focus on the command line link. Click on it and you should get a
window with a few commands. Let's explain them:

gcloud compute —--project "implementing-modern-devops" instances create
"test—instance" \

—-—-zone "europe-westl-c" --machine-type "nl-standard-1" --
subnet "default" \

-—-maintenance-policy "MIGRATE" \

——-service—account "1085359944086—
compute@developer.gserviceaccount.com"

-—scopes \

"https://www.googleapis.com/auth/devstorage.read_only",

\
"https://www.googleapis.com/auth/logging.write", \
"https://www.googleapis.com/auth/monitoring.write", \
"https://www.googleapis.com/auth/servicecontrol"™, \
"https://www.googleapis.com/auth/service.management.readonly", \
"https://www.googleapis.com/auth/trace.append" \
--tags "http-server","https-server" --image "debian-8-
jessie-v20170327" \
——-image-project "debian-cloud" --boot-disk-size "10" --boot-—

disk-type "pd-standard" \
—--boot-disk-device-name "test-instance"

The first command creates the VM. As you can see, no one can expect to learn to create this
command easily, but luckily, Google Cloud Platform provides it to you for every single
resource that will be created for you so you can use the Ul to generate the commands. That
said, the preceding command sets every single potential setting that Google Cloud
provides, so in other words, we will be able to run the preceding command with the same
results no matter what settings we change in our cloud account.

There is a shorter version:

gcloud compute —-project "implementing-modern—-devops" instances create
"test-instance"

[128]

Infrastructure as Code Chapter 5

This command does exactly the same as the very long command from earlier but assuming
that the settings are the default (remember, you have already chosen some parameters, such
as the default zone).

The other two commands are simpler:

gcloud compute ——-project "implementing-modern-devops" firewall-rules create
"default—-allow-http" —-—-allow tcp:80 ——network "default" —--source-ranges
"0.0.0.0/0" --target-tags "http-server"

Take a look at this too:

gcloud compute ——-project "implementing-modern-devops" firewall-rules create
"default-allow-https" —-—allow tcp:443 —-—network "default" —--source-ranges
"0.0.0.0/0" —--target-tags "https-server"

As you can guess, these commands allow the HTTP and the HTTPS traffic into our host as
described in the UI form.

These are the basics of infrastructure as code. We could potentially write those commands
on a bash script and off we go; our infrastructure is created automatically for us. In the
same way, if we don't want to depend on Google Cloud SDK, we could choose the REST
option that will show us the list of HTTP requests that we need to issue to Google Cloud in
order to create the same resources. If you are familiar with languages such as Python,
JavaScript (Node.js), and others, you know how easy is to issue HTTP requests in order to
create the resources so you could manage your infrastructure as if it were code following
the same life cycle.

This is a massive step forward in managing resources on the cloud, but it is still incomplete.
Imagine this situation: you work in a company with a fairly complex setup, say, a few
machines across different time zones and a fairly entangled network setup. How can you
know at first glance which machines are running and what are the firewall rules are?

The answer is simple: it is not possible with what we know today. In the next section, you
are going to learn how to use something called Terraform from HashiCorp in order to
manage not only the creation, but also the complete life cycle of online resources on
different cloud providers.

[129]

Infrastructure as Code Chapter 5

Terraform

Terraform is a product developed by HashiCorp. HashiCorp is a company with a strong
focus on DevOps tools such as Consul, a highly available distributed key value storage, or
Vagrant, a tool to reproduce development environments using the same provisioners as
production.

Terraform, as the name hints, allows you to create infrastructure in cloud data centers in a
declarative way, keeping track of what was created where, allowing you to apply changes
to the infrastructure from the code perspective: your infrastructure is described as the code
and, as such, it can follow its life cycle.

The first thing we need to do is download and install Terraform. Just open the https://
www.terraform.io/downloads.html URL in a browser and select your platform, in my case,
Mac. Terraform is a single binary compressed in a ZIP file (as far as I am aware, it is the
same for every platform) that I unzip and place somewhere in my path, in my case, in
/usr/local/bin/terraform.

Be careful as some OSX setups do not include /usr/local/bin/ in the
PATH environment variable, so you might need to do it before being able
to execute Terraform from any path.

Once it is installed and the PATH variable includes /usr/local/bin/ as one of the values
separated by semi colons, we can check whether everything works as expected:

terraform version

This should return the following output:

Terraform v0.9.4

[130]

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html

Infrastructure as Code Chapter 5

This confirms that everything is correct. Also, be aware that DevOps tools move very
quickly nowadays as they are required to do more things day by day. We are going to use
the latest available version, 0.9.4, but by the time you are reading this book, a newer version
might be available with new features and even some breaking changes. Luckily, Terraform
comes with a very powerful documentation embedded in it. Let's look at all the available
commands. Just execute this:

terraform

This should output something similar to the following:

Usage: terraform [--version] [--help] <command> [args]

The available commands for execution are listed below.

The most common, useful commands are shown first, followed by
less common or more advanced commands. If you're just getting
started with Terraform, stick with the common commands. For the
other commands, please read the help and docs before usage.

Common commands:
apply
console
destroy
env
fmt
get
graph
import
init
output
plan
push
refresh
show
taint
untaint
validate
version

other commands:

debug
force-unlock
state

Builds or changes infrastructure

Interactive console for Terraform interpolations
Destroy Terraform-managed infrastructure
Environment management

Rewrites config files to canonical format

Download and install modules for the configuration
Create a visual graph of Terraform resources
Import existing infrastructure into Terraform
Initialize a new or existing Terraform configuration
Read an output from a state file

Generate and show an execution plan

Upload this Terraform module to Atlas to run
Update local state file against real resources
Inspect Terraform state or plan

Manually mark a resource for recreation

Manually unmark a resource as tainted

Validates the Terraform files

Prints the Terraform version

Debug output management (experimental)
Manually unlock the terraform state
Advanced state management

[131]

Infrastructure as Code Chapter 5

Now, in order to display the help dialog on any of the commands, we just need to execute
the command with the flag —h. For example, let's display the help for apply:

terraform apply -h

It will output the list of all the options available for the command in the prompt.

Creating resources

Now that we have all the requirements installed, we are going to create our first resource in
order to help us to understand how Terraform works and how powerful it is. Create a
folder called implementing-modern-devops somewhere in your computer and add a file
called resources.tf with the following content:

provider "google" {

credentials = "${file("xxx.json")}"
project = "implementing-modern-devops"
region = "europe-westl-b"

}

resource "google_compute_instance" "my-first-instance" {

}

As you can see, the preceding snipped is very similar to JSON but it is actually called HCL:
HashiCorp Configuration Language. Let's explain what the code is doing.

[132]

Infrastructure as Code Chapter 5

The first section is where we configure our credentials. As you can see, Terraform is
expecting a file called xxx . json, which we don't have at the moment. If we check the
official documentation of Terraform for Google Cloud Platform, it specifies that we need to
create a Service account from the API Manager section of the Google Cloud Platform, as
shown in the following screenshot:

Google Cloud Platform &= Implementing Modern De.. ~

API APIManager <& Create service account key

«*» Dashboard

Service account
Hh Librar)
an y Compute Engine default service account -
O~ Credentials Key type
Downloads a file that containg the private key. Store the file securely because this key
cannot be recovered if lost.
® JSON
Recommendead
P12
For backward compatibility with code using the P12 format

Cancel

Once we create it by choosing JSON as a format, a file will automatically be saved on our
computer, containing the credentials that we need in order to operate Google Cloud
Platform.

Be careful. If you leak these credentials, someone could create or destroy
resources on your behalf, which may lead to significant charges or data
loss.

Copy the file to the previously created folder (implementing-modern-devops) and
rename it to xxx . json so it matches our configuration.

[133]

Infrastructure as Code Chapter 5

The second section is the description of our virtual machine, the instance to be created in
Google Cloud. In this case, we are creating a resource called my-first-instance of the
type google_compute_instance. We did not specify any configuration on purpose as I
want to show you how to troubleshoot problems with Terraform, which, due to the high-
quality error logs produced, is rather simple.

Let's see what happens. From the root of our project, the implementing-modern-devops
folder, we run the following command:

terraform plan

This command will describe the steps required to create our infrastructure in Google Cloud.
In this case, it is rather simple as we have only one machine, but it is going to be helpful to
learn about Terraform.

Let's look at what happened and and how it has been explained in the output:

Errors:

* google_compute_instance.my-first-instance: "disk": required field is not
set

* google_compute_instance.my-first-instance: "name": required field is not
set

* google_compute_instance.my—-first-instance: "machine_type": required
field is not set

* google_compute_instance.my-first-instance: "zone": required field is not
set

The preceding command failed. Basically, our compute instance requires four fields that we
did not specify: machine_type, name, zone, and disk. In this case, we can specify them,
but if you need to check extra parameters, all the documentation for the resource
google_compute_instance can be found at https://www.terraform.io/docs/

providers/google/r/compute_instance.html.
Visit it and read around to get familiar with it.

We are also going to specify the network interface (basically the network we want to
connect to our machine) as it will fail later on in the apply command if we don't do it now.

Now, we are going to fix the problems that we found on the first run. Replace the
google_compute_instance block with the following one:

resource "google_compute_instance" "my-first-instance" {
name = "my-first-instance"
machine_type = "nl-standard-1"

[134]

https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html
https://www.terraform.io/docs/providers/google/r/compute_instance.html

Infrastructure as Code

Chapter 5

zone =
disk {
image =

}

network_interface
network =
access_config {

// Ephemeral IP

}
}
}

{

"europe-westl-b"

"ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"

"default"

Go back to the Terminal and execute terraform plan' again. The output will be similar to

this:

+ google_compute_instance.my-first-instance

can_ip_forward:
disk.#: "1"

disk.0.auto_delete:

disk.0O.image:
machine_type:

"false"

"true"

"<computed>"

name: "my-first-instance"

network_interface.#: "1"
network_interface.0.access_config.#: "1"
network_interface.0.access_config.0.assigned_nat_ip:
network_interface.0.address: "<computed>"
network_interface.0.name: "<computed>"
network_interface.0.network: "default"

self_link: "<computed>"

tags_fingerprint: "<computed>"

zone: "europe-westl-b"

Plan: 1 to add,

0 to change,

0 to destroy.

"ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"
"nl-standard-1"
metadata_fingerprint:

"<computed>"

For space reasons, I have omitted an explanatory text that comes before the resource
explanation but basically tells us that we can save this plan in a file in order to pass it as a
parameter to the apply the command that we are going to run next.

This enables us to ensure that what is executed is what we have seen in the plan just in case
someone else has modified the online infrastructure before calculating what needs to
change, Terraform syncs the configuration in the resources files with the existing
infrastructure in Google Cloud. So, it might be the case that we can execute terraform
plan and someone changes our cloud infrastructure (with another Terraform script or

[135]

Infrastructure as Code Chapter 5

manually) and then our terraform apply command differs from the plan calculated.

[136]

Infrastructure as Code Chapter 5

Now once we have verified that our Terraform plan is to create a VM, execute the following
command:

terraform apply

After a few seconds, the script should finish presenting the output of what was created,
changed, or destroyed:

google_compute_instance.my-first-instance: Creating...

can_ip_forward: "" => "false"
(lines omitted: they should match the ones in the plan)
zone: "" => "europe-westl-b"
google_compute_instance.my-first-instance: Still creating... (10s elapsed)
google_compute_instance.my-first-instance: Still creating... (20s elapsed)
google_compute_instance.my-first-instance: Still creating... (30s elapsed)

google_compute_instance.my-first-instance: Creation complete
Apply complete! Resources: 1 added, 0O changed, 0 destroyed.

The state of your infrastructure has been saved to the path
below. This state is required to modify and destroy your
infrastructure, so keep it safe. To inspect the complete state
use the “terraform show™ command.

State path: terraform.tfstate

If everything went as per plan, we should have a file called terraform.tfstate in our
folder which is the state of our virtual infrastructure created in the cloud. We also have the
same file with the extension backup, which is the status of our infrastructure before
running our last apply command.

This file is important. Terraform is able to refresh it with changes made on the cloud, but it
is not able to rebuild it. Some people keep this file alongside the Terraform scripts and some
other people prefer to use a backend to store this file and manage the Terraform state.

Remote state management

A backend is a system that is going to store our status in a shared environment where
everyone using the same configuration can quickly access it. Let's look at how is this done
using Google Cloud Storage. Just execute the following command:

terraform remote config —-backend=gcs -backend-config="bucket=my-terraform"
-backend-config="path=terraform/infrastructure"

[137]

Infrastructure as Code Chapter 5

Here are a few considerations: we need to create a bucket called my-terraformin the
Google Cloud Storage interface and we need to configure Application default credentials
for Google Cloud. The easiest way to do this is by setting an environment variable called
GOOGLE_APPLICATION_CREDENTIALS to the path where the xxx . json file that we have
used to authenticate against GCP when running our infrastructure is. If you are in the same
folder, just run the following command:

export GOOGLE_APPLICATION_CREDENTIALS=./xxx.json

Once this is done and the Terraform command succeeds, if we check our bucket in Google
Cloud Storage, we have a new item with the content of terraform.tfstate that we had
in our local file system.

Now we can test that it works by altering our infrastructure and seeing how this is reflected
in our bucket on Google Cloud Storage. You can do this easily by running terraform
destroy and checking what happens to our remote state in Google Cloud.

Be careful with the state files. They have very valuable information about
your company's infrastructure and can be used as an attack vector.

This feature is used to share configuration across a team of engineers, and it is fully
managed by Terraform: you don't need to pull or push state files as Terraform will do it for
you.

Modifying your infrastructure

Up until now, we have only created resources and stored the state of or cloud data center in
an online bucket. Now you are going to learn how to modify the existing infrastructure
from a project such as the one we built earlier on.

As you can see, we started from a very simple example: create a single virtual machine with
an ephemeral IP address (the default one assigned by Google, not fixed).

[138]

Infrastructure as Code Chapter 5

Now, we are going to create a static IP and assign it to our machine so it always uses the
same IP. The way of doing this through Terraform is creating a resource of the type
google_compute_address, as follows:

resource "google_compute_address" "my-first-ip" {
name = "static-ip-address"

}

Now, we can execute terraform plan to see what will change if we apply the
infrastructure change. As you can see in your new execution plan, Terraform identifies that
we need to create a new resource of type google_compute_address, but... how do we
attach this IP to our VM? Let's revisit the configuration of our VM:

resource "google_compute_instance" "my-first-instance" {

name = "my-first-instance"

machine_type = "nl-standard-1"

zone = "europe-westl-b"

disk {

image = "ubuntu-os—-cloud/ubuntu-1704-zesty-v20170413"

}

network_interface {

network = "default"
access_config {
nat_ip = "${google_compute_address.my-first-ip.address}"

}
}

In the highlighted line of the code, you can see how simple it is to associate our VM with the
new address that we are going to create: our created resource, the address, will have
computed attributes (attributes calculated at runtime) that can be used in other resources. In
Terraform, the syntax for interpolating values is ${ } with the value of the attribute to
interpolate between the brackets, in this case, the IP address of the resource called my-
first-ip.

[139]

Infrastructure as Code Chapter 5

If you head to the Google Cloud Console and open the external IP's section, you can see
something similar to what is shown in the following screenshot:

% Networking External IP addresses [RESERVE STATIC ADDRESS C REFRESH

= VPC networks Name External Address Region Type v Version In use by
] Emmel et static-ip-address 104.155.82.145 europe-west1 Static ~ IPV4 VM instance my-first-instance (Zone b) Change
EE Firewall rules

b4 Routes

& Load balancing
-} Cloud DNS

© VPN

#j¢ Cloud Routers

<& VPC network peering
<& Cloud CDN

P4 Shared VPC network (XPN)

The IP was associated with our VM, as expected.

Terraform variables

One thing we did not mention earlier is the fact that Terraform can work with variables.
Take a look at the following definition:

provider "google" {

credentials = "${file("xxx.json")}"
project = "implementing-modern-devops"
region = "europe-westl"

}

This is the configuration of our provider. There are few strings that, quite likely, are going
to be used in other places, such as the region or the name of the project. Terraform has the
concept of variable, which is a value that is susceptible to change so we can extract it into a
separated file. Up until now, we have created a file called resources.tf. Let's create a file
called vars. t £ with the following content:

variable "project_name" {
type = "string"
default = "implementing-modern-devops"

}

[140]

Infrastructure as Code Chapter 5

variable "default_region" {
type = "string"
default = "europe-westl"

}

Now, we are going to use these variables in our files. By default, Terraform will look into all
the files with the extension .t £ in our current folder, build the knowledge base of all the
facts that have been described, and start creating our infrastructure as appropriated
(internally building a graph of dependencies that can be checked with the terraform
graph command). This means that we don't need to do anything special for Terraform to
pick up our variables file:

provider "google" {

credentials = "${file("xxx.json")}"
project = "${var.project_name}"
region = "${var.default_region}"

}

We can use variables pretty much anywhere to facilitate our infrastructure creation. As you
can see, the syntax is the same as the syntax used for interpolation; in fact, it is an
interpolation.

In the variables file, we have specified the default values for the variables, but it is possible
that we want to change them depending on the environment or even for tweaking the
configuration. Terraform also allows you to override variables in three ways:

¢ On the command line
e With a file called terraform.tfvars

e With environment variables

The first way is as easy as passing extra flags to the terraform commands. For example, if
we want to change project_name when applying the changes to our infrastructure, we just
need to pass an extra flag with the value of the variable:

terraform apply -var 'project_name=my—-new-name'

And that's it. You can experiment by changing the project name or the zone and see how
terraform plan creates new resources (as they don't exist in a different project).

The second method is using a file with the variable definitions. In order to test it, create a
file called terraform.tfvars in the root of your project with the following content:

project_name = "my—-new-project—name"

[141]

Infrastructure as Code Chapter 5

Now, if you run terraform plan, you will see how Terraform plans to create new
resources as they don't exist in a project called my-new-project-name. The filename does
not need to be terrafrom.tfvars, butif you create it with a different name, Terraform
won't pick it up by default and you will need to pass the flag -var-file in order to load it.

Don't forget to remove the terraform.tfvars file before continuing.

The third way of overriding variables is via environment variables. This is particularly
interesting as it easily allows you to manage the configuration of different environments by
external factors. The convention is to define an environment variable with the same name as
the variable in Terraform but prefixing it with TF_VAR_. For example, for the variable
project_name, we would execute the following command:

export TF_VAR_project_name=my-new-project—-name

Terraform outputs

Up until now, we have worked with Terraform to create our infrastructure but we have
little to no insight on what is going on in our cloud, in this case, on Google Cloud Platform.
The engineers from HashiCorp have also thought about this, and they have created an
element called output that allows us to print values of the resources created by our scripts.

So far, we have two files:

® resources.tf

e variables.tf

Before proceeding, make sure that your online infrastructure is created by running
terraform apply as we did earlier.

Now, we are going to create another file called outputs. t £. This is not coincidental. In
Terraform, this is the recommended layout for your projects as it facilitates the code
readability as well as segregates responsibilities.

[142]

Infrastructure as Code Chapter 5

Add the following content to the outputs.tf file:

output "instance_ip" {
value = "${google_compute_instance.my-first-
instance.network_interface.(0.access_config.0.nat_ip}"

}

We will come back to this command later, but now, we need to rerun the apply command
in order to let Terraform create the output for us. Something has changed:

google_compute_address.my-first-ip: Refreshing state... (ID: static-ip-
address)
google_compute_instance.my-first-instance: Refreshing state... (ID: my-

first—-instance)

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.
Outputs:

instance_ip = 23.251.138.171

Terraform apply needs to be run for your outputs for it to become
available even if you did not change the infrastructure.

Now we can see a new section called outputs, which contain the values that we have
defined in the outputs file. If you want to see it again at any time, just run the following
command:

terraform output instance_ip

Alternatively, simply run this command:

terraform output

The first one will show only the IP of the instance (this is particularly handy for using it as
input for other commands). The second one shows all the outputs defined in your
Terraform scripts.

Now, let's explain how the outputs work. In this case, we have used the following string to
identify what we want to output:

google_compute_instance.my—-first-
instance.network_interface.0.access_config.0.nat_ip

[143]

Infrastructure as Code Chapter 5

The first two keys (separated by dots) are clear: the type and the name of our resource.
Then, the IP belongs to network_interface in the acccess_config section and the value
is stored in nat_ip, but what are those Oses in there?

Easy; we can define more than one network interface by repeating the
network_interface block as many times as you need: the first one in the code will be 0,
the second one will be 1, and so on...

This attribute path can be tricky to calculate sometimes, although the majority of the time is
quite obvious from the configuration file. If you experience problems finding what you
want to output, here is a shortcut: When you run terraform apply, in the output, you
will see something similar to this:

google_compute_instance.my-first-instance: Creating...

can_ip_forward:
disk.#:
disk.0.auto_delete:
disk.Q.image:
machine_type:
metadata_fingerprint:

name:
network_interface.#:

network_interface.@.access_config.#:
network_interface.@.access_config.@.assigned_nat_ip:
network_interface.@.access_config.@.nat_ip:
network_interface.@.address:
network_interface.@.name:
network_interface.@.network:

self_link:

tags_fingerprint:

zone:

"false"

nqn

"true”
"ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"
"nl-standard-1"
"<computed>"
"my-first-instance"
nqn

nqn

"<computed>"
"23.251.138.171"
"<computed>"
"<computed>"
"default”
"<computed>"
"<computed>"
"europe-west1-b"

This is the list of all the attributes that you can show in your outputs; the key is the column
on the left-hand side. For example, if we want to show the zone where our VM is created, it
is as simple as this:

output "instance_zone" {
value = "The zone 1is ${google_compute_instance.my-first-instance.zone}"

}

As you can see, the interpolation also works here, letting you mix strings with values of the
Terraform resources.

[144]

Infrastructure as Code Chapter 5

Summary

Terraform is the basic tool that every DevOps engineer needs to master in order to work
efficiently with cloud providers such as Google Cloud Platform or AWS as it allows you to
manage the infrastructure as if code was, with a lifecycle the ability to deploy infrastructure.

In this chapter, we saw the most important aspects of Terraform regarding the creation of
virtual infrastructure. You learned enough to be able to, with the help of the online
documentation, create resources and connect them in order to create much bigger projects.

Even though the examples that we followed through this chapter were pretty basic, in the
next chapter, we will create a more complex infrastructure and install the required software
to run it in an automated fashion.

We will also use more advanced Terraform capabilities such as modules to create highly
reusable components that can be shared with different teams or even as open source
components.

[145]

Server Provisioning

In the previous chapter, you learned how to create the infrastructure that is going to hold
our applications. As we saw, the infrastructure automation is something that's new, and we
used Terraform for it. The problem with Terraform is that it can only be used to build the
infrastructure, but in order to provision the software, we need something different.

Through this chapter, we are going to dive deep into Ansible as, together with Puppet and
Chef, it is the most predominant server provisioning tool in the market right now.

Here are the main topics that will be covered in this chapter:

e Server provisioning software

o Chef
e Puppet
Ansible

e Ansible

Ansible configuration

Ansible variables
e Variables

e Remote facts
e Templates

Flow control

e Ansible roles

e Ansible tower

Server Provisioning Chapter 6

As you can see, it is quite an extensive chapter with many examples that will enable you to
learn the most important features of Ansible.

One thing that you need to be aware while reading through this chapter is the fact that it is
impossible to showcase all the features from Ansible in a single chapter. In fairness, it
would take us over a book to master all the features up to a proficient level. As you can
guess by now, when I need to deal with Ansible, the first thing I do is open the official
documentation and have it side by side with the code so that I can always refer to it for
examples and features that I have either never dealt with or it has been a long time since I
did not work with it.

We will also explore a section Ansible Tower, which is a software used to run Ansible
playbooks on a bastion host mode from within your infrastructure instead of running it
from a workstation.

Server provision software

As mentioned earlier, there are few options for software provisioning. Through this
chapter, you will learn how to use Chef and Ansible, focusing on the latter as it is widely
used across many companies and is easier to master than Chef.

There are also other options in the market that are valid and good solutions, but we are
going to take a special interest in Ansible, which, to me, seems the easiest to learn and
extend out of all of them.

Chef

Chef is a very interesting software that follows the bastion host principle to run
configurations on our servers. A bastion host is a server placed in our private network that
is able to reach our servers directly or via proxy in order to execute the actions needed to set
them up with the desired state. This is an option not to be overlooked, as one of the biggest
challenges that server provisioning presents is the management of secrets and authorization
that, for example, Ansible needs to improve via third-party software such as Ansible Tower
from Red Hat.

Chef uses recipes to configure parts of the server. A recipe is basically a set of declarative
instructions that define what needs to happen in order to get the server to the desired
status. For example, take a look at this:

execute "update-upgrade" do

[147]

Server Provisioning Chapter 6

command "apt-get update && apt—-get upgrade -y"
action :run
end

package "apache2" do
action :install
end

The preceding code will upgrade our system and then install the Apache2 web server.

This recipe, once finished, gets uploaded into the Chef server from a workstation, and here
is the key: in Chef, there are three actors:

e Server
e Workstation
e Nodes

The server is where the recipes and configuration live. It needs to be installed prior to doing
any work, and the instructions can be found at https://docs.chef.io/install_server.
html.

There are three modalities of the Chef server:

e Enterprise: This can be installed inside your infrastructure and it is licensed, so
you need to pay depending on the numbers of nodes that it is managing.

¢ Open source: This can also be installed in your infrastructure but it does not
have any support. It is free and has to be configured and maintained by your
company. It is also a cut-down version of the Enterprise Chef.

¢ Hosted: The Chef server is hosted on third-party hardware and you don't need to
worry about maintaining and upgrading it. It might not be an option depending
on the setup of your company.

The nodes are the target hosts. Every node is registered in the Chef server and has a run list:
a list of recipes that are going to be run on a host when the chef-client command is
executed.

The workstation is the computer used to configure and upload the Chef server. This
computer uses a software called knife that can do everything on the Chef server:

¢ Configuring roles

¢ Looking for VMs depending on the roles and other parameters
¢ Configuring run lists

e Managing secrets

[148]

https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html

Server Provisioning Chapter 6

Knife uses cryptographic keys to communicate with the Chef server so all the
communication happens in a trusted way.

Now, if we want to picture everything, it looks like that is shown in the following diagram:

Chef Server @

T

Knife

\

Workstation

Infrastructure

As you can see, even though the setup is quite complex (you need to set up a couple of
software components) there are obvious benefits: our Chef server is behind the firewall in
the demilitarized zone of our infrastructure, but it is managed via a CLI tool so all our
secrets and configuration are safe inside our infrastructure.

Chef has a steep learning curve that, once we have gone through the initial learning phase,
gets very familiar and easy to add new features and extend the DSL with the power of Ruby
and a very well-thought-out interface.

Puppet

Puppet has been around for a while and is widely used in the DevOps world. Puppet comes
in two flavors:

e Open source
¢ Enterprise

[149]

Server Provisioning Chapter 6

The open source version comes as is, offering a good set of features that allow you to fully
automate the configuration management of your infrastructure.

The enterprise edition, aside from support, comes with an extended set of features that
make the life of the engineers in your company a lot easier.

In the same way as Chef, Puppet follows the bastion host architecture: the server is installed
within your infrastructure in the demilitarized zone and the nodes (your servers), via the
puppet agent, will execute the specified tasks to reach the desired status.

The main difference between Chef and Puppet is the fact that puppet is declarative whereas
Chef is more imperative:

e In Puppet, you specify which state you want your servers on and Puppet takes
care of keeping them there

¢ In Chef, you declare a number of steps that will get your server to the desired
state

That said, Chef also allows you to declare guards, which are conditions for steps to be
executed.

Through my experience, I've found that people coming from an DevOps background feel
more comfortable with Puppet as it is similar to what they have done through the years,
whereas writing Chef recipes is similar to software development.

Ansible

Ansible is what we are going to be using to develop the contents of the rest of the book. In
my opinion, it is the easiest to learn and extend. It is also easy to understand and offers a
fairly comprehensive open source version that works with all the features from Ansible.
You can also buy a license of Ansible Tower (or similar) to run Ansible Playbooks in a
bastion host configuration as Chef or Puppet.

Ansible is basically a domain-specific language (DSL) for executing operations on remote
hosts that are defined in an inventory.

[150]

Server Provisioning Chapter 6

Ansible works by running playbooks in the desired servers via SSH, so unlike Chef or
Puppet, we don't need to install anything in the remote hosts; we should just be able to SSH
into them. A playbook is basically a Yet Another Markup Language (YAML) with a set of
instructions to get the server into the desired state in the same way as if we were executing
a Bash script. A Playbook looks like this:

- hosts: webservers
vars:
http_port: 80
max_clients: 200
remote_user: root
tasks:
— name: ensure apache is at the latest version
yum: name=httpd state=latest
— name: write the apache config file
template: src=/srv/httpd.j2 dest=/etc/httpd.conf
notify:
- restart apache
— name: ensure apache is running (and enable it at boot)
service: name=httpd state=started enabled=yes
handlers:
- name: restart apache
service: name=httpd state=restarted

Reading through the file will make you understand how easy and straightforward it is to
understand what the Playbook doing.

As you can see, in the second line, we are specifying that we want to run this Playbook in
the hosts called webservers. This can be defined in the other part of Ansible: the
inventory. The Ansible inventory is basically a file with the list of hosts in your
infrastructure, as follows:

[webservers]
hostl
host2

[dbservers]
192.168.0.[1:3]

This file is very straightforward but can get really complicated as well:

¢ The names between brackets are groups

[151]

Server Provisioning Chapter 6

e The groups contain hosts that can be defined with generators or they can just be

listed
e Groups can have configuration specific to them or even override variables

In the preceding example, we have two groups: webservers and dbservers.

Web servers are only two hosts:

e Hostl
® Host2

Dbservers use a generator and we have three hosts:

e 192.168.0.1
e 192.168.0.2
e 192.168.0.3

As mentioned earlier, we can also define variables in the inventory. These variables can be
scoped on the group and the host. Let's take a look at the following inventory:

[dbservers]
192.168.0.[1:3]

[webservers]
hostl role=master
host2

[dbservers:vars]
timezone=utc

As you can see, we have two variables:
e timezone: This is applied to all the hosts of the group doservers.

e role: This is applied to the host host 1 of the group webservers.

This variable can be used in playbooks in order to have a specific configuration for specific
hosts, as we will see later on in this chapter.

[152]

Server Provisioning Chapter 6

Groups can also be combined into bigger groups:

[dbservers]
192.168.0.[1:3]

[webservers]
hostl
host2

[mongoservers]
10.0.0.1
10.0.0.2

[dataservers:child]
mongoservers
dbservers

In the preceding inventory, we can find the following:

e dbservers

® mongoservers
® webservers

® dataservers
e 11

® ungrouped

Even though we did not specify it, Ansible always has two default groups called a11 and
ungrouped that are self-descriptive: a1l is all the hosts in the inventory and ungrouped is
all the hosts that are not specified in any group.

As stated earlier, Ansible does not follow the bastion host architecture as Chef or Puppet,
but it follows the client/server architecture: our host needs to be able to reach the
destination hosts (the ones on the inventory) in order to work.

This can be inconvenient depending on your infrastructure architecture, but it can be
worked around using Ansible Tower or Rundeck to execute Ansible playbooks from inside
your demilitarized zone.

In this chapter, we are going to use Ansible to build real production-ready examples in
combination with Terraform so that we get a grasp of the real usage of the tools.

[153]

Server Provisioning Chapter 6

Ansible

In this section, we are going to take our first steps toward a more comprehensive example
in Ansible. For now, we are going to install and configure NGINX, a very popular web
server so we can showcase the main concepts of Ansible.

