Jill

BY CHRIS ROSE

&
SUCCINCTLY E-BOOK SERIES iS2Syncfusion

Scala Succinctly

By
Chris Rose

Foreword by Daniel Jebaraj

EE.Sgncfusion‘

Copyright © 2017 by Syncfusion, Inc.
2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

I mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.
Redistribution in any form is prohibited.
The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.
Please do not use this book if the listed terms are unacceptable.
Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffery

Copy Editor: John Elderkin

Acquisitions Coordinator: Morgan Weston, social media marketing manager, Syncfusion, Inc.
Proofreader: Darren West, content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

Table of Contents

The Story behind the Succinctly Series 0f BOOKSciiiiiiiiiiiiiicc e 6
ADOUL T8 AUTNOT ettt et e e s e e s e e s nn e e sre e e snneeenee e 8
Chapter 1 INTFOTUCTION ..eeiiieiiee ettt ettt e ekt e e ek et e e e s et e e e b be e e e e bbe e e e enbneeeennes 9
TaIS e=1 = LA To] o PP P PP PPPPPPTPPPPPRN 9
SElECHING @ WOIKSPACE ... ettt etttk e ekt e e e e s bt e e e aa b et e e e aa b et e e e st et e e e anbe e e e e nnbeeeeennes 11
HEIO WOTIA ...ttt ettt e s ekt e e skt e e e bt e e e nbe e e e e nbae e e e neee 11
RUNNING the QPPIICALIONeeiiiiiiiie ettt st e st e e e e nb e e e e nbae e e e aneee 17
Debug and run CONFIQUIALIONSoiuiiiii ittt ettt e et e e e s nbe e e e e nbee e e e neee 19
ProBIEMS @NT ©ITOIS ..ot e s st e e e e e e s s e e e enre e e e ennes 19
Chapter 2 Variables and ValUEScooooiiiii i 21
(D E= 1= R Y/ 012 PSP PO PPPPPTPPIN 24
LIEEIAIS ettt e e e a e e e e n e 27
L070] 1011 41T 1K= TP PP OO PP 29
L0211 1] Vo [PP 29
Chapter 3 EXpressions and FUNCLIONSouiiiiiiiie ettt e 31
g o] (=21 To] K PSP PP OTPRTN 31
Creating and Calling FUNCHONS.........coiuiii e sbee e 35
VarTADIE PAIAIMELEIS. .. . eeii ettt ettt e ettt e e st bt e e e sabb e e e e s bb e e e e aabb e e e e anbbeeeesnbneeeeans 39
Evaluation Of FUNCHIONSeiiiiiie ettt e et e e e bt e e e e nbe e e e e nees 40
Chapter 4 COoNtrOl SIIUCTUIESoueiie ettt e et e e st e e e b e e s e e e e anee 43
7 StAIEMENTS .. 43
o g (o To] o 1= TP ETP PRI 44
LT a1 = (o To] o - ST PPUPT PP 48

(D To Y 11 (= (oo o L= ST EUP T OTOTPPPI 49

Chapter 5 Arrays @nd LiSTSoooiiiiiiiiiiiie ettt e e e e an et e e s st e e s aab e e e e nees 54
£ £\ TP PO PP PP UPPPPPPRPP 54
Accessing and SEING EIEMENLSuiiiiiie e e e s s s r e e e e e s s st e e e e aeeesaannraees 54
MUIIAIMENSIONAL GITAYS ..eeeeeiiiiiiieeee e e e e e e e e e e s e e e e e s s s e e e e e e e e s s s s baaeeeeeeessansntasaeeeeeeseaannnrnnneeaes 57
=N/ = 11 (= S 59
[T £ PP OP R PURR PRSPPI 61
FOIAING e ——————— 66

Chapter 6 Other CollECtION TYPES oo iii i 68
StACKS QNGO QUEUES.... . .eeitiiiieee e ettt e et e e e ettt e e e e e e s sttt et e aeeesaaseabeeeeaaeeesaansebaeeeeaeeeaannsstaneeeaeeesannsnrenes 68
ST ST TP PP PURTPP PP 70
B0 0] L PP POPPUPPPPUPPPOUPPP 75

Chapter 7 Classes aNnd ODjJECESiiiiiiiiieiiiiie ettt e e et e e s abae e e e nees 81
ClASSES ..ttt R bt e ah bt e e e R bt e e e an et e e e anbb e e e e abre e e e e 81
ClASS SYNTAX...ccitteteeiitteee ettt e ettt e e ook bt e e oo a b et e e ek b et e e ek b et e e e h b et e e e anbe e e e e anbe e e e e nnbre e e e e 85
] L] g ¢= g ol OSSP OU PR RPP 93

Chapter 8 Pattern MatChingccoooiiiii i 98
Using OR with pattern MatChing ... 99
RV 2= U T o] L= Tt o o1 T TP 100
CASES AN CIASSESoeeiiiiiiii ettt e e e e et e e et et e e e e e e s e e e 101

(O =T o) (=T g T O o 1] U1 TR 106
S aTe] g g T T o [y = b TP PPRUTPPR 108

Chapter 10 CONCIUSION ...ciiiiiiie ittt ettt e e st e e e sttt e e e anbb e e e e snbeeeeesnbbeeeesnbneeaeans 110

The Story behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge
As many of you may know, Syncfusion is a provider of software components for the

Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest
In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and

sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

About the Author

Christopher Rose is an Australian software engineer. His background is mainly in data mining
and charting software for medical research. He has also developed desktop and mobile apps
and a series of programming videos for an educational channel on YouTube. He is a musician
and can often be found accompanying silent films at the Majestic Theatre in Pomona,
Queensland.

Chapter 1 Introduction

Scala is a general-purpose language designed with both object-oriented and functional
mechanisms. Scala can be used as a standalone application language, but it can also be used
to develop modules for Java-based programs. The language was developed to express
paradigms that are difficult to express in Java. The Scala compiler (a program called
scalac.exe) uses the Java Virtual Machine (JVM) in order to compile source code to Java
bytecode for execution.

If you are not already familiar with Scala, | recommend you first learn the basics of the Java
language. The two languages share strong links—all of the Java libraries are available in Scala,
and Scala integrates seamlessly into existing Java applications. Figure 1 depicts the close
relationship between Java and Scala.

Java Project “ Scala Project

Figure 1: The Relationship between Scala and Java

Installation

Scala can be programmed using the console, but this is not a practical method for programming
large-scale projects. The best method for programming useful modules is to install the Eclipse
Scala Integrated Development Environment (IDE), which is a set of tools designed to assist
development in one or more programming languages.

The Eclipse Scala IDE is available from http://scala-ide.org/. Visit and download the latest
version.

http://scala-ide.org/

|'~
Q Note: In this e-book, | will use the Scala Eclipse IDE exclusively, but there are other
options available for developing the Scala application and integrating with existing Java
applications. IntelliJ IDEA is another popular Java IDE that can be used to develop Scala
modules and projects. You can also use the command line and develop Scala modules
without an IDE.

When your download is complete, create or locate the folder in which you would like to store the
application—for instance, in C:\Program Files\. Create a new folder called Scala Eclipse, copy
the downloaded file to this new folder, and extract the archive’s contents. You should end up
with a folder filled with the files and folders depicted in Figure 2.

[+ i Application Tools ~ Scala Eclipse — O X
“ Home Share View Manage e
= v A <« Program Files » Scala Eclipse v O Search Scala Eclip... @
$ Quick access ~ Marme Date modified Type ~
& OneDri configuration 4/08/2016 4:36 PM File folde
nelirive
features 4/08/2016 4:36 PM File fold:
[This PC META-INF 4/08/2016 4:36 PM File folde
I Desktop pl 4/08/2016 4:36 PM File folde
2 Documents plugins 4/08/2016 4:37 PM File folde
readme 4/08/2016 4:37 PM File fold:
* Downloads
eclipseproduct 28/01/2015 10:08 ... ECLIPSEF
psep
J’) PMusic . e A e .
|| artifacts.xml 1/12/2015 457 PM XML Do
=] Pictures eclipse.exe 1/12/2015456 PM Applicat
B videos & eclipse.ni 1/12/2015457PM INI File
p
‘e Bermuda (C:) [eclipsec.exe 1/12/2015 4:56 PM Applicat
= UuID) & epl-v10.html 28/01/201510:08 ... Firefox b,
— Bermuda backut ¥ € &
13items 1 item selected 305 KB =

Figure 2: Installing Eclipse Scala IDE

Finally, in order to run the Scala Eclipse IDE conveniently, you might want to create a shortcut.
Right-click the file called eclipse.exe and select Create Shortcut. Eclipse.exe is the main
executable file for the IDE. Create a shortcut on your desktop or in some other convenient
location. In order to run the IDE, double-click clipse.exe (or your newly created shortcut).

10

11

Selecting a workspace

When you run Eclipse, the Workspace selection dialog box opens (as per Figure 3). This allows
you to specify which workspace you want to work with. A workspace is simply a folder that holds
a collection of projects, and you can create a new workspace folder by clicking Browse... For
instance, you can place your projects into your Documents folder in a subfolder called Scala
Workspace. When you have selected a workspace or decided to use the default, click OK.

Workspace Launcher *

Select a workspace

Scala IDE stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session,

LGS ET C Users\ Chris\workspace ~ Browse...

[] Use this as the default and do not ask again

Figure 3: Selecting a Workspace

Hello World

For our first project, we will make a simple Hello World program in order to test that everything
has been set up correctly. In order to begin a new project, start the Eclipse Scala IDE. Click File
— New in the file menu of Scala Eclipse and select Scala Project from the submenu (as per
Figure 4).

Q‘ Note: Scala requires the Java Runtime Environment to be set up on the machine

(JRE for short). This will probably be installed already. The latest version of the
machine can be downloaded from Oracle at
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html.
It is best to maintain an up-to-date JRE on your development machine(s) so that your
Scala applications gain all of the benefits and optimizations of the latest JVM. Scala also
requires the Java SE development kit, which can be downloaded from
http://www.oracle.com/technetwork/pt/java/javase/downloads/idk8-downloads-
2133151.html.

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-2133151.html

File Edit Source Refactor Refactor Mavigate Search Project Scala Run Window Helg

Mew Alt+Shift+M > (5 Scala Project
Open File... = Project...
Close Ctrl+W f¥ Package
Close All Ctrl+Shift+W (& Scala Class
Save Ctrl+S & Scala Trait
& SaveAs.. @& Scala Object
Save Al Gut.shins (L3 Scala Package Dject
Revert il fEmLEr
&Y Source Folder
Move... 9 Folder
il)
[# Rename F2 % File
Refresh s J Play Template
. . .
Convert Line Delimiters To 2 Scala Worksheet
Print... Ctrl+P 5 Bample..
i »
Switch Workspace I Other.. Chrle M
Restart
sy Import..
ixg Export..
Properties Alt+Enter

1 MyObject.scala [MyProject/src]
2 Demo.scala [MyProject/src]
3 mainclass.scala [MyProject/src]

4 upperl.scala [MyProject/src]

Exit

Figure 4: Beginning a New Project

Eclipse will show the New Scala Project window. Type a hame for your project in the Project
name box and click Finish. In Figure 5, | have called my new project HelloWorld.

B Mew Scala Project d x
Create a Scala project » :
Create a Scala project in the workspace or in an external location. '

Project name: | HelloWorld| |

Uze default location

Ch\Users\ Chris\workspaceScala\HelloWorld Browse...
JRE
(®) Use an execution environment JRE: lavaSE-1.8 -~
(C) Use a project specific JRE: jrel.8.0 9
() Use default JRE (currently 'jre1.8.0_91") Configure JRES...

Project layout

() Use project folder as root for sources and class files

(®) Create separate folders for sources and class files Cenfigure default...

Working sets
[Add project to working sets

Select...

'/7:' = Back Mext » Finish Cancel

Figure 5: Creating a Project

A project is a collection of classes, objects, files, and resources that will be compiled by the
scalac.exe and executed by the JVM. Project names must be unique within the workspace.
They must also follow any conventions defined by the operating system. For instance, we
should avoid using special symbols in our project names, such as & an $, and stick to letters
and digits.

Atfter clicking Finish, the Eclipse Scala IDE will create a simple project for you. Next, we need to
add the main object, which will hold a program entry point. Right-click the src folder in the
package explorer window. If that window is not visible on the file menu, click Window>Show
View>0Other>Java>Package Explorer. Next, select New>Scala Object (see Figure 6). Eclipse
will open the New File Wizard window, as in Figure 7.

ﬂ‘ Note: The layout of the windows and panels and the debugging options are all the
—! same between the Scale Eclipse IDE and the Java Eclipse IDE. Read Java Succinctly
1 for an introduction to the basic panels, windows, and debugging tools available in

Eclipse.

Mew * [Scala Project

Go Into ™ Project...

Open in New Window B¢ Package

Open Type Hierarchy F4 (& ScalaClass

Show In Alt+Shift+W > @ Scala Trait
[E Copy Ctrl+C & Scala Object
E5 Copy Qualified Name G Scala Package Object
5 Paste Ctrl+V (5] Scala App
% Delete Delete {9 Source Folder

9 Folder

Build Path > _¢, File

Source Alt+5hift+5 » P Play Template

Refactor Alt+Shift+T 2 Scala Worksheet
Ly Import.. 9 Example...
g Export...

™ Other.. Ctrl+N

« Refresh F5

Assign Working Sets..,

Debug As »

Run As »

Validate

Teamn >

Cormpare With »

Restore from Local History...

Mawven ¥

Properties Alt+Enter

Figure 6: Creating a New Scala Object

14

15

B New File Wizard O x

Create New File —

Kind: G Scala Object v

Source Folder: ‘ HelloWorld/'src

Marmne: | MainObject

The wizard uses a template in Scala — Editor — Templates to create the content of a new file.
The corresponding ternplates start with "wizard_" and can be freely edited.

®

Figure 7: Opening the New File Wizard Window

In the New File Wizard window, give your object a name (I have called mine MainObject) and
click Finish. Eclipse will create a new file for you with the code presented in Code Listing 1.

Code Listing 1: MainObject

object MainObject {

}

Scala is an object-oriented language with features similar to C++, C#, and Java. It operates a
collection of objects built from classes. But Scala also allows us to define singleton objects.
Singleton objects are the only instance built from a class. The object called MainObject in Code
Listing 1 is actually a singleton. Instead of defining a blueprint with the keyword class, we
define a singleton by using the keyword object.

In order for the JVM to know where to begin executing our new application, we must create an
entry point—a main method. The JVM will call our main method once. It will never create more
than one object of type MainObject, and this is why we can create the class as a singleton
object rather than an inheritable or instantiable class. Code Listing 2 shows the completed code
for the HelloWorld application.

-
Q Note: We do not have to specify a main method. We can create usable modules

without a main method. The main method is only used when we intend to create an
executable application.

Code Listing 2: HelloWorld Application

// Main object definition
object MainObject {
// Main method definition
def main(args: Array[String]l): Unit = {

// Print greeting:
println("Hello world!")

} // Close main method
} // Close MainObject

If you know Java programming, Code Listing 2 might look familiar. For one thing, Scala is a
curly-brace language. This means it uses { and } to designate code blocks. Note how each {
has a matching }. Also, be aware that there are several conventions used for tabbing that are
intended to make reading code easier.

Note: Scala may be a curly-brace language, but it is quite different from other C-

family languages. You might notice that there are no semicolons at the ends of the
statements. You can put in the semicolons, but they are almost never necessary in Scala.
Mostly, we use semicolons when we need to place multiple statements on a single line;
in this case the semicolon is used to delimit statements.

In Code Listing 2, we defined a method called main. The method begins with the def keyword
and is followed by the name of the method (main in this case). Here the name main is a
reserved word, and note that Scala is case sensitive. The inputs to the method are specified in
brackets: (args: Array[String]). This particular method expects an Array of type String
to be passed as a parameter, while args is the variable name or identifier (we will look at in
detail for defining variables and passing arguments). We will ignore the args array in this e-
book, but it is actually the optional command-line arguments; we could read the elements of
args and respond to any command-line arguments the user passes when running our
application from the console, a batch file, or shortcut that supplied arguments.

After we define a function’s parameter list, we place a colon followed by the output type of the
function—in this case : Unit. Note that | use the words “function” and “method” more or less
interchangeably. The technical differences between a Scala function and a Scala method are
quite subtle but, with regards to the examples in this e-book, those differences are important.
See the Scala documentation for the gory details. The main method does not return anything to
the caller, so we place the keyword Unit as the output (which is equivalent to the void return
type in other languages). We then use an equals operator (=) and open the code block for the
specification of the method’s body.

Tip: There are often many optional elements in Scala’s syntax. For instance, if a

function does not return anything, the “: Unit” is optional. So is the “=" sign. In Code
Listing 1 we could have used the line “def main(args: Array[String]) {” to define our
main method. Scala is very good at inferring information such as data types.

16

Inside the method body, we use the println built-in function to print a string of text to the
screen. And we close the code blocks for the main method and the MainObject.

Running the application

When we have a Scala project with a main entry point, we can run the application by clicking
Scala Application in the file menu, under Run>Debug As—as in Figure 8. You'll be presented
with a Select Preferred Launcher dialog window. Check the Use configuration specific
settings option, then select either the JVM or New Debugger option and click OK. You can
change this selection later with Run > Debug Configurations > Common > Select Other >
(option).

The first time you use Scala Eclipse, you might get a firewall warning. If so, select the option
that allows eclipse.exe to run on your network.

