

Spring 5.0 By Example

Grasp the fundamentals of Spring 5.0 to build modern, robust,
and scalable Java applications

Claudio Eduardo de Oliveira

BIRMINGHAM - MUMBAI

Spring 5.0 By Example
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar
Acquisition Editor: Chaitanya Nair
Content Development Editor: Lawrence Veigas
Technical Editor: Adhithya Haridas
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Jisha Chirayil
Production Coordinator: Aparna Bhagat

First published: February 2018

Production reference: 1230218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-439-8

www.packtpub.com

http://www.packtpub.com

I dedicate this book to my loving wife for her continued support, patience, and encouragement
throughout the long process of writing this book.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Claudio Eduardo de Oliveira is a software architect and software developer working for
Sensedia. He works with APIs, microservices, and cloud-centric applications. He has more
than ten years of experience in software development with Java and JVM languages. He is a
speaker at some important events in Brazil about Spring and other Java Frameworks.

I want to thank the people who have worked with me during my career; people who have
taught me during my journey, who have helped me acquire knowledge.
Also, I would like to thank my parents, who educated and supported me during my studies.
I will always be grateful for that.

About the reviewer
Paulo Zanco is a solution architect working for Daitan Labs. He is also a system architect
with over 25 years of experience at national and international large/middle-sized
companies. He has led many complex projects consisting of medium and large teams. He
has extensive experience of designing and developing object-oriented and services systems.
He is also certified by Sun and Oracle, in J2EE and SOA technologies. He holds a Master's
degree in Management Information Systems from Pontifícia Universidade Católica de
Campinas.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Journey to the Spring World 6
Spring modularity 7

Spring Core Framework 8
Core container 8
Spring Messaging 9

Spring AMQP 9
Spring for Apache Kafka 10
Spring JMS 10

Spring Web MVC 11
Spring WebFlux 12
Spring Data 13
Spring Security 14

Spring Cloud 16
Spring Cloud Netflix 16
Spring Cloud Config 18
Spring Cloud Consul 19
Spring Cloud Security 20
Spring Cloud Bus 20
Spring Cloud Stream 21
Spring Integration 21

Spring Boot 23
Microservices and Spring Boot 24

Setting up our development environment 25
Installing OpenJDK 25
Installing Maven 26
Installing IDE 27

IntelliJ IDEA 27
Spring Tools Suite 28
Installing Docker 28

Introducing Docker concepts 30
Docker images 30
Containers 30

Table of Contents

[ii]

Docker networks 31
Docker volumes 31
Docker commands 31

Docker run 32
Docker container 32
Docker network 33
Docker volume 34

Summary 34

Chapter 2: Starting in the Spring World – the CMS Application 35
Creating the CMS application structure 36

The CMS project 37
Project metadata section 37
The dependencies section 38
Generating the project 38

Running the application 39
Looking under the hood 43
Running the application 43

IntelliJ IDEA 44
Command line 44

Command line via the Maven goal 44
Command line via the JAR file 45

Creating the REST resources 46
Models 47

Adding Lombok dependency 47
Creating the models 48

Tag 48
Category 48
User 49
News 49

Hello REST resources 50
Creating the CategoryResource class 50
UserResource 52
NewsResource 53

Adding service layer 54
Changes in the model 54

Adding a new review 55
Keeping the news safely 55

Before starting the service layer 55

Table of Contents

[iii]

CategoryService 56
UserService 57
NewsService 58

Configuring Swagger for our APIs 59
Adding dependencies to pom.xml 59
Configuring Swagger 59
First documented API 61

Integrate with AngularJS 65
AngularJS concepts 66

Controllers 66
Services 67
Creating the application entry point 67
Creating the Category Controller 71
Creating the Category Service 72

Summary 73

Chapter 3: Persistence with Spring Data and Reactive Fashion 74
Learning the basics of Docker 75

Preparing MongoDB 75
Preparing a PostgreSQL database 77

Spring Data project 78
Spring Data JPA 79

Configuring pom.xml for Spring Data JPA 79
Configuring the Postgres connections 80
Mapping the models 81
Adding the JPA repositories in the CMS application 82
Configuring transactions 84
Installing and configuring pgAdmin3 85
Checking the data on the database structure 87

Creating the final data access layer 88
Spring Data MongoDB 88

Removing the PostgreSQL and Spring Data JPA dependencies 89
Mapping the domain model 90
Configuring the database connection 91
Adding the repository layer 92
Checking the persistence 93

Creating the Docker image for CMS 96
Configuring the docker-maven-plugin 97

Table of Contents

[iv]

Adding the plugin on pom.xml 97
Pushing the image to Docker Hub 99
Configuring the Docker Spring profile 100
Running the Dockerized CMS 100

Putting in Reactive fashion 101
Reactive Spring 102

Project Reactor 102
Components 103
Hot and cold 105
Reactive types 105
Let's play with the Reactor 105

Spring WebFlux 108
Event-loop model 109

Spring Data for Reactive Extensions 109
Spring Data Reactive 109
Reactive repositories in practice 110
Creating the first Reactive repository 110

Fixing the service layer 111
Changing the CategoryService 111

Changing the REST layer 113
Adding the Spring WebFlux dependency 114
Changing the CategoryResource 115

Summary 117

Chapter 4: Kotlin Basics and Spring Data Redis 118
Learning Kotlin basics 119

Main characteristics of Kotlin 119
Syntax 119

Semantics 120
Declaring functions in Kotlin 121

Simple function with parameters and return type 121
Simple function without return 121
Single expressions functions 122
Overriding a function 122

Data classes 122
Objects 123
Companion objects 124

Kotlin idioms 125
String interpolation 125

Table of Contents

[v]

Smart Casts 125
Range expressions 126

Simple case 126
The until case 126
The downTo case 127
Step case 127

Null safety 127
Safe calls 128
Elvis operator 128

Wrapping it up 129
Creating the project 129

Project use case 129
Creating the project with Spring Initializr 130

Adding Jackson for Kotlin 131
Looking for the Maven plugins for Kotlin 131
Creating a Docker network for our application 132
Pulling the Redis image from the Docker Hub 133

Running the Redis instance 133
Configuring the redis-cli tool 134

Understanding Redis 134
Data types 135

Strings 135
Main commands 135

Lists 136
Main commands 136

Sets 137
Main commands 138

Spring Data Reactive Redis 138
Configuring the ReactiveRedisConnectionFactory 139
Providing a ReactiveRedisTemplate 139
Creating Tracked Hashtag repository 141

Creating the service layer 142
Exposing the REST resources 143

Creating a Twitter application 143
Configuring pom.xml 146
Creating the image 147
Running the container 148

Table of Contents

[vi]

Testing APIs 149
Summary 150

Chapter 5: Reactive Web Clients 151
Creating the Twitter Gathering project 152

Project structure 152
Starting the RabbitMQ server with Docker 154

Pulling the RabbitMQ image from Docker Hub 154
Starting the RabbitMQ server 154

Spring Messaging AMQP 155
Adding Spring AMQP in our pom.xml 156
Integrating Spring Application and RabbitMQ 156
Understanding RabbitMQ exchanges, queues, and bindings 157

Exchanges 157
Direct exchanges 157
Fanout exchanges 157
Topic exchanges 157
Header exchanges 157

Queues 158
Bindings 158

Configuring exchanges, queues, and bindings on Spring AMQP 158
Declaring exchanges, queues, and bindings in yaml 158
Declaring Spring beans for RabbitMQ 159

Consuming messages with Spring Messaging 160
Producing messages with Spring Messaging 161

Enabling Twitter in our application 162
Producing Twitter credentials 162

Configuring Twitter credentials in application.yaml 163
Modelling objects to represent Twitter settings 163

Twittertoken 163
TwitterAppSettings 163

Declaring Twitter credentials for the Spring container 164
Spring reactive web clients 165

Producing WebClient in a Spring Way 165
Creating the models to gather Tweets 166
Authentication with Twitter APIs 167
Some words about server-sent events (SSE) 169
Creating the gather service 169

Table of Contents

[vii]

Listening to the Rabbit Queue and consuming the Twitter API 170
Changing the Tracked Hashtag Service 172

Adding the Spring Starter RabbitMQ dependency 172
Configuring the RabbitMQ connections 173
Creating exchanges, queues, and bindings for the Twitter Hashtag Service 174
Sending the messages to the broker 175

Testing the microservice's integrations 176
Running Tracked Hashtag Service 177
Running the Twitter Gathering 177
Testing stuff 179

Spring Actuator 180
Adding Spring Boot Actuator in our pom.xml 181
Actuator Endpoints 181
Application custom information 182
Testing endpoints 183

Summary 185

Chapter 6: Playing with Server-Sent Events 186
Creating the Tweet Dispatcher project 187

Using Spring Initializr once again 187
Additional dependencies 188

Server-Sent Events 188
A few words about the HTTP protocol 189
HTTP and persistent connections 190

WebSockets 191
Server-Sent Events 191

Reactor RabbitMQ 192
Understanding the Reactor RabbitMQ 192
Configuring RabbitMQ Reactor beans 193
Consuming the RabbitMQ queues reactively 194

Filtering streams 196
Dockerizing the whole solution 197

Tweet Gathering 197
Tweet Dispatcher 199

Running the containerized solution 200
Running the Tracked Hashtag Service container 201

Table of Contents

[viii]

Running the Tweet Gathering container 203
Running the Tweet Dispatcher container 204

The docker-compose tool 205
Installing docker-compose 207
Creating a docker-compose file 207
Running the solution 209
Testing the network 210

Summary 211

Chapter 7: Airline Ticket System 212
The Airline Ticket System 213

Airline functionalities 213
Solution diagram 215

Spring Cloud Config Server 215
Creating the Config Server project 217
Enabling Spring Cloud Config Server 218

Using GitHub as a repository 218
Configuring the Spring Boot application 218
Configuring the Git repository as a properties source 219
Running the Config Server 219
Testing our Config Server 221

Spring Cloud service discovery 222
Creating Spring Cloud Eureka 224
Creating the Eureka server main class 224
Configuring the Spring Cloud Eureka server 225
Running the Spring Cloud Eureka server 227

Spring Cloud Zipkin server and Sleuth 228
Infrastructure for the Zipkin server 229
Creating the Spring Cloud Zipkin server 231
Configuring boostrap.yaml and application.yaml 233
Running the Zipkin server 234

Spring Cloud Gateway 236
Creating the Spring Cloud Gateway project 237
Creating the Spring Cloud Gateway main class 238
Configuring the Spring Cloud Gateway project 239
Running the Spring Cloud Gateway 241

Table of Contents

[ix]

Checking the Eureka server 241
Creating our first route with Spring Cloud Gateway 242

Putting the infrastructure on Docker 246
Summary 250

Chapter 8: Circuit Breakers and Security 251
Understanding the service discovery power 252

Creating the planes microservice 252
Coding the planes microservice 253
The reactive repository 255
Creating the Plane service 255
The REST layer 257
Running the plane microservice 259

Flights microservice 261
Cloning the Flight microservice project 261
Netflix Ribbon 261
Understanding the discovery client 262
Service discovery and load balancing in practice 263

When the services fail, hello Hystrix 269
Hystrix in a nutshell 270
Spring Cloud Hystrix 271

Spring Boot Admin 272
Running Spring Boot Admin 273

Spring Cloud Zuul 276
Understanding the EDGE service project 276
Creating the EDGE server 277

Summary 281

Chapter 9: Putting It All Together 282
The airline Bookings microservice 283
The airline Payments microservice 283
Learning about the Turbine server 283

Creating the Turbine server microservice 285
Hystrix Dashboard 286
Creating the Mail microservice 288

Creating the SendGrid account 289

Table of Contents

[x]

Creating the Mail microservice project 290
Adding RabbitMQ dependencies 290
Configuring some RabbitMQ stuff 291
Modeling a Mail message 293
The MailSender class 293
Creating the RabbitMQ queue listener 295
Running the Mail microservice 296

Creating the Authentication microservice 297
Creating the Auth microservice 298
Configuring the security 299
Testing the Auth microservice 304

Client credentials flow 304
Implicit grant flow 305

Protecting the microservices with OAuth 2.0 307
Adding the security dependency 307
Configuring the application.yaml file 307
Creating the JwtTokenStore Bean 308

Monitoring the microservices 310
Collecting metrics with Zipkin 310
Collection commands statistics with Hystrix 314

Dockerizing the microservices 316
Running the system 318
Summary 318

Other Books You May Enjoy 319

Index 322

Preface
With growing demands, organizations are looking for systems that are robust and scalable.
Hence the Spring Framework has become the most popular framework for Java
development. It not only simplifies software development but also improves developer
productivity. This book covers effective ways to develop robust applications in Java using
Spring.

Who this book is for
Developers who are starting out with Spring will learn about the new Spring 5.0 framework
concepts followed by their implementation in Java and Kotlin. The book will also help
experienced Spring developers gain insights into the new features added in Spring 5.0.

What this book covers
Chapter 1, Journey to the Spring World, will guide you through the main concepts of Spring
Framework. Here we learn to setup the environment by installing OpenJDK, Maven, IntelliJ
IDEA, and Docker. By the end, we will create our first Spring application.

Chapter 2, Starting in the Spring World – the CMS Application, will begin by getting our
hands dirty with Spring Initializr to create configurations for our CMS application. We will
then learn how to create REST resources, add the service layer and finally integrate with
AngularJS.

Chapter 3, Persistence with Spring Data and Reactive Fashion, will build upon our CMS
application created in the previous chapter. Here we will learn how to persist data on a real
database by learning about Spring Data Reactive MongoDB and PostgresSQL. We will
finally learn about Project Reactor which will help you to create a non-blocking application
in the JVM ecosystem.

Chapter 4, Kotlin Basics and Spring Data Redis, will give you a basic introduction to Kotlin
while presenting the benefits of the language. We will then learn how to use Redis which
will be used as a message broker using the publish-subscribe feature.

Preface

[2]

Chapter 5, Reactive Web Clients, will teach you how to use the Spring Reactive Web Client
and make HTTP calls in a reactive fashion. We will also be introduced to RabbitMQ and
Spring Actuator.

Chapter 6, Playing with Server-Sent Events, will help you develop an application which will
filter tweets by text content. We will accomplish this by consuming the tweeter steam using
Server-Sent Events which is a standard way to send data streams from a server to clients

Chapter 7, Airline Ticket System, will teach you to use Spring Messaging, WebFlux, and
Spring Data components to build a airline ticket system. You will also learn about circuit
breakers and OAuth in this chapter. By the end, we will create a system with many
microservices to ensure scalability.

Chapter 8, Circuit Breakers and Security, will help you discover how to apply service
discovery features for our business microservices while also understanding how the Circuit
Breaker pattern can help us to bring resilience to our applications.

Chapter 9, Putting It All Together, will bring the entire book into perspective while also
teaching you about the Turbine server. We will also look into the Hystrix Dashboard to
monitor our different microservices to ensure maintainability and optimum performance of
our applications.

To get the most out of this book
The readers are expected to have a basic knowledge of Java. Notion about Distributed
Systems is an added advantage.

To execute code files in this book, you would need to have the following
software/dependencies:

IntelliJ IDEA Community Edition
Docker CE
pgAdmin
Docker Compose

You will be assisted with installation processes,etc through this book.

Preface

[3]

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Spring- 5.0- By- Example. We also have other code bundles from our rich
catalog of books and videos available at https:/ /github. com/ PacktPublishing/ . Check
them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/Spring50ByExample_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "It includes the infrastructure connections which are configured in the default
profile in application.yaml."

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/Spring-5.0-By-Example
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

management:
 endpoints:
 web:
 expose: "*"

Any command-line input or output is written as follows:

docker-compose up -d

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The next screen will be shown and we can configure the Environment Variable:"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Journey to the Spring World

Spring is an open source modular framework for the JVM platform. A framework is a
collection of libraries whose primary goal is to address common software development
problems. The framework should solve these problems in a generic form.

Rod Johnson created the Spring Framework in 2002 together with his book publication,
which was called Expert One-on-One J2EE Design and Development. The idea behind
the creation of the framework was to tackle the complexities of Java Enterprise Edition.

At that time, this kind of solution-focused a lot on the details of the infrastructure, and a
developer using the solution would spend a lot of time writing code to solve infrastructural
problems. Since its creation, one of Rod Johnson's primary concerns has been to increase
developer productivity.

The framework was first seen as a lightweight container for Java Runtime Environment,
and it became popular in the community, especially because of the dependency injection
feature. The framework made dependency injection incredibly easy. Developers hadn't seen
such a feature before, and as a consequence, people the world over adopted the project.
Year by year, its popularity within the software development world has been increasing.

In the earliest versions, the framework had to work with the XML file to configure the
container. At the time, this was so much better than J2EE applications, where it was
necessary to create many Ant files to create the boilerplate classes and interfaces.

The framework was always seen as an advanced technology for the Java platform, but in
2014, the Spring team launched the Spring Boot platform. This platform was incredibly
successful in the Java Enterprise ecosystem, and it changed the way in which developers
built Java Enterprise applications.

Journey to the Spring World Chapter 1

[7]

Today, Spring is the de facto framework for Java development, and companies around the
world use it in their systems. The community is vibrant and contributes to development in
different ways, such as opening issues, adding the code, and discussing the framework in
the most important Java conferences around the world. Let's look at and play with the
famous framework for Java developers.

We will cover the following topics in this chapter:

Main modules of the Spring Framework
Spring annotations for each module
Setting up the development environment
Docker and Docker commands

Spring modularity
Since its foundation, the framework has had a particular focus on modularity. It is an
important framework characteristic because it makes the framework an excellent option for
different architectural styles and different parts of applications.

It means the framework is not an opinionated, full-stack framework that dictates the rules
to make everything work. We can use the framework as we need and integrate it with a
wide range of specification and third-party libraries.

For example, for portal web applications, the Spring MVC supports features such as
template engines and REST endpoints and integrates them with the popular JavaScript
framework, AngularJS.

Also, if the application needs support for a distributed system, the framework can supply
an amazing module called Spring Cloud, which has some essential features for distributed
environments, such as service registration and discovery, a circuit breaker, intelligent
routing, and client-side load balancing.

Spring makes the development applications for Java Runtime easy with different languages,
such as Java, Kotlin, and Groovy (with which you can choose the flavor and make the
development task fun).

It is divided into various modules. The main modules are as follows:

Spring Core
Spring Data

Journey to the Spring World Chapter 1

[8]

Spring Security
Spring Cloud
Spring Web-MVC

In this book, we will cover the most common solutions involved in Java Enterprise
applications, including the awesome Spring Cloud project. Also, we can find some
interesting projects such as Spring Batch and Spring Integration, but these projects are for
specific needs.

Spring Core Framework
This module is the base of the framework and contains the essential support for
dependency injection, web features supported by Spring MVC (model-view-controller)
and the pretty new WebFlux frameworks, and aspect-oriented programming. Also, this
module supports the foundation for JDBC, JMS, JPA and a declarative way to manage
transactions. We will explore it and understand the main projects of this module. So let's do
it!

Core container
The core container is the basis of the whole Spring ecosystem and comprehends four
components—core, beans, context, and expression language.

Core and beans are responsible for providing the fundamentals of the framework and
dependency injection. These modules are responsible for managing the IoC container, and
the principal functions are the instantiation, configuration, and destruction of the object
residents in the Spring container.

Spring contexts are also called Spring IoC containers, which are
responsible for instantiating, configuring, and assembling beans by
reading configuration metadata from XML, Java annotations, and/or Java
code in the configuration files.

There are two critical interfaces inside these modules—BeanFactory and
ApplicationContext. The BeanFactory takes care of the bean lifecycle, instantiating,
configuring, managing, and destroying, and the ApplicationContext helps developers to
work with files resources in a generic way, enable to publish events to registered listeners.
Also, the ApplicationContext supports internationalization and has the ability to work
with messages in different Locales.

Journey to the Spring World Chapter 1

[9]

These modules help the context component to provide a way to access the objects inside the
container. The context component has the ApplicationContext interface with the
essential class for the container.

Some common annotations are @Service, @Component, @Bean,
and @Configuration.

Spring Messaging
Spring Framework supports a wide range of messaging systems. The Java platform is
recognized as providing excellent support for messaging applications, and Spring
Framework follows this approach and offers a variety of projects to help developers to write
powerful applications with more productivity and fewer lines of infrastructure code. The
basic idea of these projects is to provide some template classes that have the convenience
methods to interact with the messaging systems.

Also, the project supplies some listener annotations to provide support for listening to
messages from the brokers. The framework maintains the standard for different projects. In
general, the prefix of the annotations is the name of the messaging system, for example,
@KafkaListener.

The framework supplies many abstractions to create messaging applications in a generic
way. This is interesting stuff because the application requirements change during the
application lifecycle and the message broker solution may change as well. Then, with small
changes, the application built with the Spring message module can work in different
brokers. This is the goal.

Spring AMQP
This subproject supports the AMQP protocol in Spring Framework. It provides a template
to interact with the message broker. A template is like a super high-level API that supports
the send and receive operations.

There are two projects in this set: spring-amqp, which can be used for ActiveMQ for
instance, and spring-rabbit, which adds support for the RabbitMQ broker. This project
enables broker administration through the APIs to declare queues, bindings, and exchanges.

Journey to the Spring World Chapter 1

[10]

These projects encourage the extensive use of dependency injection provided by the core
container, because they make the configuration more declarative and easy to understand.

Nowadays, the RabbitMQ broker is the popular choice for the messaging applications, and
Spring provides full support for client interactions up to the level of administration tasks.

Some common annotations are @Exchange and @QeueueBinding.

Spring for Apache Kafka
Spring for Apache Kafka supports the broker-based Apache Kafka applications. It provides
a high-level API to interact with Apache Kafka. Internally, the projects use the Kafka Java
APIs.

This module supports the annotation programming model. The basic idea is that with a
couple of annotations and some POJO models, we can bootstrap the application and start
listening to and producing messages.

KafkaTemplate is a central class of this project. It enables us to send messages to Apache
Kafka with a high-level API. Asynchronous programming is supported as well.

This module offers support for transactions via annotations. This feature is enabled via
standard transactional annotations used in Spring-based applications, such
as @Transactional.

We also learned about Spring AMQP. This project adds the Spring concept of creating
applications based on this broker. The dependency injection features are supported as well.

Some common annotations are @EnableKafka and @KafkaListener.

Spring JMS
The idea of this project provides a JMS integration with ideas of Spring Framework projects
and supplies a high-level API to interact with brokers. The worst part of a JMS specification
is that it has a lot of boilerplate code to manage and close connections.

Journey to the Spring World Chapter 1

[11]

The JmsTemplate is a central class for this module, and it enables us to send messages to
the broker. The JMS specification has a lot of intrinsic behaviors to handle the creation and
releases resources, for instance, the JmsTemplate class do this tasks automatically for
developers.

The module also supports transactional requirements. The JmsTransactionManager is the
class that handles the transactional behavior of the Spring JMS module.

Spring removes the boilerplate code with a couple of annotations. The framework increases
the readability of the code and makes the code more intuitive as well.

Some common annotations are @JmsListener and @EnableJms.

Spring Web MVC
This module is the first one built by the Spring Team to support the web applications in
Spring Framework. This module uses the Servlet API as its foundation, and then these web
applications must follow the Servlet Specification and be deployed into servlet containers.
In version 5.0, the Spring Team created a Reactive web framework, which will be covered
later in this book.

The Spring Web MVC module was developed using the front controller pattern. When the
framework was created, this pattern was a common choice for many frameworks, such as
Struts and JSF, among others. Under the hood, there is the main servlet in Spring called
DispatcherServlet. This servlet will redirect through an algorithm to do the desired
work.

It enables developers to create amazing web applications on the Java platform. This portion
of the framework provides full support to develop this kind of application. There are some
interesting features for this purpose, such as support for internationalization and support
for handling cookies. Also, multipart requests are an exciting feature for when the
application needs to handle upload files and support routing requests.

These characteristics are common for most web applications, and the framework has
excellent support for these features. This support makes the framework a good choice for
this kind of application. In Chapter 2, Starting in the Spring World - The CMS Application, we
will create an application using this module and the main features will be explored in
depth.

Journey to the Spring World Chapter 1

[12]

The module has full support for annotation programming since to declare HTTP endpoints
until to wrap the request attribute in an HTTP request. It makes the application extremely
readable without the boilerplate code to get the request parameter, for example.

Web application-wise, it enables developers to work with robust template engines such as
Thymeleaf and Freemarker. It is entirely integrated with routing features and bean
validation.

Also, the framework allows developers to build REST APIs with this module. Given all of
this support, the module has become a favorite in the Spring ecosystem. Developers have
started to create APIs with this stack, and some important companies have started to use it,
especially given that the framework provides an easy way to navigate through the
annotations. Because of this, the Spring Team added the new annotation @RestController
in version 4.0.

We will work a lot with this module. Chapter by chapter, we will learn interesting things
about this part of the framework.

Some common annotations are @RequestMapping, @Controller,
@Model, @RestController, and @RequestBody.

Spring WebFlux
A new module introduced in Spring 5.0, Spring WebFlux, can be used to implement web
applications built with Reactive Streams. These systems have nonblocking characteristics
and are deployed in servers built on top of Netty, such as Undertown and servlet containers
that support + 3.1.

Netty is an open source framework that helps developers to create
network applications—that is, servers and clients using the asynchronous,
event-driven pattern. Netty provides some interesting advantages, such as
lower latency, high throughput, and less resource consumption. You can
find more information at https:/ /netty. io.

This module supports annotations based on Spring MVC modules, such as @GetMapping,
@PostMapping, and others. This is an important feature that enables us to migrate to this
new version. Of course, some adjustments are necessary, such as adding Reactor classes
(Mono or Flux).

https://netty.io
https://netty.io
https://netty.io
https://netty.io
https://netty.io
https://netty.io
https://netty.io

Journey to the Spring World Chapter 1

[13]

This module meets the modern web requirements to handle a lot of concurrent channels
where the thread-per-request model is not an option.

We will learn about this module in Chapter 3, Adding Persistence with Spring Data and
Putting it into Reactive Fashion and implement a fully Reactive application based on Reactive
Streams.

Some common annotations are @RequestMapping, @RestController,
and @RequestBody.

Spring Data
Spring Data is an interesting module that provides the easiest way to manage application
data with Spring-based programming. The project is an umbrella project, with subprojects
to support different databases technologies, even relational and nonrelational databases.
The Spring Team supports some databases technologies, such as Apache Cassandra,
Apache Solr, Redis, and JPA Specification, and the community maintains the other exciting
projects, such as ElasticSearch, Aerospike, DynamoDb, and Couchbase. The full list of
projects can be found at http:/ /projects. spring. io/ spring- data.

The goal is to remove the boilerplate code from the persistence code. In general, the data
access layer is quite similar, even in different projects, differing only in the project model,
and Spring Data provides a powerful way to map the domain model and repository
abstraction.

There are some central interfaces; they're a kind of marker to instruct the framework to
choose the correct implementation. Under the hood, Spring will create a proxy and delegate
the correct implementation. The amazing thing here is that developers don't have to write
any persistence code and then take care of this code; they simply choose the required
technology and Spring takes care of the rest.

The central interfaces are CrudRepository and PagingAndSortingRepository, and
their names are self-explanatory. CrudRepository implements the CRUD behaviors, such
as create, retrieval, update, and delete. PagingAndSortingRepository is an
extension of CrudRepository and adds some features such as paging and sorting. Usually,
we will find derivations of these interfaces such as MongoRepository, which interacts with
MongoDB database technology.

http://projects.spring.io/spring-data
http://projects.spring.io/spring-data
http://projects.spring.io/spring-data
http://projects.spring.io/spring-data
http://projects.spring.io/spring-data
http://projects.spring.io/spring-data
http://projects.spring.io/spring-data
http://projects.spring.io/spring-data
http://projects.spring.io/spring-data
http://projects.spring.io/spring-data
http://projects.spring.io/spring-data
http://projects.spring.io/spring-data
http://projects.spring.io/spring-data

Journey to the Spring World Chapter 1

[14]

Some common annotations are @Query, @Id,
and @EnableJpaRepositories.

Spring Security
Security for Java applications was always a pain for developers, especially in Java
Enterprise Edition. There was a lot of boilerplate code to look up objects in the application
servers, and the security layer was often heavily customized for the application.

In that chaotic scenario, the Spring Team decided to create a Spring Security project to help
developers handle the security layer on the Java application.

In the beginning, the project had extensive support for Java Enterprise Edition and
integration with EJB 3 security annotations. Nowadays, the project supports many different
ways to handle authorization and authentication for Java applications.

Spring Security provides a comprehensive model to add authorization and authentication
for Java applications. The framework can be configured with a couple of annotations, which
makes the task of adding a security layer extremely easy. The other important
characteristics concern how the framework can be extended. There are some interfaces that
enable developers to customize the default framework behaviors, and it makes the
framework customized for different application requirements.

It is an umbrella project, and it is subdivided into these modules:

spring-security-core

spring-security-remoting

spring-security-web

spring-security-config

spring-security-ldap

spring-security-acl

spring-security-cas

spring-security-openid

spring-security-test

Journey to the Spring World Chapter 1

[15]

These are the main modules, and there are many other projects to support a wide range of
types of authentication. The module covers the following authentication and authorization
types:

LDAP
HTTP Basic
OAuth
OAuth2
OpenID
CAAS
JAAS

The module also offers a domain-specific language (DSL) to provide an easy configuration.
Let's see a simple example:

http
 .formLogin()
 .loginPage("/login")
 .failureUrl("/login?error")
 .and()
 .authorizeRequests()
 .antMatchers("/signup","/about").permitAll()
 .antMatchers("/admin/**").hasRole("ADMIN")
 .anyRequest().authenticated();

The example was extracted from the spring.io blog. For more details, go
to https:/ / spring. io/ blog/ 2013/ 07/11/ spring- security- java- config-
preview- readability/ .

As we can see, the DSL makes the configuration task extremely easy and very
understandable.

Spring Security's main features are as follows:

Session management
Protection against attacks (CSRF, session fixation, and others)
Servlet API integration
Authentication and authorization

https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/
https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/

Journey to the Spring World Chapter 1

[16]

We will learn more about Spring Security in Chapter 8, Circuit Breakers and Security. We
will also put it into practice.

@EnableWebSecurity is a common annotation.

Spring Cloud
Spring Cloud is another umbrella project. The primary goal of this project is to help
developers create distributed systems. Distributed systems have some common problems to
solve and, of course, a set of patterns to help us, such as service discovery, circuit breakers,
configuration management, intelligent route systems, and distributed sessions. Spring
Cloud tools have all these implementations and well-documented projects.

The main projects are as follows:

Spring Cloud Netflix
Spring Cloud Config
Spring Cloud Consul
Spring Cloud Security
Spring Cloud Bus
Spring Cloud Stream

Spring Cloud Netflix
Spring Cloud Netflix is perhaps the most popular Spring module nowadays. This fantastic
project allows us to integrate the Spring ecosystem with the Netflix OSS via Spring Boot
AutoConfiguration features. The supported Netflix OSS libraries are Eureka for service
discovery, Ribbon to enable client-side load balancing, circuit breaker via Hystrix to protect
our application from external outages and make the system resilient, the Zuul component
provides an intelligent routing and can act as an edge service. Finally, the Feign component
can help developers to create HTTP clients for REST APIs with a couple of annotations.

Journey to the Spring World Chapter 1

[17]

Let's look at each of these:

Spring Cloud Netflix Eureka: The focus of this project is to provide service
discovery for applications while conforming to Netflix standards. Service
discovery is an important feature and enables us to remove hardcoded
configurations to supply a hostname and ports; it is more important in cloud
environments because the machine is ephemeral, and thus it is hard to maintain
names and IPs. The functionality is quite simple, the Eureka server provides a
service registry, and Eureka clients will contact its registers themselves.

Some common annotations are @EnableEurekaServer and
@EnableEurekaClient.

Spring Cloud Feign: The Netflix team created the Feign project. It's a great
project that makes the configuration of HTTP clients for REST applications
significantly easier than before. These implementations are based on annotations.
The project supplies a couple of annotations for HTTP paths, HTTP headers, and
much more, and of course, Spring Cloud Feign integrates it with the Spring
Cloud ecosystem through the annotations and autoconfiguration. Also, Spring
Cloud Feign can be combined with the Eureka server.

Some common annotations are @EnableFeignClients
and @FeignClient.

Spring Cloud Ribbon: Ribbon is a client-side load balancer. The configuration
should mainly provide a list of servers for the specific client. It must be named. In
Ribbon terms, it is called the named client. The project also provides a range of
load-balancing rules, such as Round Robin and Availability Filtering, among
others. Of course, the framework allows developers to create custom rules.
Ribbon has an API that works, integrated with the Eureka server, to enable
service discovery, which is included in the framework. Also, essential features
such as fault tolerance are supported because the API can recognize the running
servers at runtime.

Journey to the Spring World Chapter 1

[18]

Some common annotations are @RibbonClient and @LoadBalanced.

Spring Cloud Hystrix: An acclaimed Netflix project, this project provides a
circuit breaker pattern implementation. The concept is similar to an electrical
circuit breaker. The framework will watch the method marked with
@HystrixCommand and watch for failing calls. If the failed calls number more
than a figure permitted in configuration, the circuit breaker will open. While the
circuit is open, the fallback method will be called until the circuit is closed and
operates normally. It will provide resilience and fault-tolerant characteristics for
our systems. The Spring ecosystem is fully integrated with Hystrix, but it works
only on the @Component and @Service beans.

Some common annotations are @EnableCircuitBreaker and
@HystrixCommand.

Spring Cloud Config
This exciting project provides an easy way to manage system configurations for distributed
systems, and this is a critical issue in cloud environments because the file system is
ephemeral. It also helps us to maintain different stages of the deployment pipeline. Spring
profiles are fully integrated with this module.

We will need an application that will provide the configuration for other applications. We
can understand its workings by thinking of the concepts of the server and the client, the
server will provide some configurations through HTTP and the client will look up the
configuration on the server. Also, it is possible to encrypt and decrypt property values.

There are some storage implementations to provide these property files, and the default
implementation is Git. It enables us to store our property files in Git, or we can use the file
system as well. The important thing here is that the source does not matter.

Journey to the Spring World Chapter 1

[19]

Git is a distributed version control. The tool is commonly used for
development purposes, especially in the open-source community. The
main advantage, when you compare it to some market players, such as
SVN, is the distributed architecture.

There is an interesting integration between Spring Cloud Bus and this module. If they are
integrated, it is possible to broadcast the configuration changes on the cluster. This is an
important feature if the application configuration changes with frequency. There are two
annotations that tell Spring to apply changes at runtime: @RefreshScope
and @ConfigurationProperties.

In Chapter 7, Airline Ticket System, we will implement an exciting service to provide
external configurations for our microservices using this module. Server concepts will be
explained in more detail. The client details will be presented as well.

 @EnableConfigServer is a common annotation.

Spring Cloud Consul
Spring Cloud Consul provides integrations with Hashicorp's Consul. This tool addresses
problems in the same way as service discovery, a distributed configuration, and control bus.
This module allows us to configure Spring applications and Consul with a few annotations
in a Spring-based programming model. Autoconfiguration is supported as well. The
amazing thing here is that this module can be integrated with some Netflix OSS libraries,
such as Zuul and Ribbon, via Spring Cloud Zuul and Spring Cloud Ribbon respectively (for
example).

@EnableDiscoveryClient is a common annotation.

Journey to the Spring World Chapter 1

[20]

Spring Cloud Security
This module is like an extension from Spring Security. However, distributed systems have
different requirements for security. Normally, they have central identity management, or
the authentication lies with the clients in the case of REST APIs. Normally, in distributed
systems, we have microservices, and these services might have more than one instance in
the runtime environment whose characteristics make the authentication module slightly
different from monolithic applications. The module can be used together with Spring Boot
applications and makes the OAuth2 implementation very easy with a couple of annotations
and a few configurations. Also, some common patterns are supported, such as single sign-
on, token relay, and token exchange.

For the microservice applications based on the Spring Cloud Netflix, it is particularly
interesting because it enables downstream authentication to work with a Zuul proxy and
offers support from Feign clients. An interceptor is used to fetch tokens.

Some commons annotations are @EnableOAuth2Sso
and @EnableResourceServer.

Spring Cloud Bus
The main goal of this project is to provide an easy way to broadcast changes spread
throughout the cluster. The applications can connect the distributed system nodes through
the message broker.

It provides an easy way for developers to create a publish and subscribe mechanism using
the ApplicationContext provided by Spring Container. It enables the possibility to create
applications using the event-driven architecture style with the Spring Ecosystem.

To create custom events, we need to create a child class
from RemoteApplicationEvent and mark the class to be scanned
via @RemoteApplicationEventScan.

Journey to the Spring World Chapter 1

[21]

The projects support three message brokers as the transport layer:

AMQP
Apache Kafka
Redis

@RemoteApplicationEventScan is a common annotation.

Spring Cloud Stream
The idea behind this module is to provide an easy way to build message-driven
microservices. The module has an opinionated way of configuration. It means we need to
follow some rules to create these configurations. In general, the application is configured by
the yaml|properties file.

The module supports annotations as well. This means that a couple of annotations are
enough to create consumers, producers, and bindings; it decouples the application and
makes it easy to understand. It supplies some abstractions around the message brokers and
channels, and it makes the developer's life more comfortable and productive as well.

Spring Cloud Stream has Binder implementations for RabbitMQ and Kafka.

Some common annotations are @EnableBinding, @Input, and @Output.

Spring Integration
This module supports a lot of Enterprise Application patterns and brings the Spring
programming model to this topic. The Spring programming model enables extensive
dependence injection support and is annotations programming-centric. The annotations
instruct us as to how the framework needs to be configured and defines framework
behaviors.

Journey to the Spring World Chapter 1

[22]

The POJO model is suggested because it is simple and widely known in the Java
development world.

This project has some intersections with the other modules. Some other projects use these
module concepts to do their work. There is a project called Spring Cloud Stream, for
instance.

The Enterprise Integration patterns are based on a wide range of communication channels,
protocols, and patterns. This project supports some of these.

The modules support a variety of features and channels, such as the following:

Aggregators
Filters
Transformers
JMS
RabbitMQ
TCP/UDP
Web services
Twitter
Email
And much more

There are three main concepts of Enterprise application integration:

Messages
Message channel
Message endpoint

Finally, the Spring Integration module offers a comprehensive way to create application
integration and enables developers to do it using amazing support.

Some common annotations are @EnableIntegration,
@IntegrationComponentScan , and @EnablePublisher.

Journey to the Spring World Chapter 1

[23]

Spring Boot
Spring Boot was released in 2014. The idea behind this project was to present a way to
deploy the web application outside of any container, such as Apache Tomcat, Jetty, and so
on. The benefit of this kind of deployment is the independence from any external service. It
allows us to run the web applications with one JAR file. Nowadays, this is an excellent
approach because this forms the most natural way to adopt DevOps culture.

Spring Boot provides embedded servlet containers, such as Apache Tomcat, Jetty, and
Undertow. It makes the development process more productive and comfortable when
testing our web applications. Also, customizations during configuration are allowed via a
configuration file, or by providing some beans.

There are some advantages when adopting the Spring Boot framework. The framework
does not require any XML for configuration. This is a fantastic thing because we will find all
the dependencies in the Java files. This helps the IDEs to assist developers, and it improves
the traceability of the code. Another important advantage is that the project tries to keep the
configuration as automatic as possible. Some annotations make the magic happen. The
interesting thing here is that Spring will inject the implementation of any code that is
generated at runtime.

The Spring Boot framework also provides interesting features to help developers and
operations, such as health checks, metrics, security, and configuration. This is indispensable
for modern applications where the modules are decomposed in a microservices
architecture.

There are some other interesting features that can help the developers DevOps-wise. We
can use the application-{profile}.properties or application.yaml files to
configure different runtime profiles, such as development, testing, and production. It is a
really useful Spring Boot feature.

Also, the project has full support for the tests, since the web layer up to the repository layer.

The framework provides a high-level API to work with unit and integration tests. Also, the
framework supplies many annotations and helpers classes for developers.

The Spring Boot project is a production-ready framework with default optimized
configurations for the web servers, metrics, and monitoring features to help the
development team deliver high-quality software.

Journey to the Spring World Chapter 1

[24]

We can develop applications by coding in the Groovy and Java languages. Both are JVM
languages. In version 5.0, the Spring Team announced the full support for Kotlin, the new
language for JVM. It enables us to develop consistent and readable codes. We will look at
this feature in depth in Chapter 7, Airline Ticket System.

Microservices and Spring Boot
The microservices architectural style, in general, is distributed, must be loosely coupled,
and be well-defined. These characteristics must be followed when you want a microservices
architecture.

Much of Spring Boot is aimed at developer productivity by making common concepts, such
as RESTful HTTP and embedded web application runtimes, easy to wire up and use. In
many respects, it also aims to serve as a micro-framework, by enabling developers to pick and
choose the parts of the framework they need, without being overwhelmed by bulky or
otherwise unnecessary runtime dependencies. This also enables Boot applications to be
packaged into small units of deployment, and the framework is able to use build systems to
generate those deployables as runnable Java archives.

The main characteristics of microservices are:

Small-grained components
Domain responsibility (orders, shopping carts)
Programming-language agnostic
Database agnostic

Spring Boot enables us to run an application on embedded web servers such as Tomcat,
Jetty, and Undertow. This makes it extremely easy to deploy our components because it is
possible to expose our HTTP APIs in one JAR.

The Spring Team even thinks in terms of developer productivity, and they offer a couple of
projects called starters. These projects are groups of dependencies with some
compatibilities. These awesome projects additionally work with the convention over
configuration. Basically, they are common configurations that developers need to make on
every single project. We can change these settings in our application.properties or
application.yaml files.

Journey to the Spring World Chapter 1

[25]

Another critical point for microservices architecture is monitoring. Let's say that we're
working on an e-commerce solution. We have two components, shopping cart and
payments. The shopping cart probably needs to have several instances and payments need
to have fewer instances. How can we check these several instances? How can we check the
health of these services? We need to fire an alarm when these instances go down. This is a
common implementation for all services. The Spring Framework supplies a module called
Spring Boot Actuator that provides some built-in health checks for our application,
databases, and much more.

Setting up our development environment
Before we start, we need to set up our development environment. Our development
environment consists of the following four tools:

JDK
Build tool
IDE
Docker

We will install JDK version 8.0. This version is fully supported in Spring Framework 5. We
will present the steps to install Maven 3.3.9, the most famous build tool for Java
development, and in the last part, we will show you some detailed instructions on how to
install IntelliJ IDEA Community Edition. We will use Ubuntu 16.04, but you can use your
favorite OS. The installation steps are easy.

Installing OpenJDK
OpenJDK is a stable, free, and open source Java development kit. This package will be
required for everything related to code compilation and runtime environments.

Also, it is possible to use an Oracle JDK, but you should pay attention to the License and
Agreements.

To install OpenJDK, we will open a terminal and run the following command:

sudo apt-get install openjdk-8-jdk -y

Journey to the Spring World Chapter 1

[26]

We can find more information on how to install Java 8 JDK in the
installation section (http:/ / openjdk. java. net/ install/) of the OpenJDK
page.

Check the installation using the following command:

java -version

You should see the OpenJDK version and its relevant details displayed as follows:

Now that we have installed the Java development kit, we are ready for the next step. In the
real world, we must have a build tool to help developers to compile, package, and test the
Java applications.

Let's install Maven in the next section.

Installing Maven
Maven is a popular build tool for Java development. Some important open source projects
were built using this tool. There are features that facilitate the build process, standardize the
project structure, and provide some guidelines for best practices development.

We will install Maven, but the installation step should be executed after the OpenJDK
installation.

Open a terminal and execute the following:

sudo apt-get install maven -y

Check the installation using this command:

mvn -version

http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/
http://openjdk.java.net/install/

Journey to the Spring World Chapter 1

[27]

You should see the following output, although the version may be different for you:

Well done. Now we have Maven installed. Maven has a vibrant community that produces
many plugins to help developers with important tasks. There are plugins to execute a unit
test and plugins to prepare the project for the release event that can be integrated with
SCM software.

We will use the spring boot maven plugin and docker maven plugin. The first converts
our application to a JAR file and the second enables us to integrate with Docker Engine to
create images, run containers, and much more. In the next few chapters, we will learn how
to configure and interact with these plugins.

Installing IDE
The IDE is an important tool to help developers. In this book, we will use the IntelliJ IDEA
as an official tool for developing our projects. There are no restrictions for other IDEs
because the project will be developed using Maven as a build tool.

The IDE is a personal choice for developers, and in general, it involves passion; what some
people love, other developers hate. Please feel free to use your favorite.

IntelliJ IDEA
IntelliJ IDEA is a JetBrains product. We will use the Community Edition, which is open
source and a fantastic tool with which to code Java and Kotlin. The tool offers a fantastic
autocomplete feature, and also fully supports Java 8 features.

Journey to the Spring World Chapter 1

[28]

Go to https://www. jetbrains. com/ idea/ download/ #section= linux and download the
Community Edition. We can extract the tar.gz and execute it.

Spring Tools Suite
The Spring Tools Suite is based on Eclipse IDE, provided by the Eclipse Foundation, of
course. The goal is to provide support for the Spring ecosystem and make the developer's
life easier. Interesting features such as Beans Explorer are supported in this tool.

Download the tool at the following link:
http://download. springsource. com/ release/ STS/ 3. 6.4.RELEASE/ dist/ e4. 4/groovy-
grails-tool-suite- 3.6. 4. RELEASE- e4. 4. 2-linux- gtk- x86_ 64.tar. gz

Installing Docker
Docker is an open source project that helps people to run and manage containers. For
developers, Docker helps in different stages of the development lifecycle.

During the development phase, Docker enables developers to spin up different
infrastructure services such as databases and service discoveries like Consul without
installation in the current system operational. It helps the developers because developers do
not need to install these kinds of systems in the operating system layer. Usually, this task
can cause conflicts with the libraries during the installation process and consumes a lot of
time.

Sometimes, developers need to install the exact version. In this case, it is necessary to
reinstall the whole application on the expected version. It is not a good thing because the
developer machine during this time becomes slow. The reason is quite simple, there are
many applications that are used during software development.

Docker helps developers at this stage. It is quite simple to run a container with MongoDB.
There is no installation and it enables developers to start the database with one line. Docker
supports the image tag. This feature helps to work with different versions of the software;
this is awesome for developers who need to change the software version every time.

Another advantage is that when the developers need to deliver the artifacts for test or
production purposes, Docker enables these tasks via Docker images.

https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
https://www.jetbrains.com/idea/download/#section=linux
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz
http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz

Journey to the Spring World Chapter 1

[29]

Docker helps people to adopt the DevOps culture and delivers amazing features to improve
the performance of the whole process.

Let's install Docker.

The easiest way to install Docker is to download the script found at https:/ /get. docker.
com:

curl -fsSL get.docker.com -o get-docker.sh

After the download is completed, we will execute the script as follows:

sh get-docker.sh

Wait for the script execution and then check the Docker installation using the following
command:

docker -v

The output needs to look like the following:

Sometimes, the version of Docker can be increased, and the version should
be at least 17.10.0-ce.

Finally, we will add the current user to the Docker group, and this enables us to use the
Docker command line without the sudo keyword. Type the following command:

sudo usermod -aG docker $USER

We need to log out to effect these changes. Confirm whether the command works as
expected by typing the following. Make sure that the sudo keyword is not present:

docker ps

http://get.docker.com
http://get.docker.com
http://get.docker.com
http://get.docker.com
http://get.docker.com
http://get.docker.com
http://get.docker.com
http://get.docker.com

Journey to the Spring World Chapter 1

[30]

The output should be as follows:

Introducing Docker concepts
Now, we will introduce some Docker concepts. This book is not about Docker, but some
basic instructions on how to use Docker are necessary to interact with our containers during
the next few chapters. Docker is a de facto tool that is used to manage containers.

Docker images
The Docker image is like a template for a Docker container. It contains a set of folders and
files that are necessary to start the Docker container. We will never have an image in
execution mode. The image provides a template for Docker Engine to start up the container.
We can create an analogy with object orientation to understand the process better. The
image is like a class that provides an infrastructure to instantiate some objects, and instances
are like a container.