First, we are going to create a VM in Google Cloud Platform with an associated static IP so
we can target it from our inventory. We are going to use Terraform in order to do it. First,
we'll look at our resources file:

provider "google" {

credentials = "${file("account.json") }"
project = "${var.project_name}"
region = "${var.default_region}"

resource "google_compute_instance"

"nginx" {
name = "nginx"
machine_type = "nl-standard-1"
zone = "europe-westl-b"
disk {
image = "ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"

}

network_interface {

network = "default"
access_config {
nat_ip = "${google_compute_address.nginx—-ip.address}"
}
}
}
resource "google_compute_address" "nginx-ip" {
name = "nginx-ip"

}

And now, we'll look at our vars file:

variable "project_name" {
type = "string"
default = "implementing-modern-devops"

variable "default_region" {
type = "string"
default = "europe-westl"

[154]

Server Provisioning Chapter 6

In this case, we are reusing the project from the previous chapter as it is convenient to shut
down everything once we are done. Now we run our plan so we can see what resources are
going to be created:

+ google_compute_address.nginx-ip
address: "<computed>"

name: "nginx-ip"

self_link: "<computed>"

+ google_compute_instance.nginx

can_ip_forward: "false"

disk.#: "1"

disk.0O.auto_delete: "true"

disk.0.image: "ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"
machine_type: "nl-standard-1"

metadata_fingerprint: "<computed>"

name: "nginx"

network_interface.#: "1"

network_interface.0.access_config.#: "1"
network_interface.0.access_config.0.assigned_nat_ip: "<computed>"
network_interface.0.access_config.0.nat_ip: "<computed>"
network_interface.0.address: "<computed>"
network_interface.0.name: "<computed>"

network_interface.0O.network: "default"
self_link: "<computed>"

tags_fingerprint: "<computed>"

zone: "europe-westl-b"
Plan: 2 to add, 0 to change, 0 to destroy.

So far, everything looks right. We are creating two resources:

e The static IP

e The VM

Now, we can apply our infrastructure:

google_compute_address.nginx-ip: Creating...

address: "" => "<computed>"

name: "" => "nginx-ip"

self_link: "" => "<computed>"
google_compute_address.nginx—-ip: Still creating... (10s elapsed)

google_compute_address.nginx-ip: Creation complete
google_compute_instance.nginx: Creating...

[155]

Server Provisioning Chapter 6

can_ip_forward: "" => "false"

disk.#: "" => "1"

disk.0O.auto_delete: "" => "true"

disk.0O.image: "" => "ubuntu-os-cloud/ubuntu-1704-zesty-v20170413"
machine_type: "" => "nl-standard-1"

metadata_fingerprint: "" => "<computed>"

name: "" => "nginx"

network_interface.#: "" => "1"
network_interface.0.access_config.#: "" => "1"
network_interface.0.access_config.0.assigned_nat_ip: "" => "<computed>"
network_interface.0.access_config.0.nat_ip: "" => "35.187.81.127"
network_interface.0.address: "" => "<computed>"
network_interface.O.name: "" => "<computed>"
network_interface.0.network: "" => "default"

self_link: "" => "<computed>"

tags_fingerprint: "" => "<computed>"

zone: "" => "europe-westl-b"
google_compute_instance.nginx: Still creating... (10s elapsed)
google_compute_instance.nginx: Still creating... (20s elapsed)

google_compute_instance.nginx: Creation complete
Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

And everything works as expected. If we check Google Cloud Platform, we can see that our
VM has been created and has associated a public IP:

[156]

Server Provisioning

Chapter 6

(CI - I + J

Google Cloud Platform & Implementing Modern De... ~

Compute Engine

VM instances
Instance groups
Instance templates
Disks

Snapshots

Images

Committed use discounts
Metadata

Health checks
Zones

Operations

Quotas

VM instances } C a O 8 SHOW INFO PANEL
Filter by label or name Columns ~

v/ Name ~ Zone Recommendation Internal IP External IP Connect

v & nginx europe-west1-b 10.132.0.4 35.187.81.127 SSH ~ :

[157]

Server Provisioning Chapter 6

In this case, the associated public IPis 35.187.81.127. It is important to verify that we can
reach the server via SSH. In order to do it, just click on the SSH button on the right-hand
side of your instance row and it should open a Cloud Console window with terminal
access.

If SSH access fails, you need to add an ingress allow rule in the firewall to
the port 22. For this example, just allow the traffic from any IP into any
port, but don't do this in your real infrastructure as it is a security threat.

Once everything is up and running, it is time to start with Ansible. First, we are going to
create our inventory file:

[nginx-servers]
35.187.81.127

This is very simple: a group with our public IP address that is connected to our VM. Save
the file with the name inventory in a new folder named, for example, ansible-nginx.
Once the inventory is created, we need to verify that all the hosts can be reached. Ansible
provides you the tool to do that:

ansible -i inventory all -m ping

If you execute the preceding command, Ansible will ping (actually, it does not use the ping
command but tries to issue a connection to the server) all the hosts in your inventory
specified in the parameter -i. If you change everything for the name of a group, Ansible
will try to reach only the hosts in that group.

Let's take a look at the output of the command:

35.187.81.127 | UNREACHABLE! => {

"changed": false,

"msg": "Failed to connect to the host via ssh: Permission denied
(publickey) .\r\n",

"unreachable": true

}

We are experiencing problems in connecting to our remote host and the cause is that we
don't have any key that the host can validate to verify our identity. This is expected as we
did not configure it, but now, we are going to solve it by creating a key pair and installing it
on the remote host using the Google Cloud SDK:

gcloud compute ssh nginx

[158]

Server Provisioning Chapter 6

This command will do three things:

¢ Generate a new key pair
e Install the key pair in our remote VM
¢ Open a shell in our VM in GCP

The new key generated can be found under ~/ . ssh/ with the name
google_compute_engine and google_compute_engine.pub (private and public key).

Once the command finishes, our shell should look like this:

Welcome to Ubuntu 17.04 (GNU/Linux 4.10.0-19-generic x86_64)

Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
Support: https://ubuntu. com/advantage

Ubuntu 12.04 LTS ('precise') end-of-life was April 28, 2017

ongoing security updates for 12.04 are available with Ubuntu Advantage
- https://ubu.one/U1204esm

Aaron Honeycutt from the Kubuntu Council on art and design in Kubuntu
- https://ubu.one/kubuart

The Ubuntu Desktop team wants your feedback on the move to Gnome

- https://ubu.one/2GNome

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

@ packages can be updated.
@ updates are security updates.

Last login: Fri May 26 01:25:24 2017 from 79.97.8.5
davidgonzalezénginx:~$ ||

Now we have a terminal connected to our VM and we can execute commands. gcloud
configures a user by default; in my case, davidgonzalez that can use sudo without
password. In this case, we are going to execute the playbook as the root, so we need to be
able to login as root into the VM. Copy the file ~/ . ssh/authorized_keys into
/root/.ssh/authorized_keys and we should be able to do it. So, we have copied the
public key that we generated earlier to the set of authorized keys of the root user.

[159]

Server Provisioning Chapter 6

In general, root access should be avoided as much as possible, but in this
case, we will be executing the playbook as the root for convenience.

In order for Ansible to be able to use the key, we need to add it to the daemon on our
server:

ssh—-add ~/.ssh/google_compute_engine
This command should output the success, stating that the identity was added.
Now we can run our pin command again:

ansible -i inventory all -m ping
The output should be very different:

35.187.81.127 | SUCCESS => {
"changed": false,

"pingll: "pongll

}

This means that now, Ansible is able to reach our server; therefore, it will be able to execute
the playbook against it.

Now it is time to start writing our first ansible playbook. Inside the same folder,
ansible-nginx, create a file called tasks.yml with the following content:

— hosts: all

user: root

tasks:

— name: Update sources
apt:

update_cache: yes
— name: Upgrade all packages
apt:
upgrade: dist

This is simple to understand:

¢ Our playbook is going to affect all the hosts
¢ The user running the playbook is going to be root

[160]

Server Provisioning Chapter 6

¢ And then we are going to execute two tasks:
e Update the apt cache

e Upgrade all the packages

Once we have the two files (inventory and playbook), we can run the following command:

ansible-playbook -i inventory tasks.yml

We should produce output similar to the following one:
PLAY [all] sekkkksickiokkekickickickiskksiokkakkaokaokakokokkokokkokkokk

TASK [setup] sickickickickiciickickckiokiiokskisioksickiokkokioiiokiokkkok
ok: [35.187.81.127]

TASK [Update sources] sekickickkickickksickisioksickiokiokioiiokiokkikok
changed: [35.187.81.127]

TASK [Upgrade all packages] xickikkickskisioksickiokiokiciiokiokkok
changed: [35.187.81.127]

PLAY RECAP seksiskskokskskskokokseskoekskoiskaesksiokokskokakoksiokskskskokokskskoiokskskaskok
35.187.81.127 : ok=3 changed=2 unreachable=0 failed=0

We are going to run few playbooks along the chapter, so I would
recommend that you keep the same VM alive and run all of them against
it in order to save time and resources. The trial account from Google
Cloud Platform will give you enough room to run them across several
days or weeks.

Let's explain the output:

e First, it specifies against which group we are going to execute the playbook. In
this case, we specified that the group is all.

¢ Then, we can see three tasks being executed. As you can see, the description
matches the description specified in tasks . yml. This is very helpful in order to
understand the output of your playbooks, especially when they fail.

[161]

Server Provisioning Chapter 6

¢ And then we get a recap:
e Three tasks were executed

e Two of them produced changes on the server
e Zero failed

Simple and effective. This is the closest to executing a script in the server that we can get: a
set of instructions, a target host, and its output.

In Ansible, instead of plain bash instructions, the actions are encapsulated into modules. A
module is a component of the DSL, which allows you to do something special. In the
playbook from earlier, apt is a module included in the core of Ansible. Documentation for it
can be found at http://docs.ansible.com/ansible/apt_module.html.

Let's take another look to one of our usages of the apt module:
- name: Update sources
apt:
update_cache: yes
This, as you can guess, would be the equivalent to the following:

apt—-cache update

So, in this case, Ansible provide us with a different module called command, which allows
us to execute commands in the hosts of our inventory. Take a look at the following yam1:

- name: Update sources
command: apt-cache update

This is equivalent to the yaml from earlier, and both do the same: update apt-cache.

In general, if there is a module for a given task, it is recommended that you use it as it will
handle (or at least you can expect it to) the errors and the outputs better than executing the
equivalent command.

Now, once our playbook has succeeded, we can expect our system to be up to date. You can
check it by running the playbook again:

[162]

http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html
http://docs.ansible.com/ansible/apt_module.html

Server Provisioning Chapter 6

PLAY [all] sekkkikkibikicilioliisikoksisiisiskicioioioioioioioioioioiokiork

TASK [setup] sekikicklieicikieicickicisiciicisiiiekiiciiicieiickloicickiokk
ok: [35.187.81.127]

TASK [Update sources] sckkickkicickikiskiaskskiciikicricickiorkkiokk
changed: [35.187.81.127]

TASK [Upgrade all packages] sikickickickirskckickickioickickkokkkk
ok: [35.187.81.127]

PLAY RECAP sckakkakaokakakakaksdcicioiokokakackackaskokakokokookakskakkskacdokdokokokiok
35.187.81.127 : ok=3 changed=1 unreachable=0 failed=0

Now you can see that only one task has produced changes in the server (updating the apt
sources).

Ansible configuration

One of the features of Ansible is the ability to override the defaults per project. In order to
do it that, we just need to create a file called ansible. cfg in the root of our project and
Ansible will read it and apply the configuration.

There is a big number of parameters that can be configured, and all of them can be found in
the official documentation at http://docs.ansible.com/ansible/intro_configuration.
html.

As you can see, the documentation for Ansible is quite good, and the majority of the time, it
will provide an answer to your problems.

Let's see how the configuration can help us. If you remember from the previous example,
we have specified the flag -1 in order to tell Ansible where our inventory file lives. Ansible
has a default for this value, whichis /etc/ansible/hosts. In our little project, our
inventory is in the same folder as our code, and in order to specify it to Ansible, we need to
create a configuration file with the following content:

[defaults]
inventory = ./inventory

[163]

http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html

Server Provisioning Chapter 6

Now, we run our playbook again with the following command:

ansible-playbook tasks.yml

We did not specify the host list, but Ansible, after reading ansible.cfg knows that the
inventory file can be located at . /inventory.

Ansible has a hierarchy of precedence to find the configuration:

e The ANSIBLE_CONFIG environment variable
® ansible.cfg
e .ansible.cfg

e /etc/ansible/ansible.cfg

So, if we define an environment variable called ANSIBLE_CONFIG pointing to a file, the
Ansible configuration will be read from that location and the rest of the options will be
ignored. This is particularly helpful in segregating environments: our CI server can define
its own configuration in the environment file, whereas developers can have the
ansible.cfq file checked in into the source control so that is shared across everyone.

There are a few sections that can be specified in ansible.cfg. Sections control several
aspects of of Ansible, such as connections. Under certain circumstances, we might need to
add special parameters for ssh to work, and it is as easy as adding the following lines to
your ansible.cfg file:

[ssh_connection]
ssh_args=<your args here>

Ansible variables, remote facts and templates

Variables and templates are an important part of Ansible. They allow us to override values
in our configuration (servers and playbooks) so that we can write generic playbooks that
can be reused across different configurations with minor tweaks. With templates, we can
render configuration files from our host so we could potentially use Ansible to manage the
configuration of remote servers with little to no effort. It also can be used to generate and
install SSL certificates for different hosts transparently to the user.

[164]

Server Provisioning Chapter 6

Both of them (variables and templates) use a template engine called Jinja2, which allows
logic and interpolation to be embedded in our configurations.

In general, there are several ways of defining variables, but we are only going to visit the
most common ones (under my criteria), as otherwise, it would take us the size of several
chapters to document them properly. If you want to explore further different ways of
defining variables, the official documentation provides a fairly comprehensive guide at
http://docs.ansible.com/ansible/playbooks_variables.html.

Ansible variables

Variables are the most simple of the potential customizations. With variables, we can define
values that are going to be replaced in our playbooks. Let's take a look at the following
playbook:

- hosts: all
user: root
tasks:
- debug:
msg: "Hello {{ myName }}! I am {{ inventory_hostname }}"

Replace the content of tasks.yml with the snippet from earlier. There are two new
symbols in our task. Also, our task is new: debug is used to output values from our
variables into the terminal while executing the playbook. Let's take a look at the execution
(we will use the same configuration as the example from earlier):

ansible-playbook -i inventory tasks.yml

[165]

http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html

Server Provisioning Chapter 6

It fails:
PLAY [all] skkkkrickilokkicioiorskskiksirkkskkisrsoiiokicricioiorkskkiorkkkkrkioioorkicioorokorsk

TASK [Gathering Facts] sckickkickkskekkskekokskoioiorkskorksoioiciickiokaiokiokskkokskokkokskokickkiokckickk
ok: [35.187.81.127]

TASK [debug] sekskickiskkksickiokoioksekiksakskskksoricrickioricioicioiokkackiokiokiokiokiokiokekokokickickicksk
fatal: [35.187.81.127]: FAILED! => {"failed": true, "msg": "the field ‘'args'
has an invalid value, which appears to include a variable that is undefined.

The error was: 'myName' is undefined\n\nThe error appears to have been in
'/code/ansible-variables/tasks.yml': line 5, column 5, but may\nbe elsewhere
in the file depending on the exact syntax problem.\n\nThe offending line
appears to be:\n\n tasks:\n - debug:\n * here\n"} to retry,

use: —Llimit @/Users/dgonzalez/code/ansible-variables/tasks.retry

PLAY RECAP skkskkskokokskokcksioksiokickskkeksekkskskskskasicksksksiociorackkckkdokkokoksokkokskkckskokokkokskoksdokk
35.187.81.127 : ok=1 changed=@ unreachable=0 failed=1

The reason for the failure can be seen in in the message: we have a variable defined called
name that does not have a value associated. Ansible will fail if there is a value that cannot be
interpolated, aborting the execution of the task.

There is another interesting piece of information here: Ansible gives you a parameter to
retry the playbook only on the hosts that were not successful. If we wanted to retry the
playbook only on the failed hosts, we could run the following command:

ansible-playbook -i inventory tasks.yml —--limit
@/Users/dgonzalez/code/ansible-variables/tasks.retry

The new parameter, tasks.retry is a file with a list of hosts that are okay to rerun the
playlist as they failed before.

Going back to our missing variables, we need to define the variable called myName. There
are a few ways of doing that; the first is via the command line:

ansible-playbook -i inventory tasks.yml —-e myName=David

[166]

Server Provisioning Chapter 6

And you can see that the output of the playbook is looking better now:
PLAY [all] skkckkekokickiokickiokickiokiakkikkekiokkkickookikiiiciokiok

TASK [Gathering Facts] sckickkikicickiakkksiokicrikiicicieiokkk
ok: [35.187.81.127]

TASK [debug] sckksskckiokkickckicickiokskaikkkkkokokskickoiokokicioricickokkk
ok: [35.187.81.127] => {

"changed": false,
"msg": "Hello David! I am 35.187.81.127"
}

PLAY RECAP skickkackaickkekiciicieickakacickakkakickakkickiekkskioicicickiokik
35.187.81.127 : ok=2 changed=0 unreachable=0 failed=0

As you can see, the variables got interpolated and we can see the message Hello David!
I am 35.187.81.127.

The second way of defining variables is via inventory, as we have seen earlier:

[nginx—-servers]
35.187.81.127 myName=DavidInventory

If we modify our inventory to match the preceding snippet, the value of our variable will be
DavidInventory and we don't need to pass a value in the command line:

ansible-playbook -i inventory tasks.yml
This will produce the message Hello DavidInventory! I am 35.187.81.127.

The third way to define variables in Ansible is by defining them in the playbook itself. Take
a look at the following playbook:

- hosts: all

vars:

myName: David

user: root

tasks:

- debug:

msg: "Hello {{ myName }}! I am {{ inventory_hostname }}"

[167]

Server Provisioning Chapter 6

As simple as it sounds, once you define the variable in the vars section of your playbook, it
becomes available; therefore, there is no need to specify the value anywhere else.

The fourth way to define variables is via files. Ansible is designed to be a self-documented
component that can be easily understood by someone with not much experience in it. One
of the ways in which Ansible facilitates the task of understanding playbooks is the
possibility of writing every single configuration piece in a file. Variables are not the
exemption, so Ansible will let you define variables in files or playbooks.

Let's start with the files. Create a file called vars.yml in the same folder in which you are
working (where your playbook and inventory are) with the following content:

myName: DavidFromFile
yourName: ReaderFromFile

Now we can run the following command in order to use the variables file:

ansible-playbook -i inventory playbook.yml —-e @vars.yml
And if you check the output, it would be the same as the one from earlier.

In this case, we have defined a new variable that we are not using (yourName), but that is
fine. I just wanted to show you that Ansible won't complain if there are free variables, but it
will raise an error if there are unbound interpolations.

In this case, we have included vars.yml in our playbook via the command line, referencing
your local file with @ in the beginning, but there is another possibility for using variable files
in Ansible: including them from within the playbook. Let's take a look at how it is done:

- hosts: all
user: root
tasks:
— name: Include vars
include_vars:
file: vars.yml
— debug:
msg: "Hello {{ myName }}! I am {{ inventory_hostname }}"

In this case, we have used the include_vars module in our playbook. Now execute the
playbook with the following command:

ansible-playbook -i inventory tasks.yml

[168]

Server Provisioning Chapter 6

You will get the following output:

PLAY [all] sekkkskkekiokkekickiokiokiaikkiaiskkiakekkiokekikokiokaokelokskekskok

TASK [setup] sckiokiskckokickickioksioisksskokskskskokskkokokokoksioksoksiokkokskk
ok: [35.187.81.127]

TASK [Include vars] sckkkkiolokioickickiokkikiiokckokiokioiiksoksok
ok: [35.187.81.127]

TASK [debug] kkiekiekiekickkiiekikiiokkkakakskkkakkkeiokkickioieiokkkokk
ok: [35.187.81.127] => {

"msg": "Hello DavidFromFile! I am 35.187.81.127"

}

PLAY RECAP skickickickokeickelcioiciokiokickackakskokokiekokskokekokeiokeliokeiokackaok
35.187.81.127 : ok=3 changed=0 unreachable=0 failed=0

As you can see, there is an extra task that takes a file and injects the variables in the context.

This module is quite flexible and there are several options to include variable files in our
playbook. We have used the most straightforward one, but you can check out other options
in the official documentation at http://docs.ansible.com/ansible/include_vars_
module.html.

There is another possibility for including a variable file into our playbook, and it is using
the vars_files directive in our playbook:

- hosts: all

user: root

vars_files:

- vars.yml

tasks:

— debug:

msg: "Hello {{ myName }}! I am {{ inventory_hostname }}"

This will take the vars.yml file and inject all the defined variables into the context, making
them available for use.

[169]

http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/include_vars_module.html

Server Provisioning Chapter 6

As you can see, Ansible is quite flexible around the definition of variables.

There is another interesting way of setting up variables in Ansible that helps us further
customize our playbooks: set_fact. Setting facts allows us to set variables dynamically in
our playbooks. set_fact can be used in combination with another interesting instruction
called register. Let's look at an example:

- hosts: all

user: root

tasks:

— name: list configuration folder
command: ls /app/config/

register: contents

- set_fact:

is_config_empty: contents.stdout == ""
— name: check if folder is empty
debug: msg="config folder is empty"
when: is_config_empty

— name: installing configuration
command: <your command here>

when: is_config_empty

What we are doing here is basically setting a variable to true if the configuration folder of
our app is empty (hypothetic configuration folder) so that we can regenerate it only when it
is not present. This is done by making use of the instruction when that allows us to execute
instructions conditionally. We will come back to it during this chapter.

We have visited the most common ways of defining variables, but there is one question
pending: what is the precedence of the different methods for creating variables?

This is something that I have to query myself whenever I am working in a playbook, and
the truth is that at the end of the day, you will use only a couple of methods to create
variables so that it is not as important as it should be. In my case, I tend to create a file with
variables (when not working with roles), and if I want to override a value, I do that on the
command line (or environment variable), which is the highest priority in the chain. The
complete list of variable precedence can be found at http://docs.ansible.com/ansible/

playbooks_variables.html#variable-precedence-where-should-i-put-a-variable.

[170]

http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

Server Provisioning Chapter 6

Ansible remote facts

Remote facts in Ansible are a way to specify configuration on remote hosts either by an
explicit configuration file or by a script that returns data about the server. In general, this
feature is very useful for operations such as maintenance, setting up flags that specifically
mark the host as out of the pool so that our playbooks have no effect in the hosts.

Take a look at the following command (assuming the inventory from the previous example
is present in the folder and the VM is running on Google Cloud Platform):

ansible all -m setup -i inventory —--—user=root

This will output an enormous amount of data (JSON-formatted data). This data is all the
known facts about the remote host, such as the CPU type, machine ID, network interfaces,
kernel version, and so on. They can be used within our playbooks, but they can also be
extended to add more data that is controlled by the remote host without any local
configuration.

In order to set up custom remote facts, we have several options, but at the end of the day,
the custom facts are defined in JSON files by default under /etc/ansible/facts.d/. Itis
also possible to create an executable (a script) under the same folder so that Ansible will
execute it and take the output as facts and add them to the facts scope. Take a look at the
following file:

{

"my_name": "David Gonzalez"

}

Put into the remote box (the one used in all the examples from earlier) and create a file in
/etc/ansible/facts.d/example. facts with the content from earlier.

Once this is done, run the following command:
ansible all -m setup -i inventory —--user=root | grep -B 3 -A 3 my_name

It almost looks magical, but the output of your command should now include the facts that
you created earlier:

Hy

"ansible_local": {
"example": {
"my_name": "David Gonzalez"

}
by
"ansible_1lsb": {

[171]

Server Provisioning Chapter 6

Now they can be used in your playbook in the ansible_local variable, for example, to
access my_name:

- hosts: all

user: root

tasks:

— name: Gather my_name fact.

debug: msg="{{ ansible_local.example.my_name }}"

As mentioned earlier, Ansible can also gather facts from a script placed in the facts path.
This script should have the x flag present, which indicates that it can be executed and have
the extension fact. Let's look at a very interesting trick that I find quite useful. When I try
to diagnose a failure in our systems, the first thing I tend to check is the CPU usage. The
majority of the time, our systems are highly observable (monitored) so it is easy to check the
CPU load, but sometimes, monitoring might not be in place.

First, go to the server that we have been using in the preceding examples and create a file in
/etc/ansible/facts.d/cpuload. fact with the following content:

#!/bin/bash

CPU_LOAD="grep 'cpu ' /proc/stat | awk '{usage=($2+$4)*100/($2+$4+$5)} END
{print usage "&"}'"

echo { \"cpu_load\": \"$CPU_LOAD\"}

This is a simple script that will output JSON with information about the CPU load in your
system. Once the file is created, give it execution permissions:

chmod u+x /etc/ansible/facts.d/cpuload.fact

And we are done. Before disconnecting the SSH session, make sure that the script works as
expected by executing it:

/etc/ansible/facts.d/cpuload. fact
This should output something like the following;:

{ "cpu_load": "0.0509883%"}

[172]

Server Provisioning Chapter 6

Now it is time to test our scripted facts. What we are going to do is create a playbook that
gets the CPU load and outputs it to the terminal with a debug message. This is the content:

- hosts: all
user: root
tasks:

- name: Get CPU load
debug: msg="The CPU load for {{ ansible_hostname }} is {{
ansible_local.cpuload.cpu_load }}"
Run the preceding playbook:
ansible-playbook -i inventory tasks.yml

You should get an output very similar to the following one:

PLAY [all] sekksioksioksioksioksekeiciokeksioksieksiokskikiokickookeksioksioiokskskokokskok

TASK [Gathering Facts] seickkkeksickekskkskskskokkskksioriokksioioiciorikiokkk
ok: [35.187.81.127]

TASK [Update sources] sekickekskssickiskiskskskksiskskisiokksioioioriokskiorkok
ok: [35.187.81.127] => {

"changed": false,
"msg": "The CPU load for nginx is 0.0511738%"

}

PLAY RECAP sckksickkkkskkksickickskeksiokickokiokskiokkcickokskicickoickokckokiok
35.187.81.127 : ok=2 changed=0 unreachable=0 failed=0

Now we have a rudimentary tool to check the CPU load on our servers with a simple
command, leveraging the host groups to Ansible.

One thing we have not explained is the first task that Ansible outputs in every playbook:
gathering facts.

This task gets all those facts that we have been talking about in this section and creates the
context for the playbook to run, so in this case, the CPU load that we get is the CPU load
gathered at the execution of that task.

[173]

Server Provisioning Chapter 6

Ansible templates

Templates are another powerful tool from Ansible. They allow us to render configuration
files, application properties, and anything that can be stored in a human readable file.

Templates rely heavily on variables and a template engine called Jinja2 , which is used by
Ansible to render the templates. First, we are going to install ngnix on our server with a
simple playbook:

- hosts: all

user: root

tasks:

— name: Update sources
apt:

update_cache: yes

— name: Upgrade all packages
apt:

upgrade: dist

— name: Install nginx

apt:

name: nginx

state: present

As you can see, it is very simple:

e Update the apt cache
e Upgrade the system
¢ Install nginx

Now, just run the preceding playbook using the VM created earlier:

ansible-playbook —-i inventory tasks.yaml

And when the playbook is finished, you should have nginx running in your remote server.
In order to verify it, just open the browser and use the IP of your VM as URL. You should
see the nginx welcome screen.

Now, we are going to create a template with the nginx configuration, where we can add or
remove servers with templates in a fairly easy manner. Create a folder called nginx-
servers in your current directory (where the playbook is) and add a file called nginx.yml
with the following content:

- hosts: all

[174]

Server Provisioning Chapter 6

user: root
vars_files:

- vars.yml

tasks:

— name: Update sources
apt:

update_cache: yes

— name: Upgrade all packages

apt:

upgrade: dist

— name: Install nginx

apt:

name: nginx

state: present

- template:

src: nginx-servers/nginx-one.conf.j2
dest: /etc/nginx/sites-enabled/default
owner: root

- service:

name: nginx

state: reloaded

Let's explain the file a bit:

¢ The system is upgraded using apt.

¢ Using apt as well, nginx is installed. Note that Ansible uses a declarative
approach to install packages: you state the name of the package and the state that
the package should be in after the playbook is executed.

¢ The playbook renders the configuration for a virtual server in nginx from a
template called nginx-one.conf. j2. We will come back to this in a second.

e The playbook reloads the nginx service so that the new configuration takes
effect.

We have a few blocks missing in the preceding playbook. The first block is the file called
nginx-one.conf. j2. This file is a template that is used to render the nginx configuration
for a virtual host in the server. Let's look at the content of that file:

server |
listen {{ server_one_port }} default_server;
index index.html;

[175]

Server Provisioning Chapter 6

Create a folder called sites-enabled and add the nginx-one.conf. j2 file to it with the
preceding content. This file is a standard nginx server block but with one particularity: we
have a server_one_port as a placeholder for the port so that we can control the port where the
nginx virtual host is exposed. This is very familiar to us: we are using the variables to
render the templates.

The second block is the file called vars.yml () with the following content:
server_one_port: 3000

This is very simple: it just defines the variables required to render the template from earlier.
One thing that you need to be aware when using templates is that all the variables in the
context can be accessed in it, from the facts gathered from the remote server to the variables
defined everywhere.

Once we have everything in place (the two files from earlier, the playbook from earlier, and
the inventory from the previous example), we can run the playbook as usual and verify that
everything works as expected:

ansible-playbook -i inventory nginx.yml

If everything worked as expected, you should have a fully functional nginx server (serving
the default page) in your VM in Google Cloud Platform on the port 3000.

Google Cloud Platform has a deny by default policy in order to enhance
security, so you might need to adjust the firewall to allow inbound traffic
to certain ports.

Flow control

In Ansible, it is possible to use flow control statements such as loops or conditionals using
variables as input. This can be used to repeat tasks on a certain dataset and avoid executing
some tasks if a few conditions are not met: we might want to use different commands
depending on the underlying system of our server.

We have already seen an example of conditionals using the when clause in our previous
examples, but let's explain it a bit more:

— hosts: all
user: root
tasks:

[176]

Server Provisioning Chapter 6

— command: /bin/false
register: result
ignore_errors: True

— debug: msg="faill"
when: result|failed

— debug: msg="success!"
when: result|succeeded

The preceding code is very easy to read: a command is executed (ignoring the potential
errors so our playbook continues), and it registers a variable called result. Then, we have
two debug tasks:

e The first one will only be executed only if the /bin/false command fails
¢ The second one will be executed only if the /bin/false command succeeds

In this playbook, we are using two new tricks:

e ignore_errors: With this clause, if the task fails, the playbook will continue
executing the following tasks. This is very helpful if we want to test for
assumptions in the system, for example, if some files are present or a certain
network interface is configured.

e Pipe symbol (|):Thissymbolis called pipe.Itis a Jinja2 expression used to
filter values. In this case, we are using the failed and succeeded filters to return
true or false depending on the outcome of the command. There are many filters
that can be used on Jinja2 to work in a similar way as Unix pipes transforming
the data that goes through them.