» [8] 1Scala Application Alt+Shift+D, S

Figure 8: Debugging a Scala Application

When you run the application, it will print the line “Hello world!” to the Console. In Scala Eclipse,
the Console is represented by a small window at the lower end of the screen—see Figure 9.

S T

MainObjects (1) [Scala Applicatior

Hello world!

Figure 9: A Console

Q Note: We will be working entirely with the Console in this e-book, but Scala has the
complete Java Library available to it. You can create applications in Java with a
Graphical User Interface (GUI), or you can use the Java GUI library of classes to build a
GUI in Scala. I will not go into the details of building a GUI here, but | refer you to Java
Succinctly 2, in which we look at how to build a GUI using Java.

After you have run your Scala application once using the method described here, Scala Eclipse
will create Run Configuration for you. When your project has a run configuration, you can run
and debug the application by clicking Debug or Run, as shown in Figure 10.

Figure 10: Debug and Run Buttons

19

Debug and run configurations

The debug and run configurations can be changed by clicking Run — Debug Configurations
or Run — Run Configurations. Clicking these options will open up the Debug Configurations
box, as per Figure 11. If you need to supply command-line arguments to your programs (which
will be passed as the args Array parameter to the main method) or test the project using a
different JRE, you can do so with this box. We will use the default configuration throughout this
e-book.

B Debug Configurations bt
Create, manage, and run configurations
4 4,
X | B~ Name: | MainObjects (1) |

type filter text © Main 57| Scala Debugger | #9= Arguments | B JRE | “%; Classpath E Source | I Environment| [Z] Common

& Eclipse Application Project:

5 Java Applet

5] Java Application | HelloWarld | Browse...

Ju JUnit Main class:

J% JUnit Plug-in Test —

m2 Maven Build | MainObject | Search...

4% 05Gi Framework [JInclude system libraries when searching for a main class

', Remote Java Application [JInclude inherited mains when searching for a main class
w [E] iala A.ppllc.atlon [Tsiommnan

[5] MainObjects (1)
[E] Scala Interpreter
[E] ScalaTest (java runner)
Using Scala Application (new debugger) Launcher - Select other... Appl Revert

Filter matched 12 of 21 items : gh - 99e) BES
@

Figure 11: Run and Debug Configurations Box

Problems and errors

Finally, if your project does not run and print “Hello world!” to the console, Eclipse may show an
error box. If so, it will ask if you want to Continue with Launch. You should answer No. If you
answer Yes, Eclipse will run the last version of the program known to work, and this is not
useful for debugging.

When you select No, the error list can be found by clicking the Problems tab at the lower end of
the screen, as in Figure 12.

Bl Problems % |45 Tasks [Console

1 error, 0 warnings, 0 others
2

Description Resource Path Lecation Type
~ 3 Errors (1 item)
@ not found: value printline MainObject.s.. /HelloWerld/src line 3 Scala Problem

Figure 12: Problems Tab

Wl

. 4
|;’ Note: Many of the debugging techniques in Eclipse Java are also available in
Eclipse Scala. | will focus on the main differences between Java and Scala, which means
I will not be going into the details of debugging. If you wish to know more about
debugging mechanisms and tools, consult Java Succinctly 1.

21

Chapter 2 Variables and Values

A variable is a name used to point to different values. For instance, we might create an integer
variable called personAge and point it to 35. We can point a variable to a different value, which
means we can later change personAge and point it to 36. In this sense, Scala variables are
similar to references in other languages. In Scala, we define variables by using the var
keyword.

A value is a fixed quantity or object. Values do not change, and they are pointed to by variables.
In other languages, values are called constants, and we might define a value called PI and set it
to 3.14159. In Scala, we define values by using the val keyword.

Code Listing 3: Setting and Changing Vars and Vals

object MainObject {
def main(args: Array[String]): Unit = {
// Create a variable called myVariable.
var =

// Create a value called myValue.
val myValue =

// We can change the value that myVariable points to:

// But we can't change a val! The following line is an error!

In Code Listing 3, we create a variable called myVariable and set it to 10. We also create a
value called myValue, again set to 8. Next, we change the setting of myVariable to 10. This is
fine because variables can be set to many different settings throughout a program. But in the
next line we try to set myValue to 16—this line is an error, and | have highlighted it in red. Note
that we cannot reassign a value. In order to reassign a val would be something like reassigning
a meaning to the number 3 or to Pi—the operation makes no sense and is not legal.

The syntax for defining a variable begins with the var or val keyword, followed by the identifier
name, such as myVariable or myValue. We follow this with the assignment operator “=” and
supply a value, variable, or literal. This method, used in Code Listing 3, is a shorthand syntax.

Scala will infer the data type for the variable from the initial assignment.

We can also explicitly state the data type for the variable by including a colon and the name of
the data type (we will look at all the available data types shortly). Code Listing 4 shows some
examples of using this longer syntax to define Int, String, and Double variables by specifying
the data types.

Code Listing 4: Specifying Data Types

object MainObject {
def main(args: Array[String]): Unit = {
// Create an Int variable called myInt
var ¢ Int =

// Create a String variable called personName
var : String = "Thomas"

// Create a double val set to the Golden Ratio
val goldenRatio: Double =

Identifier names

An identifier is a name we use to stand for something in our program. Identifiers are used to
name val and var, as well functions, classes, and objects. Scala is flexible when it comes to
naming identifiers. There are almost no restrictions at all, unlike languages such as Java, which
do not allow arbitrary symbols. By contrast, Scala allows all types of string to be identifiers,
including options like “&”, and “Days of the week!”.

Simple identifiers can be made in Scala much the same as with other languages. These
identifiers consist of a string of characters that begin with a letter or underscore. The string can
contain digits, but it cannot begin with a digit. For example: userName, _height, record56,
Square_Root.

We can also use operator symbols as identifiers. This is often the case when we name member
methods that are to act as operators for our objects in object-oriented programming. We will
look at naming member methods when we look at classes. For example: +, ++, :: :. Generally,
naming our regular variables with these symbols or strings of these symbols is not a good idea
because doing so can make the code difficult to read.

Finally, we can use back quotes to delimit arbitrary strings. These strings can contain spaces,
symbols, digits, anything at all. The identifier name is the string without the back quotes. We can
use the identifier name by itself, but only in certain circumstances because the compiler
sometimes needs the back quotes in order to understand where our variable names begin and
end. Code Listing 5 shows some examples of Scala identifiers with simple and complex names.

Code Listing 5: Identifier Examples

object MainObject {
def main(args: Array[String]): Unit = {
// Identifiers for variables are usually descriptive strings
// of letters and digits:
var = Math.sqrt(2)

22

23

// We can also define identifiers beginning with underscore:
val someVar =

// But, we can define an identifier as a series of operators.

// Note that this doesn’t make sense in the current context, and
// this type of identifier is much more useful when we are

// defining classes in Object-Oriented programming!

def +&*%(i: Int, y: Int): Int =

// We can name a variable an arbitrary string of characters, but
// sometimes we have to use back quotes to delimit the name:
val #*2": Int =

// And we can use back quotes to define arbitrary identifiers:
val “my identifier has 4's in its name, and $ as well! =

// If it can, Scala will recognize the identifiers without quotes
// even their name consists of arbitrary operator symbols:
println("The value of #*7 is " + #*")

// We can include the back quotes if our names are confusing:
println("The value of #*" is " + “#*/7)

// If the names of the variable have spaces, we need to use
// back quotes because the Scala compiler
// will split the name into tokens unless it is delimited
// with back-quotes:
println("The value of my silly val is: " +

“my identifier a 4 in its name, and $ as well!")

// The following is indecipherable and will generate an error!

//println("The value of my silly val is: +
// my identifier has 4's in its name, and $ as welll)

4."
él Note: Although we are able to name our identifier’s keywords like def, this is not a
good idea (in fact you would have to use back quotes to do this). We should always try to
name identifiers in a descriptive way, and we should never try to redefine keywords by
creating identifiers with the same name.

? Tip: It is conventional to use Camel Case to name Scala identifiers. Identifiers begin
- with alowercase letter, and every following word within the identifier begins with an
uppercase letter, such as averageIncome and computePerimiter. This is just a
convention, and when we name classes, we typically use an uppercase letter to begin
each word within the same name, such as MyClass. This makes it easy to differentiate
between variables and classes.

Scala is case sensitive, which means the identifiers MYID and myID are completely different
identifiers, and def is a keyword, but DEF is not.

Data Types

Name Type Size (Bytes) | Size in Bits | Minimum Maximum
Byte Integer 1 o -128 127
Short Integer 2 16 -32768 32767
Int Integer 4 32 -2147453648 | 2147483647
Long Integer] 64 -2 251
Float Float 4 32 -3 4102 3. 4x10%
Double Float 8 64 -2 210" 2 2107
Boolean | Boolean 1 8 falze true
Char | Character 2 16 Unicode Unicode

The fundamental data types are the same as in Java, except they begin with an uppercase
letter. The Scala compiler is often clever enough to deduce the data type from the context, so
the data type can often be left out when we are defining variables and values, but, if we want to
explicitly state the data types for our variables, we use the names in the first column of Figure
13. Figure 14 depicts an overview of some of the characteristics of the fundamental data types

in Scala.

Figure 13: Data Types

24

Each box is a byte! Double

Sign

Exponent Mantissa

Usually 8 bits, can only store
Boolean true or false, and the actual
Size in RAM depends on the JVM.

Char -«——— Unicode character!

i ¢ Strings can be any length,
Strmg 000 each box is a Char!

Figure 14: Overview of Fundamental Data Types

Code Listing 6 shows some examples of declaring and defining variables and values (note this
listing has no main method and cannot be run).

Code Listing 6: Defining Variables and Values

var somelnteger: Int = 190 // Declare and define an integer.
val someChar: Char = 'A' // Declare and define a character.
var someBool: Boolean = false // Declare and define a Boolean.
var someFloat = 3.14f // Declare and define a float.

var someDouble = Math.sqrt(2) // Declare and define a double.

In the the final two examples, | have not used a data type, but Scala knows that someFloat is
supposed to be a floating-point number because the literal 3.14f is a float (it ends with £, which
is the suffix for a float). Likewise, someDouble will have the type of Double because
Math.sqrt(2) is a function that returns Double.

s

The integers are whole numbers. For instance, an integer could be set to 178 or -59. The
different integer types (Byte, Short, Int, and Long) are used when we need more or less range
for our numbers. Bytes can only store between -128 and 127 inclusive, so if you have a variable
you know will fall only between these values, you can save RAM and store the variable as a
Byte. Otherwise, if your variable needs a lot of range, you might use a Long, because it has a
range of -25 up to 2%3-1. We usually use Int for whole numbers and only use Byte or Short
when we know the range is small and we want to conserve RAM, or when we need to
interoperate with a system that uses one of these smaller data types. Likewise, it’s rare to use a
Long unless we know that the particular variables need the range.

Scala uses the same integer arithmetic as other languages. This means that operations result in
truncation rather than rounding. For instance, 10/6 will give the result 1, even though the actual
value, 1.66666, is nearer to 2. Integer arithmetic always truncates the fractional part of the
answer and returns the remaining integer part as the result. If you need to know the remainder
after division, this can be returned with % operator. So, 10/6 in terms of integer operations is
10/6, which equals 1 with the remainder returned 10%6, which equals 4; in other words, 10/6
equals 1 with remainder 4.

Floating-point numbers (Float and Double) are able to express fractional values such as 67.8
and -99.24. Floating-point arithmetic often incurs error, and there are many fractions that
floating point cannot represent exactly. For instance, 1/3 is impossible for floating point to
represent because Scala uses IEEE 754 standard, and this standard only allows exact
representations of sums of perfect powers of 2. When we set a Double variable to 1/3, the
number stored is very close 1/3, but not exact. This is sometimes important—for instance, when
checking if two doubles are equal, we sometimes must consider a small amount of error, such
that 0.333333333 would be equal to 0.333333332, because the 2 on the end is possibly a
rounding error. Code Listing 7 shows an example of using Math.abs to test equality of doubles.

Code Listing 7: Testing Equality Between Doubles

object MainObject {
def main(args: Array[String]): Unit = {
// Define two variables which are mathematically

// equal:
var a = (/)
var b = (/) ¥ v

// This will not work! Testing the exact
// values of doubles for equality is often
// a waste of time!
if(a == b)

println("The two are equall!")
else

println("The two are not equal...")

// Allowing some small error using Math.abs
// makes more sense. The following report
// that a and b are equal:
if(Math.abs(a - b) <)

println("The two are equal!")
else

26

27

println("The two are not equal...")

In Code Listing 7, we create two variables, a and b, which should theoretically be set to exactly
the same value;—10/3 is mathematically identical to (1/3)*2*5. But in IEEE 754, we will get two
different values for these expressions, so we should use Math.abs when we compare them,
and we should allow for a small degree of error (8.0001 in the example will report equal value
as long as the doubles are similar to within 1/10000). The small value used for the comparison
of floating-point types is usually called the epsilon value. We can use exactly the same
technique when comparing Float values because Floats suffer from the same rounding errors.

Boolean variables are used in logical expressions in order to make decisions and for filtering.
They have only two values: true or false.

The Char data type is used for characters and for Strings. It represents Unicode characters,
suchas 'A'or '@".

Literals

A literal is a value that appears in the code, such as 190 or "A". They are used to set variables
and values and also to form expressions. All of the literals are values, and like val, they cannot
be redefined. We can, however, point variables to them.

Integer literals

Integer literals appear as whole numbers, such as 899 or -77162. They can have a negative
sign to indicate values less than @. Integer literals without a suffix are read as base 10 or
decimal literals, so that 899 means “eight hundred and ninety-nine.” Integer literals with the @x
suffix are read as hexadecimal, or base 16 numbers. For instance, @xff0a and 0x772e
(hexadecimal is a positional notation, the same as decimal, except that there are 16 digits, O
through to 9, A, B, C, D, E and F—for more information on hexadecimal, visit Wikipedia:
https://en.wikipedia.org/wiki/Hexadecimal). Long integer literals end with L, such as 789827L or
-898827L. Long integer literals have a range of -2% to 2%-1.

Note: In previous versions of Scala, we could use a leading '0' to denote an octal
number. For instance, 037 would mean the decimal value 31. Octal literals are now
obsolete, and placing a leading 0 at the beginning of an integer literal will cause an error.

https://en.wikipedia.org/wiki/Hexadecimal

Floating-point literals

Type Double literals contain a decimal point—for example, 90.7 or -178.5. Type Float literals
can contain a decimal point, too, and they end with an 'f'. For instance, 271f or -90.872f. You
can also use scientific notation for the Float and Double literals—for example, 54.9e2, which
is the same as 5490.0 (or 54.9 multiplied by 10 to the power of 2). You can use the 'f' suffix
along with scientific notation to create a Float literal too, e.g., 16e-1f would mean 1.6 or 16 by
10 to the power of negative 1.

Other literals

Character literals are surrounded with single quotes, such as 'A*, '%"', or '6'. Note that '6" is
very different from the integer 6. '6" is a Unicode character with the Int value of 54. For a
complete table of the Unicode characters, visit http://unicode-table.com/en/. There are also
some escape sequences available as character literals: "\n" for new line, *\r' for carriage
return, "\t"' for tab, "\"' for double quotes. In order to use a Unicode code directly, we place
the "\u suffix followed by the number, so that '\u@e65"' is the same as "A’, because '6"' has a
Unicode value of 65.

The Boolean literals are true and false. Code Listing 8 shows some Boolean literals. We can
use the true and false keywords, and we can also use other literals along with logical
operators such as '>' (which means greater than) in order to form logical expressions. In Code
Listing 8, 2 is not greater than 5, which means the Boolean called twoGreaterThanFive will be
set to false.

Code Listing 8: Boolean Literals

val myBoolean = true
var = false
val twoGreaterThanFive = >

String is not a fundamental data type, but strings are so commonly used that we can introduce
them with the other fundamental data types. String literals are formed by surrounding text with
double quotes. We can also use triple-double quotes to denote multiline string literals. Multiline
literals can include new line characters. Code Listing 9 shows two examples of string literals—a
single line literal and a multiline literal.

Code Listing 9: String Literals and Multiline String Literals

var = "This is a string!"

var = PO

This is also a string, only this one

can span many lines because it is delimited with
triple quotes! It can also contain single quotes,
like "

28

http://unicode-table.com/en/

29

Comments

Comments are notes programmers place in the code for themselves and other programmers.
Comments are ignored by the Scala compiler. Scala allows the same commenting as Java. We
use // to specify a single line comment or to comment on the remaining text on a line, and we
use /* and */ to include block comments (see Code Listing 10 for an example using single and
multiline comments).

Code Listing 10: Comment Example

/* HelloWorld

* Displays the text 'Hello world' to the user
* CommandLine Args: None

* Returns: None
*

*/

object MainObject {
def main(args: Array[String]): Unit = {
// Print 'Hello world!' to the console:
println("Hello world!") // Single line comment!

"
Q Note: Scala also allows special comments called ScalaDoc comments. These
comments begin with /** and end with */. They are used to generate documentation for
our code. For more information on the syntax and use of ScalaDoc comments, visit:
http://docs.scala-lang.org/style/scaladoc.html.

Casting

To cast is to change the data type of a variable, value, or literal. Casting in Scala is achieved by
calling functions that each of the data types supply. For instance, to cast an Int to a String,
we would use someInt.toString. To cast a Double to a Float, we would use
someDouble.toFloat. Code Listing 11 shows examples of casting between the various types.