Also, we have a Docker registry to store our images. These registries can be public or
private. Some cloud vendors provide these private registries. The most famous is Docker
Hub. It can be free, but if you choose this option, the image should be public. Of course,
Docker Hub supports private images, but in this case, you have to pay for the service.

Containers
Docker containers are a lightweight virtualization. The term lightweight means that Docker
uses the SO functionalities to cage the system process and manager memory, processors,
and folders. This is different from virtualization with VMs because, in this mode, the
technology needs to simulate the whole SO, drivers, and storage. This task consumes a lot
of computational power and can sometimes be inefficient.

Journey to the Spring World Chapter 1

[31]

Docker networks
A Docker network is a layer that provides runtime isolation for containers. It is a kind of
sandbox in which to run containers that are isolated from other containers. When the
Docker is installed, by default it creates three networks that should not be removed. These
three networks are as follows:

bridge

none

host

Also, Docker provides the user with an easy way to create your network. For this purpose,
Docker offers two drivers—bridge and overlay.

Bridge can be used for the local environment, and it means this kind of network is allowed
on a single host. It will be useful for our applications because it promotes isolation between
containers regarding security. This is a good practice. The name of the container attached to
this kind of network can be used as a DNS for the container. Internally, Docker will
associate the container name with the container IP.

The overlay network provides the ability to connect containers to different machines. This
kind of network is used by Docker Swarm to manage the container in a clustered
environment. In the newest version, the Docker Compose tool natively supports Docker
Swarm.

Docker volumes
Docker volumes are the suggested way to persist data outside of a container. These
volumes are fully managed by Docker Engine, and these volumes can be writable and
readable depending on the configuration when they are used with a Docker command line.
The data of these volumes is persisted on a directory path on a host machine.

There is a command-line tool to interact with volumes. The base of this tool is the docker
volume command; the --help argument on the end shows the help instructions.

Docker commands
Now we will take a look at Docker commands. These commands are used mainly in the
development life cycle, commands such as spin up container, stop containers,
remove, and inspect.

Journey to the Spring World Chapter 1

[32]

Docker run
docker run is the most common Docker command. This command should be used to start
the containers. The basic structure of a command is as follows:

docker run [OPTIONS] IMAGE[:TAG|@DIGEST] [COMMAND] [ARG...]

The options arguments enable some configurations for the container, for instance, the --
name argument permits you to configure a name for a container. It is important for DNS
when the container is running in a bridge network.

The network settings can be configured on the run command as well, and the parameter is
-- net. This enables us to configure the network to which the container will be attached.

Another important option is detached. It indicates whether the container will run in the
background. The -d parameter instructs Docker to run a container in the background.

Docker container
The docker container command permits you to manage the containers. There are many
commands, as shown in the following list:

docker container attach

docker container commit

docker container cp

docker container create

docker container diff

docker container exec

docker container export

docker container inspect

docker container kill

docker container logs

docker container ls

docker container pause

docker container port

docker container prune

docker container rename

Journey to the Spring World Chapter 1

[33]

docker container restart

docker container rm

docker container run

docker container start

docker container stats

docker container stop

docker container top

docker container unpause

docker container update

docker container wait

There are some important commands here. The docker container exec permits you to
run commands on a running container. This is an important task to debug or look inside the
container files. The docker container prune removes the stopped containers. It is
helpful in the development cycle. There are some known commands, such as docker
container rm, docker container start, docker container stop, and docker
container restart. These commands are self-explanatory and have similar behaviors.

Docker network
The docker network commands enable you to manage the Docker network stuff via the
command line. There are six basic commands, and the commands are self-explanatory:

docker network create

docker network connect

docker network ls

docker network rm

docker network disconnect

docker network inspect

docker network create, docker network ls, and docker network rm are the main
commands. It is possible to compare them with the Linux commands, where the rm
command is used to remove things and the ls command is usually used to list things such
as folders. The create command should be used to create networks.

The docker network connect and docker network disconnect commands allow you
to connect the running container to the desired network. They may be useful in some
scenarios.

Journey to the Spring World Chapter 1

[34]

Finally, the docker network inspect command provides detailed information on the
requested network.

Docker volume
The docker volume command permits you to manage the Docker volumes via the
command-line interface. There are five commands:

docker volume create

docker volume inspect

docker volume ls

docker volume prune

docker volume rm

The docker volume create, docker volume rm and docker volume ls commands
are effectively used to manage the docker volume by Docker Engine. The behaviors are
quite similar to those of the networks, but for volumes. The create command will create a
new volume with some options allowed. The ls command lists all volumes and the rm
command will remove the requested volume.

Summary
In this chapter, we looked at the main concepts of Spring Framework. We understood the
main modules of the framework and how these modules can help developers to build
applications in different kinds of architecture, such as messaging applications, REST APIs,
and web portals.

We also spent some time preparing our development environment by installing essential
tools, such as Java JDK, Maven, and IDE. This was a critical step to take before we continue
to the next chapters.

We used Docker to help us to set up a development environment, such as containers for
databases and delivery for our application in Docker images. We installed Docker and
looked at the main commands for managing containers, networks, and volumes.

In the next chapter, we will create our first Spring application and put it into practice!

2
Starting in the Spring World –

the CMS Application
Now, we'll create our first application; at this point, we have learned the Spring concepts,
and we are ready to put them into practice. At the beginning of this chapter, we'll introduce
the Spring dependencies to create a web application, also we know that Spring Initializr is a
fantastic project that enables developers to create Spring skeleton projects, with as many
dependencies as they want. In this chapter, we will learn how to put up our first Spring
application on IDE and command line, expose our first endpoint, understand how this
works under the hood, and get to know the main annotations of Spring REST support. We
will figure out how to create a service layer for the CMS (Content Management System)
application and understand how Dependency Injection works in a Spring container. We
will meet the Spring stereotypes and implement our first Spring bean. At the end of this
chapter, we will explain how to create a view layer and integrate that with AngularJS.

In this chapter, the following topics will be covered:

Creating the project structure
Running the first Spring application
Introducing the REST support
Understanding the Dependency Injection in Spring

Starting in the Spring World – the CMS Application Chapter 2

[36]

Creating the CMS application structure
Now we will create our first application with the Spring Framework; we will create a basic
structure for the CMS application with Spring Initializr. This page helps to bootstrap our
application, it's a kind of guide which allows us to configure the dependencies on Maven or
Gradle. We can also choose the language and version of Spring Boot.

The page looks like this:

In the Project Metadata section, we can put the coordinates for Maven projects; there is
a group field which refers to the groupId tag, and we have artifacts which refer to the
artifactId. This is all for the Maven coordinates.

The dependencies section enables the configuration of the Spring dependencies, the field
has the autocomplete feature and helps developers to put in the correct dependency.

Starting in the Spring World – the CMS Application Chapter 2

[37]

The CMS project
Before we start to code and learn amazing things, let's understand a little bit about the CMS
project, the main purpose of this project is to help companies manage the CMS content for
different topics. There are three main entities in this project:

The News class is the most important, it will store the content of the news.
It has a category which makes the search easier, and we can also group news by
category, and of course, we can group by the user who has created the news. The
news should be approved by other users to make sure it follows the company
rules.
The news has some tags as well, as we can see the application is pretty standard,
the business rules are easy as well; this is intentional because we keep the focus
on the new things we will learn.

Now we know how Spring Initializr (https:/ /start. spring. io) works and the business
rules we need to follow, we are ready to create the project. Let's do it right now.

Project metadata section
Insert spring-five in the Group field and cms in the Artifact field. If you want to
customize it, no problem, this is a kind of informative project configuration:

https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io

Starting in the Spring World – the CMS Application Chapter 2

[38]

The dependencies section
Type the MVC word in the Search for Dependencies field. The Web module will appear as
an option, the Web module contains the full-stack web development with Embedded
Tomcat and Spring MVC, select it. Also, we need to put Thymeleaf dependencies in this
module. It is a template engine and will be useful for the view features at the end of this
chapter. Type Thymeleaf, it includes the Thymeleaf templating engine, and includes
integration with Spring. The module will appear, and then select it as well. Now we can see
Web and Thymeleaf in the Selected Dependencies pane:

Generating the project
After we have finished the project definition and chosen the project dependencies, we are
ready to download the project. It can be done using the Generate Project button, click on it.
The project will be downloaded. At this stage, the project is ready to start our work:

The zip file will be generated with the name cms.zip (the Artifact field
input information) and the location of the downloaded file depends on the
browser configuration.

Starting in the Spring World – the CMS Application Chapter 2

[39]

>Before opening the project, we must uncompress the artifact generated by
Spring Initializr to the desired location. The command should be: unzip
-d <target_destination> /<path_to_file>/cms.zip. Follow the
example: unzip -d /home/john /home/john/Downloads/cms.zip.

Now, we can open the project in our IDE. Let's open it and take a look at the basic structure
of the project.

Running the application
Before we run the application, let's have a walk through our project structure.

Open the project on IntelliJ IDEA using the Import Project or Open options (both are
similar), the following page will be displayed:

Then we can open or import the pom.xml file.

Starting in the Spring World – the CMS Application Chapter 2

[40]

The following project structure should be displayed:

Open the pom.xml, we have three dependencies, spring-boot-starter-
thymeleaf, spring-boot-starter-web, spring-boot-starter-test, and an
interesting plugin, spring-boot-maven-plugin.

These starter dependencies are a shortcut for developers because they provide full
dependencies for the module. For instance, on the spring-boot-starter-web, there
is web-mvc, jackson-databind, hibernate-validator-web, and some others; these
dependencies must be on the classpath to run the web applications, and starters make this
task considerably easier.

Let's analyze our pom.xml, the file should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>spring-five</groupId>
 <artifactId>cms</artifactId>
 <version>0.0.1-SNAPSHOT</version>

Starting in the Spring World – the CMS Application Chapter 2

[41]

 <packaging>jar</packaging>

 <name>cms</name>
 <description>Demo project for Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.5.8.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <version>1.16.16</version>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>2.7.0</version>
 </dependency>

Starting in the Spring World – the CMS Application Chapter 2

[42]

 <dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger-ui</artifactId>
 <version>2.7.0</version>
 </dependency>

 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

</project>

Also, we have a spring-boot-maven-plugin, this awesome plugin provides Spring Boot
support for Maven. It enables you to package the application in a Fat-JAR, and the plugin
supports the run, start, and stop goals, as well interacting with our applications.

Fat-JAR: a JAR which contains all project class files and resources packed
together with all its dependencies.

For now, that is enough on Maven configurations; let's take a look at the Java files.

The Spring Initializr created one class for us, in general, the name of this class is artifact
name plus Application, in our case CmsApplication, this class should look like this:

package springfive.cms;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class CmsApplication {

 public static void main(String[] args) {
 SpringApplication.run(CmsApplication.class, args);
 }
}

Starting in the Spring World – the CMS Application Chapter 2

[43]

Looking under the hood
We have some interesting things here, let's understand them. The
@SpringBootApplication is the essential annotation for the Spring Boot application; it's a
kind of alias for @Configuration, @EnableAutoConfiguration, and
@Component annotations. Let's dig in:

The first annotation, @Configuration indicates that the class can produce a
beans definitions for the Spring container. This is an interesting annotation to
work with external dependencies such as DataSources; this is the most common
use case for this annotation.
The second annotation, @EnableAutoConfiguration means that with the
Spring ApplicationContext container, it will try to help us configure the
default beans for the specific context. For instance, when we create the web MVC
application with Spring Boot, we will probably need a web server container to
run it. In a default configuration, the Spring container, together with
@EnableAutoConfiguration, will configure a bean Tomcat-embedded
container for us. This annotation is very helpful for developers.
The @Component is a stereotype, the container understands which class is
considered for auto-detection and needs to instantiate it.

The SpringApplication class is responsible for bootstrapping the Spring application from
the main method, it will create an ApplicationContext instance, take care of
configurations provided by the configuration files, and finally, it will load the singleton
beans that are defined by annotations.

Stereotype Annotations denote a conceptual division in an architecture
layer. They help the developers understand the purpose of the class and
the layer which the beans represent, for example, @Repository means the
data access layer.

Running the application
We will run the application in IntelliJ IDEA and command line. It is an important task to
learn because we are working in different development environments; sometimes the
configurations of the application are a little bit complicated, and we are not able to run it
with IDEs, or sometimes the companies have different IDEs as standard, so we will learn
about two different ways.

Starting in the Spring World – the CMS Application Chapter 2

[44]

IntelliJ IDEA
In general, the IntelliJ IDEA recognizes the main class annotated with
@SpringBootApplication and creates a run configuration for us, but it depends on the
version of the tool, let's do it.

Command line
The command line is a more generic tool to run the project. Also, this task is easy, thanks to
the Spring Boot Maven plugin. There are two ways to run, and we will cover both.

Command line via the Maven goal
The first one is a goal of the Spring Boot Maven plugin, and it is straightforward; open the
terminal then go to the root project folder, pay attention as this is the same folder where we
have the pom.xml, and execute the following command:

mvn clean install spring-boot:run

The Maven will now compile the project and run the main class, the class
CmsApplication, and we should see this output:

Starting in the Spring World – the CMS Application Chapter 2

[45]

Command line via the JAR file
To run it through the Java file, we need to compile and package it, and then we can run the
project with the Java command line. To compile and package it, we can use the pretty
standard Maven command like this:

mvn clean install

After the project is compiled and packaged as a Fat-JAR, we can execute the JAR file, go to
the target folder and check the files from this folder, probably the result will look like this:

We have two main files in our target folder, the cms-0.0.1-SNAPSHOT.jar and
the cms-0.0.1-SNAPSHOT.jar.original, the file with the .original extension is not
executable. It is the original artifact resulting from the compilation, and the other is our
executable file. It is what we are looking for, let's execute it, type the following command:

java -jar cms-0.0.1-SNAPSHOT.jar

Starting in the Spring World – the CMS Application Chapter 2

[46]

The result should be as displayed. The application is up and running:

That is it for this part, in the next section, we will create the first REST (Representational
State Transfer) resources and understand how the REST endpoints work.

Creating the REST resources
Now, we have an application up and running in this section, and we will add some REST
endpoints and model some initial classes for the CMS application, the REST endpoints will
be useful for the AngularJS integration.

One of the required characteristics for the APIs is the documentation, and a popular tool to
help us with these tasks is Swagger. The Spring Framework supports Swagger, and we can
do it with a couple of annotations. The project's Spring Fox is the correct tool to do this, and
we will take a look at the tool in this chapter.

Let's do this.

Starting in the Spring World – the CMS Application Chapter 2

[47]

Models
Before we start to create our class, we will add the Lombok dependency in our project. It is a
fantastic library which provides some interesting things such as GET/SET at compilation
time, the Val keyword to make variables final, @Data to make a class with some default
methods like getters/setters, equals, and hashCode.

Adding Lombok dependency
Put the following dependency in a pom.xml file:

<dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <version>1.16.16</version>
 <scope>provided</scope>
</dependency>

The provided scope instructs Maven not to include this dependency in the JAR file because
we need it at compile time. We do not need it at runtime. Wait for Maven to download the
dependency, that is all for now.

Also, we can use the Reimport All Maven Projects provided by IntelliJ IDEA, located in the
Maven Projects tab, as shown here:

Starting in the Spring World – the CMS Application Chapter 2

[48]

Creating the models
Now, we will create our models, which are Java classes annotated with @Data.

Tag
This class represents a tag in our system. There isn't necessarily any repository for it
because it will be persisted together with our News entity:

package springfive.cms.domain.models;

import lombok.Data;

@Data
public class Tag {

 String value;

}

Category
A category model for our CMS application can be used to group the news. Also, the other
important thing is that this makes our news categorized to make the search task easy. Take
a look at the following code:

package springfive.cms.domain.models;

import lombok.Data;

@Data
public class Category {

 String id;

 String name;

}

Starting in the Spring World – the CMS Application Chapter 2

[49]

User
It represents a user in our domain model. We have two different profiles, the author who
acts as a news writer, and another one is a reviewer who must review the news registered at
the portal. Take a look at the following example:

package springfive.cms.domain.models;

import lombok.Data;

@Data
public class User {

 String id;

 String identity;

 String name;

 Role role;

}

News
This class represents news in our domain, for now, it does not have any behaviors. Only
properties and getters/setters are exposed; in the future, we will add some behaviors:

package springfive.cms.domain.models;

import java.util.Set;
import lombok.Data;

@Data
public class News {

 String id;

 String title;

 String content;

 User author;

 Set<User> mandatoryReviewers;
 Set<Review> reviewers;

Starting in the Spring World – the CMS Application Chapter 2

[50]

 Set<Category> categories;

 Set<Tag> tags;

}

The Review class can be found at GitHub: (https:/ / github. com/ PacktPublishing/
Spring-5.0-By-Example/ tree/ master/ Chapter02/ src/ main/ java/ springfive/ cms/
domain/models).

As we can see, they are simple Java classes which represent our CMS application domain. It
is the heart of our application, and all the domain logic will reside in these classes. It is an
important characteristic.

Hello REST resources
We have created the models, and we can start to think about our REST resources. We will
create three main resources:

CategoryResource which will be responsible for the Category class.
The second one is UserResource. It will manage the interactions between the
User class and the REST APIs.
The last one, and more important as well, will be the NewsResource which will
be responsible for managing news entities, such as reviews.

Creating the CategoryResource class
We will create our first REST resource, let's get started with the CategoryResource class
which is responsible for managing our Category class. The implementation of this entity
will be simple, and we will create CRUD endpoints such as create, retrieve, update, and
delete. We have two important things we must keep in mind when we create the APIs. The
first one is the correct HTTP verb such as POST, GET, PUT and DELETE. It is essential for the
REST APIs to have the correct HTTP verb as it provides us with intrinsic knowledge about
the API. It is a pattern for anything that interacts with our APIs. Another thing is the status
codes, and it is the same as the first one we must follow, this is the pattern the developers
will easily recognize. The Richardson Maturity Model can help us create amazing REST APIs,
and this model introduces some levels to measure the REST APIs, it's a kind of
thermometer.

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models

Starting in the Spring World – the CMS Application Chapter 2

[51]

Firstly, we will create the skeleton for our APIs. Think about what features you need in
your application. In the next section, we will explain how to add a service layer in our REST
APIs. For now, let's build a CategoryResource class, our implementation could look like
this:

package springfive.cms.domain.resources;

import java.util.Arrays;
import java.util.List;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseStatus;
import org.springframework.web.bind.annotation.RestController;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.vo.CategoryRequest;

@RestController
@RequestMapping("/api/category")
public class CategoryResource {

 @GetMapping(value = "/{id}")
 public ResponseEntity<Category> findOne(@PathVariable("id") String id){
 return ResponseEntity.ok(new Category());
 }

 @GetMapping
 public ResponseEntity<List<Category>> findAll(){
 return ResponseEntity.ok(Arrays.asList(new Category(),new Category()));
 }

 @PostMapping
 public ResponseEntity<Category> newCategory(CategoryRequest category){
 return new ResponseEntity<>(new Category(), HttpStatus.CREATED);
 }

 @DeleteMapping("/{id}")
 @ResponseStatus(HttpStatus.NO_CONTENT)
 public void removeCategory(@PathVariable("id") String id){
 }

 @PutMapping("/{id}")

Starting in the Spring World – the CMS Application Chapter 2

[52]

 public ResponseEntity<Category> updateCategory(@PathVariable("id") String
id,CategoryRequest category){
 return new ResponseEntity<>(new Category(), HttpStatus.OK);
 }

}

The CategoryRequest can be found at GitHub (https:/ / github. com/ PacktPublishing/
Spring-5.0-By-Example/ tree/ master/ Chapter02/ src/ main/ java/ springfive/ cms/
domain/vo).

We have some important concepts here. The first one is @RestController. It instructs the
Spring Framework that the CategoryResource class will expose REST endpoints over the
Web-MVC module. This annotation will configure some things in a framework, such
as HttpMessageConverters to handle HTTP requests and responses such as XML or
JSON. Of course, we need the correct libraries on the classpath, to handle JSON and XML.
Also, add some headers to the request such as Accept and Content-Type. This annotation
was introduced in version 4.0. It is a kind of syntactic sugar annotation because it's
annotated with @Controller and @ResponseBody.

The second is the @RequestMapping annotation, and this important annotation is
responsible for the HTTP request and response in our class. The usage is quite simple in this
code when we use it on the class level, it will propagate for all methods, and the methods
use it as a relative. The @RequestMapping annotation has different use cases. It allows us to
configure the HTTP verb, params, and headers.

Finally, we have @GetMapping, @PostMapping, @DeleteMapping, and
@PutMapping, these annotations are a kind of shortcut to configure the @RequestMapping
with the correct HTTP verbs; an advantage is that these annotations make the code more
readable.

Except for the removeCategory, all the methods return the ResponseEntity class which
enables us to handle the correct HTTP status codes in the next section.

UserResource
The UserResource class is the same as CategoryResource, except that it uses the User
class. We can find the whole code on the GitHub (https:/ /github. com/ PacktPublishing/
Spring-5.0-By-Example/ tree/ master/ Chapter02).

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02

Starting in the Spring World – the CMS Application Chapter 2

[53]

NewsResource
The NewsResource class is essential, this endpoint enables users to review news previously
registered, and it also provides an endpoint to return the updated news. This is an
important feature because we are interested only in the relevant news. Irrelevant news
cannot be shown on the portal. The resource class should look like this:

package springfive.cms.domain.resources;

import java.util.Arrays;
import java.util.List;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseStatus;
import org.springframework.web.bind.annotation.RestController;
import springfive.cms.domain.models.News;
import springfive.cms.domain.models.Review;
import springfive.cms.domain.vo.NewsRequest;

@RestController
@RequestMapping("/api/news")
public class NewsResource {

 @GetMapping(value = "/{id}")
 public ResponseEntity<News> findOne(@PathVariable("id") String id){
 return ResponseEntity.ok(new News());
 }

 @GetMapping
 public ResponseEntity<List<News>> findAll(){
 return ResponseEntity.ok(Arrays.asList(new News(),new News()));
 }

 @PostMapping
 public ResponseEntity<News> newNews(NewsRequest news){
 return new ResponseEntity<>(new News(), HttpStatus.CREATED);
 }

 @DeleteMapping("/{id}")
 @ResponseStatus(HttpStatus.NO_CONTENT)
 public void removeNews(@PathVariable("id") String id){

Starting in the Spring World – the CMS Application Chapter 2

[54]

 }

 @PutMapping("/{id}")
 public ResponseEntity<News> updateNews(@PathVariable("id") String
id,NewsRequest news){
 return new ResponseEntity<>(new News(), HttpStatus.OK);
 }

 @GetMapping(value = "/{id}/review/{userId}")
 public ResponseEntity<Review> review(@PathVariable("id") String
id,@PathVariable("userId") String userId){
 return ResponseEntity.ok(new Review());
 }

 @GetMapping(value = "/revised")
 public ResponseEntity<List<News>> revisedNews(){
 return ResponseEntity.ok(Arrays.asList(new News(),new News()));
 }

}

The NewsRequest class can be found at GitHub.

Pay attention to the HTTP verbs and the HTTP status code, as we need to follow the correct
semantics.

Adding service layer
Now, we have the skeleton for the REST layer ready, and in this section, we will start to
create a service layer for our application. We will show how the Dependency Injection
works under the hood, learn the stereotype annotations on Spring Framework and also start
to think about our persistence storage, which will be presented in the next section.

Changes in the model
We need to make some changes to our model, specifically in the News class. In our business
rules, we need to keep our information safe, then we need to review all the news. We will
add some methods to add a new review done by a user, and also we will add a method to
check if the news was reviewed by all mandatory reviewers.

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo

Starting in the Spring World – the CMS Application Chapter 2

[55]

Adding a new review
For this feature, we need to create a method in our News class, the method will return
a Review and should look like this:

public Review review(String userId,String status){
 final Review review = new Review(userId, status);
 this.reviewers.add(review);
 return review;
}

We do not need to check if the user, who performs the review action, is a mandatory
reviewer at all.

Keeping the news safely
Also, we need to check if the news is fully revised by all mandatory reviewers. It
is quite simple, we are using Java 8, and it provides the amazing Stream interface, which
makes the collections interactions easier than before. Let's do this:

public Boolean revised() {
 return this.mandatoryReviewers.stream().allMatch(reviewer ->
this.reviewers.stream()
 .anyMatch(review -> reviewer.id.equals(review.userId) &&
"approved".equals(review.status)));
}

Thanks, Java 8, we appreciate it.

Before starting the service layer
Our application needs to have a persistence storage where our records can be loaded, even
if the application goes down. We will create the fake implementation for our repositories.
 In Chapter 3, Persistence with Spring Data and Reactive Fashion, we will introduce the Spring
Data projects which help developers create amazing repositories with a fantastic DSL. For
now, we will create some Spring beans to store our elements in memory, let's do that.

Starting in the Spring World – the CMS Application Chapter 2

[56]

CategoryService
Let's start with our simplest service, the CategoryService class, the behaviors expected of
this class are CRUD operations. Then, we need a representation of our persistence storage
or repository implementation, for now, we are using the ephemeral storage
and ArrayList with our categories. In the next chapter, we will add the real persistence for
our CMS application.

Let's create our first Spring service. The implementation is in the following snippet:

package springfive.cms.domain.service;

import java.util.List;
import org.springframework.stereotype.Service;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.repository.CategoryRepository;

@Service
public class CategoryService {

 private final CategoryRepository categoryRepository;

 public CategoryService(CategoryRepository categoryRepository) {
 this.categoryRepository = categoryRepository;
 }

 public Category update(Category category){
 return this.categoryRepository.save(category);
 }

 public Category create(Category category){
 return this.categoryRepository.save(category);
 }

 public void delete(String id){
 final Category category = this.categoryRepository.findOne(id);
 this.categoryRepository.delete(category);
 }

 public List<Category> findAll(){
 return this.categoryRepository.findAll();
 }

 public Category findOne(String id){
 return this.categoryRepository.findOne(id);
 }

Starting in the Spring World – the CMS Application Chapter 2

[57]

}

There is some new stuff here. This class will be detected and instantiated by the Spring
container because it has a @Service annotation. As we can see, there is nothing special in
that class. It does not necessarily extend any class or implement an interface. We received
the CategoryRepository on a constructor, this class will be provided by the Spring
container because we instruct the container to produce this, but in Spring 5 it is not
necessary to use @Autowired anymore in the constructor. It works because we had the only
one constructor in that class and Spring will detect it. Also, we have a couple of methods
which represent the CRUD behaviors, and it is simple to understand.

UserService
The UserService class is quite similar to the CategoryService, but the rules are about
the User entity, for this entity we do not have anything special. We have
the @Service annotation, and we received the UserRepository constructor as well. It is
quite simple and easy to understand. We will show the UserService implementation, and
it must be like this:

package springfive.cms.domain.service;

import java.util.List;
import java.util.UUID;
import org.springframework.stereotype.Service;
import springfive.cms.domain.models.User;
import springfive.cms.domain.repository.UserRepository;
import springfive.cms.domain.vo.UserRequest;

@Service
public class UserService {

 private final UserRepository userRepository;

 public UserService(UserRepository userRepository) {
 this.userRepository = userRepository;
 }

 public User update(String id,UserRequest userRequest){
 final User user = this.userRepository.findOne(id);
 user.setIdentity(userRequest.getIdentity());
 user.setName(userRequest.getName());
 user.setRole(userRequest.getRole());
 return this.userRepository.save(user);
 }

Starting in the Spring World – the CMS Application Chapter 2

[58]

 public User create(UserRequest userRequest){
 User user = new User();
 user.setId(UUID.randomUUID().toString());
 user.setIdentity(userRequest.getIdentity());
 user.setName(userRequest.getName());
 user.setRole(userRequest.getRole());
 return this.userRepository.save(user);
 }

 public void delete(String id){
 final User user = this.userRepository.findOne(id);
 this.userRepository.delete(user);
 }

 public List<User> findAll(){
 return this.userRepository.findAll();
 }

 public User findOne(String id){
 return this.userRepository.findOne(id);
 }

}

Pay attention to the class declaration with @Service annotation. This is a very common
implementation in the Spring ecosystem. Also, we can find @Component, @Repository
annotations. @Service and @Component are common for the service layer, and there is no
difference in behaviors. The @Repository changes the behaviors a little bit because the
frameworks will translate some exceptions on the data access layer.

NewsService
This is an interesting service which will be responsible for managing the state of our news.
It will interact like a glue to call the domain models, in this case, the News entity. The service
is pretty similar to the others. We received the NewsRepository class, a dependency and
kept the repository to maintain the states, let's do that.

The @Service annotation is present again. This is pretty much standard for Spring
applications. Also, we can change to the @Component annotation, but it does not make any
difference to our application.

Starting in the Spring World – the CMS Application Chapter 2

[59]

Configuring Swagger for our APIs
Swagger is the de facto tool for document web APIs, and the tool allows developers to
model APIs, create an interactive way to play with the APIs, and also provides an easy way
to generate the client implementation in a wide range of languages.

The API documentation is an excellent way to engage developers to use our APIs.

Adding dependencies to pom.xml
Before we start the configuration, we need to add the required dependencies. These
dependencies included Spring Fox in our project and offered many annotations to configure
Swagger properly. Let's add these dependencies.

The new dependencies are in the pom.xml file:

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>2.7.0</version>
</dependency>

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger-ui</artifactId>
 <version>2.7.0</version>
</dependency>

The first dependency is the core of Swagger with annotations and related kinds of stuff.
Spring Fox Swagger UI dependency provides a rich interface in HTML which permits
developers to interact with the APIs.

Configuring Swagger
The dependencies are added, now we can configure the infrastructure for Swagger. The
configuration is pretty simple. We will create a class with @Configuration to produce the
Swagger configuration for the Spring container. Let's do it.

Starting in the Spring World – the CMS Application Chapter 2

[60]

Take a look at the following Swagger configuration:

package springfive.cms.infra.swagger;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.bind.annotation.RestController;
import springfox.documentation.builders.ParameterBuilder;
import springfox.documentation.builders.PathSelectors;
import springfox.documentation.builders.RequestHandlerSelectors;
import springfox.documentation.spi.DocumentationType;
import springfox.documentation.spring.web.plugins.Docket;
import springfox.documentation.swagger2.annotations.EnableSwagger2;

@Configuration
@EnableSwagger2
public class SwaggerConfiguration {

 @Bean
 public Docket documentation() {
 return new Docket(DocumentationType.SWAGGER_2)
 .select()
.apis(RequestHandlerSelectors.withClassAnnotation(RestController.class))
 .paths(PathSelectors.any())
 .build();
 }

}

The @Configuration instructs the Spring to generate a bean definition for Swagger. The
annotation, @EnableSwagger2 adds support for Swagger. @EnableSwagger2 should be
accompanied by @Configuration, it is mandatory.

The Docket class is a builder to create an API definition, and it provides sensible defaults
and convenience methods for configuration of the Spring Swagger MVC Framework.

The invocation of method
.apis(RequestHandlerSelectors.withClassAnnotation(RestController.class)

) instructs the framework to handle classes annotated with @RestController.

There are many methods to customize the API documentation, for example, there is a
method to add authentication headers.

That is the Swagger configuration, in the next section, we will create a first documented
API.

Starting in the Spring World – the CMS Application Chapter 2

[61]

First documented API
We will start with the CategoryResource class, because it is simple to understand, and we
need to keep the focus on the technology stuff. We will add a couple of annotations, and the
magic will happen, let's do magic.

The CategoryResource class should look like this:

package springfive.cms.domain.resources;

import io.swagger.annotations.Api;
import io.swagger.annotations.ApiOperation;
import io.swagger.annotations.ApiResponse;
import io.swagger.annotations.ApiResponses;
import java.util.List;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseStatus;
import org.springframework.web.bind.annotation.RestController;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.service.CategoryService;
import springfive.cms.domain.vo.CategoryRequest;

@RestController
@RequestMapping("/api/category")
@Api(tags = "category", description = "Category API")
public class CategoryResource {

 private final CategoryService categoryService;

 public CategoryResource(CategoryService categoryService) {
 this.categoryService = categoryService;
 }

 @GetMapping(value = "/{id}")
 @ApiOperation(value = "Find category",notes = "Find the Category by ID")
 @ApiResponses(value = {
 @ApiResponse(code = 200,message = "Category found"),
 @ApiResponse(code = 404,message = "Category not found"),
 })

Starting in the Spring World – the CMS Application Chapter 2

[62]

 public ResponseEntity<Category> findOne(@PathVariable("id") String id){
 return ResponseEntity.ok(new Category());
 }

 @GetMapping
 @ApiOperation(value = "List categories",notes = "List all categories")
 @ApiResponses(value = {
 @ApiResponse(code = 200,message = "Categories found"),
 @ApiResponse(code = 404,message = "Category not found")
 })
 public ResponseEntity<List<Category>> findAll(){
 return ResponseEntity.ok(this.categoryService.findAll());
 }

 @PostMapping
 @ApiOperation(value = "Create category",notes = "It permits to create a
new category")
 @ApiResponses(value = {
 @ApiResponse(code = 201,message = "Category created successfully"),
 @ApiResponse(code = 400,message = "Invalid request")
 })
 public ResponseEntity<Category> newCategory(@RequestBody CategoryRequest
category){
 return new ResponseEntity<>(this.categoryService.create(category),
HttpStatus.CREATED);
 }

 @DeleteMapping("/{id}")
 @ResponseStatus(HttpStatus.NO_CONTENT)
 @ApiOperation(value = "Remove category",notes = "It permits to remove a
category")
 @ApiResponses(value = {
 @ApiResponse(code = 200,message = "Category removed successfully"),
 @ApiResponse(code = 404,message = "Category not found")
 })
 public void removeCategory(@PathVariable("id") String id){
 }

 @PutMapping("/{id}")
 @ResponseStatus(HttpStatus.NO_CONTENT)
 @ApiOperation(value = "Update category",notes = "It permits to update a
category")
 @ApiResponses(value = {
 @ApiResponse(code = 200,message = "Category update successfully"),
 @ApiResponse(code = 404,message = "Category not found"),
 @ApiResponse(code = 400,message = "Invalid request")
 })
 public ResponseEntity<Category> updateCategory(@PathVariable("id") String

Starting in the Spring World – the CMS Application Chapter 2

[63]

id,CategoryRequest category){
 return new ResponseEntity<>(new Category(), HttpStatus.OK);
 }

}

There are a lot of new annotations to understand. The @Api is the root annotation which
configures this class as a Swagger resource. There are many configurations, but we will use
the tags and description, as they are enough.

The @ApiOperation describes an operation in our API, in general against the requested
path. The value attribute is regarding as the summary field on Swagger, it is a brief of the
operation, and notes is a description of an operation (more detailed content).

The last one is the @ApiResponse which enables developers to describe the responses of an
operation. Usually, they want to configure the status codes and message to describe the
result of an operation.

Before you run the application, we should compile the source code. It can
be done using the Maven command line using the mvn clean install,
or via IDE using the Run Application.

Now, we have configured the Swagger integration, we can check the API documentation on
the web browser. To do it, we need to navigate to
http://localhost:8080/swagger-ui.html and this page should be displayed:

Starting in the Spring World – the CMS Application Chapter 2

[64]

We can see APIs endpoints configured in our CMS application. Now, we will take a look at
category which we have configured previously, click on the Show/Hide link. The output
should be:

As we can see, there are five operations in our Category API, the operation has a path and a
summary to help understand the purpose. We can click on the requested operation and see
detailed information about the operation. Let's do it, click on List categories to see detailed
documentation. The page looks like this:

Starting in the Spring World – the CMS Application Chapter 2

[65]

Outstanding job. Now we have an amazing API with excellent documentation. Well done.

Let's continue creating our CMS application.

Integrate with AngularJS
The AngularJS Framework has been becoming a trend for a few years, the community is
super active, the project was created by Google.

The main idea of the framework is to help developers handle the complexities of the
frontend layer, especially in the HTML part. The HTML markup language is static. It is
a great tool to create static documents, but today it is not a requirement for modern web
applications. These applications need to be dynamic. The UX teams around the world, work
hard to create amazing applications, with different effects, these guys try to keep the
applications more comfortable for the users.

AngularJS adds the possibility of extending the HTML with some additional attributes and
tags. In this section, we will add some interesting behaviors on the frontend application.
Let's do it.

Starting in the Spring World – the CMS Application Chapter 2

[66]

AngularJS concepts
In our CMS application, we will work with some Angular components. We will
use Controllers which will interact with our HTML and handle the behavior of some
pages, such as those that show error messages. The Services is responsible for handling
the infrastructure code such as interacting with our CMS API. This book is not intended to
be an AngularJS guide. However, we will take a look at some interesting concepts to
develop our application.

The AngularJS common tags are:

ng-app

ng-controller

ng-click

ng-hide

ng-show

These tags are included in the AngularJS Framework. There are many more tags created
and maintained by the community. There is, for example, a library to work with HTML
forms, we will use it to add dynamic behaviors in our CMS Portal.

Controllers
Controllers are part of the framework to handle the business logic of the application. They
should be used to control the flow of data in an application. The controller is attached to the
DOM via the ng-controller directive.

To add some actions to our view, we need to create functions on controllers, the way to do
this is by creating functions and adding them to the $scope object.

The controllers cannot be used to carry out DOM manipulations, format data and filter data,
it is considered best practice in the AngularJS world.

Usually, the controllers inject the service objects to delegate handling the business logic. We
will understand services in the next section.

Starting in the Spring World – the CMS Application Chapter 2

[67]

Services
Services are the objects to handle business logic in our application. In some cases, they can
be used to handle state. The services objects are a singleton which means we have only one
instance in our entire application.

In our application, the services are responsible for interacting with our CMS APIs built on
Spring Boot. Let's do that.

Creating the application entry point
The Spring Boot Framework allows us to serve static files. These files should be in the
classpath in one of these folders, /static, /public, /resources, or /META-
INF/resources.

We will use the /static folder, in this folder, we will put our AngularJS application. There
are some standards to modularize the AngularJS application folder structure which
depends on the application size and requirements. We will use the most simple style to
keep the attention on Spring integration. Look at the project structure:

Starting in the Spring World – the CMS Application Chapter 2

[68]

There are some assets to start and run an AngularJS application. We will use the Content
Delivery Network (CDN) to load the AngularJS Framework, the Angular UI-Router which
helps to handle routing on our web application, and the Bootstrap Framework which helps
to develop our pages.

Content Delivery Network is distributed proxy servers around the world.
It makes the content more high availability and improves performance
because it will be hosted nearer the end user. The detailed explanation can
be found at CloudFare Page (https:/ /www. cloudflare. com/ learning/
cdn/what- is- a-cdn/).

Then we can start to configure our AngularJS application. Let's start with our entry
point, index.html:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Spring Boot Security</title>
 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css
">
</head>
<body ng-app="cms">

<!-- Header -->
<nav class="navbar navbar-default navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#navbar"
 aria-expanded="false" aria-controls="navbar">
 Toggle navigation

 </button>
 CMS
 </div>
 <div id="navbar" class="collapse navbar-collapse">
 <ul class="nav navbar-nav">
 <li class="active">Home
 Users
 Categories

https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/

Starting in the Spring World – the CMS Application Chapter 2

[69]

 News

 </div>
 </div>
</nav>

<!-- Body -->
<div class="container">
 <div ui-view></div>
</div>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/angular.min.js">
</script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/angular-ui-router/1.0.3/angular
-ui-router.js"></script>

<script type="text/javascript" src="app/app.js"></script>

<script type="text/javascript" src="app/controllers.js"></script>
<script type="text/javascript" src="app/services.js"></script>

<script type="text/javascript" src="app/components/categories/category-
controller.js"></script>
<script type="text/javascript" src="app/components/categories/category-
service.js"></script>

<script type="text/javascript" src="app/components/news/news-
controller.js"></script>
<script type="text/javascript" src="app/components/news/news-
service.js"></script>

<script type="text/javascript" src="app/components/users/user-
controller.js"></script>
<script type="text/javascript" src="app/components/users/user-
service.js"></script>

</body>
</html>

There are some important things here. Let's understand them.

The ng-app tag is a directive which is used to bootstrap the AngularJS application. This tag
is the root element of the application and is usually placed on the <body> or <html> tags.

Starting in the Spring World – the CMS Application Chapter 2

[70]

The ui-view tag instructs the Angular UI-Router about which portion of the HTML
document will be handled by the application states, in other words, the designated part has
the dynamic behaviors and change depends on the routing system. Look at the following
code snippet:

<!-- Body -->
<div class="container">
 <div ui-view></div>
</div>

This part of the code can be found at index.hml file.

Following the ui-view, we have our JavaScript files, the first one is the AngularJS
Framework, in this version the file is minified. Look at our JavaScript files, the files were
created in the /static/app/components folder. Take a look at the image here:

The second one is the UI-Router which helps us to manage our routes. Finally, we have our
JavaScript files which configure the AngularJS application, our controllers, and the services
to interact with our CMS APIs.

Also, we have some Bootstrap classes to align fields and make design easier.

Starting in the Spring World – the CMS Application Chapter 2

[71]

Creating the Category Controller
Now, we need to create our controllers. We will start with the simplest to make the example
more easy to understand. The CategoryController has the responsibility of controlling
the data of the Category entity. There are two controllers, one enables us to create a
category, and another lists all categories stored in the database.

The category-controller.js should be like this:

(function (angular) {
 'use strict';

 // Controllers
 angular.module('cms.modules.category.controllers', []).

 controller('CategoryCreateController',
 ['$scope', 'CategoryService','$state',
 function ($scope, CategoryService,$state) {

 $scope.resetForm = function () {
 $scope.category = null;
 };

 $scope.create = function (category) {
 CategoryService.create(category).then(
 function (data) {
 console.log("Success on create Category!!!")
 $state.go('categories')
 }, function (err) {
 console.log("Error on create Category!!!")
 });
 };
 }]).

 controller('CategoryListController',
 ['$scope', 'CategoryService',
 function ($scope, CategoryService) {
 CategoryService.find().then(function (data) {
 $scope.categories = data.data;
 }, function (err) {
 console.log(err);
 });
 }]);
})(angular);

Starting in the Spring World – the CMS Application Chapter 2

[72]

We have created an AngularJS module. It helps us to keep the functions organized. It acts as
a kind of namespace for us. The .controller function is a constructor to create our
controller's instances. We received some parameters, the AngularJS framework will inject
these objects for us.

Creating the Category Service
The CategoryService objects is a singleton object because it is an AngularJS service. The
service will interact with our CMS APIs powered by the Spring Boot application.

We will use the $http service. It makes the HTTP communications easier.

Let's write the CategoryService:

(function (angular) {
 'use strict';

 /* Services */
 angular.module('cms.modules.category.services', []).
 service('CategoryService', ['$http',
 function ($http) {

 var serviceAddress = 'http://localhost:8080';
 var urlCollections = serviceAddress + '/api/category';
 var urlBase = serviceAddress + '/api/category/';

 this.find = function () {
 return $http.get(urlCollections);
 };

 this.findOne = function (id) {
 return $http.get(urlBase + id);
 };

 this.create = function (data) {
 return $http.post(urlBase, data);
 };

 this.update = function (data) {
 return $http.put(urlBase + '/id/' + data._id, data);
 };

 this.remove = function (data) {
 return $http.delete(urlBase + '/id/' + data._id, data);
 };

Starting in the Spring World – the CMS Application Chapter 2

[73]

 }
]);
})(angular);

Well done, now we have implemented the CategoryService.

The .service function is a constructor to create a service instance, the angular acts under
the hood. There is an injection on a constructor, for the service we need an $http service to
make HTTP calls against our APIs. There are a couple of HTTP methods here. Pay attention
to the correct method to keep the HTTP semantics.

Summary
In this chapter, we created our first Spring application. We saw Spring Initializr, the
amazing tool that helps developers create the application skeleton.

We looked at how Spring works under the hood and how the framework got configured
with a couple of annotations. Now, we have a basic knowledge of the Spring Bootstrap
functions, and we can understand the Dependency Injection and component scan features
present in the framework.

This knowledge is the basis for the next chapters, and now we are ready to start to work
with more advanced features, such as persistence. Here we go. See you in the next chapter.

3
Persistence with Spring Data

and Reactive Fashion
In the previous chapter, we created our Content Management System (CMS) application.
We also introduced REST (Representational State Transfer) support in Spring, which
enabled us to develop a simple web application. Also, we learned how dependency
injection works in the Spring Framework, which is probably the most famous feature of the
framework.

In this chapter, we will add more features to our application. Systems in the real world need
to persist their data on a real database; this is an essential characteristic for a production-
ready application. Also, based on our model, we need to choose the correct data structure to
achieve performance and avoid the impedance mismatch.

In the first part of this chapter, we will use the traditional SQL database as a store for our
application. We will deep dive on the Spring Data JPA (Java Persistence API) to achieve the
persistence for our CMS application. We will understand how to enable transactions with
this amazing Spring module.

After that, we will change to a more modern type of database called NoSQL technologies.
In this field, we will use the famous database document model called MongoDB and then
we will create the final solution for our CMS application.

MongoDB offers a fantastic solution for our application because it has support for a
document storage model and enables us to store our objects in the form of JSON, which
makes our data more readable. Also, MongoDB is schema-less, which is a fantastic feature
because one collection can store different documents. It means records can have different
fields, content, and sizes. The other important characteristic from MongoDB is the query
model. It offers a document-based query that is easy to understand, and, based on JSON
notations, our queries will be more readable than any other database can be.

Persistence with Spring Data and Reactive Fashion Chapter 3

[75]

Finally, we will add the most important feature present in Spring 5.0: support for Reactive
Streams. Our application will be transformed into a modern web application which has
some important requirements.

Here's an overview of what you will learn in this chapter:

Implementing the Spring Data JPA
Creating repositories with Spring Data Reactive MongoDB
Learning the Reactive Spring
Understand the Project Reactor

Learning the basics of Docker
We learned about Docker concepts in Chapter 1, Journey to the Spring World. Now, it is time
to test our knowledge and put it into practice. In the first part of this chapter, we will start
MongoDB and Postgres instances to serve as a database for our application. We will
configure connection settings in the application.

In the last part of this chapter, we will introduce the Maven plugin which provides an easy
way to create Docker images via pom.xml with a couple of configurations on file. Finally,
we will run our application in a Docker container.

Preparing MongoDB
Let's create our MongoDB container. We will use the official image provided by the Docker
Hub.

First, we need to pull the image:

docker pull mongo:3.4.10

Then, we will see the Docker Engine downloading the image contents.

To create an isolation from our containers, we will create a separated network for our
application and database. The network should use the bridge driver to allow the container
communications.

Persistence with Spring Data and Reactive Fashion Chapter 3

[76]

Let's create a docker network:

docker network create cms-application

The command output should be an ID of a created network. Your ID will probably be
different compared to mine:

To check if the network was created successfully, the docker network ls command can
help us.

We will start our MongoDB. The network should be cms-application, but we will map
the database port to a host port. For debugging purposes, we will connect a client to a
running database, but please don't do this in a non-development environment.

Exposing a port over host is not a best practice. Hence, we use a Docker
container, which is one of the main advantages is process isolation. In this
case, we will have no control over the network. Otherwise, we may cause
some port conflicts.

To start, type the following command:

docker run -d --name mongodb --net cms-application -p 27017:27017
mongo:3.4.10

Also, we can stop the Docker MongoDB container using docker stop
mongodb and start our container again by using the following
command: docker start mongodb.

The output will be a hash which represents the ID of the container.

The parameter instructions are:

-d: This instructs Docker to run the container in a background mode
--name: The container name; it will be a kind of hostname in our network

Persistence with Spring Data and Reactive Fashion Chapter 3

[77]

--net: The network where the container will be attached
-p: The host port and container port, which will be mapped to a container on a
host interface

Now, we have a pretty standard MongoDB instance running on our machines, and we can
start to add a persistence in our CMS application. We will do that soon.

Preparing a PostgreSQL database
Like MongoDB, we will prepare a PostgreSQL instance for our CMS application. We will
change our persistence layer to demonstrate how Spring Data abstracts it for developers.
Then, we need to prepare a Docker Postgres instance for that.

We will use the version 9.6.6 of Postgres and use the alpine tag because it is smaller than
other Postgres images. Let's pull our image. The command should be like this:

docker pull postgres:9.6.6-alpine

Then, wait until the download ends.