Another type of control flow structure are loops. Let's look at how loops work:

- hosts: all

user: root

vars:

names:

- David

— Ester

- Elena

tasks:

- name: Greetings

debug: msg="Greetings {{ item }}! live long and prosper."
with_items: "{{ names }}"

[177]

Server Provisioning Chapter 6

Here, we are using something new that we did not see at the time of explaining variables:
they can have a structure such as lists and dictionaries. In this case, we are defining a list
with a few names and outputting a message for each of them. Now it is time to run the
playbook. Save the preceding content in a file called 1oops . yml and execute the following
command:

ansible-playbook -i inventory loops.yml

We will assume that the inventory is the same as the one used in the preceding examples.
After finishing, you should see something similar to the following output in your Terminal:

PLAY [all] skkikickickickicioiciokiciciieksokkkssiekkskokkickiokiokiek

TASK [Gathering Facts] sekkkkskekkickickiskkskiokiokriokiokioiiokkk
ok: [35.187.81.127]

TASK [Greetings] skickicikickickickickioikiiekksickickickokiokioklokkiok
ok: [35.187.81.127] => (item=David) => {
"item": "David",
"msg": "Greetings David! Live long and prosper.”
}
ok: [35.187.81.127] => (item=Ester) => {
"item": "Ester",
"msg": "Greetings Ester! Live long and prosper."
}
ok: [35.187.81.127] => (item=Elena) => {
"item "Elena",
"msg": "Greetings Elena! Live long and prosper.”
}
PLAY RECAP skseskksesokaokskksiorsksiokoksdorskoskokaokskokokskakokakokokksiokaskiorskoksk
35.187.81.127 : ok=2 changed=@ unreachable=0 failed=0

It is also possible to define a list using the compact version of the declaration. Take a look at
the following statement:

names:
- David
— Ester
- Elena

[178]

Server Provisioning Chapter 6

This can be redefined as follows:
names: ['David', 'Ester', 'Elena']
And it is totally equivalent.

It is also possible to define dictionaries in Ansible and use them as variables. They can also
be used as iterable elements, which enable us to give structure to our data:

- hosts: all

user: root

vars:

namesAge:

- name: David

age: 33

- name: Ester

age: 31

- name: Elena

age: 1

tasks:

- name: Presentations

debug: msg="My name is {{ item.name }} and I am {{ item.age }} years old."
with_items: "{{ namesAge }}"

If you are familiar with software development, the preceding snippet will make perfect
sense to you: a list of structured data (an array of objects) that holds information to be
accessed by the key.

In the rest of the book, we will be using more advanced features of flow control structures
in Ansible, and we will explain them as we go, but if you want to learn more about it, the
following links might be useful for you:

. Condiﬁonak(http://docs.ansible.com/ansible/playbooks_conditionals.
html)

° LOOpS(http://docs.ansible.com/ansible/playbooks_loops.html)

e Jinja2 Templating (http://docs.ansible.com/ansible/playbooks_templating.
html)

[179]

http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html
http://docs.ansible.com/ansible/playbooks_templating.html

Server Provisioning Chapter 6

Roles

We have been working on few Ansible playbooks, and as you can imagine, there is a lot that
can be abstracted from them into generic units of work. As of now, with our current
knowledge of Ansible, the best thing we can do is use a naming convention for playbooks
and files so that we don't mix them, but Ansible provides a better approach to this: roles.

Think of roles as common reusable capabilities as you do with modules in software: a
highly cohesive set of playbooks, variables, and resources that work together for one
purpose. For example, if we are managing nginx, it makes sense to have all the related
resources in a single module (role, in this case) in order to improve the reusability as well as
clarity of the code.

One option would be including playbooks using Ansible features. Although we did not talk
about it, with Ansible, it is possible to include YAML files with tasks to create
dependencies, as shown in the following snippets:

— include: play-include.yml

- hosts: all
user: root
tasks:

— debug: msg="I am the main playbook"
— include: tasks-include.yml

Let's explain what is going on. We can see two files included:

e The first include is what Ansible calls a play include. It is a fully functional
playbook as is, which gets included in another playbook.

¢ The second include is what Ansible calls a task include. It only includes a list of
tasks.

This can be explained easily by looking at the content of the two files. First, look at the
content of play-include.yml:

- hosts: all
user: root
tasks:
- debug: msg="I am a play include"

[180]

Server Provisioning

Chapter 6

Second, look at the content of tasks-include.yml:

- debug: msg="I am a task include"
- debug: msg="I am a task include again"

Now we are going to execute the playbooks from earlier and see what the output is. Save
the content of the first playbook on a file called tasks.yml and use the same inventory as
on all the examples from earlier. Now run the following command:

ansible-playbook -i inventory tasks.yml

Once the execution has finished, let's examine the output, which should be very similar to

the following one:

PLAY [all] serickkorciekkeoiciorekkksrrskskkokrskekeokotekokek ok kR

TASK [setup] serkickkickiickiclekicioisoksicrkioriokiockiiseicioksksksokkokokk
ok: [35.187.81.127]

TASK [debug] skkkkkickkickickickickkskkokskkskkkokiokkkickickickkokokFkskok
ok: [35.187.81.127] => {

"msg": "I am a play include"

}

PLAY [all] skkkkokkickiickickickickkkksokskkkilokickickickickiokioiokkkskok

TASK [setup] skkkkkickkeckickickickkickikkkkkkekickkckckickeokkkk
ok: [35.187.81.127]

TASK [debug] skkkkkickkokkickickickkskkkkskkskikokickikckickiokok ok kskk
ok: [35.187.81.127] => {
"msg": "I am the main playbook"

¥

TASK [debug] sekkickkickiickiollisiokioiokickokiorioiokiciokioickioioolokaokokokokokok
ok: [35.187.81.127] => {
"msg": "I am a task include"

¥

TASK [debug] serkickkickkickicickickiorioioriokkiorokiookioickioioolokokoRkkokokk
ok: [35.187.81.127] => {
"msg": "I am a task include again"

¥

PLAY RECAP scxskoiksicksokkoksoforsoksoriorokokiorskkkorokiokiiokioloiorkiokiok ok
35.187.81.127 : ok=6 changed=0 unreachable=0 failed=0

[181]

Server Provisioning Chapter 6

Let's explain this:

1. The play include (play-include.yml) gets executed by outputting the debug
message in there.

2. The debug task in the main playbook gets executed.

3. The task includes (tasks-include.yml) gets executed by executing the two
debug messages included there.

It is not very complicated, but it gets easier if you play around a bit with the playbooks.

Although the preceding example can lead to a very clean and reusable set of files, there is a
much better way of doing this: using roles. Roles are isolated sets of functionalities that
allow an easy maintenance cycle like any other software component.

Following the preceding example, we can rewrite it using three roles:

¢ The play include (play-include.yml)
e The main tasks (tasks.yml)
e The tasks include (tasks-include.yml)

In order to start creating roles, first, create a new folder called ansible-roles and a folder
called roles inside the same one. One thing that was not mentioned earlier is the fact that it
is a good practice to create a set of folders to hold Ansible resources: tasks folders to hold
the tasks, files folder to store all the files that need to be transferred to the remote hosts, and
so on. In general, I agree with this setup, but for the examples, we just simplified it in order
to make everything easier. For roles, this setup is mandatory. We need to create the folders
as appropriated. In this case, as we are only going to use tasks to demonstrate how roles
work; we will create the folder tasks inside of every role because otherwise, we won't
execute the tasks from the role.

Inside the roles folder, we are going to create another folder called play-include, whichis
going to be the equivalent to play-include.yml from the preceding example but in the
form of a role.

Now it is time to create our first role playbook: create a file called main.yml and place it
inside the play-include/tasks/ folder. This is the content of the main.yml file:

- debug: msg="I am a play include"

Now it is time to add a second role called main-tasks by creating a folder in roles and
adding a file called main.yml inside of roles/main-tasks/tasks:

[182]

Server Provisioning Chapter 6

- debug: msg="I am the main playbook"

And our third and last role is called tasks—include. Just create the folder as earlier (inside
the roles folder) and add a file called main.yml to it inside of the tasks folder:

- debug: msg="I am a task include"
- debug: msg="I am a task include again"

And that's it. You have created three roles that can be reused across different Ansible
projects. Now it is time to use them. Create a file called tasks.yml in the root folder of
your project (in my case, ansible-roles) and add the following content:

- hosts: all
user: root
roles:

- main-tasks
- play-include
- tasks-include

This is how your project should look after adding all the files from earlier:

[183]

Server Provisioning Chapter 6

v @ ansible-roles

v [roles
v [main-tasks
v BB tasks
& main.yml
v B play-include
v [tasks
E main.ymi
v B tasks-include

v Bl tasks

E main.ymi

[E) inventory

&) tasks.yml

The inventory is the same one as the previous examples (remember, the recommendation
was to reuse the same VM). Now it is time to run our playbook:

ansible-playbook -i inventory tasks.yml

This will produce output similar to the following one:

[184]

Server Provisioning Chapter 6

PLAY [all] secickklickickicioioiokiiisokicksciiokieicioiiciooiiokoioaiokoiolok

TASK [setup] ssckikkickkicickicickiksickoksickiskisiorokkiciokiokcksickkokskoor
ok: [35.187.81.127]

TASK [main-tasks : debug] seksiskickickickiorkioriiriiciciickiokrkkoor
ok: [35.187.81.127] => {
"msg": "I am the main playbook"

}

TASK [play-include : debug] sekkickkoksskckiskiokokkskiokioikokskkickkokkiok
ok: [35.187.81.127] => {
"msg": "I am a play include"

}

TASK [tasks-include : debug] sskikkkxskckiskickickokkicickiokkickkkokok
ok: [35.187.81.127] => {
"msg": "I am a task include"

}

TASK [tasks—include : debug] seiicickickisiorickickickiciooilickiskiokokiokk
ok: [35.187.81.127] => {
"msg": "I am a task include again"

}

PLAY RECAP skkckicickickkciolioieiskioriikiskiciorkoiiskekkiiiociskoekkkeckokok
35.187.81.127 : ok=5 changed=@ unreachable=0 failed=0

If we compare the output from the previous example, we can see that it is virtually the same
except for the legend of the task, which indicates the role that the task is coming from.

[185]

Server Provisioning Chapter 6

In roles, we can also define variables and access to the variables defined in the global scope
as well as many other features. As stated earlier, Ansible is big enough to write an entire
book just on it, so we are scratching the surface of the important parts (under my criteria).
As usual, the documentation in Ansible is pretty good, and if you want to learn more about
roles, the information can be found at https://docs.ansible.com/ansible-container/

roles/index.html.

If I can give you some advice regarding Ansible, it would be that you should always try to
use roles. It doesn't matter how big or simple your project is; you will find out very soon
that the isolation and reusability that roles provide at pretty much no cost are quite
beneficial.

Ansible Tower

We have seen an extensive number of features from Ansible that are very useful to any
DevOps engineer wanting to automate tasks in any IT department.

There is one design challenge with Ansible, and it is the fact that the playbooks are run
from your own computer against remote servers, as shown in the following figure:

Google Cloud Platform
Ansible Workstation

<~

[186]

https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html
https://docs.ansible.com/ansible-container/roles/index.html

Server Provisioning Chapter 6

This can be a problem because as you are aware by now, Ansible uses secrets (ansible-vault
secrets) and, potentially, some sensible information that can be intercepted or stolen from a
workstation. This is not a problem in Chef or Puppet as they follow the bastion host
approach, but it might be a problem for companies to choose Ansible.

One of the solutions for it comes from Red Hat with the name Ansible Tower. This software
gets installed in your IT infrastructure (in this case, Google Cloud Platform) and offers a Ul
to be operated in the same way as if a CI server was, enabling the role access control to
Ansible playbooks as well as a security layer that is not present in plain Ansible: the secrets
are kept in a server (Ansible Tower) inside your infrastructure and they never leave it.

Ansible Tower offers all the features present in Ansible so that you don't need to rewrite
any playbook,; just adjust them to the new infrastructure geometry.

Let's take a look at the following figure:

Google Cloud Platform

As you can see, now our Ansible host is inside of our infrastructure; therefore, it can be
operated through a web interface enhancing the security of our IT operations.

Ansible Tower also offers an API that can be used to build integration points with our
software or CI server.

[187]

Server Provisioning Chapter 6

Ansible Tower is licensed by Red Hat, so if you want to use it in your company, a license
needs to be purchased. At the time of writing this, there are not that many alternatives in
the market and the ones that are available are not as feature-full as Ansible Tower. Also, the
UI (as shown in the next screenshot) is very sleek, which, even though not a killer, is always
something to be considered.

o0 ® < [am| @ 10.42.0.42]]) F
A TOWER Organizations Users Teams Credentials Projects Inventories Job Templates Jobs . Helle, admin ~
Jabs 1 - Tower Test
@oo

Status @ successful Events Summary m Failed
Timing Started 05/16/15 12:55:41 Finished 05/16/1512:55:47 Elapsed 00:00:05 ® 0K @ Changed ® Unreachable @ Falled
more Host Completed Tasks

127.0.0.1 1] &
Plays 0 reieo
Started Elapsed Status Name
12:55:46 00:00:00 all
Tasks m Failed
Started Elapsed Status Name Host Status
12:55:46 00:00:00 Check the date on the ... 1

Host Summary

@ 0K ®Changed ®Unreachable @ Failed
Host Events m Failed &

Summary

In this chapter, you learned about the main Ansible features, but obviously, we have not
covered every single possibility, as it would take us a couple of books to master them. Also,
there is another catch here: DevOps tools are evolving constantly.

When you are working on the DevOps side of the IT world, you always need to be willing
to learn new things on the fly.

[188]

Server Provisioning Chapter 6

Ansible was originally created to fully provision VMs in the cloud (and on premises), but
slowly, it is gravitating toward configuration management as more modern tools, such as
Kubernetes or Docker Swarm, are increasing their market share, leveraging Docker into the
full software development life cycle in a continuous delivery environment.

In the next chapter, you will learn more about Kubernetes and Docker Swarm as they are
the next big things in DevOps. Kubernetes, particularly, is an orchestration tool that I think
will take over all the others in the next few months or years as it offers all the resources
needed by any IT company leveraging the experience that Google has accumulated through
years of running software in containers.

In my opinion, container engines such as Docker are about to surpass the break-even and
become the norm for all the software components and architectures of the main software
companies around the world.

[189]

Docker Swarm and Kubernetes
- Clustering Infrastructure

So far, we have seen how powerful Docker is but we have not unleashed the full potential
of containers. You have learned how to run containers on a single host with the local
resources without the possibility of clustering our hardware resources in a way that allows
us to uniformly use them as one big host. This has a lot of benefits, but the most obvious
one is that we provide a middleware between developers and ops engineers that acts as a
common language so that we don't need to go to the ops team and ask them for a machine
of a given size. we just provide the definition of our service and the Docker clustering
technology will take care of it.

In this chapter, we are going to dive deep into deploying and managing applications on
Kubernetes, but we will also take a look at how Docker Swarm works.

People usually tend to see Kubernetes and Docker Swarm as competitors, but in my
experience, they solve different problems:

¢ Kubernetes is focused on advanced microservices topologies that offer all the
potential of years of experience running containers in Google

¢ Docker Swarm offers the most straightforward clustering capabilities for running
applications in a very simple way

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

In short, Kubernetes is more suited for advanced applications, whereas Docker Swarm is a
version of Docker on steroids.

This comes at a cost: managing a Kubernetes cluster can be very hard, whereas managing a
Docker Swarm cluster is fairly straightforward.

There are other clustering technologies that are used in the current DevOps ecosystem, such
as DC/OS or Nomad, but unfortunately, we need to focus on the ones that are, in my
opinion, the most suited for DevOps and focus specifically on Kubernetes that, in my
opinion, is eating the DevOps market.

Why clustering ?

In chapter 1, DevOps in the Real World, you learned about organizational alignment and
why is important to shift roles in a company to accommodate DevOps tools. It is not okay
anymore to just be a developer or a sysadmin; now you need to be a full stack DevOps
engineer in order to get success in any project. Full stack DevOps means that you need to
understand the business and the technology used in the organisation. Think about it; if you
became a civil engineer instead of an IT engineer, it is mandatory to know the local rules
(the business) plus the commercial names of the tools used to build roads and bridges (the
technology) but also be able to coordinate their building (ops). Maybe not every engineer
needs to know everything but they need to be aware of in the full picture in order to ensure
the success of the project.

Coming back to containers and DevOps, making concepts simple for everyone to
understand is something that's mandatory nowadays. You want to ensure that all the
engineers in your project are able to trace the software from conception (requirements) to
deployment (ops) but also have in mind predictability so that the business people that
barely speak tech are able to plan strategies around the products that you build.

One of the keys to achieving the flow described here is predictability, and the way to
achieve predictability is making uniform and repeatable use of your resources. As you
learned earlier, cloud data centers such as Amazon Web Services or Google Cloud Platform
provide us with a virtually unlimited pool of resources that can be used to build our
systems in a traditional way:

o Define the size of the VMs
e Provision VMs

o Install the software

e Maintain it

[191]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Or, if we want to draw a diagram so we can understand it better, it would be similar to the
next one:

Development Operations

Component 1 \—\’
Server 1

Component 3

Component 2
\‘ Server 2

Here are a few considerations:

e (Clear separation between Development and Operations (this may vary
depending on the size of your company

¢ Software components owned by Development and deployments and
configuration owned by Operations

e Some servers might be relatively underutilized (Server 1) and on a very low load

This has been the picture for 40 odd years of software development, and it is still the picture
if we are running Docker containers, but there are few problems in it:

e If a problem arises in Component 3 in production, who is responsible for it?

e If there is a configuration mismatch, who will fix it if developers are not
supposed to see what is going on in production?

[192]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

e Server 1is running a software component that might be called only once or twice
a day (imagine an authentication server for workstations); do we need a full VM
just for it?

¢ How do we scale our services in a transparent manner?

These questions can be answered, but usually, they get an answer too late in the game plus
"the hidden requirements" are only seen once the problems arise at the worst possible time:

e Service discovery

¢ Load balancing

e Self-healing infrastructure
e Circuit breaking

During college years, one of the things in common across all the different subjects was
reusability and extensibility. Your software should be extensible and reusable so that we
can potentially build libraries of components creating the engineering sweet spot (not just
software development): build once, use everywhere.

This has been completely overlooked in the operations part of the software development
until recent years. If you get a job as a Java developer in a company, there is a set of
accepted practices that every single Java developer in the world knows and makes use of so
you can nearly hit the ground running without too many problems (in theory). Now let's
raise a question: if all the Java apps follow the same practices and set of common patterns,
why does every single company deploy them in a different way?

A continuous delivery pipeline has the same requirements in pretty much every company
in the IT world, but I have seen at least three different ways of organizing it with a huge
amount of custom magic happening that only one or two people within the company know
of.

[193]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7
Clusters are here to save us. Let's reshuffle the image from before:
Development
Component 1 Component 1° Component 2 Component 3
DevOps Engineers
Cluster
Server 1 Server 2 Server 3
Operations

In this case, we have solved few of our problems:

¢ Now development and ops are connected via a middleware: the cluster.

e Components can be replicated (refer to component 1 and component 1') without

provisioning extra hardware.

¢ DevOps engineers are the glue between the two teams (development and ops),

making things happen at a fast pace.

¢ The stability of the full system does not depend on a single server (or component)
as the cluster is built in a way that can accept some level of failure by just
degrading performance or taking down the less critical services: it is okay to
sacrifice e-mailing in order to keep the accounting processes of the company

[194]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

running.

[195]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

And about the hidden requirements. Well, this is where we need to make a decision about
which clustering technology we want to use as they approach the service discovery, load
balancing, and auto-scaling from different angles.

Docker Swarm

As we have seen in previous chapters, Docker is a fantastic tool that follows the most
modern architectural principles used for running applications packed as containers. In this
case, Docker Swarm runs only Docker containers, ignoring other technologies that, at the
moment, are not suitable for production, such as Rkt. Even Docker is quite new to the scene
up to a point that some companies hesitate in deploying it in their production systems, as
there is not so much expertise in the market as well as many doubts about security or how
Docker works in general.

Docker Swarm is the clustered version of Docker, and it solves the problem described in
the previous section in a very simple manner: pretty much all the docker commands that
you learned in the Docker chapter works in Docker Swarm so that we can federate our
hardware without actually taking care of the hardware itself. Just add nodes to the pool of
resources and Swarm will take care of them, leveraging the way we build our systems to
purely containers.

Docker Swarm is not something that we need to install aside from the Docker engine: it
comes embedded into it and it is a mode rather than a server itself.

Docker Swarm is evolving quite quickly and it is dragging Docker itself along as more and
more features are being baked into it due to its usage in the Swarm mode. The most
interesting part of this is how we can leverage our Docker knowledge into it without any
extra as the swarm mode of our Docker engine takes care of the resources.

This is also a problem: we are limited by the Docker API, whereas with Kubernetes (we will
come back to it in a second), we are not only limited by the Docker API, but we can also
extend the Kubernetes API to add new objects to fulfill our needs.

Docker Swarm can be operated through docker-compose (up to a certain extent), which
provides a decent approach to infrastructure as code but is not very comprehensive when
our application is somehow complex.

In the current IT market, Kubernetes seems to be the clear winner of the orchestration battle,
and as such, we are going to focus on it, but if you want to learn more about Docker Swarm,
the official documentation can be found at nttps://docs.docker.com/engine/swarm/.

[196]

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Kubernetes

Kubernetes is the jewel of the crown of the containers orchestration. The product itself was

vamped by Google leveraging years of knowledge on how to run containers in production.
Initially, it was an internal system used to run Google services, but at some point, it became
a public project. Nowadays, it is an open source project maintained by few companies (Red
Hat, Google, and so on) and is used by thousands of companies.

At the time of writing this, the demand for Kubernetes engineers has skyrocketed up to a
point that companies are willing to hire people without expertise in the field but with a
good attitude to learn new technologies.

Kubernetes has become so popular due to, in my opinion, the following factors:

e [t solves all the deployment problems
e [t automates micro services' operations

e It provides a common language to connect ops and development with a clean
interface

¢ Once it is setup, it is very easy to operate

Nowadays, one of the biggest problems in companies that want to shorten the delivery life
cycle is the red tape that has grown around the delivery process. Quarter releases are not

acceptable anymore in a market where a company of five skilled engineers can overtake a

classic bank due to the fact that they can cut the red tape and streamline a delivery process
that allows them to release multiple times a day.

One of my professional activities is to speak at conferences (meet-ups in Dublin, RebelCon
in Cork, Google Developer Groups (GDGs) in multiple places, Google IO Extended) and I
always use the same words in all the talks: release management should stop being a big
bang event that stops the world for three hours in order to release a new version of your
company's application and start being a painless process that can be rolled back at any time
so that we remove the majority of the stress from it by providing the tools to manage a
faulty release.

This (not just this, but mainly this) is Kubernetes: a set of tools and virtual objects that will
provide the engineers with a framework that can be used to streamline all the operations
around our apps:

e Scale up
e Scale down
e Zero downtime rollouts

[197]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

e Canary deployments
¢ Rollbacks
e Secret management

Kubernetes is built in a technology-agnostic way. Docker is the main container engine, but
all the components were designed with interchangeability in mind: once Rkt is ready, it will
be easy to switch to Rkt from Docker, which gives an interesting perspective to the users as
they don't get tied to a technology in particular so that avoiding vendor locking becomes
easier. This applies to the software defined network and other Kubernetes components as
well.

One of the pain points is the steep learning curve for setting it up as well as for using it.

Kubernetes is very complex, and being skilled in its API and operations can take any smart
engineer a few weeks, if not months, but once you are proficient in it, the amount of time
that you can save completely pays off all the time spent learning it.

On the same way, setting up a cluster is not easy up to a point that companies have started
selling Kubernetes as a service: they care about maintaining the cluster and you care about
using it.

One of the (once again, in my opinion) most advanced providers for Kubernetes is the
Google Container Engine (GKE), and it is the one that we are going to use for the examples
in this book.

When I was planning the contents of this chapter, I had to make a decision between two
items:

e Setting up a cluster
¢ Showing how to build applications around Kubernetes

I was thinking about it for a few days but then I realized something: there is a lot of
information and about half a dozen methods to set up a cluster and none of them are
official. Some of them are supported by the official Kubernetes GitHub repository, but there
is no (at the time of writing this) official and preferred way of setting up a Kubernetes
instance either on premises or in the cloud, so the method chosen to explain how to deploy
the cluster might be obsolete by the time this book hits the market. The following options
are the most common ways of setting up a Kubernetes cluster currently:

¢ Kops: The name stands for Kubernetes operations and it is a command-line
interface for operating clusters: creating, destroying, and scaling them with a few
commands.

[198]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

¢ Kubeadm: Kubeadm is alpha at the moment and breaking changes can be
integrated at any time into the source code. It brings the installation of
Kubernetes to the execution of a simple command in every node that we want to
incorporate to the cluster in the same way as we would do if it was Docker
Swarm.

¢ Tectonic: Tectonic is a product from CoreOS to install Kubernetes in a number of
providers (AWS, Open Stack, Azure) pretty much painlessly. It is free for clusters
up to nine nodes and I would highly recommend that, at the very least, you play
around it to learn about the cluster topology itself.

¢ Ansible: Kubernetes' official repository also provides a set of playbooks to install
a Kubernetes cluster on any VM provider as well as on bare metal.

All of these options are very valid to set up a cluster from scratch as they automate parts of
Kubernetes architecture by hiding the details and the full picture. If you really want to learn
about the internals of Kubernetes, I would recommend a guide written by Kelsey
Hightower called Kubernetes the hard way, which basically shows you how to set up
everything around Kubernetes, from the etcd cluster needed to share information across
nodes to the certificates used to communicate with kubect1, the remote control for
Kubernetes. This guide can be found at https://github.com/kelseyhightower/

kubernetes—-the-hard-way.
And it is maintained and up to date with new versions of Kubernetes.

As you can guess from this explanation, in this chapter, you are going to learn about the
architecture of Kubernetes, but mainly, we will focus on how to deploy and operate
applications on Kubernetes so that by the end of this chapter, we have a good
understanding of how we can benefit from an already running cluster.

Kubernetes logical architecture

The first problem that you will find once you start playing with Kubernetes is creating a
mental map on how and where everything runs in Kubernetes as well as how everything is
connected.

[199]

https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

In this case, it took me few weeks to fully understand how it all was wiring up, but once I
had the picture in my mind, I drew something similar to what is shown in the following
diagram:

Pod

Container Container

Container Container

This is Kubernetes on a very high level: a master node that orchestrates the running of
containers grouped in pods across different Nodes (they used to be called minions but not
anymore).

This mental map helps us understand how everything is wired up and brings up a new
concept: the pod. A pod is basically a set of one or more containers running in orchestration
to achieve a single task. For example, think about a cache and a cache warmer: they can run
in different containers but on the same pod so that the cache warmer can be packed as an
individual application. We will come back to this later on.

With this picture, we are also able to identify different physical components:

e Master
e Nodes

[200]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

The master is the node that runs all support services such as DNS (for service discovery) as
well as the API server that allows us to operate the cluster. Ideally, your cluster should have
more than one master, but in my opinion, being able to recover a master quickly is more
important than having a high availability configuration. After all, if the master goes down,
usually, it is possible to keep everything running until we recover the master that usually is
as simple as spawning a new VM (on the cloud) with the same template as the old master
was using.

It is also possible to have a master running with the IP Tables blocking
connections to key ports so that it does not join the cluster and remove the
IP Tables rules once you want the master to become the lead of your
cluster.

The nodes are basically workers: they follow instructions from the master in order to deploy
and keep applications alive as per the specified configuration. They use a software called
Kubelet, which is basically the Kubernetes agent that orchestrates the communication with
the master.

Regarding the networking, there are two layers of network in here:

e Hardware network
e Software network

The hardware network is what we all know and that is used to interconnect the VMs on the
cluster. It is defined in our cloud provider (AWS, Google Cloud Platform, and so on), and
there is nothing special about it, just bear in mind that ideally, this network should be a
high profile network (Gigabyte Ethernet) as the inter-node traffic can be quite high.

The software network (or Software Defined Network, SDN) is a network that runs on top
of Kubernetes middleware and is shared between all the nodes via etcd, which is basically a
distributed key value storage that is used by Kubernetes as a coordination point to share
information about several components.

[201]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

This SDN is used to interconnect the pods: the IPs are virtual IPs that do not really exist in
the external network and only the nodes (and master) know about. They are used to rout
the traffic across different nodes so that if an app on the node 1 needs to reach a pod living
in the Node 3, with this network, the application will be able to reach it using the standard
http/tcp stack. This network would look similar to what is shown in the following figure:

Node 1
Pod 1/10.0.0.2
192.168.0.2) Node 2
Pod 2/10.0.0.3
192.168.0.3
Node 3
Pod 3/10.0.0.4
192.168.0.4

[202]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Let's explain this a bit:

¢ The addresses on the network 192.168.0.0/16 are the physical addresses. They are
used to interconnect the VMs that compound the cluster.

e The addresses on the network 10.0.0.0/24 are the software defined network
addresses. They are not reachable from outside the cluster and only the nodes are
able to resolve these addresses and forward the traffic to the right target.

Networking is a fairly important topic in Kubernetes, and currently, the most common
bottleneck in performance is that traffic forwarding is common across nodes (we will come
back to this later on in this chapter), and this causes extra inter-node traffic that might cause
a general slowdown of the applications running in Kubernetes.

In general and for now, this is all we need to know about the Kubernetes architecture. The
main idea behind Kubernetes is to provide a uniform set of resources that can be used as a
single computing unit with easy zero downtime operations. As of now, we really don't
know how to use it, but the important thing is that we have a mental model of the big
picture in a Kubernetes cluster.

Setting up a cluster in GCP

The first thing we need to start playing with in Kubernetes is a cluster. There are several
options, but we are going to use GKE as we have already signed for the trial and there
should be enough credit in there for going through the full book.

Another option if you did not sign for the trial on GCP is Minikube. Minikube is an out-of-
the-box, easy-to-install local cluster that runs on VMs and is a very good tool for
experimenting with new features without being afraid of breaking something.

The Minikube project can be found at https://github.com/kubernetes/minikube.

Its documentation is fairly comprehensive.

[203]

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

In order to create a cluster in GCP, the first thing we need to do is open the container engine
in the online console in GCP that will show something similar to what is shown in the
following screenshot:

= Google Cloud Platform & David On Microservices ~ Q

@ Container Engine

Container Engine
Container clusters

Containers package an application so it can be easily deployed to
run in its own isolated environment. Containers are managed in
clusters that automate VM creation and maintenance. Learn more

(TEECEYSGIEN IS or Take the quickstart

This means that you have no clusters at the moment. Click on the Create a container cluster
button and fill in the following form:

[204]

Docker Swarm and Kubernetes - Clustering Infrastructure

Chapter 7

= Google Cloud Platform 2 David On Microservices ~

Kubernetes. Learn more

Name

cluster-1

Description (Optional)

Zone

us-central1-a

Cluster Version

1.6.4 (default)
Machine type

1VvCPU - 3.75 GB memory

Node image

Container-Optimised OS (cos)

Size

3

@ Container Engine & Create a container cluster

A container cluster is a managed group of uniform VM instances for running

Customise

Just a few considerations here:

¢ Give a comprehensive name to the cluster. In my case, I named it testing-

cluster.

e Choose a zone that is close to you geographically, in my case, europe-westl-c.

e Regarding the cluster version, choose the default one. This is the version of
Kubernetes that you want your cluster to run. It can be seamlessly upgraded
later. Also, be aware that Kubernetes releases a new version every 2 months
(apporximately), so by the time you are reading this book, it is most likely that
there will be a more modern version available.

¢ The machine type should also be the standard one (1 vCPU 3.75 GB of RAM).

[205]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

e Size is the number of machines that we want to use in our cluster. Three is a good
number for testing and it can also be increased (or decreased later on).

Everything else should be default. Auto-upgrade and auto-repair are beta functionalities
that I would hesitate to use in a production cluster yet. These two options allow GCP to take
actions if there is a new version of Kubernetes available or one of the nodes breaks for some
reason.