Code Listing 11: Casting

object MainObject {
def main(args: Array[String]) {

// Casting numerical types to other types and strings:
var someDouble =

println("As a float: " + someDouble.toFloat)
println("As a char: " + someDouble.toChar)
println("As an Int: " + someDouble.toInt)

println("As a String: " + someDouble.toString)

// Casting strings to numerical types:
val myInt = "192".tolInt
val myFloat = "192.2".toFloat

d"
é] Note: The toInt method is a digit parsing method, which means if we use any
symbols not available to the integers, we will cause an error. In order to cast the string
“72.5” to an integer, we first need to convert it to a Double or Float, then cast it to an
Int.

* : . o
éj Note: Casting a Float or Double to Int uses truncation. This is true when we
change a Float type to a Short, Int, or Long. Numbers are not rounded—they are
truncated to the nearest whole value towards Zero.

30

Chapter 3 Expressions and Functions

Expressions

An expression is a series of variables, values, operators, and literals we use to compute. For
instance, a mathematical expression such as 100+1, or 99*(89+3). There are several different
types of expressions in Scala—arithmetic expressions, Boolean or logical expressions, and
string expressions. Code Listing 12 shows some examples of using different types of
expression.

Code Listing 12: Basic Expressions

object MainObject {
def main(args: Array[String]l): Unit = {
* 9 // Integer expression

+ // Double expression
*(=) // Float expression
< || ((29 & 1) == @) // Boolean expression
("Hello" + " " + "world") * 3 // String expression

In Code Listing 12, the expressions are not used for anything—they evaluate to some value, but
we are not using the value, so the Scala IDE will give us warnings such as: “A pure expression
does nothing...” Notice that we can use many of the common arithmetic operators, such as +, -,
* and /, for working with numerical values Int, Double, and Float.

Table 1 lists many of the available operators in Scala and provides some details as to how they
are used. Many will look familiar if you are familiar with Java or other C-based languages, but
Scala allows us to define arbitrary meanings to operator symbols, so that when we look into
classes—and particularly lists and other collections—we will see that there are many more
operators defined in Scala.

Table 1: Operators in Scala

Op Name Type Example Description

+ Addition Arithmetic | someVar+3 Adds numerical values and
concatenates strings

+ Unary positive | Arithmetic | +someVariable | Unary positive is useless, use 3
instead of +3

- Subtraction Arithmetic | someVar-10 Subtracts the second operand from
the first

Op Name Type Example Description
- Unary Arithmetic | -myVariable Negates numerical values: for int this
Negative means 2’s complement, for floats it
flips the sign bit
* Multiplication Arithmetic | 28.3*45.67 Multiplies two numerical values
/ Division Arithmetic | 28.3/45.67 Divides the first operand by the
second, returns the quotient
% | Modulus Arithmetic | 45%3 Divides the first operand by the
second, returns the remainder after
division
== | Equalto Relational | myVar==100 Determines if two operands are
equal
I= | Not Equal to Relational | myVar != 100 Determines if two operands are not
equal
> | Greater than Relational | someVar > 90 | Determines if the first operand is
greater than the second
< Less than Relational | someVar < 90 Determines if the first operand is
less than the second
>= | Greater or Relational | 100.5 >= 90.3 | Determines if the first operand is
Equal to greater than or equal to the second
<= | Less or Equal | Relational | 100.05 <= Determines if the first operand is
to 90.3 less than or equal to the second
& Bitwise AND Bitwise someVar & Performs the bitwise AND operation
someMask between corresponding bits of two

operands

32

33

Op Name Type Example Description
| Bitwise OR Bitwise someVar | Performs the bitwise OR operation
someOtherVar | between corresponding bits of two
operands
A Bitwise XOR Bitwise someVar ~ -1 Performs the bitwise exclusive OR
between corresponding bits of two
operands
~ Bitwise Bitwise ~someVariable | Flips all the bits of the operand so
complement 0’s become 1’s and vice versa
>> | Arithmetic Shift | Bitwise someInt>>2 Shifts all the bits of the input right by
right the amount specified in the second
operand (i.e. divides the operand by
2 to the power of the second
operand)
<< | Bitwise shift Bitwise SomeInt<<2 Shifts all the bits of the left by the
left amount specified in the second
operand (i.e. multiplies the operand
by 2 to the power of the second
operand)
>>> | Bitwise Shift Bitwise someInt>>>2 Same as shift right, except 0’s come
Right in on the left instead of 1's. Use >>
for quick division of signed integers,
and >>> for shifting nonsign values
or bit fields
&& | Logical AND Logical (someExpressi | Performs a logical AND between two
on)&&(someOth | Boolean expressions, used to form
erExpression) | logical expressions
[l Logical OR Logical (someExpressi | Performs a logical OR between two
on) | | (someOth | Boolean expressions, used to form
erExpression) | logical expressions
! Logical NOT Logical IsomeBoolExpr | Complements a Boolean value, used
ession to form logical expressions

Op Name Type Example Description
= | Assignment Assignme | someVar = 100 | Used to assign a value to a variable
Equals nt
+= | Addition Assignme | someVar += 10 | Used to add, then assign a value,
Assignment nt someVar+=10 means add 10 to
someVar
-= | Subtraction Assignme | someVar -= 10 | Used to subtract, then assign a
Assignment nt value, someVar -= 10 means
subtract 10 from someVar
*= | Multiplication Assignme | someVar *= 10 | Used to multiply, then assign a
Assignment nt value, someVar *= 10 means
multiply someVar by 10
/= Division Assignme | someVar /= 10 | Used to divide, then assign a value,
Assignment nt someVar /= 10 means divide
someVar by 10
%= | Modulus Assignme | someVar %= 10 | Used to get the remainder after
Assignment nt division of someVar and 10
>>= | Shift Right Assignme | someVar >>= 2 | Used to shift then assign a value,
Assignment nt someVar >>= 2 means shift
someVar right two bits
<<= | Shift Left Assignme | someVar <<= 2 | Used to shift then assign a value,
Assignment nt someVar <<= 2 means shift
someVar left by two bits
>>> | Shift Right Assignme | someVar >>>2 | Same as >>, only fills the high-order
= Zero Fill nt bits with zeros
Assignment
&= | AND Assignme | myVariable &= | Used to perform bitwise AND then
Assignment nt 7 assign a value, someVar &=7

means AND the bits of someVar with

7

34

35

Op Name Type Example Description

|= | OR Assignme | myVariable |= | Used to perform bitwise OR then
Assignment nt 7 assign a value, someVar |= 7 means
OR the bits of someVar with 7

A= | XOR Assignme | myVariable ~= | Used to perform exclusive OR then
Assignment nt 7 assign a value, myVariable |= 7
means XOR the bits of myVariable
with 7

When we form expressions, we can do so using parentheses to override the precedence of the
operators. Scala is aware of the normal precedence of arithmetic operators, and employing
parentheses is often necessary, especially when we are not sure of the exact precedence or
when we want to write clear code. All expressions within parentheses are evaluated first.
Brackets can be used in any type of expression, which means we can use them when
concatenating strings and when joining Boolean expressions, logical statements, and arithmetic
expressions.

The arithmetic that computers perform is always finite. That means addition will only give the
correct answer so long as there is no overflow. For example, a byte storing 127+1 does not
equal 128 because 128 is outside the range of a byte—it actually wraps around to -128. And, as
we’ve seen, floating-point values are not able to store many exact fractions. They often rely on
rounding.

Boolean operators are things like <, >, ||, and ==. They allow us to form logical statements. The
example of a Boolean expression in Code Listing 12 means “89 is less than 78 OR 29 ends in a
0.” Neither of these statements is true, which means this line will evaluate to false.

The final example in Code Listing 12 is a string expression. We can add strings together using
the + operator. We can also use the multiplication operation *, which will add the same string
multiple times. The line “("Hello" + " " + "world") * 3” will evaluate to “Hello worldHello
worldHello world,” because we multiply the string “Hello”+ “ ” + “world” by three.

Creating and calling functions

Functions begin with the def keyword, which is short for define. A function is similar to any
other data type, except that it is evaluated when it is used rather than when it is defined.
Functions return values and take parameters, and we can use them to enable code reuse when
we have some expression of sequence of statements that we need to execute many times.

After the def keyword, we supply an identifier for the function followed by the parameter list in
brackets—for example, def someFunction(parameters). The parameter list consists of a
comma-separated list of variables that are to be passed to the function in order for it to
compute. For instance, def someFunction(myInt: Int) and def
someTwoParameterFunction(a: Float, b: Double). If there are no parameters, we use ()
as the parameter list or leave the parameters off, such as with def someFunction() and def
someFunction. Code Listing 13 shows a simple Hello World function that takes no parameters
and returns nothing.

Code Listing 13: Function with No Params or Return

object MainObject {
def main(args: Array[String]): Unit = {

// Define a function with no parameters:
def helloFunction {

println("Hello world!")
}

// Calling a function with no parameters:
helloFunction

After the parameter list (if there is one), we specify the return type. The return type begins with a
colon and, if we are using object-oriented programming, is followed by a data type such as Int
or Double or some class. This is the value that the function computes and returns to the caller.

In Scala, we can nest functions. In Code Listing 13, the function called helloFunction is
actually nested inside the body of the main method. This means that it is local to the main
method and cannot be called outside of main.

Finally, we can supply an assignment operator, =, and specify the body of the function. If the
body of the function is only a single statement, we do not need to enclose the body of the
function with { and }. Code Listing 14 shows a complete example of defining and calling a
function that takes parameters and returns a value.

Code Listing 14: Creating and Calling a Function

object MainObject {
// Compute the square root of x using
// the Babylonian method:
def sqrt(x: Double): Double = {

if(x < 9)

-1 // Return -1 as an error value if x < ©
var ¢g: Double = x /
for(i <- 1 to 20) {

=(g+x/q)/

36

}

// return q // We can return using the ‘'return' keyword
q // Placing q by itself is the same as return q.

}

def main(args: Array[String]): Unit = {
println("Square root of 61 is " + sqrt(6l))
}

Code Listing 14 shows the code used to compute the square root of a Double using the
Babylonian method. There is a built-in square root function that will compute the root much
faster, but Code Listing 14 illustrates of how to create and call a simple function. The code also
uses a for loop, which is a control structure, and we will look at control structures in a moment.

Note: When we return from a function, Scala will assume that the final evaluated
=l statement is meant to be returned. Code Listing 14 shows that the final statement to
be evaluated is “q, ” therefore q will be returned from sqrt. If you prefer, you can supply
a return statement to explicitly return g, but there is often no requirement for the return
keyword.

Q‘ Note: The return type of Unit means the same as void in other languages. It means
that the function does not return a value.

Calling a function in Scala is similar to doing so in other languages. We supply the name of the
function followed by the parameters enclosed in brackets, such as sqrt(56).

Named arguments

We can use named arguments as well. Named arguments allow us to supply the arguments in a
different order than the function specifies, or we can specify the arguments by name if that
makes the code clearer. Code Listing 15 shows an example of using named arguments. Notice
that in the final example, printInfo(age = 51, name = “Claire”), the arguments do not
appear in the same order as they appear in the definition of the function printInfo. If you
name one argument when calling, you must name them all.

Code Listing 15: Named Arguments

object MainObject {
def main(args: Array[String]): Unit = {

// Specify a function which takes several parameters:
def printInfo(name: String, age: Int) {

println("Patient Name: " + name + " Age:

+ age)

}

// Call function without named arguments:

printInfo("Chris",)
// Some examples using named arguments:

printInfo(name = "Dennis", age =)
printInfo(age = , hame = "Claire")

Default parameters

We can specify default parameters in our function definitions, which means that if the caller
does not supply a value for the parameter, it will be set to the default value.

Code Listing 16: Default Values

object MainObject {
def main(args: Array[String]l): Unit = {

def printInfo(name: String = "No name", age: Int = 0) {

println("Patient Name: " + name + " Age: " + age)
}
// Both parameters will take default values:
printInfo()

// Age will take default value:
printInfo("Simpson")

// Name will take default value:
printInfo(age = 65)

Code Listing 16 shows some examples of using default values for function parameters. First, in
the function’s parameters list, we supply the default values for any or all of the parameters by
specifying some literal after an equals. Then, when we call the function, we can supply any or all
of the default values of some specific value or we can leave them to default. Notice that we can
use named arguments in conjunction with default values, as in the function call
printInfo(age=65), which will call the function with the name argument defaulting to “No
name”.

38

Functions as data

Functions are just data, too. This point is not often clear when programming high-level
languages, but it is literally true—everything the computer does is just a bunch of 1’s and 0’s.
We can easily create a variable, point it to a function, then call that function by using our
variable (see Code Listing 17). This is something like a function pointer, but the syntax in Scala
is intuitive and easy to read.

Code Listing 17: Functions as Data

object MainObject {
// Simple function that doubles the input:
def doubleInput(i: Int): Int = {
i+ i

}

def main(args: Array[String]) {
// Point val c to doubleInput, the _ means any
val c = doubleInput _

// Call the function doubleInput:
println("Double 6 is " + c(6))

In Code Listing 17, note the assignation of the function doubleInput to the val called c. We
use the name of the function followed by the underscore. The underscore means all inputs; it is
a wild card symbol. Normally, when we assign a value, we would need to specify something like
doubleInput(8), but if we use the underscore to mean any input, we’ll get the variable c
pointing to the function itself, and we can call ¢ using the standard syntax for calling
doubleInput.

Variable parameters

With the final parameter to a function, we can indicate that there might be a variable number of
arguments. This is useful when we want to sum a number of values and we do not necessarily
know how many there will be. When we use a variable number of arguments, the argument
must be the final value in the parameter list.

Code Listing 18: Variable Arguments

object MainObject {
def main(args: Array[String]) {

// Function with variable argument list:
def minimum(args: Int*): Int = {

// Base case, return @ if there's no

// arguments:
if(args.length == 0)
return

// Otherwise, find the minimum:

var = args(9)
for(i <- args) {
if(i <)
= i
}

// Return the smallest number from the list:

}

// Call minimum
println("Minimum: " + minimum(13, -30, 2, -17,))

In Code Listing 18, the function called minimum can take any number of Int parameters. The
syntax used for this mechanism defines the final parameter of the function’s parameter list with
a * such as (args: Int*). Notice we call the function in the usual way, but the number of Int
parameters can be anything at all. Code Listing 18 uses if statements. For loops, we’ll look at
control structures in the next section.

The args parameter becomes an Array. We will look at arrays later. Note also that there is a
built-in function for lists called min that we could have called to get the minimum with less code.

Evaluation of functions

Another way to think about functions in Scala is to consider that a function is an expression that
is evaluated when it is used rather than when it is initially set. Imagine we have a variable called
n set to some number. If we define a second variable, x, and we point it to n, the value of x will
be determined when the assignment occurs.

But, imagine if we have another variable, y. In that case, we can use def to assign the value of
n to the variable y. The difference is that the value of y will be evaluated when it is used rather
than when y is defined. So, if the value of n changes, the value of y will also change. See Code
Listing 19 for a basic example of this mechanism.

Code Listing 19: Def Evaluation

object MainObject {
def main(args: Array[String]): Unit = {
// Define a variable n:
var n =
// Assign the value of n to a new variable, x

40

41

var x = n
// Assign the expression 'n' to a function, y
def y = n

// Print out the values of our variables:
println("Before changing 'n':")
println("The value of e is " + n)
println("The value of x is " + x)
println("The value of y is " + y)

// Change the value of the 'n' variable:
n +=

// Print out the values of our variables again:
println("After changing

println("The value of e is " + n)
println("The value of x is " + x)
println("The value of y is " + y)

In Code Listing 19, the output shows that after the variable e has changed, the value that x
points to is still the original value of e, even though x is a var and e has changed. This means
that the value of a variable is evaluated when the variable is defined—x points to the val of e
when it is defined, and changing e has no effect on x after x’s definition. However, the value of y
changes when we change the value of e because we used def to define y as a function. This
means that the value of a function is evaluated when we use the function. The output from
running the program from Code Listing 19 is presented in Code Listing 20.

Code Listing 20: Def Evaluation Output

Before changing ‘'e':
The value of e is 90
The value of x is 90
The value of y is 90
After changing 'e':

The value of e is 91
The value of x is 90

The value of y is 91

Code Listing 20 shows only a very basic use of a function, and in this example our variable (or
function) called y is little more than pointer to the value of e. But we can also define our function,
y, to include a complex expression or even a code block with many lines of code.

42

43

Chapter 4 Control Structures

Control structures are used to allow certain sections of code to loop or to be executed based on
a condition. Programs are normally executed one line at a time from top to bottom. Control
structures allow us to change this execution order.

Looking at control structures requires us to first consider arrays, lists, and other data types
where control structures are used. | will present control structures first, then collections, but | will
be using collections in the code for both chapters.

“1f” statements

“If” statements in Scala are similar to those of other C-based languages. We can use “if, else-if,
and else” blocks in order to route our code execution based on conditions. One interesting point
about Scala “if” statements is that they evaluate to something; in other words, they return a
value. We will see this mechanism in a moment, but for now, Code Listing 21 shows a basic
example of an If/Else If/Else block.