In the previous section, we created our Docker network called cms-application. Now,
we will start our Postgres instance on that network as we did for MongoDB. The command
to start the Postgres should be the following:

docker run -d --name postgres --net cms-application -p 5432:5432 -e
POSTGRES_PASSWORD=cms@springfive
postgres:9.6.6-alpine

The list of parameters is the same as we passed for MongoDB. We want to run it in
background mode and attach it to our custom network. As we can see, there is one more
new parameter in the docker run command. Let's understand it:

-e: This enables us to pass environment variables for a container. In this case, we
want to change the password value.

Good job. We have done our infrastructure requirements. Let's understand the persistence
details right now.

Persistence with Spring Data and Reactive Fashion Chapter 3

[78]

Spring Data project
The Spring Data project is an umbrella project that offers a familiar way to create our data
access layer on a wide range of database technologies. It means there are high-level
abstractions to interact with different kinds of data structures, such as the document model,
column family, key-value, and graphs. Also, the JPA specification is fully supported by the
Spring Data JPA project.

These modules offer powerful object-mapping abstractions for our domain model.

There is support for different types of data structures and databases. There is a set of sub-
modules to keep the framework modularity. Also, there are two categories of these sub-
modules: the first one is a subset of projects supported by the Spring Framework Team and
the second one is a subset of sub-modules provided by the community.

Projects supported by the Spring Team include:

Spring Data Commons
Spring Data JPA
Spring Data MongoDB
Spring Data Redis
Spring Data for Apache Cassandra

Projects supported by the community include:

Spring Data Aerospike
Spring Data ElasticSearch
Spring Data DynamoDB
Spring Data Neo4J

The base of the repositories interfaces chain is the Repository interface. It is a marker
interface, and the general purpose is to store the type information. The type will be used for
other interfaces that extend it.

There is also a CrudRepository interface. It is the most important, and the name is self-
explanatory; it provides a couple of methods to perform CRUD operations, and it provides
some utility methods, such as count(), exists(), and deleteAll(). Those are the most
important base interfaces for the repository implementations.

Persistence with Spring Data and Reactive Fashion Chapter 3

[79]

Spring Data JPA
The Spring Data JPA provides an easy way to implement a data access layer using the JPA
specification from Java EE. Usually, these implementations had a lot of boilerplate and
repetitive code and it was hard to maintain the changes in the database code. The Spring
Data JPA is trying to resolve these issues and provides a comprehensible way to do that
without boilerplate and repetitive code.

The JPA specification provides an abstraction layer to interact with different database
vendors that have been implemented. Spring adds one more layer to the abstraction in a
high-level mode. It means the Spring Data JPA will create a repositories implementation
and encapsulate the whole JPA implementation details. We can build our persistence layer
with a little knowledge of the JPA spec.

The JPA Specification was created by the JCP (Java Community Process) to
help developers to persist, access, and manage data between Java classes
and relational databases. There are some vendors that implement this
specification. The most famous implementation is Hibernate (http:/ /
hibernate. org/ orm/), and by default, Spring Data JPA uses Hibernate as
the JPA implementation.

Say goodbye to the DAO (Data Access Object) pattern and implementations. The Spring
Data JPA aims to solve this problem with a well-tested framework and with some
production-ready features.

Now, we have an idea of what the Spring Data JPA is. Let's put it into practice.

Configuring pom.xml for Spring Data JPA
Now, we need to put the correct dependencies to work with Spring Data JPA. There are a
couple of dependencies to configure in our pom.xml file.

The first one is the Spring Data JPA Starter, which provides a lot of auto-configuration
classes which permits us to bootstrap the application quickly. The last one is the
PostgreSQL JDBC driver, and it is necessary because it contains the JDBC implementation
classes to connect with the PostgreSQL database.

http://hibernate.org/orm/
http://hibernate.org/orm/
http://hibernate.org/orm/
http://hibernate.org/orm/
http://hibernate.org/orm/
http://hibernate.org/orm/
http://hibernate.org/orm/
http://hibernate.org/orm/
http://hibernate.org/orm/

Persistence with Spring Data and Reactive Fashion Chapter 3

[80]

The new dependencies are:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

<dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>42.1.4</version>
</dependency>

Simple and pretty easy.

Configuring the Postgres connections
To connect our application with our recently created database, we need to configure a
couple of lines in the application.yaml file. Once again, thanks to Spring Data Starter,
our connection will be configured automatically.

We can produce the connection objects using the @Bean annotations as well, but there are
many objects to configure. We will go forward with the configuration file. It is more simple
and straightforward to understand as well.

To configure the database connections, we need to provide the Spring Framework a couple
of attributes, such as the database URL, database username, password, and also a driver
class name to instruct the JPA framework about the full path of the JDBC class.

The application.yaml file should be like this:

spring:
 datasource:
 url: jdbc:postgresql://localhost:5432/postgres
 username: postgres
 password: cms@springfive
 driver-class-name: org.postgresql.Driver
 jpa:
 show-sql: true
 generate-ddl: true

Persistence with Spring Data and Reactive Fashion Chapter 3

[81]

In the datasource section, we have configured the database credentials connections and
database host as well.

The JPA section in application.yaml can be used to configure the JPA framework. In this
part, we configured to log SQL instructions in the console. This is helpful to debug and
perform troubleshooting. Also, we have configured the JPA framework to create our tables
in a database when the application gets the startup process.

Awesome, the JPA infrastructure is configured. Well done! Now, we can map our models in
the JPA style. Let's do that in the following section.

Mapping the models
We have configured the database connections successfully. Now, we are ready to map our
models using the JPA annotations. Let's start with our Category model. It is a pretty simple
class, which is good because we are interested in Spring Data JPA stuff.

Our first version of the Category model should be like this:

package springfive.cms.domain.models;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Table;
import lombok.Data;
import org.hibernate.annotations.GenericGenerator;

@Data
@Entity
@Table(name = "category")
public class Category {

 @Id
 @GeneratedValue(generator = "system-uuid")
 @GenericGenerator(name = "system-uuid", strategy = "uuid2")
 String id;

 String name;

}

Persistence with Spring Data and Reactive Fashion Chapter 3

[82]

We need to change some model classes to adapt to the JPA specification.
We can find the model classes on GitHub at: https:/ / github. com/
PacktPublishing/ Spring- 5.0- By-Example/ tree/ master/ Chapter03/ cms-
postgres/ src/ main/ java/ springfive/ cms/ domain/ models.

There is some new stuff here. The @Entity annotation instructs the JPA framework that the
annotated class is an entity, in our case, the Category class, and then the framework will
correlate it with a database table. The @Table annotation is used to name the table in the
database. These annotations are inserted on the class level, which means on top of the class
declaration.

The @Id annotation instructs the JPA as to which annotated field is the primary key of the
database table. It is not a good practice to generate IDs sequentially for entities, especially if
you are creating the APIs. It helps hackers to understand the logic about the IDs and makes
the attacks easier. So, we will generate UUIDs (Universally Unique IDentifiers) instead of
simple sequentially IDs. The @GenericGenerator annotation instructs Hibernate, which is
a JPA specification implementation vendor, to generate random UUIDs.

Adding the JPA repositories in the CMS application
Once the whole infrastructure and JPA mappings are done, we can add our repositories to
our projects. In the Spring Data project, there are some abstractions, such as Repository,
CrudRepository, and JpaRepository. We will use the JpaRepository because it
supports the paging and sorting features.

Our repository will be pretty simple. There are a couple of standard methods, such
as save(), update(), and delete(), and we will take a look at some DSL query methods
which allow developers to create custom queries based on attribute names. We
created an AbstractRepository to help us to store the objects in memory. It is not
necessary anymore. We can remove it.

Let's create our first JPA repository:

package springfive.cms.domain.repository;

import java.util.List;
import org.springframework.data.jpa.repository.JpaRepository;
import springfive.cms.domain.models.Category;

public interface CategoryRepository extends JpaRepository<Category, String>
{

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models

Persistence with Spring Data and Reactive Fashion Chapter 3

[83]

 List<Category> findByName(String name);

 List<Category> findByNameIgnoreCaseStartingWith(String name);

}

As we can see, the JpaRepository interface is typed with the desired entity and the type
of ID of the entity as well. There is no secret to this part. This amazing thing happens to
support the custom queries based on attribute names. In the Category model, there is an
attribute called name. We can create custom methods in our CategoryRepository using
the Category model attributes using the By instruction. As we can see, above
findByName(String name), Spring Data Framework will create the correct query to look
up categories by name. It is fantastic.

There are many keywords supported by the custom query methods:

Logical Keyword Logical Expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains

BETWEEN Between, IsBetween

ENDING_WITH EndingWith, IsEndingWith, EndsWith

EXISTS Exists

FALSE False, IsFalse

GREATER_THAN GreaterThan, IsGreaterThan

GREATHER_THAN_EQUALS GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)

IS_EMPTY IsEmpty, Empty

IS_NOT_EMPTY IsNotEmpty, NotEmpty

IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN LessThan, IsLessThan

LESS_THAN_EQUAL LessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn

NOT_LIKE NotLike, IsNotLike

REGEX Regex, MatchesRegex, Matches

STARTING_WITH StartingWith, IsStartingWith, StartsWith

TRUE True, IsTrue

WITHIN Within, IsWithin

Persistence with Spring Data and Reactive Fashion Chapter 3

[84]

There are many ways to create a query based on attributes names. We can combine the
keywords using keywords as well, such as findByNameAndId, for instance. The Spring
Data JPA provides a consistent way to create queries.

Configuring transactions
When we use the JPA specification, most of the applications need to have support for
transactions as well. Spring has excellent support for transactions even in other modules.
This support is integrated with Spring Data JPA, and we can take advantage of it.
Configuring transactions in Spring is a piece of cake; we need to insert
the @Transactional annotation whenever needed. There are some different use cases to
use it. We will use the @Transactional in our services layer and then we will put the
annotation in our service classes. Let's see our CategoryService class:

package springfive.cms.domain.service;

import java.util.List;
import java.util.Optional;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import springfive.cms.domain.exceptions.CategoryNotFoundException;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.repository.CategoryRepository;
import springfive.cms.domain.vo.CategoryRequest;

@Service
@Transactional(readOnly = true)
public class CategoryService {

 private final CategoryRepository categoryRepository;

 public CategoryService(CategoryRepository categoryRepository) {
 this.categoryRepository = categoryRepository;
 }

 @Transactional
 public Category update(Category category) {
 return this.categoryRepository.save(category);
 }

 @Transactional
 public Category create(CategoryRequest request) {
 Category category = new Category();
 category.setName(request.getName());
 return this.categoryRepository.save(category);

Persistence with Spring Data and Reactive Fashion Chapter 3

[85]

 }

 @Transactional
 public void delete(String id) {
 final Optional<Category> category =
this.categoryRepository.findById(id);
 category.ifPresent(this.categoryRepository::delete);
 }

 public List<Category> findAll() {
 return this.categoryRepository.findAll();
 }

 public List<Category> findByName(String name) {
 return this.categoryRepository.findByName(name);
 }

 public List<Category> findByNameStartingWith(String name) {
 return this.categoryRepository.findByNameIgnoreCaseStartingWith(name);
 }

 public Category findOne(String id) {
 final Optional<Category> category =
this.categoryRepository.findById(id);
 if (category.isPresent()) {
 return category.get();
 } else {
 throw new CategoryNotFoundException(id);
 }
 }

}

There are many @Transactional annotations in the CategoryService class. The first
annotation at class level instructs the framework to configure the readOnly for all methods
present in those classes, except the methods configured with @Transactional. In this case,
the class-level annotation will be overridden with readOnly=false. This is the default
configuration when the value is omitted.

Installing and configuring pgAdmin3
To connect on our PostgreSQL instance, we will use pgAdmin 3, which is the free tool
provided by the Postgres team.

Persistence with Spring Data and Reactive Fashion Chapter 3

[86]

To install pgAdmin 3, we can use the following command:

sudo apt-get install pgadmin3 -y

This will install pgAdmin 3 on our machine.

After installation, open pgAdmin 3 and then click on Add a connection to a server. The
button looks like this:

Then, fill in the information, as shown in the following screenshot:

The password should be: cms@springfive.

Awesome, our pgAdmin 3 tool is configured.

Persistence with Spring Data and Reactive Fashion Chapter 3

[87]

Checking the data on the database structure
The whole application structure is ready. Now, we can check the database to get our
persisted data. There are many open source Postgres clients. We will use pgAdmin 3, as
previously configured.

The first time you open the application, you will be asked about the credentials and host.
We must put the same information as we configured on the application.yaml file. Then,
we are able to make instructions in the database.

Before checking the database, we can use Swagger to create some categories in our CMS
system. We can use the instructions provided in Chapter 2, Starting in the Spring World –
The CMS Application, to create some data.

After that, we can execute the following SQL instruction in the database:

select * from category;

And the result should be the categories created on Swagger calls. In my case, I have created
two categories, sports, and movies. The result will be like the ones shown in the following
screenshot:

Persistence with Spring Data and Reactive Fashion Chapter 3

[88]

Awesome work, guys. The application is fully operational.

Now, we will create our final solution for the repositories. We have learned the basics of the
Spring Data project and in the next section, we will change the persistence layer to a
modern database.

Creating the final data access layer
We have played with the Spring Data JPA project, and we have seen how easy it can be. We
learned how to configure the database connections to persist the real data on the Postgres
database. Now, we will create the final solution for the data access layer for our application.
The final solution will use MongoDB as a database and will use the Spring Data MongoDB
project, which provides support for MongoDB repositories.

We will see some similarities with the Spring Data JPA projects. It is amazing because we
can prove the power of Spring Data abstractions in practice. With a couple of changes, we
can move to another database model.

Let's understand the new project and put it into practice in the following sections.

Spring Data MongoDB
The Spring Data MongoDB provides integration with our domain objects and the MongoDB
document. With a couple of annotations, our entity class is ready to be persisted in the
database. The mapping is based on a POJO (Plain Old Java Object) pattern, which is
known by all Java developers.

There are two levels of abstraction supplied by the module. The first one is a high-level
abstraction. It increases the developer productivity. This level provides a couple of
annotations to instruct the framework to convert the domain objects in MongoDB
documents and vice versa. The developer does not need to write any code about the
persistence; it will be managed by the Spring Data MongoDB framework. There are more
exciting things at this level, such as the rich mapping configurations provided by the Spring
Conversion Service. The Spring Data projects provide a rich DSL to enable developers to
create queries based on the attribute names.

Persistence with Spring Data and Reactive Fashion Chapter 3

[89]

The second level of abstraction is the low-level abstraction. At this level, behaviors are not
automatically managed by the framework. The developers need to understand a little bit
more about the Spring and MongoDB document model. The framework provides a couple
of interfaces to enable developers to take control of the read and write instructions. This can
be useful for scenarios where the high-level abstraction does not fit well. In this case, the
control should be more granular in the entities mapping.

Again, Spring provides the power of choice for developers. The high-level abstraction
improves the developer performance and the low-level permits developers to take more
control.

Now, we will add mapping annotation to our model. Let's do it.

Removing the PostgreSQL and Spring Data JPA
dependencies
We will convert our project to use the brand new Spring Data Reactive MongoDB
repositories. After that, we will not use the Spring Data JPA and PostgreSQL drivers
anymore. Let's remove these dependencies from our pom.xml:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

<dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>42.1.4</version>
</dependency>

And then, we can add the following dependency:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb-reactive</artifactId>
</dependency>

The final version of pom.xml can be found on GitHub at https:/ /github.
com/PacktPublishing/ Spring- 5.0- By-Example/ blob/ master/ Chapter03/
cms-mongo- non- reactive/ pom. xml.

https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml

Persistence with Spring Data and Reactive Fashion Chapter 3

[90]

Mapping the domain model
We will add mapping annotations on our domain model. The Spring Data MongoDB will
use these annotations to persist our objects in the MongoDB collections. We will start with
the Category entity, which should be like this:

package springfive.cms.domain.models;

import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;

@Data
@Document(collection = "category")
public class Category {

 @Id
 String id;

 String name;

}

We added two new annotations in the Category class. The @Document from Spring Data
MongoDB enables us to configure the collection name. Collections in MongoDB are similar
to tables in SQL databases.

The @Id annotation is from the Spring Data Commons project. It is interesting because, as
we can see, it is not specific for MongoDB mappings. The field annotation with this will be
converted in the _id field on MongoDB collection.

With these few annotations, the Category class is configured to be persisted on MongoDB.
In the following section, we will create our repository classes.

We need to do the same task for our other entities. The User and News need to be
configured in the same way as we did for the Category class. The full source code can be
found on GitHub at: https:/ /github. com/PacktPublishing/ Spring- 5.0- By-Example/
tree/master/Chapter03/ cms- mongo- non- reactive/ src/ main/ java/ springfive/ cms/
domain/models.

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models

Persistence with Spring Data and Reactive Fashion Chapter 3

[91]

Configuring the database connection
Before we create our repositories, we will configure the MongoDB connection. The
repository layer abstracts the driver implementation, but is necessary to configure the
driver correctly.

On the resources directory, we will change the application.yaml file, previously
configured for the Spring Data JPA. The Spring Framework supports the configuration
through the YAML file. This kind of file is more readable for humans and has a kind of
hierarchy. These features are the reason to choose this extension.

The application.yaml file should be like the following example:

spring:
 data:
 mongodb:
 database: cms
 host: localhost
 port: 27017

The application.yaml file for MongoDB can be found on GitHub
(https:/ /github. com/ PacktPublishing/ Spring- 5.0- By-Example/ blob/
master/ Chapter03/ cms- mongo- non- reactive/ src/ main/ resources/
application. yaml).

The file is quite simple for now. There is a database tag for configuring the database name.
The host and port tags are about the address that the MongoDB instance is running.

We also can configure the connections programmatically with a couple of objects, but it
requires us to code a lot of boilerplate code. Spring Boot offers it out of the box for us. Let's
enjoy it.

Excellent, the connection was configured successfully. The infrastructure requirements are
solved. Let's go on to implement our repositories.

Spring Boot Framework supports profiles in
application.propertiesorapplication.yaml. This means that if the
application was configured in a properties file style, we could use
application-<profile>.properties. Then, these properties will be
applied to the required profile. In YAML style, we can use only one file
with multiples profiles.

https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml

Persistence with Spring Data and Reactive Fashion Chapter 3

[92]

Adding the repository layer
Once the entities have been mapped, and the connections are done, it's time to create our
repositories. The Spring Data Framework provides some interfaces that can be used in
different use cases. We will use the specialization for the MongoDB database, which is
MongoRepository. It extends the PagingAndSortingRepository
and QueryByExampleExecutor. The first is about pagination and sorting features, and the
other is about queries by example.

In some cases, the database query result set can be very large. This can
cause some application performance issues because we will fetch a lot of
database records. We can limit the number of records fetched from the
database and configure limits for that. This technique is called Pagination.
We can find the full documentation at Spring Data Commons Documentation
(https:/ /docs. spring. io/ spring- data/ commons/ docs/ current/
reference/ html/).

This interface offers a lot of built-in methods for convenience. There are a couple of
methods to insert one or more instances, methods for listing all instances of requested
entities, methods to remove one or more instances, and many more features, such as
ordering and paging.

It enables developers to create repositories without code or even without a deep knowledge
of MongoDB. However, some knowledge of MongoDB is necessary to troubleshoot various
errors.

We will start by creating the CategoryRepository. Change the type of
CategoryRepository to an interface instead of a class. The code in this interface is not
necessary. The Spring container will inject the correct implementation when the application
starts.

Let's create our first concrete repository, which means the repository will persist the data on
the MongoDB we previously configured. The CategoryRepository needs to be like this:

package springfive.cms.domain.repository;

import org.springframework.data.mongodb.repository.MongoRepository;
import springfive.cms.domain.models.Category;

public interface CategoryRepository extends
MongoRepository<Category,String> {}

https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/
https://docs.spring.io/spring-data/commons/docs/current/reference/html/

Persistence with Spring Data and Reactive Fashion Chapter 3

[93]

The type is an interface. Repositories do not have any stereotypes anymore. The Spring
container can identify the implementation because it extends the MongoRepository
interface.

The MongoRepository interface should be parameterized. The first argument is the type of
model that it represents. In our case, it represents a repository for the Category class. The
second parameter is about the type of ID of the model. We will use the string type for that.

Now, we need to do the same for the other entities, User, and News. The code is quite
similar to the preceding code. You can find the full source code on GitHub at: https:/ /
github.com/PacktPublishing/ Spring- 5. 0-By-Example/ tree/ master/ Chapter03/ cms-
mongo-non-reactive/ src/ main/ java/ springfive/ cms/ domain/ repository.

In the next section, we will check the database to assert that the rows are persisted
correctly.

Checking the persistence
Now, we can test the persistence and all layers of the application. We will provide the API
documentation for that. Let's open the Swagger documentation and create some records in
our CMS application.

Creating sample categories on Swagger:

Fill in the category JSON, as shown in the preceding screenshot, and then click on Try it
out!. It will invoke the Category API and persist the category on the database. Now, we can
check it.

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository

Persistence with Spring Data and Reactive Fashion Chapter 3

[94]

To connect to the MongoDB instance and check the collection, we will use the mongo-
express tool. It is a web-based tool written in NodeJS to interact with our database
instance.

The tool can be installed, but we will run the tool on a Docker container. The Docker tool
will help us in this part. Let's start the container:

docker run -d --link mongodb:mongo--net cms-application -p 8081:8081 mongo-
express

It instructs Docker to spin up a container with the mongo-express tool and connect to the
desired instance. The --link argument instructs Docker to create a kind of hostname for our
MongoDB instance. Remember the name of our instance is mongodb; we did it on the run
command previously.

Good job. Go to http://localhost:8081 and we will see this page:

Persistence with Spring Data and Reactive Fashion Chapter 3

[95]

There are a couple of databases. We are interested in the CMS database. Click on the View
button next to cms. Then, the tool will present the collections of the selected database; in our
case, the CMS database. The view should be like this:

The category is presented as a collection. We can View, Export, and export as JSON, but for
now, we are interested in checking if our CMS application persisted the data properly. So,
click on the View button. We will use the MongoDB collection data like this:

Persistence with Spring Data and Reactive Fashion Chapter 3

[96]

As we can see, the data was stored in MongoDB as expected. There are two categories in the
database—sports and travel. There is a _class field that helps Spring Data to convert
domain classes.

Awesome job, the CMS application is up and running, and also persisting the data in
MongoDB. Now, our application is almost production ready, and the data is persisted
outside in the amazing document datastore.

In the following section, we will create our Docker image, and then we will run the CMS
application with Docker commands. It will be interesting.

Creating the Docker image for CMS
We are doing an awesome job. We created an application with the Spring Boot Framework.
The application has been using the Spring REST, Spring Data, and Spring DI.

Now we will go a step forward and create our Docker image. It will be useful to help us to
deliver our application for production. There are some advantages, and we can run the
application on-premise or on any cloud providers because Docker abstracts the operating
system layer. We do not need Java to be installed on the application host, and it also allows
us to use different Java versions on the hosts. There are so many advantages involved in
adopting Docker for delivery.

Persistence with Spring Data and Reactive Fashion Chapter 3

[97]

We are using Maven as a build tool. Maven has an excellent plugin to helps us to create
Docker images. In the following section, we will learn how Maven can help us.

Configuring the docker-maven-plugin
There is an excellent Maven plugin provided by fabric8 (https:/ /github. com/ fabric8io/
docker-maven-plugin). It is licensed under the Apache-2.0 license, which means we can use
it without any worries.

We will configure our project to use it, and after image creation, we will push this image on
Docker Hub. It is a public Docker registry.

The steps are:

Configure the plugin1.
Push the Docker image2.
Configure the Docker Spring profile3.

Then, it is show time. Let's go.

Adding the plugin on pom.xml
Let's configure the Maven plugin. It is necessary to add a plugin to the plugin section on
our pom.xml and add some configurations. The plugin should be configured as follows:

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>0.21.0</version>
 <configuration>
 <images>
 
 </images>
 </configuration>
</plugin>

There are a couple of new configurations here. Let's start with the <name> tag—it
configures the repository and Docker image name to push to Docker Hub. For this book, we
will use springfivebyexample as a Docker ID. We can see there is a slash as a separator
for the repository and image name. The image name for us will be the final project name.
Then, we need to configure it.

The Docker ID is free to use, which can be used to access some Docker
services, such as Docker Store, Docker Cloud, and Docker Hub. We can
find more information at Docker Page (https:/ /docs. docker. com/
docker- id/).

This configuration should be the same as shown in the following code snippet:

<build>
 <finalName>cms</finalName>

</build>

Another important tag is <entrypoint>. This is an exec system call instruction when we
use the docker run command. In our case, we expected the application to run when the
container bootstraps. We will execute java -jar passing the container as an active profile
for Spring.

https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/
https://docs.docker.com/docker-id/

Persistence with Spring Data and Reactive Fashion Chapter 3

[99]

We need to pass the full path of the Java artifact. This path will be configured on the
<assembly> tag with the <basedir> parameter. It can be any folder name. Also, there is a
configuration to the Java artifact path. Usually, this is the target folder which is the result of
the compilation. It can be configured in the <source> tag.

Finally, we have the <port> configuration. The port of the application will be exposed
using this tag.

Now, we will create a Docker image by using the following instruction:

mvn clean install docker:build

It should be executed in the root folder of the project. The goal of the docker:build
command is to build a Docker image for our project. After the build ends, we can check if
the Docker image has been created successfully.

Then, type the following command:

docker images

The springfivebyexample/cms image should be present, as shown in the following
screenshot:

Good. The image is ready. Let's push to the Docker Hub.

Pushing the image to Docker Hub
The Docker Hub is a public repository to store Docker images. It is free, and we will use it
for this book. Now, we will push our image to the Docker Hub registry.

The command for that is pretty simple. Type:

docker push springfivebyexample/cms:latest

I have used the springfivebyexample user that I have created. You can
test the docker push command creating by your own user on Docker
Hub and changing the user on the docker push command. You can
create your Docker ID at Docker Hub (https:/ /cloud. docker. com/).

https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/

Persistence with Spring Data and Reactive Fashion Chapter 3

[100]

Then, the image will be sent to the registry. That is it.

We can find the image at Docker Hub (https:/ /store. docker. com/
community/ images/ springfivebyexample/ cms). If you have used your
own user, the link will probably change.

Configuring the Docker Spring profile
Before we run our application in a Docker container, we need to create a YAML file to
configure a container profile. The new YAML file should be named as application-
container.yaml because we will use the container profile to run it. Remember, we
configured the entrypoint on pom.xml in the previous section.

Let's create our new file. The file should be the same content as described in the following
snippet:

spring:
 data:
 mongodb:
 database: cms
 host: mongodb
 port: 27017

The host must be changed for MongoDB. We have been running the MongoDB container
with this name in the Preparing a MongoDB section. It is an important configuration, and we
need to pay attention at this point. We cannot use localhost anymore because the
application is running in the Docker container now. The localhost in that context means it is
in the same container, and we do not have MongoDB in the CMS application container. We
need to have one application per container and avoid multiple responsibilities for one
container.

Done. In the following section, we will run our first application in the Docker container. It
will be amazing. Let's do it.

Running the Dockerized CMS
In the previous section, we have created our file to configure the container profile properly.
Now, it is time to run our container. The command is quite simple, but we need to pay
attention to the arguments.

https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms
https://store.docker.com/community/images/springfivebyexample/cms

Persistence with Spring Data and Reactive Fashion Chapter 3

[101]

The instruction we run should be the same as the following code:

docker run -d --name cms --link mongodb:mongodb --net cms-application -p
8080:8080 springfivebyexample/cms:latest

We have been setting the link for the MongoDB container. Remember, we made this
configuration in the YAML file, in the host property. During the bootstrapping phase, the
application will look for MongoDB instance named mongodb. We solved this by using the
link command. It will work perfectly.

We can check if our application is healthy by using the docker ps command. The output
should be like this:

In the first line, we have our application container. It is up and running.

Awesome work. Our application is fully containerized and ready to deploy anywhere we
want.

Putting in Reactive fashion
We have been creating an amazing application with Spring Boot. The application was built
on the traditional web stack present on Spring Framework. It means the application uses the
web servers based on Servlet APIs.

The servlet specification was built with the blocking semantics or one-request-per-thread
model. Sometimes, we need to change the application architecture because of non-
functional requirements. For example, if the application was bought by a huge company,
and that company wanted to create a plan to launch the application for the entire world, the
volume of requests would probably increase a lot. So, we need to change the architecture to
adapt the application structure for cloud environments.

Usually, in a cloud environment, the machines are smaller than traditional data centers.
Instead of a big machine, it is popular to use many small machines and try to scale
applications horizontally. In this scenario, the servlet spec can be switched to an
architecture created upon Reactive Streams. This kind of architecture fits better than servlet
for the cloud environments.

Persistence with Spring Data and Reactive Fashion Chapter 3

[102]

Spring Framework has been creating the Spring WebFlux to helps developers to create
Reactive Web Applications. Let's change our application architecture to reactive and learn
the pretty new Spring WebFlux component.

Reactive Spring
The Reactive Stream Spec is the specification that provides a standard for asynchronous
programming for stream processing. It is becoming popular in the programming world
nowadays, and Spring introduces it on the framework.

This style of programming is more efficient regarding resources usage and fits amazingly
with the new generation of machines with multiple cores.

Spring reactive uses the Project Reactor as the implementation for the Reactive Streams. The
Project Reactor is powered by Pivotal and has the very good implementation of the Reactive
Streams Spec.

Now, we will deep dive in the reactive module for Spring Boot and create an amazing
reactive API and try the new style of the Spring Framework.

Project Reactor
The Project Reactor was created by the Spring and Pivotal teams. This project is an
implementation of Reactive Streams for JVM. It is a fully non-blocking foundation and
helps developers to create a non-blocking application in the JVM ecosystem.

There is a restriction to using Reactor in our application. The project runs on Java 8 and
above. It is important because we will use many lambda expressions in our examples and
projects.

The Spring Framework internally uses the Project Reactor as an implementation of Reactive
Streams.

Persistence with Spring Data and Reactive Fashion Chapter 3

[103]

Components
Let's look at the different components of the Project Reactor:

Publishers: The publishers are responsible for pushing data elements to the
stream. It notifies the subscribers that a new piece of data is coming to the stream.
The publisher interface is defined in the following code snippet:

/**

 * Licensed under Public Domain (CC0)
*
 *
*
 * To the extent possible under law, the person who associated CC0
with *
 * this code has waived all copyright and related or neighboring
*
 * rights to this code.
*
 *
*
 * You should have received a copy of the CC0 legalcode along with
this *
 * work. If not, see
<http://creativecommons.org/publicdomain/zero/1.0/>.*

*****/

package org.reactivestreams;

/**
 * A {@link Publisher} is a provider of a potentially unbounded
number of sequenced elements, publishing them according to
 * the demand received from its {@link Subscriber}(s).
 * <p>
 * A {@link Publisher} can serve multiple {@link Subscriber}s
subscribed {@link #subscribe(Subscriber)} dynamically
 * at various points in time.
 *
 * @param <T> the type of element signaled.
 */
public interface Publisher<T> {

 public void subscribe(Subscriber<? super T> s);

}

Persistence with Spring Data and Reactive Fashion Chapter 3

[104]

Subscribers: The subscribers are responsible for making the data flow in the
stream. When the publisher starts to send the piece of data on the data flow, the
piece of data will be collected by the onNext(T instance) method, which is
the parametrized interface.
The subscriber interface is defined in the following code snippet:

/**

 * Licensed under Public Domain (CC0)
*
 *
*
 * To the extent possible under law, the person who associated CC0
with *
 * this code has waived all copyright and related or neighboring
*
 * rights to this code.
*
 *
*
 * You should have received a copy of the CC0 legalcode along with
this *
 * work. If not, see
<http://creativecommons.org/publicdomain/zero/1.0/>.*

*****/

package org.reactivestreams;

/**
 * Will receive call to {@link #onSubscribe(Subscription)} once
after passing an instance of {@link Subscriber} to {@link
Publisher#subscribe(Subscriber)}.
 * <p>
 * No further notifications will be received until {@link
Subscription#request(long)} is called.
 * <p>
 * After signaling demand:
 *
 * One or more invocations of {@link #onNext(Object)} up to the
maximum number defined by {@link Subscription#request(long)}
 * Single invocation of {@link #onError(Throwable)} or {@link
Subscriber#onComplete()} which signals a terminal state after which
no further events will be sent.
 *
 * <p>
 * Demand can be signaled via {@link Subscription#request(long)}

Persistence with Spring Data and Reactive Fashion Chapter 3

[105]

whenever the {@link Subscriber} instance is capable of handling
more.
 *
 * @param <T> the type of element signaled.
 */
public interface Subscriber<T> {
 public void onSubscribe(Subscription s);

 public void onNext(T t);

 public void onComplete();
}

Hot and cold
There are two categories of reactive sequences—hot and cold. These functions affect the
usage of the implementation directly. Hence, we need to understand them:

Cold: The cold publishers start to generate data only if it receives a new
subscription. If there are no subscriptions, the data never comes to the flow.
Hot: The hot publishers do not need any subscribers to generate the data flow.
When the new subscriber is registered, the subscriber will only get the new data
elements emitted.

Reactive types
There are two reactive types which represent the reactive sequences. The Mono objects
represent a single value or empty 0|1. The Flux objects represent a sequence of 0|N items.

We will find many references in our code. The Spring Data reactive repository uses these
abstractions in their methods. The findOne() method returns the Mono<T> object and
the findAll() returns a Flux<T>. The same behavior we will be found in our REST
resources.

Let's play with the Reactor
To understand it better, let's play with the Reactor. We will implement and understand the
difference between hot and cold publishers in practice.

Persistence with Spring Data and Reactive Fashion Chapter 3

[106]

Cold publishers do not produce any data until a new subscription arrives. In the following
code, we will create a cold publisher and the System.out:println will never be executed
because it does not have any subscribers. Let's test the behavior:

@Test
public void coldBehavior(){
 Category sports = new Category();
 sports.setName("sports");
 Category music = new Category();
 sports.setName("music");
 Flux.just(sports,music)
 .doOnNext(System.out::println);
}

As we can see, the method subscribe() is not present in this snippet. When we execute
the code, we will not see any data on the standard print output.

We can execute the method on the IDE. We will able to see the output of this test. The
output should be like this:

The process has finished, the test passed, and we will not be able to see the print. That is the
cold publisher's behavior.

Now, we will subscribe the publisher and the data will be sent on the data flow. Let's try
this.

We will insert the subscribe instruction after doOnNext(). Let's change our code:

 @Test
 public void coldBehaviorWithSubscribe(){
 Category sports = new Category();
 sports.setId(UUID.randomUUID().toString());
 sports.setName("sports");
 Category music = new Category();
 music.setId(UUID.randomUUID().toString());
 music.setName("music");
 Flux.just(sports,music)
 .doOnNext(System.out::println)
 .subscribe();
 }

Persistence with Spring Data and Reactive Fashion Chapter 3

[107]

The output should be like this:

In the preceding screenshot, we can see that the publisher pushes the data on the stream
after the stream got subscribed. That is the cold publisher behavior after the subscription.

Hot publishers do not depend on any subscribers. The hot publisher will publish data, even
if there is no subscriber to receive the data. Let's see an example:

@Test
public void testHotPublisher(){
 UnicastProcessor<String> hotSource = UnicastProcessor.create();
 Flux<Category> hotPublisher = hotSource.publish()
 .autoConnect().map((String t) -> Category.builder().name(t).build());
 hotPublisher.subscribe(category -> System.out.println("Subscriber 1: "+
category.getName()));
 hotSource.onNext("sports");
 hotSource.onNext("cars");
 hotPublisher.subscribe(category -> System.out.println("Subscriber 2:
"+category.getName()));
 hotSource.onNext("games");
 hotSource.onNext("electronics");
 hotSource.onComplete();
}

Let's understand what happens here. The UnicastProcessor is a processor that allows
only one Subscriber.The processor replays notifications when the subscriber requests. It
will emit some data on a stream. The first subscription will capture all the categories, as we
will see, because it was registered before the event emissions. The second subscription will
capture only the last events because it was registered before the last two emissions.

Persistence with Spring Data and Reactive Fashion Chapter 3

[108]

The output of the preceding code should be:

Awesome. This is the hot publisher's behavior.

Spring WebFlux
The traditional Java enterprise web applications are based on the servlet specification. The
servlet specification before 3.1 is synchronous, which means it was created with blocking
semantics. This model was good at the time because computers were big with a powerful
CPU and hundreds of gigabytes of memory. Usually, the applications at the time were
configured with a big thread pool with hundreds of threads because the computer was
designed for this. The primary deployment model at that time was the replica. There are
some machines with the same configuration and application deployments.

The developers have been creating applications like this for many years.

Nowadays, most of the applications are deployed in cloud vendors. There are no big
machines anymore because the price is much higher. Instead of big machines, there are a
number of small machines. It is much cheaper and these machines have a reasonable CPU
power and memory.

In this new scenario, the application with the huge thread pools is not effective anymore,
because the machine is small and it does not have the power to handle all these threads.

The Spring Team added the support for the Reactive Streams in the framework. This model
of programming changes the application deployment and the way to build applications.

Instead of a thread-per-request model, the applications are created with the event-loop
model. This model requires a small number of threads and is more efficient regarding
resource usage.

Persistence with Spring Data and Reactive Fashion Chapter 3

[109]

Event-loop model
Popularized by the NodeJS language, this model is based on event-driven programming.
There are two central concepts: the events which will be enqueued on a queue, and the
handlers which keep track of and process these events.

There are some advantages of adopting this model. The first one is the ordering. The events
are enqueued and dispatched in the same order in which the events are coming. In some
uses cases, this is an important requirement.

The other one is the synchronization. The event-loop must be executed on only one thread.
This makes the states easy to handle and avoids the shared state problems.

There is an important piece of advice here. The handlers must not be synchronous.
Otherwise, the application will be blocked until the handlers end their workload.

Spring Data for Reactive Extensions
The Spring Data projects have some extensions to work with a reactive foundation. The
project provides a couple of implementations based on asynchronous programming. It
means the whole stack is asynchronous since database drivers are as well.

The Spring reactive repository supports Cassandra, MongoDB, and Redis as database
stores. The repository implementations offer the same behaviors as the non-reactive
implementation. There is a DSL (Domain-Specific Language) to create domain-specific
query methods.

The module uses the Project Reactor as a reactive foundation implementation, but is
possible to change the implementation to RxJava as well. Both libraries are production-
ready and are adopted by the community. One point to be aware of is that if we change to
RxJava, we need to ensure our method returns to Observable and Single.

Spring Data Reactive
The Spring Data Project has support for the reactive data access. Until now, Spring has
support for MongoDB, Apache Cassandra, and Redis, all of which have reactive drivers.

In our CMS application, we will use the MongoDB reactive drivers to give the reactive
characteristics for our repositories. We will use the new reactive interface provided by the
Spring Data reactive. Also, we need to change the code a little bit. In this chapter, we will do
that step by step. Let's start.

Persistence with Spring Data and Reactive Fashion Chapter 3

[110]

Reactive repositories in practice
Before we start, we can check out the full source code at GitHub, or we can perform the
following steps.

Now, we are ready to build our new reactive repositories. The first thing that we need to do
is add the Maven dependencies to our project. This can be done using pom.xml.

Let's configure our new dependency:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb-reactive</artifactId>
</dependency>

Our project is ready to use reactive MongoDB repositories.

Creating the first Reactive repository
We have a couple of repositories in our CMS project. Now, we need to convert these
repositories to reactive ones. The first thing we will do is remove the extension from
CrudRepository, which is not necessary anymore. Now, we want the reactive version of
that.

We will update the ReactiveMongoRepository interface. The parameters of the interface
are the same as the ones we inserted before. The interface should be like this:

package springfive.cms.domain.repository;

import org.springframework.data.mongodb.repository.ReactiveMongoRepository;
import springfive.cms.domain.models.Category;

public interface CategoryRepository extends
ReactiveMongoRepository<Category,String> {
}

This is quite similar to the one we created before. We need to extend the new
ReactiveMongoRepository interface, which contains methods for the CRUD operations
and much more. The interface returns Mono<Category> or Flux<Category>. The
methods do not return the entities anymore. It is a common way of programming when the
Reactive Stream is adopted.

Persistence with Spring Data and Reactive Fashion Chapter 3

[111]

We need to change the other repositories as well. You can find the full source code on
GitHub at: https:/ /github. com/ PacktPublishing/ Spring- 5.0- By-Example/ tree/ master/
Chapter03/cms-mongodb/ src/ main/ java/ springfive/ cms/domain/ repository.

Now, we need to change the service layer. Let's do that.

Fixing the service layer
We need to change the service layer to adopt the new reactive programming style. We
changed the repository layer, so now we need to fix the compilation problem result because
of this change. The application needs to be reactive. Any point of the application can be
blocked because we are using the event-loop model. If we do not do this, the application
will be getting blocked.

Changing the CategoryService
Now, we will fix the CategoryService class. We will change the return type of a couple of
methods. Before, we could return the model class, but now we need to change to return
Mono or Flux, similar to what we did in the repository layer.

The new CategoryService should be like the implementation shown in the following
code snippet:

package springfive.cms.domain.service;

import org.springframework.stereotype.Service;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.repository.CategoryRepository;
import springfive.cms.domain.vo.CategoryRequest;

@Service
public class CategoryService {

 private final CategoryRepository categoryRepository;

 public CategoryService(CategoryRepository categoryRepository) {
 this.categoryRepository = categoryRepository;
 }

 public Mono<Category> update(String id,CategoryRequest category){
 return this.categoryRepository.findById(id).flatMap(categoryDatabase ->

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository

Persistence with Spring Data and Reactive Fashion Chapter 3

[112]

{
 categoryDatabase.setName(category.getName());
 return this.categoryRepository.save(categoryDatabase);
 });
 }

 public Mono<Category> create(CategoryRequest request){
 Category category = new Category();
 category.setName(request.getName());
 return this.categoryRepository.save(category);
 }

 public void delete(String id){
 this.categoryRepository.deleteById(id);
 }

 public Flux<Category> findAll(){
 return this.categoryRepository.findAll();
 }

 public Mono<Category> findOne(String id){
 return this.categoryRepository.findById(id);
 }

}

As we can see, the return types changed in the methods.

The important thing here is that we need to follow the reactive principles. When the method
returns only one instance, we need to use Mono<Category>. When the method returns one
or more instances, we should use Flux<Category>. This is essential to follow because
developers and Spring containers can then interpret the code correctly.

The update() method has an interesting call: flatMap(). The project reactor allows us to
use a kind of DSL to compose calls. It is very interesting and very useful as well. It helps
developers to create code that is easier to understand than before. The
flatMap() method is usually used to convert the data emitted by Mono or Flux. In this
context, we need to set the new name of the category on the category retrieved from the
database.

Persistence with Spring Data and Reactive Fashion Chapter 3

[113]

Changing the REST layer
We will make some fixes on the REST layer as well. We changed the service layer, and it
caused some compilation problems in our resources classes.

We need to add the new dependency, spring-web-reactive. This supports the
@Controller or @RestController annotations for the reactive non-blocking engine. The
Spring MVC does not support the reactive extensions, and this module enables developers
to use reactive paradigms, as they did before.

spring-web-reactive will change many contracts on the Spring MVC foundations, such
as HandlerMapping, and HandlerAdapter, to enable reactive foundations on these
components.

The following image can help us to better understand the Spring HTTP layers:

As we can see, @Controller and @RequestMapping can be used for different approaches
in the Spring MVC traditional applications, or by using the Spring web reactive module.

Before we start to change our REST layer, we need to remove the Spring Fox dependencies
and annotations in our project. At present, the Spring Fox has no support for reactive
applications yet.

The dependencies to remove are:

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>2.7.0</version>
</dependency>

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger-ui</artifactId>

Persistence with Spring Data and Reactive Fashion Chapter 3

[114]

 <version>2.7.0</version>
</dependency>

After that, we need to remove the annotations from the Swagger packages, such as
@Api and @ApiOperation.

Now, let's adjust our REST layer.

Adding the Spring WebFlux dependency
Before we start to change our REST layer, we need to add the new dependency to our
pom.xml.

First, we will remove the Spring MVC traditional dependencies. To do this, we need to
remove the following dependency:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

We do not need this dependency anymore. Our application will be reactive now. Then, we
need to add the new dependencies described in the following code snippet:

<dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-transport-native-epoll</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

spring-boot-starter-webflux is a kind of syntax sugar for dependencies. It has
the spring-boot-starter-reactor-netty dependency, which is the Reactor Netty, as
embedded in the reactive HTTP server.

Awesome, our project is ready to convert the REST layer. Let's transform our application
into a fully reactive application.

Persistence with Spring Data and Reactive Fashion Chapter 3

[115]

Changing the CategoryResource
We will change the CategoryResource class. The idea is pretty simple. We will convert
our ResponseEntity, which is parametrized with the models class to ResponseEntity
using Mono or Flux.

The new version of the CategoryResource should be like this:

package springfive.cms.domain.resources;

import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseStatus;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.service.CategoryService;
import springfive.cms.domain.vo.CategoryRequest;

@RestController
@RequestMapping("/api/category")
public class CategoryResource {

 private final CategoryService categoryService;

 public CategoryResource(CategoryService categoryService) {
 this.categoryService = categoryService;
 }

 @GetMapping(value = "/{id}")
 public ResponseEntity<Mono<Category>> findOne(@PathVariable("id") String
id){
 return ResponseEntity.ok(this.categoryService.findOne(id));
 }

 @GetMapping
 public ResponseEntity<Flux<Category>> findAll(){
 return ResponseEntity.ok(this.categoryService.findAll());
 }

Persistence with Spring Data and Reactive Fashion Chapter 3

[116]

 @PostMapping
 public ResponseEntity<Mono<Category>> newCategory(@RequestBody
CategoryRequest category){
 return new ResponseEntity<>(this.categoryService.create(category),
HttpStatus.CREATED);
 }

 @DeleteMapping("/{id}")
 @ResponseStatus(HttpStatus.NO_CONTENT)
 public void removeCategory(@PathVariable("id") String id){
 this.categoryService.delete(id);
 }

 @PutMapping("/{id}")
 public ResponseEntity<Mono<Category>> updateCategory(@PathVariable("id")
String id,CategoryRequest category){
 return new ResponseEntity<>(this.categoryService.update(id,category),
HttpStatus.OK);
 }

}

The code is quite similar to what we did before. We have used the @RequestBody
annotation in the method argument; otherwise, the JSON converter will not work.

The other important characteristic here is the return method. It returns Mono or Flux,
which are parameterized types for ResponseEntity.

We can test the reactive implementation by using the command line. It will persist the
Category object on MongoDB. Type the following command on the Terminal:

curl -H "Content-Type: application/json" -X POST -d '{"name":"reactive"}'
http://localhost:8080/api/category

Persistence with Spring Data and Reactive Fashion Chapter 3

[117]

And then, we can use the following command to check the database. Using the browser, go
to http://localhost:8080/api/category. The following result should be presented:

Awesome, our reactive implementation is working as expected. Well done!!!

Summary
In this chapter, we have learned a lot of Spring concepts. We have introduced you to Spring
Data projects, which help developers to create data access layers as we have never seen
before. We saw how easy it is to create repositories with this project.

Also, we presented some relatively new projects, such as Spring WebFlux, which permits
developers to create modern web applications, applying the Reactive Streams foundations
and reactive programming style in projects.

We have finished our CMS application. The application has the characteristics of a
production-ready application, such as database connections, and services which have been
well-designed with single responsibilities. Also, we introduced the docker-maven-
plugin, which provides a reasonable way to create images using the pom.xml
configurations.

In the next chapter, we will create a new application using the Reactive Manifesto based on
message-driven applications. See you there.

4
Kotlin Basics and Spring Data

Redis
Spring Boot allows developers to create different styles of application. In Chapter 2,
Starting in the Spring World – the CMS Application, and Chapter 3, Persistence with Spring
Data and Reactive Fashion, we have created a portal application, and now we will create an
application based on message-driven architecture. It demonstrates how the Spring
Framework fits well in a wide range of application architectures.

In this chapter, we will start to create an application which keeps the tracked hashtags on
the Redis database. The application will get hashtags and put them in a couple of queues to
our other projects, and consume and handle them appropriately.

As we have been doing in our previous projects, we will continue to use the Reactive
Foundation to provide scalable characteristics in the application.