Once the form is completed click on Create Cluster, and that is everything. Now Google is
provisioning a cluster for us. In order to check what is going on, open the tab of the
Compute Engine in the GCP and you should see something similar to what is shown in the
following screenshot:

Google Cloud Platform & David on Microservices ~ | @
{e} Compute Engine VM instances K} CREATE INSTANCE i IMPORT VM C SHOW INFO PANEL
B VMinstances X
Filter by label or name Columns ~

& Instance groups

Name ~ Zone Recommendation Internal IP External IP Connect
Bl Instance templates @ gke-testing-cluster-default-pool-df664cfb-42qd europe-west1-c 10.132.04 104.199.110.148 SSH ~
B Disks @ gketesting-cluster-default-pool-df664cfb-mnd7 europe-west1-c 10.132.0.3 130.211.77.122 SSH ~
Snapshots (V] gke-testing-cluster-default-pool-df664cfb-p4nd europe-west1-c 10.132.0.2 104.199.56.150 SSH ~
is] Images

Three machines have been created in the compute engine with the prefix "gke-", which
means that they belong to the GKE, K is for Kubernetes. They are regular machines, and
there's nothing special about them aside from the fact that Google has provisioned all the
software required to set up a Kubernetes Node, but where is the master?

Here is the interesting thing about running Kubernetes in Google Cloud Platform: they look
after your master so there is no need to worry about the high availability or upgrading it as
it is done automatically.

The master of our cluster is hosting one of the key components of our whole cluster: the API
server. All the operations in Kubernetes are done via the API server with a component
called kubect 1. Kubectl stands for Kubernetes Control and is basically a terminal program
that you can install on your local machine (or in a continuous integration server), add the
configuration for a given cluster, and start issuing commands to our cluster.

[206]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

First, we are going to install kubect 1. In the previous chapters, we already installed the
Google Cloud SDK (gcloud command), which can be used to install kubect1 with the
following command:

gcloud components install kubectl

And that's it. Now we can use kubect1 in our system as if it was any other command, but
we need to add our cluster configuration. As of now, kubect1 is not configured to operate
our cluster, so the first thing we need to do is fetch the required configuration. Google
Cloud Platform makes it very easy. If you open the Google Container Engine tab, it now
should look similar to the following one:

@ Container Engine CREATE CLUSTER C REFRESH

Filter by label or name

Container clusters

Name ~ Zone Cluster size Total cores Total memory Node version Labels

@ testing-cluster europe-west1-c 3 3 vCPUs 11.25GB 1.6.4 Connect ' &

As you can see, there is a button called Connect on the right-hand side of the screen. By
clicking on it, you will be presented with the following form:

Connect to the cluster

Configure kubectl command line access by running the following command:

$ gcloud container clusters get-credentials testing-cluster \

--zone europe-westl1-c --project david-on-microservices

Then start a proxy to connect to the Kubernetes control plane:
$ kubectl proxy El

Then open the Dashboard interface by navigating to the following location in
your browser:

http://localhost:8001/ui

OK

[207]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

The date in the form will be slightly different (as the name of your cluster and project will
be different), but there are two commands presented in there:

* A gcloud command to get the configuration of our Kubernetes cluster in our
local machine

e A kubectl command to start the proxy into the Kuberentes Dashboard Ul
The first command is easy. Just execute it:

gcloud container clusters get-credentials testing-cluster --zone europe-
westl-c —--project david-on—-microservices

And the output will be similar to the following one:

Fetching cluster endpoint and auth data.
kubeconfig entry generated for testing-cluster.

So, what happened here is that gcloud fetched the configuration and installed it locally for
us to operate the cluster. You can try this by running the following command:

kubectl get nodes

This will output the list of nodes in your cluster. Kubectl is a very extensive command-line
tool. With it, we can do pretty much anything inside the cluster, as we will learn in the rest
of this chapter.

The second command in the preceding screenshot is used to start a proxy in Kubernetes:

kubectl proxy

This will output the following;:

Starting to serve on 127.0.0.1:8001

Let's explain what happened here. Kubernetes makes heavy usage of client certificates. In
order to communicate with the master, our machine needs to proxy the requests sending
the certificate to validate them.

[208]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

So, if we browse to the URL in the preceding screenshot now,
http://localhost:8001/ui, we get presented with the Kubernetes dashboard:

= kubernetes Workloads + CREATE

Admin
There is nothing to display here

Namespaces
Nodes deploy a containerized app, take the Dashboard Tour 3
Persistent Volumes

Storage Classes

Namespace

default

Workloads

Deployments

Replica Sets
Replication Controllers
Daemon Sets

Stateful Sets

Jobs

Pods

The dashboard is basically a nice way of presenting all the information of our running
cluster to the end users. It is also possible to operate the cluster up to a certain extent from
the dashboard, but my recommendation will be to master kubect1 as it is way more
powerful. On the dashboard, we can see a lot of information, such as the state of the nodes,
the items deployed into the cluster (Pods, Replica Sets, Daemon Sets, and so on), and the
namespaces as well as many other elements.

Explore around a bit and get yourself familiar with the dashboard as it is a nice tool to
actually see things happening in your cluster.

Kubernetes divides the workloads into namespaces. A namespace is a virtual cluster that
allows the engineers to segregate resources (up to a point) across different teams. It is also
used by Kubernetes to run its own internal components. This is important because
Kubernetes spreads the key components across different nodes to ensure high availability.
In this case, we have three components that are running on every node:

¢ The Kubernetes dashboard
¢ Kubernetes proxy (kube-proxy)
¢ Kubernetes DNS (kube-dns)

[209]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

The Kubernetes dashboard is what we just have seen: a user interface to represent the
information within the Kubernetes cluster.

Kubernetes proxy is a proxy that the nodes use to resolve IP addresses in the SDN from
Pods addresses to node addresses so that the cluster is able to redirect the traffic to the right
Node.

The Kubernetes DNS is basically a load balancing and service discovery mechanism. In the
next section, you will learn about the building blocks that we can use for deploying
applications to Kubernetes. In particular, Services are strongly coupled with this DNS
service in a way that in order to locate an application within Kubernetes, we just need to
know its name and the configuration of the Service that groups the Pods compounding the
given application.

The fact that we are running these components in every node enables Kubernetes to enter
into an autopilot mode in case of a master going down: applications will continue working
(in the majority of the cases) even without a master, so losing a master is not a catastrophic
event.

Once we have configured kubect1 in our machines, it is time to learn about the building
blocks that we can use in Kubernetes in order to build extremely robust applications.

Kubernetes building blocks

In the preceding section, you learned about the cluster topology, but now we need the tools
to run applications on it. We have already introduced one of the Kubernetes building
blocks: the Pod. In this section, we are going to look at some of the most important API
objects (building blocks) that Kubernetes provide in order to build our applications.

When [started learning Kubernetes, I was working in the second company that was
deploying applications in a continuous delivery way, and I always had a question in mind:
why are different companies trying to solve the same problem in different ways?

Then I realized why: The element missing was the domain-specific language for continuous
delivery. The lack of a common standard and well understood way of rolling out
applications was preventing them to work efficiently and deliver value early in the chain.
Everybody knows what a load balancer is or a proxy or many other elements that are
involved in the deployment of a new version of an app, but the way people uses the in, say,
imaginative ways is where the problem lies. If you hire a new engineer, their previous
knowledge of continuous delivery becomes obsolete as they need to learn your way of
doing things.

[210]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Kubernetes solves this problem with a set of objects (Pods, ReplicaSets, DameonSets, and so
on) that are described in YAML files (or JSON). Once we finish this section, we will already
have enough knowledge to be able to, from the YAML or JSON files defining our resources,
build a diagram about what the system looks like. These files, alongside the Docker images,
are enough for Kubernetes to run our system, and we will look at a few examples.

Pods

Pods are the most basic element of the Kubernetes API. A Pod basically is a set of containers
that work together in order to provide a service or part of it. The concept of Pod is
something that can be misleading. The fact that we can run several containers working
together suggests that we should be sticking the frontend and backend of our application
on a single pod as they work together. Even though we can do this, it is a practice that I
would strongly suggest you avoid. The reason for this is that by bundling together the
frontend and the backend, we are losing a lot of flexibility that Kubernetes is providing us
with, such as autoscaling, load balancing, or canary deployments.

In general, pods contain a single container and it is, by far, the most common use case, but
there are few legitimate use cases for multi-container pods:

¢ Cache and cache warmer
e Precalculating and serving HTML pages
e File upload and file processing

As you can see, all of these are activities that are strongly coupled together, but if the feeling
is that the containers within a pod are working toward different tasks (such as backend and
frontend), it might be worth placing them in different Pods.

There are two options for communication between containers inside a pod:

e Filesystem
e Local network interface

As Pods are indivisible elements running on a single machine, volumes mounted in all the
containers of a pod are shared: files created in a container within a pod can be accessed
from other containers mounting the same volume.

The local network interface or loopback is what we commonly know as localhost.
Containers inside a pod share the same network interface; therefore, they can communicate
via localhost (or 127.0.0. 1) on the exposed ports.

[211]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Deploying a pod

As mentioned earlier, Kubernetes relies heavily on Yet Another Markup Language
(YAML) files to configure API elements. In order to deploy a pod, we need to create a yaml
file, but first, just create a folder called deployments, where we are going to create all the
descriptors that we will be created on this section. Create a file called pod.yaml (or
pod.yml) with the following content:

apiVersion: vl
kind: Pod
metadata:

name: nginx

labels:

name: nginx

spec:

containers:

— name: nginx

image: nginx

ports:
- containerPort: 80
resources:
requests:
memory: "64Mi"
cpu: "250m"

As you can see, the preceding yam1 is fairly descriptive, but some points need clarification:

e apiVersion: This is the version of the Kubernetes API that we are going to use
to define our resource (in this case, pod). Kuberentes is a living project that
evolves very quickly. The version is the mechanism used to avoid deprecating
resources with new releases. In general, Kuberentes works with three branches:
alpha, beta, and stable. In the preceding case, we are using the stable version.
More information can be found at https://kubernetes.io/docs/concepts/
overview/kubernetes—-api/.

e metadata: In this section, we are defining one of the most powerful discovery
mechanisms that I have ever seen: the pattern matching. The section label,
specifically, will be used later on to expose pods with certain labels to the outer
world.

[212]

https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

e spec: This is where we define our container. In this case, we are deploying an
nginx instance so that we can easily see how everything works without focusing
too much on the application itself. As expected, the image and the exposed port
have been specified. We have also defined the CPU and memory limitations for
this Pod, so we prevent an outbreak in resource consumption (note that the
YAML file is requesting the resources; they might not be available so the pod will
operate with lower profile resources).

This is the simplest configuration for an item that we can create in Kubernetes. Now it's
time to deploy the resource in our cluster:

kubectl apply —-f pod.yml
This will produce an output similar to the following one:

pod "nginx" created.

Disclaimer: there are several ways of creating a resource, but in this book, I will use apply
as much as possible. Another possibility would be to use create:

kubectl create -f pod.yml

The advantage that apply has over create is that apply does a three-way diff between the
previous version, the current version, and the changes that you want to apply and decides
how is best to update the resource. This is letting Kubernetes do what it does best: automate
container orchestration.

With create, Kubernetes does not save the state of the resource, and if we want to run apply
afterward in order to gracefully change the state of a resource, a warning is produced:

Warning: kubectl apply should be used on resource created by either kubectl
create —-save—-config or kubectl apply
pod "nginx" configured

This means that we can push our system to an unstable state for few seconds, which might
not be acceptable depending on your use case.

[213]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Once we have applied our YAML file, we can use kubect1 to see what is going on in
Kubernetes. Execute the following command:

kubectl get pods

This will output our pod:

=+ code kubectl get pods
MAME READY STATUS RESTARTS AGE

nginx 1/1 Running @ 2m

We can do this for other elements of our cluster, such as the nodes:
kubectl get nodes

And this will output the following:

MAME STATUS VERSION
gke-testing-cluster-default-pool-df664cfb-42qd Ready v1.6.4

gke-testing-cluster-default-pool-dféed4cfb-mnd? Ready v1.6.4
gke-testing-cluster-default-pool-dfee4ctb-p4nd Ready v1.6.4

The kubectl get works for all the workflows in Kubernetes and the majority of the API
objects.

Another way of seeing what is going on in Kubernetes is using the dashboard. Now that we
have created a pod, open the dashboard at http://localhost:8001/ui and navigate to
the pods section on the left-hand side.

Remember that in order to access the dashboard, first, you need to execute
kubectl proxy on a Terminal.

[214]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

There; you will see the list of the current deployed pods, in this case, just nginx. Click on it
and the screen should look very similar to what is shown here:

= kubernetes Workloads > Pods > nginx /' EDIT [DELETE + CREATE
Admin
CPU usage Memory usage @
Namespaces
Nodes 0.001 1.50 Mi‘
0.001 134
Persistent Volumes 3 g
g 0.0008 E 1.00 Mi|
Storage Classes 2 00005 % asari
2
8 0.0003 § sk
Namespace o o
00:07 00:10 00:13 00:16 00:20 00:06 00:10 00:13 00:16 00:20
default
Time Time
Workloads
Deployments Details
Replica Sets
Name: nginx Network

Replication Controllers
Namespace: default

Node: g D
Daemon Sets Labels: -
: name: nginx 1P:10.44.0.10
Stateful Sets
last applied kubernetes. ger: LimitRanger plugin set: cpu request for container nginx
Jobs Creation time: 2017-07-09T23.05
Pods Status: Running
Services and discovery View logs
Services
Ingresses v
g Containers
Storage
nginx
Persistent Volume Claims
Image: nginx
Config
Environment variables: -
Secrets Commands: -
Config Maps Args: -
View logs
Conditions
Type Status Lastheartbeattime ~ Lasttransitiontime Reason Message
Initialized True - 14 minutes
Ready True - 14 minutes
Podscheduled True - 14 minutes

Here, we get a ton of information, from the memory and CPU that the pod is consuming to
the node where it is running and a few other valuable items, such as the annotations
applied to the pod. We can get this using the 'describe' command of kubect1, as follows:

kubectl describe pod nginx

[215]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Annotations are a new concept and are the data around our API element, in this case, our
pod. If you click on Last applied configuration in the Details section, you can see the data
from the YAML file, as shown in the following screenshot:

Last applied configuration

kubectl.kubernetes.io/last-applied-configuration: {"apiVersion"'v1" kind""Pod" 'metadata":{"annotations"{},'labels"{'name""'nginx'}, name": 'nginx",'namespace""default"}'spec":
{'containers"[{"image” 'nginx'name":"nginx""ports"({'containerPort":80} }|}}

And this relates to the three-way diff that was explained earlier and is used by Kubernetes
to decide the best way of upgrading a resource without getting into an inconsistent state.

As of now, our pod is running in Kubernetes but is not connected to the outer world;
therefore, there is no way to open a browser and navigate to the nginx home page from
outside the cluster. One thing that we can do is open a remote session to a bash Terminal in
the container inside the pod in a manner similar to what we would do with Docker:

kubectl exec -it nginx bash

And we are in. Effectively, we have gained access to a root terminal inside our container
and we can execute any command. We will use this functionality later on.

[216]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Once we have seen how pods work, you might have a few questions abound what
Kubernetes is supposed to do:

e How can we scale pods?
e How can we roll out new versions of an application?
e How can we access our application?

We will answer all these questions, but first, we need to know other 'building blocks'.

Replica Sets

So far, we know how to deploy applications in pods. The sole concept of pod is very
powerful, but it lacks robustness. It is actually impossible to define scaling policies or even
make sure that the pods remain alive if something happens (such as a node going down).
This might be okay in some situations, but here is an interesting question. If we are biting
the bullet on the overhead of maintaining a Kubernetes cluster, why don't we take the
benefits of it?

In order to do that, we need to work with Replica Sets. A Replica Set is like a traffic cop in a
road full of pods: they make sure that the traffic flows and everything works without
crashing and moving the pods around so that we make the best use of the road (our cluster,
in this case).

Replica Sets are actually an update of a much older item: the Replication Controller. The
reason for the upgrade is the labeling and selecting of resources, which we will see visit
when we dive deep into the API item called Service.

Let's take a look at a Replica Set:

apiVersion: extensions/vlbetal
kind: ReplicaSet
metadata:
name: nginx-rs
spec:
replicas: 3
template:
metadata:
labels:
app: nginx
tier: frontend
spec:
containers:
- name: nginx

[217]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

image: nginx
resources:
requests:
cpu: 256m
memory: 100Mi
ports:
- containerPort: 80

Again, this a YAML file that is basically fairly easy to understand but might require some
explanation:

e In this case, we have used the extensions API on the version vibetal. If you
remember from the pod section (previously), Kubernetes has three branches:
stable, alpha, and beta. The complete reference can be found in the official
documentation, and it is very likely to change often as Kubernetes is a vibrant
and always evolving project.

¢ In the spec section is where the important things happen: we have defined a set
of labels for the Replica Set, but we have also defined a pod (in this case, with a
single container) and specified that we want three instances of it (replicas: three).

Simple and effective. Now we have defined a resource called Replica Set, which allows us
to deploy a pod and keep it alive as per configuration.

Let's test it:
kubectl apply —-f replicaset.yml

Once the command returns, we should see the following message:
replicaset "nginx-rs" created

Let's verify it using kubect1:
kubectl get replicaset nginx-rs

As the output of the preceding command, you should see the Replica Set explaining that
there are three desired pods, three actually deployed, and three ready. Note the difference
between current and ready: a pod might be deployed but still not ready to process requests.

We have specified that our replicaset should keep three pods alive. Let's verify this:

kubectl get pods

[218]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

No surprises here: our replicaset has created three pods, as shown in the following
screenshot:

MAME STATUS RESTARTS
nginx Running @

nginx-rs-8g7nk Running @
nginx-rs-j829q Running @
nginx-rs-rq6x9 Running @

We have four pods:

* One created in the preceding section
¢ Three created by the Replica Set

Let's kill one of the pods and see what happens:

kubectl delete pod nginx-rs—-0g7nk

And now, query how many pods are running:

MAME STATUS RESTARTS
4 nginx Running @

nginx-rs-j829q Running @
nginx-rs-rgéx9 Running @
nginx-rs-s93s4 Running @

Bingo! Our replicaset has created a new pod (you can see which one in the AGE
column). This is immensely powerful. We have gone from a world where a pod (an
application) being killed wakes you up at 4 a.m. in the morning to take action to a world
where when one of our application dies, Kubernetes revives it for us.

[219]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Let's take a look at what happened in the dashboard:

= kubernetes Workloads > ReplicaSets > nginx-rs

2 EDIT W DELETE + CREATE
Admin
Details
Namespaces
Nodes Name: nginx-rs Status
Persistent Volumes Namespace: default Pods: 3 running
Storage Classes Labels: app:nginx tier: frontend
Creation time: 2017-07-10T01:35
oemespies Selector: app:nginx tier: frontend
default Images: nginx
Workloads
Deployments Pods
Replica Sets
Name Status Restarts Age CPU (cores) Memory (bytes)
Replication Controllers
@ nginxrs-43s9d Running 0 9 seconds
Daemon Sets
Stateful Sets @ nginkrstrgrg Running 0 9 seconds
Jobs @ nginxrswslig Running 0 9 seconds =
Pods
Services and discovery Services
Services
There is nothing to display here
Ingresses
Storage
Persistent Volume Claims .
Horizontal Pod Autoscalers
Config
S There is nothing to display here
Config Maps

As you can expect, the Replica Set has created the pods for you. You can try to kill them
from the interface as well (the period icon to the very right of every pod will allow you to
do that), but the Replica Set will re-spawn them for you.

Now we are going to do something that might look like it's from out of this world: we are
going to scale our application with a single command, but first, edit replicaset.yml and
change the replicas field from three to five.

Save the file and execute this:

kubectl apply —-f replicaset.yml

[220]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Now take a look at the dashboard again:

= kubernetes Workloads > Replica Sets > nginx-rs /2 EDIT W DELETE + CREATE
Admin
Details
Namespaces
Nodes Name: nginx-rs Status
Persistent Volumes Namespace: default Pods: 5 reated, 5 desired

Storage Classes Labels: app: nginx tier: frontend Pods status: 1 pending, 4 running

Annotations: [ast applied configuration

Namespace .
Creation time: 2017-07-10T01:41

o=t Selector: appnginx tier: frontend
Images: nginx
Workloads ges:ng
Deployments
Replica Sets Pods
Replication Controllers
Name Status Restarts Age CPU (cores) Memory (bytes)
Daemon Sets
@ nginers-Twgsl Running 0 16 seconds - B 1336 Mi =
Stateful Sets
0D & nginx-rs-c7624 Running 0 4 seconds =
Pods @ nginx-rs-fc95z Pending 0 4 seconds =
SR ARy & nginerspsizd Running 0 16 seconds - B 1383Mi =
Services @ nginxrs-pzsgd Running 0 16 seconds - B 1301Mi =
Ingresses
Storage N
L Services

Persistent Volume Claims.
e There is nothing to display here
Secrets
Config Maps
Horizontal Pod Autoscalers

There is nothing to display here

As you can see, Kubernetes is creating pods for us following the instructions of the Replica
Set, nginx-rs. In the preceding sreenshot, we can see one pod whose icon is not green, and
that is because its status is Pending, but after a few seconds, the status becomes Ready, just
like any other pod.

This is also very powerful, but there is a catch: who scales the application if the load spike
happens at 4 a.m. in the morning? Well, Kubernetes provides a solution for this: Horizontal
Pod Autoscalers.

Let's execute the following command:

kubectl autoscale replicaset nginx-rs —--max=10

[221]

Docker Swarm and Kubernetes - Clustering Infrastructure

Chapter 7

With the preceding command, we have specified that Kubernetes should attach a
Horizontal Pod Autoscalers to our Replica Set. If you browse the Replica Set in the
dashboard again, the situation has changed dramatically:

= kubernetes

Admin
Namespaces
Nodes
Persistent Volumes

Storage Classes

Namespace

default

Workloads
Deployments
Replica Sets
Replication Controllers
Daemon Sets
Stateful Sets
Jobs.
Pods
Services and discovery
Services
Ingresses
Storage
Persistent Volume Claims:
Config
Secrets

Config Maps

Namespace: default

Labels: app: nginx tier: frontend
Annotations: |ast applied configuration
Creation time: 2017-07-10T01:41
Selector: app: nginx tier: frontend

Images: nginx

Pods
Name

& nginxrs-1wgsl

Services

Horizontal Pod Autoscalers
Name

nginkrs

Workloads > Replica Sets > nginx-rs # EoIT W DELETE + CREATE

CPU usage Memory usage @

0.001 1.50 i,

0001 P
& 0.0008 £ 100w
g B
S 0.0005 £ 684K
s £

0.0003 5 w2k
o w2 wa G4 o o242 023 o244 o245
Time Time

Details
Name: nginx-rs Status

Pods: 1 running

Status Restarts Age CPU (cores) Memory (bytes)
Running 0 3 minutes 0 I 1 ss6 i =
There is nothing to display here
Target CPU Utilization Current CPU Utilization Min Replicas Max Replicas Age
80% 0% 1 10 45 seconds

Let's explain what happened here:

e We have attached an Horizontal Pod Autoscalers to our Replica Set: minimum 1
pod, maximum 10, and the trigger for creating or destroying pods is the CPU
utilization going over 80% on a given pod.

e The Replica Set has scaled down to one pod because there is no load on the
system, but it will scale back to up to 10 nodes if required and stay there for as
long as the burst of requests is going on and scale back to the minimum required
resources.

[222]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Now this is actually the dream of any sysadmin: no-hassle autoscaling and self-healing
infrastructure. As you can see, Kubernetes starts making sense altogether, but there is one
thing disturbing in the autoscaler part. It was a command that we ran in the terminal, but it
is captured nowhere. So how can we keep track of our infrastructure (yes, an Horizontal
Pod Autoscaler is part of the infrastructure)?

Well, there is an alternative; we can create a YAML file that describes our Horizontal Pod
Autoscaler:

apiVersion: autoscaling/vl
kind: HorizontalPodAutoscaler
metadata:
name: nginx-hpa
spec:
maxReplicas: 10
minReplicas: 1
scaleTargetRef:
kind: ReplicaSet
name: nginx-rs
targetCPUUtilizationPercentage: 80

First, from the dashboard, remove HorizontalPodAutoscaler created from the previous
example. Then, write the preceding content into a file called
horizontalpodautoscaler.yml and run the following command:

kubectl apply —-f horizontalpodautoscaler.yml

This should have the same effect as the autoscale command but with two obvious
benefits:

¢ We can control more parameters, such as the name of the HPA, or add metadata
to it, such as labels

e We keep our infrastructure as code within reach so we know what is going on

The second point is extremely important: we are in the age of the infrastructure as code and
Kubernetes leverages this powerful concept in order to provide traceability and readability.
Later on, in chapter 8, Release Management — Continuous Delivery, you will learn how to
create a continuous delivery pipeline with Kubernetes in a very easy way that works on
90% of the software projects.

Once the preceding command returns, we can check on the dashboard and see that
effectively, our Replica Set has attached an Horizontal Pod Autoscaler as per our
configuration.

[223]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Deployments

Even though the Replica Set is a very powerful concept, there is one part of it that we have
not talked about: what happens when we apply a new configuration to a Replica Set in
order to upgrade our applications? How does it handle the fact that we want to keep our
application alive 100% of the time without service interruption?

Well, the answer is simple: it doesn't. If you apply a new configuration to a Replica Set with
a new version of the image, the Replica Set will destroy all the Pods and create newer ones
without any guaranteed order or control. In order to ensure that our application is always
up with a guaranteed minimum amount of resources (Pods), we need to use Deployments.

First, take a look at what a deployment looks like:

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: nginx—-deployment
spec:
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 0
maxSurge: 1
replicas: 3

template:
metadata:
labels:
app: nginx
spec:
containers:

— name: nginx
image: nginx

resources:
requests:
cpu: 256m
memory: 100Mi
ports:

— containerPort: 80

As you can see, it is very similar to a Replica Set, but there is a new section: strategy. In
strategy, we are defining how our rollout is going to work, and we have two options:

e RollingUpdate

® Recreate

[224]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

RollingUpdate is the default option as it seems the most versatile in modern 24/7
applications: It coordinates two replica sets and starts shutting down pods from the old
replica set at the same time that it is creating them in the new Replica Set. This is very
powerful because it ensures that our application always stays up. Kubernetes decides what
is best to coordinate the pods' rescheduling, but you can influence this decision with two
parameters:

e maxUnavailable

® maxSurge

The first one defines how many pods we can loose from our Replica Set in order to perform
a rollout. As an example, if our Replica Set has three replicas, a rollout with the
maxUnavailable value of 1 will allow Kubernetes to transition to the new Replica Set with
only two pods in the status Ready at some point. In this example, maxUnavailable is 0;
therefore, Kubernetes will always keep three pods alive.

MaxSurge is similar to maxUnavailable, but it goes the other way around: it defines how
many pods above the replicas can be scheduled by Kubernetes. In the preceding example,
with three replicas with maxSurge set on 1, the maximum amount of pods at a given time
in our rollout will be 4.

Playing with these two parameters as well as the replicas' number, we can achieve quite
interesting effects. For example, by specifying three replicas with maxSurge 1 and
maxUnavailable 1, we are forcing Kubernetes to move the pods one by one in a very
conservative way: we might have four pods during the rollout, but we will never go
below three available pods.

Coming back to the strategies, Recreate basically destroys all the pods and creates them
again with the new configuration without taking uptime into account. This might be
indicated in some scenarios, but I would strongly suggest that you use Rol1lingUpdate
when possible (pretty much always) as it leads to smoother deployments.

It is also possible to attach a Horizontal Pod Autoscaler to a Deployment in the same way
that we would do with a Replica Set.

Let's test our deployment. Create a file called deployment . yml and apply it to our cluster:

kubectl apply -f deployment.yml —--record

[225]

Docker Swarm and Kubernetes - Clustering Infrastructure

Chapter 7

Once the command returns, we can go to the Kubernetes dashboard (localhost:8001/ui
with the proxy active) and check what happened in the Deployments section in the menu
on the left-hand side:

= kubernetes Workloads > Deployments > nginx-deployment /' EDIT [DELETE =+ CREATE
Admin
CPU usage Memory usage @
Namespaces
Wl _ 0001 g 4T2Mi)
Persistent Volumes £ 0.0008 2 315Mi
= 0.0005 Z2.10Mi
Storage Classes & 0.0003 £ 1.05 Mi
00:35 00:36 00:40 00:43 00:46 00:49 = obas oo 00:40 00:43 00:46 00:49
Namespace Time Time
default
Workloads Details
Eeplepmaris Name: nginx-deployment
Replica Sets Namespace: default
Replication Controllers Labels: app: nginx
Daemon Sets Label selector: app: nginx
Stateful Sets Strategy: RollingUpdate
Jobs Min ready seconds: 0
Pods Revision history limit: 2
Rolling update strategy: Max surge: 1, Max unavailable: 0
Services and discovery X .
Status: 3 updated, 3 total, 3 available, 0 unavailable
Services
Ingresses
New Replica Set
Storage
Persistent Volume Claims Name Labels Pods Age Images
app: nginx
Config @ nginx-deployment-36769959 3/3 18 minutes nginx
pod-template-hash: 36769...
Secrets

We have a new Deployment called nginx-deployment, which has created a Replica Set
that also contains the specified pods. In the preceding command, we have passed a new
parameter: ——record. This saves the command in the rollout history of our deployment
so that we can query the rollout history of a given deployment to see the changes applied
to it. In this case, just execute the following;:

kubectl rollout history deployment/nginx-deployment

This will show you all the actions that altered the status of a deployment called nginx-
deployment. Now, let's execute some change:

kubectl set image deployment/nginx-deployment nginx=nginx:1.9.1

[226]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

We have used kubect1 to change the version of the nginx container back to version 1.9.1
(kubect1 is very versatile; the official documentation offers shortcuts for pretty much
everything), and a few things happened. The first one is that a new Replica Set has been
created and the pods have been moved over to it from the old replica set. We can verify this
in the Replica Sets section of the menu on the left-hand side of the dashboard:

= kubernetes Workloads > Replica Sets ~+ CREATE

Admin
Replica Sets

Namespaces

Nodes Name Labels Pods Age Images

app: nginx

Persistent Volumes Q nginx-deployment-321290875 3/3 2 minutes nginx:1.9.1
pod-template-hash: 32129...

Storage Classes

app: nginx
@ nginx-deployment-36769959 0/0 32 minutes nginx
Namespace pod-template-hash: 36769...

default

Workloads:

Deployments.

Replica Sets
Replication Controllers
Daemon Sets

Stateful Sets

Jobs

Pods

As you can see, the old replica set has 0 pods, whereas the new one that took over has three
pods. This all happened without you noticing it, but it is a very clever workflow with a lot
of work from the Kubernetes community and the companies behind it.

The second thing that happened was that we have a new entry in our rollout history. Let's
check it out:

kubectl rollout history deployment/nginx-deployment

Which one should produce an output similar to the following one:

deployments "nginx-deployment "
REVISION CHANGE-CALSE

1 kubectl apply --filename=deployment.yml --record=true
2 kubectl set imoge deployment/nginx-deployment nginx=nginx:1.9.1

Now we have two entries that describe the changes applied to our deployment.

[227]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

If you have been into IT for few years, by now, you have reached the conclusion that a
rollback strategy is always necessary because bugs flowing into production are the reality
no matter how good our QA is. I am a big fan of building the systems in a way that
deployments are unimportant events (from a technical point of view), as shown with
Kuberentes, and the engineers always have an easy way out if things start to fail in
production. Deployments offer an easy rollback if something goes wrong;:

kubectl rollout undo deployment/nginx—deployment

Execute the preceding and browse back to the dashboard on the Replica Sets section again:

= kubernetes Workloads > Replica Sets + CREATE

Admin
Replica Sets

Namespaces

N Name Labels Pods Age Images

) app: nginx

Persistent Volumes @ nginc-deployment-321290875 0/0 10 minutes nginx:1.9.1
pod-template-hash: 32129...