Code Listing 21: Basic If Blocks

object MainObject {
def main(args: Array[String]l): Unit = {

def x =
def y =

if(x < y)
println(x + " is smaller than " + y)

else if(x > y) { // Can use { } for multiple lines of code!
println(x + " is greater than " + y)

}

else // Can finish if/else if with a final else:
println(x + " is equal to " + y)

“If” conditions work the same way as Java. We begin with an “if,” followed by any number of
“else-if” conditions, and end with an optional “else” block. Only a single “if” or “else-if’ code block
will execute, and if none of the previous “if” or “else-if” blocks execute, the “else” block (if
supplied) will execute. We supply a condition after the keyword “if,” then supply a code block for
the program to execute when the condition is true. After the “if,” we can supply any number of
“else-if” blocks, each with its own condition and code block. Finally, we supply an “else” block at
the end.

Code Listing 22 shows an interesting difference between Scala and Java—“if’ statements, and
indeed the entire If/Else block, actually evaluate to a val. This is particularly important when we
are filtering lists using foreach (which we will look at shortly). In Code Listing 22, 100 is less
than 200, so the val called resultFromIf will be setto -1.

Code Listing 22: If Blocks Evaluate to Values

object MainObject {
def main(args: Array[String]): Unit = {

def x

def y

// Creating a val from an if block return:
val resultFromIf = {

if(x < y) -
else if(x > y)
else

}

println("The result is: " + resultFromIf)

}
}
For loops

For loops are used to execute a section of code for some specified humber of times. Code
Listing 23 counts to 10 using a for loop.

Code Listing 23: Counting with a For Loop

object MainObject {
def main(args: Array[String]) {
for(i <- 1 to 10) {
println(i)
}

The basic syntax for a for loop is for(variable <- range), where range specifies the range
over which the for loop iterates. The variable, i in Code Listing 23, is set to 1 first, then the body
of the for loop executes. Next, the variable is set to 2, then 3, etc. Each time the variable is
incremented, the loop body runs and a new number is printed to the console using println.

The range of the loop is specified as (i <- 1 to 10), which means the variable i will become
consecutive whole numbers (Int) from 1 all the way up to and including 10.

We can also iterate through collections using for loops. We will look at this when we cover
collection types.

44

45

It is important to note that Scala uses different scoping rules than C++ and other languages. If
we have a variable called myVariable and we implement a for loop with a counter with the
same name, the counter variable will not be the same as the variable defined outside the for
loop. Code Listing 24 shows an example of this behavior. The outer myVariable in Code Listing
24 will not change, and the variable that iterates through the loop has the same name, but
otherwise it is completely distinct.

Code Listing 24: Variable Scope in For Loops

object MainObject {
def main(args: Array[String]l): Unit = {
var : Int =

// For loop with counter:
for(myVariable <- 1 to 10) {
// Output the for loop's myVariable:

println("Value of counter: " + myVariable)
}
// Output the value of the original myVariable.
println("Value of local myVariable: " +)
}
}
until vs. to

In a for loop, if we use the until keyword when specifying our range, Scala will count up to, but
not include, the second number. If we use the to keyword, the second number will be included.
For example, Code Listing 25 shows exactly the same example as Code Listing 24, except that
we have used until in place of to. In Code Listing 24, the loop counts to and includes 10, but
when we use until, the program counts up to but does not include the 10. The use of until
rather than to is common for iterating through Array and other collection elements because the
indices of these collection types are @-based and a collection with five items would have items
numbered @ until 5or (0, 1, 2, 3 and 4).

Code Listing 25: Counting to (but Not Including) 10

object MainObject {
def main(args: Array[String]) {
// Counts: 1, 2, 3, 4, 5, 6, 7, 8, 9
for(i <- 1 until 10) {
println(i)
}

Multiple range for loops

We can supply multiple ranges for a for loop by separating each range in the for loop with a
semicolon. In this case, the right-most variable counts up first, then the next to the left
increments, and the right-most counts up again. In this way, the program will iterate through all
permutations of the ranges. Code Listing 26 shows a simple example of using two ranges.

Code Listing 26: Using Multiple Ranges

object MainObject {
def main(args: Array[String]) {
// Two ranges for loop:

// variable called num will count 1 to 19,
// while den is set to 1. Then den will
// increment, and num will count 1 to 10
// again, etc.

for(den <- 1 to 10; num <- 1 to 10){

println(num + " divided by " + den + " is " +
(num.toDouble / den.toDouble));

Code Listing 26 sets the variable den to 1, then it also sets the variable num to 1. It next
executes the loop body 10 times, incrementing num each time and printing the results of
num/den. When num has reached 10, the loop starts again, but den is incremented. The program
will print 100 lines of output to the screen, and it will divide all combinations of the numbers from
1 to 10, starting from 1/1 and working all the way to 10/10.

* Tip: Multiple range for loops are particularly important for iterating through
multidimensional arrays. (We will look at multidimensional arrays later.) But the method
for iterating through a multidimensional array is to set each range of a multiple range for
loop to count through a dimension of the array. So, if we have an array with three
dimensions with the sizes of the dimensions being 7, 8, and 9, we could use for (x <- 0
until 7; y <- 0 until 8; z <- 0 until 9).

For loop filters

We can add a condition to the ranges we count in a for loop. This will cause the body of the loop
to be executed only when the condition is true. Code Listing 27 shows an example of a for loop
with a condition—that the program prints out the even numbers between 1 and 100. Using the
output from an “if” statement leads to this example.

Code Listing 27: For Loop Conditions

object MainObject {
def main(args: Array[String]) {

46

47

// Print the even numbers using a filter:

for(i <- 1 to if i % 2 ==20) {
println(i)

}

// Print even numbers without using a filter:
for(i <- 1 to 59) {

println(i * 2)
}

Code Listing 27 contains two examples of how to print the even numbers from 1 to 100. Notice
the “if” statement in the middle of the first for loop. If i % 2 == @, then i is even, and therefore
this loop will filter out all the odd numbers. In the second example, we count from 1 to 50 and
double the result. This will give the same output and will probably be faster to execute. In this
particular example, the second method is preferable because we are iterating through the loop
half as many times but we can also use for loop filters when iterating through lists of elements.
In the case of iterating through list elements, we would not be able to use the second method to
print only the even numbers from the list. We will look at lists again later, but Code Listing 28

shows an example of iterating through a list and filtering out the even numbers.

Code Listing 28: For Loop Filtering List Elements

object MainObject {
def main(args: Array[String]) {

// Define a list:
val myNumbers: List[Int] = List(

))) J

)

// Filter the even numbers:

for(i <- myNumbers if(i % 2 == 0)) {
println(i + " is even!")

}

While loops

While loops are used to execute a block of code repeatedly until a certain Boolean condition is
false. The syntax for a while loop in Scala is while(condition), where condition is
anything that evaluates to true or false, i.e. Boolean. Each time the program encounters the
while loop it will evaluate the condition. If the condition evaluates to true, the program will
execute the loop body and repeat the while loop's condition check. If the condition evaluates to
false, the program will skip the loop body and continue execution after the while loop. Code
Listing 29 is a simple number-guessing game that uses a while loop to repeatedly ask the user
for a number until the hidden number is guessed.

"
Q Note: We use the import to import the scala.i0.StdIn.readInt function, which is
supplied as a standard part of Scala’s libraries. In the code, we do not actually use the
readLine function, which means the import could have read import
scala.io.StdIn.readInt, butlleft the readLine as an example of importing multiple
functions from the same class.

= Tip: The Math. random function generates a pseudorandom Double in the range from
0.0to 1.0. It never generates the number 1.0 itself, but rather all numbers from 0.0 up to
1.0. In order to generate a random Int in the range from 0 to X (not including X), we can
use (Math.random * x).toInt.In order to generate a random number from 1to X
(including X), we can use (Math.random * x).toInt + 1.

Code Listing 29: Guess-the-Number Game

import scala.io.StdIn.{readlLine, readInt}

object MainObject {
def main(args: Array[String]): Unit = {

var userAnswer =

var hiddenNumber = (Math.random *).toInt +
println("""I'm thinking of a random
number between 1 and 1000, inclusive.""")

// Repeat the game while the user has not
// guessed the number:
while(userAnswer != hiddenNumber) {

print("Enter a number: ")
userAnswer = readInt // Read an int from the user

// Give the user a hint:

if(hiddenNumber < userAnswer)
println("Lower")

else if(hiddenNumber > userAnswer)
println("Higher")

// The user won, print a message and quit.
println("Yes, you got it, the hidden number was " +
hiddenNumber + "!")

The program in Code Listing 29 generates a random number from 1 to 1000, and the user must
guess the number. Notice the user of the while loop—we are saying that while the user's
number is not identical to the hiddenNumber, the program should loop. When the user guesses
the hiddenNumber, the variable userAnswer will equal hiddenNumber and the condition of the
while loop (userAnswer != hiddenNumber) will be false. The program will stop executing the
loop and begin execution after the body of the loop.

Do while loops

Do while loops are similar to while loops, except that the condition is checked at the end, after
the loop’s body. This means that do while loops are guaranteed to execute at least once. Code
Listing 30 shows the same game as the while loop example, except that here the hidden
number can be negative.

Code Listing 30: More Difficult Version of Guess the Number

import scala.io.StdIn.readInt

object MainObject {
def main(args: Array[String]) {

var userAnswer =

// Select a random number from -1000 to 1000
var hiddenNumber = (Math.random *).toInt -

println(I'm thinking of a random
number between -1000 and 1000, inclusive.""™)

// Do while loops guaranteed to execute at least once!

do {
print("Enter a number: ")
userAnswer = readInt // Read the user's answer

// Give the user a hint:

if(hiddenNumber < userAnswer)
println("Lower")

else if(hiddenNumber > userAnswer)
println("Higher")

} while(userAnswer != hiddenNumber)

println("Umm... no. Anyway, I'm tired of playing. See yal!")

49

The basic syntax for a do while loop is do { body } while(condition), where body is the
body of the loop and where the condition is some value that evaluates to a Boolean. As with the
while loop, the do while will continue to execute until the condition becomes false. Then it will
drop below the do while and continue execution after the loop.

The reason a do while loop is better suited to this game is because the program initially sets the
userAnswer variable to O. If we use a while loop for the game’s body and the program
happens to randomly select the number 0, the program will assume this 0 is the user’s guess
and the user will win the game immediately. With a do while, we are guaranteed that the first
value we check against our hidden number is actually the user’s input, not just the default value.

Example programs

For the final part of this chapter, we will examine some slightly longer and more complex
programs. While we learn the Scala language, we should note that we can already use the
basics of the language to create important and interesting programs. The following programs
are intended for use in the study of number theory, a field that deals primarily with the
characteristics and patterns of whole numbers. These programs are definitely not designed
optimally, and there are well-known algorithms that work much faster than those presented
here, but these programs are useful for studying prime numbers and patterns with small
integers.

Testing if anumber is prime

The example in Code Listing 31 contains a simple, brute-force method for testing if a number is
prime. The program runs through the integers 1 to 100 using a for loop and prints to the console
true or false depending on whether or not the number is prime.

Code Listing 31: Testing Primality

object MainObject {
def isPrime(j: Int): Boolean = {

// Base cases:

if(j < 2) return false

else if(j == 2 || j == 3) return true
else if(j % 2 == 0) return false

// Find the highest number we need to check
var = Math.sqrt(j)

// First composite to test
var =

while(<=) {

50

51

// If j is divisible by the factor
if(j % == Q)

// Return false

return false

// Move factor up to the next odd number
+=

}

// If j is not divisible by any factor up to
// the square root of j, then j is prime!
return true

}

def main(args: Array[String]): Unit = {
var i =
for(i <- 1 to) {

println(i + ": " + isPrime(i))

The Goldbach conjecture

The second sample program is designed for use in the study of a famous statement made by
Christian Goldbach. Goldbach proposed that every even number greater than 2 could be written
as the sum of two primes. Although it appears to be a perfectly simple statement, it has never
been proven or disproven, and a proof either way would be an extraordinary event in
mathematics and computer science.

A Goldbach partition is two primes that sum to a given integer. For instance, for the number 18
(which is even), a Goldbach partition might be 7 and 11—because 7 and 11 are both primes
and they sum to 18. If you are able to find an even number greater than 2 that does not have
any Goldbach partitions, you have managed to solve the problem and proven Goldbach was
incorrect. Likewise, if you are able to discern some infallible reason that Goldbach’s statement is
true for all even numbers greater than 2, you have managed to prove Goldbach correct. At this
point, even numbers with hundreds of digits have been checked, and every even number has
been found to have one or more Goldbach partitions. Most mathematicians believe the
conjecture to be true, but nobody has managed to prove without doubt that Goldbach's
conjecture is a fact. The following program outputs all of the Goldbach Partitions for a given
number. The user can use the input 0 to exit the program.

Code Listing 32: Goldbach Conjecture Partitions

import scala.io.StdIn.{readlLine,readInt}

object MainObject {
def isPrime(j: Int): Boolean = {
// Base cases:

if(j < 2) return false

else if(j == 2 || j == 3) return true

else if(j % 2 == 0) return false

// Find the highest number we need to check
var sqrt = Math.sqrt(j)

// First composite to test
var factor = 3

while(factor <= sqrt) {
// If j is divisible by the factor
if(j % factor == 0)
// Return false
return false
// Move factor up to the next odd number
factor += 2
}
// If j is not divisible by any factor up to
// the square root of j, then j is prime!
return true

}

// Function prints the Goldbach partitions of
// a given Int
def goldbachPartitions(j: Int): Unit = {
println("Goldbach Partitions for "
var currentPartition = 2
while(currentPartition <= j/2) {
if(isPrime(currentPartition)
&& isPrime(j - currentPartition))
println("Partition: " + currentPartition +
(j - currentPartition))
currentPartition += 1

+3)

}

// Main loops until the user inputs ©
def main(args: Array[String]): Unit = {
var input = -1
while(input != 0) {

and " +

input = scala.io.StdIn.readlLine("Input Int (use @ to exit): ").toInt;

if(input != @)
goldbachPartitions(input)
else
println("Bye!")

53

ﬂ‘ Note: The Goldbach conjecture is just one example of a mathematical problem that
=l we can already explore using the basics of Scala. There are many such problems
and questions in mathematics, and the interested reader should look up the list of
unsolved problems in mathematics on Wikipedia:

https://en.wikipedia.org/wiki/List of unsolved problems in mathematics.

https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics

Chapter 5 Arrays and Lists

Storing objects in collections is a common practice is Scala. Two of the most basic and
fundamental collection types are the array and the list. In this section, we will examine how to
store data in these simple collections, and we’ll look at some of the rich collection features that
Scala offers for manipulating these collections.

Arrays

Arrays store a collection of objects with the same data type in contiguous RAM. Arrays are of a
fixed size, so that after the array is defined, we cannot add and remove items. If you want to add
and remove items from an array-like structure, see the next section on lists.

Code Listing 33: Defining Arrays

// Array of 5 Ints

var : Array[Int] = new Array[Int](5)
// Array of 10 Doubles

var = new Array[Double](12)

// Array of 3 Strings

val myStringArray = new Array[String](3)

Code Listing 33 shows the definition of three arrays. In order to define an array, we use the var
or val keyword, followed by an identifier name. We follow this with Array[dataType], where
dataType is whatever type we want the array to store. Then we use = new
Array[dataType](count), where count is the number of elements in the array. Alternatively,
we can skip the redundant declaration part of the definition and use a shortcut notation, as in
myDoubleArray.

Accessing and setting elements

In order to access elements of an array, either for setting or for reading, we use parentheses
(normal brackets are used, as opposed to other C-based languages that use square brackets).
It is very important to note that array access is 0-based. This means that when we create an
array of n elements, the first element has an index of 0 and the final element has an index of n-
1. Code Listing 34 shows several examples of setting elements of arrays manually, one at a
time.

54

55

Code Listing 34: Setting and Accessing Elements

object MainObject {
def main(args: Array[String]): Unit = {
// Define a double array with 5 elements:
val doubleArray: Array[Double] = new Array[Double](5)

// Set the values of the array
doubleArray(0) =

doubleArray(1) /
doubleArray(2) = Math.sqrt(10)
doubleArray((7 >> 2) + 2) =
doubleArray(4) =

// doubleArray(5) = 100 // Illegal!

// Access elements and output.

println("doubleArray(0) = " + doubleArray(9))
println("doubleArray(1) = " + doubleArray(1))
println("doubleArray(2) = " + doubleArray(2))
println("doubleArray(3) = " + doubleArray(3))
println("doubleArray(4) = " + doubleArray(4))

// println("doubleArray(5) = " + doubleArray(5))// Illegal!

Code Listing 34 shows a basic example of a Double array with five elements. We can set the
values of the elements by employing the array identifier followed by the index in brackets. Note
that doubleArray (@) means the first element and doubleArray(4) means the final element.
And there is no element (5)—elements are numbered 0 to n-1.

When we set the value of an array element, we can use any expression we like because each
element is a perfectly normal double var. Note also that we can access elements with
expressions. In Code Listing 34, the value of doubleArray(3) is set using an expression for
the index: ((7>>2)+2). This expression evaluates to 3. The expressions must evaluate to a
positive integer when we use them to access array elements—there is no element 3.5 or -6 of
an array.

Figure 15 shows an illustration of the double array from Code Listing 34 before and after the
values of the elements are set.

Initial State After Setting

Index var Index Var
0 0
1 1
2 2
3 3
4 4

Figure 15: Array before and after Settings Elements

Val vs. var arrays

Code Listing 35 illustrates the difference between a val and a var array. If we define a val
array, we are not able to point the array identifier to someOtherArray because it is a val.
However, we can change the elements of a val array. The elements of a val array are var and
can be changed as needed.