At the end of this chapter, we will have:

Learned Kotlin basics
Created the project structure
Created the Reactive Redis repositories
Applied some techniques in reactive programming, using the Reactive Redis
Client

Let's start right now.

Kotlin Basics and Spring Data Redis Chapter 4

[119]

Learning Kotlin basics
The Kotlin language was released officially in February 2016. JetBrains created it and has
been developing the language ever since. The company is the owner of the IntelliJ IDEA
IDE.

In February 2012, JetBrains made the language open source under the Apache v2 license;
the license allows developers to create applications.

The language is one option for JVM (Java Virtual Machine) languages such as Clojure and
Scala, which means that the language can compile bytecode for JVM. As we will see,
Kotlin has many similarities with Scala. Kotlin has the Scala language as a reference, but the
JetBrains teams believe that Scala has problems with the compilation time.

Kotlin was becoming an adopted language in the Android world and because of this, in the
Google I/O, 2017, the Google Team announced official support for the Android ecosystem.
Since then, the language has been growing year by year and increasing in popularity.

Main characteristics of Kotlin
The Kotlin language was designed to maintain the interoperability with Java code. It means
we can start to code with Java idioms in the Kotlin file.

The language is statically-typed, and it is an excellent attribute because it can help us find
some problems at compilation time. Also, statically-typed languages are much faster than
dynamic languages. The IDEs can help developers much better than dynamic languages, as
well.

Syntax
The syntax is different from Java syntax. At first glance, it can be a problem but after some
hours of playing with Kotlin, it is not a problem at all.

There are two interesting reserved words to understand the usage and concepts:

var: This is a variable declaration. It indicates the variable is mutable and can be
reassigned, as developers need.
val: This is a variable declaration which indicates the variable is immutable and
cannot be reassigned anymore. This definition is like a final declaration in the
Java language.

Kotlin Basics and Spring Data Redis Chapter 4

[120]

The variable declarations have a name, and after the desired data type, the colon is
necessary in the middle as a separator. If the variable is initialized, the type is not necessary
because the compiler can infer the correct data type. Let's try it out to understand it better.

Here is a variable with the data type specified:

var bookName: String

In this case, we need to keep the data type because the variable is not initialized, then the
compiler cannot infer the type. The variable, bookName, can be reassigned because of the
modifier var.

Here is a variable without the data type:

val book = "Spring 5.0 by Example"

It is not a necessity to declare the data type because we have initialized the variable with the
value, Spring 5.0 by Example. The compiler can infer the type is a kind of syntactic
sugar. The variable cannot be reassigned because of the modifier val. If we try to reassign
the instruction, we will get a compilation error.

The semicolons are optional in Kotlin, the compiler can detect the statement terminator.
This is another point where Kotlin diverges from the Java programming language:

val book = "Spring 5.0 by Example"
var bookName: String
println("Hello, world!")

The semicolons were not provided, and the instructions were compiled.

Immutable programming in the Kotlin language is recommended. It
performs better on the multi-core environments. Also, it makes the
developer's life easier to debug and troubleshoot scenarios.

Semantics
In Kotlin, there are classes and functions. However, there is no method anymore. The fun
keyword should be used to declare a function.

Kotlin Basics and Spring Data Redis Chapter 4

[121]

Kotlin gets some concepts of the Scala language and brings some special classes such as
Data classes and Object classes (which we will learn soon). Before that, we will understand
how to declare a function in Kotlin. Let's do that!

Declaring functions in Kotlin
There are many variations in function declarations. We will create some declarations to
understand the slight difference from Java methods.

Simple function with parameters and return type
This simple function has two parameters and a String as a return type. Take a look at a
parameter declaration and observe the order, name and data type.

fun greetings(name:String,greeting:String):String{
 return greeting + name
}

As we can see, the type of argument which comes after the variable name is the same as on
the variable declarations. The return type comes after the arguments list is separated with
semicolons. The same function can be declared in the following way in Java:

public String greetings(String name,String greeting){
 return greeting + name;
}

There are some differences here. Firstly, there are semicolons in the Java code, and we can
see the order of the methods and functions declarations.

Simple function without return
Let's understand how we can construct functions without a return value, the following
function will not return any value:

fun printGreetings(name:String,greeting:String):Unit{
 println(greeting + name)
}

There is one difference, in this case, the Unit was introduced; this type of object
corresponds to void in Java language. Then, in the preceding code, we have a function
without a return. The Unit object can be removed if you want the compiler to understand
the function has no return value.

Kotlin Basics and Spring Data Redis Chapter 4

[122]

Single expressions functions
When the function has a single expression we can remove the curly braces, the same as in
Scala, and the function body should be specified after the = symbol. Let's refactor our first
function, as follows:

fun greetings(name:String,greeting:String) = greeting + name

We can remove the return keyword, as well. Our function is pretty concise now. We
removed return and the type of return as well. As we can see, the code is more readable
now. If you want, the return type can be declared too.

Overriding a function
To override a function on Kotlin, it is necessary to put an override keyword on the
function declaration, and the base function needs to have the open keyword as well.

Let's look at an example:

open class Greetings {
 open fun greeting() {}
}

class SuperGreeting() : Greetings() {
 override fun greeting() {
 // my super greeting
 }
}

This way is more explicit than Java, it increases the legibility of the code as well.

Data classes
Data classes are the right solution when we want to hold and transfer data between system
layers. Like in Scala, these classes offer some built-in functionalities such
as getters/setters, equals and hashCode, toString method and the copy function.

Let's create an example for that:

data class Book(val author:String,val name:String,val
description:String,val new:Boolean = false)

Kotlin Basics and Spring Data Redis Chapter 4

[123]

We have some interesting things in the code. The first thing we notice is that all of the
attributes are immutable. It means there are no setters for all of them. The second is that in
the class declaration, we can see a list of attributes. In this case, Kotlin will create a
constructor with all attributes present in this class and because they are val it means final
attributes.

In this case, there is no default constructor anymore.

Another interesting feature in Kotlin is that it enables developers to have default values on
constructors, in our case the new attribute, if omitted, will assume the false value. We can
get the same behavior in the parameters list in functions as well.

Finally, there is a fantastic way to copy objects. The copy method allows developers to copy
objects with named parameters. This means we can change only attributes as we need. Let's
take a look at an example:

fun main(args : Array<String>) {
 val springFiveOld = Book("Claudio E. de Oliveira","Spring 5.0 by
Example","Amazing example of Spring Boot Apps",false)
 val springFiveNew = springFiveOld.copy(new = true)
 println(springFiveOld)
 println(springFiveNew)
}

In the first object, we have created a book instance with false for the new attribute, then we
copied a new object with true for the new attribute, and the other attributes are not
changed. Goodbye to the complex clone logic and nice to meet the new way to copy objects.

The output of this code should look like the following:

As we can see, only the new attribute is changed and the toString function was generated
in good shape as well.

There are some restrictions on Data classes. They cannot be abstract, open, sealed, or inner.

Objects
The singleton pattern is commonly used in applications, and Kotlin provides an easy way to
do that without much boilerplate code.

Kotlin Basics and Spring Data Redis Chapter 4

[124]

We can instruct Kotlin to create a singleton object using the object keyword. Once again,
Kotlin used Scala as a reference because there are the same functionalities in the Scala
language.

Let's try it:

object BookNameFormatter{
 fun format(book: Book):String = "The book name is" + book.name
}

We have created a formatter to return a message with the book name. Then, we try to use
this function:

val springFiveOld = Book("Claudio E. de Oliveira","Spring 5.0 by
Example","Amazing example of Spring Boot Apps",false)
BookNameFormatter.format(springFiveOld)

The function format can be called in a static context. There is no instance to call the function
because it is a singleton object.

Companion objects
A companion object is an object which is common for all instances of that class. It means
there are many instances of a book, for example, but there is a single instance of their
companion object. Usually, the developers use companion objects as a factory method. Let's
create our first companion object:

data class Book(val author:String,val name:String,val
description:String,val new:Boolean = false{

 companion object {
 fun create(name:String,description: String,author: String):Book{
 return Book(author,name,description)
 }
 }

}

If the name of the companion object was omitted, the function could be called in a
singleton way, without an instance, like this:

val myBookWithFactory = Book.create("Claudio E. de Oliveira","Spring 5.0 by
Example","Amazing example of Spring Boot Apps")

It is like an object behavior. We can call it in a static context.

Kotlin Basics and Spring Data Redis Chapter 4

[125]

Kotlin idioms
Koltin idioms are a kind of syntax sugar for Java programmers. It is a collection of pieces of
code which help developers to create a concise code in Kotlin languages. Let's take a look at
common Kotlin idioms.

String interpolation
Kotlin supports string interpolation, it is a little bit complex to do it in the Java language but
it is not a problem for Kotlin. We do not require a lot of code to do this task as Kotlin
supports it natively. It makes the code easier to read and understand. Let's create an
example:

val bookName = "Spring 5.0"
val phrase = "The name of the book is $bookName"

As we can see, it is a piece of cake to interpolate strings in Kotlin. Goodbye
String.format() with a lot of arguments. We can use $bookName to replace the
bookName variable value. Also, we can access the functions present in objects, but for that,
we need to put curly braces. Check the following code:

val springFiveOld = Book("Claudio E. de Oliveira","Spring 5.0 by
Example","Amazing example of Spring Boot Apps",false)
val phrase = "The name of the book is ${springFiveOld.name}"

Thanks, Kotlin we appreciate this feature.

Smart Casts
Kotlin supports the feature called Smart Casts which enables developers to use the cast
operators automatically. After checking the variable type, in Java, the cast operator must be
explicit. Let's check it out:

fun returnValue(instance: Any): String {
 if (instance is String) {
 return instance
 }
 throw IllegalArgumentException("Instance is not String")
}

Kotlin Basics and Spring Data Redis Chapter 4

[126]

As we can see, the cast operator is not present anymore. After checking the type, Kotlin can
infer the expected type. Let's check the Java version for the same piece of code:

public String returnValue(Object instance) {
 if (instance instanceof String) {
 String value = (String) instance;
 return value;
 }
 throw IllegalArgumentException("Instance is not String");
}

It makes the cast safer because we do not need to check and apply the cast operator.

Range expressions
Range expressions permit developers to work with ranges in for loops and if comparison.
There are a lot of ways to work with ranges in Kotlin. We will take a look at most of the
common ones here.

Simple case
Let's look at one simple case:

for (i in 1..5){
 println(i)
}

It will iterate from 1 to 5 inclusive because we have used them in the in keyword.

The until case
We also can use the until keyword in for loops, in this case, the end element will be
excluded from the interaction. Let's see an example:

for (i in 1 until 5) {
 println(i)
}

In this case, the 5 value will not be printed on the console, because the end element is not
included in the interaction.

Kotlin Basics and Spring Data Redis Chapter 4

[127]

The downTo case
The downTo keyword enables developers to interact with the numbers in reverse order. The
instruction is self-explanatory, as well. Let's see it in practice:

for (i in 5 downTo 1) {
 println(i)
}

It is pretty easy as well. The interaction will occur in the reverse order, in this case, the value
1 will be included. As we can see, the code is pretty easy to understand.

Step case
Sometimes we need to interact over values but with the arbitrary steps, not one by one, for
example. Then we can use the step instruction. Let's practice:

for (i in 1..6 step 2) {
 print(i)
}

Here, we will see the following output: 135, because the interaction will start on the 1 value
and will be increased by two points.

Awesome. The Kotlin ranges can add more readability to our source code and help to
increase the quality of code as well.

Null safety
Kotlin has amazing stuff to work with null references. The null reference is a nightmare for
Java developers. The Java 8 has an Optional object, which helps developers work with
nullable objects, but is not concise like in Kotlin.

Now, we will explore how Kotlin can help developers to avoid the
NullPointerException. Let's understand.

The Kotlin type system makes a distinction between references which can hold null and
those which cannot hold null. Due to this, the code is more concise and readable because it
is a kind of advice for developers.

Kotlin Basics and Spring Data Redis Chapter 4

[128]

When the reference does not allow null, the declaration should be:

var myNonNullString:String = "my non null string"

The preceding variable cannot be assigned to a null reference, if we do this, we will get a
compilation error. Look how easy the code is to understand.

Sometimes, we need to allow for a variable to have null references, in these cases, we can
use the ? as an operator, such as follows:

var allowNull:String? = "permits null references"

Easy. Pay attention to a variable declaration on the ? operator, it makes the variable accept
null references.

There are two different ways to avoid the NullPointerReference in Kotlin. The first one
can be called safe calls, and the other can be called the Elvis Operator. Let's take a look at
those.

Safe calls
The safe call can be written using the .?. It can be called when the reference holds a non-
null value when the value holds a null reference then the null value will be returned:

val hash:TrackedHashTag? = TrackedHashTag(hashTag="java",queue="java")
val queueString = hash?.queue

When the hash? holds null, the null value will be assigned to a queueString attribute. If
the hash? has a valid reference, the queue attribute will be assigned to a queueString
attribute.

Elvis operator
It can be used when developers expect to return a default value when the reference is null:

val hash:TrackedHashTag? = TrackedHashTag(hashTag="java",queue="java")
val queueString = hash?.queue ?: "unrecognized-queue"

When the value holds null, the default value will be returned.

Time to use Kotlin in the real world. Let's begin.

Kotlin Basics and Spring Data Redis Chapter 4

[129]

Wrapping it up
Now, we can use the basics of the Kotlin language. We saw some examples and practiced a
little bit.

We looked at the main concepts of Kotlin. We have learned how data classes can help
developers to transfer data between application layers. Also, we learned about singleton
and companion objects. Now we can try to create a real project with the pretty new support
from Spring Framework.

In the next sections, we will create a project using the Kotlin language, for now, we can
forget about the Java language.

Creating the project
Now, we have a good idea about how we can use programming in Kotlin language. In this
section, we will create the basic structure for our new project in which the main feature is
consuming the Twitter stream. Let's do that.

Project use case
Before we start to code, we need to track the application requirements. The application is
message-driven, we will use a broker to provide the messaging infrastructure. We choose
the RabbitMQ broker because it provides reliability, high availability, and clustering
options. Also, the RabbitMQ is a popular choice for the modern message-driven
applications.

The software is powered by the Pivotal company, the same company which
maintains Spring Framework. There is a huge community which supports the project.

We will have three projects. These three projects will collect the Twitter stream and send it
to a recipient to show Tweets in a formatted way to the end user.

The first one, which will be created in this chapter, will be responsible for keeping the
tracked hashtags on the Redis cache.

Kotlin Basics and Spring Data Redis Chapter 4

[130]

When the new hashtags are registered, it will send a message to the second project which
will start to consume the Twitter stream and redirect it to the desired queue. This queue will
be consumed by the other project which will format the Tweet, and finally, show them to
the end user.

We will have three microservices. Let's create these things.

Creating the project with Spring Initializr
We have learned how to use the Spring Initializr page. We will go to the page and then
select the following modules:

Reactive Web

Reactive Redis

The page content should look like this:

We can choose the group and artifact. There is no problem with using the different name.
Then, we can click on Generate Project and wait until the download ends.

Kotlin Basics and Spring Data Redis Chapter 4

[131]

Adding Jackson for Kotlin
We need to add Jackson for Kotlin dependencies for Maven projects. In fact, we need a
Kotlin standard library on our pom.xml. Also, we need to put jackson-module-kotlin, it
allows us to work with JSON on Kotlin, there are some differences from Java in these parts.

This part is pretty simple, and we will add these following dependencies in the
dependencies sections in pom.xml. The dependencies are as follows:

<dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-kotlin</artifactId>
 <version>${jackson.version}</version>
</dependency>

Now, we have the dependencies configured, and we can set the plugins to compile the
Kotlin source code. In the next section, we will do that.

Looking for the Maven plugins for Kotlin
The project was created with Kotlin configured successfully. Now, we will take a look at the
Maven plugin in our pom.xml. The configuration is necessary to instruct Maven on how to
compile the Kotlin source code and add in the artifacts.

We will add the following plugins in the plugins section:

<plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>
 <configuration>
 <jvmTarget>1.8</jvmTarget>
 </configuration>
 <executions>
 <execution>
 <id>compile</id>
 <phase>process-sources</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 <execution>
 <id>test-compile</id>
 <phase>process-test-sources</phase>

Kotlin Basics and Spring Data Redis Chapter 4

[132]

 <goals>
 <goal>test-compile</goal>
 </goals>
 </execution>
 </executions>
</plugin>

There is one more thing to do. Take a look how Maven configures the path for our Kotlin
code. It is easy peasy. Look at the following:

 <build>

 <sourceDirectory>${project.basedir}/src/main/kotlin<
 /sourceDirectory<testSourceDirectory>${project.basedir}/src/
 test/kotlin</testSourceDirectory>

 </build>

We added our Kotlin folders in the source paths.

Awesome, the project structure is ready, and we can start coding!

Creating a Docker network for our application
To create isolation for our application, we will create a custom Docker network. This
network was created using the bridge driver. Let's do that using the following command:

docker network create twitter

Good, now we can check the network list by typing the following command:

docker network list

The Twitter network should be on the list, like the following:

Kotlin Basics and Spring Data Redis Chapter 4

[133]

The last one is our Twitter network. Let's pull the Redis image from the Docker Hub. Take a
look at the next section.

Pulling the Redis image from the Docker Hub
The first thing we need to do is download the Redis image from the Docker Hub. To do
that, it is necessary to execute the following command:

docker pull redis:4.0.6-alpine

We have used the alpine version from Redis because it is smaller than the others and has a
reasonable security. While the image is downloaded, we can see the downloading status
progress.

We can check the result using the following command:

docker images

The result should look like the following:

Take a look at the images downloaded. The Redis must be on the list.

Awesome, now we will start the Redis instance.

Running the Redis instance
The image was downloaded, then we will start the Redis instance for our application. The
command can be:

docker run -d --name redis --net twitter -p 6379:6379 redis:4.0.6-alpine

We have interesting attributes here. We named our Redis instance with redis, it will be
useful for running our application in containers in the next chapters. Also, we exposed the
Redis container ports to the host machine, the command argument used for that is -p.
Finally, we attached the container to our Twitter network.

Kotlin Basics and Spring Data Redis Chapter 4

[134]

Good, the Redis instance is ready to use. Let's check out the Spring Data Reactive Redis
stuff.

Configuring the redis-cli tool
There is an excellent tool to connect with the Redis instance which is called redis-cli.
There are some Docker images for that, but we will install it on our Linux machine.

To install it, we can execute the following command:

sudo apt-get install redis-tools -y

Excellent, now we can connect and interact with our Redis container. The tool can perform
the read and write instructions, then we need to be careful to avoid instructions
unintentionally.

Let's connect. The default configuration is enough for us because we have exported the port
6379 on the run instruction. Type the following command in the Terminal:

redis-cli

Then we will connect with our running instance. The command line should display the
Redis host and port, like the following screenshot:

Excellent, the client is configured and tested.

Now, we will execute some Redis commands on our container.

Understanding Redis
Redis is an open source in-memory data structure. Redis fits well for a database cache and
is not common, but it can be used as a message broker using the publish-subscribe feature,
it can be useful to decouple applications.

There are some interesting features supported by Redis such as transactions, atomic
operations, and support for time-to-live keys. Time-to-live is useful for giving a time for the
key, the eviction strategy is always hard to implement, and Redis has a built-in solution for
us.

Kotlin Basics and Spring Data Redis Chapter 4

[135]

Data types
There are a lot of supported data types by Redis. The most common ones are strings,
hashes, lists, and sorted sets. We will understand each of these a little bit because it is
important to help us to choose the correct data type for our use case.

Strings
Strings are the more basic data type of Redis. The string value can be at max 512 MB in
length. We can store it as a JSON in the value of the key, or maybe as an image as well
because the Redis is binary safe.

Main commands
Let's look at some important commands we would need:

SET: It sets the key and holds the value. It is a simple and basic command of
Redis. Here's an example:

 SET "user:id:10" "joe"

The return of the command should be OK. It indicates the instruction has been
executed with success.

GET: This command gets the value of the requested key. Remember GET can only
be used with a string data type:

 GET "user:id:10"

As we can see, the return of that command should be joe.

INCR: The INCR command increments the key by one. It can be useful to handle
sequential numbers atomically in distributed systems. The number increment
will be returned as a command output:

 SET "users" "0"
 INCR "users"
 GET "users"

As we can see, the INCR command returned 1 as a command output and then we
can check this using the GET and obtain the value.

Kotlin Basics and Spring Data Redis Chapter 4

[136]

DECR: The DECR command is opposite of INCR, it will decrement the value
atomically as well:

 GET "users"
 DECR "users"
 GET "users"

The value of the users key was decremented by one and then transformed to 0.

INCRBY: It will increment the value of the key by the argument. The new
incremented value will be returned:

 GET "users"
 INCRBY "users" 2
 GET "users"

The new value was returned as a command output.

Lists
Lists are simple lists of strings. They are ordered by the insertion order. Redis also offers
instructions to add new elements at the head or tail of the list.

Lists can be useful for storing groups of things, groups of categories, for example, grouped
by the categories key.

Main commands
LPUSH: Insert the new element at the head of the key. The command also supports multiple
arguments, in this case, the values will be stored in the reverse order as we passed on the
arguments.

Here are some command examples:

 LPUSH "categories" "sports"
 LPUSH "categories" "movies"
 LRANGE "categories" 0 -1

Take a look at the LRANGE output, as we can see the value of the movie is the first one on
the list because the LPUSH inserted the new element on the head.

Kotlin Basics and Spring Data Redis Chapter 4

[137]

RPUSH: Insert the new element at the tail of the key. The command supports multiple
arguments as well, in this case, the values will respect the respective order.

Here are some command examples:

 RPUSH "categories" "kitchen"
 RPUSH "categories" "room"
 LRANGE "categories" 0 -1

As we can see, in the LRANGE output, the new values are inserted at the tail of the values. It
is the behavior of the RPUSH command.

LSET: It sets the element on the requested index.

Here are some command examples:

 LSET "categories" 0 "series""
 LRANGE "categories" 0 -1

The new value of the zero index is series. The LSET command does that for us.

LRANGE: It returns the specified elements of the key. The command arguments are the key,
the start index, and finally the stop element. The -1 on the stop argument will return the
whole list:

 LRANGE "categories" 0 2
 LRANGE "categories" 0 -1

As we can see, the first command will return three elements because the zero index will be
grouped.

Sets
A set is a collection of strings. They have a property which does not allow repeated
values. It means that if we add the pre-existing value on the sets, it will result in the same
element, in this case, the advantage is not necessary to verify if the element exists on the
set. Another important characteristic is that the sets are unordered. This behavior is
different from the Redis lists. It can be useful in different use cases such as count the unique
visitor, track the unique IPs, and much more.

Kotlin Basics and Spring Data Redis Chapter 4

[138]

Main commands
The following are the main commands listed with their usages:

SADD: It adds the element in a requested key. Also, the return of this command is
the number of the element added to the set:

 SADD "unique-visitors" "joe"
 SADD "unique-visitors" "mary"

As we can see, the command returned one because we added one user each time.

SMEMBERS: It returns all the members of a requested key:

 SMEMBERS "unique-visitors"

The command will return joe and mary because those are the values stored in
the unique-visitors key.

SCARD: It returns the numbers of elements of a requested key:

 SCARD "unique-visitors"

The command will return the number of elements stored in the requested keys, in
this case, the output will be 2.

Spring Data Reactive Redis
Spring Data Redis provides an easy way to interact with the Redis Server from Spring Boot
Apps. The project is part of the Spring Data family and provides high-level and low-level
abstractions for the developers.

The Jedis and Lettuce connectors are supported as a driver for this project.

The project offers a lot of features and facilities to interact with Redis. The Repository
interfaces are supported as well. There is a CrudRepository for Redis like in other
implementations, Spring Data JPA, for example.

Kotlin Basics and Spring Data Redis Chapter 4

[139]

The central class for this project is the RedisTemplate which provides a high-level API to
perform Redis operations and serialization support. We will use this class to interact with
set data structures on Redis.

The Reactive implementation is supported by this project, these are important
characteristics for us because we are looking for Reactive implementations.

Configuring the ReactiveRedisConnectionFactory
To configure the ReactiveRedisConnectionFactory, we can use the
application.yaml file, because it is easier to maintain and centralize our configuration.

The principle is the same as other Spring Data Projects, we should provide the host and port
configurations in the application.yaml file, as follows:

spring:
 redis:
 host: localhost
 port: 6379

In the preceding configuration file, we point the Redis configuration to the localhost, as
we can see. The configuration is pretty simple and easy to understand as well.

Done. The connection factory is configured. The next step is to provide a RedisTemplate
to interact with our Redis instance. Take a look at the next section.

Providing a ReactiveRedisTemplate
The main class from Spring Data Redis is the ReactiveRedisTemplate, then we need to
configure and provide an instance for the Spring container.

We need to provide an instance and configure the correct serializer for the desired
ReactiveRedisTemplate. Serializers is the way Spring Data Redis uses to serialize
and deserialize objects from raw bytes stored in Redis in the Key and Value fields.

We will use only the StringRedisSerializer because our Key and Value are simple
strings and the Spring Data Redis has this serializer ready for us.

Kotlin Basics and Spring Data Redis Chapter 4

[140]

Let's produce our ReactiveRedisTemplate. The implementation should look like the
following:

package springfive.twittertracked.infra.redis

import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import
org.springframework.data.redis.connection.ReactiveRedisConnectionFactory
import org.springframework.data.redis.core.ReactiveRedisTemplate
import org.springframework.data.redis.serializer.RedisSerializationContext

@Configuration
open class RedisConfiguration {

 @Bean
 open fun
reactiveRedisTemplate(connectionFactory:ReactiveRedisConnectionFactory):
 ReactiveRedisTemplate<String, String> {
 return ReactiveRedisTemplate(connectionFactory,
RedisSerializationContext.string())
 }

}

Awesome. That is our first code using Kotlin in the Spring Framework. The keyword open
is the opposite of Java's final keyword. It means this function can be inherited from this
class. By default, all classes in Kotlin are final. Spring Framework requires non-final
functions on @Bean on the @Configuration class and then we need to insert open.

We received ReactiveRedisConnectionFactory as a parameter. Spring knows which
we produced in the application.yaml file using the configurations for Redis. Then the
container can inject the factory.

Finally, we declare ReactiveRedisTemplate<String, String> as a return value for our
function.

Interesting work, we are ready to work with our Redis template. Now, we will implement
our first repository for Redis. See you in the next section.

Kotlin Basics and Spring Data Redis Chapter 4

[141]

Creating Tracked Hashtag repository
We have created the ReactiveRedisTemplate, then we can use this object in our
repository implementation. We will create a simple repository to interact with Redis,
remember the repository should be reactive, it is an important characteristic of our
application. Then we need to return Mono or Flux to make the repository Reactive. Let's
look at our repository implementation:

package springfive.twittertracked.domain.repository

import org.springframework.data.redis.core.ReactiveRedisTemplate
import org.springframework.stereotype.Service
import reactor.core.publisher.Flux
import reactor.core.publisher.Mono
import springfive.twitterconsumer.domain.TrackedHashTag

@Service
class TrackedHashTagRepository(private val redisTemplate:
ReactiveRedisTemplate<String, String>){

 fun save(trackedHashTag: TrackedHashTag): Mono<TrackedHashTag>? {
 return this.redisTemplate
 .opsForSet().add("hash-tags",
"${trackedHashTag.hashTag}:${trackedHashTag.queue}")
 .flatMap { Mono.just(trackedHashTag) }
 }

 fun findAll(): Flux<TrackedHashTag> {
 return this.redisTemplate.opsForSet().members("hash-tags").flatMap
{ el ->
 val data = el.split(":")
 Flux.just(TrackedHashTag(hashTag = data[0],queue = data[1]))
 }
 }
}

We received the ReactiveRedisTemplate<String, String> as an injection on our
class, the Spring Framework can detect the constructor and inject the correct
implementation.

Kotlin Basics and Spring Data Redis Chapter 4

[142]

For now, we need these two functions. The first one is responsible for inserting our
entity, TrackedHashTag on the set structure from Redis. We add the value of the hash-
tags key on Redis. This function returns a Mono with the TrackedHashTag value. Pay
attention to the save function. We have created a pattern for our value, the pattern follows
the hashtag, queue where the hashtag is the value to gather Tweets and the queue we will
use in the next sections to send to a RabbitMQ queue.

The second function returns all values from the hash-tags key, it means all tracked
hashtags from our system. Moreover, we need to do some logic to create our
model, TrackedHashTag, as well.

The repository is finished, now we can create our service layer to encapsulate the
repository. Let's do that in the next section.

Creating the service layer
Our repository is ready to use, now we can create our service layer. This layer is responsible
for orchestrating our repository calls. In our case, it is pretty simple but in some complex
scenarios, it can help us to encapsulate the repository calls.

Our service will be called TrackedHashTagService, which will be responsible for
interacting with our repository created previously. The implementation should look like the
following:

package springfive.twittertracked.domain.service

import org.springframework.stereotype.Service
import springfive.twitterconsumer.domain.TrackedHashTag
import
springfive.twitterconsumer.domain.repository.TrackedHashTagRepository

@Service
class TrackedHashTagService(private val repository:
TrackedHashTagRepository) {

 fun save(hashTag:TrackedHashTag) = this.repository.save(hashTag)

 fun all() = this.repository.findAll()

}

Kotlin Basics and Spring Data Redis Chapter 4

[143]

Well done. Here, there is basic stuff. We have the construct which injects our repository to
interact with Redis. The interesting point here is the function declarations. There is not a
body and return type because the Kotlin compiler can infer the return type, it helps the
developer to avoid writing boilerplate code.

Exposing the REST resources
Now, we have created the repository and service layer, and we are ready to expose our
service through HTTP endpoints:

package springfive.twittertracked.domain.resource

import org.springframework.web.bind.annotation.*
import springfive.twitterconsumer.domain.TrackedHashTag
import springfive.twitterconsumer.domain.service.TrackedHashTagService

@RestController
@RequestMapping("/api/tracked-hash-tag")
class TrackedHashTagResource(private val service:TrackedHashTagService)
{

 @GetMapping
 fun all() = this.service.all()

 @PostMapping
 fun save(@RequestBody hashTag:TrackedHashTag) =
this.service.save(hashTag)

}

The code is pretty concise and simple. Take a look at how concise this piece of code is. The
preceding code is an example of how Kotlin helps developers to create readable codes.
Thanks, Kotlin.

Creating a Twitter application
For this project, we will need to configure an application on the Twitter platform. It is
necessary, because we will use Twitter's API to search Tweets, for example, and the Twitter
account is the requirement for that. We will not explain how to create a Twitter account.
There are plenty of articles about that on the internet.

Kotlin Basics and Spring Data Redis Chapter 4

[144]

After the Twitter account is created, we need to go to https:/ /apps. twitter. com/ and
create a new app. The page is quite similar to the following screenshot:

We will click on the Create New App button to start the creation process. When we click on
that button, the following page will be displayed. We need to fill the required fields and
accept the Twitter agreements:

https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/

Kotlin Basics and Spring Data Redis Chapter 4

[145]

We can choose the application name, fill in the description, and website. These details are
up to you.

Then, we need to accept the agreements and click on Create your Twitter application:

Awesome job. Our Twitter application is almost ready to use.

Now, we just need to configure the application for usage.

We need to check if our Keys and Access Tokens are correctly configured. Let's click on
the Keys and Access Tokens tab and check the values, shown as follows:

As we can see, there are some important configurations in the preceding screenshot. The
Consumer Key and Consumer Secret are mandatory to authenticate with Twitter APIs.
Another important point here is the Access Level; be sure it is configured as read-only, as in
the preceding screenshot, we will not do write actions on Twitter.

Let's Dockerize it.

Kotlin Basics and Spring Data Redis Chapter 4

[146]

Awesome. We have the system which keeps the tracked hashtags on the Redis instance. The
application is fully Reactive and has no blocking threads.

Now, we will configure the Maven plugin to generate the Docker images. The configuration
is quite similar to what we did in Chapter 3, Persistence with Spring Data and Reactive
Fashion. However, now we will create a first container which we will run with the Kotlin
language. Let's do that.

Configuring pom.xml
Now, we will configure our pom.xml to be able to generate our Docker image. The first
thing we need to change is our final name artifact because Docker images do not allow the -
character, then we need to configure properly.

The configuration is pretty simple, put the <finalName> tag on the <build> node. Let's do
that:

<build>

 <finalName>tracked_hashtag</finalName>

</build>

Good. We have configured the final name properly to generate the Docker image correctly.
Now, we will configure the Maven Docker plugin to generate the Docker image by the
Maven goal.

In the plugins section inside the build node, we should put in the following plugin
configuration:

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>0.21.0</version>
 <configuration>
 <images>
 
 </images>
 </configuration>
</plugin>

The configuration is pretty simple. We did this before. In the configuration section, we
configured from the image, in our case the openjdk:latest, Docker entry point and
exposed ports as well.

Let's create our Docker image in the next section.

Creating the image
Our project was previously configured with the Maven Docker plugin. We can generate the
Docker image with the Maven Docker plugin using the docker:build goal. Then, it is time
to generate our Docker image.

Kotlin Basics and Spring Data Redis Chapter 4

[148]

To generate the Docker image, type the following command:

mvn clean install docker:build

Now, we must wait for the Maven build and check if the Docker image was generated with
success.

Check the Docker images and we should see the new image generated. To do this, we can
use the docker images command:

docker images

Right, we should see the springfivebyexample/tracked_hashtag:latest on the
image list, like the following screenshot:

Awesome, our Docker image is ready to run with our first Spring Boot Application in the
Kotlin language. Let's run it right now.

Running the container
Let's run our container. Before that, we need to keep in mind some things. The container
should be run on the Twitter network to be able to connect to our Redis instance which is
running on the Twitter network as well. Remember the localhost address for Redis does
not work anymore when running in the containers infrastructure.

To run our container, we can execute the following command:

docker run -d --name hashtag-tracker --net twitter -p 9090:9090
springfivebyexample/tracked_hashtag

Congratulations, our application is running in the Docker container and connected to our
Redis instance. Let's create and test our APIs to check the desired behaviors.

Kotlin Basics and Spring Data Redis Chapter 4

[149]

Testing APIs
Our container is running. Now, we can try to call the APIs to check the behaviors. In this
part, we will use the curl command line. The curl allows us to call APIs by the command
line on Linux. Also, we will use jq to make the JSON readable on the command line, if you
do not have these, look at the Tip Box to install these tools.

Let's call our create API, remember to create we can use the POST method in the base path
of API. Then type the following command:

curl -H "Content-Type: application/json" -X POST -d
'{"hashTag":"java","queue":"java"}' \
 http://localhost:9090/api/tracked-hash-tag

There are interesting things here. The -H argument instructs curl to put it in the request
headers and -d indicates the request body. Moreover, finally, we have the server address.

We have created the new tracked-hash-tag. Let's check our GET API to obtain this data:

curl 'http://localhost:9090/api/tracked-hash-tag' | jq '.'

Awesome, we called the curl tool and printed the JSON value with the jq tool. The
command output should look like the following screenshot:

To install curl on Ubuntu, we can use sudo apt-get install curl -
y. Moreover, to install jq, we can use sudo apt-get install jq -y.

Kotlin Basics and Spring Data Redis Chapter 4

[150]

Summary
In this chapter, we have been introduced to the Kotlin language, which is the most
prominent language for the JVM, because it has a super-fast compiler, if we compare it to
Scala, for example. It also brings the simplicity of code and helps developers to create more
concise and readable code.

We have also created our first application in the Spring Framework using Kotlin as the basic
concepts of the language, and we saw how Kotlin helps the developers in a practical way.

We have introduced Redis as a cache and Spring Data Reactive Redis, which supports
Redis in a Reactive paradigm.

In the last part of the chapter, we learned how to create a Twitter application which
required us to create our next application, and start to consume the Twitter API in reactive
programming with a Reactive Rest Client.

Let's jump to the next chapter and learn more about Spring Reactive.

5
Reactive Web Clients

Until now, we have created the whole project infrastructure to consume the Twitter stream.
We have created an application which stores the tracked hashtags.

In this chapter, we will learn how to use the Spring Reactive Web Client and make HTTP
calls using the reactive paradigm, which is one of the most anticipated features of Spring
5.0. We will call the Twitter REST APIs asynchronously and use the Project Reactor to
provide an elegant way to work with streams.

We will be introduced to Spring Messaging for the RabbitMQ. We will interact with the
RabbitMQ broker using the Spring Messaging API and see how Spring helps developers
use the high-level abstractions for that.

At the end of this chapter, we will wrap up the application and create a docker image.

In this chapter, we will learn about:

Reactive web clients
Spring Messaging for RabbitMQ
RabbitMQ Docker usage
Spring Actuator

Reactive Web Clients Chapter 5

[152]

Creating the Twitter Gathering project
We learned how to create Spring Boot projects with the amazing Spring Initializr. In this
chapter, we will create a project in a different way, to show you an alternative way of
creating a Spring Boot project.

Create the tweet-gathering folder, in any directory. We can use the following command:

mkdir tweet-gathering

Then, we can access the folder created previously and copy the pom.xml file located at
GitHub: https:// github. com/ PacktPublishing/ Spring- 5. 0-By- Example/ blob/ master/
Chapter05/tweet- gathering/ pom. xml.

Open the pom.xml on IDE.

There are some interesting dependencies here. The jackson-module-kotlin helps to
work with JSON in Kotlin language. Another interesting dependency is kotlin-stdlib,
which provides the Kotlin standard libraries in our classpath.

In the plugin sections, the most important plugin is the kotlin-maven-plugin, which
permits and configures the build for our Kotlin code.

In the next section, we will create a folder structure to start the code.

Let's do it.

Project structure
The project structure follows the maven suggested pattern. We will code the project in the
Kotlin language, then we will create a kotlin folder to store our code.

https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml

Reactive Web Clients Chapter 5

[153]

We made that configuration on the pom.xml created before, so it will work fine. Let's take a
look at the correct folder structure for the project:

As we can see, the base package is the springfive.twittergathering package. Then,
we will start to create sub-packages in this package as soon.

Let's create our infrastructure for the microservice.

The full source code can be found at GitHub: https:/ /github. com/
PacktPublishing/ Spring- 5.0- By-Example/ tree/ master/ Chapter05/
tweet- gathering.

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering

Reactive Web Clients Chapter 5

[154]

Starting the RabbitMQ server with Docker
We can use Docker to spin up the RabbitMQ server. We do not want to install the server on
our developer machines as it can create library conflicts and a lot of files. Let's understand
how to start RabbitMQ in a Docker container.

Let's do that in the next couple of sections.

Pulling the RabbitMQ image from Docker Hub
We need to pull the RabbitMQ image from Docker Hub. We will use the image from the
official repository as it is more safe and reliable.

To get the image, we need to use the following command:

docker pull rabbitmq:3.7.0-management-alpine

Wait for the download to end and then we can move forward to the next section. In the next
section, we will learn how to set up the RabbitMQ server.

Starting the RabbitMQ server
To start the RabbitMQ server, we will run the Docker command. There are some
considerations which we need to pay attention to; we will run this container on the Twitter
Docker network created previously, but we will expose some ports on the host, as it makes
it easier to interact with the broker.

Also, we will use the management image because it provides a page which enables us to
manage and see the RabbitMQ information on something similar to a control panel.

Let's run:

docker run -d --name rabbitmq --net twitter -p 5672:5672 -p 15672:15672
rabbitmq:3.7.0-management-alpine

Wait for a few seconds so that RabbitMQ establishes the connections and then we can
connect to the management page. To do that, go to http://localhost:15672 and log on
to the system. The default user is guest, and the password is guest as well. The control
panel looks like this:

Reactive Web Clients Chapter 5

[155]

There is a lot of interesting information on the panel, but for now, we are going to explore
the channels and some interesting parts.

Awesome. Our RabbitMQ server is up and running. We will use the infrastructure soon.

Spring Messaging AMQP
This project supports the AMQP-based messaging solutions. There is a high-level API to
interact with desired brokers. These interactions can send and receive messages from a
broker.

Like in the other Spring projects, these facilities are provided by the template classes, which
expose the core features provided by the broker and implemented by the Spring Module.

This project has two parts: spring-amqp is the base abstraction, and spring-rabbit is the
RabbitMQ implementation for RabbitMQ. We will use spring-rabbit because we are
using the RabbitMQ broker.

Reactive Web Clients Chapter 5

[156]

Adding Spring AMQP in our pom.xml
Let's add the spring-amqp jars to our project. spring-amqp has a starter dependency
which configures some common things for us, such as ConnectionFactory and
RabbitTemplate, so we will use that. To add this dependency, we will configure our
pom.xml follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

The next step is to configure the connections; we will use the application.yaml file
because we are using the starter. In the next section, we will do the configuration.

Integrating Spring Application and RabbitMQ
We have configured the spring-amqp dependencies in our project. Now, it is time to
configure the RabbitMQ connections properly. We will use the RabbitMQTemplate to send
messages to the broker; this has some converters which help us convert our domain models
into JSON and vice versa.

Let's configure our RabbitMQ connections. The configurations should be in
the application.yaml file and should look like this:

spring:
 rabbitmq:
 host: localhost
 username: guest
 password: guest
 port: 5672

As we can see, some Spring configurations are quite similar to others, the same style, and
the node in yaml is the name of the technology followed by a couple of attributes.

We are using the default credentials for the RabbitMQ. The host and port are related to the
RabbitMQ Broker address. The configuration is quite simple but does a lot of things for us
such as ConnectionFactory.

Reactive Web Clients Chapter 5

[157]

Understanding RabbitMQ exchanges, queues,
and bindings
We are doing some interesting things with RabbitMQ. We configured connections
successfully. There are some other things that we have not done yet, such as configuring the
exchanges, queue, and bindings, but before we do that, let's understand a little bit more
about these terms.

Exchanges
Exchanges are RabbitMQ entities where the messages are sent. We can make an analogy
with a river where the water is flowing; the river is the course of the messages. There are
four different kinds of exchanges which we will understand in the following sections.

Direct exchanges
The direct exchanges allow for route messages based on the routing key. The name is self-
explanatory, it permits to send the messages directly to the specified customer, who is the
one listening to the exchange. Remember, it uses the routing key as the argument to route
the message to the customers.

Fanout exchanges
The fanout exchanges route the messages for all the queues bound independently of the
routing key. All the bound queues will receive the message sent to fanout exchanges. They
can be used to have the topic behavior or distributed listings.

Topic exchanges
The topic exchanges are similar to direct exchanges, but topic exchanges enable us to use
pattern matching as compared to the direct exchanges, which permit only the exact routing
key. We will use this exchange in our project.

Header exchanges
Header exchanges are self-explanatory, the behavior is like the topic exchange, but instead
of using the routing key, it uses the header attributes to match the correct queue.

Reactive Web Clients Chapter 5

[158]

Queues
Queues are the buffer where the exchanges will write the messages respecting the routing
key. Queues are the place where consumers get the messages which are published to
exchanges. Messages are routed to queues depending on the exchange type.

Bindings
Binding can be thought of as a link between exchanges and queues. We can say that it is a
kind of traffic cop which instructs the messages where they should be redirected based on
the configuration, in this case, links.

Configuring exchanges, queues, and bindings on
Spring AMQP
The Spring AMQP project has abstractions for all the RabbitMQ entities listed previously,
and we need to configure it to interact with the broker. As we did in other projects, we need
a @Configuration class, which will declare the beans for the Spring container.

Declaring exchanges, queues, and bindings in yaml
We need to configure the entity names to instruct the framework to connect with the broker
entities. We will use the application.yaml file to store these names, since it is easier to
maintain and is the correct way to store application infrastructure data.

The section with the entity names should look like this snippet:

queue:
 twitter: twitter-stream
exchange:
 twitter: twitter-exchange
routing_key:
 track: track.*

The properties are self-explanatory, the exchange node has the name of the exchange, the
queue node has the queue name, and finally, the routing_key node has the routing
argument.

Reactive Web Clients Chapter 5

[159]

Awesome. The properties are configured, and now we will create our @Configuration
class. Let's do that in the next section. We are almost ready to interact with the RabbitMQ
broker.

Declaring Spring beans for RabbitMQ
Now, let's create our configuration class. The class is pretty simple and as we will see with
the Spring abstraction, they are easy to understand too, especially because the class names
allude to the RabbitMQ entities.

Let's create our class:

package springfive.twittergathering.infra.rabbitmq

import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.module.kotlin.KotlinModule
import org.springframework.amqp.core.Binding
import org.springframework.amqp.core.BindingBuilder
import org.springframework.amqp.core.Queue
import org.springframework.amqp.core.TopicExchange
import
org.springframework.amqp.support.converter.Jackson2JsonMessageConverter
import org.springframework.beans.factory.annotation.Value
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration

@Configuration
open class RabbitMQConfiguration(@Value("\${queue.twitter}") private val
queue:String,
 @Value("\${exchange.twitter}") private val
exchange:String,
 @Value("\${routing_key.track}") private
val routingKey:String){

 @Bean
 open fun queue():Queue{
 return Queue(this.queue,false)
 }

 @Bean
 open fun exchange():TopicExchange{
 return TopicExchange(this.exchange)
 }

 @Bean

Reactive Web Clients Chapter 5

[160]

 open fun binding(queue: Queue, exchange: TopicExchange): Binding {
 return
BindingBuilder.bind(queue).to(exchange).with(this.routingKey)
 }

 @Bean
 open fun converter(): Jackson2JsonMessageConverter {
 return
Jackson2JsonMessageConverter(ObjectMapper().registerModule(KotlinModule()))
 }

}

There are interesting things to pay attention to here. In the RabbitMQConfiguration
constructor, we injected the values configured in the application.yaml file to name the
entities. After that, we started to configure the Spring beans for the container to allow it to
inject them into the Spring-managed classes. The key point here is that if they do not exist in
the RabbitMQ broker, Spring will create them. Thanks, Spring, we appreciate that and love
how helpful that is.

We can see the DSL to declare Binding, it makes the developer's life easier and prevents
errors in the code.

On the last part of the class, we declared the Jackson2JsonMessageConverter. These
converters are used to convert the domain models in JSON and vice versa. It enables us to
receive the domain object on Listener instead of an array of bytes or strings. The same
behavior can be used in the Producers, we are able to send the domain object instead of
JSON.

We need to supply the ObjectMapper to Jackson2JsonMessageConverter, and we have
used the Kotlin module because of the way Kotlin handles data classes, which do not have
no-args constructors.

Excellent job! Our infrastructure is fully configured. Let's code the producers and
consumers right now!

Consuming messages with Spring Messaging
Spring AMQP provides the @RabbitListener annotation; it will configure the subscriber
for the desired queue, it removes a lot of infrastructure code, such as connect
to RabbitListenerConnectionFactory, and creates a consumer programmatically. It
makes the creation of queue consumers really easy.

Reactive Web Clients Chapter 5

[161]

The spring-boot-starter-amqp provides some automatic configurations for us. When
we use this module, Spring will automatically create
a RabbitListenerConnectionFactory for us and configure the Spring converters to
convert JSON to domain classes automatically.

Pretty simple. Spring AMQP really provides a super high-level abstraction for developers.

Let's see an example which will be used in our application soon:

@RabbitListener(queues = ["twitter-track-hashtag"])
fun receive(hashTag:TrackedHashTag) {
...
}

The full source code can be found at GitHub: https:/ /github. com/
PacktPublishing/ Spring- 5.0- By-Example/ blob/ master/ Chapter05/
tweet- gathering/ src/ main/kotlin/ springfive/ twittergathering/
domain/ service/ TwitterGatherRunner. kt.

A piece of cake. The code is really easy to understand and it makes it possible to pay
attention only to the business rules. The infrastructure is not a good thing to maintain
because this does not bring real value to the business, as it is only a piece of technology.
Spring tries to abstract the whole infrastructure code to help developers write business
code. It is a real asset provided by the Spring Framework.

Thanks, Spring Team.

Producing messages with Spring Messaging
The spring-amqp module provides a RabbitTemplate class, which abstracts high-level
RabbitMQ driver classes. It improves the developer performance and makes the application
void of bugs because the Spring modules are a very well-tested set of codes. We will use the
convertAndSend() function which permits to pass exchange, the routing key, and the
message object as parameters. Remember this function uses Spring converters to convert
our model class into a JSON string.