Storage Classes

app: nginx
Q nginx-deployment-36769959 3/3 40 minutes nginx
Namespace pod-template-hash: 36769...

default

Workloads

Deployments

Replica Sets
Replication Controllers
Daemon Sets

Stateful Sets

Jobs

Pods

That's right. In a matter of seconds, we have gone from instability (a broken build) to the
safety of the old known version without interrupting the service and without involving half
of the IT department: a simple command brings back the stability to the system. The
rollback command has a few configurations, and we can even select the revision where we
want to jump to.

This is how powerful Kubernetes is and this is how simple our life becomes by using
Kubernetes as the middleware of our enterprise: a modern CD pipeline assembled in a few
lines of configuration that works in the same way in all the companies in the world by
facilitating command rollouts and rollbacks. That's it...simple and efficient.

Right now, it feels like we know enough to move our applications to Kubernetes, but there
is one thing missing. So far, up until now, we have just run predefined containers that are
not exposed to the outer world. In short, there is no way to reach our application from

[228]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

outside the cluster. You are going to learn how to do that in the next section.

[229]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Services

Up until now, we were able to deploy containers into Kubernetes and keep them alive by
making use of pods, Replica Sets, and Horizontal Pods Autoscalers as well as Deployments,
but so far, you have not learned how to expose applications to the outer world or make use
of service discovery and balancing within Kubernetes.

Services are responsible for all of the above. A Service in Kubernetes is not an element as
we are used to it. A Service is an abstract concept used to give entity to a group of pods
through pattern matching and expose them to different channels via the same interface: a
set of labels attached to a Pod that get matched against a selector (another set of labels and
rules) in order to group them.

First, let's create a service on top of the deployment created in the previous section:

kind: Service
apiVersion: vl
metadata:
name: nginx-service
spec:
selector:
app: nginx
ports:
- protocol: TCP
port: 80
targetPort: 80

Easy and straightforward, but there's one detail: the selector section has a hidden message
for us. The selectors are the mechanisms that Kubernetes uses to connect components via
pattern matching algorithms. Let's explain what pattern matching is. In the preceding
Service, we are specifying that we want to select all the Pods that have a label with the app
key and the nginx value. If you go back to the previous section, you'll understand our
deployment has these labels in the pod specification. This is a match; therefore, our service
will select these pods. We can check this by browsing in the dashboard in the Services
section and clicking on nginx-service, but first, you need to create the service:

kubectl apply -f service.yml

[230]

Docker Swarm and Kubernetes - Clustering Infrastructure

Chapter 7

Then, check out the dashboard:

Details

Name: nginx-service
Namespace: default
Creation time: 2017-07-12T21:56

Label selector: app: nginx

Type: ClusterlP

Pods

Name

Q nginx-deployment-36769959

0 nginx-deployment-36769959

Q nginx-deployment-36769959...

Status

Running

Running

Running

Restarts

0

0

0

Connection

Cluster IP: 10.47.245.73

Internal endpoints: nginx-service:80 TCP
nginx-service:0 TCP

Age CPU (cores) Memory (bytes)

a day 0 B 1 355 i
aday 0 I 1 505 i
aday 0 [REE

m

m

As you can see, there are three pods selected, and they all belong to the deployment nginx
that we created in the preceding section.

Don't remove the deployment from the previous section; otherwise, there
will be no pods to select by our service.

This screen has a lot of interesting information. The first piece of information is that the
service has an IP: this IP is denominated as clusterIP. Basically, it is an IP within the
cluster that can be reached by our pods and other elements in Kubernetes. There is also a

field called Type, which allows us to chose the service type. There are three types:

e ClusterIP
e NodePort

e T.oadBalancer

ClusterIP is what we just created and explained.

[231]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

NodePort is another type of service that is rarely used in Cloud but is very common on
premises. It allocates a port on all the nodes to expose our application. This allows
Kubernetes to define the ingress of the traffic into our pods. This is challenging for two
reasons:

e [t generates extra traffic in our internal network as the nodes need to forward the
traffic across to reach the pods (imagine a cluster of 100 nodes that has an app
with only three pods, it is very unlikely to hit the node that is running one of
them).

¢ The ports are allocated randomly so you need to query the Kubernetes API to
know the allocated port.

LoadBalancer is the jewel in the crown here. When you create a service of type
LoadBalancer, a cloud load balancer is provisioned so that the client applications hit the
load balancer that redirects the traffic into the correct nodes. As you can imagine, for a
cloud environment where infrastructure is created and destroyed in matter of seconds, this
is the ideal situation.

Coming back to the previous screenshot, we can see another piece of interesting
information: the internal endpoints. This is the service discovery mechanism that
Kubernetes is using to locate our applications. What we have done here is connect the pods
of our application to a name: nginx-service. From now on, no matter what happens, the
only thing that our apps need to know in order to reach our nginx pods is that there is a
service called nginx that knows how to locate them.

In order to test this, we are going to run an instance of a container called busybox, which is
basically the Swiss army knife of command-line tools. Run the following command:

kubectl run -i --tty busybox —--image=busybox —--restart=Never -- sh

The preceding command will present us with a shell inside the container called busybox
running in a pod so we are inside the Kubernetes cluster and, more importantly, inside the
network so that we can see what is going on. Be aware that the preceding command runs
just a pod: no deployment or replica set is created, so once you exit the shell, the pod is
finalized and resources are destroyed.

Once we get the prompt inside busybox, run the following command:

nslookup nginx-service

[232]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

This should return something similar to the following:

Server: 10.47.240.10
Address 1: 10.47.240.10 kube-dns.kube-system.svc.cluster.local

Name: nginx-service
Address 1: 10.47.245.73 nginx-service.default.svc.cluster.local

Okay, what happened here? When we created a service, we assigned a name to it: nginx-
service. This name has been used to register it in an internal DNS for service discovery.
As mentioned earlier, the DNS service is running on Kubernetes and is reachable from all
the Pods so that it is a centralised repository of common knowledge. There is another way
that the Kubernetes engineers have created in order to carry on with the service discovery:
the environment variables. In the same prompt, run the following command:

env

This command outputs all the environment variables, but there are few that are relevant to
our recently defined service:

NGINX_SERVICE_PORT_ 80_TCP_ADDR=10.47.245.73
NGINX_SERVICE_PORT 80_TCP_PORT=80
NGINX_SERVICE_PORT_80_TCP_PROTO=tcp
NGINX_SERVICE_SERVICE_PORT=80
NGINX_SERVICE_PORT=tcp://10.47.245.73:80
NGINX_SERVICE_PORT_80_TCP=tcp://10.47.245.73:80
NGINX_SERVICE_SERVICE_HOST=10.47.245.73

These variables, injected by Kubernetes at creation time, define where the applications can
find our service. There is one problem with this approach: the environment variables are
injected at creation time, so if our service changes during the life cycle of our pods, these
variables become obsolete and the pod has to be restarted in order to inject the new values.

All this magic happens through the selector mechanism on Kubernetes. In this case, we
have used the equal selector: a label must match in order for a pod (or an object in general)
to be selected. There are quite a few options, and at the time of writing this, this is still
evolving. If you want to learn more about selectors, here is the official documentation:
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

As you can see, services are used in Kubernetes to glue our applications together.
Connecting applications with services allows us to build systems based on microservices by
coupling REST endpoints in the API with the name of the service that we want to reach on
the DNS.

[233]

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Up until now, you have learned how to expose our applications to the rest of our cluster,
but how do we expose our applications to the outer world? You have also learned that there
is a type of service that can be used for this: LoadBalancer. Let's take a look at the
following definition:

kind: Service
apivVersion: vl
metadata:
name: nginx-service
spec:
type: LoadBalancer
selector:
app: nginx
ports:
- protocol: TCP
port: 80
targetPort: 80

There is one change in the preceding definition: the service type is now LoadBalancer. The
best way to explain what this causes is by going to the Services section of the dashboard:

= kubernetes Services and discovery > Services + CREATE
Workloads Services
Deployments
Name Labels Cluster IP Internal endpoints External endpoints
Replica Sets —
component: apiserver kubernetes:443 TCP
i aati kubernetes 10.47.240.1
Replication Controllers ° e e Kubernetes:0 TCP
Daemon Sets .
- :80 TCP
O nginx-service - 10.47.250.249 ng!nx serv!ce
Stateful Sets nginx-service:0 TCP
. nginx-service-1b:80 TCP Z]
Jobs - -lb - 10.47.251.56 35.187.20.248:80 &
0 nginx-service nginx-service-1b:31051 ...
Pods
Services and discovery
Services
Ingresses

As you can see, our newly created service got assigned an external endpoint. If you browse
it, bingo! The nginx default page is rendered.

[234]

Docker Swarm and Kubernetes - Clustering Infrastructure

Chapter 7

We have created two services, nginx-service and nginx-service-1b, of the type
ClusterIP and LoadBalancer, respectively, which both point to the same pods that
belong to a deployment and are managed through a replica set. This can be a bit confusing,
but the following diagram will explain it better:

Load
Balancer

Kubernetes

nginx-service

nginx-service-lb

N oo

nginx Pod

nginx Pod

nginx Pod

S~ 1

Replica Set

f

/'

Deployment

The preceding diagram is the perfect explanation of what we've built in this section. As you
can see, the load balancer is outside of Kubernetes, but everything else is inside our cluster
as virtual elements of an APIL

Other Building Blocks

In the previous sections, you learned the basics needed to deploy applications into
Kubernetes successfully. The API objects that we visited are as follows:

e Pod

e ReplicaSet

e Deployment
e Service

[235]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

In Kubernetes, there are many other building blocks that can be used to build more
advanced applications; every few months, the Kubernetes engineers add new elements to
improve or add functionality.

One example of these additions is the ReplicaSet that was designed to replace another item
called ReplicationController. The main difference between the ReplicationController and
the ReplicaSet is that the latter one has a more advance semantics label selection for the
Pods that were recently re-engineered in Kubernetes.

As a new product, Kuberentes is constantly changing (in fact, it is possible that by the time
that you read this book, the core elements might have changed), so the engineers try to keep
the compatibility across different versions so that people are not urged to upgrade in a short
period of time.

Other examples of more advanced building blocks are the following;:

¢ DaemonSet

o PetSets

¢ Jobs and CronJobs
e CronJobs

In order to go in deep to the full stack in Kubernetes, we would need a full book (or more!).
Let's visit some of them.

Daemon Sets

Daemon Sets are an API element used to ensure that a Pod is running in all (or some)
nodes. One of the assumptions in Kubernetes is that the pod should not worry about which
node is being run, but that said, there might be a situation where we want to ensure that we
run at least one pod on each node for a number of reasons:

¢ Collect logs
e Check the hardware
¢ Monitoring

In order to do that, Kubernetes provides an API element called Daemon Set. Through a
combination of labels and selectors, we can define something called affinity, which can be
used to run our pods on certain nodes (we might have specific hardware requirements that
only a few nodes are able to provide so that we can use tags and selectors to provide a hint
to the pods to relocate to certain nodes).

[236]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Daemon Sets have several ways to be contacted, from the DNS through a headless service (a
service that works as a load balancer instead of having a cluster IP assigned) to the node IP,
but Daemon Sets work best when they are the initiators of the communication: something
happens (an event) and a Daemon Set sends an event with information about that event (for
example, a node is running low on space).

PetSets

PetSets are an interesting concept within Kubernetes: they are strong named resources
whose naming is supposed to stay the same for a long term. As of now, a pod does not have
a strong entity within a Kubernetes cluster: you need to create a service in order to locate a
pod as they are ephemeral. Kubernetes can reschedule them at any time without prior
notice for changing their name, as we have seen before. If you have a deployment running
in Kubernetes and kill one of the pods, its name changes from (for example) pod-xyz to pod-
abc in an unpredictable way. so we cannot know which names to use in our application to
connect to them beforehand.

When working with a Pet Set, this changes completely. A pet set has an ordinal order, so it
is easy to guess the name of the pod. Let's say that we have deployed a Pet Set called mysq],
which defines pods running a MySQL server. If we have three replicas, the naming will be
as follows:

e mysgl-0
® mysqgl-1
® mysqgl-2

So, we can bake this knowledge in our application to reach them. This is suboptimal but
good enough: we are still coupling services by name (DNS service discovery has this
limitation), but it works in all cases and is a sacrifice that is worth paying for because in
return, we get a lot of flexibility. The ideal situation in service discovery is where our
system does not need to know even the name of the application carrying the work: just
throw the message into the ether (the network) and the appropriated server will pick it up
and respond accordingly.

Pet Sets have been replaced in later versions of Kubernetes with another item called
Stateful Set. The Stateful Set is an improvement over the Pet Set mainly in how Kubernetes
manages the master knowledge to avoid a split brain situation: where two different
elements think that they are in control.

[237]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Jobs

A Job in Kubernetes is basically an element that spawns the defined number of pods and
waits for them to finish before completing its life cycle. It is very useful when there is a need
to run a one-off task, such as rotating logs or migrating data across databases.

Cron jobs have the same concept as Jobs, but they get triggered by time instead of a one-off
process.

Both in combination are very powerful tools to keep any system running. If you think about
how we rotate logs without Kubernetes via ssh, it is quite risky: there is no control (by
default) over who is doing what, and usually, there is no review process in the ssh
operations carried by an individual.

With this approach, it is possible to create a Job and get other engineers to review it before
running it for extra safety.

Secrets and configuration management

On Docker in general, as of today, secrets are being passed into containers via environment
variables. This is very insecure: first, there is no control over who can access what, and
second, environment variables are not designed to act as secrets and a good amount of
commercial software (and open source) outputs them into the standard output as part of
bootstrapping. Needless to say, that's rather inconvenient.

Kubernetes has solved this problem quite gracefully: instead of passing an environment
variable to our container, a volume is mounted with the secret on a file (or several) ready to
be consumed.

By default, Kubernetes injects a few secrets related to the cluster into our containers so that
they can interact with the API and so on, but it is also possible to create your own secrets.

There are two ways to create secrets:

e Using kubect1
e Defining an API element of type secret and using kubect1 to deploy it

The first way is fairly straightforward. Create a folder called secrets in your current work
folder and execute the following commands inside it:

echo -n "This is a secret" > ./secretl.txt
echo -n "This is another secret" > ./secret2.txt

[238]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

This creates two files with two strings (simple strings as of now). Now it is time to create
the secret in Kubernetes using kubect 1:

kubectl create secret generic my-secrets ——from-file=./secretl.txt —-—from-
file=./secret2.txt

And that's it. Once we are done, we can query the secrets using kubect1:

kubectl get secrets
This, in my case, returns two secrets:

¢ A service account token injected by the cluster
* My newly created secret (my-secrets)

The second way of creating a secret is by defining it in a yam1 file and deploying it via
kubect 1. Take a look at the following definition:

apiVersion: vl

kind: Secret

metadata:
name: my-secret-yaml

type: Opaque

data:
secretl: VGhpcyBpcyBhIHN1Y3J1dA==
secret2: VGhpcyBpcyBhbm90aGVyIHN1Y3J1dA==

First, the values for secret1 and secret2, seem to be encrypted, but they are not; they are
just encoded in base64:

echo -n "This is a secret" | base64
echo -n "This is another secret" | base64

This will return the values that you can see here. The type of the secret is Opaque, which is
the default type of secret, and the rest seems fairly straightforward. Now create the secret
with kubectl (save the preceding content in a file called secret . yml):

kubectl create -f secret.yml

And that's it. If you query the secrets again, note that there should be a new one called my-
secret-yaml. It is also possible to list and see the secrets in the dashboard on the Secrets
link in the menu on left-hand side.

[239]

Docker Swarm and Kubernetes - Clustering Infrastructure

Chapter 7

Now it is time to use them. In order to use the secret, two things need to be done:

e Claim the secret as a volume
e Mount the volume from the secret

Let's take a look at a Pod using a secret:

{
"apiVersion": "v1",
"kind": "Pod",
"metadata": {
"name": "test-secrets",
"namespace": "default"
}I
"spec": {
"containers": [{
"name": "pod-with-secret",
"image": "nginx",
"volumeMounts": [{
"name": "secrets",
"mountPath": "/secrets",
"readOnly": true
H]
Pl
"volumes": [{
"name": "secrets",
"secret": {
"secretName": "my-secret"
}
Hl

}

So, you have learned a new thing here: kubect1 also understands JSON. If you don't like

YAML, it is possible to write your definitions in JSON without any side-effects.

Now, looking at the JSON file, we can see how first, the secret is declared as a volume and

then how the secret is mounted in the path/secrets.

If you want to verify this, just run a command in your container to check it:

kubectl exec -it test-secrets ls /secrets

This should list the two files that we have created, secretl.txt and secret2.txt,

containing the data that we have also specified.

[240]

Docker Swarm and Kubernetes - Clustering Infrastructure Chapter 7

Kubernetes- moving on

In this chapter, you learned enough to run simple applications in Kubernetes, but even
though we cannot claim ourselves to be experts, we got the head start in becoming experts.
Kubernetes is a project that evolves at the speed of light, and the best thing that you can do
to keep yourself updated is follow the project on GitHub at https://github.com/

kubernetes.

The Kubernetes community is very responsive with issues raised by the users and are also
very keen on getting people to contribute to the source code and documentation.

If you keep working with Kubernetes, some help will be required. The official
documentation is quite complete, and even though it feels like it needs a reshuffle
sometimes, it is usually enough to keep you going.

The best way that I've found to learn Kubernetes is by experimenting in Minikube (or a test
cluster) before jumping into a bigger commitment.

Summary

In this chapter, we looked at a good amount of concepts required to deploy an application
on Kubernetes. As mentioned earlier, it is impossible to cover everything abound
Kubernetes in a single chapter, but with the amount of knowledge from this chapter, we are
going to be able to set up a continuous delivery pipeline in the following chapter in a way
that we automate zero downtime deployments without the big bang effect (the big
deployment that stops the world), enabling our organization to move faster.

[241]

https://github.com/kubernetes
https://github.com/kubernetes
https://github.com/kubernetes
https://github.com/kubernetes
https://github.com/kubernetes
https://github.com/kubernetes
https://github.com/kubernetes
https://github.com/kubernetes

Release Management —
Continuous Delivery

Release management has been always the boring part of software development. It is the
discussion where people from different teams (operations, management, development, and
so on) put all the details together to plan how to deploy a new version of one of the apps
from the company (or various others).

This is usually a big event that happens at 4 a.m. in the morning, and it is a binary event: we
either succeed in releasing the new version or we fail and have to roll back.

Stress and tension are the common denominators in these type of deployments, and above
everything else, we are playing against the statistics.

In this chapter, you are going to learn how to create a continuous delivery pipeline and
deploy a microservices-based system to update it, keeping all the lights on.

We will specifically cover the following topics:

e Playing against the statistics

The test system

Setting up a continuous delivery pipeline for images

Setting up Jenkins

Continuous delivery for your application

Release Management — Continuous Delivery Chapter 8

Playing against the statistics

We have spoken several times about the Big Bang event that a deployment is. This is
something that I always try to avoid when I set up a new system: releases should be smooth
events that can be done at any time without effort and you should be able to roll back
within minutes with little to no effort.

This might be a gigantic task, but once you provide a solid foundation to your engineers,
marvelous things happen: they start being more efficient. If you provide a solid base that
will give them confidence that within a few clicks (or commands) that they can return the
system to a stable state, you will have removed a big part of the complexity of any software
system.

Let's talk about statistics. When we are creating a deployment plan, we are creating a
system configured in series: it is a finite list of steps that will result in our system being
updated:

e Copy aJAR file into a server

e Stop the old Spring Boot app
e Copy the properties files

e Start the new Spring Boot app

If any of the steps fail, the whole system fails. This is what we call a series system: the
failure of any of the components (steps) compromises the full system. Let's assume that
every step has a 1% failure ratio. 1% seems quite an acceptable number...until we connect
them in a series. From the preceding example, let's assume that we have a deployment with
10 steps. These steps have a 1% of failure rate which is equals to 99% of success rate or 0.99
reliability. Connecting them in a series means that the whole reliability of our system can be
expressed as follows:

(0.99)710 = 0.9043

This means that our system has a 90.43 percent success rate or, in other words, 9.57 percent
failure rate. Things have changed dramatically: nearly 1 in every 10 deployments is going to
fail, which, by any means, is quite far from the 1 percent of the individual steps that we
quoted earlier.

Nearly 10 percent is quite a lot for depending on the systems, and it might be a risk that we
are not willing to take, so why don't we work to reduce this risk to an acceptable level? Why
don't we shift this risk to a previous step that does not compromise production and we
reduce our deployment to a simple switch (on/off) that we can disconnect at any time?

[243]

Release Management — Continuous Delivery Chapter 8

These are two concepts called canary and blue green deployments, and we are going to
study how to use them in Kubernetes so that we reduce the risk of our deployments failing,
as well as the stress of the big bang event that a deployment means in traditional software
development.

The test system

In order to articulate a continuous delivery pipeline, we need a system to play with, and
after some talks and demos, I have developed one that I tend to use, as it has pretty much
no business logic and leaves a lot of space to think about the underlying infrastructure.

I call the system Chronos, and as you can guess, its purpose is related to the management of
time zones and formats of dates. The system is very simple:

Users S

API
Aggregator

TN

ISO Date UTC Date
Service Service

We have three services:

e An APl aggregator
¢ A service that translates a timestamp into a date in ISO format
¢ A service that translates a timestamp into a date in UTC format
These services work in coordination to translate a timestamp into a date in different

formats, but it is also open to extensions as we can aggregate more services to add more
capabilities and expose them through the API Aggregator.

[244]

Release Management — Continuous Delivery Chapter 8

Every service will be packed into a different Docker image, deployed as a Deployment in
Kubernetes and exposed via Services (externals and internals) to the cluster and to the outer
world in the case of the API Aggregator.

ISO date and UTC date services

The ISO date service simply takes a timestamp and returns the equivalent date using the
ISO format. Let's take a look at its code:

const Hapi = require('hapi')
const server = new Hapi.Server()
const moment = require ('moment')

server.connection ({port: 3000})

server.route ({
method: 'GET',
path: '/isodate/{timestamp}',
handler: (request, reply) => {
reply ({date: moment.unix (request.params.timestamp) .toISOString() })
}
})

server.start ((err) => {
if (err) {
throw err

}

console.log('isodate-service started on port 3000")

H)

This service itself is very simple: it uses a library called moment and a framework called
hapi to provide the ISO Date equivalent to a timestamp passed as a URL parameter. The
language used to write the service is Node.js, but you don't need to be an expert in the
language; you should just be able to read JavaScript. As with every Node.js application, it
comes with a package. json that is used to describe the project and its dependencies:

{

"name": "isodate-service",
"version": "1.0.0",
"description": "ISO Date Service",
"main": "index.js",
"scripts": {
"start": "node index.]js"
}I
"author": "David Gonzalez",

[245]

Release Management — Continuous Delivery Chapter 8

"license": "ISC",

"dependencies": {
"hapi": "~15.2.0",
"moment": "~2.15.1"

}

Some fields of the package. json are customized, but the important parts are the
dependencies and the scripts sections.

Now, one important file is left; the Dockerfile:

FROM node:latest

RUN mkdir /app/
WORKDIR /app/

COPY . /app/
RUN npm install
EXPOSE 3000
CMD ["npm", "start"]
In order to test our service, let's build the Docker image:
docker build . -t iso-date-service
After a few seconds (or a bit more), our image is ready to use. Just run it:
docker run -it —-p 3000:3000 iso—-date-service
And that's it. In order to test it, use curl to get some results:

curl http://localhost:3000/isodate/1491231233

This will return a JSON with the ISO Date representation of the timestamp passed as a URL
parameter, as you can see in your terminal.

The UTC date service is very much the same but with different code and a different
interface:

const Hapi = require('hapi')
const server = new Hapi.Server()
const moment = require ('moment')

server.connection ({port: 3001})

server.route ({
method: 'GET',

[246]

Release Management — Continuous Delivery Chapter 8

path: '/utcdate/{timestamp}',

handler: (request, reply) => {
let date =
moment .unix (request.params.timestamp) .utc () .toISOString () .substring (0, 19)

reply ({date: date})
}
)

server.start ((err) => {
if (err) {
throw err

}

console.log('isodate-service started on port 3001"')

H)
As you can see, there are some changes:

e The portis 3001

o The date returned is the UTC date (which is basically the ISO Date without
timezone information)

We also have a Dockerfile, which is the same as for the ISO Date service, and a
package . json, which is as follows:

{

"name": "utcdate-service",
"version": "1.0.0",
"description": "UTC Date Service",
"main": "index.js",
"scripts": {

"start": "node index.js"
}I
"author": "David Gonzalez",
"license": "ISC",
"dependencies": {

"hapi": "~15.2.0",

"moment": "~2.15.1"

}

These are minor changes (just the description and name). In total, you should have these
files in the UTC date service:

o Dockerfile (the same as ISO Date Service)
e index.js with the code from earlier

® package.json

[247]

Release Management — Continuous Delivery Chapter 8

If you want to make your life easier, just clone the repository at
git@github.com:dgonzalez/chronos.git so that you have all the
code ready to be executed.

Now in order to test that everything is correct, build the Docker image:

docker build . -t utc-date-service

And then run it:

docker run -it —-p 3001:3001 utc-date-service
Once it is started, we should have our service listening on port 3001. You can check this by

executing curl, as follows:

curl http://localhost:3001/utcdate/853123135

This, in a manner similar to ISO Date Service, should return a JSON with the date but in a
UTC format in this case.

Aggregator service

The aggregator service is the microservice that, as the name indicates, aggregates the
other two (or more) services and provides a front API for consumers so that all the logic
behind the scenes gets encapsulated. Even though it is not perfect, this is a common pattern
because it allows us to play with the idea of circuit breaking as well as manage the errors on
a dedicated layer.

In our case, the service is quite simple. First, let's take a look at the code:

const Hapi = require('hapi')
const server = new Hapi.Server /()
let request = require('request')

server.connection ({port: 8080})

server.route ({
method: 'GET',
path: '/dates/{timestamp}',
handler: (req, reply) => {
const utcEndpoint =
“http://utcdate-service:3001/utcdate/${req.params.timestamp}"’
const isoEndpoint =
“http://isodate-service:3000/isodate/${req.params.timestamp}’

[248]

Release Management — Continuous Delivery Chapter 8

request (utcEndpoint, (err, response, utcBody) => {
if (err) {
console.log(err)
return
}
request (isoEndpoint, (err, response, isoBody) => {
if (err) {
console.log(err)
return
}
reply ({
utcDate: JSON.parse (utcBody) .date,
isoDate: JSON.parse (isoBody) .date

server.start ((err) => {
if (err) {
throw err

}
console.log('aggregator started on port 8080")

H)

In order to simplify the understanding of the code, we did not use promises or async/await
in it at the cost of having a nested callback (which is quite simple to read).

Here are a few points to note from the preceding code:

e We are calling the services by name (utcdate-service and isodate-
service), leveraging the communication to the Kubernetes DNS

¢ Before returning, aggregator service issues a call to the two services and returns
a JSON object with the aggregated information

In order to test this service, we would need to create DNS entries (or host entries) pointing
to isodate-service and utcdate-service, which is harder than testing it in
Kubernetes, so we will skip the testing for now.

[249]

Release Management — Continuous Delivery Chapter 8

As with any node application, the aggregator service needs a package. json to install the
dependencies and control a few aspects:

{

"name": "aggregator",
"version": "1.0.0",
"description": "Aggregator service",
"main": "index.js",
"scripts": {

"start": "node index.js"
}I
"author": "David Gonzalez",
"license": "ISC",
"dependencies": {

"hapi": "~15.2.0",

"request": ""2.75.0"

}

The package. json is very important. The scripts block particularly instruct us on what to
do when the npm start command is executed by the Docker container based on the image
defined in the Dockerfile:

FROM node:latest

RUN mkdir /app/
WORKDIR /app/

COPY . /app/

RUN npm install
EXPOSE 3000

CMD ["npm", "start"]

By now, you should have three files:

® index.Jjs
® Dockerfile
® package.json
Build the docker container with the following command:

docker build . -t aggregator

Check whether it works as expected:

[250]

Release Management — Continuous Delivery Chapter 8

docker run -it —-p 8080:8080 aggregator

[251]

Release Management — Continuous Delivery Chapter 8

Even though the server won't be able to resolve requests because it does not know how to
communicate with isodate-service and utcdate-service, it should start.

Pushing the images to Google Container Registry

So as of now, we have three images in our local repository:

® iso-date-service
e utc-date-service

® aggregator

These three images live in your computer but unfortunately, our Kubernetes cluster in the
GKE won't be able to reach them. The solution for this problem is to push these images into
a Docker registry that will be reachable by our cluster. Google Cloud provides us with a
Docker registry, which is extremely convenient for using with GKE due to several reasons:

e Data containment: The data never leaves the Google network
¢ Integration: Services in GCP can interact with implicit authentication

¢ Automation: This integrates with GitHub and other services so that we can build
our images, automatically creating a pipeline of continuous delivery of images.

Before setting up a continuous delivery pipeline with Git, we are going to push the images
manually in order to understand how it works. Google Container Registry (GCR) is
replicated across the globe, so the first thing that you need to do is choose where you want
to store your images:

® us.gcr.io hosts your images in the United States
e cu.gcr.io hosts your images in the European Union
® asia.gcr.io hosts your images in Asia

[252]

Release Management — Continuous Delivery Chapter 8

In my case, eu.gcr. io is the perfect match. Then, we need our project ID. This can be
found by clicking on the project name in the top bar of the console:

Select

| = [Bearch projects and folders

Recent All

Name D

+/ §e Implementing Modern DevOps implementing-modern-devops

S¢ David On Microservices david-on-microservices

CANCEL OPEN

In my case, the project ID is implementing-modern-devops. Now, the third component is
the name of the image that we already have. With these three components, we can build the
name for our Docker images URL:

® cu.gcr.io/isodate-service:1.0
® eu.gcr.io/utcdate-service:1.0

® cu.gcr.io/aggregator:1.0

The 1.0 part is the version of our image. If not specified, the default is latest but we are
going to version the images for traceability.

[253]

Release Management — Continuous Delivery Chapter 8

Now it is time to tag our images as appropriate. First up is the ISO Date service:

docker tag iso-date-service eu.gcr.io/implementing-modern-devops/isodate-
service:1.0

Then, there's the UTC date service:

docker tag utc-date-service eu.gcr.io/implementing-modern-devops/utcdate-—
service:1.0

And finally, we have the aggregator service:

docker tag aggregator eu.gcr.io/implementing-modern-devops/aggregator-
service:1.0

This is the mechanism that Docker uses to identify where to push the images: Docker reads
the name of our image and identifies the URL to which the image is to be pushed. In this
case, as we are using a private registry (Google Container Registry is private), we need to
use credentials, but using the gcloud command, it becomes quite easy:

gcloud docker —-- push eu.gcr.io/implementing-modern-devops/aggregator—
service:1.0

Now it's time for the isodate-service:

gcloud docker —- push eu.gcr.io/implementing-modern-devops/isodate-
service:1.0

And finally, there's utcdate-service:

gcloud docker —-- push eu.gcr.io/implementing-modern-devops/utcdate-
service:1.0

Be careful; the project ID will change, so customize the command to fit
your configuration.

[254]

Release Management — Continuous Delivery Chapter 8

After a bit of time (it can take up to a few minutes to push the three images to GCR), the
images should be up in our private instance of the Google Container Registry.