Code Listing 35: Val vs. Var Arrays

object MainObject {
def main(args: Array[String]): Unit = {

// Define a val and var array:
val myValArray = new Array[Int](10)

var myVarArray = new Array[Int](10)

// Define some other array:

var someOtherArray = new Array[Int](10)

// Set the var array to point to someOtherArray
myVarArray = someOtherArray
// myValArray = someOtherArray // Illegal!

// However, we can change the elements of a val array!
myValArray (@) = 100

57

A var array can point to a new array, and in Code Listing 35 we create a var array, then we
point it to someOtherArray. As with a val array, the elements of a var array are themselves
var and we are free to change them to whatever values we need.

Multidimensional arrays

Multidimensional arrays are useful for storing objects in grids, box-like arrangements, or higher
dimensions, and they are often very large in terms of how many elements they have and the
amount of RAM they require. It is common to process them using nested loops or for loops with
multiple iterators.

Code Listing 36: 2D Array

object MainObject {
def main(args: Array[String]): Unit = {
// Declare a 2D array of Int
val array2D = Array.ofDim[Int](5, 5)

// Set elements in the array:

array2D(2)(9)
array2D(3)(4)

// Read elements:

println("Element(@)(0): " + array2D(0)(0))
println("Element(2)(0©): " + array2D(2)(9))
println("Element(3)(4): " + array2D(3)(4))

Code Listing 36 shows how to create a multidimensional array. We use the syntax val name =
where name is the identifier for the array. We set this to Array.ofDim[dataType], where
dataType is the type for the elements of our array. Then we specify the size of the dimensions,
which is (5, 5) in this example. This will create a 2D matrix of Int, and each element will be
initialized to @. Figure 16 shows an illustration of the array from Code Listing 36 after the
elements are set to 100 and 99, as in the Code Listing.

Figure 16: 2D Array

Figure 16 shows the array2D array drawn out with the first index representing the row and the
second representing the column. This decision is arbitrary, and we could easily draw the array
in other orientations.

The line in Code Listing 36 that reads array2D(2)(0) = 100 sets the value of the array at row
2, column 0 to 100. And the line that reads array2D(3)(4) = 99 sets the value of the array at
row 3, column 4 to 99.

Higher dimensional arrays are also possible. We could define a 3D array with something like
var my3DArray = Array.ofDim[Int](10, 10, 10). As with 2D arrays, the orientation of the
elements in a 3D array is purely conceptual, what matters is that we envisage and illustrate the
array in the same way every time we access elements.

F 4
|;’ Note: Higher dimensional arrays can quickly consume massive amounts of memory.
The total number of elements in an array is the product of the dimension sizes. So, if we
have an Int array with three dimensions and each dimension has 100 elements, the total
number of Int variables in our array is 100*100*100, which is one million. Each Int variable
consumes four bytes of memory to store in the system, therefore a 100x100x100 Int array
will require approximately four megabytes of memory.

= Tip: If you have many arrays, or if you would like to use several of the helpful functions
provided in Scala for use with arrays, you can import Array at the top of your program.
When you import Array, you can define a new array using the shorthand var someArray =
ofDim[Int] (10, 10) rather than var someArray = Array.ofDim[Int](10, 10).

59

ArrayBuffer

An ArrayBuffer is similar to an array, except that we can add and remove items. Code Listing 37
shows a basic example of an ArrayBuffer. The program reads a list of doubles from the user,
stores them in an ArrayBuffer, and computes the sum. Note that to use an ArrayBuffer, we
import scala.collection.mutable.ArrayBuffer.

Code Listing 37: ArrayBuffer Basics

import scala.io.StdIn._
import scala.collection.mutable.ArrayBuffer

object MainObject {
def main(args: Array[String]) {

val userInput = ArrayBuffer[Double]()

while(true) {
// Output a prompt:
print("Input a number (use -1.0 to continue): ")

// Read some input:
val x = readDouble

// If the user inputs something other than -1
// add it to the array buffer:
if(x 1= -1)
userInput += x // += adds the item to the end end
//userInput.insert(@, x)// We can also insert items at the start

// When the user inputs -1:
else {
// Init a summation variable
var sum =
// Use a for loop to add the items together
for(y <- userInput) {
print("Adding " + y + " ")
sum 4=y

}

// Output the sum of items:
println("Sum is " + sum)

return // Return from main

}

We can add multiple items at once to an array by using the ++= operator. We can also add
multiple items at once to any position of the ArrayBuffer by supplying multiple values to the
insert method. Code Listing 38 shows several examples of adding and removing single and
multiple items from an ArrayBuffer.

Code Listing 38: Adding and Removing Items from ArrayBuffers

import scala.io.StdIn._
import scala.collection.mutable.ArrayBuffer

object MainObject {
def printArrayBuffer(arr: ArrayBuffer[Int]) {

print("Array Buffer: ")

// Print out the values in the array buffer
for(x <- arr)
print(x + " ")

// Print a new line:
println
}

def main(args: Array[String]) {

// Create a new ArrayBuffer
val nums = new ArrayBuffer[Int]()

// Add a 1 to end of the array buffer:
nums +=
printArrayBuffer(nums)

// Add multiple items at once to the end:
nums ++= Array(2, 5)
printArrayBuffer(nums)

// Add a 3 and a 4 after position 2:
nums.insert(2, 3, 4)
printArrayBuffer(nums)

// To remove an item by its index:
nums.remove(3)
printArrayBuffer(nums)

// Remove 2 items beginning at index 1:
nums.remove(l, 2)
printArrayBuffer(nums)

61

Note that iterating through an ArrayBuffer is similar to an Array. We can use a simple for loop
as per Code Listing 38. We can also use the property called ArrayBuffer.length and loop
through the items.

Lists

Lists are similar to arrays, except instead of being stored in contiguous memory, the elements
are stored as a linked list. Lists are quick to traverse from start to finish, but they are slow to
look up items in the middle. Also, we cannot change the items in a list, they are immutable.
Code Listing 39 shows some examples of defining and traversing simple lists.

"
Q Note: The various collection types each have different implementations. This leads to
different performance for different tasks. For instance, we can add items to the beginning
or the end of alist in constant time; however, an ArrayBuffer adds elements to the end in
constant time, but adding an element to the start takes linear time. For a complete
comparison of the performance of certain tasks, see http://docs.scala-
lang.org/overviews/collections/performance-characteristics.html.

= Tip: When selecting a collection for an algorithm, we typically minimize the amount of
time taken to perform the operations on the collection. If you frequently need to add
items to the start of the collection, you should use a collection that is implemented as a
linked list, such as a list. If you need to reference or index elements at arbitrary positions
(such element number 1000 or element number 789), you should use a collection stored
in contiguous memory, such as an Array.

Code Listing 39: Lists

object MainObject {
def main(args: Array[String]) {

// List of 3 integers:
var integerList: List[Int] = List(, 5)

// List of strings:
var capitalCities: List[String] = List(
"Melbourne",
"Hobart",
"Brisbane",
"Sydney")

// Concatenate items to a list:
capitalCities = capitalCities.:::(List[String]("Darwin"))

// Print out the items of a list:
println(capitalCities)

// Traverse a list:
for(i <- integerList)

http://docs.scala-lang.org/overviews/collections/performance-characteristics.html
http://docs.scala-lang.org/overviews/collections/performance-characteristics.html

println("Element: " + i)

We can also define lists using : :, which is called cons and which is short for construct, and we
can use Nil, which acts as the tail of the list. When you create lists in this way, you should
always use Nil at the end to finish the list (see Code Listing 40, and note this is not a complete
Code Listing and cannot be run as a program).

Code Listing 40: Lists with Cons and Nil

// Empty list:
var = Nil

// List with cons and Nil

var = "North" :: "South" :: "East" ::
"West" :: Nil

There are other ways to create simple lists in Scala. For example, we can also use the
List.range method, which allows us to quickly create a list of items in numerical order. There
is also the List.fill method, which allows us to create a list of items all set to the same value,
as in Code Listing 41.

Code Listing 41: Creating Lists with Range and Fill

// Create a list of 100 integers from 1 to 100:

var = List.range(1,)

// List filled with 10 copies of String 'Empty'

var = List.fill(10)("Empty")

Lists have three very important methods: head, tail, and isEmpty. Method head points to the
first element of the list, method tail points to all elements after the first. Method isEmpty is
used to determine whether or not the list is empty. Code Listing 42 shows an example of using
head, tail, and isEmpty

Code Listing 42: Head, Tail, and ISEmpty

// Empty list:
var = Nil

62

63

// List with cons and Nil

var directions = "North" :: "South" :: "East"™ :: "West" :: Nil
println("First element of directions: " + directions.head)
println("Final element of directions: + directions.tail)
println("Directions is empty? " + directions.isEmpty)
println("anEmptyList is empty? " + anEmptylList.isEmpty)

Multiple dimensional lists

We can also create lists of lists. These are lists in which each element is itself a list.
Conceptually, this is the same as creating a multiple dimensional list. Code Listing 43 shows an
example of creating a simple 2D list of integers.

Code Listing 43: 2D Lists

// Create a list of lists:
var twoDList =

List(
Lj‘St() J)J
Lj‘St() 3))
List(7, 8, 9)
)
// Loopl:

for(1l1 <- twoDList) {
println("Element: " + 11)

}

// Loop2:
// Traverse using nested for loops
for(1l1 <- twoDList) {
for(12 <- 11) {
println(12)
}

Code Listing 43 creates a list called twoDList that consists of three elements, each of which is
a List itself. In order to traverse the list, we can use a simple for loop, but this will only access
each of the inner lists. In order to traverse every element of the nested lists, we can nest for
loops. The output of Code Listing 43 is shown in Code Listing 44.

Code Listing 44: Output from Code Listing 43

Element: List(1, 2, 3)

Element: List(4, 5, 6)

Element: List(7, 8, 9)

1

Useful methods on lists

There are many useful methods available for lists and the other collections, such as
List.length, which returns the numbers of elements in the list; List.last, which returns the
final element of the list; and List.first, which returns the first element in the list. The following
section provides a few extra examples that use other operators and methods available to lists.
The interested reader should look up the documentation for each of the collection types in order
to gain a full appreciation of the diversity of these objects. The documentation for the List class
is available from http://www.scala-lang.org/api/2.7.7/scala/List.html.

Tabulate method

We can also create lists using tabulate. This allows us to create complex patterns of items in our
lists using expressions or even “if” statements for each item in the list.

Code Listing 45: Tabulated List

object MainObject {
def main(args: Array[String]) {

// Create a tabulated list:

val tabulatedlList = List.tabulate(18)(n =>
if(n % 2 ==0) "" + n + " is even"

else "" + n + " is odd")

64

http://www.scala-lang.org/api/2.7.7/scala/List.html

65

// Print the items of the list:

for(s <- tabulatedList)
println(s)

}

Code Listing 45 shows an example of creating a tabulated list. The Code Listing uses the
tabulate method and the => operator in order to create a list of alternating n is even and n
is odd elements. We will see more of the => operator in a moment; for now the important
aspect of this Code Listing is the tabulate method. For each element in the list, the “if’
statement will be applied with the result, so that either n is even or n is odd will become the
elements of our list.

Concatenate operator

In order to join two lists together, we use the concatenate operator, which is represented by
three colons, :::. Code Listing 46 shows an example of using the concatenate operator to join
two lists together and produce a third.

Code Listing 46: Concatenate Operator

object MainObject {
def main(args: Array[String]) {

// Create some lists
var listl = List(1, 2, 3)
var list2 = List(4, 5, 6)

// Concatenate listl and 1list2
var list3 = listl ::: list2

// Print 1, 2, 3, 4, 5, 6
for(i <- list3)
println(i)

Take, drop, and SplitAt

Code Listing 47: Take, Drop, and SplitAt

object MainObject {
def main(args: Array[String]) {
// Create a list:
var integerList = List(

))) J)) J)))

// Take: Prints List(1, 2, 3, 4, 5)
println(integerList take 5)

// Drop: Prints List(6, 7, 8, 9, 10)
println(integerList drop 5)

// SplitAt: Prints (List(1, 2, 3, 4, 5),List(6, 7, 8, 9, 10))
println(integerList splitAt 5)

Code Listing 47 shows an example of using take, drop, and splitAt operators on a list. The
take method creates a list with a specified number of items. In the example, the number
supplied is 5, which means the first five items of integerList will be returned as a new list.

The operator drop is the opposite of take—in fact, drop will remove x humber of items from
the list and return a new list. In the example, the number supplied for the drop is 5, so the first
five items from the integerList will be removed, leaving 6, 7, 8, 9, and 10.

The final example shows how to split a list into smaller lists using the splitAt operator. The call
to splitAt 5 will cause the list to be split into two smaller lists, the first containing elements 0 to
index 4 (i.e. five elements) and the second containing elements from index 5 to tail.

Folding

Folding is a technique for working with lists. Imagine we want to take some input, x, and perform
an operation on x with each item in a list, then return x. For instance, let's say we want to begin
with 0 and add each integer from an Int list to compute the sum of the elements of a list. We
can do this with a for loop without too much trouble, as per Code Listing 48.

Code Listing 48: Summing List Elements Using For Loop

object MainObject {
def main(args: Array[String]): Unit = {

// Define a list:
val mylList = List(1, 2, 3, 4, 5)

// Define a summing variable:
var sum =

// Sum the elements using a for loop:
for(listElement <- myList)
sum += listElement

// Output the total:
println("Sum is: " + sum)

66

67

Scala also offers another interesting approach to this problem called folding. Code Listing 49
shows the same example as Code Listing 48, only this time we use foldLeft.

Code Listing 49: Summing List Elements Using foldLeft

object MainObject {
def main(args: Array[String]): Unit = {

// Define a list:
val myList = List(1, 2, 3, 4, 5)

// Define the sum, foldLeft using a closure:

var = myList.foldLeft(0)((X,y) => x+y)
// Output the total:
println("Sum is: " +)
}
}

The foldLeft function belongs to the List class. It takes two parameters, the first, (9), is an
integer. The second is a function to perform (this function is actually a closure—we will look at
closures in more detail in a separate chapter). In the Code Listing 49 example, we say that the
value of x starts at @. Each of the list items is then passed to the closure (x, y) => x+y. Each
list element acts as the y variable in the closure, and the value of x will sum the elements one
after the other. If this is confusing, Chapter 9 will focus on the syntax of closures.

We can start the x variable at values other than @. For instance, if we begin the x variable at 190,
then the sum will be reported as 25 because 10+1+2+3+4+5 is 25.

Tip: We can also use foldRight, which is the same as foldLeft, except that the iteration
through the list occurs in the reverse order. When we use foldLeft, the list is iterated
through from the first element to the last. With foldRight, the list is iterated through from
the final item to the first.

This has been a very brief look at Scala’s folding function. The operation is similar to reduce,
and the interested reader can look up other topics, such as foldRight and reduce.

Chapter 6 Other Collection Types

Scala has many useful collection types. The most fundamental are the array and the list, but if
we want to quickly implement various algorithms, we often use other data types, such as stacks,
gueues, and maps. In this section, we will look at some of the other useful collection types.

Stacks and Queues

A Stack is a LIFO data structure. We add items to the Stack using the push function, and we
remove items using the pop function. The order that items are popped is the opposite of the way
they are pushed. For instance, if we push the values 1, 2, and 3, the Stack will return 3, then 2,
then 1 when we pop the items.

A Queue is similar to a Stack in that it also allows only two operations. For a Queue, the two
operations are enqueue and dequeue. We use enqueue to add items to the Queue, and we use
dequeue to remove items. A Queue returns items in the same order they are enqueued. A
Queue is sometimes called a FIFO data structure, which is short for first-in-first-out. For
instance, if we enqueue the items 1, 2, then 3, a Queue will dequeue them in the same order: 1,
2, then 3.

Code Listing 50 shows some basic operations using a Stack, and Code Listing 51 shows
similar operations using a Queue. Note that when we use these data structures (and many
others), we need to include an import in order to import the class from the appropriate library.

Code Listing 50: Basic Operations with Stacks

import scala.collection.mutable.Stack

object MainObject {
def main(args: Array[String]l): Unit = {

// Define a stack
var = new Stack[Int]

// Push a new item to the stack:

.push(89)
println("Number of items: " + .length)
println("Item at the top of the stack: " + .top)
// Push a new item to the stack:

.push(21)
println("Number of items: " + .length)
println("Item at the top of the stack: " + .top)

// Pop off the newest item:
var = .pop

68

I ee

println("Popped item: + itemFromStack)
println("Number of items: " + myStack.length)
println("Item at the top of the stack: " + myStack.top)

// Push a new item to the stack:

myStack.push(44)

println("Number of items: + myStack.length)
println("Item at the top of the stack: " + myStack.top)

// Pop off all remaining items:

// Note: This is a stack, so the items are popped

// off in reverse order!

while(myStack.length != 0)
println("Popped item:

+ myStack.pop)

Code Listing 51: Basic Operations with Queues

import scala.collection.mutable.Queue

object MainObject {
def main(args: Array[String]l): Unit = {

// Define a queue:
var myQueue = new Queue[Int]

// Add an item to the queue:
myQueue.enqueue(47)

println("Number of items:
println("Item at the front of the queue:

+ myQueue.length)
" + myQueue.front)

// Add another item to the queue:
myQueue.enqueue(83)

println("Number of items:
println("Item at the front of the queue:

+ myQueue.length)
" + myQueue.front)

// Remove the oldest item from the queue:

var itemFromStack = myQueue.dequeue

println("Dequeued item: " + itemFromStack)

println("Number of items: " + myQueue.length)

println("Item at the front of the queue: " + myQueue.front)

// Add an item to the queue:

myQueue.enqueue(23)

println("Number of items: + myQueue.length)

println("Item at the front of the queue: " + myQueue.front)

// Loop until the queue is empty:
// Note this is a queue, so items will be dequeued
// in the same order they were queued!

while(myQueue.length != 0)
println("Dequeued item:

+ myQueue.dequeue)

Sets

Sets are a collection type that hold only distinct elements. Sets are a representation of a
mathematical entity with the same name. They are designed to allow the same operations as
mathematical sets—except that a mathematical set can be defined as containing an infinite
number of items, whereas Scala sets contain a finite number of elements. Code Listing 52
shows some basic operations with sets.