There are a lot of overloaded functions for convertAndSend(), and depending on the use
case, others could be more appropriate. We will use the simple one as we saw before.

https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt

Reactive Web Clients Chapter 5

[162]

Let's see the piece of code which sends the message to the broker:

this.rabbitTemplate.convertAndSend("twitter-
exchange","track.${hashTag.queue}",it)

Good. The first parameter is the Exchange name, and the second is the RoutingKey.
Finally, we have the message object, which will be converted into a JSON string.

We will see the code in action soon.

Enabling Twitter in our application
In this section, we will enable the use of Twitter APIs on our Twitter Gathering application.
This application should get Tweets based on the query specified by the user. This query was
registered on the previous microservice that we created in the previous chapter.

When the user calls the API to register TrackedHashTag, the microservice will store the
TrackedHashTag on the Redis database and send the message through the RabbitMQ.
Then, this project will start to gather Tweets based on that. This is the data flow. In the next
chapter, we will do a reactive stream and dispatch Tweets through our Reactive API. It will
be amazing.

However, for now, we need to configure the Twitter credentials; we will do that using
Spring beans – let's implement it.

Producing Twitter credentials
We will use the @Configuration class to provide our Twitter configuration objects. The
@Configuration class is really good to provide infrastructure beans, if we do not have
starter projects for the required module.

Also, we will use the application.yaml file to store the Twitter credentials. This kind of
configuration should not be kept in the source code repository because it is sensitive data
and should not be shared with others. Then, the Spring Framework enables us to declare
properties in the yaml file and configures the environment variables to fill these properties
at runtime. It is an excellent way to keep sensitive data out of the source code repository.

Reactive Web Clients Chapter 5

[163]

Configuring Twitter credentials in application.yaml
To start configuring the Twitter API in our application, we must provide the credentials.
We will use the yaml file for this. Let's add credentials in our application.yaml:

twitter:
 consumer-key: ${consumer-key}
 consumer-secret: ${consumer-secret}
 access-token: ${access-token}
 access-token-secret: ${access-token-secret}

Easy peasy. The properties have been declared and then we used the $ to instruct the
Spring Framework that this value will be received as an environment variable. Remember,
we configured the Twitter account in the previous chapter.

Modelling objects to represent Twitter settings
We must create abstractions and an amazing data model for our applications. This will
create some models which make the developer's life easier to understand and code. Let's
create our Twitter settings models.

Twittertoken
This class represents the application token previously configured in Twitter. The token can
be used for the application authentication only. Our model should look like this:

data class TwitterToken(val accessToken: String,val
accessTokenSecret: String)

I love the Kotlin way to declare data classes—totally immutable and without boilerplate.

TwitterAppSettings
TwitterAppSettings represents the consumer key and consumer secret. It is a kind of
identity for our application, from Twitter's perspective. Our model is pretty simple and
must look like this:

data class TwitterAppSettings(val consumerKey: String,val
consumerSecret: String)

Good job, our models are ready. It is time to produce the objects for the Spring Container.
We will do that in the next section.

Reactive Web Clients Chapter 5

[164]

Declaring Twitter credentials for the Spring container
Let's produce our Twitter configuration objects. As a pattern we have been using, we will
use the @Configuration class for that. The class should be as follows:

package springfive.twittergathering.infra.twitter

import org.springframework.beans.factory.annotation.Value
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration

@Configuration
open class TwitterConfiguration(@Value("\${twitter.consumer-key}") private
val consumerKey: String,
 @Value("\${twitter.consumer-secret}")
private val consumerSecret: String,
 @Value("\${twitter.access-token}") private
val accessToken: String,
 @Value("\${twitter.access-token-secret}")
private val accessTokenSecret: String) {

 @Bean
 open fun twitterAppSettings(): TwitterAppSettings {
 return TwitterAppSettings(consumerKey, consumerSecret)
 }

 @Bean
 open fun twitterToken(): TwitterToken {
 return TwitterToken(accessToken, accessTokenSecret)
 }

}

Pretty simple and a Spring way to declare beans. We are improving how we use Spring step
by step. Well done!

Now, we are done with Twitter configurations. We will consume the Twitter API using the
WebClient from the Spring WebFlux, which supports the reactive programming paradigm.
Let's understand something before we run the code.

Reactive Web Clients Chapter 5

[165]

Spring reactive web clients
This is a pretty new feature which was added in Spring Framework 5. It enables us to
interact with HTTP services, using the reactive paradigm.

It is not a replacement for a RestTemplate provided by Spring, however, it is an addition
to working with reactive applications. Do not worry, the RestTemplate is an excellent and
tested implementation for interaction with HTTP services in traditional applications.

Also, the WebClient implementation supports the text/event-stream mime type which
can enable us to consume server events.

Producing WebClient in a Spring Way
Before we start to call the Twitter APIs, we want to create an instance of WebClient in a
Spring way. It means we are looking for a way to inject the instance, using the Dependency
Injection Pattern.

To achieve this, we can use the @Configuration annotation and create a WebClient
instance, using the @Bean annotation to declare the bean for the Spring container. Let's do
that:

package springfive.twittergathering.infra.web

import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import org.springframework.web.reactive.function.client.WebClient

@Configuration
open class WebClientProducer {

 @Bean
 open fun webClient(): WebClient? {
 return WebClient.create()
 }

}

There are a couple of known annotations in this class; this is a pretty standard way to
declare bean instances in a Spring way. It makes it possible to inject an instance of
WebClient in other Spring-managed classes.

Reactive Web Clients Chapter 5

[166]

Creating the models to gather Tweets
If we want to consume the Twitter APIs asynchronously and reactively, then we should
create the API client. Before we code the client, we need to create our classes for modeling,
according to our requirements.

We do not need all Tweets' attributes. We expect the following attributes:

id

text

createdAt

user

Then, we will model our class based on the attributes listed.

Let's start with the user attribute. This attribute is a JSON attribute, and we will create a
separated class for that. The class should look like this:

@JsonIgnoreProperties(ignoreUnknown = true)
data class TwitterUser(val id:String,val name:String)

We have used the Kotlin data class, it fits our use case well, and we want to use that as a
data container. Also, we need to put in @JsonIgnoreProperties(ignoreUnknown =
true) because this annotation instructs the Spring converters to ignore the attribute when
it is missing in the JSON response. That is the important part of this portion of code.

We have created the TwitterUser class, which represents the user who created the Tweet.
Now, we will create the Tweet class which represents the Tweet. Let's create our class:

@JsonIgnoreProperties(ignoreUnknown = true)
data class Tweet(val id:String, val text:String,
@JsonProperty("created_at")val createdAt:String, val
user:TwitterUser)

There are some common things for us and one that's new. The @JsonProperty permits
developers to customize the attribute name on the class which has a different attribute
name in JSON; this is common for Java developers because they usually use CamelCase as a
way to name attributes, and in JSON notation, people usually use SnakeCase. This
annotation can help us to solve this mismatch between the programming language and
JSON.

Reactive Web Clients Chapter 5

[167]

We can find a more detailed explanation of snake case here: https:/ /en.
wikipedia. org/ wiki/ Snake_ case. Also, we can find a full explanation of
camel case here: https:/ / en.wikipedia. org/ wiki/ Camel_ case.

Good. Our API objects are ready. With these objects, we are enabled to interact with the
APIs. We will create a service to collect the Tweets. We will do that in the next section.

Authentication with Twitter APIs
With our objects ready, we need to create a class to help us handle the Twitter
authentication. We will use the Twitter Application Only Auth authentication model. This
kind of authentication should be used for backend applications.

The application using this kind of authentication can:

Pull user timelines
Access friends and followers of any account
Access lists and resources
Search in Tweets
Retrieve any user information

As we can see, the application is a read-only Twitter API consumer.

We can use the Twitter documentation to understand this kind of
authentication in detail. The documentation can be found here: https:/ /
developer. twitter. com/ en/docs/ basics/ authentication/ guides/
authorizing- a-request.

We will follow the Twitter documentation to authorize our request, which is a kind of
cooking recipe, so we must follow all the steps. The final class should look like this:

package springfive.twittergathering.infra.twitter

import org.springframework.util.StringUtils
import
springfive.twittergathering.infra.twitter.EncodeUtils.computeSignature
import springfive.twittergathering.infra.twitter.EncodeUtils.encode
import java.util.*

object Twitter {

https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request
https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request

Reactive Web Clients Chapter 5

[168]

 private val SIGNATURE_METHOD = "HMAC-SHA1"

 private val AUTHORIZATION_VERIFY_CREDENTIALS = "OAuth " +
 "oauth_consumer_key=\"{key}\", " +
 "oauth_signature_method=\"" + SIGNATURE_METHOD + "\", " +
 "oauth_timestamp=\"{ts}\", " +
 "oauth_nonce=\"{nonce}\", " +
 "oauth_version=\"1.0\", " +
 "oauth_signature=\"{signature}\", " +
 "oauth_token=\"{token}\""

 fun buildAuthHeader(appSettings: TwitterAppSettings, twitterToken:
TwitterToken, method: String, url: String, query: String):String{
 val ts = "" + Date().time / 1000
 val nounce = UUID.randomUUID().toString().replace("-".toRegex(),
"")
 val parameters =
"oauth_consumer_key=${appSettings.consumerKey}&oauth_nonce=$nounce&oauth_si
gnature_method=$SIGNATURE_METHOD&oauth_timestamp=$ts&oauth_token=${encode(t
witterToken.accessToken)}&oauth_version=1.0&track=${encode(query)}"
 val signature = "$method&" + encode(url) + "&" + encode(parameters)
 var result = AUTHORIZATION_VERIFY_CREDENTIALS
 result = StringUtils.replace(result, "{nonce}", nounce)
 result = StringUtils.replace(result, "{ts}", "" + ts)
 result = StringUtils.replace(result, "{key}",
appSettings.consumerKey)
 result = StringUtils.replace(result, "{signature}",
encode(computeSignature(signature,
"${appSettings.consumerSecret}&${encode(twitterToken.accessTokenSecret)}"))
)
 result = StringUtils.replace(result, "{token}",
encode(twitterToken.accessToken))
 return result
 }

}

data class TwitterToken(val accessToken: String,val accessTokenSecret:
String)

data class TwitterAppSettings(val consumerKey: String,val consumerSecret:
String)

It is a recipe. The function, buildAuthHeader, will create the authorization header using
the rules to authorize the request. We have signed some request headers combined with a
request body. Moreover, replace the template values with our Twitter credentials objects.

Reactive Web Clients Chapter 5

[169]

Some words about server-sent events (SSE)
Server-sent events (SSE) is a technology where the server sends events to the client, instead
of the client polling the server to check the information availability. The message flow will
not get interrupted until the client or server closes the stream.

The most important thing to understand here is the direction of the information flow. The
server decides when to send data to a client.

It is very important to handle resource load and bandwidth usage. The client will receive
the chunk of data instead to apply load on the server through the polling techniques.

Twitter has a stream API and the Spring Framework WebClient supports SSE. It is time to
consume the Twitter stream.

Creating the gather service
The TweetGatherService will be responsible for interacting with Twitter APIs and
collecting the request tweets according to the requested hashtag. The service will be a
Spring bean with some inject attributes. The class should look like this:

package springfive.twittergathering.domain.service

import com.fasterxml.jackson.annotation.JsonIgnoreProperties
import com.fasterxml.jackson.annotation.JsonProperty
import org.springframework.http.MediaType
import org.springframework.stereotype.Service
import org.springframework.web.reactive.function.BodyInserters
import org.springframework.web.reactive.function.client.WebClient
import reactor.core.publisher.Flux
import springfive.twittergathering.infra.twitter.Twitter
import springfive.twittergathering.infra.twitter.TwitterAppSettings
import springfive.twittergathering.infra.twitter.TwitterToken

@Service
class TweetGatherService(private val twitterAppSettings:
TwitterAppSettings,
 private val twitterToken: TwitterToken,
 private val webClient: WebClient) {

 fun streamFrom(query: String): Flux<Tweet> {
 val url = "https://stream.twitter.com/1.1/statuses/filter.json"
 return this.webClient.mutate().baseUrl(url).build()

Reactive Web Clients Chapter 5

[170]

 .post()
 .body(BodyInserters.fromFormData("track", query))
 .header("Authorization",
Twitter.buildAuthHeader(twitterAppSettings, twitterToken, "POST", url,
query))
 .accept(MediaType.TEXT_EVENT_STREAM)
 .retrieve().bodyToFlux(Tweet::class.java)
 }

}

@JsonIgnoreProperties(ignoreUnknown = true)
data class Tweet(val id: String = "", val text: String = "",
@JsonProperty("created_at") val createdAt: String = "", val user:
TwitterUser = TwitterUser("", ""))

@JsonIgnoreProperties(ignoreUnknown = true)
data class TwitterUser(val id: String, val name: String)

There are some important points here. The first is the function declaration; take a look at
Flux<Tweet>, it means the data can never get interrupted because it represents the N
values. In our case, we will consume the Twitter stream until the client or server interrupts
the data flow.

After that, we configured the HTTP request body with our desired track to get events. After
that, we configured the Accept HTTP header; it is essential to instruct the WebClient what
kind of mime type it needs to consume.

Finally, we have used our Twitter.buildAuthHeader function to configure the Twitter
authentication.

Awesome, we are ready to start to consume the Twitter API, and we only need to code the
trigger to use that function. We will do that in the next section.

Listening to the Rabbit Queue and consuming the
Twitter API
We will consume the Twitter API, but when?

We need to start to get Tweets when the request for tracking the hashtags comes to our
application. To reach that goal, we will implement the RabbitMQ Listener when the
TrackedHashTag gets registered on our microservice. The application will send the
message to the broker to start consuming the Twitter stream.

Reactive Web Clients Chapter 5

[171]

Let's take a look at the code and step by step understand the behaviors; the final code
should look like this:

package springfive.twittergathering.domain.service

import org.springframework.amqp.rabbit.annotation.RabbitListener
import org.springframework.amqp.rabbit.core.RabbitTemplate
import org.springframework.stereotype.Service
import reactor.core.publisher.Mono
import reactor.core.scheduler.Schedulers
import springfive.twittergathering.domain.TrackedHashTag
import java.util.concurrent.CompletableFuture
import java.util.concurrent.TimeUnit

@Service
class TwitterGatherRunner(private val twitterGatherService:
TweetGatherService,private val rabbitTemplate: RabbitTemplate) {

 @RabbitListener(queues = ["twitter-track-hashtag"])
 fun receive(hashTag:TrackedHashTag) {
 val streamFrom =
this.twitterGatherService.streamFrom(hashTag.hashTag).filter({
 return@filter it.id.isNotEmpty() && it.text.isNotEmpty() &&
 it.createdAt.isNotEmpty()
 })
 val subscribe = streamFrom.subscribe({
 println(it.text)
 Mono.fromFuture(CompletableFuture.runAsync {
 this.rabbitTemplate.convertAndSend("twitter-
 exchange","track.${hashTag.queue}",it)
 })
 })
 Schedulers.elastic().schedule({ subscribe.dispose()
},10L,TimeUnit.SECONDS)
 }

}

Keep calm. We will cover the whole code. In the @RabbitListener, we configured the
name of the queue we want to consume. The Spring AMQP module will configure our
listener automatically for us and start to consume the desired queue. As we can see, we
received the TrackedHashTag object; remember the converters on the previous sections.

Reactive Web Clients Chapter 5

[172]

The first instruction will start to consume the Twitter stream. The stream returns a flux and
can have a lot of data events there. After the consumer, we want to filter the data on the
flow. We want Tweet in which the id, text, and createdAt are not null.

Then, we subscribe this stream and start to receive the data in the flow. Also,
the subscribes function returns the disposable object which will be helpful in the next
steps. We have created an anonymous function which will print the Tweet on the console
and send the Tweet to the RabbitMQ queue, to be consumed in another microservice.

Finally, we use the schedulers to stop the data flow and consume the data for 10 seconds.

Before you test the Twitter stream, we need to change the Tracked Hashtag Service to send
the messages through the RabbitMQ. We will do that in the next sections. The changes are
small ones and we will do them quickly.

Changing the Tracked Hashtag Service
To run the whole solution, we need to make some changes to the Tracked Hashtag Service
project. The changes are simple and basic; configure the RabbitMQ connection and change
the service to send the messages to the broker.

Let's do that.

Adding the Spring Starter RabbitMQ dependency
As we did before in the Twitter Gathering project, we need to add spring-boot-
starter-amqp to provide some auto-configuration for us. To do that, we need to add the
following snippet to our pom.xml:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

Right. Now, it is time to configure the RabbitMQ connections. We will do this in the next
section.

Reactive Web Clients Chapter 5

[173]

Configuring the RabbitMQ connections
We will use the application.yaml to configure the RabbitMQ connections. Then, we
need to create a couple of properties in it and the Spring AMQP module will use that
provided configuration to start the connection factory.

It is pretty simple to configure it. The final yaml file for Tracked Hashtag should look like
this:

spring:
 rabbitmq:
 host: localhost
 username: guest
 password: guest
 port: 5672
 redis:
 host: 127.0.0.1
 port: 6379

server:
 port: 9090

queue:
 twitter: twitter-track-hashtag
exchange:
 twitter: twitter-track-exchange
routing_key:
 track: "*"

spring:
 profiles: docker
 rabbitmq:
 host: rabbitmq
 username: guest
 password: guest
 port: 5672
 redis:
 host: redis
 port: 6379

server:
 port: 9090

queue:
 twitter: twitter-track-hashtag
exchange:
 twitter: twitter-track-exchange

Reactive Web Clients Chapter 5

[174]

routing_key:
 track: "*"

There are two profiles in this yaml. Take a look at the different host for the RabbitMQ. In
the default profile, we are able to connect the localhost because we exposed the RabbitMQ
ports on the host. But on the Docker profile, we are not able to connect the localhost, we
need to connect to the rabbitmq host, which is the host for the Twitter network.

Our RabbitMQ connection is ready to use. Let's try it in the next section. Let's go.

Creating exchanges, queues, and bindings for the
Twitter Hashtag Service
Let's declare our RabbitMQ entities for the Tracked Hashtag usage. We will do that using
the @Configuration class.

The RabbitMQ connection should look like this:

package springfive.twittertracked.infra.rabbitmq

import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.module.kotlin.KotlinModule
import org.springframework.amqp.core.Binding
import org.springframework.amqp.core.BindingBuilder
import org.springframework.amqp.core.Queue
import org.springframework.amqp.core.TopicExchange
import
org.springframework.amqp.support.converter.Jackson2JsonMessageConverter
import org.springframework.beans.factory.annotation.Value
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration

@Configuration
open class RabbitMQConfiguration(@Value("\${queue.twitter}") private val
queue:String,
 @Value("\${exchange.twitter}") private val
exchange:String,
 @Value("\${routing_key.track}") private
val routingKey:String){

 @Bean
 open fun queue():Queue{
 return Queue(this.queue,false)
 }

Reactive Web Clients Chapter 5

[175]

 @Bean
 open fun exchange():TopicExchange{
 return TopicExchange(this.exchange)
 }

 @Bean
 open fun binding(queue: Queue, exchange: TopicExchange): Binding {
 return
BindingBuilder.bind(queue).to(exchange).with(this.routingKey)
 }

 @Bean
 open fun converter(): Jackson2JsonMessageConverter {
 return
Jackson2JsonMessageConverter(ObjectMapper().registerModule(KotlinModule()))
 }

}

Pretty straightforward. We declared one exchange, queue, and binding, as we did before.

Sending the messages to the broker
This is the most interesting part now. When we want to save the TrackedHashTag, we
must send the pretty new entity to the RabbitMQ. This process will send the message, and
then the Twitter Gathering microservice will start to consume the stream in ten seconds.

We need to change the TrackedHashTagService a little bit; the final version should look
like this:

package springfive.twittertracked.domain.service

import org.springframework.amqp.rabbit.core.RabbitTemplate
import org.springframework.beans.factory.annotation.Value
import org.springframework.stereotype.Service
import reactor.core.publisher.Mono
import springfive.twittertracked.domain.TrackedHashTag
import springfive.twittertracked.domain.repository.TrackedHashTagRepository
import java.util.concurrent.CompletableFuture

@Service
class TrackedHashTagService(private val repository:
TrackedHashTagRepository,
 private val rabbitTemplate: RabbitTemplate,
 @Value("\${exchange.twitter}") private val

Reactive Web Clients Chapter 5

[176]

exchange: String,
 @Value("\${routing_key.track}") private val
routingKey: String) {

 fun save(hashTag: TrackedHashTag) {
 this.repository.save(hashTag).subscribe { data ->
 Mono.fromFuture(CompletableFuture.runAsync {
 this.rabbitTemplate.convertAndSend(this.exchange,
this.routingKey,
 hashTag)
 })
 }
 }

 fun all() = this.repository.findAll()

}

Awesome job. When the new entity comes, it will be sent to the broker. We have finished
our changes on the Tracked Hashtag Service.

Finally, we are able to test the whole flow. Let's start to play and perceive the real power of
our built application.

It's showtime!!!

Testing the microservice's integrations
Now, we are ready to test the whole solution. Before you start, we need to check the
following infrastructure items:

Redis
RabbitMQ

If the items are up and running, we can jump to the next section.

We can use the docker ps command, and the command should list the
Redis and RabbitMQ containers in running mode.

Reactive Web Clients Chapter 5

[177]

Running Tracked Hashtag Service
There is no special thing to run this application. It includes the infrastructure connections
which are configured in the default profile in application.yaml.

Run the main function present on the TrackedHashTagApplication. We can use the
IDE or command line to do that.

Check the console output; the output will be presented on the IDE or command line. We
want to find the following line:

It means the first application is fully operational and we are able to run Twitter Gathering.
Please keep the application running as it is required.

Let's run Twitter Gathering!!!

Running the Twitter Gathering
This application is a little bit more complicated to run. We need to configure some
environment variables for that. It is required because we do not want the Twitter
application credentials in our repository.

It is pretty simple to do in the IDE. To do that, we can configure the run configuration. Let's
do it:

Click on the Edit Configurations... like in the following image:1.

Reactive Web Clients Chapter 5

[178]

Then, we are able to see the Environment variables like this:

We need to click on ..., as highlighted in the proceeding image.2.
The next screen will be shown and we can configure the Environment Variable:3.

Reactive Web Clients Chapter 5

[179]

We need to configure the following environment variables:4.
consumer-key
consumer-secret
access-token
access-token-secret

These values should be filled with the Twitter Application Management values.

Then, we can run the application. Run it!!

Now, we should see the following lines in the console, which means the application is
running:

Awesome, our two microservices are running. Let's trigger the Twitter stream. We will do
that in the next section.

There are other ways to run the application, for example, with the maven
Spring Boot goals or Java command line. If you prefer to run in the Java
command line, keep in mind the -D argument to pass environment
variables.

Testing stuff
We are excited to test the full integration. We can use the curl tool to send request data to
the Tracked Hashtag Service. We want to track the "bitcoin" from Twitter.

We can execute the following command line:

curl -H "Content-Type: application/json" -X POST -d
'{"hashTag":"bitcoin","queue":"bitcoin"}' \
http://localhost:9090/api/tracked-hash-tag

Check the HTTP status code; it should be HTTP status 200. After that, we can check the
console from the Twitter Gathering project, and there should be a lot of Tweets logged.

Reactive Web Clients Chapter 5

[180]

Take a look at the log, the log must have Tweets like this:

Awesome!

Great work guys, we have the full application integrated with RabbitMQ and the Twitter
stream.

Spring Actuator
The Spring Boot Actuator is a kind of helper when the application is running in production.
The project provides built-in information of a deployed application.

In the microservices world, monitoring instances of applications are the key point to getting
success. In these environments, there are usually many applications calling the other
applications over the network protocols such as HTTP. The network is an unstable
environment and sometimes it will fail; we need to track these incidents to make sure the
application is up and fully operational.

The Spring Boot Actuator helps developers in these situations. The project exposes a couple
of HTTP APIs with application information, such as the memory usage, CPU usage,
application health check, and the infrastructure components of the application, such as a
connection with databases and message brokers, as well.

Reactive Web Clients Chapter 5

[181]

One of the most important points is that the information is exposed over HTTP. It helps
integrations with external monitor applications such as Nagios and Zabbix, for instance.
There is no specific protocol for exposing this information.

Let's add it to our project and try a couple of endpoints.

Adding Spring Boot Actuator in our pom.xml
Spring Boot Actuator is pretty simple to configure in our pom.xml. We extended the parent
pom of Spring Boot, so it is not necessary to specify the version of the dependency.

Let's configure our new dependency:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
</dependencies>

Awesome, really easy. Let's understand a little bit more before we test.

Actuator Endpoints
The projects have a lot of built-in endpoints and they will be up when the application
started. Remember, we have used the starter project, which is the one that configures it
automatically for us.

There are several endpoints for different requirements, and we will take a look at the most
used in production microservices.

/health: The most known actuator endpoint; it shows the application's health,
and usually, there is a status attribute
/configprops: Displays a collapse @ConfigurationProperties
/env: Exposes properties from the Spring ConfigurableEnvironment
/dump: Shows the thread dump
/info: We can put some arbitrary information at this endpoint
/metrics: Metrics from the running application
/mappings: @RequestMappings endpoints from the current application

Reactive Web Clients Chapter 5

[182]

There is another important endpoint to show the application logs over the HTTP interface.
The /logfile endpoint can help us visualize logfiles.

The list of endpoints created by the Spring Boot Actuator can be found
at: https:/ / docs. spring. io/spring- boot/ docs/ current/ reference/
html/ production- ready- endpoints. html.

Application custom information
There is one particular endpoint which we can use to expose custom information from our
application. This information will be exposed to /info endpoint.

To configure that, we can use the application.yaml file and put the desired information
respecting the pattern, as follows:

info:
 project: "twitter-gathering"
 kotlin: @kotlin.version@

Thr desired properties must be preceded by the info. *. Then, we can test our first
actuator endpoint and check our /info resource.

Let's try to access the http://localhost:8081/info. The information filled on
application.yaml should be displayed, as shown here:

As we can see, the properties are exposed from the HTTP endpoint. We can use that to put
the application version, for instance.

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html

Reactive Web Clients Chapter 5

[183]

Testing endpoints
In version 2 of Spring Boot, the Spring Actuator management endpoints are disabled by
default, because these endpoints can have sensitive data of a running application. Then, we
need to configure to enable these endpoints properly.

There is a special point to pay attention to. If the application is exposed publicly, you
should protect these endpoints.

Let's enable our management endpoints:

management:
 endpoints:
 web:
 expose: "*"

In the preceding configuration, we enabled all the management endpoints, and then we can
start to test some endpoints.

Let's test some endpoints. First, we will test the metrics endpoints. This endpoint shows the
metrics available for the running application. Go
to http://localhost:8081/actuator/metrics and check the result:

Reactive Web Clients Chapter 5

[184]

We are using port 8081 because we configured the property
server.port in application.yaml. The port can be changed as you
desire.

There are a lot of metrics configured automatically for us. That endpoint exposes only the
available metrics. To check the metric value, we need to use another endpoint. Let's check
the value of the http.server.request.

The base endpoint to check the value
is: http://localhost:8081/actuator/metrics/{metricName}. Then, we need to go
to: http://localhost:8081/actuator/metrics/http.server.requests. The result
should be:

As you can see, the server received eight calls. Try to hit a few more times to see the metrics
changing.

Awesome job. Our microservice is ready for production. We have the docker image and
endpoints for monitoring our services.

Reactive Web Clients Chapter 5

[185]

Summary
In this chapter, we learned and put into practice a lot of Spring Advanced concepts, such as
RabbitMQ integration.

We have created a fully reactive WebClient and took advantage of the reactive paradigm; it
enables resource computational optimization and increases performance for the application.

Also, we have integrated two microservices through the RabbitMQ broker. This is an
excellent solution to integrating applications because it decouples the applications and also
permits you to scale the application horizontally really easily. Message-driven is one of the
required characteristics to build a reactive application; it can be found at Reactive Manifesto
(https://www.reactivemanifesto. org/ en).

In the next chapter, we will improve our solution and create a new microservice to stream
the filtered Tweets for our clients. We will use RabbitMQ one more time.

https://www.reactivemanifesto.org/en
https://www.reactivemanifesto.org/en
https://www.reactivemanifesto.org/en
https://www.reactivemanifesto.org/en
https://www.reactivemanifesto.org/en
https://www.reactivemanifesto.org/en
https://www.reactivemanifesto.org/en
https://www.reactivemanifesto.org/en
https://www.reactivemanifesto.org/en
https://www.reactivemanifesto.org/en
https://www.reactivemanifesto.org/en

6
Playing with Server-Sent

Events
In Chapter 4, Kotlin Basics and Spring Data Redis and Chapter 5, Reactive Web Clients, we
created two microservices. The first one is responsible for keeping tracked data on Redis
and triggering the second microservice which one will consume the Twitter stream. This
process happens asynchronously.

In this chapter, we will create another microservice which will consume the data produced
by Twitter Gathering and expose it via a REST API. It will be possible to filter Tweets by
text content.

We have consumed the Twitter stream using the Server-Sent Events (SSE); we created a
reactive REST client to consume that. Now, it is time to create our implementation for SSE.
We will consume the RabbitMQ queue and push the data to our connected clients.

We will take a look at the SSE and understand why this solution fits well for our couple of
microservices.

At the end of the chapter, we will be confident about using SSE in the Spring ecosystem.

In this chapter, we will learn the following:

Implementation of SSE endpoints with the Spring Framework
Consuming RabbitMQ using the Reactor Rabbit client

Playing with Server-Sent Events Chapter 6

[187]

Creating the Tweet Dispatcher project
Now, we will create our last microservice. It will push the Tweets filtered by Twitter
Gathering for our connected clients, in this case, consumers.

In this chapter, we will use the Spring Initializr page to help us create our pretty new
project. Let's create.

Using Spring Initializr once again
As you can see, the Spring Initializr page is a kind of partner for creating Spring projects.
Let's use it one more time and create a project:

Go to https://start. spring. io and fill in the data using the following screenshot:

We have selected the Reactive Web dependencies; we will also keep using Kotlin as a
programming language. Finally, click on the Generate Project button. Good, it is enough
for us.

There are some missing dependencies which are not displayed in the Spring Initializr. We
need to set these dependencies manually. We will do that task in the next section. Let's go
there.

https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io

Playing with Server-Sent Events Chapter 6

[188]

Additional dependencies
We need to use the Jackson Kotlin Module as a dependency to handle JSON properly in our
new microservice. Also, we will use the Reactor RabbitMQ dependency, which allows us to
interact in the reactive paradigm with the RabbitMQ Broker.

To add these dependencies, we need to add the following snippet to pom.xml:

<dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-kotlin</artifactId>
 <version>${jackson.version}</version>
</dependency>

<dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-test</artifactId>
 <scope>test</scope>
</dependency>

<dependency>
 <groupId>io.projectreactor.rabbitmq</groupId>
 <artifactId>reactor-rabbitmq</artifactId>
 <version>1.0.0.M1</version>
</dependency>

Awesome. Our dependencies are configured. Our project is ready to start.

Before we start, we need to understand, in depth, the concept of SSE. We will learn this in
the next section.

Server-Sent Events
Server-Sent Events (SSE) is a standard way to send data streams from a server to clients. In
this next section, we will learn how to implement it using the Spring Framework.

Also, we will understand the main differences between SSE and WebSockets.

Playing with Server-Sent Events Chapter 6

[189]

A few words about the HTTP protocol
HTTP is an application layer protocol in the OSI model. The application layer is the last
layer represented in the OSI model. It means this layer is closer to the user interface. The
main purpose of this layer is to send and receive the data input by the user. In general, it
happens by the user interface, also known as applications, such as file transfer and sending
an email.

There are several protocols on the application layer such as Domain Name
Service (DNS), which translates the domain names to IP address, or SMTP, whose main
purpose is to deliver an email to a mail manager application.

The application layer interacts directly with software such as email clients, for instance;
there are no interactions with the hardware parts. It is the last layer of the OSI model and
the closest to the end user as well.

All these layers deal with software, which means there are no concerns about the physical
parts represented in the OSI model.

A more detailed explanation of the OSI model can be found at: https:/ /
support. microsoft. com/ en-us/ help/ 103884/ the- osi- model- s- seven-
layers- defined- and- functions- explained.

The following is an OSI model representation:

https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained

Playing with Server-Sent Events Chapter 6

[190]

The HTTP protocol uses the TCP protocol as a transportation channel. Then, it will establish
a connection and start to flow the data on the channel.

The TCP protocol is a stream protocol and a full duplex channel. This means the server and
clients can send data across the connection.

HTTP and persistent connections
The HTTP protocol is a request-response model, where the client submits the message
(HTTP Request) and the server processes this message and sends the response (HTTP
Response) to the client. The connection will be closed after the response is sent.

Look at the following diagram:

It's pretty simple to understand. The client will send the request, and in this case, the
connection will be opened. After that, the server will receive the request to process
something and it will send the answer to the client. The connection will be closed after the
whole process. If the client needs to send a new request, the connection should be opened
again and the flow happens in the same order.

There is a perceived drawback here, the clients need to open the new connection per-
request. From the server's eyes, the server needs to process a lot of new
connections simultaneously. This consumes a lot of CPU and memory.

On HTTP's 1.0 version, the connections are not persistent. To enable it, the keep-alive
header should be included on the request. The header should look like this:

Connection: keep-alive

This is the only way to make an HTTP connection persistent on the 1.0 version, as described
previously; when it happens, the connection will not be dropped by the server and the
client is able to reuse the opened connection.

On HTTP 1.1, the connections are persistent by default; in this case, as opposed to the first
version, the connection is kept opened and the client can use it normally.

Playing with Server-Sent Events Chapter 6

[191]

There is a perceived improvement here and it can bring some advantages. The server needs
to manage fewer connections, and it reduces a lot of CPU time. The HTTP Requests and
Responses can be pipelined in the same connection.

As we know, there is no such thing as a free lunch. There are some disadvantages to this as
well; the server needs to keep the connection opened and the server will reserve the
required connection for the client. This may cause server unavailability in some scenarios.

 Persistent connections can be useful to maintain a stream between the server and clients.

WebSockets
In the HTTP protocol, the communication supports full-duplex, which means the client and
server can send data through the channel. The standard way to support this kind of
communication is WebSockets. In this specification, both client and server can send data to
each other in the persistent connection. Look at the following diagram:

As we can see, the data can be sent and received by the two actors, client, and server—this
is how WebSockets works.

In our case, we do not need to send any data to the server during the connection. Because of
this characteristic, we will choose SSE. We will learn about them in the following section.

Server-Sent Events
As opposed to the full-duplex communication implemented by WebSockets, the SSE uses a
half-duplex communication.

Playing with Server-Sent Events Chapter 6

[192]

The client sends a request to the server, and when necessary, the server will push the data
to the client. Remember the active actor here is the server; the data can be sent only by the
server. This is a half-duplex behavior. Look at the following diagram:

A piece of cake. It is the base of the SSE technology. SSE is self-explanatory. We will use it
with the Spring Framework. However, before we do that, let's look at a Reactor RabbitMQ
project.

Reactor RabbitMQ
Our solution is fully reactive, so we need to use Reactor RabbitMQ, which allows us to
interact with the RabbitMQ broker using the reactive paradigm.

On this new microservice, we do not need to send messages through the message broker.
Our solution will listen to the RabbitMQ queues and push the received Tweets for the
connected clients.

Understanding the Reactor RabbitMQ
The Reactor RabbitMQ tries to provide a reactive library to interact with the RabbitMQ
rboker. It enables developers to create non-blocking applications based on the reactive
stream, using RabbitMQ as a message-broker solution.

As we learned before, this kind of solution, in general, does not use a lot of memory. The
project was based on the RabbitMQ Java client and has similar functionalities, if we
compare it to the blocking solution.

We are not using the spring-amqp-starter, so the magic will not happen. We will need
to code the beans declarations for the Spring context and we will do that in the following
section.

Playing with Server-Sent Events Chapter 6

[193]

Configuring RabbitMQ Reactor beans
In this section, we will configure the RabbitMQ infrastructure classes in the Spring context.
We will use a @Configuration class to declare it.

The configuration class should look like the following:

package springfive.twitterdispatcher.infra.rabbitmq

import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.module.kotlin.KotlinModule
import com.rabbitmq.client.ConnectionFactory
import org.springframework.beans.factory.annotation.Value
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import reactor.rabbitmq.ReactorRabbitMq
import reactor.rabbitmq.Receiver
import reactor.rabbitmq.ReceiverOptions

@Configuration
class RabbitMQConfiguration(private @Value("\${spring.rabbitmq.host}")
val host:String,
 private @Value("\${spring.rabbitmq.port}")
val port:Int,
 private
@Value("\${spring.rabbitmq.username}") val username:String,
 private
@Value("\${spring.rabbitmq.password}") val password:String){

 @Bean
 fun mapper(): ObjectMapper =
ObjectMapper().registerModule(KotlinModule())

 @Bean
 fun connectionFactory():ConnectionFactory{
 val connectionFactory = ConnectionFactory()
 connectionFactory.username = this.username
 connectionFactory.password = this.password
 connectionFactory.host = this.host
 connectionFactory.port = this.port
 connectionFactory.useNio()
 return connectionFactory
 }

 @Bean
 fun receiver(connectionFactory: ConnectionFactory):Receiver{
 val options = ReceiverOptions()

Playing with Server-Sent Events Chapter 6

[194]

 options.connectionFactory(connectionFactory)
 return ReactorRabbitMq.createReceiver(options)
 }

}

There are two important things here. The first one is that we configured the Jackson support
for Kotlin. It allows us to inject the ObjectMapper into our Spring beans. The next
important thing is related to the RabbitMQ connections' configuration.

We have declared a ConnectionFactory bean for the Spring Context. We injected the
configurations with @Value annotations and received the values on the constructor. We can
set the value directly in the attributes, in the Kotlin language; look at the
ConnectionFactory attributes assignments.

After the ConnectionFactory configuration, we are able to declare a receiver, which is a
Reactive abstraction to consume the queues, using reactive programming. We receive the
ConnectionFactory previously created and set it as the ReceiverOptions.

That is all for the Reactor RabbitMQ configuration.

Consuming the RabbitMQ queues reactively
Now, we will consume the RabbitMQ queues. The implementation is quite similar to what
we have seen in the blocking implementation, and the names of the functions are similar as
well.

We have consumed some RabbitMQ messages in the previous chapters, but this solution is
quite different. Now, we will use the Reactive RabbitMQ implementation. The main idea
here is to consume the stream of events; these events represent the messages that have
arrived in the broker. These messages arrive and the Reactor RabbitMQ converts these
messages to Flux, to enable us to consume in the reactive paradigm.

In the reactive paradigm, the representation of a stream of events (we can think of messages
in the queue), is the Flux.

Then our function, which is listening to the RabbitMQ, should return Flux, an infinite
representation of events. The Receiver implementation returns the Flux of messages, which
is enough for us and fits well with our needs.

Playing with Server-Sent Events Chapter 6

[195]

Our implementation should look like the following:

package springfive.twitterdispatcher.domain.service

import com.fasterxml.jackson.annotation.JsonIgnoreProperties
import com.fasterxml.jackson.annotation.JsonProperty
import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.module.kotlin.readValue
import org.springframework.beans.factory.annotation.Value
import org.springframework.stereotype.Service
import reactor.core.publisher.Flux
import reactor.core.publisher.Mono
import reactor.rabbitmq.Receiver

@Service
class TwitterDispatcher(private @Value("\${queue.twitter}") val queue:
String,
 private val receiver: Receiver,
 private val mapper: ObjectMapper) {

 fun dispatch(): Flux<Tweet> {
 return this.receiver.consumeAutoAck(this.queue).flatMap {
message ->
 Mono.just(mapper.readValue<Tweet>(String(message.body)))
 }
 }

}

@JsonIgnoreProperties(ignoreUnknown = true)
data class Tweet(val id: String = "",
 val text: String = "", @JsonProperty("created_at")
 val createdAt: String = "", val user: TwitterUser = TwitterUser("",
""))

@JsonIgnoreProperties(ignoreUnknown = true)
data class TwitterUser(val id: String, val name: String)

Let's understand a little bit more. We received the Receiver as an injection in our
constructor. When someone invokes the dispatch() function, the Receiver will start to
consume the queue, which was injected in the constructor as well.

Playing with Server-Sent Events Chapter 6

[196]

The Receiver produces Flux<Delivery>. Now, we need to convert the instance of
Flux<Delivery>, which represents a message abstraction, to our domain model Tweet.
The flatMap() function can do it for us, but first, we will convert the message.body to
string and then we have used Jackson to read JSON and convert to our Tweet domain
model.

Take a look at how simple the code is to read; the API is fluent and really readable.

The consumer will not terminate until the connected client disconnects. We will be able to
see this behavior soon.

Filtering streams
We are receiving the messages from RabbitMQ. Now, we need to return the messages to the
connected customer.

For that, we will use SSE with Spring WebFlux. The solution is a good fit for us because we
will produce a Flux<Tweet> and start to push the Tweets for our clients. The clients will
send a query to filter the desired Tweets.

The application will be fully reactive. Let's take a look at our code:

package springfive.twitterdispatcher.domain.controller

import org.springframework.http.MediaType
import org.springframework.web.bind.annotation.GetMapping
import org.springframework.web.bind.annotation.RequestMapping
import org.springframework.web.bind.annotation.RequestParam
import org.springframework.web.bind.annotation.RestController
import reactor.core.publisher.Flux
import springfive.twitterdispatcher.domain.service.Tweet
import springfive.twitterdispatcher.domain.service.TwitterDispatcher

@RestController
@RequestMapping("/tweets")
class TweetResource(private val dispatcher: TwitterDispatcher) {

 @GetMapping(produces = [MediaType.TEXT_EVENT_STREAM_VALUE])
 fun tweets(@RequestParam("q")query:String):Flux<Tweet>{
 return dispatcher.dispatch()
 .filter({ tweet: Tweet? -> tweet!!.text.contains(query,ignoreCase =
true) })
 }
}

Playing with Server-Sent Events Chapter 6

[197]

Pretty easy and simple to understand. We have declared the tweets() function; this
function is mapped to a GET HTTP Request and produces
a MediaType.TEXT_EVENT_STREAM_VALUE. When the client connects to the endpoint, the
server will start to send Tweets accordingly with the desired argument.

When the client disconnects, the Reactor RabbitMQ will close the requested RabbitMQ
connection.

Dockerizing the whole solution
Now, it is time to wrap the whole solution and create a Docker image for all projects. It is
useful to run the projects anywhere we want.

We will configure all the projects step by step and then run the solution in Docker
containers. As a challenge, we can use docker-compose to orchestrate the whole solution
in a single yaml file.

For the Tracked Hashtag Service, we have created the docker image. Then, we will start to
configure the Tweet Gathering, and the last one is Tweet Dispatcher. Let's do that right
now.

You can find more docker-compose project details at: https:/ / docs.
docker. com/ compose/ . Also, in the new versions, docker-compose
supports Docker Swarm to orchestrate the stack between cluster nodes. It
can be really useful to deploy Docker containers in production.

Tweet Gathering
Let's configure our pom.xml for the Tweet Gathering project.

The build node should look like the following:

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>0.21.0</version>
 <configuration>
 <images>
 
 </images>
 </configuration>
</plugin>

Take a look at the port configuration; it should be the same as what we have configured in
the application.yaml. The configuration is done, so let's create our Docker image:

mvn clean install docker:build

The command output should look like the following screenshot:

Playing with Server-Sent Events Chapter 6

[199]

There is an image recently created and tagged as a latest; the image is ready to run. Let's do
the same thing for our Tweet Dispatcher project.

Tweet Dispatcher
Our new plugin entry should look like this:

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>0.21.0</version>
 <configuration>
 <images>
 
 </images>
 </configuration>
</plugin>

Playing with Server-Sent Events Chapter 6

[200]

Take a look at the port configuration, one more time. It will be used by Docker to expose the
correct port. Now, we can run the image creation command:

mvn clean install docker:build

Then, we can see the command's output, as shown in the following screenshot:

Awesome, all images are ready. Let's run it.

We need to create Docker images for all the projects. The process is the
same; configure the maven Docker plugin and then use mvn clean
install docker:build on the project. The full source code can be
found at GitHub. The Tracked Hashtag Service can be found here
(https:/ /github. com/ PacktPublishing/ Spring- 5.0- By-Example/ tree/
master/ Chapter04), the Tweet Gathering can be found here (https:/ /
github. com/ PacktPublishing/ Spring- 5. 0-By- Example/ tree/ master/
Chapter05) and finally, the Tweet Dispatcher can be found here (https:/ /
github. com/ PacktPublishing/ Spring- 5. 0-By- Example/ tree/ master/
Chapter06).

Running the containerized solution
We are ready to run the solution in Docker containers. We have been running the solution
with the IDE or command line, but now we will spin up some container and test the
solution and Spring profiles as well.

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06

Playing with Server-Sent Events Chapter 6

[201]

Before that, let's do a quick recap of the solution:

The first operation, the Tracked Hashtag Service, will persist the hashtag in1.
the Redis database.
After that, the Tracked Hashtag Service will send the newly tracked hashtag to a2.
queue in the RabbitMQ Broker.
Tweet Gathering is listening to the queue to track Tweets and trigger the event3.
and starts by listening to the Twitter stream.
Tweet Gathering starts to get Tweets from the Twitter stream.4.
Tweet Gathering publishes Tweets to a queue in the RabbitMQ broker.5.
Tweet Dispatcher consumes the message.6.
Tweet Dispatcher sends the message to the Client using SSE.7.

Now that we have understood the solution, let's starts the containers.

Running the Tracked Hashtag Service container
The image has been created in the previous section, so now we are able to spin up the
container. The command to start the container should look like this:

docker run -d --name tracked --net twitter -p 9090:9090
springfivebyexample/tracked_hashtag

Playing with Server-Sent Events Chapter 6

[202]

Let's explain the instruction. -d tells the Docker engine to run the container in
background mode or detached. The other important parameter is --net, which attaches
the container to the desired network.

We can use the following command to tail the container logs at runtime:

docker logs tracked -f

This command is like the tail -f command on Linux, which looks at the last part of the
log stream. We can remove the flag -f to see the last lines of the log.

The output of docker logs should look like this:

Look at the profile selected, in the logs:

INFO 7 --- [main] s.t.TrackedHashTagApplication$Companion : The
following profiles are active: docker

Remember, we have parameterized it in the pom.xml file from the Tracked Hash Tag
Service. Let's look at the following snippet:

<entryPoint>java -Dspring.profiles.active=docker -jar
/application/${project.build.finalName}.jar</entryPoint>

Awesome job. Our first service is running properly. Let's run Tweet Gathering; there is
some interesting configuration here.

We have created the Twitter network in chapter 4, Kotlin Basics and Spring
Data Redis, and we need to use this network to enable the containers to see
each other by container name in our custom network.

Playing with Server-Sent Events Chapter 6

[203]

Running the Tweet Gathering container
To run the Tweet Gathering application is slightly different. This container needs
environment variables which are used to interact with the Twitter API. We can use the -e
argument on the docker run command. Let's do that:

docker run -d --name gathering --net twitter -e
CONSUMER_KEY=gupfxwn43NBTdxCD3Tsf1JgMu \
-e CONSUMER_SECRET=pH4uM5LlYxKzfJ7huYRwFbaFXn7ooK01LmqCP69QV9a9kZrHw5 \
-e ACCESS_TOKEN=940015005860290560-m0WwSyxGvp5ufff9KW2zm5LGXLaFLov \
-e ACCESS_TOKEN_SECRET=KSofGB8aIwDmewceKXLbN8d5chvZkZyB31VZa09pNBhLo \
-p 8081:8081 springfivebyexample/tweet_gathering

Take a look at the environment variables we have configured in the application.yaml
file. The Docker run command will inject these variables into the system and then we can
use them in our Java application.

Let's inspect our container logs. We can do that using the following command:

Awesome, our application is up and running. As you can see, the application is connected
to the RabbitMQ Broker.

RabbitMQ and Redis should be running to enable you to run Tweet
Gathering. We can check it using the docker ps command; it will list the
running containers, RabbitMQ and Redis need to be on this list.

Now, we can run the Dispatcher application to complete the whole solution. Let's do that.