Google Cloud Platform s Implementing Modern De... ~ Q

[.‘.] Container Registry Container Registry C REFRESH

B Container Registry Registry location: eu.gcr.io Filter

\

Build triggers
Name ~

Build history B8 aggregator-service

| isodate-service

I utcdate-service

Let's recap what we have done:

e We've built the images locally

e We've tagged the images with the appropriated name so that we can push them
to GCR

e We've pushed the images to GCR using gcloud

This is fairly straightforward, but it can be tricky if you have not done it before. All our
images are sitting in our private container registry, ready to be used.

[255]

Release Management — Continuous Delivery Chapter 8

Setting up a continuous delivery pipeline for
images

Now that we have deployed our images to GCR, we need to automate the process so that
we minimize the manual intervention. In order to do that, we are going to use the Build
Triggers section of our Google Container Registry. In this case, we are going to use GitHub
as it is the industry standard for Git repositories management. Create an account at https:/
/www.github.com (if you don't have one already) and then create three repositories:

® aggregator
e isodate-service

e utcdate-service

These can be public but, in the future, if you are working with private code, you should
either create private repositories (which you need to pay for) or select a different provider,
such as the source code repositories in Google Cloud Platform.

The first thing that we need to do is push the code for the three services into the
repositories. Github will give you the instructions to that, but basically, the process is as
follows:

1. Clone the repository
2. Add the code from the preceding section as appropriate
3. Push the code into the remote repository

My GitHub username is dgonzalez and the commands to push the code for the
aggregator are as follows:

git clone git@github.com:dgonzalez/aggregator.git

Now copy the code from the aggregator into the newly created folder with the clone
command and execute (inside the aggregator folder):

git add

Commit the changes:

git commit -m 'Initial commit'

[256]

https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com

Release Management — Continuous Delivery Chapter 8

And then push them to the remote repository:

git push origin master

After these commands, your repository should look like what is shown in the following
screenshot:

Pull requests Issues Marketplace Explore

dgonzalez [aggregator @Unwatch= 1 Star 0 %Fork ©
<¥ Code Issues 0 Pull requests 0 Projects 0 Wiki Settings Insights ~
No description, website, or topics provided. Edit
Add topics
D 1 commit i#1branch ©> O releases 22 1 contributor
Branch: master ~ New pull request Create new file = Upload files Find file Clone or download ~
ﬂdgonzalez Initial commit Latest commit 7ffeccl 4 minutes ago
[E) Dockerfile Initial commit 4 minutes ago
[l index.js Initial commit 4 minutes ago
[E) package.json Initial commit 4 minutes ago
Help people interested in this repository understand your project by adding a README.

The commands that we used are quite basic Git commands. You probably know about Git,
but if you don't, I would recommend that you follow some tutorials, such as https://try.
github.io/levels/1/challenges/1.

[257]

https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1
https://try.github.io/levels/1/challenges/1

Release Management — Continuous Delivery Chapter 8

Now that we have our repository ready, it is time to go back to GCP to set up the Build
triggers for our pipeline. The first thing that we need to do is go to the triggers section of
the Container Registry in Google Cloud Platform:

Google Cloud Platform e Implementing Modern De... ~

(&%) Container Registry & Build Triggers €5i»

B Container Registry You haven't created any triggers yet

Build triggers will automatically build container images when changes are
pushed to a repository Find out more

Build history

!

Build triggers

This functionality allows us to create triggers that fire off the build of our images based on
events. There are several approaches to triggering strategies. In this case, we are going to
build the image based on the creation of new tags. The most common way of doing this is
by monitoring changes in the master branch, but I am a big fan of versioning. Think about
this: containers are immutable artifacts: Once created, they should not be altered, but what
if there is an issue with the code inside the container? The strategy is to branch off from the
master and then create what is called a hot-fix build. With tagging, we can do this too but
by branching from a tag instead of from the master, which has the following benefits:

¢ The master can change without firing events

e Tags cannot be accidentally created (so no accidental releases)

¢ Version is kept in the source code manager instead of in the code
* You can correlate a tag to a build the artifact

That said, it is perfectly valid to use the master as a reference point and other combinations:
the important lesson here is to stick to a procedure and make it clear to everyone.

[258]

Release Management — Continuous Delivery Chapter 8

Click on Create Trigger and select GitHub. Once you click on Next, it will let you select the
project from a list; then, click on Next again. Now we get presented with a form and a few
options:

[259]

Release Management — Continuous Delivery

Chapter 8

Google Cloud Platform

2+ Implementing Modern De... ~ Q

!

<l

Container Registry

Container Registry
Build triggers

Build history

& Create trigger

@ Select source @ Authenticate @ select repository

Trigger settings
Source: GitHub Repository: https://github.com/dgonzalez/aggregator [7
Name |

aggregator-trigger

Trigger type
Branch
® Tag

Tag (regex)
Mo tag matches

*

Build configuration
® Dockerfile
Specify the path within the Git repo
cloudbuild.yaml
Specify the path to a Cloud Build configuration file in the Git repo Learn more

Dockerfile directory (Optior
The directory will alsc be used as the Docker build context
/
Image name
Supported variables: $PROJECT_ID, $REPO_MAME, $BRANCH_NAME, $TAG_MAME, SCOMMIT_SHA

eu.gerio/implementing-modern-devops/aggregator-service: 5STAG_NAME

Docker command preview

The command will be executed at the root of your repository. Fer more advanced usage,
configure a cloudbuild yaml file. Leamn more

Timeout (Ootio
The default timeout is 10 minutes

600 seconds
Summary

Changes pushed to ".*" tag will trigger a build of "eu.gerio/implementing-
modern-devops/aggregator-service:5TAG_NAME"

4 Trigger settings

[260]

Release Management — Continuous Delivery Chapter 8

We are going to use the Dockerfile instead of cloudbuild.yaml (the latter is GCP-specific)
and set the trigger on the tag; the image name has to match the repositories created in the
preceding section (remember the eu. * name and check the name of the repository as well).

Once created, nothing happens. Our repository has no tags, so nothing has been built. Let's
create a tag:

git tag -a 1.0 -m "my first tag"
This will create a tag, and now we need to push it to the server:
git push origin 1.0

Now, we go back to GCP Container Registry and check what happened: a new build has
been triggered, pushing version 1.0 to the registry for the aggregator image:

(%) Container Registry & Build History

Build Source Git commit Trigger Started Image target Image tag

From now on, if we create a new tag in our repository, GCP is going to build an image for
us, which can be correlated to a commit in GitHub so that we can fully trace what is in
every environment of our build. It does not get better than this.

This whole build and push could have been done with Jenkins, as you learned in the
chapter 4 (continous integration), but I am of the opinion that if someone can take care of
your problems for a reasonable price, it's better than solving them yourself and add more
moving parts to your already complex system. In this case, the registry, the build pipeline,
and the automation are taken care of by Google Cloud Platform.

[261]

Release Management — Continuous Delivery Chapter 8

Setting up Jenkins

In the preceding section, we leveraged the image operations to Google Cloud Platform, but
now, we need to manage Kubernetes in a CI/CD fashion from somewhere. In this case, we
are going to use Jenkins for this purpose. We have several options here:

¢ Deploy Jenkins in Kubernetes
¢ Install Jenkins in baremetal
e Install Jenkins in a container outside of Kubernetes

Lately, Jenkins has become Kubernetes-friendly with a plugin that allows Jenkins to spawn
slaves when required in a containerized fashion so that it leverages the provisioning and
destruction of hardware to Kubernetes. This is a more than interesting approach when your
cluster is big enough (50+ machines), but when your cluster is small, it may be problematic
as it can lead into a noisy neighborhood.

I am a big fan of segregation: CI/CD should be able to talk to your production infrastructure
but should not be running in the same hardware for two reasons:

¢ Resource consumption
¢ Vulnerabilities

Think about it: a CI/CD software is, by default, vulnerable to attackers as it needs to execute
commands through an interface; therefore, you are giving access to the underlying
infrastructure to a potential attacker.

My advice: start simple. If the company is small, I would go for Jenkins in a container with a
volume mounted and evolve the infrastructure up to a point where your cluster is big
enough to accommodate Jenkins without a significant impact; move it into your cluster in a
dedicated namespace.

In the chapter 4 (Continuous Integration), we set up Jenkins in a container without making
use of any volume, which can be problematic as the configuration might be lost across
restarts. Now, we are going to set up Jenkins in bare metal so that we have another way of
managing Jenkins.

[262]

Release Management — Continuous Delivery

Chapter 8

The first thing that we need to do is create a machine in GCP.

{# Compute Engine

B VM instances

#i Instance groups
2] Instance templates
B Disks

Snapshots
il Images

Committed use discounts

22 Metadata

B Health checks
95 Zones

@® Operations
lm] Quotas

£ Settings

& Create an instance

Name

jenkins

Zone

europe-west1-b
Machine type

small (1 shared... - 1.7 GB memory

Boot disk

k New 10 GB standard persistent disk
Image

7 Ubuntu 16.04 LTS

Identity and APl access

Service account
Compute Engine default service account

Access scopes

® Allow default access
Allow full access to all Cloud APIs
Set access for each API

Firewall

Customise

Change

Add tags and firewall rules to allow specific network traffic from the Internet

Allow HTTP traffic
Allow HTTPS traffic
Management Disks

Networking SSH Keys

MNetwork tags

Network interfaces

default default (10.132.0.0/20)

‘ =+ Add network interface

$14.96 per month estimated

Effective hourly rate 50.02 (730 hours per month)

Details

The preceding screenshot is the configuration of my Jenkins machine. A few important

aspects are as follows:

¢ Ubuntu instead of Debian (I selected the latest LTS version of Ubuntu)

¢ Small instance (we can scale that later on)

¢ Changes might need to be done to the firewall in order to access Jenkins

[263]

Release Management — Continuous Delivery Chapter 8

Everything else is standard. We are not attaching a static IP to Jenkins as this is just a demo,
but you probably want to do that, as you learned earlier, as well as have an entry in the
DNS that can have a static reference point for your CI server.

It also would be a good exercise to do this in Terraform as well so that you can manage
your infrastructure in an Infrastructure as code (IaC) fashion.

Once the machine has spun up, it is time to install Jenkins. We are going to follow the
official guide, which can be found at https://wiki.jenkins.io/display/JENKINS/
Installing+Jenkins+on+Ubuntu

Using the web SSH Terminal from the Google Cloud platform, open a shell to your newly
created machine and execute the following commands:

wget —q -O - https://pkg.jenkins.io/debian/jenkins—-ci.org.key | sudo apt-—
key add -

Then, add the Jenkins repository:

sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list"’

Then, update the list of packages:
sudo apt-get update

And finally, install Jenkins:
sudo apt—-get install jenkins

That's it. Once the preceding command is finished, Jenkins should be installed and can be
started, stopped, and restarted as a service. To ensure that it is running, execute the
following command:

sudo service jenkins restart

Now if we browse the public IP in our server on port 8080, we get the initial screen for
Jenkins.

You might need to tweak the firewall to allow access to port 8080 on this
machine.

[264]

https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu

Release Management — Continuous Delivery Chapter 8

This initial screen is familiar, and we need to get the password to initialize Jenkins. This
password is in the logs:

cat /var/log/jenkins/jenkins.log

Enter the password and initialize Jenkins (suggested plugins). This might take a while;
meanwhile, we also need to set up the Gcloud SDK. First, switch to the user Jenkins:

sudo su jenkins
And then just execute the following;:

curl https://sdk.cloud.google.com | bash

Once the installation finishes. you need to open a new shell for the changes to take effect.
Do that and install kubect1:

gcloud components install kubectl

Now that we have the Kubect1 binary in our system, we need to connect it to a cluster, but
first, it's time to create a cluster. As you learned in previous chapters, just create a cluster
with three machines of a small size. Once it is created, connect to the cluster from the
Jenkins machine, as shown in the previous chapter, but first, run gcloud init to configure
anew auth session (option 2) with your account.

Once you are done, make sure that kubect1 can talk to your cluster by executing a test
command, as follows:

kubectl get nodes

You should list the three nodes that compound your cluster. Now we need to make
kubect1 accessible to the user jenkins. Just run the following command:

ln -s /root/google-cloud-sdk/bin/kubectl /usr/bin/kubectl

[265]

Release Management — Continuous Delivery

Chapter 8

Change the owner to Jenkins:

Now, going back to Jenkins, set up the admin user as shown in the following screenshot:

Getting Started

Usuario: admin
Contrasefia: e
Confirma la contrasena: = «eeee
Nombre completo: admin

Direcciéon de email: admin@admin.com|

Jenkins 2.60.3

Create First Admin User

Continue as admin Save and Finish

Click on Save and Finish, and it's done.

Before we start creating jobs, we need to make the binary kubectl available to the user

jenkins. Login as root and execute:

1n -s /var/lib/jenkins/google-cloud-sdk/bin/kubectl /usr/bin/kubectl

This will make sure that the kubect1 command for jenkins points to the SDK installed by

the jenkins user in the preceding steps.

[266]

Release Management — Continuous Delivery Chapter 8

Now, we have everything:

Jenkins

The Google Cloud SDK

A GKE cluster

¢ A connection between Jenkins and GKE

Before proceeding, we are going to make sure that everything works as expected. Go to
Jenkins and create a new free style project and add a build step with the following
command:

kubectl get nodes

Save the project and run it. The output should be very similar to what is shown in the
following screenshot:

O

Jenkins Test #14

& Back to Project

P
Status () Console Output
—» Changes
Started by user admin
B Console Output Building in workspace /var/lib/jenkins/workspace/Test

. [Test] $ /bin/sh -xe /tmp/jenkins3653688556272728014.sh
View as plain text !
+ whoami
jenkins
+ kubectl get nodes

 Edit Build Information

® Delete Build NAME STATUS AGE VERSION
gke-cd-implementing-mode-default-pool-deea8a7c-3vd2 Ready 37m v1.6.7

€4 Previous Build gke-cd-implementing-mode-default-pool-deea8aZc-fmxs Ready 37m v1.6.7
gke-cd-implementing-mode-default-pool-deea8a7c-rsz8 Ready 37m v1.6.7

Finished: SUCCESS

This indicates that we are good to go.

In general, Jenkins and other CI systems should never be exposed over the
internet. Never. It only takes a weak password for someone to destroy
your system if it is accessible to the public. In this case, as an illustrative
example, we have not configured the firewall, but in your company, you
should allow access only from the IP of your office.

[267]

Release Management — Continuous Delivery Chapter 8

Continuous delivery for your application

Up until now, we have set up a few elements:

¢ A GitHub repository with our code (aggregator)

¢ A continuous delivery pipeline in GCP for our Docker image that gets fired once
we tag the code

¢ A Kubernetes cluster
e Jenkins connected to the preceding cluster

Now we are going to set up the continuous delivery pipeline for our code and the
Kubernetes infrastructure. This pipeline is going to be actioned by a Jenkins job, which we
will trigger manually.

You might be thinking that all that you have read about Continuous Delivery (CD) is about
transparently shipping code to production without any human intervention, but here we
are, with a few events that need manual steps in order to action the build. I have worked in
some places where continuous delivery is triggered automatically by changes in the master
branch of your repository, and after few incidents, I really believe that a manual trigger is a
fair price to pay for having an enormous amount of control over the deployments.

For example, when publishing the image, by creating a tag manually in order to build our
image, we are adding a barrier so that no one accidentally commits code to master and
publishes a version that might be unstable or, even worse, insecure. Now we are going to
do something similar, but the job that releases our code is going to be actioned manually in
Jenkins, so by controlling the access to Jenkins, we have an audit trail of who did what, plus
we get role-based access control for free. We can assign roles to the people of our team,
preventing the most inexperienced developers from creating a mess without supervision
but still allowing enough agility to release code in an automated fashion.

The first thing that we need to do is create a repository that we are going to call
aggregator-kubernetes in GitHub to host all our YAML files with the Kubernetes
resources. We will do this for utcdate-service and isodate-service, but let's do the
aggregator first.

[268]

Release Management — Continuous Delivery

Chapter 8

Once we have created our repository, we need to create our Kubernetes objects to deploy
and expose the service. In short, our system is going to look like what is shown in the

following diagram:

|
Service
/f \\
; APl Aggregator APl Aggregator
Repli _
eplicaSet Pod Pod
Kubernetes ‘
Netrrork ‘ ulc-date; 3000 ‘ so-date:3001
Service Service
™ / ‘\\
/ \\ . , 5
UTC Date UTC Date |
¥ ; IS0 Date Service IS0 Date Service
Service Service
5, : !
h / ¥
5
Y / \
\-. f A
ReplicaSet ReplicaSet

On the above picture, we can see the Kubernetes objects (ReplicaSet and Service) that we
need to create for each application (deployments are omitted). In red, we can see the
application itself. For now, we are focusing on the aggregator, so we need to create a

Replicaset that is going to be managed by a Deployment and a Service of the

LoadBalancer that is going to expose our API to the rest of the world through a gcloud

load balancer.

[269]

Release Management — Continuous Delivery Chapter 8

The first element that we need is our deployment:

apiVersion: extensions/vilbetal
kind: Deployment
metadata:

name: aggregator
spec:

replicas: 2

template:

metadata:

labels:
app: aggregator-service

spec:

containers:

— name: aggregator-service
image: eu.gcr.io/implementing-modern-devops/aggregator-service:1.0
ports:

— containerPort: 8080

This is nothing that we wouldn't expect. It's a simple deployment object with the image that
our automatic build process has created for us (remember, we created a tag with the version
1.0...also remember to customize it to your project). In our new repository, aggregator-
kubernetes, save this file under a folder called objects with the name deployment .yaml.
Now it is time to create the service that is going to expose our application:

kind: Service
apivVersion: vl
metadata:
name: aggregator-service

spec:
ports:
- port: 80
targetPort: 8080
selector:

app: aggregator-service
type: LoadBalancer

Again, it's very straightforward: a service that exposes anything tagged with app:
aggregator-service to the outside world via a load balancer in Google cloud. Save it
inside the objects folder with the name service.yaml. Now it is time to commit the
changes and push them to your GitHub repository:

git add

[270]

Release Management — Continuous Delivery Chapter 8

And then, execute this:

git commit -m 'Initial commit'
And finally, look at this:

git push origin master

By now, you have all the code for the infrastructure of the aggregator sitting in your
GitHub repository with a layout similar to the following:

dgonzalez [aggregator-kubernetes @uUnwatch> 1 HStar 0 | ¥Fork 0
<> Code Issues 0 Pull requests o Projects 0 Wikl Settings Insights ~
No description, website, or topics provided. Edit
Add topics
D 1 commit 1 branch © Dreleases 22 1 contributor
Branch: master v New pull request Create new file = Upload files Find file Clone or download ~
ﬂ dgonzalez Initial commit Latest commit fdbleb7 23 seconds ago
| objects Initial commit 23 seconds ago
Help people interested in this repository understand your project by adding a README.

Inside the objects folder, you can find the two YAML files: deployment .yaml and
service.yaml. We can run these files locally with kubect1 (connecting them to the cluster

first) in order to verify that they are working as expected (and I recommend that you do
this).

[271]

Release Management — Continuous Delivery Chapter 8

Now it is time to set up a Jenkins job to articulate our build. Create a new freestyle project
in Jenkins with the following configuration:

Source Code Management
None
0 Git
Repositories @
Repository URL git@github. ait ®
Failed to connect to repository : Command "git Is-remote -h g| git HEAD" returned status code 128:
stdout:
stderr: Host key verification failed.
(@ fatal: Could not read from remote repository.
Please make sure you have the correct access rights
and the repository exists.
Credentials -none- 4 = Add
Advanced..
Add Repository
Branches to build [x |
Branch Specifier (blank for ‘any’) */master @
Add Branch
Repository browser | (Auto) 1 @
Additional Behaviours ~ Add +
Subversion ®

First, look at the GitHub repository. As you can see, it is creating an error, and that's is only
because GitHub needs an SSH key to identify the clients. GitHub explains how to generate
and configure such keys at https://help.github.com/articles/connecting-to—github-
with-ssh/.

Once you have added the credentials with the private key that was generated, the error
should be removed (remember, the type of credentials is 'SSH key with username’, and your
username has to match the one in GitHub).

Here, we can play a lot with Cit options, such as creating a tag on every build in order to
trace what is going in your system or even building from tags. We are going to build the
master branch: no tags this time.

[272]

https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/connecting-to-github-with-ssh/

Release Management — Continuous Delivery Chapter 8

Now, we are going to add our only build step for this job:

Build

~

/_
®

Execute shell

Command kubectl apply -f objects/

See the list of available environment variables

- I

Advanced...

As you learned in previous chapters, with kubect1 apply, we can pretty much rule the
world. In this case, we are adding our folder with the yamls as a parameter; therefore,
kubect1 is going to action on Kubernetes with the YAML definitions that we are going to
create.

Save the job and run it. Once it finishes, it should be successful with a log similar to the
following one:

@Jenkins Qsearch @ admin llogout

Jenkins aggregator-kubemetes #3

Back to Project

. Status @ Console Output

= Changes
Started by user admin
& console Output Building in workspace /var/lib/jenkins/workspace/aggregator-kubernetes
> git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
> git config remote.origin.url git@github.com:dgonzalez/aggregator-kubernetes.git # timeout=10
Fetching upstream changes from git@github.com:dgonzalez/aggregator-kubernetes.git

View as plain text

-~ Edit Build Information

Q Delete Build > git --version # timeout=10
using GIT_SSH to set credentials

0 Git Build Data > git fetch --tags --progress git@github.com:dgonzalez/aggregator-kubernetes.git
+refs/heads/*:refs/remotes/origin/*

E;; No Tags > git rev-parse refs/remotes/origin/master”{commit} # timeout=10

> git rev-parse refs/remotes/origin/origin/master”{commit} # timeout=10
Checking out Revision 37c26878d713dfcealb2bc770de907ac6aa84455 (refs/remotes/origin/master)
Commit message: "Update deployment.yaml"

> git config core.sparsecheckout # timeout=10

> git checkout -f 37c26878d713dfcealb2bc770de907ac6aas4455

> git rev-list £dbl0b74c7ac449975£43469c6£c£0106e8002d8 # timeout=10
{aggregator-kubernetes] $ /bin/sh -xe /tmp/jenkins8710826032488836149.sh

43 Previous Build

+ kubectl apply -f objects/
deployment "aggregator” configured
service "aggregator-service" configured
Finished: SUCCESS

[273]

Release Management — Continuous Delivery Chapter 8

This job might fail a few times as there are many moving parts. By now,
you have enough knowledge to troubleshoot the integration of these parts.

That's it. Our Continuous Delivery (CD) pipeline is working. From now on, if we want to
make changes to our aggregator, we just need to add/modify files to our code repository,
tag them with a new version, modify our aggregator-kubernetes definitions to point to
the new image, and kick off our Jenkins job.

There are two extra steps:

¢ Create a tag
e Kick off a job manually

This is the price you pay for having a lot of control in our deployment but with a bit of a
secret sauce: we are set for a great deployment flexibility, as we are going to see in the next
section, but first, you should repeat the same exercise for utcdate-service and isodate-
service so that we have our full system running. If you want to save a lot of time or check
whether you are going in the right direction, check out my repository at https://github.

com/dgonzalez/chronos.

Inside every service, there is a folder called definitions that contains the Kubernetes objects
to make everything work.

Be careful with the name of the services: the aggregator is expecting to be
able to resolve isodate-service and utcdate-service from the DNS,
so your Services (Kubernetes objects) should be named accordingly.

Regular release

Now we are all set; if you've completed the deployment of utcdate-service and
isodate-service, a fully working system should be installed on Kubernetes. The way it
works is very simple: When you get the URL of the aggregator in the
/dates/{timestamp} path, replacing timestamp with a valid UNIX timestamp, the service
will contact utcdate-service and isodate-service and get the timestamp converted
into the UTC and ISO formats. In my case, the load balancer provided by Google Cloud
Platform will lead to the URL: http://104.155.35.237/dates/1111111111.

[274]

https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos
https://github.com/dgonzalez/chronos

Release Management — Continuous Delivery Chapter 8

It will have the following response:

{
utcDate: "2005-03-18T01:58:31",
isoDate: "2005-03-18T01:58:31.000z"
}

You can play around with it for a bit, but it is nothing fancy: just a simple demo system that
makes microservices and their automation easy to understand. In this case, we are not
running any test, but for a continuous delivery pipeline, testing is a must (we will talk about
this later).

Now as the title of the section suggests, we are going to create a new version of our
application and release it using our continuous delivery pipeline.

Our new version it is going to be very simple but quite illustrative. On the aggregator,
replace index. js with the following code:

const Hapi = require('hapi')
const server = new Hapi.Server ()
let request = require('request')

server.connection ({port: 8080})

server.route ({
method: 'GET',
path: '/dates/{timestamp}',
handler: (req, reply) => {
const utcEndpoint =
“http://utcdate-service:3001/utcdate/${req.params.timestamp}"’
const isoEndpoint =
“http://isodate-service:3000/isodate/${req.params.timestamp}"’
request (utcEndpoint, (err, response, utcBody) => {
if (err) {
console.log(err)
return
}
request (isoEndpoint, (err, response, isoBody) => {
if (err) {
console.log(err)
return
}
reply ({
utcDate: JSON.parse (utcBody) .date,
isoDate: JSON.parse (isoBody) .date,
raw: req.params.timestamp
)

[275]

Release Management — Continuous Delivery Chapter 8

server.start ((err) => {
if (err) {
throw err

}
console.log('aggregator started on port 8080")

H)

In the highlighted part, we have added a new section to the return object that basically
returns the raw timestamp. Now it is time to commit the changes, but first, let's follow a
good practice. Create a branch:

git checkout -b raw-timestap

This is going to create a local branch called raw-t imestamp. Now commit the changes
created in the preceding code:

git add . && git commit -m 'added raw timestamp'

And push the branch to GitHub:
git push origin raw-timestamp

If we visit the GitHub interface now, we'll notice that something has changed:

[276]

Release Management — Continuous Delivery Chapter 8

[dgonzalez | aggregator @uUnwatch~ 1 KStar 0 YFork 0
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Settings Insights +
No description, website, or topics provided. Edit
Add topics
1 commit P 2 branches © 1release 22 1 contributor

Your recently pushed branches:

¥ raw-timestamp (less than a minute ago) {7 Compare & pull request
Branch: master v New pull request Create new file Upload files Find file Clone or download v

ﬂ dgonzalez Initial commit Latest commit 7ff@ccl 5 days ago
) Dockerfile Initial commit 5 days ago
[index.js Initial commit 5 days ago
) package.json Initial commit 5 days ago

Heln peoole interested in this renository understand your project by adding a README.

[277]

Release Management — Continuous Delivery Chapter 8

It is suggesting that we create a Pull requests. Basically, a pull request is a request to add
code to a repository. Click on Compare & pull request and then add a description in the
new form and click on Create pull request. This is the outcome:

added raw-timestamp Edit
JWIe'LY N dgonzalez wants to merge 1 commit into master from raw-timestamp
(& Conversation 0 -0- Commits 1 Files changed 1 +2 -1 .
- .)
gn dgonzalez commented just now Owner Reviewers

No reviews—request one
added raw-timestamp.

Assignees
added raw-timestamp 4a09bf6 No one—assign yourself

Add more commits by pushing to the raw-timestamp branch on dgonzalez/aggregator. Labels

None yet

J
° This branch has no conflicts with the base branch

Merging can be performed automatically. Projects

None yet

Merge pull request 848 You can also open this in GitHub Desktop or view command line instructions.
Milestone

No milestone

There are three tabs:

e Conversation
o Commits
¢ Files changed

The first one is a list of comments by the participants. The second tab is the list of commits
that they pushed into the server, and the third one is the list of changes in diff style with
additions and deletions, where you can drop comments asking for changes or suggesting
better ways of doing things. In big projects, the master branch is usually blocked, and the
only way to push code into it is via pull requests in order to enforce the review of the code.

Once you are happy, click on Merge pull request and merge the code. This pushes the
changes into the master branch (needs confirmation).

[278]

Release Management — Continuous Delivery Chapter 8

Now we are ready to create a tag. This can be done via the GitHub interface. If you click on
the release link (beside the number of contributors above the list of files), it brings you to
the releases page:

L] dgonzalez / aggregator @uUnwatchv 1 dStar 0 YFork 0

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Settings Insights ~

Tags Draft a new release

1.0

5 days ago o 7ffoccl [Dzip [tar.gz

There, you can see the tag that we created earlier from the terminal and a button called
Draft a new release. Click on it, and it will show a new form:

L1 dgonzalez / aggregator @uUnwatch~ 1 %Star 0 YFork 0

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Settings Insights ~

Tagging suggestions

2.0 @ P Target: master ~ , ;)
It's common practice to prefix
Excellent! This tag will be created from the target when you publish this release. your version names with the letter
v. Some good tag names might be
Raw timestamp v1.00r v2.3.4.

If the tag isn’t meant for
Write Preview CD Markdown supported production use, add a pre-release
version after the version name.
Some good pre-release versions
might be v@.2-alpha or v5.9-
beta.3.

This release adds the raw timestamp to the response payload‘|

Semantic versioning

If you're new to releasing
software, we highly recommend
reading about semantic
versioning.

Attach files by dragging & dropping, selecting them, or pasting from the clipboard.

[279]

Release Management — Continuous Delivery Chapter 8

Fill in the details, as shown here, and create the release. This creates a tag that is connected
to our container registry in Google Cloud Platform, and by now (it is very quick), a new
version of our image should be available:

= Google Cloud Platform & Implementing Modern De... ~ Q

[.‘.] Container Registry & Container Registry C REFRESH

[Container Registry

eu.gerio /i i dern-devops / vice

i

Build triggers —

Build history
Name Tags Virtual size Uploaded

[] sesesifaedes — 4 258 MB 30 Jul 2017
[i=] 857852568626 1.0 : 258.7 MB 5 days ago

[=] eaadd3afeasf 20 /' 258.7 MB 1 minute ago

As you can see, there is a good level of control over what is going into our production
buckets (registry and cluster). Now the only step left is to release the new version into
Kubernetes. Go back to the repository called aggregator-kubernetes (we created it in
the preceding section) and change the tag of the image in the deployment.yaml file from
eu.gcr.io/implementing-modern—-devops/aggregator—-service:1.0 to
eu.gcr.io/implementing-modern-devops/aggregator-service:2.0. Be aware that
the project needs to be tailored to your configuration.

Once this is done, commit and push the changes (from aggregator-kubernetes folder):

git add . && git commit -m 'version 2.0 of aggregator' && git push origin
master

Now everything is ready. We are at the edge of the cliff. If we click on Run in the job that
we created in Jenkins, the new version of the software is going to be deployed in
Kubernetes with zero downtime (depending on your configuration, as seen earlier); we
have the control. We can decide when is the best time to release, and we have an easy way
to roll back: revert the changes and click on Run again in Jenkins.

Once you are comfortable with the changes, run the job that we created in Jenkins (in my
case, aggregator—kubernetes).

[280]

Release Management — Continuous Delivery Chapter 8

If you hit the same URL as earlier (http://104.155.35.237/dates/1111111111), the
result should have changed a bit:

{
utcDate: "2005-03-18T01:58:31",
isoDate: "2005-03-18T01:58:31.000z",
raw: "1111111111"

}

The new version is up. As you can imagine, this is a fairly powerful argument to adopt
DevOps: release software transparently to the users with minimal effort (create a tag and
run a job in Jenkins).

In the next section, we are going to execute the same deployment but using a technique
called blue-green deployment, which consist on release the new version in a private mode
running in the production environment in order for us to test the features before making
them available to the general public.

Blue-green deployment

In order to execute a blue-green deployment, first, we need to roll back to version 1.0. Edit
deployment.yaml in aggregator-kubernetes, adjust the image to the tag 1.0, and push
the changes to GitHub. Once that is done, run a job called aggregator-kubernetes in
Jenkins, and there you go; we have rolled back to version 1.0. Leave version 2.0 of the image
in the registry as we are going to use it.