Code Listing 52: Operations with Sets

object MainObject {
def main(args: Array[String]l): Unit = {

// Define a Set
val evenNumbers = Set(2, 4, 6, 8, , s)

// Print out some properties:
println("Head: " + evenNumbers.head)
println("Tail: + evenNumbers.tail)
println("IsEmpty: " + evenNumbers.isEmpty)

// Testing if the set contains 3:
if(evenNumbers.contains(3))

println("Set contains 3!")
else

println("Set does not contain 3...")

// Test if the set contains 2:
if(evenNumbers.contains(2))

println("Set contains 2!")
else

println("Set does not contain 2...")

In order to join two sets together, we use the ++ operator (the ++ operator forms the
mathematical union of two sets). In Code Listing 52, we join a set containing (1, 2, 3) with
another containing (3, 4, 5). When we run the program from Code Listing 52, notice that the
output shows set3 containing (5, 1, 2, 3, 4). Notice also that although set1l and set2
both contain 3, the concatenated set contains only one copy of 3. Code Listing 53 also shows
that we can easily add and remove items using the + and - operators, respectively.

70

71

Code Listing 53: Adding and Removing Elements

object MainObject {
def main(args: Array[String]): Unit = {

// Define some sets:
var Set(1, 2, 3)
var Set(3, 4, 5)

// Concatenate with ++ operator:
var = ++

// Output the concatenated set:
println("Set3: " +)

// Adding items to a set:
println("Set containing an extra 10: " +

(+ 10))

// Removing items from a set:
println("Joined set without the 3's: " +

(« ++) - 2)
}

Sets are designed to allow fast item lookups. But the order of the elements in a set is
meaningless—notice that when we run the program from Code Listing 53, the final ordering of
items, (5, 1, 2, 3, 4), is not the same as the order we specified the items in the original sets
(indeed, depending on the implementation of the particular Java Runtime you have installed, the
order in my machine might be different than in yours). This is because the implementation of
sets employs hashing techniques. If the order of elements in your collection is important, you
should not use a set, or you should use the Scala SortedSet collection. However, if you know
that every element in your collection will be unique and you want fast item lookups, a Set is
perfect.

Mutable sets

By default, we cannot add and remove items from a set—they are immutable (which means the
elements are all fixed). Code Listing 53 showed how to add and remove items, but the example
actually created a new set, it did not add and remove items from the immutable set. If you want
to add and remove items from a set without creating a new set, use a mutable set (which means
the elements are not fixed and we are free to change them) by importing
scala.collections.mutable.set. In order to add items to a mutable set, we can use the +
operator, and to remove items we can use the - operator. Also notice that when we create a
mutable set, we do so using var someName = Set[dataType](), where dataType is the type
of data the set contains and someName is the identifier we want to use for the set.

Code Listing 54: Adding and Removing Items from a Set

import scala.io.StdIn.readInt
import scala.collection.mutable.Set

object MainObject {
def main(args: Array[String]l): Unit = {
// Create a mutable set:
var setOfInts = Set[Int]()
var newNumber =

while(newNumber != -1) {
// Print a prompt:
print("Input a number (use -1 to quit): ")

// Read a new number:
newNumber = readInt

// If the set contains the new number, remove it:
if(setOfInts.contains(newNumber))
setOfInts = setOfInts - newNumber

// Otherwise, add it (if not -1):
else if (newNumber != -1)
setOfInts = setOfInts + newNumber

// Print out the items in the set so far:
println("Set contains: " + setOflInts)

Code Listing 54 shows a program that uses sets to test an interesting phenomenon called “The
Birthday Paradox.” The question used to demonstrate the phenomenon is: How many people,
on average, would you need in a room before it is likely that at least two people share a
birthday? The program in Code Listing 54 uses a set of integers from which we repeatedly
generate random birthdays until there is a duplicate. At this point, we record the number of
birthdays generated so far, add this to a total, and repeat. The experiment is repeated as many
times as specified by the iterations variable—I have set this variable to 1,000,000. The more
iterations we repeat, the closer we will get to finding the actual average number of people we
would need in a room before two or more of them share a birthday.

The Birthday Paradox is not actually a paradox, but it is surprising how few people are needed
in a room before two might share a birthday. The program also demonstrates the speed of sets
for looking up items. There are a million trials, and the program will likely finish in a second or
two on any modern desktop PC. Each trial contains multiple lookups of a set with many
elements.

72

73

import scala.

Code Listing 55: Birthday Paradox Tester

collection.mutable.Set

object MainObject {
def main(args: Array[String]l): Unit = {

iterations))

}
}

// Define a mutable set:
var birthdays = Set[Int]()

// Define how many trials to run:
var iterations =

// Set total to © birthdays counted so far:
var totalBirthdays =

println("Beginning trials...")

// Repeat the experiment up to iterations times:
for(i <- 1 to iterations) {

// Reset the birthdays:

var duplicateDetected = false
birthdays.clear
while(!duplicateDetected) {

// Generate a new random birthday:
val newBirthday = (Math.random() *).toInt

// Check if the birthday exists in the set or not:

if(birthdays.contains(newBirthday)) {
totalBirthdays += birthdays.size.toDouble
duplicateDetected = true

}

else {
// Add the birthday to the set:
birthdays += newBirthday

}

}

// Output the total and average number of days:
println("Total birthays: " + totalBirthdays)
println("Average birthdays before duplicate: " + (totalBirthdays /

As with mathematical sets, sets in Scala allow us to form new sets by selecting the intersecting
items from two sets or from selecting the items that are not shared between sets. Also note that
instead of concatenating sets with the ++ operator, we can use the OR operator |. See Code
Listing 56 for an example of the &, |, and &~ operators.

Code Listing 56: Set-Like Operations on Sets

import scala.collection.mutable.Set

object MainObject {
def main(args: Array[String]l): Unit = {

// Define two sets:
var setl = Set(1, 5, 4, 6, 9)
var set2 = Set(5, 3, 7, 1, 6)

// Output the shared elements:
// Note: & operator is the same as: setl.intersects(set2)
println("Shared elements: " + (setl & set2))

// Using | combines all elements:

println("All Elements: " + (setl | set2))

// Using &~ filters to items not shared between sets:
// Note: &~ is the same as: setl.diff(set2)

println("Elements in setl, not in set2: " + (setl & set2))
println("Elements in set2, not in setl: " + (set2 &~ setl))

We can also filter and count elements in sets that match a particular Boolean expression. Code
Listing 57 shows an example of using the filter function.

Code Listing 57: Counting Elements in Filtered Sets

object MainObject {
def main(args: Array[String]): Unit = {

// Define a set:
val mySet = Set(1, 5, 4, 6, 9)

// Filtering:

println("Number of odd elements in mySet: " +
mySet.count(x => x % 2 == 1))

println("Number of even elements in mySet: " +
mySet.count(x => x % 2 == 0))

// For these operations, we can also create new sets,
// instead of just counting elements:

val evenNumbers = mySet.filter { x => x % 2 == }
val oddNumbers = mySet.filter { x => x % 2 == }
println("Set of Even Elements: " + evenNumbers)
println("Set of O0dd Elements: " + oddNumbers)

74

75

Sets are extremely powerful and versatile, and this has necessarily been a brief introduction to
them. For more information, consult the Scala documentation for the set class at
http://docs.scala-lang.org/overviews/collections/sets.html.

Tuples

A Tuple is a collection of objects that can be of different types and that we can pass and use as
a single entity. This is different from other collections, such as Array, that contain objects that
all have the same type. Tuples are useful for many things, including returning multiple values
from a function—instead of actually defining a function with multiple returns, we can pass a
Tuple and modify its values to act as multiple returned values.

Code Listing 58: Defining Tuples

object MainObject {
def main(args: Array[String]l): Unit = {

// Verbose syntax for tuple of 3 elements:
val tupleSlow = new Tuple3(2, "Banana",)

// Quick syntax for tuple of 3 elements:
val tupleQuick = (1, "Pineapple",)

// Many element tuple:
val oneOne = (1, 1, "was", 'a', "racehorse",
> 2, "was", 1, 2, 1, 1, 1, 1, "race", 2,

))))

Code Listing 58 shows the definition of three Tuples. The first example shows the verbose
syntax in which we use the new operator and define a Tuple in the same way as we would any
other object, i.e. calling the constructor and pass parameters.

The second example shows a simpler syntax for Tuples. We can omit the new Tuple3 and
simply specify the parameter list in brackets.

The final example uses the quick syntax, but the Tuple has many elements. At the time of
writing, the latest version of Scala can contain from 1 to 22 number of elements.

The data type of the Tuple is implied by the items passed to the constructor. So the line new
Tuple3(2, "Banana",) will create a Tuple with data types Int, String, and Double.
Likewise, the final example creates a 20-element Tuple with data types (Int, Int, String,
Char, ..., String, Int, Int, Int, Int, Int).

http://docs.scala-lang.org/overviews/collections/sets.html

Accessing elements of a Tuple

Code Listing 59: Accessing Tuple Elements

object MainObject {
def main(args: Array[String]): Unit = {

// Define two complex numbers as tuples:
var complexNumberA = (,)
var complexNumberB = (,)

// Multiply them together to get complex product:

var complexProduct = (
complexNumberA._1
complexNumberA._2
complexNumberA._1
complexNumberA._2

)

// Output results:
println("Complex product of " + complexNumberA +
complexNumberB +

complexNumberB._1 -
complexNumberB._2,
complexNumberB._2 +

%
*
*
* complexNumberB._1

and " +

is " + complexProduct)

}

Code Listing 59 shows an example of accessing elements of tuples. The elements are
numbered from 1 to N, where N is the number of items in the Tuple. Note that we define two
complex numbers as Tuple2 objects, then we multiply them together to produce the complex
product. Notice also the use of complexNumberA. _1 in order to access the first element of
complexNumberA.

When we print a Tuple to the console, Scala will surround the elements as a comma-separated
list with brackets. So, when we print complexNumberA, Scala will output (1.5, 7.8).

Code Listing 60 shows an example of using foreach to iterate over the items in a Tuple. The
example will assign the elements of the Tuple to the variable x and will print each element out
on a separate line.

Code Listing 60: Iterating over Elements of a Tuple

object MainObject {
def main(args: Array[String]): Unit = {

// Define a tuple:
val tuple5 = ("One", 2, s 5 '5")

// Output elements by iterating over tuple:

println("Elements of tuple: ")
tuple5.productIterator.foreach { x => println(x) }

76

77

"
Q Note: It may seem awkward to access elements of a tuple as suchAndSuch._1. If you
are wondering why we are not able to use the syntax suchAndSuch(1), it is because the (
and) parentheses define a function implicitly, and functions need to have some specific
return type—they are not able to return each of the possible types in the tuple.

Naming elements of a Tuple

We can name the elements of a Tuple, then refer to them by name instead of index. Code
Listing 61 shows an example of naming the elements of a Tuple.

Code Listing 61: Naming Elements of a Tuple

object MainObject {
def main(args: Array[String]l): Unit = {

// Define a tuple:
val point3D = (-9.5, ,)

// Name the elements of the tuple:
val (x, y, z) = point3D

// Print out the elements using names:
println("Element x: " + x)
println("Element y: " + y)
println("Element z: + z)

Notice that in Code Listing 61 the names x, y, and z refer to the elements of the Tuple called
point3D. This is not a method for naming the elements of Tuples in general, but only a method
for naming the elements of a specific Tuple.

Two elements Tuples shortcut

Code Listing 62 shows a shorthand for creating Tuple2 objects. We use the syntax “element1 -
> element2” as in the definition of point2D. Note that we cannot create a Tuple3 this way. The
line val point3D = - -> -> actually creates a Tuple2 inside another Tuple2:
((-9.5, 5.6), 7.2).

Code Listing 62: Shorthand for Tuple2

object MainObject {
def main(args: Array[String]): Unit = {

// Short hand for two element tuple:
val point2D = - ->

// Be careful, the following is not a Tuple3!
val point3D = - -> ->

// Print out the tuples:
println(point2D)
println(point3D)

Maps and Tuples

One of the most common uses of Tuples is with Maps. A Map is a collection of Key/Value pairs,
which means Tuple2 is perfect. Maps are sometimes called mappings or associations; they
represent a mapping of the keys to the values.

Maps come in two flavors: Immutable and Mutable. The default is Immutable, and in order to use
a Mutable map, you should use import scala.collection.mutable.map. Code Listing 63
shows some examples of how to use an Immutable Map. Note that once an Immutable Map is
created, the items are fixed.

Code Listing 63: Immutable Maps

object MainObject {
def main(args: Array[String]l): Unit = {

// Immutable map:
val staff = Map(l -> "Tom", -> "Tim", -> "Jenny")
val staff2 = Map(-> "Geoff", -> "Sara")

// Print out some info the staff map:
println("Keys: " + staff.keys)
println("Values: " + staff.values)
println("IsEmpty: " + staff.isEmpty)
// Concatenate two maps with the ++ operator:
val staffConcat = staff ++ staff2
println("All staff: " + staffConcat.values)

// Access values by key:

println("Element with key 1: " + staffConcat(l))
println("Element with key 7: " + staffConcat(7))

// The following will throw an exception because the key
// does not exist:

// println("Element with key 12: " + staffConcat(12))

// To check if a key exists:
if(staffConcat.contains(12))

79

println("Element with key 12: " + staffConcat(12))
else
println("Element with key 12: Does not exist!")

// Removing elements by key:

val timGotFired = staffConcat - // 2 is the key for Tim

// Now timGotFired will be the same as staffConcat, but Tim has
// been removed:

println(timGotFired)

*
él Note: As with Sets, Scala’s Maps are extremely useful and fast. There are many
operations available for them, and the interested reader should have a look at
http://docs.scala-lang.org/overviews/collections/maps.html for more information.

Mutable Maps

Mutable Maps are essentially the same as Immutable Maps, except that we can add and remove
items without creating a new map each time.

Code Listing 64: Mutable Maps

import scala.collection.mutable.Map

object MainObject {
def main(args: Array[String]l): Unit = {

// Create a new map object:
val staff: Map[Int, String] = Map()

// Adding tuples (key/value pairs) to a map with +=
staff += (5 -> "Teddy")

staff += (1 -> "Rene")

staff += new Tuple2(3, "Ronnie")

// Print out some info on the map:
println("Keys: " + staff.keys)
println("Values: " + staff.values)
println("IsEmpty? " + staff.isEmpty)

// To remove an item by key:

staff -=

println(staff) // Teddy got fired!

staff += (5 -> "Dean") // Dean took Teddy's old key.

// We are not able to add multiple items with the
// same key so the following is illegal:

http://docs.scala-lang.org/overviews/collections/maps.html

// staff += (5, "Teddy")

// Iterating through a map:
for(i <- staff.keys) {
println("Staff Member ID: " + i + " -> " + staff(i))

}

// To set map elements, we use map(x)=xyz
for(i <- staff.keys) {

staff(i) = "Teddy"
}

println(staff)

Code Listing 64 shows the use of a Mutable map. The only real difference is that Mutuable
maps can add items and change the values of the keys. Also, note that the operations for Maps
are the same as those for sets because the keys for a map are a Set.

There are many other types of collection available in Scala. Each has a different implementation
and is designed for different types of data and algorithms. The interested reader can visit the
page http://docs.scala-lang.org/overviews/collections/concrete-mutable-collection-classes.html
for more information on the available collection types.

80

http://docs.scala-lang.org/overviews/collections/concrete-mutable-collection-classes.html

81

Chapter 7 Classes and Objects

Scala is a language that combines functional and object-oriented paradigms. The object-
oriented mechanisms are designed to allow us to create modules of reusable code called
classes. A class is a collection of data and methods that operate on that data. We will see that
classes are very similar to the objects we have been using all along—for example, the
MainObject. The main difference between a class and an object is that a class is designed to
have multiple instances of objects created from it, whereas an object is the only instance of its
class.

If you are not familiar with Java’s object-oriented programming mechanisms, | strongly suggest
you read up on them. Scala is a language designed to address many of the shortcomings of the
Java language. Object-oriented programming is all about defining our own data structures to
reduce the overall amount of code in our projects and to allow our projects to be maintainable
and scalable.

A class is a blueprint for creating objects. Objects are called instances of the class. All of the
data types in Scala are objects, including Int and Double. When we specify a new var or val,
we are using objects. The fields of our objects must be initialized, and, unlike with Java, in Scala
we cannot create an object with uninitialized fields.