Playing with Server-Sent Events Chapter 6

[204]

Running the Tweet Dispatcher container
There is no secret to running the Tweet Dispatcher container. We can use the following
command to run it:

docker run -d --name dispatcher --net twitter -p 9099:9099
springfivebyexample/tweet_dispatcher

It will spin up the container, it is a good idea to name the container during the run. It can
help us manage the container with command-line tools, such as docker container ls or
docker ps, because it shows the container name in the last column. Then, let's check if our
container is running, so type the following command:

docker container ls

Or, you can run the following command:

docker ps

We should be able to see the Gathering container running, like in the following output:

There are five containers, three applications, and two infrastructure services, RabbitMQ
and Redis.

At any time, we can stop the desired container using the following command:

docker stop gathering

The docker stop will only stop the container; the information will be kept in the container
volume. We can use the container name or container ID as well, we named it before. It is
easy for us. If we use the docker ps command, the image recently stopped will never
appear on the list. To show all the containers, we can use docker ps -a or docker
container ls -a.

Now, we will start the container again; the command is self-explanatory:

docker start gathering

Playing with Server-Sent Events Chapter 6

[205]

The container is running again. We have practiced more with Docker.

Awesome job, guys. The whole application is containerized. Well done.

We can use the Linux instruction and execute some batch instructions. For
instance, we can use docker stop $(docker ps -q) — it will stop all
containers running. The docker ps -q command will bring only the
container's IDs.

The docker-compose tool
In the microservices architectural style, the whole solution is decoupled in small and well-
defined services. Usually, when we adopt these styles, we have more than one artifact to
deploy.

Let's analyze our solution; we have three components to deploy. We have used the Docker
containers and we have run these containers using the docker run command. One by one,
we have used docker run three times. It is quite complex and very hard to do in the
development routine.

docker-compose can help us in this scenario. It is a tool which helps to orchestrate Docker
containers in complex scenarios like ours.

Let's imagine our application is growing fast and we need to build four more microservices
to achieve the desired business case, it will implicate on four more docker run commands
and will probably be painful to maintain, especially during the development life cycle.
Sometimes, we need to promote the artifacts to test the environment and we probably need
to modify our command line to achieve this.

docker-compose enables us to deploy multiple containers with a single yaml file. This
yaml file has a defined structure which allows us to define and configure several containers
in the same file. Moreover, we can run the solution configured in this yaml file with a single
command, it makes development life easy.

The tool can work on the local machine or we can integrate it with the Docker Swarm tool
which can manage clusters of Docker hosts.

Playing with Server-Sent Events Chapter 6

[206]

Docker Swarm is a native tool to manage docker clusters. It makes it easy
to deploy a container on the Docker cluster. In the new version, docker-
compose is fully integrated with Docker Swarm. We can define it from
Docker Swarm properties in docker-compose.yaml. The Docker Swarm
documentation can be found at: https:/ /docs. docker. com/ engine/
swarm/ .

The docker-compose yaml has a defined structure to follow; the documentation can be
found here: https:/ / docs. docker. com/ compose/ compose- file/ #compose- and- docker-
compatibility-matrix. We will create a simple file to understand the docker-compose
behaviors. Let's create our simple yaml— the yaml should look like this:

version: '3'
services:
 rabbitmq:
 image: rabbitmq:3.7.0-management-alpine
 ports:
 - "5672:5672"
 - "15672:15672"
 redis:
 image: "redis:alpine"
 ports:
 - "6379:6379"

The yaml in the preceding code will create the structure detailed in the following diagram:

It simplifies the development time. Now, we will learn how to install docker-compose.

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix
https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix

Playing with Server-Sent Events Chapter 6

[207]

Installing docker-compose
The docker-compose installation is pretty simple and well-documented. We are using
Linux, so we will use the Linux instructions.

Open the terminal and use the following command:

sudo curl -L
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-`
uname -s`-`uname -m` -o /usr/local/bin/docker-compose

Wait for the download and then we can execute the following instructions to give
executable permissions for the program. Let's do this by executing the following command:

sudo chmod +x /usr/local/bin/docker-compose

As you may know, you may be asked for the administrator password. Our docker-
compose is now installed. Let's check it:

docker-compose --version

The prompt will display the installed version, like the following screenshot:

docker-compose is up and running, so let's jump to the next section and start to create our
yaml file and deploy the whole stack with one single command.

For different operating systems, the instructions can be found
here: https:/ /docs. docker. com/ compose/ install/ #install- compose.
Then, you can navigate around the instructions and click on the desired
operating system.

Creating a docker-compose file
Now, we have docker-compose installed and we can try to work with the tool. We want to
run the whole stack with a single command. We will create the yaml file to represent the
stack. Our yaml file should have the Redis container, the RabbitMQ container, the Tracked
Hashtag application, the Gathering application, and finally, the Dispatcher application.

We can create a docker-compose.yaml file wherever we want, there is no restriction for
that.

https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose
https://docs.docker.com/compose/install/#install-compose

Playing with Server-Sent Events Chapter 6

[208]

Our docker-compose.yaml file should look like the following:

version: '3'
services:
 rabbitmq:
 image: rabbitmq:3.7.0-management-alpine
 hostname: rabbitmq
 ports:
 - "5672:5672"
 - "15672:15672"
 networks:
 - solution
 redis:
 image: "redis:4.0.6-alpine"
 hostname: redis
 ports:
 - "6379:6379"
 networks:
 - solution
 tracked:
 image: springfivebyexample/tracked_hashtag
 ports:
 - "9090:9090"
 networks:
 - solution
 gathering:
 image: springfivebyexample/tweet_gathering
 ports:
 - "8081:8081"
 networks:
 - solution
 environment:
 - CONSUMER_KEY=gupfxwn43NBTdxCD3Tsf1JgMu
 -
CONSUMER_SECRET=pH4uM5LlYxKzfJ7huYRwFbaFXn7ooK01LmqCP69QV9a9kZrHw5
 - ACCESS_TOKEN=940015005860290560-m0WwSyxGvp5ufff9KW2zm5LGXLaFLov
 -
ACCESS_TOKEN_SECRET=KSofGB8aIwDmewceKXLbN8d5chvZkZyB31VZa09pNBhLo
 dispatcher:
 image: springfivebyexample/tweet_dispatcher
 ports:
 - "9099:9099"
 networks:
 - solution
networks:
 solution:
 driver: bridge

Playing with Server-Sent Events Chapter 6

[209]

As you can see, we have defined the whole stack in the yaml. Something to note is that we
can find some similarities with the docker run command, in fact, it will use the Docker
engine to run. The environment node in yaml has the same behavior as -e in the Docker
run command.

We have defined the application ports, docker images, and have also connected the
containers to the same network. This is really important because when we use the docker-
compose file name on the network, it can find that the container name has a kind of DNS
behavior.

For instance, inside the defined network solution, the container can find the Redis
container instance by the name redis.

Running the solution
docker-compose simplifies the process to run the whole stack. Our yaml file was
configured and defined properly.

Let's start the solution. Run the following command:

docker-compose up -d

The command is pretty simple, the -d parameter instructs Docker to run the command in
the background. As we did on the Docker run command.

The output of this command should be the following:

Take a look, docker-compose has created a network for our stack. In our case, the network
driver is a bridge, after the network creation, the containers are started.

Playing with Server-Sent Events Chapter 6

[210]

Testing the network
Let's test it, find the Gathering container – the container name in docker-compose is
prefixed by the folder name, where docker-compose was started.

For instance, I have started my docker-compose stack in the compose folder. My container
name will be compose_gathering_1 because of the folder name.

Then, we will connect the Gathering container. It can be achieved using the following
command:

docker exec -it compose_gathering_1 /bin/bash

The docker exec command allows us to execute something inside the container. In our
case, we will execute the /bin/bash program.

The command structure is like this:

docker exec -it <container name or container id> <program or instruction>

Awesome, pay attention to the command line. It should be changed because now we are in
the container command line:

We are not connected as a root on our host, but now we are a root on the container. This
container is on the same network as the Redis container instance, which is called redis.

Let's test with the ping command; we should be able to find the redis container by the
name redis, let's do it. Type the following:

ping redis

Playing with Server-Sent Events Chapter 6

[211]

The command output should be the following:

Awesome, our container can find the Redis container by the name. The yaml file is fully
working.

Summary
In this chapter, we completed our second solution. We were introduced to the RabbitMQ
Reactor library, which enables us to connect to RabbitMQ, using the reactive paradigm.

We have prepared the whole solution in Docker containers and connected it to the same
network to enable the applications to talk to each other.

We also learned the important pattern for pushing data from server to client through the
HTTP persistent connection, and we learned the difference between WebSockets and
Server-Sent Events, as well.

Finally, we learned how docker-compose helps us to create the stack and run the whole
solution with a couple of commands.

In the following chapters, we will build a fully microservice solution, using some important
patterns such as Service Discovery, API Gateway, Circuit Breakers, and much more.

7
Airline Ticket System

Our last projects—Twitter Consumers, Twitter Gathering, and Twitter Dispatcher—were
excellent. We learned several exciting features, and they were implemented using the new
features present in Spring 5.0. All of them are implemented in Reactive Streams and use
Kotlin as the programming language. They are the hottest features in Spring 5.0; it was an
impressive progression.

However, there are notably missing parts on these projects; we have microservice needs in
mind. There are no infrastructure services such as service discovery, distributed
configurations, API Gateway, distributed tracing, and monitoring. These kinds of services
are mandatory in distributed systems such as microservice architectures.

There are several reasons for that. Firstly, we can think of the configuration management.
Let's imagine the following scenario – in the development cycle, we have three
environments: DEV, TST, and PROD. This is a pretty simple standard found in companies.
Also, we have an application decoupled in 4 microservices, then with the
minimum infrastructure, we have 12 instances of services; remember, this is a good scenario
because in a real situation, we will probably have several instances of microservice
applications.

In the earlier scenario, we will maintain at least three configuration files per microservice,
remember there are three environments for which we need to keep the configurations.
Then, we will have 12 versions of settings. It is a hard task to maintain the configurations, to
keep the files synchronized and updated. These files probably contain sensitive
information, such as database passwords and message brokers' configurations, and it is not
recommended that you put these files on the host machines.

Airline Ticket System Chapter 7

[213]

In this case, the distributed configuration can solve our problems easily. We will learn about
configuration servers in this chapter, and other infrastructure services as well.

Let's summarize what we will learn in this chapter:

How to create a Config Server
Implementing a service discovery with Eureka
Monitoring applications with Spring Cloud Zipkin
Exposing the applications with the Spring Cloud Gateway

The Airline Ticket System
In these last few chapters, we will work on the Airline Ticket System. The solution is quite
complex and involves a lot of HTTP integrations and message-based solutions. We will
explore what we have learned from the book journey.

We will use Spring Messaging, Spring WebFlux, and Spring Data components to create the
solution. The application will split up into several microservices to guarantee the scalability,
elasticity, and fault tolerance for the system.

Also, we will have some infrastructure services to help us deliver an efficient system. Some
new patterns will be introduced, such as circuit breakers and OAuth. In the infrastructure
layer, we will use the Netflix OSS components integrated with the Spring Framework
ecosystem.

The main purpose of our application is to sell airline tickets, but to achieve this task, we
need to build an entire ecosystem. We will build a microservice which will manage the seats
and planes' characteristics. There will also be a microservice to manage available company
flights; the basic idea is to manage flight dates and routes. Of course, we will have a
microservice to manage passengers, fares, bookings, and payments. Finally, we will have an
e-commerce API with which end users will buy airline tickets.

Airline functionalities
We will create some microservices to compose the solution and then we will decompose the
solution into small pieces, that is, microservices. For that, we will use the Bounded Context
pattern which is an essential part of the Domain-Driven Design (DDD).

Airline Ticket System Chapter 7

[214]

Let's look at the following diagram to have an idea about what we will build:

It is a summary of what we will do in these few chapters; we have defined the basic
functionalities for each microservice.

Now, we will take a look at components; let's go to the next section.

Airline Ticket System Chapter 7

[215]

Solution diagram
The following diagram illustrates the whole solution, which we will implement in the
following chapters:

As we can see, there are different kinds of components. Some components will be exposed
through the Gateway for end users, in our case, our customers. There is a category which
the company users will use to register flights, for instance, where these microservices will
be exposed on Gateway as well.

The infrastructure category will not be exposed over the internet, except the Gateway
service. These services help the solution infrastructure and should be not exposed because
there is sensitive data in there.

There a lot of things to do; let's get on with the show.

DDD enables us to deal easily with microservices. Some DDD patterns fit
well for the microservices architectural style. There are many interesting
books in the Packt catalog.

Spring Cloud Config Server
When we adopt the microservices architectural style, there are some challenges to solve.
One of the first problems to solve is how to manage the microservices configurations in the
cluster, and how to make them easy and distributed, as well?

Airline Ticket System Chapter 7

[216]

Spring Cloud Config provides a Spring way, based on annotations and Spring beans. It is
an easy way to solve this problem in a production-ready module. There are three main
components in this module, the Configuration Repository, that is, version control system,
the Config Server, which will provide the configurations, and finally, the Configuration
Client, which will consume the configuration from the Config Server.

This module supplies the configuration files over an HTTP interface. It is the main feature
provided by this project and it acts as a central repository for configuration in our
architecture.

We want to remove the application.yaml file from our classpath; we do not need this file
in classpath anymore, and so we will use the Config Server to serve this file for our
application.

Now, our microservices will not have the configuration file, that is, application.yaml.
During the application bootstrap, the application will look at the Config Server to get the
correct configuration, and after that, the application will finish the bootstrap to get them up
and into running status.

The following diagram explains the Config Server and Config Client:

As we can see, the basic idea here is to try to distribute the configuration through the
Config Server. There are some advantages to using this approach. The first one keeps the
configuration in the central repository. It makes the configuration easy to maintain. The
second one is that the configurations are served with a standard protocol, such as HTTP.
Most of the developers know the protocol and make the interaction easy to understand.
Finally, and most importantly, when the properties change, it can reflect immediately in
other microservices.

Airline Ticket System Chapter 7

[217]

Time to implement it. Let's go there.

The Config Server is usually maintained on private networks, if we are
deploying in cloud environments, although the Spring Cloud Config
supports encrypt and decrypt based on symmetric or asymmetric keys.
Keep in the mind that the microservices configurations should not be
published on public networks.

Creating the Config Server project
Let's create our project with Spring Initializr. Go to Spring Initializr (https:/ /start.
spring.io/) and follow the image instructions:

Click on Generate Project and then we can open the project on the IDE.

https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/

Airline Ticket System Chapter 7

[218]

Enabling Spring Cloud Config Server
We will use the Git repository as a property source, and then we need to create a repository
to keep these files. However, before that, let's navigate to the pom.xml file and see some
interesting stuff. We can find the following dependency:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-server</artifactId>
</dependency>

It is a Config Server dependency. It enables us to use the Config Server in our application.
Remember, we need to put this into the pom.xml file to achieve the required Config Server.

Using GitHub as a repository
The Spring Cloud Config Server enables us to use different datastore technologies to work
as a properties repository. There are some options such as Git repository, filesystem, or SVN
and others, provided by the community.

We will choose the Git repository, and use GitHub as a host.

We will use the Git repository that has the source code of the book. The
repository is located at: https:/ / GitHub. com/ PacktPublishing/ Spring-
5.0-By- Example/ tree/ master/ config- files.
The Spring Cloud Config Server also supports private repositories. For
that purpose, we need to supply the private/public keys.

Configuring the Spring Boot application
It's a piece of cake to enable and run the Config Server and provide our configuration HTTP
protocol. To achieve it, we need to put the following annotation in our Spring Boot starter
class. The implementation is as follows:

package springfive.airline.configserver;

import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.config.server.EnableConfigServer;

@EnableConfigServer
@SpringBootApplication

https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files
https://Github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files

Airline Ticket System Chapter 7

[219]

public class ConfigServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(ConfigServerApplication.class, args);
 }

}

Awesome. @EnableConfigServer does the magic for us. It will stand up the Config Server
and make the application ready to connect.

Configuring the Git repository as a properties source
Our Config Server needs to be configured. For that purpose, we will use the
application.yaml file. This file should be simple and with minimal configurations as
well. The configuration file should look like this:

server:
 port: 5000

spring:
 cloud:
 config:
 name: configserver
 server:
 git:
 uri:
https://github.com/PacktPublishing/Spring-5.0-By-Example
 search-paths: config-files*

We have configured the application port, which is a common task. We named our Config
Server, and the most important part is the server.git.uri configuration property which
instructs the Spring Framework to get the configurations files.

Another configuration is search-paths; it allows us to search the configuration in git
repository folders, instead of a root address in the repository.

Running the Config Server
Awesome job; our configuration server is ready to use. Then let's run it. We can use the JAR
file, or through IDE as well, it is up to you to choose the desired way.

Airline Ticket System Chapter 7

[220]

We can use the Java command line or IDE to run it. I prefer to use IDE because it enables us
to debug and make some code changes.

Run it.

The output should look like this:

Tomcat started successfully; our Config Server is up and running. We can find some
different endpoints in our Config Server. These endpoints are exposed to serve the
configuration file.

The Spring Cloud Config Server supports profiles as well, providing different
configurations for different environments is important.

The pattern supported by the Config Server is as follows:

<application-name>-<profile>.<properties|yaml>

It is really important to keep this in mind. Also, it makes it mandatory to declare
the application.name property in our microservices, to identify the application.

We can find the endpoints provided by the Spring Cloud Config Server on the application
bootstrap. Take a look at the log:

Remember the Config Server supports environments; because of this, there is a kind of
regex on endpoints. Look at the "/{name}-{profiles}.yml" endpoint.

Airline Ticket System Chapter 7

[221]

Testing our Config Server
We are able to test our Config Server over the REST API.

Let's create a simple yaml file to create the test; the file should be called dummy.yaml:

info:
 message: "Testing my Config Server"
 status: "It worked"

Push it to GitHub – if you are using the GitHub book, this step is unnecessary. Then, we can
call the Config Server API using the following command:

curl http://localhost:5000/dummy/default | jq

The command looks for the dummy configuration in the profile default; the URL is self-
explanatory. The following output should be displayed:

Our Config Server is fully operational. Now, we will configure our service discovery using
Netflix Eureka.

Airline Ticket System Chapter 7

[222]

Spring Cloud service discovery
The service discovery is one of the key points of the microservices architecture. The basis of
the microservices architecture is to decouple the monolithic application into smaller pieces
of software which have well-defined boundaries.

This impacts our system design in the monolithic application. In general, the application
logic stays in a single place with regards to the code. It means the procedure or methods
calls are invoked in the same context when the application is running.

When we adopt the microservices architectural style, these invocations are typically
external, in other words, they will invoke the service through HTTP calls, for example, in
another application context or web server.

Then, the services need to call other services through HTTP, for instance, but how do the
services call the others if the instances of these services change with a considerable
frequency? Remember, we are creating distributed and scalable systems, where the
instances of services can be increased according to the system usage.

The services need to know where the other services are running to be able to call them. Let's
imagine that we are considering putting the services IPs in the configuration; it will be hard
to manage and impossible to track the machine changes during that time.

The service discovery pattern addresses this challenge. In general, the solution involves a
Service Registry, which knows the locations of all the running services. The client then
needs to have a kind of Service Registry Client to be able to query this Service Registry to
obtain the valid address for the desired service; the Service Registry will then return a
healthy address, and finally, the client can invoke the desired service.

Airline Ticket System Chapter 7

[223]

Let's look at the following diagram:

The full documentation of this pattern can be found at http:/ /
microservices. io/ patterns/ client- side- discovery. html and https:/ /
www.nginx. com/ blog/ service- discovery- in-a- microservices-
architecture/ . There are so many implementations for that pattern.

The Spring Cloud service discovery supports some service discovery implementations, such
as Hashicorp Consul provided by the Spring Cloud Consul, and Apache Zookeeper
provided by the Spring Cloud Zookeeper.

We are using the Netflix OSS stack where we will use the Eureka server, which was
provided by the Spring Netflix OSS. It enables us to use the Eureka server as a managed
Spring bean.

The Spring Eureka Client provides a client aware of the Service Registry, and it can be done
with a couple of annotations and some configurations – we will do that soon.

We will start to create and configure the Eureka server in the following sections. Let's do
that.

The full documentation for the Spring Cloud Consul can be found
at: https:/ / cloud. spring. io/spring- cloud- consul, and the Spring
Cloud Zookeeper can be found at: https:/ /cloud. spring. io/spring-
cloud- zookeeper.

http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-consul
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper
https://cloud.spring.io/spring-cloud-zookeeper

Airline Ticket System Chapter 7

[224]

Creating Spring Cloud Eureka
To enable service discovery in our infrastructure, we need to create an instance of a service
which will act as a service discovery. The Spring Cloud Eureka server enables us to achieve
this task. Let's create our project. Go to Spring Initializr and fill in the information, as shown
in the following screenshot:

Take a look at the required dependencies. The Eureka server is the dependency which
allows us to spin up a service discovery server.

Let's open the project on IDE and start to configure it. We will do this in the following
section.

Creating the Eureka server main class
Before we start the configuration, we will create the main class. This class will start the
Spring Boot application. The Eureka server is embedded in the application. It is a pretty
standard Spring Boot application with a single annotation.

Airline Ticket System Chapter 7

[225]

The main application class should look like this:

package springfive.airline.eureka;

import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.SpringBootApplication;
import
org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

@EnableEurekaServer
@SpringBootApplication
public class EurekaApplication {

 public static void main(String[] args) {
 SpringApplication.run(EurekaApplication.class, args);
 }

}

The @EnableEurekaServer annotation will start the embedded Eureka server in our
application and make it ready to use. It will enable the service registry in our application as
well.

Configuring the Spring Cloud Eureka server
Our Eureka server needs to be configured using the Spring Cloud Server configured in the
previous sections. Then, we need to keep the application.yaml off our project, to use the
Config Server properly. Instead of the application.yaml, we need to put the
bootstrap.yaml and put the Config Server address on it.

Then, we need to:

Create discovery.yaml on GitHub
Create bootstrap.yaml file in the classpath project

Let's start with the discovery.yaml file. The file should look like this:

server:
 port: 8761

eureka:
 instance:
 hostname: localhost

Airline Ticket System Chapter 7

[226]

 health-check-url-path: /actuator/health
 status-page-url-path: /actuator/info
 client:
 registerWithEureka: false
 fetchRegistry: false
logging:
 level:
 com.netflix.discovery: 'ON'
 org.springframework.cloud: 'DEBUG'

There are some interesting things to explore. We are using the localhost as hostname
because we are running on the developer machine. There are a couple of configurations
about the URLs health check and status page – pay attention to the configurations that are
related to the server. They are placed below the eureka.instance YAML node. The
configurations are health-check-url-path and status-page-url-path. We can use
the default values as well, but the new Spring Boot Actuator changes the URL for those two
features, so we need to configure them properly.

The eureka.client YAML node is about the client configuration; in our case, we
set registerWithEureka to false. We do not want the Eureka server to act as a client as
well. The same is true for the fetchRegistry configuration, it is a client configuration and
it will cache the Eureka registry's information.

The logging node is about logging configuration.

Awesome – our gateway.yaml is ready.

Let's create our bootstrap.yaml file in the Eureka server project classpath. The file should
look like this:

spring:
 application:
 name: discovery
 cloud:
 config:
 uri: http://localhost:5000
 label: master

Easy peasy – we have configured spring.cloud.config. It instructs Spring of the Config
Server address. Also, we have configured the label, which is the branch when we are
using the version control system (VCS) as a repository.

Well done. The configuration is ready. Time to run it. Let's do it in the following section.

Airline Ticket System Chapter 7

[227]

Running the Spring Cloud Eureka server
The Eureka server is ready to use. We will start the Spring Boot application and put our
Eureka server online. We can use the Java command line or IDE to run it. I prefer to use IDE
because it enables us to debug and make some code changes.

The Config Server needs to be running because the discovery will find the
configuration file to bootstrap the server properly.

Run it!

We should see the following lines in the application bootstrap logs:

Awesome. Look at the following line of the log:

2018-01-07 14:42:42.636 INFO 11191 --- [Thread-32]
e.s.EurekaServerInitializerConfiguration : Started Eureka Server

It means our Eureka server is ready to use. To check the solution, we can go to the Eureka
server home page. Go to http://localhost:8761/ and the following page will be
displayed:

Airline Ticket System Chapter 7

[228]

As we can see, there is no instance of service available yet. We can find some relevant
information such as the server Uptime, the current Data center, and the Current time.
There is some information in the General Info section, information regarding the server
where the Eureka server is running.

Good job. Our service discovery service is running. We will use this infrastructure soon.

Spring Cloud Zipkin server and Sleuth
Our solution involves some microservices; it makes our solution easy to deploy and easy to
write code. Each solution has a particular repository and codebase.

In the monolith solution, the whole problem is solved in the same artifact to be deployed.
Usually, in Java, these artifacts are .jar, .war, or .ear, if the application was written in
the Java EE 5/6 specifications.

The logging strategies for these kinds of applications is quite easy to work with (hence
problems can be solved easily) because everything happens in the same context; the
requests are received from the same application server or web server, which have the
business components. Now, if we go to the logs, we will probably find the log entries we
want. It makes the trace application easier to find errors and debug.

Airline Ticket System Chapter 7

[229]

In the microservices solution, the application behaviors are split in the distributed systems;
it increases the trace tasks substantially because the request probably arrives in the API
Gateway and comes into microservices. They log the information in different sources. In
this scenario, we need a kind of log aggregator and a way to identify the whole transaction
between services.

For this purpose, the Spring Cloud Sleuth and Spring Cloud Zipkin can help us and make
the trace features more comfortable for developers.

In this section, we will look at and understand how it works under the hood.

Infrastructure for the Zipkin server
Before we start to work, we need to configure a service which the Zipkin server needs. By
default, the Zipkin server uses in-memory databases, but it is not recommended for
production; usually, developers use this feature to demonstrate Zipkin features.

We will use MySQL as a data store. The Zipkin server also supports different sources, such
as Cassandra and Elasticsearch.

Spring Cloud Sleuth supports synchronous and asynchronous operations. The synchronous
operations are over the HTTP protocol and asynchronous can be done by RabbitMQ or
Apache Kafka.

To use the HTTP, that is, REST API, we should use @EnableZipkinServer, it will
delegate the persistence for REST tier through the SpanStore interface.

We will choose the asynchronous solution, since it fits well for our project, and we do not
want the trace collector to cause some performance issues. The asynchronous solution uses
the Spring Cloud Stream binder to store the Spans. We choose the RabbitMQ message
broker to do that. It can be achieved using the @EnableZipkinStreamServer annotations
which configure Spring Sleuth to use streams for store Spans.

Let's create our docker-compose-min.yaml to bootstrap our RabbitMQ and MySQL
containers. The file should look like this:

version: '3'
services:

 rabbitmq:
 hostname: rabbitmq
 image: rabbitmq:3.7.0-management-alpine
 ports:

Airline Ticket System Chapter 7

[230]

 - "5672:5672"
 - "15672:15672"
 networks:
 - airline

 mysql:
 hostname: mysql
 image: mysql:5.7.21
 ports:
 - "3306:3306"
 environment:
 - MYSQL_ROOT_PASSWORD=root
 - MYSQL_DATABASE=zipkin
 networks:
 - airline

 mongo:
 hostname: mongo
 image: mongo
 ports:
 - "27017:27017"
 networks:
 - airline

 redis:
 hostname: redis
 image: redis:3.2-alpine
 ports:
 - "6379:6379"
 networks:
 - airline

networks:
 airline:
 driver: bridge

The docker-compose-min.yaml file can be found at GitHub, there is a
MongoDB and Redis – they will be used in the next chapter.

There is nothing special here. We have declared two containers—RabbitMQ and MySQL—
and exposed the ports on the host machine. Also, we have created the airline network;
we will use this network to attach our infrastructure microservices.

Now, we can create our Zipkin server, which we will do in the next section.

https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-min.yaml

Airline Ticket System Chapter 7

[231]

Creating the Spring Cloud Zipkin server
We will create our Zipkin panel structure in Spring Initializr, and then we need to follow
the instructions:

Awesome – take a look at the Selected Dependencies section, all of them are required. Pay
attention to the Spring Boot version. We choose 1.5.9, because there is no support for
Zipkin server in Spring Boot 2. It is not a problem because we do not need specific features
from Spring Boot 2.

Click on the Generate Project button and wait for the download to finish. Afterwards, open
the project in IDE.

In order to enable service discovery and store Spans on a database, we need to put the
following dependencies in our pom.xml:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-
client</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jdbc</artifactId>

Airline Ticket System Chapter 7

[232]

</dependency>

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>6.0.6</version>
</dependency>

The first dependency is for the service discovery client and the others are to JDBC
connections to MySQL. It makes our project dependencies fully configured.

Let's create our main class to start our Zipkin server. The class is pretty standard but with
some new annotations:

package springfive.airline;

import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import
org.springframework.cloud.sleuth.zipkin.stream.EnableZipkinStreamSe
rver;

@SpringBootApplication
@EnableZipkinStreamServer
@EnableEurekaClient
public class ZipkinServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(ZipkinServerApplication.class, args);
 }

}

The @EnableEurekaClient annotation enables the application to connect to the Eureka
server. The new annotation, @EnableZipkinStreamServer, instructs the framework to
connect with the configured broker to receive the Spans. Remember, it can be done using
the Spring Cloud Stream Binder.

Airline Ticket System Chapter 7

[233]

Configuring boostrap.yaml and application.yaml
In the section, we created our main class. Before we run it, we should create our two
configuration files. The bootstrap.yaml inside the src/main/resources directory and
the application.yaml on our GitHub repository. They will be downloaded via Config
Server and provided by the Zipkin server project.

Let's start with bootstrap.yaml:

spring:
 application:
 name: zipkin
 cloud:
 config:
 uri: http://localhost:5000
 label: master

Nothing special, we have configured our Config Server address.

Let's jump to our application.yaml:

server:
 port: 9999

spring:
 rabbitmq:
 port: 5672
 host: localhost
 datasource:
 schema: classpath:/mysql.sql
 url:
jdbc:mysql://${MYSQL_HOST:localhost}/zipkin?autoReconnect=true
 driver-class-name: com.mysql.cj.jdbc.Driver
 username: root
 password: root
 initialize: true
 continue-on-error: true
 sleuth:
 enabled: false

zipkin:
 storage:
 type: mysql

logging:
 level:
 ROOT: INFO

Airline Ticket System Chapter 7

[234]

eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

There are some interesting things here. In the spring.rabbitmq node, we have configured
our RabbitMQ broker connection. It will be used to receive Spans. In the
spring.datasource, we have configured the MySQL connection. The Zipkin server will
use it to store data. Also, we have configured how to execute the DDL script to create the
zipkin database.

The spring.sleuth node was configured to not produce any Span because it is a server,
not a client application, and we will not perform a trace on the Zipkin server.

The zipkin node had been used to configure the Zipkin server storage type, MySQL, in our
case.

Let's run it!!!

Running the Zipkin server
We have configured the Zipkin server properly, so now we will be able to run it properly.

We can run the main class ZipkinServerApplication. We can use the IDE or Java
command line, after running the following output:

Good job – the Zipkin server is running now. We can take a look at the index page to see
what it looks like.

Airline Ticket System Chapter 7

[235]

Go to Zipkin page; the page should look like the following screenshot:

Also, we can check the RabbitMQ panel to find the queue created by the Zipkin server. Go
to the RabbitMQ Queues (http://localhost:15672/#/queues) section, the page should
look like this:

Looking at the queues, the project has created the sleuth.sleuth queue, well done.

The Zipkin server is ready. For now, we will not have any Span, because there is no
application sending data to Zipkin. We will do that in the next chapter.

Airline Ticket System Chapter 7

[236]

Spring Cloud Gateway
The API Gateway pattern helps us to expose our microservices through a single known
entrypoint. Usually, it acts as an entrypoint to external access and redirects the call to
internal microservices.

There are many benefits when we adopt the API Gateway in our application. The first one
can be recognized easily, it makes the API consumption easy for the clients, which means
the clients do not need to know the different microservices endpoints.

Other benefits are a consequence of the first one. When we have a unique entrypoint, we
can address some cross-application concerns such as filtering, authentication, throttling,
and rate limit, as well.

It is an essential part when we adopt the microservices architecture.

The Spring Cloud Gateway enables us to have these features in a Spring-managed bean, in a
Spring way using Dependency Injection and other features provided by the Spring
Framework.

The project was built on the Spring Framework 5, which uses the Project Reactor as a basis.
There are some interesting features provided, such as Hystrix Circuit Breaker integration
and with the Spring Cloud Discovery client, as well.

Look at the diagram to understand the benefits of the API Gateway:

Airline Ticket System Chapter 7

[237]

The full documentation of the API Gateway Pattern can be found
at: http:/ /microservices. io/patterns/ apigateway. html.

Creating the Spring Cloud Gateway project
We will use the Spring Initializr to create our Spring Cloud Gateway project; we will need
to add some dependencies manually. Let's go to the Spring Initializr page and create our
project:

There is a brand new dependency Gateway, it enables us to work with Spring Cloud
Gateway. Then click on Generate Project and wait for the download to complete.

http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html

Airline Ticket System Chapter 7

[238]

After that, we need to add a missing dependency. The missing dependency is required by
the Gateway to interact with the Eureka server; the name of the dependency is spring-
cloud-starter-netflix-eureka-client. Then, let's add the dependency on our
pom.xml, we will need to add the following snippet:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-
client</artifactId>
</dependency>

Excellent, our project is configured correctly to work with the Eureka server. In the
following section, we will configure the project to work with the Config Server as well.

Creating the Spring Cloud Gateway main class
There is no secret to this part. The Spring Cloud Gateway works in the same way as the
common Spring Boot applications. There is a main class which will start the embedded
server and starts the whole application.

Our main class should look like this:

package springfive.airline.gateway;

import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;

@EnableEurekaClient
@SpringBootApplication
public class GatewayApplication {

 public static void main(String[] args) {
 SpringApplication.run(GatewayApplication.class, args);
 }

}

As we can see, it is a pretty standard Spring Boot application, configured with
@EnableEurekaClient to work with the Eureka server as a service discovery
implementation.

Airline Ticket System Chapter 7

[239]

Configuring the Spring Cloud Gateway project
The primary project structure is ready. We will create the project configurations in this
section. To achieve this, we need to carry out the following steps:

Add a gateway.yaml file to GitHub
Create the bootstrap.yaml in the Gateway project

We are using the Spring Cloud Config Server, so it is necessary to create the new file in
GitHub because the Config Server will try to find the file on the repository. In our case, we
are using GitHub as a repository.

The second task is necessary because the bootstrap.yaml file is processed before the
application is fully ready to run. Then, during this phase, the application needs to look up
the configuration file and to achieve this, the application needs to know the repository, in
our case, the Config Server. Remember the address of the Config Server always needs to be
placed on the bootstrap.yaml.

Let's create our gateway.yaml file – the file should look like this:

server:
 port: 8888
eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
logging:
 level: debug

The eureka.client node in the YAML file is responsible for configuring the Eureka Client
configurations. We need to configure our Eureka server address instance. It should be
pointed to the correct address.

There are more options for the Eureka Configuration Client properties.
The full documentation can be found in https:/ /github. com/ Netflix/
eureka/ wiki/ Configuring- Eureka; the Netflix team maintains Eureka.

https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka

Airline Ticket System Chapter 7

[240]

Then, we need to create our bootstrap.yaml file on the Gateway project. This file will
instruct the Spring Framework to look up the configuration file on the Config Server and
then download the required file to finish the application bootstrap. Our file should look like
this:

spring:
 application:
 name: gateway
 cloud:
 config:
 uri: http://localhost:5000
 label: master

Pretty simple. The application.name is required to instruct the framework to look up the
correct file. Usually, there are many configuration files for different applications and
environments as well.

On the cloud.config node, we need to put in the Spring Cloud Config Server address,
which we configured in the previous sections.

The project final structure should look like this:

Look at the screenshot. There is no application.yaml in the classpath. This gives us
several advantages; there is no configuration file in classpath projects, which helps us a
great deal in managing the microservices configurations.

In the next section, we will run it and explain the whole application bootstrap process. Let's
do it.

Airline Ticket System Chapter 7

[241]

Running the Spring Cloud Gateway
The project is well-configured, so now it is time to run it. We can use the Java command line
or IDE. There is no difference either way.

The Config Server and Eureka server need to stay up; it is mandatory that the Gateway
project works correctly. Then, we can run the project.

Run the project and look at the logs. We can see some interesting stuff, such as the project
connecting to the Config Server and download the configuration and after this, it connects
to the Eureka server and self-registers. The following diagram explains the application
bootstrap flow:

Let's look at what the different flows are and understand them:

The Gateway application requests the configuration file1.
The Config Server serves the config file2.
The Gateway application registers to the Eureka server3.

Awesome, our Gateway application is connected to our infrastructure services.

Checking the Eureka server
Our Gateway is running. Now, we can check the Eureka server page to confirm this
information.

Airline Ticket System Chapter 7

[242]

Go to http://localhost:8761/, and check the Instances currently registered with
Eureka section. We should see the Gateway application, as shown in the following
screenshot:

Excellent. It worked well. The Gateway application is successfully registered, and it can be
looked up via the service discovery. Our Gateway will connect to the Eureka server to get
the service available and distribute the requested calls to the correct services.

Well done. Now, we can create our routes in the Gateway. We will do this in the next
chapter when we create our airline microservices.

Creating our first route with Spring Cloud
Gateway
Our Gateway is running. Before we start the real routes for our Airline application, let's try
to use some fake routes to test the Spring Cloud Gateway behaviors. We will use
the https://httpbin. org/ site, which helps us to test some routes.

https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/

Airline Ticket System Chapter 7

[243]

Let's create a class with the @Configuration annotation to provide the routes for the
Spring Container. Let's create a package
called springfive.airline.gateway.infra.route, then create the following class:

package springfive.airline.gateway.infra.route;

import java.util.function.Function;
import org.springframework.cloud.gateway.route.RouteLocator;
import org.springframework.cloud.gateway.route.builder.PredicateSpec;
import org.springframework.cloud.gateway.route.builder.RouteLocatorBuilder;
import
org.springframework.cloud.gateway.route.builder.RouteLocatorBuilder.Builder
;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class SampleRoute {

 private Function<PredicateSpec, Builder> addCustomHeader = predicateSpec
-> predicateSpec
 .path("/headers")
 .addRequestHeader("Book", "Spring 5.0 By Example")
 .uri("http://httpbin.org:80");

 @Bean
 public RouteLocator sample(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("custom-request-header", addCustomHeader)
 .route("add-query-param", r ->
r.path("/get").addRequestParameter("book", "spring5.0")
 .uri("http://httpbin.org:80"))
 .route("response-headers", (r) -> r.path("/response-headers")
 .addResponseHeader("book","spring5.0")
 .uri("http://httpbin.org:80"))
 .route("combine-and-change", (r) ->
r.path("/anything").and().header("access-key","AAA")
 .addResponseHeader("access-key","BBB")
 .uri("http://httpbin.org:80"))
 .build();
 }

}

Airline Ticket System Chapter 7

[244]

There are some different types to configure routes; the first one we extracted is the function
to a private attribute called addCustomHeader, which will be used in the custom-
request-header route. We will use curl to test some routes created previously.

The first one we will test is the custom-request-header, the route was configured to
route to: http:// httpbin. org:80 and the path will be /headers. This service will return
the Request Headers sent to the server. Take a look at addCustomHeader, we have
configured it to add a custom header to the Request. It will be Book as the key and Spring
5.0 By Example, as the value. Let's call the gateway URL, using curl:

curl http://localhost:8888/headers

The output should look like this:

Let's analyze the output. The first thing to look at is we have called the localhost address.
The Host key in the Request shows httpbin.org, it means the Spring Cloud Gateway has
changed the address. Awesome, but we expected it. The second one is where we have
added the Book key, and bingo, there it is in the Request Headers. The Gateway worked as
expected, and with a few lines of code, we did some interesting stuff.

Let's do one more test. We will test the combine-and-change, this route is configured to
answer the /anything with the Request Header access-key: AAA, so the command line
should be:

curl -v -H "access-key: AAA" http://localhost:8888/anything

http://httpbin.org:80
http://httpbin.org:80
http://httpbin.org:80
http://httpbin.org:80
http://httpbin.org:80
http://httpbin.org:80
http://httpbin.org:80

Airline Ticket System Chapter 7

[245]

As we can see, the -v argument makes the call in verbose mode, it is useful for debugging
purposes and the -H indicates the Request Headers. Let's look at the output:

Awesome. If you look at the access-key value, the Gateway changed to a requested value
BBB. Good job guys. There are some endpoints to test, feel free to test as you want.

You can find the httpbin documentation at: https:/ / httpbin. org/ . There
are some interesting other methods to test HTTP.

https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/
https://httpbin.org/

Airline Ticket System Chapter 7

[246]

Putting the infrastructure on Docker
Our infrastructure is ready and it enables us to develop the application. We can create a
Docker compose file to spin up the infrastructure services; during the development life
cycle, components such as Eureka, Config Server, Trace Server, and API Gateway do not
suffer changes because they interact as an infrastructure.

Then, it enables us to create component images and use them in the docker-
compose.yaml file. Let's list our components:

Config Server
Eureka
Zipkin
RabbitMQ
Redis

We know how to create Docker images using the Fabric8 Maven plugin, we have done this
several times in the previous chapters – let's do it.

Let's configure one as an example, keep in mind we need do the same configuration for all
projects, Eureka, Gateway, Config Server, and Gateway. The following snippet configures
the docker-maven-plugin to generate a Docker image:

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>0.21.0</version>
 <configuration>
 <images>
 
 </images>
 </configuration>
</plugin>

It is a pretty simple configuration. A simple Maven plugin with a couple of configurations.
Then, after the plugin configuration, we are able to generate the Docker image. The
command to generate Docker images is:

mvn clean install docker:build

It will generate a Docker image for us.

The projects configured can be found on GitHub; there are so many configurations to do as
in the previous chapters. We need to configure the docker-maven-plugin and generate
the Docker images.

Fully configured projects can be found in the chapter seven folder. The
GitHub repository is: https:/ /github. com/PacktPublishing/ Spring- 5.
0-By- Example/ tree/ master/ Chapter07.

After the images have been created, we are able to create a Docker compose file defining the
whole thing. The docker-compose-infra-full.yaml file should look like this:

version: '3'
services:

 config:
 hostname: config
 image: springfivebyexample/config
 ports:

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07

Airline Ticket System Chapter 7

[248]

 - "5000:5000"
 networks:
 - airline
 rabbitmq:
 hostname: rabbitmq
 image: rabbitmq:3.7.0-management-alpine
 ports:
 - "5672:5672"
 - "15672:15672"
 networks:
 - airline
 mysql:
 hostname: mysql
 image: mysql:5.7.21
 ports:
 - "3306:3306"
 environment:
 - MYSQL_ROOT_PASSWORD=root
 - MYSQL_DATABASE=zipkin
 networks:
 - airline
 redis:
 hostname: redis
 image: redis:3.2-alpine
 ports:
 - "6379:6379"
 networks:
 - airline

 zipkin:
 hostname: zipkin
 image: springfivebyexample/zipkin
 ports:
 - "9999:9999"
 networks:
 - airline
networks:
 airline:
 driver: bridge

There are some interesting things to pay attention to here. It is very important that all
container instances are attached to the same Docker network called airline. Pay attention
to the ports exposed by the containers, it is important to enable service discovery features in
Docker.

Airline Ticket System Chapter 7

[249]

Then, we can execute the instruction to spin up the whole infrastructure; it can be done
using the following command:

docker-compose -f docker-compose-infra-full.yaml up -d

The following output should appear:

Also, we can execute the following instruction to check the container's execution:

docker-compose -f docker-compose-infra-full.yaml ps

It will list the running containers, as shown in the following screenshot:

All applications are up and running. Well done.

To remove the containers, we can use:

docker-compose -f docker-compose-infra-full.yaml down

It will remove the containers from the stack.

Excellent job, our infrastructure is fully operational in Docker containers. It is a base for
starting to create our microservices.

Airline Ticket System Chapter 7

[250]

Summary
In this chapter, we have built the essential infrastructures services adopting the
microservices architectural style.

We have learned how Spring Framework eliminates the infrastructure code from our
microservices and enables us to create these services, using a couple of annotations.

We understand how it works under the hood; it is extremely important to debug and
troubleshoot when the application gets some errors in the production stage.

Now, we are ready to create scalable, fault tolerant, and responsive systems. We have built
the foundations of our system.

In the next chapter, we will start to build our Airline Ticket System, understand how to
connect the new microservices with the whole infrastructure, and enable service discovery
and other amazing features.

See you there.

8
Circuit Breakers and Security

In the previous chapter, we configured the microservices that will act in our infrastructure,
and we created a Eureka server to work as a service discovery for our solution. Also, we
have created a Config Server application that will serve as the configurations for our
microservices.

In this chapter, we will create microservices to interact with our previous infrastructure. We
will discover how to apply service discovery features for our business microservices and
understand how the Circuit Breaker pattern can help us to bring resilience to our
applications.

During the chapter, we will understand how the microservices can communicate with other
services through the HTTP asynchronous call powered by the Spring WebFlux client.

By the end of this chapter, we will have learned how to:

Connect microservices with service discovery
Pull the configuration from the configuration server
Understand how Hystrix brings resilience to microservices
Show the Edge API strategy
Present the Spring Boot Admin

Circuit Breakers and Security Chapter 8

[252]

Understanding the service discovery power
We will create our first microservice with business requirements. We will create a planes
microservice, which will maintain data about company planes, such as characteristics,
model, and some other attributes.

The planes microservice will be used to serve plane characteristics for our second
microservice, the flights microservice. It needs to get some plane information to be able
to create a flight, such as the number of seats.

The planes microservice is an excellent candidate to start with because there is no
business-related dependency to be created.

Our planes microservice will be useful soon. Time to create it. Let's go.

Creating the planes microservice
As we have been doing in the previous chapters, we will use the Spring Initializr for that
purpose. The following dependencies should be selected, as shown in the following
screenshot:

Circuit Breakers and Security Chapter 8

[253]

There are some necessary dependencies. The Stream Binder Rabbit and Sleuth Stream
dependencies are necessary to enable us to the send data spans, and to enable application
trace, across to the RabbitMQ message broker. We will use MongoDB to act as a database
for this specific application, so we need Reactive MongoDB for that. Config Client is
mandatory for all microservices present in the solution. We will not have any application
configuration on the classpath. The Actuator provides production-ready metrics and
information about the running application; it's an essential characteristic of the
microservice's architectural style. Moreover, Zuul will be essential to enable us to connect
the application with our Edge API. We will learn more about it during the course of the
chapter.

We can now press the Generate Project button to download the project. Open the project on
the IDE.

The planes microservice will be created using the Spring Boot 2 framework because we are
interested in implementing the reactive foundation for our plane service.

Also, we need to include one more dependency, and it can be done using the following
snippet on our pom.xml:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

The spring-cloud-starter-netflix-eureka-client enables the service discovery,
powered by the Eureka server in our application.

Coding the planes microservice
We will add some features on the application. For this specific application, we will create
CRUD functionalities with Spring Reactive WebFlux.

The Plane class represents the plane model in our microservices and the class should be
like this:

package springfive.airline.airlineplanes.domain;

import com.fasterxml.jackson.annotation.JsonInclude;
import com.fasterxml.jackson.annotation.JsonInclude.Include;
import java.util.Set;
import lombok.Builder;
import lombok.Data;

Circuit Breakers and Security Chapter 8

[254]

import lombok.NonNull;
import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;
import springfive.airline.airlineplanes.resource.data.PlaneRequest;

@Data
@Document(collection = "planes")
@JsonInclude(Include.NON_NULL)
public class Plane {

 @Id
 String id;

 String owner;

 PlaneModel model;

 Set<Seat> seats;

 String notes;

 @Builder
 public static Plane newPlane(String owner,PlaneModel planeModel,Set<Seat>
seats,String notes){
 Plane plane = new Plane();
 plane.owner = owner;
 plane.model = planeModel;
 plane.seats = seats;
 plane.notes = notes;
 return plane;
 }

 public Plane fromPlaneRequest(@NonNull PlaneRequest planeRequest){
 this.owner = planeRequest.getOwner();
 this.model = planeRequest.getModel();
 this.seats = planeRequest.getSeats();
 this.notes = planeRequest.getNotes();
 return this;
 }

}

Circuit Breakers and Security Chapter 8

[255]

The interesting point is the @Document annotation. It enables us to configure the name of
the MongoDB collection for our domain. The @Builder annotation creates an
implementation of the Builder pattern using the annotated method.
The Project Lombok library provides this feature (https:/ / projectlombok. org). Also, the
project has some exciting features, such as @Data, which creates getters/setters,
equals, and hashCode implementation automatically for the annotated class.