A blue-green deployment is a technique used to release software to production that is not
visible to the general public, so we can test it before making it available to everyone.
Kubernetes makes this extremely simple: the only thing we need to do is duplicate the
resources in aggregator-kubernetes and assign to them different names and tags. For
example, this is our deployment-bluegreen.yaml:

apiVersion: extensions/vlbetal
kind: Deployment
metadata:
name: aggregator—-bluegreen
spec:
replicas: 2
template:
metadata:
labels:
app: aggregator—-service-2.0
spec:

[281]

Release Management — Continuous Delivery Chapter 8

containers:
— name: aggregator-service
image: eu.gecr.io/implementing-modern—-devops/aggregator-service:2.0
ports:
— containerPort: 8080

And this is our service-bluegreen.yaml:

kind: Service
apiVersion: vl
metadata:
name: aggregator-service-bluegreen
spec:
ports:
- port: 80
targetPort: 8080
selector:
app: aggregator-service-2.0
type: LoadBalancer

As you can see, we have created a vertical slice of our app with a different set of
selectors/tags; therefore, our original version is working, but now, we have a new service
called aggregator-service-bluegreen that serves the new version of our application
via a load balancer, which we can check via the Kubernetes interface (using the kubect1
proxy command, as explained earlier):

Services
Name Labels Cluster IP Internal endpoints External endpoints
tor- ice:80
@ aguregator-service : 10.63.248.231 aggregatorservice 104.155.35.237:80 & :
aggregator-service:311...
aggregator-service-blu...
& aggregator-service-blu... - 10.63.241.255 9greg) 146.148.17.32:80 &
aggregator-service-blu...
; isodate-service:3000 T...
& isodate-service - 10.63.244.240 icodate-service:0 TCP
component: apiserver kub tes:443 TCP .
@ kuberetes 10.63.240.1 upernetes: :
provider: kubernetes kubernetes:0 TCP
@ utcdate-service . 10.63.249.144 utedate-service:3001 T.. :
utcdate-service:0 TCP

If you play around the two external endpoints, you can see the difference: the new one is
returning the raw payload as well as the dates in the ISO format and in UTC timezone
(version 2.0), whereas the old one only returns the dates (version 1.0).

[282]

Release Management — Continuous Delivery Chapter 8

We are now in what we call the blue status: we are happy with our release and we are sure
that our software works with our production configuration without affecting any of our
customers. If there was any problem, no customers would have noticed it. Now it is time to
go to the green phase. We have two options here:

e Remove the aggregator-bluegreen deployment and all its children
(ReplicaSet and pods as well as the aggregator-service-bluegreen service)
and upgrade our base deployment (aggregator)

¢ Change the labels for the selector in the aggregator service and make it point to
the new Pods

In general, I am a big fan of the first option as it keeps things simple, but it is your choice;
also it's a good time for experimenting. Changing the selector in the service has an
immediate effect, and it is probably the easy route if you are in a hurry.

When working with complex systems, I always try to go over a blue-green deployment
phase to remove stress from the team. Think about it: instead of thinking that everything is
solid, you are actually verifying that everything works as expected with no surprises, so the
psychological factor of the uncertainty is gone at the moment of release.

In the next section, we are going to visit another type of release, which introduces a new
pod into the running system so we get to expose it to the users but only to a subset of them,
so if something goes wrong, it does not kill the system; it just produces some errors. Before
proceeding, make sure that you return your cluster to the original status: just a deployment
called aggregator with its pods (remove the blue-green deployment).

Canary deployment

There is a story about the name of this type of deployment, which very interesting. Before
all the gas detectors, miners used to bring a canary (the bird) into the mines, as they are
extremely sensitive to dangerous gases. Everybody was working normally but keeping an
eye on the bird. If, for some reason, the bird died, everybody would leave the mine in order
to avoid getting poisoned or even killed.

This is exactly what we are going to do: introduce a new version of our software, which will
actually produce errors if there is any problem so we only impact a limited number of
customers.

[283]

Release Management — Continuous Delivery Chapter 8

Again, this is done via the YAMI files using the selectors that our service is targeting but
with a new version of our app. Before continuing, make sure that you have only one
deployment called aggregator with two pods running the version 1.0 of our app (as
shown in the Regular Release section).

Now, in aggregator-kubernetes, create a file (inside objects folder) with the following
content:

apiVersion: extensions/vibetal
kind: Deployment
metadata:
name: aggregator—canary
spec:
replicas: 1
template:
metadata:
labels:
app: aggregator-service
spec:

containers:

— name: aggregator-service
image: eu.gcr.io/implementing-modern-devops/aggregator-service:2.0
ports:

- containerPort: 8080

Here's an easy explanation: we are creating a new deployment, with only one Pod, with the
same tags that the original deployment pods (aggregator) has; therefore, the
aggregator-service is going to target this pod as well: three in total.

Push the changes to GitHub and run the job aggregator-kubernetes, which will apply
this configuration to our cluster. Now open the endpoint that we used earlier for testing, in
my case, http://104.155.35.237/dates/1111111111, and keep refreshing the URL a
few times. Approximately, one-third of the requests should come back with the raw

timestamp (new version of the app) and two-third should come back without it (version
1.0).

[284]

Release Management — Continuous Delivery

Chapter 8

You can verify that everything went well via the Kubernetes dashboard by checking the

aggregator—-service:

= kubernetes Services and discovery > Services > aggregator-service

Workloads Details

Deployments
Reslen S Name: aggregator-service
Namespace: default
Replication Controllers

Annotations: |ast applied configuration
Daemon Sets

Creation time: 2017-08-26T16:48
Stateful Sets

Label selector: app: aggregator-service
Jobs

Type: LoadBalancer
Pods

Services and discovery

Pods
Services
Ingresses Name Status
Storage 0 aggregator-1418733932-g0c.. Running
Persistent Volume Claims 0 aggregator-1418733932-rns3l Running
Config 0 aggregator-canary-16153419 Running

Restarts

0

0

0

/' EDIT W DELETE

Connection

Cluster IP: 10.63.248.231

Internal endpoints: aggregator-service:80 TCP
aggregator-service:31107 TCP

External endpoints: 104.155.35.237:80 &

Age CPU (cores) Memory (bytes)

35 minutes Ao I 36.953 Vi
35 minutes Ao N 55 527 vi
4minutes gl 0 I 35520 Vi

+ CREATE

Here, you can see the newly created pod being targeted by our service. I usually leave this
status for a few hours/days (depending on the release), and once I am happy, I remove the
canary deployment and apply the configuration to the aggregator deployment. You can
play with the number of replicas as well in order to change the percentage of the users that
get the new version or even gradually increase the number of canaries and decrease the

number of regular pods until the application is completely rolled out.

This strategy is followed by big companies such as Google to release new features with a lot
of success. I am a big fan of using it as starting point when the system is big enough (10 +
pods running), but I would be reluctant to do that in a small system as the percentage of
affected requests would be too big (33.3% in the preceding example).

[285]

Release Management — Continuous Delivery Chapter 8

Summary

This chapter was pretty intense: we set up a CD pipeline as well as visited the most
common release strategies, which, using Kubernetes, were within the reach of our hand.
Everything was automated except a couple of checkpoints that were left on purpose so that
we could control what was going in our system (just for peace of mind). This was the climax
of the book: even though the examples were basic, they provided you with enough tools to
set up something similar in your company in order to get the benefit of working with
microservices but padding the operational overhead that they involve as well as facilitating
the release of new versions.

In the next chapter, we will learn an important aspect of continuous delivery: monitoring.
With the right monitoring in place we can remove a lot of stress from the releases so that
our engineers are more confident on being able to catch errors early leading into smoother
rollouts and a lower production bug count.

[286]

Monitoring

Introduction

So far, we have seen a large number of tools that we can use as DevOps engineers in our
company to enhance our capabilities. Now we are able to provision servers with Ansible,
create Kubernetes clusters on Google Cloud Platform, and set up a delivery pipeline for our
microservices. We have also dived deep into how Docker works and how we should
organize our company to be a successful delivering software.

In this chapter, we are going to take a look at the missing piece of the puzzle: monitoring.
Usually overlooked, monitoring is, in my opinion, a key component of a successful DevOps
company. Monitoring is the first line of defense against problems. In chapter 8, Release
Management — Continuous Delivery, we talked about how we should shift our focus toward
being able to fix the arising problems rather than spending a huge amount of resources in
trying to prevent them:

20 percent of your time will create 80 percent of the functionality. The other 20 percent is
going to cost you 80 percent of your time.

This non-written rule dominates the world. With monitoring, we can bend this rule to live
comfortably with 20 percent of unknown outcomes as we are able to identify the problems
quite quickly.

We will review some of the tools to monitor software, but our focus will be on Stackdriver,
as it is the monitoring solution from Google Cloud Platform that, out of the box, provides us
with a fairly comprehensive set of tools to deal with the flaws in our systems.

Monitoring Chapter 9

Types of monitoring

In the SRE book from Google, there are two types of monitoring defined:

¢ BlackBox monitoring
e WhiteBox monitoring

This is generally accepted by everyone, leading to a solid amount of tools that are clearly
differentiated around whitebox and blackbox monitoring.

One of the best comparisons I've ever heard on whitebox versus blackbox monitoring is the
diagnosis of a bone fracture. When you first go to the doctor, he/she only has access to your
blackbox metrics:

¢ Does the area have any bump?
e Is it painful on movement?

Then, once the initial diagnoses has been pronounced, the next step is getting X-rays from
the area. Now we can confirm whether the bone is broken and, if it is, what is the impact in
the system. The X-rays are the WhiteBox monitoring that the doctor is using.

Blackbox monitoring

Whitebox monitoring is the type of monitoring that observes a system from outside without
having to look into how the system is built. These metrics are the first ones that impact the
users and the first external symptoms that something is going wrong in our application or
server.

Among the metrics that can be used for blackbox monitoring, we can find the following
ones:

e Latency
e Throughput

These two metrics are the holy grail of blackbox monitoring.

The latency is, by definition, how long takes our system to respond. If we are looking at an
HTTP server, from the very first time that we sent the request to the time when the server
on the other side of the line replies is what we understand as latency. This metric is a fairly
interesting one because it is the absolute truth about how the users see our system: the
bigger the latency is, the worse the experience they get.

[288]

Monitoring Chapter 9

Throughput is extremely related to the latency. Basically, it is the number of requests that
our software can serve per time unit, usually per second. This measure is a critical one for
capacity planning, and you are discouraged to measure it in real time in a running system,
as it pushes a lot of load through the system, which is surely going to affect the response
time for live users. In general, throughput is measured at the performance testing stage of
our application, which might be tricky:

e The hardware for testing has to match production
¢ The dataset for the database has to be similar to production

The performance testing step is usually overlooked by many of the companies as it is fairly
expensive. That is why preproduction is usually used for capacity testing in order to guess
the amount of hardware needed in production. Nowadays, this is less problematic, as with
auto scaling groups in the cloud infrastructure, it becomes less of a problem as the
infrastructure is going to scale on its own when needed.

As you can see, these metrics are fairly simple to understand, and even though they play a
key role in the error response time, they might not be the first indicators of problems.

Whitebox monitoring

Whitebox monitoring, as the name indicates, is the monitoring that needs to know about
how the system is built in order to raise alerts on certain events happening inside of our
application or infrastructure. These metrics are quite fine-grained (unlike blackbox
monitoring), and once we have been alerted, they are the answer to the main questions of a
postmortem analysis:

e Where is the problem?

e What is causing the problem?

e Which flows are affected?

¢ What can we do to avoid this in future?

Among other metrics, these are a fairly interesting set of examples:

e Function execution time
e Errors per time unit

Requests per time unit
¢ Memory usage
CPU usage

[289]

Monitoring Chapter 9

e Hard drive usage
e]/O operations per time unit

As you can see, there is an endless number of whitebox metrics to ensure the stability of our
system. There are almost too many, so we usually need to pick the right ones in order to
avoid the noise.

An important detail here is the fact that when a blackbox monitoring metric gives an
abnormal reading, there is always a whitebox metric that can be used to diagnose, but it is
not true the other way around. A server can have a spike in the memory usage due to an
internal problem without impacting the users.

One of the most important artifacts in whitebox monitoring are the logging files. These files
are the ordered chain of events happening in our software, and usually, they are the first
line of attack to diagnose problems related to our software. The main problem with log files
is the fact that they are stored on production servers and we should not access them on a
regular basis just to check the log files as it is a security threat on its own. It only takes an
open terminal to a server forgotten by someone to give access rights to the wrong person.

Monitoring third-party tools

Monitoring is usually a good candidate to involve third-party companies. It requires a fair
amount of redundancy in the systems in order to keep the monitoring active, which is
primordial in order to ensure that we are not blind to what is happening in our system.

Another positive aspect of using third-party apps for monitoring is the fact that they don't
live in the same data center, and if they do (usually AWS), their redundancy is enough to
ensure stability.

In this section, we are going to take a look at three tools in particular:

e Pingdom
e Logentries
e AppDynamics

That doesn't mean that they are the best or the only tools in the market. There are other
interesting alternatives (for example, New Relic instead of AppDynamics) that are worth
exploring, but in this case, we are going to focus on Stackdriver, the monitoring solution for
Google Cloud Platform, due to a number of factors:

e It integrates very well with Google Cloud Platform

[290]

Monitoring Chapter 9

e It has a very interesting free tier
¢ The alerting systems are one of the most advanced systems you can find in the
market

Pingdom

Pingdom is a tool used to measure the latency of our servers from different sides of the
world. As you can see, if you have worked in a 24/7 company, latency across the globe
varies a lot depending on where our customers are in relation to our data centers. As a
matter of curiosity, if our server is in Europe, someone from Australia will have around 2-3
seconds extra on the latency.

Pingdom has servers spread across the globe to monitor how our users see the system and
take adequate measures to solve the problem (for example, spawning a new data center
closer to them).

You can register in Pingdom for free with a 14-days trial, but you need to enter a credit card
(don't worry; they will advise you when your trial is over so you can cancel the plan if you
don't want to continue with it).

Take a look at the following screenshot:

p Dashboard) Monitoring () e

ACCOUNT: 05:3 usPage.io ~

it . "
s@statussage.o Monitoring
@ Dashboard

Dashboard @ FLTER | O uP O ocown @ | | O PauseD

1

Search...

up

SITE NAME TYPE UP SINCE RESPONSE TIME / OUTAGES

Website

HTTP 1mo
statuspage.io
‘Staging Subdomain) HITP]
‘acmeapico.statuspagestagi...
Hold to Delete
Staging Manage . - - View Reparts
manage statuspagestaging....
Staging Front Facmg — - :
www.statuspagestaging.com 0min
Staging API o §d

api.statuspagestaging.com 0 min

[291]

Monitoring Chapter 9

As you can see, after specifying hosts, Pingdom will start issuing requests to the specified
URL and measuring the response time from different parts of the world.

Lately, Pingdom has included fairly interesting capabilities: now it can read custom metrics
through an endpoint in order to monitor an endless amount of data:

e Free space on the disks
¢ Used amount of RAM

e Stock levels (yes, you can send any number of items you have left in your
warehouse to Pingdom)

In general, I have used Pingdom quite successfully in the past to measure the latency in my
servers and improve the experience of the users by distributing the data centers
strategically across the globe to mitigate this problem. One of the most interesting insights
that Pingdom (and similar tools) can give you is that your site might be down due to
network splits on the internet or failures in some DNS servers (in the latter case, it is not
really down but Pingdom and users won't be able to reach it).

Logentries

Logentries is one of these companies that makes your life much easier when dealing with a
large number of logs. It basically solves one problem that was an impediment for few years:
it aggregates all the logs from your system in a common place with access controls and a
more than decent interface that allows you to quickly search through big datasets.

Creating an account is free, and it provides 30 days of usage with some limits that are more
than enough for testing and evaluation.

Go to https://logentries.com/ and create an account. Once you are logged in, the first
screen should be similar to what is shown in the following screenshot:

[292]

https://logentries.com/
https://logentries.com/
https://logentries.com/
https://logentries.com/
https://logentries.com/
https://logentries.com/
https://logentries.com/
https://logentries.com/

Monitoring Chapter 9

|OgeﬂEIJ | am writing a book ... ORY% (® David Gonzale... \/
B Add a Log Need Help? Contact Customer Support
Q
o Select How To Send Your Logs
>
oo Agent Syslog
A mm o - s
- Get real-time server statistics . - Open standards rsysiog %\‘ syslogd
e | A% L P

- Foll I th - Easy t fi
& ollow any logs on the server Linux Microsoft osx asy to connigure Rsyslog Syslog-Ng Syslogd

- Setup alerting in real-time Windows - Included in most linux steps
® Libraries

. W S & ry
i . ! " S S
Instrument directly from your application nede. @D @ iOS NET .V)Aél(‘ = |'I
- No need to worry about storing the logs
Nodejs PHP Python i0s NET Ruby Java Android JavaScript

- All logs sent directly from the application or

Client to Logentries
- Manual Platforms

Have UI o S
Feedback? - Token TCP 0 - EC2 Log Monitoring ||D g o
- Plain TCP, UDP - AWS Service Monitoring
Manual S3 Logs via AWS EC2 AWS AWS Docker
_Docker Lambda CloudTrail CloudWatch
Metrics

As you can see, there are explanations for how to configure the log aggregation in an
endless number of platforms: you can monitor from systems to libraries going through a
number of platforms (AWS, Docker, and so on).

Agents are usually a good choice for two reasons:

¢ They do not create coupling in your application (the agent reads the log files and
sends them to the Logentries servers)

¢ They push the complexity to a third-party software

But there are also other interesting options, such as manual log aggregation. In this case, we
are going to demonstrate how to use a custom logger to send logs from a very simple
Node.js application to Logentries. Create a folder called logentries and execute the
following command:

npm init

This assumes that Node.js is installed on your system, so if it is not, download any version
of Node.js from https://nodejs.org/en/ and install it.

[293]

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/

Monitoring Chapter 9

Now we need to install the Logentries library for Node.js. Logentries provides support for a
number of platforms, but support for Node.js is particularly good. Execute the following
command:

npm install —--save le_node

Once it is finished, we should have the required library installed. Now it is time to create a
simple Node . js program to demonstrate how it works, but first, we need to create a service
token. On the following screen, click on Manual and fill in the form, as follows:

logentries 1am writing a book ... @ Help ~ ® David Gonzale... v

¢ Manual
>
0 Log Name
The log Name should be short and descriptive. For example Apache Access, Hadoop Namenode.
 Bota |
=)
oo Testing
Select Log Set
@ Log Sets are used to group logs together. You might name them after the server type (e.g Pr i or after the Application (Web, DB).
o

Testing Set|

How Are The Logs Sent?

© Token TCP - logs are identified by a token.
Plain TCP, UDP - logs are sent via syslog.

Log Type (optional)

Shortcut of log type or leave it blank

o
Have U
Feedback?

Create Log Token

Logentries is able to understand many different types of logs, but it really shines on JSON
logs. We don't need to specify any type of logs for it to catch them, so leave this option
empty and give a name to the log and the set. Once you click on Create Log Token, the
token should be displayed after the button. Save it for later; you are going to need it.

[294]

Monitoring Chapter 9

Now if we go to the main dashboard, we should be able to see our log set called Testing
Set:

Iogemtr'\es | am writing a book ... Log Sets @ @ David Gonzale... v/
& Log Sets +Add New Log Sets
DemoSet
> (]
Search
- Internal Logs
oo o
View Select Sort
Logs LogsSets All None 1 .
Testing Set
¢ °
oo
Favourites
@ All Log sets (3)
DemoSet (0/1) v
Internal Logs (0/2) v
Testing Set (0/1) v
S
Have Ul
Feedback?

Now it is time to send some data:

const Logger = require('le_node')
const logger = new Logger ({token: '5bffdd28-fb7d-46b6-857a-c3a7dfed5410'})

logger.info('this is a test message')
logger.err('this is an error message')
logger.log('debug', {message: 'This is a json debug message', Jjson: true})

This script is enough to send data to Logentries. Be aware that the token specified has to be
replaced by the token obtained in the previous step. Save it as index. js and execute it a
few times:

node index.js

[295]

Monitoring Chapter 9

Once you have executed it a few times, head back to Logentries and open Test log inside
Testing Set:

logentries | am writing a book ... ORY% (® David Gonzale... v/
E&
Queries Mode where Time picker
R ¢ Savedv Simple v e.g. ExceptionTh Functions v B Last 20 Minutes n Reset
Search
>
Hide Chart
View Select Sort 4
oo Logs LogsSets All None Af il 2 l
oo
0
m Favourites 01:40 01:42 01:44 01:46 01:48 01:50 01:52 01:54 01:56 01:58
[i]=]
oo
Log Entries
All Log sets (3) Add log set
Labels: All (3) ; n
T (W) v L) Labels: A > Start live tail Log display~
@ » 15 Sep 2017 01:55:06.281 info this is a test message
Internal Logs (0/2) e » 15 Sep 2017 01:55:06.328 err this is an error message
/| Testing Set (1) " » 15 Sep 2017 01:55:06.328 { "message": "This is a json debug message", "json": true, "level": "debug" }
» 15 Sep 2017 01:55:59.665 info this is a test message
» 15 Sep 2017 01:55:59.715 err this is an error message
» 15 Sep 2017 01:55:59.715 { "message": "This is a json debug message", "json": true, "level": "debug" }
» 15 Sep 2017 01:56:30.243 info this is a test message
» 15 Sep 2017 01:56:30.293 err this is an error message
o » 15 Sep 2017 01:56:30.293 { "message": "This is a json debug message", "json": true, "level": "debug" }
Have Ul
Feedback?

Now you can see our logs in Logentries being aggregated. There are some interesting things
in Logentries that have been improving with time:

e The Ul is quite slick
¢ The search mechanisms are very powerful
¢ Logentries is able to live stream the logs in real time (more or less)

Regarding search mechanisms, Logentries has developed something called LEQL, which is
basically a language designed by Logentries to search for certain events using JSON fields
or just plain text searching. You can find more information about it at https://docs.

logentries.com/vl1.0/docs/search/.

[296]

https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/
https://docs.logentries.com/v1.0/docs/search/

Monitoring Chapter 9

The other interesting feature is the live tailing of the logs. Let's test that feature. Create
another file in the project called 1ivetail. js and add the following code:

const Logger = require('le_node')

const logger = new Logger ({token: '5bffdd28-fb7d-46b6-857a-b3a7dfed5410'})
setInterval (() => {

logger.info (' This is my timed log on ${Date.now() })

}, 500)

It does not need explanation: a function that gets executed every 500 milliseconds and sends
a log line to Logentries.

Execute the script:

node livetail.js

It might look like nothing is happening, but things are actually happening. Go back to
Logentries and click on the Start live tail button:

| am writing a book ... ORY% ® David Gonzale... \/
& .
Queries Mode where Time picker
Savedv Simple v e.g. ExceptionTh Functions v B Last 20 Minutes n Reset
Search
Hide Chart
View Select Sort A
oo Logs LogsSets Al None 4t %] §
ao [}
a*
Favourites 02:07:52 02:07:53 02:07:54 02:07:55 02:07:56
[2]=]
oo
Live Tail Running (10) "+
%70 All Log sets (3) Add log set
Q) Labels: All (40 Il Pause W Log display ™
DemoSet (0/1) NN
® » 15 Sep 2017 02:07:56.491 info This is my timed log on 1505437680282
Internal Logs (0/2) N » 15 Sep 2017 02:07:55.989 info This is my timed log on 1505437679779
- » 15 Sep 2017 02:07:55.487 info This is my timed log on 1505437679278
/| Testing Set (1) ~
» 15 Sep 2017 02:07:54.987 info This is my timed log on 1505437678777
/| Testing » 15 Sep 2017 02:07:54.485 info This is my timed log on 1505437678276
» 15 Sep 2017 02:07:53.983 info This is my timed log on 1505437677774
» 15 Sep 2017 02:07:53.479 info This is my timed log on 1505437677269
» 15 Sep 2017 02:07:52.973 info This is my timed log on 1505437676764
% » 15 Sep 2017 02:07:52.473 info This is my timed log on 1505437676262
0] » 15 Sep 2017 02:07:51.965 info This is my timed log on 1505437675758
[Feedback?

[297]

Monitoring Chapter 9

After a couple of seconds (or less), the logs will start flowing. This can be done on any log
file that is stored in Logentries, and it is a fairly interesting mechanism to debug problems
in our servers.

Logentries is also able to send alerts to a certain email. You can configure it to alert your
team on the following;:

¢ Exceptions

e Patterns

e Lack of logs

e Increased activity

This alert is usually the first indicator of problems on a system, so if you want an early
response to errors, the best practice is to try to reduce the noise up to a point where alerts
are not missed and the false positives are reduced to a minimum.

AppDynamics

AppDynamics was the king for a while (as it was the only real option on monitoring). It is a
very curated software that allows you to explore what is going on in your software and
servers: exceptions, requests per time unit, and CPU usage are among many other metrics
that AppDynamics can capture for us.

It also captures interactions with the third-party endpoints: if our software is consuming a
third-party API, AppDynamics will know about it and display the calls in a dashboard
similar to the next screenshot:

[298]

Monitoring Chapter 9

APPDYNAMICS Home Applications User Experience Databases Servers Analytics Dashboards & Reports Alert & Respond &

ECommerce ~ ECommerce (e} Baseline...) last 15 minutes ?
Dashboard Events Top Business Transactions Transaction Snapshots Transaction Score Actions
) Application Flow Map = Wi I FEvents
@ Business Transactions No Events in selected time range
INVENTORY-MySQL..ubuntu0.14.04.2 Oracle DB-Oracl.. 4bit Production
4) iness T n
ool Service Endpoints 50 calls /min, 8 ms - Business Transaction Health
Joc e
5 “"j[:B’:,'" gme - 0 critical, 0 warning, 46 narmal
Il Tiers& Nodes i P
417 ms ECommerce Fulfiliment_1 Node Health
192 calls £ min, 103 % T @ 4
= Sservers S " .
= Addn i
e e . e 17 calls/ min, 355 7 critical, 0 warning, 1 normal
670 ms. TP
S errars T 96 calls min, 4 ms
& Databasecalls i e . 4 Servers
Irentary-Services -
3 J%-Ofacke DB-OR..4bk Production 0 critical, 0 warning, 7 normal
(mutiple) calls Lmin8.5 s 6 calls / min, - (asyne) Transaction Scorecard
. 4 JoBC @y - s o
x Troubleshaot > . " Order-Processing Services. Normal 97.0% 1.6k
- . § ms (sl Active MQ-ulfilmentQuese
3 Y110 calls / miri 4 Slow 10% 16
14 calls £min min, & ms 135
More > . 6MS " \opuLE e 1 errord min 23 calls / min, - fasync) Very Slow 0.9% 14
=) N T s
ECommerce Services ! stall . 0o% -
Web-Tier-Services 2 Zatalls / min, 7 ms (async) 4
1 M Erors s 12% 20
Alert & Respand !
\ 610.lls £min, 1 ms . Exceptions
6 calls £ min, 6 ms (45y<)/ min, O ms Joac
Metric Browser s MongoD8 PR Exceptions 10,000 total 667 / min
HTTP Error Codes -total -/ min
¥
Configuration Q W - Error Page Redirects -total -/ min
Fenin, - tasyne) ™
e e) , o
View in User Experience e APPOY-MySQL DE-..ubuntu.14.04.2
Legend. o Active MQ-CustomerQueve MongoD8 find - tesidb Nat comparing against Baseline data
Load 1.6k cane 110 catis 7 min Response Time 1,294 msaverage Errors 1.2% 20 erors 1 emorssmin
200 4000ms 4
) _ - m 2 u “
] oms 0
« 445 PM 450 PM 455PM 445 PM 450 PM 4:55PM 445PM 4:50PM 455PM

AppDynamics is quite advanced regarding proactive measures. One of these measures is
automated actions, such as restarting a Tomcat server or reloading a service running on the
server on certain events. For example, if we deploy a new version of our Java application
that is having a problem with the PermGen space (this is not the case anymore in Java 8+), it
is usually very tricky to fix as the problem comes from many classes loaded by the JVM and
only manifests a few hours after the deployment. In some cases, we can instruct
AppDynamics to restart the application when the usage reaches 80 percent and more of the
assigned total so that instead of crashing badly and not being able to serve to any
customers, we only have a few dropouts every few hour getting an air balloon to act and fix
the problem.

AppDynamics works with what is known an agent model. An application needs to be
installed on your server (for example, Tomcat) in order to collect metrics that are sent to a
centralized server to process and create the pertinent dashboards and trigger the
workflows. The interesting part of AppDynamics is that if you don't feel comfortable
sending data to a third-party (which is usually a security requirement for companies
handling high-profile data), they provide an on-premises version of the dashboard.

[299]

Monitoring Chapter 9

Stackdriver

Up until now, we have visited a set of tools from different third-parties but now we are
going to take a look at Stackdriver. Stackdriver was a cloud monitoring solution acquired
by Google and integrated (not fully) into Google Cloud Platform. This is an important step
for GCP, as being able to provide an integrated monitoring solution is something that's
pretty much mandatory nowadays.

With Stackdriver, we are not only able to monitor applications, but also Kubernetes clusters
or even standalone VMs. As we will see, the integration is not yet as seamless as we would
desire (it might be completed by the time you are reading this), but it is good enough to be
considered a big player in the market.

Monitoring applications

Stackdriver can monitor standalone applications by capturing metrics and logs. It has
support for major platforms and libraries, so our technology choices should not be a
concern. In this case, we are going to create a Node.js application for several reasons:

e Itis easy to understand
¢ The official examples are well documented for the Node.js version
¢ Node.js is increasingly becoming a big platform for enterprise and startups

The first thing we need to do is write a small Node.js application. Create a new folder and
execute this command:

npm init

Follow the instructions on the screen and you should now have package. json in the
folder that you just created. Now it is time to install the dependencies:

npm install --save @google-cloud/logging-bunyan @google-cloud/trace-agent
express bunyan

We are going to use four libraries:

¢ express: To handle the HTTP requests
¢ bunyan: To log our application activity

[300]

Monitoring Chapter 9

The two libraries from Google are for interacting with Stackdriver:

¢ logging-bunyan: This will send the logs from bunyan to Stackdriver
e trace-agent: This will trace the requests through our application

Now let's create a simple application:

require ('@google-cloud/trace-agent') .start ()

const express = require ('express')

const bunyan = require ('bunyan')

const LoggingBunyan = require ('@google-cloud/logging-bunyan')
const loggingBunyan = LoggingBunyan ()

const log = bunyan.createlLogger ({
name: "stackdriver",

streams: [

{stream: process.stdout},
loggingBunyan.stream()

1,
level: 'info'

})
const app = express()

app.get ('/', (req, res) => {
log.info (" request from ${reqg.connection.remoteAddress})
res.send('Hello World!")

})

app.listen (3000, () => {
console.log('Listening in port 3000")

})
Now it is time to explain what the interesting parts of the code do:

e The first line enables the tracing for Stackdriver. It is very important that this line
happen before anything else; otherwise, the tracing won't work. We'll see how
amazing the tracing is.

¢ In order to let Stackdriver collect logs, we need to add a stream to the bunyan
logger, as shown in the code.

[301]

Monitoring Chapter 9

Everything else is quite normal: an Express. js Node.js application that has a handler for
the URL/replying with the classic Hello World.

There is one thing missing: there are no credentials to access the remote APIs. This is done
on purpose as Google Cloud Platform has a very sophisticated system for handling
credentials: basically, it will be handled for you.