Object-oriented programming allows us a mechanism to combine data and functions that
operate on this data. In Java-speak, these are called member variables and member methods.
Member variables are variables that belong to the objects, and the member methods are the
functions that the objects are able to perform. These can be accessed using the “.” operator,
such as someString.length. Or, if you have an object with a member variable called height,

you can use someClass.height to access this variable.

Variable names are used to point to objects. They are references to objects.So an object, such
as the number 100, can potentially be referred to by many variables.

Classes

We can add classes to our existing files, but if the classes are complicated and contain a lot of
code, it is sometimes better to add a separate code file to our project. We will look at two
methods for adding new classes to our projects—in the first, we add a new file for the class.
This keeps the code for our class separate from the other classes, but it means that our project
has multiple files. Using the second method, we add new classes to existing files. In Scala, we
can define multiple classes per file. This has the advantage of minimizing the number of files in
our project, but the classes are all mixed together and this can sometimes become difficult to
maintain. As a general rule of thumb, if a class is required by other classes, or if a class is
complex and requires many methods, the class should be defined in a separate file. Otherwise,
if the class is very simple and only used by one other class in our project, we might define the
new class inside the same file as the existing class.

Adding a new class

Method 1: Adding a new class file

To add a new class file to your project, click File > New > Scala Class, as in Figure 17. You
can also add a new class by right-clicking the project in the Package Explorer and selecting

New > Scala Class.

B Scala-

File Edit Source Refactor

- Scala IDE

Refactor Mavigate Search Project Scala Run Window Help

Mew Alt+Shift+N > 5% Scala Project
Open File... ™ Project...
Close Ctrl+W H¥ Package
Close All Ctrl+Shift+W (& Scala Class
Save CirleS @ Scala Trait
B Savehs.. @& Scala Object
Save Al CtrleShiftS (& Scala Package Object
Revert [E] Scala App
£ Source Felder
Move.. 7 Folder
) I
#] Rename.. F2 % File
Refresh F3 Play Ternplate
- o 5
Convert Line Delimiters To Scala Worksheet
Print... Ctrl+P 9 Bample..
I ¥
Switch Workspace I Other.. Chrl<N
Restart r
fxg Import..
g Export..
Properties Alt+Enter
Exit

Figure 17: Adding a New Class File

You will be presented with the New File box, as in Figure 18. In this box, you can name your
class in the box provided and click Finish. It is common to name classes with a leading
uppercase letter because this makes it easy to differentiate identifiers that are class names from
identifiers that are functions or variables.

83

B Mew File Wizard O *

Create New File —

Kind: (& Scala Class]

Source Folder ‘ HelleWorld/src

MName: | MyMewClass|

The wizard uses a template in 5cala — Editor — Templates to create the content of a new file.
The corresponding templates start with "wizard_" and can be freely edited.

Figure 18: Adding a New Class Step 2

Eclipse will create a new file in your project and write the basic skeleton of a new class with the
name provided, as in Code Listing 65.

Code Listing 65: A Blank Class

class MyNewClass {

In the Package Explorer, you will note that we now have a new file added to the src folder (as in
Figure 19). We can edit the code for our new class by doubling-clicking its name to open the
code in the code view.

B 7 Scala - ExampleProject/src/MyNewClass.scala - Scala IDE
File Edit Refactor MNavigate Search Project Scala Run Window Help

=~ B4-0-A-@ - ETaR W v em YD,
{2 Package Explorer i3 = 5, ¥ = O || [5 MainObjectscala [5] MyNewClass.scala &3
w 25 BxampleProject

v [src

~ i} (default package) class MyNewClass {

[5] MainObject.scala

[5] MyMNewClass.scala
= Scala library container [2.11.7]
=i JRE System Library [JavaSE-1.2]

Figure 19: Class File in Package Explorer
Method 2: Adding class to an existing file

We can also code a new class directly into any existing object or class file. Code Listing 66
assumes we did not add the class called MyNewClass in a separate file and shows us a basic
code file for the MainObject of a new program with the code for the MyNewClass class defined
above the code for the MainObject.

Code Listing 66: Defining a Class in an Existing File

// Definition of a new class
class MyNewClass {

}

// Definition of the MainObject
object MainObject {

def main(args: Array[String]): Unit = {
println("All good?")
}
}

Scala is fairly flexible with regards to where we can define a new class. Code Listing 67 shows
three examples of new classes defined at different points in our MainObject file.

Code Listing 67: Adding Classes to an Existing File

// Define a new class outside:
class Classl {

}

// Definition of the MainObject

object MainObject {
// Define a new class local to MainObject
class Class2 {

}

84

85

def main(args: Array[String]l): Unit = {
// Define a new class local to MainObject.main
class Class3 {

}
}
}

Code Listing 67 shows the declaration of three classes, each having a different scope. Class1
is defined outside the body of the MainObject object, and it has program-wide scope (exactly
the same as adding the class to a new file). Class2 is defined inside the body of the
MainObject object. This class is not accessible to outside classes, but it can be used in any
methods within the MainObject. Class3 is defined inside the body of the main method. This
means that the class does not exist outside the main method.

Class syntax

The syntax for a class begins with the keyword class and is followed by the name of the class
and a code block surrounded by { and }. Code Listing 68 shows the basic skeleton of a do-
nothing class. This is the basic class that Eclipse will write for us when we add a new class to
our project, or the smallest amount of code we are required to write in order to define a new
class.

Note: In Java, class files and the classes in them should share the same name.
However, this restriction is not part of Scala, and we are free to name our classes
anything we like (within reason) and to define multiple classes and objects per file.

Code Listing 68: Skeleton of a Class

class ClassName {

// Body of the class

A class is simply a blueprint. It defines what types of variables and functions the objects built
from it will have. When we create an object from our class blueprint (instantiate the class), the
object is called an instance of the class. In order to instantiate a class, we use the new keyword
in a similar way as with Java. Code Listing 69 shows two examples of creating an instance from
a class called ClassName (this Code Listing is not complete and will not compile and run).

Code Listing 69: Creating an Instance from a Class

// Two ways to create an instance from a class
// called ClassName:

// Shorthand method:
var = new ClassName

// Verbose method:

var : ClassName = new ClassName

In Code Listing 69, the first method for creating an instance is to specify either var or val
(depending on whether you want to change the variable or create a constant object). Next, we
use an identifier for the new object, in this case classInstance, and we set the identifier equal
to new ClassName. This is a shorthand method for creating an instance, and it should look very
familiar. This is exactly the same as when we define other basic objects such as Int and
Boolean.

The second method is slightly more verbose than the first. We can optionally specify the data
type for our new object. In the previous example, this is not particularly useful, but Code Listing
70 shows another example of this verbose method, this time using inheritance. Code Listing 70
defines an instance of SomeChild called myInstance, but the data type is SomeParent. We will
soon look at inheritance in more detail.

Code Listing 70: Example of Verbose Method with Inheritance

// Define a parent class:
class SomeParent {

}

// Define a child class:
class SomeChild extends SomeParent {

}

// Definition of the MainObject
object MainObject {
def main(args: Array[String]): Unit = {

// Define a SomeParent object, which is
// presently an instance of SomeChild
var myInstance: SomeParent = new SomeChild
}
}

Code Listing 71 shows a basic example of a class complete with a few fields. The listing also
shows that we access the fields using the dot syntax.

86

87

Code Listing 71: Basic Class with Some Fields

// Definition of the Atom class
class Atom {
// Three fields, or member variables:
var electronCount: Int =
var name: String = "Unknown"
var symbol: String = "NoSymbol"

}

object MainObject {
def main(args: Array[String]): Unit = {

// Instantiate a new member of Atom class:
val hydrogen = new Atom

// Set the fields/member variables:
hydrogen.electronCount =
hydrogen.name = "Hydrogen"
hydrogen.symbol = "H"

// Access the fields/member variables:
println("Name: + hydrogen.name + " (" + hydrogen.symbol + ")")
println("Electrons: " + hydrogen.electronCount)

Note that in Code Listing 71, the “.” means “the field belonging to,” so that hydrogen.symbol
means the symbol field belonging to the hydrogen object. Each instance of a class has its own
fields; if we created a second object from the Atom class, iron, for example, the fields
hydrogen.symbol and iron.symbol would be two distinct fields that would not necessarily
have the same values.

In Scala, we have abstract classes, just like in Java. Unlike Java, Scala has abstract variables.
If a class variable is not assigned a value in the class definition, the class must be marked as
abstract. This is also true of methods. Methods can be abstract (or have no definition) in Scala,
and any class with one or more abstract methods is itself abstract. In Code Listing 71, all
variables have been given a default value in the Atom class. Also note that the variables are
public by default, which means they can be accessed inside the main method without marking
them as public (whereas in Java, all members of a class are private by default). We will look at
abstract class in more detail later, but this is the reason that | have set each of the members of
the Atom class to default values @, Unknown, and NoSymbol.

As a second example, Code Listing 72 shows a basic Box class. The class consists of two
fields, sideLenl and sidelLen2, that we will use to define a box of size sideLenl*sideLen2.
We will expand this class by adding some member methods.

Code Listing 72: Basic Box Class

class Box {
var sidelenl: Int
var sidelen2: Int

}

Val vs. var in object-oriented programming

It is worth pointing out a particularly detailed nuance of the val vs. var mechanism. If we have a
val that refers to some object, and the class has fields marked as var, we can change the
object’s fields even though the object itself is immutable. The val means the assignment of the
object itself is immutable—it does not refer to the member fields of the object (which may or
may not be val themselves). Code Listing 73 shows an example of this behavior.

Code Listing 73: Val vs. Var and Objects

class Box {
var sidelenl: Int
var sidelen2: Int

}

object MainObject {
def main(args: Array[String]): Unit = {
// Define a new val:
val immutableBox = new Box

// Define a new var:
var mutableBox = new Box

// Set the fields of mutableBox
mutableBox.sidelLenl =
mutableBox.sidelLen2 =

// Set the fields of the immutableBox
immutableBox.sidelLenl =
immutableBox.sidelLen2

// Set the mutableBox to point to another Box.
// This is fine because mutableBox is var:
mutableBox = immutableBox

// But the following illegal, we cannot reassign the
// immutableBox, because it is val!

88

89

Notice that in Code Listing 73 we can change the fields of the object called immutableBox even
though the object is val. But we cannot reassign the object to another Box (this reassignment is
illustrated by the final line, which I highlighted in red because it is illegal). It is very important to
understand what the val and var refer to when we use the terms in our projects.

Private modifier

When we declare a field in a class, we can mark it as private. This prevents any outside
objects from interacting with the field. In Scala, members that have no modifier are assumed to
be public, so that external objects can interact with the fields. In object-oriented programming, it
is recommended that we hide details of the way our classes work because that gives us the
flexibility of changing the way the class works without having to worry about other objects
accessing the fields directly.

Code Listing 74 shows the code for our Box class, but now the sideLenl and sideLen2 fields
have been marked as private (highlighted in Yellow). Notice that we are not able to set the
sideLen1i field from the main method because the MainObject object is not part of the Box
class, and the fields are private. Therefore, the final line of the main method is illegal, and |
have highlighted it in [RE8.

Code Listing 74: Private Fields
class Box {

private var sidelenl: Int
private var sidelLen2: Int

}

object MainObject {
def main(args: Array[String]): Unit = {

// Create an instance from the box class:
var = new Box

// It is no longer legal to access the sidelenl
// or sidelLen2 fields outside the Box class.
// The following line is illegall!

Member methods

A member method is a function that instances of a class are able to perform. When we define a
member method for a class, we access all of the class’s private fields. In order to add a member
method to a class, we use def to define a method inside the body of the class. We have seen
this many times already, particularly when the main method is a method that we have defined
for our MainObject objects.

Code Listing 75: Basic Member Methods

class Box {
private var sidelenl: Int
private var sidelen2: Int

// Member method called area:
def area(): Int = {
return sidelLenl * sidelen2

}

// Member method called perimeter:
def perimeter: Int = { // No params, brackets are optional
*(sideLenl + sidelLen2) // Implicit return

}
}

"
Q Note: When we use parameters in methods, they are val from the point of view of the
method, so they cannot be changed. This means that even when a var is passed to a
method from within the body of the method, the value is immutable. Put another way,
Scala does not support C# style out or ref parameters.

&
Q Note: The return statement in functions is not needed. Functions return or evaluate to
the last value computed. In Scala, it is typical that we try to write functions so that only a
single line returns the result. This means that we tend to ensure a Scala function
evaluates to a single return statement, and the return keyword is often not used.

Code Listing 75 shows two example methods for our Box class. The method area returns Int
and takes no parameters. Likewise, the method perimeter takes no parameters and returns
Int. When a function takes no parameters, we can leave out the parameter parentheses, as in
the perimeter method.

We can also leave out the code block if a function is only a single statement. This means the
area function of the Box class could have been written as the following single line of code (the
perimeter method could also be a single line): def area(): Int = sideLenl * sidelLen2.

If a method returns Unit, i.e. no return value, we can use the brackets in a similar way as with
Java by leaving out the return type of Unit all together. Code Listing 76 shows a new method
we can add to our Box class. This method prints out the sideLenl and sideLen2 fields, but it
does not return anything, and | have left out the return type of Unit.

Code Listing 76: Unit Is Optional

def printMe() {
println("Box Sides:
sidelLen2)

+ sidelenl + +

90

Constructors

A constructor is a special member method that we call when we use the new operator. In Scala,
the constructor for a class is defined by specifying a parameter list in the class’s declaration.
Code Listing 77 shows an example of our Box class, complete with a constructor that takes two
integers, sidel and side2. We set the member fields sideLenl and sideLen2 to the
parameters passed. Then, in the main method, when we create an instance of our class using
the new operator, we can pass the lengths as parameters.

Code Listing 77: Constructors

// Box class with constructor:
class Box(sidel: Int, side2: Int) {

// Set the member fields to the values
// passed as paramaters:

private var sidelLenl: Int
private var sidelLen2: Int

sidel
side2

}

object MainObject {
def main(args: Array[String]): Unit = {

// Call the Box constructor and pass parameters:
var myBox: Box = new Box(10,)

In order to define multiple constructors, we use the this keyword to overload the constructor.
This is useful for defining several constructors that take different parameter lists. Code Listing
78 shows an example of our Box class with three different constructors.

Code Listing 78: Defining Multiple Constructors

// Class with 3 constructors:
class Box(sidel: Int, side2: Int) {

private var sidelenl: Int
private var sidelen2: Int

def this() {
this(-1, -1) // Call main constructor with -1

}

// This constructor takes one parameter,
// it sets both sidelLen fields to the
// same value:
def this(side: Int) {
this // Call the constructor which takes no arguments

91

// After we have called any fully defined constructor
// inside the body of a new constructor, we are free to
// reassign the values of the fields:

sideLenl = side

sideLen2 = side

object MainObject {
def main(args: Array[String]): Unit = {

// Create a box by calling the main constructor:
var boxl = new Box(19,)

// Create some boxes by calling the parameter-less constructor
var box2 = new Box
var box3 = new Box()

// Create a box by calling the constructor which takes one
// parameter:
var box4 = new Box()

Notice that in Code Listing 78 the first thing inside the additional constructors is a call to some
other, fully defined constructor. The main constructor for our class is defined with the class
declaration as requiring two Int parameters. This means that when we define new constructors,
they must provide a call to this main constructor in some way. We can either call the main
constructor directly, e.g., this(-1, -1), or we can call some other constructor that in turn calls
the main constructor, e.g., this in the third constructor. Note that the third constructor calls the
parameterless constructor, which in turn calls the main constructor.

g,
Q Note: Function overloading is a technique in which we create multiple functions
with the same name. We can have as many functions with the same name as we need,
but the functions must have unigue parameter lists.

"
Q Note: We can have two or more fields with the same name in different scopes. This
is the same as in Java, but in Scala we can also define two or more variables with the
same name in nested scopes. The inner variable is said to shadow the outer one because
the variable defined in the outer scope is not available until the inner one goes out of
scope.

&
Q Note: Scala does not have static member variables. We can, however, create
singleton objects—these are objects built from classes of which there is only instance.
Singletons are simply Scala objects. We can add as many as we like in exactly the same
way that we have been adding our MainObject object to our programs. Singletons are

92

93

similar to classes in every way—except that we do not instantiate them because they
already represent the only instance of the singleton.

F
CJ Note: In addition to allowing singleton objects, in Scala we can also create
companion objects. A companion object is an object that has the same name as a class
and that is defined in the same file as that class. Companion objects can be used in a
similar way to static member methods and fields in Java.

Inheritance

In terms of inheritance, Scala offers mechanisms similar to Java’s. We can create a parent class
with functions and fields, then inherit from this parent to a more specific child class. Code Listing
79 shows an example of inheritance. In order to inherit from a parent class, we use the extends
keyword.