As we can see, there are some domain models in this class. These models do not need
explanation here, and the full source code can be found in the GitHub project at https:/ /
github.com/PacktPublishing/ Spring- 5. 0-By-Example/ tree/ master/ Chapter08/ airline-
planes.

The reactive repository
Our Plane class needs a repository to persist the data to a database. We will use a reactive
repository for MongoDB provided by the Spring Reactive MongoDB implementation. We
will use the ReactiveCrudRepository as it makes our repositories reactive. Our
repository should be like this:

package springfive.airline.airlineplanes.repository;

import org.springframework.data.repository.reactive.ReactiveCrudRepository;
import springfive.airline.airlineplanes.domain.Plane;

public interface PlaneRepository extends
ReactiveCrudRepository<Plane,String>{
}

The implementation is the same as it was in the previous Spring Data versions, except for
the new reactive interface. Now, we can create our service layer in the next section.

Creating the Plane service
Our PlaneService will be responsible for creating a kind of glue between the
PlaneRepository and PlaneResource; the latter one we will create in the next section.
The implementation should be like this:

package springfive.airline.airlineplanes.service;

import lombok.NonNull;
import org.springframework.stereotype.Service;

https://projectlombok.org
https://projectlombok.org
https://projectlombok.org
https://projectlombok.org
https://projectlombok.org
https://projectlombok.org
https://projectlombok.org
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes

Circuit Breakers and Security Chapter 8

[256]

import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import springfive.airline.airlineplanes.domain.Plane;
import springfive.airline.airlineplanes.repository.PlaneRepository;
import springfive.airline.airlineplanes.resource.data.PlaneRequest;

@Service
public class PlaneService {

 private final PlaneRepository planeRepository;

 public PlaneService(PlaneRepository planeRepository) {
 this.planeRepository = planeRepository;
 }

 public Flux<Plane> planes(){
 return this.planeRepository.findAll();
 }

 public Mono<Plane> plane(@NonNull String id){
 return this.planeRepository.findById(id);
 }

 public Mono<Void> deletePlane(@NonNull Plane plane){
 return this.planeRepository.delete(plane);
 }

 public Mono<Plane> create(@NonNull PlaneRequest planeRequest){
 final Plane plane = Plane.builder().owner(planeRequest.getOwner())
 .planeModel(planeRequest.getModel()).seats(planeRequest.getSeats())
 .notes(planeRequest.getNotes()).build();
 return this.planeRepository.save(plane);
 }

 public Mono<Plane> update(@NonNull String id,@NonNull PlaneRequest
planeRequest){
 return this.planeRepository.findById(id)
 .flatMap(plane -> Mono.just(plane.fromPlaneRequest(planeRequest)))
 .flatMap(this.planeRepository::save);
 }

}

There is nothing special in this class, and the PlaneService will invoke the
PlaneRepository to persist the Plane in a database. As we can see, we have used
lambdas extensively. Java 8 is a requirement to run Spring Boot 2 applications.

Circuit Breakers and Security Chapter 8

[257]

Take a look at how the Builder pattern enables us to write clean code. It is much easier to
read this code; we did it using the chaining method provided by Lombok.

The REST layer
We will use Spring WebFlux to expose our REST endpoints, and then we need to return
Mono or Flux in our methods. The REST implementation should be like this:

package springfive.airline.airlineplanes.resource;

import java.net.URI;
import javax.validation.Valid;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.util.UriComponentsBuilder;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import springfive.airline.airlineplanes.domain.Plane;
import springfive.airline.airlineplanes.resource.data.PlaneRequest;
import springfive.airline.airlineplanes.service.PlaneService;

@RestController
@RequestMapping("/planes")
public class PlaneResource {

 private final PlaneService planeService;

 public PlaneResource(PlaneService planeService) {
 this.planeService = planeService;
 }

 @GetMapping
 public Flux<Plane> planes() {
 return this.planeService.planes();
 }

 @GetMapping("/{id}")

Circuit Breakers and Security Chapter 8

[258]

 public Mono<ResponseEntity<Plane>> plane(@PathVariable("id") String id) {
 return this.planeService.plane(id).map(ResponseEntity::ok)
 .defaultIfEmpty(ResponseEntity.notFound().build());
 }

 @PostMapping
 public Mono<ResponseEntity<Void>> newPlane(
 @Valid @RequestBody PlaneRequest planeRequest, UriComponentsBuilder
uriBuilder) {
 return this.planeService.create(planeRequest).map(data -> {
 URI location = uriBuilder.path("/planes/{id}")
 .buildAndExpand(data.getId())
 .toUri();
 return ResponseEntity.created(location).build();
 });
 }

 @DeleteMapping("/{id}")
 public Mono<ResponseEntity<Object>> deletePlane(@PathVariable("id")
String id) {
 return this.planeService.plane(id).flatMap(data ->
this.planeService.deletePlane(data)
 .then(Mono.just(ResponseEntity.noContent().build())))
 .defaultIfEmpty(new ResponseEntity<>(HttpStatus.NOT_FOUND));
 }

 @PutMapping("/{id}")
 public Mono<ResponseEntity<Object>> updatePlane(@PathVariable("id")
String id,@Valid @RequestBody PlaneRequest planeRequest) {
 return this.planeService.update(id,planeRequest)
 .then(Mono.just(ResponseEntity.ok().build()));
 }

}

Take a look at the plane method. When planeService.plane(id) returns the empty
Mono, the REST endpoint will return notFound like this
implementation: ResponseEntity.notFound().build(). It makes the code extremely
easy to understand.

On the newPlane method, we will return the location HTTP header with the new entity
ID recently created.

Circuit Breakers and Security Chapter 8

[259]

Running the plane microservice
Before we run the plane microservice, we will create the plane microservice's main class. It
will be responsible for starting the application. To do that, we need to include a couple of
Spring Annotations. The class implementation can be like this:

package springfive.airline.airlineplanes;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;

@EnableZuulProxy
@EnableEurekaClient
@SpringBootApplication
public class AirlinePlanesApplication {

 public static void main(String[] args) {
 SpringApplication.run(AirlinePlanesApplication.class, args);
 }

}

The Spring Annotations will be connected with the Zuul proxy. Also, we need to connect
the application with the Eureka server and configure the application automatically. These
behaviors can be done using @EnableZuulProxy, @EnableEurekaClient, and
@SpringBootApplication.

Now, we will create a bootstrap.yaml file to instruct the Spring Framework to search the
configuration file on the Config Server, created in the previous chapter. The file should be
like this:

spring:
 application:
 name: planes
 cloud:
 config:
 uri: http://localhost:5000
 label: master

We have configured the Config Server address; it was a piece of cake.

Now, we need to add the application.yaml file on the GitHub repository, because the
Config Server will try to find the file in the repository.

Circuit Breakers and Security Chapter 8

[260]

The file can be found on GitHub at https:/ /github. com/ PacktPublishing/ Spring- 5. 0-
By-Example/blob/ master/ config- files/ flights. yaml.

We can run the application on the IDE or via the command line; it is up to you. Check that
the Config Server, Eureka, MongoDB, and RabbitMQ are up and running before trying to
run it.

We can use the Docker compose file located on GitHub (https:/ /github.
com/PacktPublishing/ Spring- 5.0- By-Example/ blob/ master/ Chapter07/
docker/ docker- compose- infra- full. yaml). It contains RabbitMQ, Config
Server, Eureka, MongoDB, MySQL, Redis, and Zipkin containers ready to
use. If you are using it, run it using the following command: docker-
compose -f docker-compose-infra-full.yaml up -d.

Let's check the output. We can check it in different ways: on a console, and on the Eureka
server. Let's do it.

Check the console. Let's try to find a line about DiscoveryClient. The
planes microservice is trying to connect to the Eureka server:

There is some important information on the log files here. The first line indicates which
application is trying to register with the Eureka server. The next four lines are about Sleuth.
The Sleuth framework is registering the RabbitMQ queues and channels.

We need to find the following line:

Started AirlinePlanesApplication in 17.153 seconds (JVM running for 18.25)

Also, we can check the Eureka server, and we can see the PLANES application there, like
this:

https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml

Circuit Breakers and Security Chapter 8

[261]

Awesome, our plane microservice is operational.

We can try our microservices using Postman. This application enables us
to call our APIs using the intuitive IDE to interact with our microservice.
The application permits us to group some HTTP calls into collections. The
planes collection can be found on GitHub at https:/ /github. com/
PacktPublishing/ Spring- 5.0- By-Example/ blob/ master/ postman/
planes. postman_ collection.

We have finished our first microservices. In the next section, we will create our flights
microservice, which will consume the plane's data.

Flights microservice
Our plane's microservices are up and running. It will be important for now because the
flight's microservice needs to get the plane's data to create the flight's entities.

We will introduce the Netflix Ribbon, which will act as a client load balancer for our
applications, and we will consume the service discovery to look up the service's address
from the service registry.

Cloning the Flight microservice project
We did this task many times in the previous chapter. We can download the project source
code on GitHub at https:/ /github. com/ PacktPublishing/ Spring- 5. 0-By- Example/ tree/
master/Chapter08/ airline- flights. In the next section, we will dive deep into Ribbon
and how it can help us on distributed systems.

Netflix Ribbon
The Ribbon is an open source project created and maintained by the Netflix company. The
project is licensed under Apache 2.0 and can be used for commercial purposes.

The Ribbon provides a client-side software load balancing algorithm for the IPC (Inter-
Process Communication). The project supports most popular protocols, such as TCP, UDP,
and HTTP in an asynchronous manner.

https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights

Circuit Breakers and Security Chapter 8

[262]

There are more interesting features, such as service discovery integration, which enables
integration in dynamic and elastic environments such as the cloud. For this purpose, we
will look at our Eureka server. Both projects are maintained by the Netflix team. It fits well
for our use case.

Another interesting feature is fault tolerance. The Ribbon client can find the live servers on
the configured list and send the request. Also, the down servers will not receive any
request.

The following diagram explains how the Ribbon works:

As we can see, the Ribbon Client can communicate with Eureka and then redirect the
request for the desired microservice. In our case, the flights microservice will use the
Ribbon client and get the service registry from Eureka and redirect the call to a live
planes microservice instance. It sounds like an amazing solution.

Understanding the discovery client
Now, we will learn about service discovery and how it works in complex and dynamic
environments. The basic idea of service discovery is to maintain the services repository and
provide service addresses for the callers.

Circuit Breakers and Security Chapter 8

[263]

It requires some complex tasks to achieve this goal. There are two main behaviors to
understand:

The first one is the register. As we know, the service discovery needs to store the
services information, such as the address and name, and then during the service
bootstrap, it needs to send the information to the service registry.
In the the second operation, the service discovery clients need to query the
service registry, asking for the desired service name, for instance. Then the
service registry will send the service information to the client.

Now we understand the basics, as illustrated in the following diagram:

As you can see in the preceding diagram:

The first part is the service registration.1.
At the second stage, the service client will get the service address from the Eureka2.
server.
Then the client can call based on the service information. 3.

Let's do it in the code.

Service discovery and load balancing in practice
Now we will write some code to interact with our service discovery and load balance
infrastructure. Now we know how it works, it will help us to understand the source code.

Circuit Breakers and Security Chapter 8

[264]

We will create a DiscoveryService class which will discover the addresses from a
requested service name. The class code should be like this:

package springfive.airline.airlineflights.service;

import org.springframework.cloud.client.discovery.DiscoveryClient;
import org.springframework.cloud.client.loadbalancer.LoadBalancerClient;
import org.springframework.stereotype.Service;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@Service
public class DiscoveryService {

 private final LoadBalancerClient lbClient;

 private final DiscoveryClient dClient;

 public DiscoveryService(LoadBalancerClient lbClient, DiscoveryClient
dClient) {
 this.lbClient = lbClient;
 this.dClient = dClient;
 }

 public Flux<String> serviceAddressFor(String service) {
 return Flux.defer(() ->
Flux.just(this.dClient.getInstances(service)).flatMap(srv ->
 Mono.just(this.lbClient.choose(service))
).flatMap(serviceInstance ->
 Mono.just(serviceInstance.getUri().toString())
));
 }

}

As we can see, we inject two objects: the LoadBalanceClient, which acts as a client load
balancer, that is, Netflix Ribbon; and the DiscoveryClient, which will find the instance
from a requested service.

We use the lambda Flux.defer() to organize the flow, and then we will look up the
service instances from Eureka server. We use this.dClient.getInstances(service)
for that. It will return a list of service names after we look up the service URI from the load
balancing. This will be done using this.lbClient.choose(service). Then we will
return the Flux of service instances addresses.

Circuit Breakers and Security Chapter 8

[265]

It is time to see how the client code can use the DiscoveryService object. The client code
can be like this:

public Mono<Plane> plane(String id) {
 return
discoveryService.serviceAddressFor(this.planesService).next().flatMap(
 address -> this.webClient.mutate().baseUrl(address + "/" +
this.planesServiceApiPath + "/" + id).build().get().exchange()
 .flatMap(clientResponse -> clientResponse.bodyToMono(Plane.class)));
}

This code can be found in the PlaneService class on the project. Remember the
serviceAddressFor() method returns a Flux of service addresses. We will get the first
one, using the next() method. Then we are able to transform the service address to a valid
address to reach the plane microservice.

Now, we will test the service connections. We need to do the following tasks:

Run the Config Server, Eureka, the planes microservice, and1.
the flights microservice
Create a plane entity on the planes microservice2.
Create a flight entity on the flights microservice3.

Check whether all services listed previously are up and running. Then we will create a
plane entity using the following JSON:

{
 "owner" : "Spring Framework Company",
 "model" : {
 "factory" : "Pivotal",
 "model" : "5.0",
 "name" : "Spring 5.0",
 "reference_name" : "S5.0"
 },
 "seats" : [
 {
 "identity" : "1A",
 "row" : "1",
 "right_side" : { "seat_identity" : "2A"},
 "category" : {
 "id" : "A",
 "name": "First Class"
 }
 },
 {

Circuit Breakers and Security Chapter 8

[266]

 "identity" : "2A",
 "row" : "1",
 "left_side" : { "seat_identity" : "1A"},
 "category" : {
 "id" : "A",
 "name": "First Class"
 }
 },
 {
 "identity" : "3A",
 "row" : "1",
 "left_side" :{ "seat_identity" : "2A"},
 "category" : {
 "id" : "A",
 "name": "First Class"
 }
 }
],
 "notes": "The best company airplane"
}

We need to call the planes microservice in http://localhost:50001/planes using the
HTTP POST method. We can find the request to create planes in the Planes Collection
on Postman. When we have called the create plane API, we will get a new plane ID. It can
be found in the HTTP response headers, as shown in the following image, on Postman:

Postman is a tool that helps developers to test APIs. Postman provides a
friendly GUI (Graphic User Interface) to make requests. Also, the tool
supports environments and it can be helpful to test different
environments, such as development, test, and production.

Take a look at the location HTTP response header. The HTTP status code is important as
well. We will use the plane ID 5a6a6c636798a63817bed8b4, created just now, to create a
new flight.

Circuit Breakers and Security Chapter 8

[267]

We can find the list of HTTP status code at W3 Org (https:/ /www. w3.org/
Protocols/ rfc2616/ rfc2616- sec10. html). Keep this in mind, as it is very
important to follow the correct status code. It is considered a best practice
when we are creating REST APIs.

The Flight Collection can be found on GitHub at https:/ /github. com/ PacktPublishing/
Spring-5.0-By-Example/ blob/ master/ postman/ flights. postman_ collection. There is a
Create Flight request we want to execute, but before that, we need to change our plane ID
created previously. Take a look at the following screenshot:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection

Circuit Breakers and Security Chapter 8

[268]

The plane ID has changed to that of our plane previously created. Now we can execute the
request. The flights microservices has the same behavior as a planes microservice. It will
return the location response with the new flight ID. In my case, the new ID generated is like
the following image:

Now, we can find the flight by ID. The request can be found at Flight Collection; the name is
Flight by Id. We can execute this request, and the result should be like this:

Take a look at the plane JSON node. We don't have any data about a plane in the flight
microservice. This information came in from the planes microservice. We have used
service discovery and client load balancing. Well done!

Circuit Breakers and Security Chapter 8

[269]

Let's take a look at the debug provided by the IDE. We want to see the plane service
address:

On the Variables panel, we can see the address variable. The value came in from service
discovery and client load balancing. It is the Service IP or Domain Name. Now we are able
to call the requested service transforming the URL.

Awesome, our infrastructure works very well, now we are able to find services using the
infrastructure, but there is something important to pay attention to. We will discover it in
the next section.

When the services fail, hello Hystrix
Sometimes the infrastructure can fail, especially the network. It can cause some problems in
microservices architecture because in general there are many connections between services.
It means at runtime that the microservices depend on other microservices. Normally these
connections are done using the REST APIs through the HTTP protocol.

Circuit Breakers and Security Chapter 8

[270]

It can cause a behavior called cascade failure; that is, when one part of the microservices
system fails, it can trigger the other microservices failure, because of the dependencies. Let's
illustrate this:

If Service Y fails, Service A and Service M potentially can fail as well.

We have a pattern to help us when this happens: the Circuit Breaker.

Hystrix in a nutshell
Hystrix is a library that helps developers to manage interactions between services. The
project is open source, maintained by the community, and is under the Netflix GitHub.

The Circuit Breaker pattern is a pattern that helps to control the system integrations. The
idea is quite simple: we will wrap the remote call in a function or object, and we will
monitor these calls to keep track of the failures. If the calls reach the limit, the circuit will
open. The behavior is like that of an electrical circuit breaker, and the idea is the
same—protect something to avoid breaking the electrical system:

Circuit Breakers and Security Chapter 8

[271]

Hystrix implements the Circuit Breaker pattern and has some interesting behaviors, such
as fallback options. Hystrix provides resilience for our applications. We are able to
provide a fallback, stop cascading failures, and give the operational control.

The library provides high-level configurations and it can be configured through an
annotation if we are using Spring Cloud Hystrix.

The Circuit Breaker pattern was described by Martin Fowler. You can find
more information about it on Martin Fowler's Page at https:/ /
martinfowler. com/ bliki/ CircuitBreaker. html

Spring Cloud Hystrix
As we expected, Spring Boot integrates with Netflix Hystrix. The integration can be
done using a couple of annotations and by configuring the annotations with Hystrix
properties. We will protect the planes microservice interactions we are coding in the
flight service. We now have a method that tries to get the plane's data.

Let's take a look at that method:

@HystrixCommand(commandKey = "plane-by-id",groupKey = "airline-
flights",fallbackMethod = "fallback",commandProperties = {
@HystrixProperty(name="circuitBreaker.requestVolumeThreshold",value="10"),
 @HystrixProperty(name = "circuitBreaker.errorThresholdPercentage",
value = "10"),
@HystrixProperty(name="circuitBreaker.sleepWindowInMilliseconds",value="100
00"),
 @HystrixProperty(name =
"execution.isolation.thread.timeoutInMilliseconds", value = "800"),
 @HystrixProperty(name = "metrics.rollingStats.timeInMilliseconds",
value = "10000")
 })
public Mono<Plane> plane(String id) {
 return
discoveryService.serviceAddressFor(this.planesService).next().flatMap(
 address -> this.webClient.mutate().baseUrl(address + "/" +
this.planesServiceApiPath + "/" + id).build().get().exchange()
 .flatMap(clientResponse -> clientResponse.bodyToMono(Plane.class)));
}

https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html

Circuit Breakers and Security Chapter 8

[272]

There are some configurations for this command. The first configuration
is commandKey. The basic idea here is to create a name for the command. It will be useful
for panel control. The second one, groupKey, is the command used to group the
commands. It also helps in grouping commands data together on dashboards. There is the
concept of a rolling window. The idea is to group the request in a gap of time; it is used to
enable metrics and statistics.

circuitBreaker.requestVolumeThreshold configures the number of requests in a
rolling window that will trip at the circuit. For example, if we have a rolling window
configured to be open for 10 seconds, if we have nine requests in a gap of 10 seconds, the
circuit will not open because we have configured it to 10 in our command. Another
configuration is circuitBreaker.sleepWindowInMilliseconds, where the basic idea is
to give an amount of time, after tripping the circuit, to reject requests before trying again to
allow attempts.

The last one is execution.isolation.thread.timeoutInMilliseconds. This
property configures the timeout for the command. It means that if the time configured is
reached, the circuit breaker system will perform a fallback logic and mark the command as
a timeout.

The Hystrix library is highly customizable, and there are a lot of
properties to use. The full documentation can be found at https:/ /
github. com/ Netflix/ Hystrix/ wiki/ configuration. We can use these
properties for different use cases.

Spring Boot Admin
The Spring Boot Admin project is a tool that helps developers in production environments.
The tool shows Spring Boot application metrics in an organized dashboard, and it makes it
extremely easy to see application metrics and much more information.

The tool uses the data from the Spring Boot Actuator as an information source. The project
is open source and has a lot of contributors and is an active project in the community as
well.

https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration
https://github.com/Netflix/Hystrix/wiki/configuration

Circuit Breakers and Security Chapter 8

[273]

Running Spring Boot Admin
It is a piece of cake to set up the application. We will need a new Spring Boot application,
and to connect this new application with our service discovery implementation. Let's do it
right now.

We can find the code on GitHub at https:/ / github. com/ PacktPublishing/ Spring- 5. 0-
By-Example/tree/ master/ Chapter08/ admin. If you want to create a new application, go
ahead; the process is similar to what we did in the previous chapters.

The project is a Spring Boot regular application, with two new dependencies:

<dependency>
 <groupId>de.codecentric</groupId>
 <artifactId>spring-boot-admin-server</artifactId>
 <version>1.5.6</version>v
</dependency>

<dependency>
 <groupId>de.codecentric</groupId>
 <artifactId>spring-boot-admin-server-ui</artifactId>
 <version>1.5.6</version>
</dependency>

These dependencies are about admin-server and admin-server-ui. The project does not
support Spring Boot 2 yet, but this is not a problem as we do not need reactive stuff for this;
it is a monitoring tool.

We have configured our mandatory dependencies. We will need a service discovery
because we have one in our infrastructure. We need it to provide the service discovery
feature, and minimize the configurations for our Spring Boot Admin application. Let's add
the Eureka client dependency:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

Awesome, our dependencies are configured properly. Then we can create our main class.
The main class should be like this:

package springfive.airline.admin;

import de.codecentric.boot.admin.config.EnableAdminServer;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin

Circuit Breakers and Security Chapter 8

[274]

import org.springframework.cloud.netflix.eureka.EnableEurekaClient;

@EnableAdminServer
@EnableEurekaClient
@SpringBootApplication
public class AdminApplication {

 public static void main(String[] args) {
 SpringApplication.run(AdminApplication.class, args);
 }

}

The main difference here is that @EnableAdminServer will configure the Spring Boot
Admin application and set up the server for us. As we expected, we will use the Config
Server application to store our application.yaml. In order to achieve this, we need to
create our bootstrap.yaml, which should be like this:

spring:
 application:
 name: admin
 cloud:
 config:
 uri: http://localhost:5000
 label: master

No difference at all, bootstrap.yaml is configured to look up the configuration file from
the Config Server.

Time to create our application.yaml file, to which we need to add some configuration to
set the new health check URL, since the actuator on Spring Boot 2 was moved, prefixed by
actuator. Our new health check URL should be /actuator/health.

Our configuration file should be like this:

server:
 port: 50015

eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
spring:
 boot:
 admin:
 discovery:

Circuit Breakers and Security Chapter 8

[275]

 converter:
 health-endpoint-path: /actuator/health

We have configured the Eureka server address and set the health check URL.

Now we can run our main class called AdminApplication. We can use the Java command
line or IDE; there is no difference at all.

Run it!

We should see the following line at the log file:

Awesome, our application is ready to use. Now we can go to the main page. Go to
http://localhost:50015/#/ (main page), then we can see the following page:

Look how it is easier to see any outage or strange behaviors in our microservices.
Remember the key point in microservices architecture is monitoring. It is really necessary in
order to have a good environment.

Circuit Breakers and Security Chapter 8

[276]

Spring Cloud Zuul
The Spring Cloud Gateway is the natural choice when we adopt the microservices
architecture, but nowadays the Spring Cloud Gateway does not have support enabled for
service discovery features, such as the Eureka server. It means we will have to configure it
route by route. This does not sound good.

We have the Zuul proxy as a gateway for our microservices environment, but keep in mind
the Spring Cloud Gateway is the best choice when the project has support for service
discovery.

Let's create the Zuul proxy project.

Understanding the EDGE service project
The EDGE service is a service that provides dynamic routing, monitoring, resiliency, and
security. The basic idea here is to create a reverse proxy for our microservices.

This service will act as a proxy for our microservices and will be exposed as a central access
point. The Spring Cloud Zuul integrates with the Eureka server. It will increase our
resiliency because we will use the service discovery feature provided by the Eureka server.

The following image demonstrates how we will use the Edge Service in our architecture:

Circuit Breakers and Security Chapter 8

[277]

As we can see, the Zuul Server will connect to the service discovery server, to get the list of
available services. After that the Zuul service will redirect to the requested service.

Look at the diagram. There is no interaction with the clients, that is, Mobile and Browser,
and our microservices.

Spring Cloud Zuul also supports interesting features, such as:

pre: This can be used to set some data inRequestContext; it is executed before
the request is routed
route: This handles the request routing
post: This filters which one acts after the request is routed
error: When some errors happen, we can use the error feature to handle the
request

We will not use these features, but keep in mind that they can be very useful. Remember,
our Zuul server is our gateway to the internet.

Creating the EDGE server
We will use the Zuul server to act as an API gateway for our applications. Now it's time to
create our project. As there is no relevant difference involved in creating this project, we
will take a look at specific Zuul parts.

The dependency required is:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-zuul</artifactId>
</dependency>

It will configure for us the Zuul server dependencies.

Now we can add the project's main class. The class should be like this:

package springfive.airline.edge;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;
import org.springframework.stereotype.Controller;

Circuit Breakers and Security Chapter 8

[278]

@Controller
@EnableZuulProxy
@EnableEurekaClient
@SpringBootApplication
public class EdgeServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(EdgeServerApplication.class, args);
 }

}

The new thing here is @EnableZuulProxy. It will set up a Zuul server endpoint and
configure reverse proxy filters. Then we will be able to forward a request to microservices
applications. Zuul integrates with the Eureka server, so we do not need to configure it
manually. The auto-configuration will find the services at the time of the discovery client
implementation.

We can run the application via the command line or IDE, it is up to you.

Then we can see the routes configured. Go to http://localhost:8888/routes and we
will able to see the routes:

We have some routes configured. We did this using the application.yaml file. The file
should be like this:

zuul:
 routes:
 planes:
 path: /api/v1/planes/**
 serviceId: planes
 flights:
 path: /api/v1/flights/**

Circuit Breakers and Security Chapter 8

[279]

 serviceId: flights
 fares:
 path: /api/v1/fares/**
 serviceId: fares
 passengers:
 path: /api/v1/passengers/**
 serviceId: passengers

Let's understand this configuration. We have created a node called planes. This node
configures a path (that is the URI) and configures the service name, by serviceId,
registered in the Eureka server.

Let's do a simple test. We will:

Configure the new URL path for the planes service
Test the request using the Zuul server

Open the PlaneResource class located in the planes microservice project.

The RequestMapping is configured like this:

@RequestMapping("/planes")

Change it to something like this:

@RequestMapping("/")

Remember we can use the Zuul server as a router, so we do not need this information
anymore. With the URI path on the source code, we are able to use the configuration file.

Run the planes microservice again. The following services need to be running:

Config Server
Eureka server
Planes microservice
API Edge

Then we can call the planes microservices using the Zuul proxy. Let's do it using cURL:

curl http://localhost:8888/api/v1/planes

Circuit Breakers and Security Chapter 8

[280]

Let's understand this a little bit. The port 8888 points to the Zuul Server, and we have
configured it in application.yaml. When the path is /api/v1/planes/**, the Zuul
Server will redirect to the planes microservices. The basic flow is:

The request is coming to the Zuul Server, and then the Zuul Server will redirect it to the
requested microservice. The result should be like this; in my case, I have some planes in the
database:

Awesome, our API Gateway is fully operational. We will use it for all services in the same
port, and only the URI will be changed to point to the desired serviceId.

We can configure the port like in other Spring Boot applications. We chose
the 8888 port in this case.

Circuit Breakers and Security Chapter 8

[281]

Summary
In this chapter, we have learned about some important microservice patterns and how they
can help us to deliver a fault-tolerant, resilient, and error-prone application.

We have practiced how to use the service discovery feature provided by the Spring
Framework and how it works at the application runtime, and we made some debug tasks to
help us to understand how it works under the hood.

The Hystrix project, hosted by Netflix, can increase our application's resilience and fault
tolerance. When working with remote calls, in this section, we made some Hystrix
commands and understood how Hystrix is a useful implementation of the Circuit Breaker
pattern.

At the end of the chapter, we are able to understand the microservices drawbacks and how
to solve the common problems in a distributed environment.

Now we know how to solve the common problems of microservices architectural style
using the Spring Framework.

In the next chapter, we will finish our Airline Ticket System, using the configured tools to
monitoring the microservices' health and look at how it helps developers during the
operation time when the microservices are running in the production stage.

See you there.

9
Putting It All Together

There are some challenges to face when we adopt the microservices architectural style. The
first one handles operational complexity; services such as service discovery and load
balancer help us to tackle these points. We solved these challenges in the previous chapters
and got to know some important tools while doing so.

There are some other important key points to handle in microservices adoption. The
effective way to monitor what happens in our microservices environments is to monitor
how many times microservices consume other microservices resources, such as HTTP APIs,
and how many times they fail. If we have near real-time statistics, it can save the developer
days of troubleshooting and error investigations.

In this chapter, we will create some services which help us monitor the Hystrix commands
and aggregate the command's statistics in a distributed environment.

Security is an important characteristic in microservices architecture, especially because of
the distributed characteristic adopted by the microservices architecture. There are a lot of
microservices in our architecture; we cannot share state between services, so the stateless
security fits well for our environment.

The OAuth 2.0 protocol specification has this important characteristic: the stateless
implementation. Spring Cloud Security provides support for OAuth 2.0.

Finally, we will Dockerize our microservices to use the images in Docker compose files.

In this chapter, we will learn about:

Implementing the Turbine server to aggregate Hystrix streams
Configuring the Hystrix Dashboard to use Turbine and input data

Putting It All Together Chapter 9

[283]

Creating a mail service that will integrate an email API
Understanding Spring Cloud Security
Dockerizing our microservices

The airline Bookings microservice
The airline Bookings microservice is a standard Spring Boot Application. There are some
interactions with other services, such as the flights microservice.

These interactions were created using Hystrix to bring some desired behaviors, such as
fault-tolerance and resilience, to the airline Bookings microservice.

There are some business rules on this service, they are is not important to the learning
context now, so we will skip the project creation and execution sections.

The full source code can be found at GitHub (https:/ /github. com/
PacktPublishing/ Spring- 5.0- By-Example/ tree/ master/ Chapter09/
airline- booking); let's check it out and take a look at some code.

The airline Payments microservice
The Airline Payments is a microservice that gives payments confirmation for our Airline
Ticket System. For learning purposes, we will jump this project because there are some
business rules, nothing important in the Spring Framework context.

We can find the full source code on GitHub (https:/ /github. com/PacktPublishing/
Spring-5.0-By-Example/ tree/ master/ Chapter09/ airline- payments).

Learning about the Turbine server
There are some integrations in our microservices group; the Bookings microservice calls
the Fares microservice and the Passengers microservice, these integrations are done
using Hystrix to make it more resilient and fault tolerant.

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments

Putting It All Together Chapter 9

[284]

However, in the microservices world, there are several instances of service. This will require
us to aggregate the Hystrix command metrics by instance. Managing the instances panel by
panel is not a good idea. The Turbine server helps developers in this context.

By default, Turbine pulls metrics from servers run by Hystrix, but it is not recommended
for cloud environments because it can consume high values of network bandwidth and it
will increase the traffic costs. We will use Spring Cloud Stream RabbitMQ to push metrics
to Turbine via the Advanced Message Queuing Protocol (AMQP). Due to this, we will
need to configure the RabbitMQ connections and put two more dependencies in our
microservices, the dependencies are:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-netflix-hystrix-stream</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

These dependencies will enable the metrics to be sent to the Turbine server via the AMQP
protocol.

The Turbine stream, by default, uses the port 8989 . We will configure it to run at 8010, and
we can use the turbine.stream.port property in the application.yaml to customize
it.

The Turbine stream will be a Hystrix Dashboard data input to show the commands metrics.

The full source code can be found on GitHub (https:/ /github. com/
PacktPublishing/ Spring- 5.0- By-Example/ tree/ master/ Chapter09/
turbine).

There are many configurations to customize the Turbine server. They make the server
extremely adaptable for different use cases.

We can find the Turbine documentation in the Spring Cloud Turbine section
(https:/ /cloud. spring. io/ spring- cloud- netflix/ single/ spring-
cloud- netflix. html#_ turbine). There is a great deal of information,
especially if you need to customize some configurations.

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine

Putting It All Together Chapter 9

[285]

Creating the Turbine server microservice
Let's create our Turbine server. We will create a standard Spring Boot Application with a
couple of annotations to enable Turbine stream and discovery client, as well.

The main class should be:

package springfive.airline.turbine;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import
org.springframework.cloud.netflix.turbine.stream.EnableTurbineStream;

@EnableEurekaClient
@EnableTurbineStream
@SpringBootApplication
public class AirlineTurbineApplication {

 public static void main(String[] args) {
 SpringApplication.run(AirlineTurbineApplication.class, args);
 }

}

As we can see, @EnableTurbineStream will enable us to push Hystrix commands metrics
via the RabbitMQ message broker, which is enough for us.

The Turbine server application.yaml file can be found on GitHub (https:/ /github.
com/PacktPublishing/ Spring- 5. 0- By- Example/ blob/ master/ config- files/ turbine.
yaml). There are a couple of configurations, such as discovery client and Turbine server
configuration.

We can run the application, via the command line or IDE. Run it!

Make some calls to the flights microservice. The Create Flight API will call the planes
microservice, which uses the Hystrix command, and will trigger some Hystrix command
calls.

We can use the Postman Collection located at GitHub (https:/ / github.
com/PacktPublishing/ Spring- 5.0- By-Example/ blob/ master/ postman/
flights. postman_ collection). This collection has a Create Flight request,
which will call the planes microservices to get plane details. It is enough
to collect metrics.

https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection

Putting It All Together Chapter 9

[286]

Now, we can test whether our Turbine server is running correctly. Go to the Turbine stream
endpoint and then the JSON data with metrics should be displayed like this:

There are some Hystrix commands information, but as we can see, this information needs to
be organized to make it useful for us. Turbine uses the Server-Sent Events (SSE)
technology, which was introduced in Chapter 6, Playing with Server-Sent Events.

In the next section, we will introduce the Hystrix Dashboard. It will help us to organize and
make this information useful for us.

Let's jump to the next section.

Hystrix Dashboard
The Hystrix Dashboard will help us to organize the Turbine stream information. As we saw
in the previous section, the Turbine server sends information via SSE. It is done using JSON
objects.

The Hystrix stream provides a dashboard for us. Let's create our Hystrix Dashboard
microservice. The application is a standard Spring Boot Application annotated with
@EnableHystrixDashboard. Let's add the dependency to enable it:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-hystrix-
dashboard</artifactId>
</dependency>

Putting It All Together Chapter 9

[287]

Good, now we can create the main class for our application. The main class should look like
this:

package springfive.airline.hystrix.ui;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import
org.springframework.cloud.netflix.hystrix.dashboard.EnableHystrixDashbo
ard;

@EnableEurekaClient
@SpringBootApplication
@EnableHystrixDashboard
public class HystrixApplication {

 public static void main(String[] args) {
 SpringApplication.run(HystrixApplication.class, args);
 }

}

The full source code can be found at GitHub: https:/ /github. com/
PacktPublishing/ Spring- 5.0- By-Example/ tree/ master/ Chapter09/
hystrix- ui.

As we can see, this is a pretty standard Spring Boot Application annotated with
@EnableHystrixDashboard. It will provide the Hystrix Dashboard for us.

Now, we can run the application via IDE or the Java command line. Run it!

The Hystrix Dashboard can be accessed using the following URL :
http://localhost:50010/hystrix.

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui

Putting It All Together Chapter 9

[288]

Then, go to the Hystrix Dashboard main page. The following page should be displayed:

Awesome – our Hystrix Dashboard is up and running. On this page, we can point to
hystrix.stream or turbine.stream to consume and show the commands' metrics.

Keep this application running, we will use it later in this chapter.

Awesome job, guys, let's move to the next section.

Creating the Mail microservice
Now, we will create our Mail microservice. The name is self-explanatory, this component
will be responsible for sending emails. We will not configure an SMTP (Simple Mail
Transfer Protocol) server, we will use SendGrid.

SendGrid is an SaaS (Software as a Service) service for emails, we will use this service to
send emails to our Airline Ticket System. There are some triggers to send email, for
example, when the user creates a booking and when the payment is accepted.

Putting It All Together Chapter 9

[289]

Our Mail microservice will listen to a queue. Then the integration will be done using the
message broker. We choose this strategy because we do not need the feature that enables us
to answer synchronously. Another essential characteristic is the retry policy when the
communication is broken. This behavior can be done easily using the message strategy.

We are using RabbitMQ as a message broker. For this project, we will use RabbitMQ
Reactor, which is a reactive implementation of RabbitMQ Java client.

Creating the SendGrid account
Before we start to code, we need to create a SendGrid account. We will use the trial account
which is enough for our tests. Go to the SendGrid portal (https:/ /sendgrid. com/) and click
on the Try for Free button.

Fill in the required information and click on the Create Account button.

In the main page, on the left side, click on Settings, then go to the API Key section, follow
the image shown here:

https://sendgrid.com/
https://sendgrid.com/
https://sendgrid.com/
https://sendgrid.com/
https://sendgrid.com/
https://sendgrid.com/
https://sendgrid.com/
https://sendgrid.com/

Putting It All Together Chapter 9

[290]

Then, we can click on the Create API Key button at the top-right corner. The page should
look like this:

Fillin the API Key information and choose Full Access. After that the API Key will appear
on your screen. Take a note of it in a safe place, as we will use it as an environment variable
soon.

Goob job, our SendGrid account is ready to use, now we can code our Mail microservice.

Let's do it in the next section.

Creating the Mail microservice project
As we did in Chapter 8, Circuit Breakers and Security, we will take a look at essential project
parts. We will be using Spring Initializr, as we have several times in the previous chapters.

The full source code can be found at GitHub (https:/ /github. com/
PacktPublishing/ Spring- 5.0- By-Example/ tree/ master/ Chapter09/
mail- service).

Adding RabbitMQ dependencies
Let's add the RabbitMQ required dependencies. The following dependencies should be
added:

<dependency>
 <groupId>io.projectreactor.rabbitmq</groupId>
 <artifactId>reactor-rabbitmq</artifactId>
 <version>1.0.0.M1</version>
</dependency>

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

The first one is about the reactive implementation for RabbitMQ and the second one is the
starter AMQP, which will set up some configurations automatically.

https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service
https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service

Putting It All Together Chapter 9

[291]

Configuring some RabbitMQ stuff
We want to configure some RabbitMQ exchanges, queues, and bindings. It can be done
using the RabbitMQ client library. We will configure our required infrastructure for the
Mail microservice.

Our configuration class should look like this:

package springfive.airline.mailservice.infra.rabbitmq;

// imports are omitted

@Configuration
public class RabbitMQConfiguration {

 private final String pass;

 private final String user;

 private final String host;

 private final Integer port;

 private final String mailQueue;

 public RabbitMQConfiguration(@Value("${spring.rabbitmq.password}") String
pass,
 @Value("${spring.rabbitmq.username}") String user,
 @Value("${spring.rabbitmq.host}") String host,
 @Value("${spring.rabbitmq.port}") Integer port,
 @Value("${mail.queue}") String mailQueue) {
 this.pass = pass;
 this.user = user;
 this.host = host;
 this.port = port;
 this.mailQueue = mailQueue;
 }

 @Bean("springConnectionFactory")
 public ConnectionFactory connectionFactory() {
 CachingConnectionFactory factory = new CachingConnectionFactory();
 factory.setUsername(this.user);
 factory.setPassword(this.pass);
 factory.setHost(this.host);
 factory.setPort(this.port);
 return factory;
 }

Putting It All Together Chapter 9

[292]

 @Bean
 public AmqpAdmin amqpAdmin(@Qualifier("springConnectionFactory")
ConnectionFactory connectionFactory) {
 return new RabbitAdmin(connectionFactory);
 }

 @Bean
 public TopicExchange emailExchange() {
 return new TopicExchange("email", true, false);
 }

 @Bean
 public Queue mailQueue() {
 return new Queue(this.mailQueue, true, false, false);
 }

 @Bean
 public Binding mailExchangeBinding(Queue mailQueue) {
 return BindingBuilder.bind(mailQueue).to(emailExchange()).with("*");
 }

 @Bean
 public Receiver receiver() {
 val options = new ReceiverOptions();
 com.rabbitmq.client.ConnectionFactory connectionFactory = new
com.rabbitmq.client.ConnectionFactory();
 connectionFactory.setUsername(this.user);
 connectionFactory.setPassword(this.pass);
 connectionFactory.setPort(this.port);
 connectionFactory.setHost(this.host);
 options.connectionFactory(connectionFactory);
 return ReactorRabbitMq.createReceiver(options);
 }

}

There is interesting stuff here, but all of it is about infrastructure in RabbitMQ. It is
important because when our application is in bootstrapping time, it means our application
is preparing to run. This code will be executed and create the necessary queues, exchanges,
and bindings. Some configurations are provided by the application.yaml file, look at the
constructor.

Putting It All Together Chapter 9

[293]

Modeling a Mail message
Our Mail service is abstract and can be used for different purposes, so we will create a
simple class to represent a mail message in our system. Our Mail class should look like this:

package springfive.airline.mailservice.domain;

import lombok.Data;

@Data
public class Mail {

 String from;

 String to;

 String subject;

 String message;

}

Easy, this class represents an abstract message on our system.

The MailSender class
As we can expect, we will integrate with the SendGrid services through the REST APIs. In
our case, we will use the reactive WebClient provided by Spring WebFlux.

Now, we will use the SendGrid API Key created in the previous section. Our MailSender
class should look like this:

package springfive.airline.mailservice.domain.service;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.http.HttpStatus;
import org.springframework.http.ReactiveHttpOutputMessage;
import org.springframework.stereotype.Service;
import org.springframework.web.reactive.function.BodyInserter;
import org.springframework.web.reactive.function.BodyInserters;
import org.springframework.web.reactive.function.client.WebClient;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import springfive.airline.mailservice.domain.Mail;
import springfive.airline.mailservice.domain.service.data.SendgridMail;

Putting It All Together Chapter 9

[294]

@Service
public class MailSender {

 private final String apiKey;

 private final String url;

 private final WebClient webClient;

 public MailSender(@Value("${sendgrid.apikey}") String apiKey,
 @Value("${sendgrid.url}") String url,
 WebClient webClient) {
 this.apiKey = apiKey;
 this.webClient = webClient;
 this.url = url;
 }

 public Flux<Void> send(Mail mail){
 final BodyInserter<SendgridMail, ReactiveHttpOutputMessage> body =
BodyInserters
.fromObject(SendgridMail.builder().content(mail.getMessage()).from(mail.get
From()).to(mail.getTo()).subject(mail.getSubject()).build());
 return this.webClient.mutate().baseUrl(this.url).build().post()
 .uri("/v3/mail/send")
 .body(body)
 .header("Authorization","Bearer " + this.apiKey)
 .header("Content-Type","application/json")
 .retrieve()
 .onStatus(HttpStatus::is4xxClientError, clientResponse ->
 Mono.error(new RuntimeException("Error on send email"))
).bodyToFlux(Void.class);
 }

}

We received the configurations in the constructor, that is, the sendgrid.apikey and
sendgrid.url. They will be configured soon. In the send() method, there are some
interesting constructions. Look at BodyInserters.fromObject(): it allows us to send a
JSON object in the HTTP body. In our case, we will create a SendGrid mail object.

In the onStatus() function, we can pass a predicate to handle the HTTP errors family. In
our case, we are interested in the 4xx error family.

This class will process sending the mail messages, but it is necessary to listen to the
RabbbitMQ queue, which we will do in the next section.

Putting It All Together Chapter 9

[295]

Creating the RabbitMQ queue listener
Let's create our MailQueueConsumer class, which will listen to the RabbitMQ queue. The
class should look like this:

package springfive.airline.mailservice.domain.service;

import com.fasterxml.jackson.databind.ObjectMapper;
import java.io.IOException;
import javax.annotation.PostConstruct;
import lombok.extern.slf4j.Slf4j;
import lombok.val;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import reactor.rabbitmq.Receiver;
import springfive.airline.mailservice.domain.Mail;

@Service
@Slf4j
public class MailQueueConsumer {

 private final MailSender mailSender;

 private final String mailQueue;

 private final Receiver receiver;

 private final ObjectMapper mapper;

 public MailQueueConsumer(MailSender mailSender, @Value("${mail.queue}")
String mailQueue,
 Receiver receiver, ObjectMapper mapper) {
 this.mailSender = mailSender;
 this.mailQueue = mailQueue;
 this.receiver = receiver;
 this.mapper = mapper;
 }

 @PostConstruct
 public void startConsume() {
 this.receiver.consumeAutoAck(this.mailQueue).subscribe(message -> {
 try {
 val mail = this.mapper.readValue(new String(message.getBody()),
Mail.class);
 this.mailSender.send(mail).subscribe(data ->{
 log.info("Mail sent successfully");
 });

Putting It All Together Chapter 9

[296]

 } catch (IOException e) {
 throw new RuntimeException("error on deserialize object");
 }
 });
 }

}

The method annotated with @PostConstruct will be invoked after MailQueueConsumer
is ready, which will mean that the injections are processed. Then Receiver will start to
process the messages.

Running the Mail microservice
Now, we will run our Mail microservice. Find the MailServiceApplication class, the
main class of our project. The main class should look like this:

package springfive.airline.mailservice;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.hystrix.EnableHystrix;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;

@EnableHystrix
@EnableZuulProxy
@EnableEurekaClient
@SpringBootApplication
public class MailServiceApplication {

 public static void main(String[] args) {
 SpringApplication.run(MailServiceApplication.class, args);
 }

}

It is a standard Spring Boot Application.

We can run the application in IDE or via the Java command line.

Run it!

Putting It All Together Chapter 9

[297]

We need to pass ${SENDGRID_APIKEY} and ${SENDGRID_URL} as
environment variables. If you are running the application with the Java
command line, the -D option allows us to pass environment variables. If
you are using the IDE, you can configure in the Run/Debug
Configurations.

Creating the Authentication microservice
We want to secure our microservices. Security is essential for microservices applications,
especially because of the distributed characteristics.

On the microservices architectural style, usually, there is a service that will act as an
authentication service. It means this service will authenticate the requests in our
microservices group.

Spring Cloud Security provides a declarative model to help developers enable security on
applications. There is support for commons patterns such as OAuth 2.0. Also, Spring Boot
Security enables Single Sign-On (SSO).

Spring Boot Security also supports relay SSO tokens integrating with Zuul proxy. It means
the tokens will be passed to downstream microservices.

For our architecture, we will use the OAuth 2.0 and JWT patterns, both integrate with Zuul
proxy.

Before we do so, let's understand the main entities in OAuth 2.0 flow:

Protected resource: This service will apply security rules; the microservices
applications, in our case
OAuth authorization server: The authentication server is a service between the
application, which can be a frontend or a mobile, and a service that applications
want to call
Application: The application that will call the service, the client.
Resource Owner: The user or machine that will authorize the client application to
access their account

Putting It All Together Chapter 9

[298]

Let's draw the basic OAuth flow:

We can observe the following in this diagram:

The Client requests the authorization1.
The Resource Owner sends the authorization grant2.
The application client requests the access token from the Authorization Server3.
If the authorization grant is valid, the Authorization Server will provide the4.
access token
The application calls the protected resource and sends the access token5.
If the Resource Server recognizes the token, the resource will serve for the6.
application

These are the basics of the OAuth 2.0 authorization flow. We will implement this flow using
Spring Cloud Security. Let's do it.