Now, it is time to deploy our application. First, create a VM in Google Cloud Platform, as
we have seen a few times in the previous chapters. A small one will suffice, but make sure
that you allow HTTP traffic. Debian Stretch is a good choice as an operating system.

Once the machine is up, install Node.js, as shown in http://nodejs.org.

Now we need to copy the code into our newly created machine. The best solution is to
create a GitHub repository or use mine: https://github.com/dgonzalez/stackdriver.

By cloning it in our VM (don't forget to install Git first via apt), we just need to install the
dependencies with the following command:

npm install
And we are good to go. Just run the application with the following command:

node index.js

Now go to the external IP of the machine (shown in Google Compute Engine) on port 3000.
In my case, thisis http://35.195.151.10:3000/.

Once we have done it, we should see Hello World in the browser and something similar to
the following in the logs of our app:

Listening in port 3000
{"name" :"stackdriver", "hostname":"instance-3", "pid":4722, "level":30, "msg":"
request from ::ffff:46.7.23.229","time":"2017-09-18T01:50:41.4832","v":0}

[302]

http://nodejs.org.
http://nodejs.org.
http://nodejs.org.
http://nodejs.org.
http://nodejs.org.
http://nodejs.org.
http://nodejs.org.
https://github.com/dgonzalez/stackdriver
https://github.com/dgonzalez/stackdriver
https://github.com/dgonzalez/stackdriver
https://github.com/dgonzalez/stackdriver
https://github.com/dgonzalez/stackdriver
https://github.com/dgonzalez/stackdriver
https://github.com/dgonzalez/stackdriver
https://github.com/dgonzalez/stackdriver
https://github.com/dgonzalez/stackdriver
https://github.com/dgonzalez/stackdriver
https://github.com/dgonzalez/stackdriver
http://35.195.151.10:3000/
http://35.195.151.10:3000/
http://35.195.151.10:3000/
http://35.195.151.10:3000/
http://35.195.151.10:3000/
http://35.195.151.10:3000/
http://35.195.151.10:3000/
http://35.195.151.10:3000/
http://35.195.151.10:3000/
http://35.195.151.10:3000/
http://35.195.151.10:3000/
http://35.195.151.10:3000/

Monitoring Chapter 9

If there are no errors, everything worked. In order to verify this, go to http://console.
cloud.google.com and open the Logging section of Stackdriver.

Stackdriver is a different system from Google Cloud Platform; it might ask
you to log in using a Google account.

Once you are there, you should see something similar to what is shown in the following
screenshot:

Google Cloud Platform &e Implementing Modern De... ~

= Stackiier Wl CREATEMETRIC & CREATEEXPORT (3 P
Logging

GCE VM Instance, instance- 3 ~ | Alllogs ~ || Anyloglevel ~ || Jumptodate ~

20170918 BST
&l Resource usa e ¢ O

Be aware that you have to select the section on the logs, in my case, GCE
VM Instance, Instance-3.

This is exactly the log from your app uploaded to Google Cloud Platform with a bunch of
very interesting information. You can play around by having different handlers for other
URLs and different logging events, but the result is the same: all your logs will be

aggregated here.

Now we can do this with Trace as well. Open the trace section of Google Cloud Platform
under Stackdriver.

[303]

http://console.cloud.google.com
http://console.cloud.google.com
http://console.cloud.google.com
http://console.cloud.google.com
http://console.cloud.google.com
http://console.cloud.google.com
http://console.cloud.google.com
http://console.cloud.google.com
http://console.cloud.google.com
http://console.cloud.google.com

Monitoring Chapter 9

The screen should look similar to what is shown in the following screenshot (select the
traces list option):

Google Cloud Platform & implementing Modern De... ~

= Stackdriver .
= T & Trace Details
11 Overview
Timeline
B Tracelist
o 2 . . o i 2
Log View
Service instance-3.c.implementing-modern-devops.intermal
HTTP method GET
Status code 200
Label Value
agent node @google-cloud/trace-agent v2.2.0
’
instance-3.c.implementing modern-devops intemal
8379691461181086230
£11f1:46.7.23.229
http/ur hitp://35.195.151.10/
Callstack
Namespace runAndReturn [as runAndReturn]
y js64)
TraceAgent loud/trace-
agent/src/trace-apijs:152:26)
middleware id/
agent/sre/plugins /plugin-ex
handie [as handle_request
trim_prefix 713)
<anonymous function>
¥ 47)
process_params [as process_params]
y 12)
5:10)
Init 405)
handle [as handle_request]
o 2 . 0 . 0 2

As you can see, there is a lot of useful information:

e The call stack
e Duration
e Start and finish time

[304]

Monitoring

Chapter 9

You can also play around, issue multiple calls, and get familiar yourself with how it works.
Now we are going to modify our program to call a third-party API and see how Stackdriver

is able to trace it:

require ('@google-cloud/trace-agent') .start ()

const express = require ('express')

const bunyan = require ('bunyan')

const LoggingBunyan = require ('@google-cloud/logging-bunyan')
const request = require('request')

const loggingBunyan = LoggingBunyan ()
const URL = "https://www.googleapis.com/discovery/vl/apis"

const log = bunyan.createlLogger ({
name: "stackdriver",

streams: [

{stream: process.stdout},
loggingBunyan.stream()

]I

level: 'info'

1)
const app = express()

app.get ('/', (req, res) => {
log.info (" request from ${reqg.connection.remoteAddress})
res.send('Hello World!")
})
app.get ('/discovery', (req, res) => {
request (URL, (error, response, body)
return res.send (body)

= {

})
})
app.listen (3000, () => {
console.log('Listening in port 3000")
})

[305]

Monitoring Chapter 9

Now we are listing all the available APIs on Google by executing an HTTP GET into the
https://www.googleapis.com/discovery/vl/apis URL. Redeploy it into your VM in
Google Cloud Platform and go to the endpoint/discovery of your VM. A big JSON payload
will be presented on your screen, but the interesting part is happening under the hood. Go
back to Stackdriver in the Trace list section, and you'll see that there is a new trace being

captured:

Google Cloud Platform 3¢ Implementing Modern De... ~ Q
- Stackdriver .
— Trace list + 11 AUTO-RELOAD | 1hour 4hours 12hours | 1day = 3days 1week 1month Custom
== Trace =
Il overview Request filter HTTP method HTTP status
- : - Al o~ AL v
= Trace list
@ Analysis reports (ms) Click and drag along the graph to zoom in to the selected area Latency ~ HTTP Method URI Analysis Report Time
100 76 ms GET /disc 16:39 (Just now)
75 1ms GET /favi 16:39 (Just now)
50 5ms GET Iregi 16:39 (Just now)
- 1ms GET / 03:20 (13 hours ago)
1ms GET / 03:20 (13 hours ago)
PY
04:00 06:00 08:00 10:00 1200 14:00 16:00
Rowsperpage: 5 ~ 1-50f19 >
Timeline
0 20 40 60 80 100
B I @oms =0
www.googleapis.com (68 ms) /discovery
Summary

Here, you can see how our program contacted the remote API and that it took 68 seconds to
reply.

[306]

https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.
https://www.googleapis.com/discovery/v1/apis.

Monitoring Chapter 9

Getting this type of information in real time is very powerful--if customers are getting a
very large response time, we can immediately see what is happening inside of our
application pretty much real-time.

Monitoring Kubernetes clusters

Kubernetes covers 99 percent of the needs for any software company, but one part where it
does not really shine is in embedded monitoring, leaving a space to be filled by third-
parties. The main problem with Kubernetes comes from Docker: containers are ephemeral,
so a common practice is to dump the logs into the standard output/error and use syslogd to
gather them in a centralized location.

With Kubernetes, we have an added problem: the orchestrator on top of Docker needs to
know how to fetch logs in order to make them available via the API or dashboard, so it is
possible for the user to access them when required. But then there is another problem.
Usually, logs are rotated on the basis of time and archived in order to avoid a log sprawl
that can consume all the free space in our servers, preventing the application (and the OS)
from functioning normally.

The best solution is to use an external system to aggregate logs and events inside the cluster
so that we push the complexity to the side, allowing Kubernetes to focus on what it does
best: orchestrate containers.

[307]

Monitoring

Chapter 9

In this case, in order to integrate our cluster with Stackdriver in Google Cloud Platform, the
only thing that we need to do is mark the two checkboxes in the cluster creation screen:

"

(o I

<l

Google Cloud Platform

Container Engine

Container clusters
Workloads

Discovery & load balancing
Configuration

Storage

=+ David On Microservices ~

& Create a container cluster

£one

europe-westl-b -

Cluster Version

1.6.9 (default) -
Machine type

1vCPU - 3.75 GB memory Customise

Node image

‘cos” provides better security and performance but has limitations that may affect some
users. Use "Ubuntu” if you are affected by these limitations. Note that Ubuntu requires
Kubernetes 1.6.4 or greater. Learn more

Container-Optimised OS (cos) -

Size

3

Total cores 3vCPUs

Total memory 11.25 GB

Cluster instances use ephemeral local disks. You can attach a persistent disk to
your pod, if needed.

Automatic node upgrades (beta)

Disabled v

Automatic node repair (beta)

Disabled v

Legacy Authorisation

Enabled v

Subnet

ault (eurof

Logging and menitoring
~ Turn on Stackdriver Monitoring
~/ Turn on Stackdriver Logging

More

You will be billed for the 3 nodes (VM instances) in your cluster. Learn more

Equivalent REST or command line

[308]

Monitoring Chapter 9

This will enable the monitoring across the different nodes in our cluster and improve the
way in which we tackle problems happening in our applications. Click on Create and allow
the cluster to be provisioned (might take a few seconds or even minutes). It does not need to
be a big cluster; just use the small size for the machines, and two VMs will be enough. In
fairness, we will probably need to reduce the size during the load testing in order to speed
up the alerting part.

As we've seen in the previous section, with GKE monitoring active,
Kubernetes also sends the logs to the Logging capabilities of Stackdriver,
so you don't need to connect to the nodes to fetch the logs.

Once it is created, we are going to add monitoring from Stackdriver. The first thing that we
need to do is open Monitoring in the Stackdriver section of Google Cloud Platform. This
will open a new site, the original Stackdriver site, which looks very similar to what is shown
in the following screenshot:

¥ Stackdriver pavidon s 3 worADE @ David ()
A Monitoring Overview David On Microservices Q< & TIME 1h 6h 1d 1w Tm 6w custom
Resources

B Alerting X
@ Uptime Checks Welcome to Stackdriver Monitoring!

L] Groups

® Dashboards [E] Monitor Uptime B SetAlerting Policies [E] Create a Dashboard

veb pages, et notified if anything goes wrong in your application or mprow lon by customizing a display with

¥ Debug
CREATE CHECK CREATE POLICY CREATE DASHBOARD
= Trace
i Logging
@ Error Reporting Uptime Checks @ Create Check Incidents @ Create Alerting Policy X
Group OPEN (0) ACKNOWLEDGED (0)

® 2091986049993817505 ® Noopen incidents

Groups © AddGroup : Instance (GCE) - CPU Usage (GCE Monitoring)
Name Incidents 100%
© my-cluster 80%

[309]

Monitoring Chapter 9

Even though the UI might be a bit confusing in the beginning, after a bit of usage, it
becomes clear that it is really hard to pack the huge amount of functionality that Stackdriver
offers in a better Ul By default, we can see some metrics about our cluster (the bottom-right
section of the image), but they are not very useful: we don't want to have someone looking
at the metrics the full day in order to raise alerts. Let's automate it. The first thing that we
need to do is create a group. A group is basically a set of resources that work together, in
this case, our cluster. Click on Groups and create a new one:

§ Stackdriver David 0nMicroservices ~

Monitoring Overview Create group
Resources
Suggested Groups Group Name
B Alerting i gke

3 resources Gke

= Uptime Checks
Filter criteria match

@ Groups
8 l# All % of therules below

E Dashboards
Name v Starts With 5 gke-chapter-9-default-p
+ Debug + Add Criteria
= Trace | This is a cluster. | would like cases highlighted when any node's performance or
configuration differs from others in the cluster.
= Logging
Save Group [JEeLTC]
® Error Reporting

By default, Stackdriver will suggest groupings to you. In this case, in the suggested Groups
section, we can see that Stackdriver has suggested our cluster. It is possible to add more
sophisticated criteria, but in this case, matching the start of the name of our machines will
work as the GKE names them according to some criteria, including the name of the cluster
in the very beginning.

[310]

Monitoring Chapter 9

Create a group (call it GKE, the default suggested name). Once the group is created, you can
navigate to it and see different metrics such as CPU or even configure them, adding others
such as disk I/O and similar. Get yourself familiar with the dashboard:

¥ Stackdriver pavid ! wpeRADE @ David (N

~ Monitoring Overview © Gke Qc & = 1h 6h 1d 1w Tm 6w custom ¥¥ Policies Edit Delete

E]
SUBGROUPS +
@ Uptime Checks
Incidents @ Create Alerting Policy Sep 18,10:45 pm - Sep 18,11:45 pm [UTC +0100]
@ Groups.
@ Dashboards OPEN (0) ACKNOWLEDGED (0) RESOLVED (0) KEY METRICS ~ RUNNING RE
® No open incidents 1PM 1105 11:10 1145 1120 1125 1180 1185 1140 1145
*
Uptime Checks @ Add X Instance (GCE) - CPU Usage (GCE Monitoring)
100
= You don't have any uptime checks for this group.
o Events @ Filter AddEvent
No events matching this criteria \/\» a0
Instances %
HEALTH » NAME ZONE SIZE CONNECT
© gkechapter-9-default-pooleblafdc5-0020 goe:europe-westlh nl-standard-1 SSH GKE Container - Used Memory
© gkechapter9-default-pookeblafdc57g1 geereurope-westl-h nl-standard-1 SSH
® gkechapterO-default-pookebiafdcSpw7 geeeurope-westl-h ni-standard-1 SSH No datais available for the selected time frame.

Showing 1-3 of 3 instances

In my case, I have added a metric for capturing the used memory in the cluster. Even
though this amount of available data is quite interesting, there is an even more powerful
tool: the alerting policies.

The alerting policies are criteria in which we should get alerted: high memory usage, low
disk space, or high CPU utilization, among others, are events that we want to know about
in order to take actions as soon as possible. The beauty of the alerting policies is that if we
configure them as appropriated, we enter a state that I call the autopilot mode: we don't need
to worry about the performance of the system unless we get alerted, which drastically
reduces the number of people required to operate a system.

[311]

Monitoring Chapter 9

Let's create an alerting policy by clicking on the Create Alerting Policy button:

¥ Stackdriver Davidon Q UPcRADE @ David (D)
" Titoring Over erting / Policies / Create
Add Metric Threshold Condition
Resources Create nev
B Aerting Athreshold condition can be configured to alert you when any metric crosses a set line for a specific period of time.
Change
@ Uptime Checks 1 Conditio
& Target
) Dashboards RESOURCE TYPE APPLIES TO
Adg
Instance (GCE) . Group . ke
CONDITION TRIGGERS IF
* ebug "
2 Notifical anyMember violates
B Logging e Configuration
o IF METRIC CONDITION THRESHOLD FOR
@ Eror Repor
CPU Usage (GCE Monitoring) . above . 30 1 minute
3 Docume|
aQ & 1h 6h 1d Tw 1
Ad
4 Name th
10 L 1 1 i 1 1 0
Google Cloud Platform @ T

As shown in the preceding screen, we need to select a metric. We are going to use the type
Metric Threshold as it is included in the basic package of Stackdriver, so we don't need to
upgrade to a Premium subscription. Our alert is going to be raised if any of the members of
our cluster has a CPU usage of more than 30 percent for one minute.

The next step is to configure the notification. In the basic package, only email is included,
but it is sufficient to test how the system works. Stackdriver also allows you to include text
to be sent across with the notification. Just enter something like Test alert alongside your
email and save the alert policy with the name of your choice.

As you can see, creating alerts is very simple in Stackdriver. This is a very simplistic
example, but once you have set up your cluster, the next step is to set up the acceptable set
of metrics where it should operate normally and get alerted if any of them is violated.

Now it is time to set off the alarm to see what happens. In order to do that, we need to
overload the cluster with several replicas of the same image, and we are going to use a tool
called Apache benchmark to generate a load on the system:

kubectl run my-nginx —--image=nginx —--replicas=7 —--port=80

[312]

Monitoring Chapter 9

And now expose the deployment called my-nginx:

kubectl expose my—-nginx —--type=LoadBalancer

Be aware that you first need to configure kubect1 to point to your cluster, as we've seen in
previous chapters.

Once nginx is deployed, it is time to stress it out:

ab -k -c 350 -n 4000000 http://130.211.65.42/

The ab tool is a very powerful benchmark tool called Apache Benchmark. We are going to
create 350 concurrent consumers, and they will issue 4 million requests in total. It might be
possible that you need to reduce the size of your cluster in order to stress the CPU: if you
reduce the size while the benchmark is running, Kubernetes will need to reschedule
containers to reorganize the resources, adding more load to the system.

I would recommend that you further explore Apache Benchmark, as it is
very useful for load testing.

Once the CPU has gone beyond the threshold for any of our nodes for over a minute, we
should receive an alert by email, and it should be displayed in the Stackdriver interface:

¥ Stackdriver David Q woRAE @ David (DY
" Monitoring Overview © my-cluster Q o & = 1h 6h 1d 1w 1m 6w custom ¢ Policies Edit Delete
Resources =

@ Alrting

SUBGROUPS +
@ Uptime Checks

Incidents @ Create Alerting Policy © Sep 18, 11:55 pm — Sep 19,1255 am [UTC +0100]
@ Groups
@ Dashboards OPEN(2) ACKNOWLEDGED (0) RESOLVED (0) KEYMETRICS RUNN

Today Tue 19 1205 20 1225 1280 1285 1240 124
% © testalert
- CPU utiization for david-on-microservices gke-chapter-9-defaultpook-eblafdcs-pw7 is above the

threshold of 0.3 with a value of 0.3074243236423399. Instance (GCE) - CPU Usage (GCE Monitoring)

Duration: 4 minutes

_ © testalert

= CPU utilization for david-on-microservices gke-chapter-9-default-pool-eb1af4c5-0020 is above the
threshold of 0.3 with a value of 0.47348617040294216

@ Duration: 5 minutes

Uptime Checks & Add I

You don't have any uptime checks for this group.

Events @ Filter AddEvent X
Today
® Incident on david ke-chapter-9-default-pook-eblafdcS-pw7 started Add Chart
for p P is above the

threshold of 0.3 with a value of 0.3074243236423399.
® Incident on p P started
for is above the
threshold of 0.3 with a value of 0.47348617040294216.

[314]

Monitoring Chapter 9

In this case, I have received two alerts as two of the nodes went beyond the limits. These
alerts follow a workflow. You can acknowledge them if the rule is still broken and they will
go to resolved once they are acknowledged and the condition has disappeared. In this case,
if you stop Apache Benchmark and acknowledge the raised alerts, they will go straight into
the resolved state.

In the Premium version, there are more advanced policies, such as Slack messages or SMS,
which allows your team to set up a rota for acknowledging incidents and managing the
actions.

Summary

This is the final chapter of the book. Through the entire book, we visited the most important
tools used by DevOps engineers, with a strong focus on the Google Cloud Platform. In this
chapter, we experimented with what, in my opinion, is a very important aspect of any
system: monitoring. I am of the opinion that monitoring is the best way to tackle problems
once they have hit your production systems, which, no matter how much effort you put in
it, will eventually happen.

What is next?

This book did not go particularly in deep into any subject. This is intended. This book is
meant to plant the seed of a big tree: the culture of DevOps, hoping that you have enough
information to keep growing your knowledge of DevOps tools and processes.

Keeping yourself up to date with the latest tools is a full-time job on its own, but it's very
necessary if you want to be on the top of the wave. My opinion is that we are very lucky to
be able to participate in the rise and shine of the DevOps culture, and the future is bright.
Automation and better languages (Golang, Kotlin, Node.js, and so on) will allow us to
reduce human intervention, improving the overall resilience of our systems.

If you look five years back and compare it with what it is there in the market today, can you
imagine how our jobs are going to be in 15 years?

If you want to follow up about any question or check what I am working on nowadays, you
can always get in touch with me in LinkedIn:

® https://www.linkedin.com/in/david-gonzalez-microservices/

[315]

https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/
https://www.linkedin.com/in/david-gonzalez-microservices/

A

affinity 236
aggregator service 248
Amazon Elastic Block Store (Amazon EBS) 35
Amazon Machine Image (AMI) 28
Amazon Web Services (AWS)
about 24, 25
Amazon ECR 37
Amazon ECS 37
Amazon ElasticCache 45
Amazon RDS 45
Amazon S3 36
CloudFront 45
cluster, creating 38
DynamoDB 46
EC2 26
networking 32
Route 53 44
services 44
AmazonElastic Block Store (AmazonEBS) 29
Ansible roles
reference link 185
Ansible Tower 186
Ansible, configuration file
reference link 163
Ansible
about 150, 154
configuration 163
flow control 176
remote facts 164, 171
roles 180
templates 164, 174
variables 164, 165
AppDynamics 298
applications
monitoring 300

Index

architecture, Docker

about 65, 67, 68

internal working 68, 69, 72
Artificial Intelligence (Al) 29
Azure 62

B

Bamboo
about 99
URL 99
big bang event 244
blackbox monitoring 288
blue-green deployment 281
building blocks
about 235, 236
Daemon Sets 236, 237
Jobs 238
PetSets 237
builds
executing 118

C

canary deployment 283
Chef 148
Chef server
enterprise 148
hosted 148
open source 148
URL, for installing 148
Chronos
about 244
reference link 23
cloud providers
about 61
Azure 62
DigitalOcean 62

Heroku 61
clustering

need for 191, 193, 194
Command-Line Interface (CLI) 66
commands

ADD 79

CMD 79

COPY 79

ENTRYPOINT 80

EXPOSE 80

FROM 79

MAINTAINER 80

RUN 79
conditionals

reference link 179
configuration management 238, 239, 240
container

killing 73

stopping 73
Continuous Delivery (CD)

about 97

blue-green deployment 281

canary deployment 283

for application 268

regular release 274
continuous delivery pipeline

setting up, forimages 256
Customer Due Diligence (CDD) 36

D

deployments 212,224, 225,226,227, 228
DevOps
about 7, 9,19, 22
corporations 9
origins 8
DigitalOcean 62
Docker client 66, 72, 73, 75, 76
Docker Compose 90, 91
Docker daemon 66
Docker Hub 66
Docker images
building 76, 77, 79
Docker network
about 86
bridge 87

host 87

none 87

user-defined networks 89
Docker registries

about 80

private registries 80, 82

public registries 81
Docker Swarm

about 190, 196

URL 196
Docker Trusted Registry (DTR) 83
Docker volumes 83, 84, 86
Docker

about 64

architecture 65, 67, 68

URL 65, 76
Dockerfile

about 79

creating 79
Domain Specific Language (DSL) 107, 151
Drone ClI

about 115

builds, executing 118

features 122

pipelines, executing 120
Drone CLI

reference link 118
Drone plugins

reference link 121

drone-gcr

reference link 121
Drone

installing 116

E

EC2 Container Registry (ECR) 37, 82
EC2 Container Service (Amazon ECS) 37
Elastic Compute Cloud (EC2)
about 26
instance, launching 28, 32
networking 32
Relational Database Service 32
storage 35
Elastic Load Balancing (ELB 34

[398]

G
Git
reference link 257
GitHub, connecting with SSH
reference link 272
Google App Engine 59
Google Cloud 128
Google Cloud Platform SDK
about 125
reference link 125
resources, creating 126
Google Cloud Platform
about 46
Big data 60
custom machines 50
Google App Engine 59
Google Compute Engine 48
Google Container Engine (GKE) 55
GPU processing 50
high-CPU machine types 49
high-memory machine types 49
instance, launching 51
Machine Learning APIs 60
networking 54
products 59
reference link 22
shared-core machine types 50
standard machine types 48
Google Cloud Storage 137
Google Container Engine (GKE)
about 55, 198
cluster, settingup 56
Google Container Registry (GCR) 121, 252
Google Developer Groups (GDGs) 197
google_compute_instance
reference link 134
Graphical Processing Unit (GPU) 29

H

HashiCorp 130

Heroku 61

HTTP GET
reference link 306

HyperKit 68

[399]

images
continuous delivery pipeline, settingup 256
pushing, to Google Container Registry 252
immutable artifacts 108
Infrastructure as a Service (laaS) 25
Infrastructure as Code (IaC) 24, 264

J

Jenkins
about 103
secrets management 110
setting up 262
URL, for installing 264
Jinja2 Templating
reference link 179

K

Key Management System (Amazon KMS) 36
Kubernetes cluster, setup options
Ansible 199
Kops 198
Kubeadm 199
Tectonic 199
Kubernetes clusters
monitoring 307
Kubernetes
about 25,190, 197,206, 241
building blocks 210, 211, 235, 236

cluster, setting up in GCP 203, 204, 206, 207,

208,209, 210
configuration management 238, 239, 240
deployments 224, 225,226, 227, 228
logical architecture 199, 200, 203
pods 211
reference link 199
replica sets 217, 219, 220, 221, 222, 223
secrets 238, 239, 240
services 230, 231,232,233, 234, 235

L

layer 66
LEQL 296

load variables P
reference link 169

log search PetSets 237
reference link 296 P.ingc_iom 291
Logentries pipelines
about 292 build 121
URL 292 deploy 122
loops executing 120
reference link 179 notify 122
publish 121
M Platform as a Service (PaaS) 59, 61
pod

microservices 19
Minikube project
URL 203
Minimum Viable Product (MVP) 16
modern CI servers

about 211

deploying 212,213, 214, 215, 216, 217
post-build actions 109
private registries

about 82
aDt;g::; (l;|1 51 15 Docker Trusted Registry (DTR) 83
modern release management Quay 83
about 15 Re.glstry. 8_3
agile development 16 public registries 81
communication 16 Puppet 150
versions, releasing 18 Q
monitoring
blackbox monitoring 288 Quay 83
types 288
whitebox monitoring 289 R
MySQL image Registry 83
URL 75 regular release 275
Relational Database Service (RDS) 45
N remote state management 137
Network Attached Storage (NAS) 83 replicasets 217,219, 220, 221,222, 223
Ngrok Representational State Transfer (REST) APl 66
about 119
URL 119 S
node-example-drone Scrum 17
reference link 118 reference link 17
Node.js secrets 238,239, 240
reference link 294 selectors
reference link 233
0 server provision software
organizational alignment 20 about 147
Ansible 150
chef 147

[400]

Puppet 149
services 230, 231, 232, 233,234,235
Simple Storage Service (Amazon S3) 36
Site reliability engineering (SRE)

about 7

reference link 10
Software Defined Network (SDN) 201
software development life cycle

about 94

design 96

development 96

maintenance 97

release 97

requirement analysis 96

testing 96
Stackdriver

about 300

applications, monitoring 300

Kubernetes clusters, monitoring 307
Stateful Set 237
statistics 243

T

Terraform
about 129,130
infrastructure, modifying 138
outputs 142
remote state management 137
resources, creating 132
URL, for downloading 130
variables 140

test system
about 244
aggregator service 248

images, pushing to Google Container Registry

252
ISO date 245
UTC date services 245
testing types
about 97
acceptance tests 97
integration tests 97

unit tests 97
third-party tools
AppDynamics 298
Logentries 292
monitoring 290
Pingdom 291

Time-based One-Time Password (TOTP) 100

traditional Cl servers
about 98
Bamboo 99
Jenkins 103
traditional release management
about 10
bug, fixing 12
chain of communication 11
versions, releasing 13
trigger 102

U

user-defined networks 89

\'

variable precedence
reference link 170
variables
reference link 165
Virtual Private Cloud (VPC)
about 32
URL 34
Visigoth
about 99
visigoth
reference link 107
Visigoth
reference link 99

w

waterfall model 11
whitebox monitoring 289

Y

Yet Another Markup Language (YAML) 151, 212

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Dedication
	Table of Contents
	Preface
	Chapter 1: DevOps in the Real World
	What is DevOps?
	DevOps origins
	DevOps and corporations

	Traditional release management
	Chain of communication
	The cost of fixing a bug
	Releasing new versions

	Modern release management
	Agile development and communication
	Releasing new versions

	DevOps and microservices
	DevOps: Organizational alignment
	What to expect from this book
	Summary

	Chapter 2: Cloud Data Centers - The New Reality
	Amazon Web Services
	EC2 - computing service
	Launching an instance
	Relational Database Service
	Networking in AWS and EC2
	Storage in AWS and EC2

	Amazon S3
	Amazon ECR and ECS
	Creating a cluster

	Other services
	Route 53
	CloudFront
	Amazon ElasticCache
	Amazon RDS
	DynamoDB

	Google Cloud Platform
	Google Compute Engine
	Standard machine types
	High-memory machine types
	High-CPU machine types
	Shared-core machine types
	Custom machines and GPU processing
	Launching an instance
	Networking

	Google Container Engine
	Setting up a cluster

	Other Google Cloud Platform products
	Google App Engine
	Machine Learning APIs
	Big data

	Other cloud providers
	Heroku
	DigitalOcean
	Azure

	Summary

	Chapter 3: Docker
	Docker architecture
	Docker internals

	Docker client
	Building Docker images
	Dockerfile reference

	Docker registries
	Public registries
	Private registries

	Docker volumes
	Docker networking
	User-defined networks

	Docker Compose
	Summary

	Chapter 4: Continuous Integration
	Software development life cycle
	Testing types
	Traditional CI servers
	Bamboo
	Jenkins
	Secrets Management

	Modern CI servers
	Drone CI
	Installing Drone
	Running builds
	Other features

	Summary

	Chapter 5: Infrastructure as Code
	Google Cloud Platform SDK - gcloud
	Creating resources with Google Cloud SDK

	Terraform
	Creating resources
	Remote state management
	Modifying your infrastructure
	Terraform variables
	Terraform outputs

	Summary

	Chapter 6: Server Provisioning
	Server provision software
	Chef
	Puppet
	Ansible

	Ansible
	Ansible configuration
	Ansible variables, remote facts and templates
	Ansible variables
	Ansible remote facts
	Ansible templates
	Flow control

	Roles

	Ansible Tower
	Summary

	Chapter 7: Docker Swarm and Kubernetes - Clustering Infrastructure
	Why clustering ?
	Docker Swarm
	Kubernetes
	Kubernetes logical architecture
	Setting up a cluster in GCP
	Kubernetes building blocks
	Pods
	Deploying a pod

	Replica Sets
	Deployments
	Services
	Other Building Blocks
	Daemon Sets
	PetSets
	Jobs

	Secrets and configuration management
	Kubernetes- moving on

	Summary

	Chapter 8: Release Management – Continuous Delivery
	Playing against the statistics
	The test system
	ISO date and UTC date services
	Aggregator service
	Pushing the images to Google Container Registry

	Setting up a continuous delivery pipeline for images
	Setting up Jenkins
	Continuous delivery for your application
	Regular release
	Blue-green deployment
	Canary deployment

	Summary

	Chapter 9: Monitoring
	Introduction
	Types of monitoring
	Blackbox monitoring
	Whitebox monitoring

	Monitoring third-party tools
	Pingdom
	Logentries
	AppDynamics

	Stackdriver
	Monitoring applications
	Monitoring Kubernetes clusters

	Summary
	What is next?

	
	Chapter 1: DevOps in the Real World
	Chapter 2: Cloud Data Centers - The New Reality
	Chapter 3: Docker
	Chapter 4: Continuous Integration
	Chapter 5: Infrastructure as Code
	Chapter 6: Server Provisioning
	Chapter 7: Docker Swarm and Kubernetes - Clustering Infrastructure
	Chapter 8: Release Management – Continuous Delivery
	Chapter 9: Monitoring

	Index