Creating the Auth microservice
As we have been doing in this chapter, we will take a look at the important parts. Let's start
with our dependencies. We need to put in the following dependencies:

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-oauth2</artifactId>
</dependency>

 <dependency>

Putting It All Together Chapter 9

[299]

 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-core</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-config</artifactId>
 </dependency>

These dependencies will enable us to use the Spring Cloud Security features. Let's start to
code our Authentication microservice.

Configuring the security
Let's start coding our Auth microservice. We will start with the authorization and
authentication, as we want to protect all resources in our microservices, then we will
configure WebSecurityConfigureAdapter. The class should look like this:

package springfive.airline.authservice.infra.security;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import
org.springframework.security.config.annotation.authentication.builders.Auth
enticationManagerBuilder;
import
org.springframework.security.config.annotation.method.configuration.EnableG
lobalMethodSecurity;
import
org.springframework.security.config.annotation.web.builders.HttpSecurity;
import
org.springframework.security.config.annotation.web.configuration.EnableWebS
ecurity;
import
org.springframework.security.config.annotation.web.configuration.WebSecurit
yConfigurerAdapter;
import org.springframework.security.crypto.password.PasswordEncoder;
import springfive.airline.authservice.service.CredentialsDetailsService;

@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 private final PasswordEncoder passwordEncoder;

Putting It All Together Chapter 9

[300]

 private final CredentialsDetailsService credentialUserDetails;

 public SecurityConfig(PasswordEncoder passwordEncoder,
 CredentialsDetailsService credentialUserDetails) {
 this.passwordEncoder = passwordEncoder;
 this.credentialUserDetails = credentialUserDetails;
 }

 @Override
 @Autowired
 protected void configure(AuthenticationManagerBuilder auth) throws
Exception {
auth.userDetailsService(this.credentialUserDetails).passwordEncoder(this.pa
sswordEncoder);
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.csrf().disable()
 .authorizeRequests()
 .antMatchers("/login", "/**/register/**").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin().permitAll();
 }

}

There is a lot of stuff here. Let's start with the @EnableWebSecurity, this annotation
enables Spring Security integrations with Spring MVC. @EnableGlobalMethodSecurity
provides AOP interceptors to enable methods security using the annotations. We can use
this feature by annotating the methods on a controller, for instance. The basic idea is to
wrap the methods call in AOP interceptors and apply security on the methods.

WebSecurityConfigurerAdapter enables us to configure the secure endpoints and some
stuff about how to authenticate users, which can be done using the
configure(AuthenticationManagerBuilder auth) method. We have configured our
CredentialsDetailsService and our PasswordEncoder to avoid plane password
between application layers. In this case, CredentialsDetailsService is the source of our
user's data.

In our method, configure(HttpSecurity http), we have configured some HTTP
security rules. As we can see, all users can access /login and /**/register/**. It's about
Sign In and Sign Up features. All other requests need to be authenticated by the
Authorization server.

Putting It All Together Chapter 9

[301]

The CredentialsDetailsService should look like this:

package springfive.airline.authservice.service;

import org.springframework.security.core.userdetails.UserDetailsService;
import
org.springframework.security.core.userdetails.UsernameNotFoundException;
import org.springframework.stereotype.Component;
import springfive.airline.authservice.domain.Credential;
import springfive.airline.authservice.domain.data.CredentialData;
import springfive.airline.authservice.repository.CredentialRepository;

@Component
public class CredentialsDetailsService implements UserDetailsService {

 private final CredentialRepository credentialRepository;

 public CredentialsDetailsService(CredentialRepository
credentialRepository) {
 this.credentialRepository = credentialRepository;
 }

 @Override
 public CredentialData loadUserByUsername(String email) throws
UsernameNotFoundException {
 final Credential credential =
this.credentialRepository.findByEmail(email);
 return
CredentialData.builder().email(credential.getEmail()).password(credential.g
etPassword()).scopes(credential.getScopes()).build();
 }

}

There is nothing special here. We need to override the loadUserByUsername(String
email) method to provide the user data to Spring Security.

Let's configure our token signer and our token store. We will provide these beans using the
@Configuration class, as we did in the previous chapters:

package springfive.airline.authservice.infra.oauth;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;

Putting It All Together Chapter 9

[302]

import
org.springframework.security.oauth2.provider.token.store.JwtAccessTokenConv
erter;
import
org.springframework.security.oauth2.provider.token.store.JwtTokenStore;

@Configuration
public class OAuthTokenProducer {

 @Value("${config.oauth2.privateKey}")
 private String privateKey;

 @Value("${config.oauth2.publicKey}")
 private String publicKey;

 @Bean
 public JwtTokenStore tokenStore(JwtAccessTokenConverter tokenEnhancer)
{
 return new JwtTokenStore(tokenEnhancer);
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
 }

 @Bean
 public JwtAccessTokenConverter tokenEnhancer() {
 JwtAccessTokenConverter converter = new JwtAccessTokenConverter();
 converter.setSigningKey(privateKey);
 converter.setVerifierKey(publicKey);
 return converter;
 }

}

We have configured our private and public keys in the application.yaml file. Optionally,
we can read the jks files from the classpath as well. Then, we provided our token signer or
token enhancer using the JwtAccessTokenConverter class, where we have used the
private and public key.

In our token store, Spring Security Framework will use this object to read data from tokens,
then set up the JwtAccessTokenConverter on the JwtTokenStore instance.

Finally, we have provided the password encoder class using the BCryptPasswordEncoder
class.

Putting It All Together Chapter 9

[303]

Our last class is the Authorization server configuration. The configuration can be done
using the following class:

Look at the OAuth2AuthServer class located on GitHub (https:/ / github. com/
PacktPublishing/Spring- 5.0- By- Example/ blob/ master/ Chapter09/ auth- service/ src/
main/java/springfive/ airline/ authservice/ infra/ oauth/ OAuth2AuthServer. java).

We have used @EnableAuthorizationServer to configure the Authorization server
mechanism in our Auth microservice. This class works together with
AuthorizationServerConfigurerAdapter to provide some customizations.

On configure(AuthorizationServerSecurityConfigurer oauthServer), we have
configured the security for token endpoints.

At configure(AuthorizationServerEndpointsConfigurer endpoints), we have
configured the endpoints of the token service such as, /oauth/token and
/oauth/authorize.

Finally, on configure (ClientDetailsServiceConfigurer clients), we have configured
the client's ID and secrets. We used in-memory data, but we can use JDBC implementations
as well.

The Auth microservice main class should be:

package springfive.airline.authservice;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;

@EnableZuulProxy
@EnableEurekaClient
@SpringBootApplication
public class AuthServiceApplication {

 public static void main(String[] args) {
 SpringApplication.run(AuthServiceApplication.class, args);
 }

}

Here, we have created a standard Spring Boot Application with service discovery and Zuul
proxy enabled.

https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java

Putting It All Together Chapter 9

[304]

Testing the Auth microservice
As we can see, the Auth microservice is ready for testing. Our microservice is listening to
port 7777, which we configured using the application.yaml file on GitHub.

Client credentials flow
Let's start with the client credentials flow.

Our application needs to be up on port 7777, then we can use the following command line
to get the token:

curl -s
442cf4015509eda9c03e5ca3aceef752:4f7ec648a48b9d3fa239b497f7b6b4d8019697bd@l
ocalhost:7777/oauth/token -d grant_type=client_credentials -d
scope=trust | jq .

As we can see, this client ID and client secret are from the planes microservice. We did this
configuration at the OAuth2AuthServer class. Let's remember the exact point:

....
@Override
public void configure(ClientDetailsServiceConfigurer clients)throws
Exception {
 clients
 .inMemory()
 .withClient("ecommerce") // ecommerce microservice
 .secret("9ecc8459ea5f39f9da55cb4d71a70b5d1e0f0b80")
 .authorizedGrantTypes("authorization_code", "refresh_token",
"implicit",
 "client_credentials")
 .authorities("maintainer", "owner", "user")
 .scopes("read", "write")
 .accessTokenValiditySeconds(THREE_HOURS)
 .and()
 .withClient("442cf4015509eda9c03e5ca3aceef752") // planes
microservice
 .secret("4f7ec648a48b9d3fa239b497f7b6b4d8019697bd")
 .authorizedGrantTypes("authorization_code", "refresh_token",
"implicit",
 "client_credentials")
 .authorities("operator")
 .scopes("trust")
 .accessTokenValiditySeconds(ONE_DAY)
....

Putting It All Together Chapter 9

[305]

After you call the preceding command, the result should be:

As we can see, the token was obtained with success. Well done, our client credentials flow
was configured successfully. Let's move to the implicit flow, which will be covered in the
next section.

Implicit grant flow
In this section, we will take a look at how to authenticate in our Auth microservice using the
implicit flow.

Before we test our flow, let's create a user to enable authentication in the Auth microservice.
The following command will create a user in the Auth service:

curl -H "Content-Type: application/json" -X POST -d '{"name":"John
Doe","email":"john@doe.com", "password" : "john"}'
http://localhost:7777/register

As we can see, the email is john@doe.com and the password is john.

We will use the browser to do this task. Let's go to the following URL:

http://localhost:7777/oauth/authorize?client_id=ecommerce&response_type
=token&scope=write&state=8777&redirect_uri=https://httpbin.org/anything

Let's understand the parameters:

The first part is the service address. To use the implicit grant flow, we need the path
/oauth/authorize. Also we will use ecommerce as a client ID because we have
configured it previously. response_type=token informs the implicit flow, scope is the
scope as what we want in our case is write, state is a random variable, and redirect_uri
is the URI to go after the oauth login process.

Putting It All Together Chapter 9

[306]

Put the URL in a web browser, and the following page should be displayed:

After typing the User and Password, the following page will be displayed to authorize our
protected resources:

Click on the Authorize button. Then we will see the token in the browser URL like this:

The full token can be viewed if we copy the browser URL.

Awesome job, guys, our Auth microservice is fully operational.

In the next sections, we will configure the Auth microservice to protect Zuul proxy
downstream microservices, such as the planes microservices. Let's jump to the next
section.

Putting It All Together Chapter 9

[307]

Protecting the microservices with OAuth 2.0
Now we will configure OAuth 2.0 to protect our microservices; in our case, our
microservices are the resource servers. Let's start with the planes microservices. We will
add the new dependency and configure the private and public keys. Also, we will configure
our JwtTokenStore.

Let's do it.

Adding the security dependency
To add the newly required dependency, we will change the pom.xml of the planes
microservice. We will add the following dependency:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-oauth2</artifactId>
</dependency>

A piece of cake – our required dependency is configured properly.

In the next section, we will configure the application.yaml file.

Configuring the application.yaml file
To configure our private and public keys, we will use the application.yaml file. We did
this configuration in the Auth microservice. The configuration is pretty easy. We need to
add the following snippet:

config:
 oauth2:
 privateKey: |
 -----BEGIN RSA PRIVATE KEY-----
 MIICXQIBAAKBgQDNQZKqTlO/+2b4ZdhqGJzGBDltb5PZmBz1ALN2YLvt341pH6i5
 mO1V9cX5Ty1LM70fKfnIoYUP4KCE33dPnC7LkUwE/myh1zM6m8cbL5cYFPyP099t
 hbVxzJkjHWqywvQih/qOOjliomKbM9pxG8Z1dB26hL9dSAZuA8xExjlPmQIDAQAB
 AoGAImnYGU3ApPOVtBf/TOqLfne+2SZX96eVU06myDY3zA4rO3DfbR7CzCLE6qPn
 yDAIiW0UQBs0oBDdWOnOqz5YaePZu/yrLyj6KM6Q2e9ywRDtDh3ywrSfGpjdSvvo
 aeL1WesBWsgWv1vFKKvES7ILFLUxKwyCRC2Lgh7aI9GGZfECQQD84m98Yrehhin3
 fZuRaBNIu348Ci7ZFZmrvyxAIxrV4jBjpACW0RM2BvF5oYM2gOJqIfBOVjmPwUro
 bYEFcHRvAkEAz8jsfmxsZVwh3Y/Y47BzhKIC5FLaads541jNjVWfrPirljyCy1n4
 sg3WQH2IEyap3WTP84+csCtsfNfyK7fQdwJBAJNRyobY74cupJYkW5OK4OkXKQQL
 Hp2iosJV/Y5jpQeC3JO/gARcSmfIBbbI66q9zKjtmpPYUXI4tc3PtUEY8QsCQQCc

Putting It All Together Chapter 9

[308]

 xySyC0sKe6bNzyC+Q8AVvkxiTKWiI5idEr8duhJd589H72Zc2wkMB+a2CEGo+Y5H
 jy5cvuph/pG/7Qw7sljnAkAy/feClt1mUEiAcWrHRwcQ71AoA0+21yC9VkqPNrn3
 w7OEg8gBqPjRlXBNb00QieNeGGSkXOoU6gFschR22Dzy
 -----END RSA PRIVATE KEY-----
 publicKey: |
 -----BEGIN PUBLIC KEY-----
 MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDNQZKqTlO/+2b4ZdhqGJzGBDlt
 b5PZmBz1ALN2YLvt341pH6i5mO1V9cX5Ty1LM70fKfnIoYUP4KCE33dPnC7LkUwE
 /myh1zM6m8cbL5cYFPyP099thbVxzJkjHWqywvQih/qOOjliomKbM9pxG8Z1dB26
 hL9dSAZuA8xExjlPmQIDAQAB
 -----END PUBLIC KEY-----

Moreover, the user info URI will be done using the following configuration in YAML:

 oauth2:
 resource:
 userInfoUri: http://localhost:7777/credential

Awesome – our application is fully configured. Now, we will do the last part: configuring to
get the information token.

Let's do that.

Creating the JwtTokenStore Bean
We will create the JwtTokenStore, which will be used to get token information. The class
should look like this:

package springfive.airline.airlineplanes.infra.oauth;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import
org.springframework.security.oauth2.provider.token.store.JwtAccessTokenConv
erter;
import
org.springframework.security.oauth2.provider.token.store.JwtTokenStore;

@Configuration
public class OAuthTokenConfiguration {

 @Value("${config.oauth2.privateKey}")
 private String privateKey;

 @Value("${config.oauth2.publicKey}")

Putting It All Together Chapter 9

[309]

 private String publicKey;

 @Bean
 public JwtTokenStore tokenStore() throws Exception {
 JwtAccessTokenConverter enhancer = new JwtAccessTokenConverter();
 enhancer.setSigningKey(privateKey);
 enhancer.setVerifierKey(publicKey);
 enhancer.afterPropertiesSet();
 return new JwtTokenStore(enhancer);
 }

}

Awesome – our token signer is configured.

Finally, we will add the following annotation to the main class, which should look like this:

package springfive.airline.airlineplanes;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;
import
org.springframework.security.oauth2.config.annotation.web.configuration.Ena
bleResourceServer;

@EnableZuulProxy
@EnableEurekaClient
@EnableResourceServer
@SpringBootApplication
public class AirlinePlanesApplication {

 public static void main(String[] args) {
 SpringApplication.run(AirlinePlanesApplication.class, args);
 }

}

It will protect our application, and it will require the access token to access the application
endpoints.

Remember, we need to do the same task for all microservices that we want to protect.

Putting It All Together Chapter 9

[310]

Monitoring the microservices
In the microservice architectural style, monitoring is a crucial part. There are a lot of
benefits when we adopt this architecture, such as time to market, source maintenance, and
an increase of business performance. This is because we can divide the business goals for
different teams, and each team will be responsible for some microservices. Another
important characteristic is optimization of computational resources, such as cloud
computing costs.

As we know, there is no such thing as a free lunch, and this style brings some drawbacks,
such as operational complexity. There are a lot of small services to monitor. There are
potentially hundreds of different service instances.

We have implemented some of these services in our infrastructure but until now, we did
not have the data to analyze our system health. In this section, we will explore our
configured services.

Let's analyze right now!

Collecting metrics with Zipkin
We have configured our Zipkin server in the previous chapter. Now we will use this server
to analyze our microservices data. Let's do it.

Putting It All Together Chapter 9

[311]

Make some calls to create a flight. The Create Flight API will call the Auth Service and the
Flight Service. Look at the following diagram:

We will take a look at the flights microservice and the planes microservice
communications. Let's analyze it:

Go to the Zipkin main page, http://localhost:9999/, select flights, and then click on
Find a trace. The page should look like this:

Putting It All Together Chapter 9

[312]

As we can see, there is some data on our Zipkin server. Click on Span, which has the
flights and planes tags, then we will take a look at this specific trace, and we will be
redirected to another page with specific span data, like this:

Putting It All Together Chapter 9

[313]

On this page, we can see important information, such as the total request time. Then click
on the planes row, where we will be able to see detailed information, as in the following
image:

Look at the request information. There are some interesting things, such as
mvc.controller.class and mvc.controller.method. These help developers to
troubleshoot errors. Also in the first panel, we have the times of the service's interactions. It
is very helpful to find microservices network latencies; for example, it makes environment
management easier because we have visual tools to understand data better.

Also, the Zipkin server provides others interesting features to find microservices statistics,
such as finding requests that have delayed for more than a specific time. It is very helpful
for the operations guys.

Putting It All Together Chapter 9

[314]

We can find more information about Spring Cloud Sleuth on the
documentation page (http:/ /cloud. spring. io/ spring- cloud- static/
spring- cloud- sleuth/ 2. 0.0. M5/single/ spring- cloud- sleuth. html) or
in the GitHub (https:/ /github. com/spring- cloud/ spring- cloud-
sleuth) project page.

Collection commands statistics with Hystrix
Now, we want to monitor our Hystrix commands. There are several commands in our
microservices and probably the most used will be the OAuth token requester, because we
always need to have a token to call any microservice in our system. Our Turbine server and
Hystrix UI were configured at the beginning of this chapter and we will use these services
right now.

Remember, we are using spring-cloud-netflix-hystrix-stream as an
implementation to send Hystrix data to the Turbine server, as it performs better than HTTP
and also brings some asynchronous characteristics.

Asynchronous calls can make the microservice more resilient. In this case,
we will not use HTTP calls (synchronous calls) to register Hystrix
Commands statistics. We will use the RabbitMQ queue to register it. In
this case, we will put the message in the queue. Also, asynchronous calls
make our application more optimized to use computational resources.

Run the Turbine server application and Hystrix UI application. Turbine will aggregate the
metrics from the servers. Optionally, you can run several instances of the same service, such
as flights. Turbine will aggregate the statistics properly.

Let's call the Create Flights API; we can use the Postman to do that.

Then we can see the real-time commands statistics. Before that, we will configure
turbine.stream in our Hystrix Dashboard.

http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth

Putting It All Together Chapter 9

[315]

Go to the Hystrix Dashboard page: http://localhost:50010/hystrix/. The following
page will be displayed:

Then we have some work to do. Let's configure our Turbine server stream. Our Turbine
stream is running at http://localhost:8010/turbine.stream. Put this information
below the Hystrix Dashboard information, and then we can click on the Monitor Stream
button.

Putting It All Together Chapter 9

[316]

We will redirect to the Hystrix Commands Dashboard; we called the Create Flights API a
few times ago. The commands metrics will be displayed, like the following image:

As we can see, we called the Create Flights API eight times. This API uses some commands,
such as flights.plane-by-id, it calls the planes microservice, and the
flights.request-token calls the Auth service.

Look how easy it is to monitor the commands. Operation guys like the Zipkin server can
use this page.

Awesome job, guys, our services integrations are adequately monitored, which makes our
microservices adoption more comfortable because we have useful applications to monitor
our services instances.

Dockerizing the microservices
In the previous chapters, we have used the Fabric8 Maven Docker plugin to enable us to
create Docker images, using the Maven goals.

Now, we need to configure our microservices to use this plugin to easily create images for
us. It can be helpful to integrate with some Continuous Integration and Delivery tools, such
as Jenkins, because we can call the docker: build goal easily.

Putting It All Together Chapter 9

[317]

Each project has the custom configurations, such as port and image name. We can find the
configuration at the GitHub repository. Remember, the configuration is done using the
pom.xml.

The following list has the GitHub repository addresses for all projects; the pom.xml has the
Maven Docker plugin configuration:

Flights: https:/ /github. com/ PacktPublishing/ Spring- 5. 0-By- Example/ blob/
master/Chapter09/ airline- flights/ pom. xml

Planes: https:/ /github. com/ PacktPublishing/ Spring- 5. 0-By- Example/ blob/
master/Chapter09/ airline- planes/ pom.xml

Fares: https:/ /github. com/ PacktPublishing/ Spring- 5. 0-By- Example/ blob/
master/Chapter09/ airline- fare/ pom. xml

Bookings: https:/ / github. com/ PacktPublishing/ Spring- 5.0-By- Example/
blob/master/ Chapter09/ airline- booking/ pom. xml

Admin: https:/ /github. com/ PacktPublishing/ Spring- 5.0- By-Example/ blob/
master/Chapter09/ admin/ pom. xml

EDGE: https:/ / github. com/ PacktPublishing/ Spring- 5.0-By- Example/ blob/
master/Chapter09/ api- edge/ pom.xml

Passengers: https:/ /github. com/ PacktPublishing/ Spring- 5. 0-By- Example/
blob/master/ Chapter09/ airline- passengers/ pom. xml

Auth: https:/ / github. com/ PacktPublishing/ Spring- 5.0-By- Example/ blob/
master/Chapter09/ auth- service/ pom. xml

Mail: https:/ / github. com/ PacktPublishing/ Spring- 5. 0-By- Example/ blob/
master/Chapter09/ mail- service/ pom. xml

Turbine: https:/ /github. com/ PacktPublishing/ Spring- 5.0- By-Example/ blob/
master/Chapter09/ turbine/ pom. xml

Zipkin: https:/ / github. com/ PacktPublishing/ Spring- 5. 0-By- Example/ blob/
master/Chapter09/ zipkin- server/ pom. xml

Payments: https:/ / github. com/ PacktPublishing/ Spring- 5.0-By- Example/
blob/master/ Chapter09/ airline- payments/ pom. xml

Hystrix-dashboard: https:/ / github. com/PacktPublishing/ Spring- 5.0- By-
Example/ blob/ master/ Chapter09/ hystrix- ui/pom. xml

Discovery: https:/ / github. com/ PacktPublishing/ Spring- 5. 0-By- Example/
blob/master/ Chapter09/ eureka/ pom. xml

Config Server: https:/ /github. com/ PacktPublishing/ Spring- 5.0- By-Example/
blob/master/ Chapter09/ config- server/ pom. xml

https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml

Putting It All Together Chapter 9

[318]

Running the system
Now we can run our Docker containers using our images, which were created in the
previous section.

We will split the services into two Docker compose files. The first one is about
infrastructure services. The second one is about our microservices.

The stacks must be run on the same Docker network, because the service should be
connected by the container hostname.

The Docker compose file for infrastructure can be found at GitHub: https:/ / github. com/
PacktPublishing/Spring- 5.0- By- Example/ blob/ master/ stacks/ docker- compose- infra.
yaml.

The Docker compose file for microservices can be found at GitHub: https:/ /github. com/
PacktPublishing/Spring- 5.0- By- Example/ blob/ master/ stacks/ docker- compose- micro.
yaml.

Now, we can run these files using the docker-compose commands. Type the following
commands:

docker-compose -f docker-compose-infra.yaml up -d
docker-compose -f docker-compose-micro.yaml up -d

Then the full application will be up and running.

Well done, guys.

Summary
In this chapter, we have learned some important points on microservices architecture.

We were introduced to some important tools for monitoring the microservices
environment. We have learned how the Turbine server can help us to monitor our Hystrix
commands in distributed environments.

We were also introduced to the Hystrix Dashboard feature, which helps the developers and
operations guys provide a rich dashboard with the commands statistics in near real time.

We learned how Spring Cloud Security enables security features for our microservices, and
we implemented the OAuth 2 server, using JWT to enable resilience for our security layer.

https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml
https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Spring 5.0
Ranga Rao Karanam

ISBN: 978-1-78712-317-5

Explore the new features in Spring Framework 5.0
Build microservices with Spring Boot
Get to know the advanced features of Spring Boot in order to effectively develop
and monitor applications
Use Spring Cloud to deploy and manage applications on the Cloud
Understand Spring Data and Spring Cloud Data Flow
Understand the basics of reactive programming
Get to know the best practices when developing applications with the Spring
Framework
Create a new project using Kotlin and implement a couple of basic services with
unit and integration testing

https://www.packtpub.com/application-development/mastering-spring-50

Other Books You May Enjoy

[320]

Spring 5.0 Microservices - Second Edition
Rajesh R V

ISBN: 978-1-78712-768-5

Familiarize yourself with the microservices architecture and its benefits
Find out how to avoid common challenges and pitfalls while developing
microservices
Use Spring Boot and Spring Cloud to develop microservices
Handle logging and monitoring microservices
Leverage Reactive Programming in Spring 5.0 to build modern cloud native
applications
Manage internet-scale microservices using Docker, Mesos, and Marathon
Gain insights into the latest inclusion of Reactive Streams in Spring and make
applications more resilient and scalable

https://www.packtpub.com/application-development/spring-50-microservices-second-edition

Other Books You May Enjoy

[321]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Advanced Message Queuing Protocol (AMQP)

284

airline Bookings microservice 283
airline Payments microservice 283
Airline Ticket System
 about 213
 functionalities 213, 214
 solution diagram 215
AngularJS
 application entry point, creating 67, 68, 70
 Category Controller, creating 71
 Category Service, creating 72
 CMS application, integrating with 65
 concepts 66
 controllers 66
 services 67
APIs
 testing 149
Auth microservice
 client credentials flow 304
 creating 298
 implicit grant flow 305
 security, configuring 299, 301, 303
 testing 304
Authentication microservice
 creating 297, 298

B
bindings
 configuring, on Spring AMQP 158
 declaring, in yaml 158

C
cascade failure 270

Circuit Breaker pattern
 reference 271
CMS project
 creating 37
 dependencies section 38
 generating 38
 metadata section 37
CMS
 Docker image, creating for 96
cold publishers 106
command line
 used, for executing CMS application 44
 using, with JAR file 45
 using, with Spring Boot Maven plugin 44
commands, Docker
 docker container 32
 docker network 33
 docker run 32
 docker volume 34
components, Project Reactor
 publishers 103
 subscribers 104
Config Server project
 creating 217
containerized solution
 running 200, 201
Content Delivery Network
 about 68
 reference 68
Content Management System (CMS) application
 @Component annotation 43
 @Configuration annotation 43
 @EnableAutoConfiguration annotation 43
 @SpringBootApplication annotation 43
 CMS project, creating 37
 executing 43
 executing, in command line 44

[323]

 executing, in IntelliJ IDEA 44
 integrating, with AngularJS 65
 project structure 39, 40, 42
 structure, creating 36
core container 8

D
DAO (Data Access Object) 79
data access layer
 creating 88
data types, Redis
 lists 136
 sets 137
 strings 135
development environment
 setting up 25
Docker commands 31
docker container command 32
Docker containers 30
Docker Hub
 image, pushing to 99
 RabbitMQ image, pulling from 154
 Redis image, pulling from 133
Docker image
 about 30
 creating, for CMS 96
docker network command 33
Docker network
 about 31
 creating, for application 132
docker run command 32
Docker Spring profile
 configuring 100
docker volume command 34
Docker volumes 31
docker-compose file
 creating 207
docker-compose project
 reference 197
docker-compose tool
 about 205
 installing 207
 network, testing 210
 solution, running 209
Docker-Maven-plugin

 adding, on pom.xml 97
 configuring 97
Docker
 basics 75
 bridge 31
 infrastructure, placing on 246, 247, 249
 installing 28
 overlay network 31
 RabbitMQ server, starting with 154
 reference 29
Dockerized CMS
 running 100, 101
Domain-Driven Design (DDD) 213
domain-specific language (DSL) 15

E
EDGE server
 creating 277, 280
EDGE service project 276, 277
Elvis operator 128
Eureka server main class
 creating 224, 225
Eureka server
 checking 241, 242
exchanges, RabbitMQ
 about 157
 direct exchanges 157
 fanout exchanges 157
 header exchanges 157
 topic exchanges 157
exchanges
 configuring, on Spring AMQP 158
 declaring, in yaml 158

F
fabric8
 reference 97
Fat-JAR 42
Flight microservice project
 cloning 261
Flights microservice 261
framework 6
functions
 declaring, in Kotlin 121

[324]

G
Git 18
GitHub repository addresses, for projects
 references 317

H
Hibernate
 reference 79
HTTP protocol
 about 189
 and persistent connections 190
httpbin
 reference 245
Hystrix Dashboard 286, 287, 288
Hystrix
 collection commands statistics 314, 315, 316
 overview 270, 271

I
IDE
 installing 27
IntelliJ IDEA
 about 27
 used, for executing CMS application 44
IPC (Inter-Process Communication) 261

J
Jackson
 adding, for Kotlin 131
JAR file
 command line, using with 45
JCP (Java Community Process) 79
JVM (Java Virtual Machine) 119

K
Kotlin idioms
 null safety 127
 range expressions 126
 Smart Casts 125
 string interpolation 125
Kotlin
 basics 119
 characteristics 119

 companion objects 124
 data classes 122, 123
 functions, declaring in 121
 functions, overriding 122
 Jackson, adding for 131
 objects 123
 project use case 129
 project, creating 129
 semantics 120, 121
 simple function, with parameters 121
 simple function, with return type 121
 simple function, without return 121
 single expressions functions 122
 syntax 119, 120

L
lists
 about 136
 main commands 136, 137

M
Mail microservice project
 creating 290
 Mail message, modeling 293
 MailSender class 293
 RabbitMQ dependencies, adding 290
 RabbitMQ queue listener, creating 295
 RabbitMQ stuff, configuring 291
Mail microservice
 creating 288
 running 296
Maven plugins
 for Kotlin 131
Maven
 installing 26
messages
 consuming, with Spring messaging 160
 producing, with Spring messaging 161
metrics
 collecting, with Zipkin 310, 311, 312, 313
microservices
 and Spring Boot 24
 characteristics 24
 dockerizing 316

[325]

 integrations, testing 176
 monitoring 310
modules, Spring 7
MongoDB
 preparing 75, 76, 77

N
named client 17
Netflix Ribbon 261, 262
Netty
 about 12
 reference 12
null safety, Kotlin
 Elvis operator 128
 safe calls 128

O
OAuth 2.0 flow
 entities 297
OAuth 2.0, for protecting microservices
 about 307
 application.yaml file, configuring 307
 JwtTokenStore Bean, creating 308
 security dependency, adding 307
OpenJDK
 installing 25
OSI model
 reference 189

P
pagination 92
pgAdmin3
 about 85
 configuring 86
 installing 86
plane microservice
 running 259, 260
Plane service
 creating 255
planes microservice
 coding 253, 255
 creating 252, 253
 reactive repository 255
POJO (Plain Old Java Object) pattern 88

pom.xml
 configuring, for Spring Data JPA 79
PostgreSQL database
 preparing 77
Project Lombok library
 reference 255
Project Reactor
 about 102
 components 103
project
 creating, with Spring Initializr 130
projects, Spring Cloud
 Spring Cloud Bus 20
 Spring Cloud Config 18
 Spring Cloud Consul 19
 Spring Cloud Netflix 16
 Spring Cloud Security 20
 Spring Cloud Stream 21
publishers 103

Q
queues
 configuring, on Spring AMQP 158
 declaring, in yaml 158

R
RabbitMQ image
 pulling, from Docker Hub 154
RabbitMQ queues
 consuming, reactively 194, 195
RabbitMQ Reactor beans
 configuring 193
RabbitMQ server
 starting 154, 155
 starting, with Docker 154
RabbitMQ
 bindings 158
 exchanges 157
 queues 158
 Spring Application, integrating with 156
 Spring beans, declaring for 159
range expressions, Kotlin
 downTo case 127
 simple case 126

[326]

 step case 127
 until case 126
Reactive repository
 creating 110
 working 110
reactive sequences
 hot 105
Reactive Spring 102
reactive types 105
Reactor RabbitMQ 192
Reactor
 working with 106
Redis image
 pulling, from Docker Hub 133
Redis instance
 running 133
redis-cli tool
 configuring 134
Redis
 about 134
 data types 135
REST layer
 CategoryResource, modifying 115
 modifying 113
 Spring WebFlux dependency, adding 114
REST resources
 Category class, creating 48
 CategoryResource class, creating 50
 creating 46, 50
 Lombok dependency, adding 47
 models, creating 48
 News class, creating 49
 NewsResource class, creating 53
 Tag class, creating 48
 User class, creating 49
 UserResource class, creating 52
route
 creating, with Spring Cloud Gateway 242, 243,

244, 245

S
SaaS (Software as a Service) 288
safe calls 128
SendGrid account
 creating 289

SendGrid
 about 288
 reference 289
Server-Sent Events (SSE) 188, 191, 286
service discovery
 about 252
 and load balancing 263, 264, 265
 client 262, 263
 REST layer 257
service layer
 adding 54
 CategoryService class, creating 56
 CategoryService, modifying 111
 fixing 111
 model, modifying 54
 new review, adding 55
 news, checking 55
 NewsService class, creating 58
 prerequisites 55
 Swagger, configuring 59
 UserService class, creating 57
sets
 about 137
 main commands 138
Single Sign-On (SSO) 297
SMTP (Simple Mail Transfer Protocol) 288
Spring Actuator
 about 180
 application custom information 182
 endpoints 181
 endpoints, testing 183
Spring AMQP
 about 9
 adding, in pom.xml file 156
 bindings, configuring on 158
 exchanges, configuring 158
 queues, configuring 158
Spring Application
 integrating, with RabbitMQ 156
Spring beans
 declaring, for RabbitMQ 159
Spring Boot Actuator
 adding, in pom.xml 181
Spring Boot Admin
 about 272

[327]

 running 273
Spring Boot Maven plugin
 command line, using with 44
Spring Boot
 about 23
 microservices 24
Spring Cloud Bus 19, 20
Spring Cloud Config 18
Spring Cloud Config Server
 about 215, 216
 enabling 218
 Git repository, configuring as properties source

219

 GitHub, using as repository 218
 running 219, 220
 Spring Boot application, configuring 218
 testing 221
Spring Cloud Consul
 about 19
 reference 223
Spring Cloud Eureka server
 configuring 225
 running 227, 228
Spring Cloud Eureka
 creating 224
Spring Cloud Feign 17
Spring Cloud Gateway main class
 creating 238
Spring Cloud Gateway project
 configuring 239, 240
 creating 237, 238
Spring Cloud Gateway
 about 236
 route, creating with 242, 243, 244, 245
 running 241
Spring Cloud Hystrix 18, 271, 272
Spring Cloud Netflix 16
Spring Cloud Netflix Eureka 17
Spring Cloud Ribbon 17
Spring Cloud Security 20
Spring Cloud service discovery 222, 223
Spring Cloud Sleuth 229
Spring Cloud Stream 21
Spring Cloud Zipkin server
 about 228

 application.yaml, configuring 233
 boostrap.yaml, configuring 233
 creating 231
 infrastructure 229
 running 234
Spring Cloud Zookeeper
 reference 223
Spring Cloud Zuul 276
Spring Cloud
 about 16
 projects 16
Spring community
 projects 78
Spring container
 Twitter credentials, declaring for 164
Spring Core Framework
 about 8
 core container 8
Spring Data Commons Documentation
 reference 92
Spring Data JPA
 about 79
 data, checking on database structure 87
 JPA repositories, adding in CMS application 82
 models, mapping 81, 82
 pom.xml, configuring for 79
 Postgres connections, configuring 80
 transactions, configuring 84
Spring Data MongoDB
 about 88, 89
 database connection, configuring 91
 domain model, mapping 90
 persistence, checking 93, 94, 95
 PostgreSQL, removing 89
 repository layer, adding 92
Spring Data project 78
Spring Data Reactive 109
Spring Data Reactive Redis
 about 138
 ReactiveRedisConnectionFactory, configuring

139

 ReactiveRedisTemplate, providing 139
 REST resources, exposing 143
 Tracked Hashtag repository, creating 141
Spring Data

[328]

 about 13
 for Reactive Extensions 109
Spring Fox 46
Spring Initializr
 project, creating 130
 reference 37, 217
Spring Integration 21
Spring IoC containers 8
Spring JMS 10
Spring Messaging AMQP 155
Spring messaging
 about 9
 messages, consuming with 160
 messages, producing with 161
Spring MVC (model-view-controller) 8
Spring reactive web clients
 about 165
 authentication, with Twitter APIs 167
 gather service, creating 169
 models creation, for gathering tweets 166
 server-sent events (SSE) 169
 Twitter API, consuming 170
 WebClient, producing 165
Spring Security 14
Spring Team
 projects 78
Spring Tools Suite 28
Spring Web MVC module 11
Spring WebFlux
 about 12, 108
 event-loop model 109
spring.io blog
 reference 15
Spring
 about 6
 modules 7
 or Apache Kafka 10
starters 24
stereotype annotation 43
streams
 filtering 196
strings
 about 135
 main commands 135
subscribers 104

Swagger
 about 46
 configuring 59
 dependencies, adding to pom.xml 59
 documented API, creating 61, 63, 65
system
 running 318

T
Tracked Hashtag Service container
 running 201, 202
Tracked Hashtag Service
 bindings, creating 174
 exchanges, creating 174
 messages, sending to broker 175
 modifying 172
 queues, creating 174
 RabbitMQ connections, configuring 173
 running 177
 Spring Starter RabbitMQ dependency, adding

172

Turbine server 284
Turbine server microservice
 creating 285, 286
Tweet Dispatcher container
 running 204
Tweet Dispatcher project
 additional dependencies 188
 configuring 199
 creating 187
 Spring Initializr, using 187
Tweet Gathering container
 running 203
Tweet Gathering project
 configuring 197
Twitter application
 container, running 148
 creating 143, 144, 145
 image, creating 147
 pom.xml, configuring 146
Twitter credentials
 configuring, in application.yaml 163
 declaring, for Spring container 164
 producing 162
Twitter Gathering project

 creating 152
 running 177, 178
 structure 152, 153
Twitter setting models
 about 163
 TwitterAppSettings 163
 Twittertoken 163
Twitter
 enabling, in application 162

V
version control system (VCS) 226

W
WebSockets 191

Y
yaml
 bindings, declaring in 158
 exchanges, declaring in 158
 queues, declaring in 158

Z
Zipkin
 metrics, collecting with 310, 311, 312, 313

	Cover
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Journey to the Spring World
	Spring modularity
	Spring Core Framework
	Core container
	Spring Messaging
	Spring AMQP
	Spring for Apache Kafka
	Spring JMS

	Spring Web MVC
	Spring WebFlux
	Spring Data
	Spring Security

	Spring Cloud
	Spring Cloud Netflix
	Spring Cloud Config
	Spring Cloud Consul
	Spring Cloud Security
	Spring Cloud Bus
	Spring Cloud Stream
	Spring Integration

	Spring Boot
	Microservices and Spring Boot

	Setting up our development environment
	Installing OpenJDK
	Installing Maven
	Installing IDE
	IntelliJ IDEA
	Spring Tools Suite
	Installing Docker

	Introducing Docker concepts
	Docker images
	Containers
	Docker networks
	Docker volumes
	Docker commands
	Docker run
	Docker container
	Docker network
	Docker volume

	Summary

	Chapter 2: Starting in the Spring World – the CMS Application
	Creating the CMS application structure
	The CMS project
	Project metadata section
	The dependencies section
	Generating the project

	Running the application
	Looking under the hood
	Running the application
	IntelliJ IDEA
	Command line
	Command line via the Maven goal
	Command line via the JAR file

	Creating the REST resources
	Models
	Adding Lombok dependency
	Creating the models
	Tag
	Category
	User
	News

	Hello REST resources
	Creating the CategoryResource class
	UserResource
	NewsResource

	Adding service layer
	Changes in the model
	Adding a new review
	Keeping the news safely

	Before starting the service layer
	CategoryService
	UserService
	NewsService

	Configuring Swagger for our APIs
	Adding dependencies to pom.xml
	Configuring Swagger
	First documented API

	Integrate with AngularJS
	AngularJS concepts
	Controllers
	Services
	Creating the application entry point
	Creating the Category Controller
	Creating the Category Service

	Summary

	Chapter 3: Persistence with Spring Data and Reactive Fashion
	Learning the basics of Docker
	Preparing MongoDB
	Preparing a PostgreSQL database

	Spring Data project
	Spring Data JPA
	Configuring pom.xml for Spring Data JPA
	Configuring the Postgres connections
	Mapping the models
	Adding the JPA repositories in the CMS application
	Configuring transactions
	Installing and configuring pgAdmin3
	Checking the data on the database structure

	Creating the final data access layer
	Spring Data MongoDB
	Removing the PostgreSQL and Spring Data JPA dependencies
	Mapping the domain model
	Configuring the database connection
	Adding the repository layer
	Checking the persistence

	Creating the Docker image for CMS
	Configuring the docker-maven-plugin
	Adding the plugin on pom.xml
	Pushing the image to Docker Hub
	Configuring the Docker Spring profile
	Running the Dockerized CMS

	Putting in Reactive fashion
	Reactive Spring
	Project Reactor
	Components
	Hot and cold
	Reactive types
	Let's play with the Reactor

	Spring WebFlux
	Event-loop model

	Spring Data for Reactive Extensions
	Spring Data Reactive
	Reactive repositories in practice
	Creating the first Reactive repository

	Fixing the service layer
	Changing the CategoryService

	Changing the REST layer
	Adding the Spring WebFlux dependency
	Changing the CategoryResource

	Summary

	Chapter 4: Kotlin Basics and Spring Data Redis
	Learning Kotlin basics
	Main characteristics of Kotlin
	Syntax

	Semantics
	Declaring functions in Kotlin
	Simple function with parameters and return type
	Simple function without return
	Single expressions functions
	Overriding a function

	Data classes
	Objects
	Companion objects

	Kotlin idioms
	String interpolation
	Smart Casts
	Range expressions
	Simple case
	The until case
	The downTo case
	Step case

	Null safety
	Safe calls
	Elvis operator

	Wrapping it up
	Creating the project
	Project use case
	Creating the project with Spring Initializr
	Adding Jackson for Kotlin

	Looking for the Maven plugins for Kotlin
	Creating a Docker network for our application
	Pulling the Redis image from the Docker Hub

	Running the Redis instance
	Configuring the redis-cli tool

	Understanding Redis
	Data types
	Strings
	Main commands

	Lists
	Main commands

	Sets
	Main commands

	Spring Data Reactive Redis
	Configuring the ReactiveRedisConnectionFactory
	Providing a ReactiveRedisTemplate
	Creating Tracked Hashtag repository
	Creating the service layer

	Exposing the REST resources

	Creating a Twitter application
	Configuring pom.xml
	Creating the image
	Running the container

	Testing APIs
	Summary

	Chapter 5: Reactive Web Clients
	Creating the Twitter Gathering project
	Project structure

	Starting the RabbitMQ server with Docker
	Pulling the RabbitMQ image from Docker Hub
	Starting the RabbitMQ server

	Spring Messaging AMQP
	Adding Spring AMQP in our pom.xml
	Integrating Spring Application and RabbitMQ
	Understanding RabbitMQ exchanges, queues, and bindings
	Exchanges
	Direct exchanges
	Fanout exchanges
	Topic exchanges
	Header exchanges

	Queues
	Bindings

	Configuring exchanges, queues, and bindings on Spring AMQP
	Declaring exchanges, queues, and bindings in yaml
	Declaring Spring beans for RabbitMQ

	Consuming messages with Spring Messaging
	Producing messages with Spring Messaging

	Enabling Twitter in our application
	Producing Twitter credentials
	Configuring Twitter credentials in application.yaml
	Modelling objects to represent Twitter settings
	Twittertoken
	TwitterAppSettings

	Declaring Twitter credentials for the Spring container

	Spring reactive web clients
	Producing WebClient in a Spring Way
	Creating the models to gather Tweets
	Authentication with Twitter APIs
	Some words about server-sent events (SSE)
	Creating the gather service
	Listening to the Rabbit Queue and consuming the Twitter API

	Changing the Tracked Hashtag Service
	Adding the Spring Starter RabbitMQ dependency
	Configuring the RabbitMQ connections
	Creating exchanges, queues, and bindings for the Twitter Hashtag Service
	Sending the messages to the broker

	Testing the microservice's integrations
	Running Tracked Hashtag Service
	Running the Twitter Gathering
	Testing stuff

	Spring Actuator
	Adding Spring Boot Actuator in our pom.xml
	Actuator Endpoints
	Application custom information
	Testing endpoints

	Summary

	Chapter 6: Playing with Server-Sent Events
	Creating the Tweet Dispatcher project
	Using Spring Initializr once again
	Additional dependencies

	Server-Sent Events
	A few words about the HTTP protocol
	HTTP and persistent connections
	WebSockets
	Server-Sent Events

	Reactor RabbitMQ
	Understanding the Reactor RabbitMQ
	Configuring RabbitMQ Reactor beans
	Consuming the RabbitMQ queues reactively

	Filtering streams
	Dockerizing the whole solution
	Tweet Gathering
	Tweet Dispatcher

	Running the containerized solution
	Running the Tracked Hashtag Service container
	Running the Tweet Gathering container
	Running the Tweet Dispatcher container

	The docker-compose tool
	Installing docker-compose
	Creating a docker-compose file
	Running the solution
	Testing the network

	Summary

	Chapter 7: Airline Ticket System
	The Airline Ticket System
	Airline functionalities
	Solution diagram

	Spring Cloud Config Server
	Creating the Config Server project
	Enabling Spring Cloud Config Server
	Using GitHub as a repository
	Configuring the Spring Boot application
	Configuring the Git repository as a properties source
	Running the Config Server
	Testing our Config Server

	Spring Cloud service discovery
	Creating Spring Cloud Eureka
	Creating the Eureka server main class
	Configuring the Spring Cloud Eureka server
	Running the Spring Cloud Eureka server

	Spring Cloud Zipkin server and Sleuth
	Infrastructure for the Zipkin server
	Creating the Spring Cloud Zipkin server
	Configuring boostrap.yaml and application.yaml
	Running the Zipkin server

	Spring Cloud Gateway
	Creating the Spring Cloud Gateway project
	Creating the Spring Cloud Gateway main class
	Configuring the Spring Cloud Gateway project
	Running the Spring Cloud Gateway
	Checking the Eureka server
	Creating our first route with Spring Cloud Gateway

	Putting the infrastructure on Docker
	Summary

	Chapter 8: Circuit Breakers and Security
	Understanding the service discovery power
	Creating the planes microservice
	Coding the planes microservice
	The reactive repository
	Creating the Plane service
	The REST layer
	Running the plane microservice

	Flights microservice
	Cloning the Flight microservice project
	Netflix Ribbon
	Understanding the discovery client
	Service discovery and load balancing in practice

	When the services fail, hello Hystrix
	Hystrix in a nutshell
	Spring Cloud Hystrix

	Spring Boot Admin
	Running Spring Boot Admin

	Spring Cloud Zuul
	Understanding the EDGE service project
	Creating the EDGE server

	Summary

	Chapter 9: Putting It All Together
	The airline Bookings microservice
	The airline Payments microservice
	Learning about the Turbine server
	Creating the Turbine server microservice

	Hystrix Dashboard
	Creating the Mail microservice
	Creating the SendGrid account
	Creating the Mail microservice project
	Adding RabbitMQ dependencies
	Configuring some RabbitMQ stuff
	Modeling a Mail message
	The MailSender class
	Creating the RabbitMQ queue listener
	Running the Mail microservice

	Creating the Authentication microservice
	Creating the Auth microservice
	Configuring the security
	Testing the Auth microservice
	Client credentials flow
	Implicit grant flow

	Protecting the microservices with OAuth 2.0
	Adding the security dependency
	Configuring the application.yaml file
	Creating the JwtTokenStore Bean

	Monitoring the microservices
	Collecting metrics with Zipkin
	Collection commands statistics with Hystrix

	Dockerizing the microservices
	Running the system
	Summary

	Other Books You May Enjoy
	Index