Code Listing 79: Inheritance

// Main parent class:
class GameObject(objName: String, xPos: Int, yPos: Int) {

val name = objName
var x = xPos
var y = yPos

def print {
println("Name: " + name + " Pos: " 4+ x + "X" + y)
}
}

// PointObject class is a child class inheriting from

// GameObject, but it adds a score, which is the amount

// of points the player receives for collecting the object.

class PointsObject(objName: String, xPos: Int, yPos: Int, scoreValue: Int)
extends GameObject(objName, xPos, yPos) {

// Define an extra field to record the score
// this object is worth:
var score: Int = scoreValue

}

// Another example class, the MoveableObject also inherits from the
// GameObject parent, but it defines several methods for moving
// around.
class MoveableObject(objName: String, xPos: Int, yPos: Int)
extends GameObject(objName, xPos, yPos) {

def moveUp =
def moveDown
def moveleft

<
X < 1

y o

xX <
+

def moveRight = x = x + 1

}

// We can also inherit from other child classes:
class Player extends MoveableObject("Player", 100, 100) {

}

object MainObject {
def main(args: Array[String]): Unit = {

// Create a GameObject:
val gameObject = new GameObject("Some generic object", 54, 123)

// Create a Points object:
val pointsObject = new PointsObject("Coin", 65, 18, 500)

// Create a Player object:
val player: Player = new Player

// All objects inherit from the GameObject class, so

// we can call any methods from that class or access any
// public member fields:

player.print

pointsObject.x = 90

// In addition, the pointsObject has a score field, and

// the player has several extra methods defined for moving
// which it inherited from the MoveableObject parent:
pointsObject.score = 1000

player.moveUp
player.movelLeft
player.movelLeft

player.print

95

GameObiject

X,y
Print()

1 |

PointsObject MoveableObject

moveUp()
move Down()

moveLeft()
moveRight()

|

Player

sScore

Figure 20: Inheritance Hierarchy from Code Listing 79

Figure 20 is an illustration of the hierarchy defined by Code Listing 79. The main parent is the
GameObject class. Both the PointsObject and the MoveableObject classes inherit from this
parent. This means they have access to the x and y integers from the parent and also to the
print method. The Player class inherits from the MoveableObject class, therefore it inherits
the x and y from the MoveableObject’s parent along with the additional methods defined for the
MoveableObject class. In this example, the Player class does not specify any additional fields
or methods, but it could.

Notice that in Code Listing 79, when we specify that our new classes extend an existing class,
we must call the parent class’s constructor class Player extends
MoveableObject("Player", 100, 100). This means that the Player class has access to all
public members from the parent class and that we should call the parent’s constructor with the
values "Player", 100, 100 for the parameters.

We can access the parent’s methods and fields with the super keyword in the same way that
we do in Java. So, from the Player class’s body, we can access the moveUp method by calling
super.moveUp.

Abstract classes

I will briefly explain what an abstract class is and how they are defined in Scala, but if you are
not already familiar with other object-oriented languages (C++, Java, C#, etc.), | strongly
recommend that you become familiar with at least one of them. A lot of technique is involved
with object-oriented programming, and this e-book must necessarily concentrate on only Scala
and how it differs from some of the other languages.

An abstract class is a class that cannot be instantiated. It can be used as a parent class, and
child classes can define meanings for the abstract parts of the parent class. For example, we
can create a generic Shape class with computePerimiter and computeArea methods, but the
generic parent class itself does not define these methods. We can then inherit from the parent
class in a child class such as Circle and Square, in which we define the body of the parent
class’s functions.

Code Listing 80: Abstract Class

abstract class Shape {

// Define an abstract field
type id

// Define some abstract methods
def computeArea: Float
def computePerimeter: Float

}

// Define a Child Class
class Circle(radius: Float) extends Shape {
var id: Int =

def computeArea: Float = {
return * radius * radius

}

def computePerimeter: Float = {
return v * radius

}
}

object MainObject {
def main(args: Array[String]): Unit = {

var : Circle = new Circle(6)

println("Area of Circle: + .computeArea)
}
}

Code Listing 80 shows an abstract parent class called Shape. The class contains an undefined
field called id using the type keyword and two abstract methods—computeArea and
computePerimiter. Notice that the class is marked as abstract. When we extend from this
parent, we must define all of these abstract elements in the child class or else the child class
must itself be marked abstract. The Circle class inherits from the Shape class and provides a
definition for each of the parent’s abstract elements. This means the Circle is not abstract,
and we can create an instance from it as illustrated in the main method of Code Listing 80.

96

97

-
Q Note: Scala also offers a similar mechanism to Java’s interfaces called traits. The
interested reader should look up traits in the Scala documentation. Find more
information at http://docs.scala-lang.org/tutorials/tour/traits.

Chapter 8 Pattern Matching

Pattern matching is similar to Java’s switch/case mechanism. But, as we will see in Scala,
pattern matching is more interesting and flexible than switch/case. Code Listing 81 shows a
basic example of pattern matching.

Code Listing 81: Simple Matching Example 1

object MainObject {

// This function is an example of pattern matching:
def matchFruit(index: Int): String = index match {

case 1 => "Apple"

case => "Banana"
case => "Kumquat"
case => "Unknown"

}
def main(args: Array[String]): Unit = {

// 2 and 3 match banana and cumquat
println("2's Case: " + matchFruit(2))
println("3's Case: " + matchFruit(3))

// Anything not mapped in the match/case matches _
println("100's Case: " + matchFruit())

In Code Listing 81, we use match/case to perform a task much like Java's switch/case
mechanism. The function matchFruit takes an integer parameter called index, and we match
this parameter to various fruits. The first case to correctly match the variable will provide the
value to which the variable is mapped. When we call the function with matchFruit(2), it will
return "Banana". Likewise, matchFruit(3) returns the string "Kumquat".

If we pass a value that does not match any previous case, the underscore case "_" will execute,

and the program will return "Unknown". The underscore character stands for a wild card, just as
it does when we import items using the _. We see the output of this program in Code Listing 82.

Code Listing 82: Output from Code Listing 81

2's Case: Banana
3's Case: Cumquat

100's Case: Unknown

98

We can also use match/case without defining a separate function. In Code Listing 81, we
defined a separate function called matchFruit, but Code Listing 83 shows how to use a
match/case to set a variable without calling a distinct function.

Code Listing 83: Simple Matching Example 2

object MainObject {
def main(args: Array[String]): Unit = {

// Define some variable
var fruitIndex =

// Perform the matching
var output = fruitIndex match {

case => "Apple"

case => "Banana"
case 3 => "Cumquat"
case => "Unknown"

}

// Output the result:
println(fruitIndex +

''s Case: + output)

Using OR with pattern matching

We can use the OR operator | and combine several conditions into each case. The example in
Code Listing 84 takes an input Int from 1 to 13 and returns the card classification Ace, King,
Small, Medium, etc. Notice the use of | to combine several conditions.

Code Listing 84: Combining Conditions with |

object MainObject {
def main(args: Array[String]): Unit = {

def classifyPip(x: Int): String = x match {

case => "Ace"

case 2|24 => "Small"
case 5|6]|7 => "Medium"
case 2|2]|10 => "Large"
case => "Jack"

case => "Queen"
case => "King"

}

+ classifyPip(5))
+ classifyPip(11))
+ classifyPip(1))

println("Pip 5 returns:
println("Pip 11 returns:
println("Pip 1 returns:

Variable scoping

The variables we use in the cases are not the same as any outside variables, even when they
have the same names. For instance, Code Listing 85 shows a rather strange output. Study the
listing for a moment and try to decide what it will output.

Code Listing 85: Variables in Case vs. Outside

object MainObject {
def main(args: Array[String]): Unit = {

// Define some variables
val My Amazing Variable = "123"
val someOtherVar = "456"

// Perform matching:
"123" match {
case someOtherVar =>
println("someOtherVar")
case My Amazing Variable =>
println("My_Amazing Variable")

Looking at Code Listing 85, we might assume the string “123” matches the variable called
“‘My_Amazing_Variable” because that variable is set to “123”. Therefore, we might expect the
program in this example to output “My_Amazing_Variable”. But this is not what happens. The
program will output “someOtherVar”, and it is important that we know why.

Scala will take the string “123” to match against its cases. The first case is “someOtherVvar”.
There is a local variable called someOtherVar, but the someOtherVar in the cases is actually
shadowing it! The someOtherVar in the cases is not related to the local variable with the same
name. “123” definitely matches some random variable name, which means the program will
print “some0OtherVar” to the screen. It is not testing the value of the local variable
someOtherVar, but rather it is assigning “123” to a new variable with the same name. This
output would be exactly the same as if we hamed the first case anyRandomVariable, and the
fact that the variable outside the cases shares the same name as the case's variable is
irrelevant.

We can test the actual values of local variables in our cases. If we want to use the actual values
from the variables defined outside the cases, we must delimit the variable names with back
guotes—see Code Listing 86.

100

101

Code Listing 86: Delimiting Variable Names with Back Quotes

object MainObject {
def main(args: Array[String]): Unit = {

// Define some variables:
val My Amazing Variable = "123"
val someOtherVar = "456"

"123" match {

// Use back quotes to test the value of the local

// variables:

case ~someOtherVar™ => println("someOthervVar")

case "My Amazing Variable => println("My_Amazing Variable")

Code Listing 86 will check the values of the local variables called “someOthervar” and
“My_Amazing_Variable”, and it will print “My_Amazing_Variable” to the screen because the
string “123” matches the value of this variable as defined outside the scope of the cases.

Cases and classes

Match/case in Scala is much more powerful than Java's switch/case. We can match objects as
well as simple data types. Code Listing 87 shows an example of matching objects. These
examples are all about musical key signatures. The exact meaning of the key names and
sharps or flats is irrelevant—the listings are simply illustrations of how matching works.

Code Listing 87: Matching Objects of a Case Class

object MainObject {

// Define a class marked with 'case' modifier
case class KeySignature(name: String, sharpsFlats: Int)

def main(args: Array[String]): Unit = {
// Define some KeySignature variables:

var keyl =
var key2
var key3

// Perform
for(key <-

new KeySignature("C", ©9)
new KeySignature("Bb", -2)
new KeySignature("c", -3)

a loop to match our keys:
List(keyl, key2, key3)) {

// Perform the match for each key:
val fullKeyName = key match {
case KeySignature("C", 0) => "C Major"

case KeySignature("Bb", -2) => "B Flat Major"
case KeySignature("c", -3) => "C Minor"

}

println("Key:
}
}
}

+ key + " -> " + fullKeyName)

In Code Listing 87, we define a class called KeySignature. Note that the class is marked with
the modifier case. This is important if we wish to use the class in a match/case. When we mark
a class with the case modifier, Scala writes additional methods that enable it to perform pattern
matching.

Case classes have an equals method, toString method, a hashcode method, and several
other methods written for them. Case classes can be instantiated without the "new" operator
because they implement the apply method, and all parameters to the constructor of a case
class are public and val. This is important because it allows matching. Without the case
modifier, we would need to write our own code to mimic the code in Code Listing 87.

Wild card

Code Listing 87 shows very basic matching. We can also use the wild card symbol for one or all
of the parameters for the cases. This is where the term “pattern matching” really becomes
applicable. We are not necessarily matching objects against their exact copies, as we do with a
Java switch/case, but instead we are matching objects against patterns.

Code Listing 88 shows an example of using the _ wild card in the determination of key
signatures.

Code Listing 88: Using _ as a Wild Card in Cases

object MainObject {
case class KeySignature(name: String, sharpsFlats: Int)

def main(args: Array[String]): Unit = {
// Define some keys
var keyl = new KeySignature("C", 0)
var key2 = new KeySignature("Bb", -2)
var key3 = new KeySignature("c", -3)

// Loop through the keys, this loop has an additional

// couple of keys, "D" and "QWERTY" at the end:

for(key <- List(keyl, key2, key3,
KeySignature("D",),// D does not actually have 123 sharps!
KeySignature("QWERTY", 5)// 5 sharps is not called QWERTY!

) A
// Perform the matching:

102

case KeySignature("C", > "C Major"
case KeySignature("Bb", => "B Flat Major"
case KeySignature("c", -3) => "C Minor"

val fullKeyName = key match {
) =
-2)

// Using wild cards for parameters:
case KeySignature(_, 5) => "B Major" // B Major has 5 sharps
case KeySignature("D", _) => "D Major" // D Major

println("Key:
}
}

+ key + " -> " + fullKeyName)

}

Code Listing 88 shows that we can match objects even when we do not necessarily match all
parameters. The wild card symbol is used in Code Listing 88 to return "B Major" when the key
has 5 sharps, and the key name is irrelevant because of the _. Likewise, we can match the key
"D Major" by stating that if the key name is "D", then the number of sharps is irrelevant. This is
not actually how musical keys work (D Major has two sharps in reality), but this works as an
illustration.

Using Any as a data type

We can often use Any as a data type to mean multiple types are returned. Notice how the
keyword is used in Code Listing 89 to mean “any data type.”

Code Listing 89: Using Any as a Data Type with Matching

object MainObject {
def main(args: Array[String]): Unit = {

// This function takes a single parameter
// of any data type:
def toColorString(q: Any): Any = g match {

case => "Red"

case "1" => "Red"
case "one" => "Red"
case => "Green"
case "2" => "Green"
case "two" => "Green"
case => "Blue"

case "3" => "Blue"

case "three" => "Blue"

case => -

103

// Test the matching with some calls to toColorString:

println("Color matched for \"one\": " + toColorString("one"))
println("Color matched for \"2\": " + toColorString("2"))
println("Color matched for 3: " + toColorString(3))
println("Color matched for \"Hello\": " + toColorString("Hello"))

In Code Listing 89, we specify the data type of the function toColorString as Any. This means
any data type can be passed as the parameter q. Then we specify that the function returns Any
as a data type. This means we can return multiple different data types from this function.

When we match the q variable, we provide cases for Int and String. We also provide a final
case that has a pattern of _, the wild card. If none of the previous cases matches, we return -1
as an Int. This is a function that takes multiple parameter types, tests them with a series of
cases, and returns either a String or an Int, depending on whether or not the q parameter
was matched. If you are familiar with Java programming, this function will look extremely odd.

The next example program uses Any as a data type again. This time, we return a String
version of the input if it is an Int, and an Int version if it is a String. Without some context,
this is a pointless activity, but it does illustrate how we can easily test and change data types
without using the complex syntax that Java requires in order to do the same thing.

Code Listing 90: Flipping Data Types

object MainObject {
def main(args: Array[String]): Unit = {

// Define the function to flip data types:
def flipStringAndInt(x: Any): Any = x match {
case y: Int => y.toString
case y: String => y.toInt
case _ => "Unknown data type!"

}

// Make some test cases:

val myInt = flipStringAndInt("190")
val myString = flipStringAndInt()
val unknown = flipStringAndInt()

// Output results:
println("myInt: "
println("myString:
println("unknown:

+ myInt)
" + myString)
+ unknown)

104

105

In order to match the type of the argument in a case, we specify another variable—y in the
example. We say thaty: Int =>, which means the data type of y is Int, then we supply the
return value. So, when the data type of y is an Int, the pattern-matching mechanism maps it to
a String, and vice versa—String is mapped to Int.

We should note that in Code Listing 90 the function f1ipStringAndInt returns a String for
any input that is an Int, and vice versa. When we pass a Double as the input, the function
returns the string Unknown data type!.

Chapter 9 Closures

A closure is a function that computes with variables defined outside the body of the function.
Code Listing 91 shows a simple example of a closure. Closures are sometimes called Lambda
functions, and they are similar to Java’s anonymous functions. Closures are one of the many
mechanisms offered by Scala from the functional programming paradigm (as opposed to the
object-oriented programming paradigm).

Code Listing 91: Simple Closure

object MainObject {
def main(args: Array[String]) = {

// Define a variable:
var =

// Define a closure which uses the divisor
// variable:
var = (i: Int) => i /

// Execute the closure using 90 as the
// Int 1i:
println("90/9=" + (90))

In Code Listing 91, we define a closure called divideClosure. First, we specify an identifier for
the closure, divideClosure, then we use the equals operator to set it to a parameter list = (i:
Int). We then use the => operator (sometimes called rocket) and specify the body of the
closure. Notice that the closure uses the variable called divisor, which is defined outside the
body of the closure. In this particular instance, the variable divisor is still in scope, but as we
will see, this does not need to be the case.

Also note that the use of variable divisor in the body of the closure does not shadow the local
variable divisor as we might expect, especially considering some of the previous examples we
have examined. The divisor variable in the closure is the local variable divisor.

We should note that closures do not need to use external variables. We can define a closure
that uses only the parameters defined in its own parameter list. Also, the closure evaluates the
values of the variables, so that when we update the values of the variables defined outside the
body of the closure, the return value of the closure will be updated, too.

Code Listing 91 provided a completely redundant example of a closure, but that is actually an
interesting mechanism. Another interesting aspect of closures is that we can pass them as
parameters to a method. Code Listing 92 shows an example of this. It might not seem strange
yet, but it will when we look at its implications.

106

Code Listing 92: Passing a Closure as a Parameter

object MainObject {

def executeClosure(closure: (Int) => Int, parameter: Int) {

println("The closure said: " + closure(parameter))
}
def main(args: Array[String]) = {
var =
var = (i: Int) => i /
executeClosure(,)

}
}

In Code Listing 92, we define a function called executeClosure. The function takes two
parameters—one is a function called closure and the other is a parameter. The
executeClosure function executes the function and prints the result to the screen. The function
is a roundabout way of dividing 125 by nine, and it prints 13 to the screen, which is perhaps not
very interesting (this is just basic integer arithmetic, 125/9=13.888, and the 0.8888 is truncated
as per the normal rules of integer arithmetic). However, let's have a quick look at another
example. This time, let’s illustrate something slightly strange about the way closures work.

Code Listing 93: Altering a Closure’s Variable

object MainObject {

def executeClosure(closure: (Int) => Int, parameter: Int) {

println("The closure said: " + closure(parameter))
}
def main(args: Array[String]) = {
var =
var = (i: Int) => i /
executeClosure(,)
}

}

In the main method of Code Listing 93, we define the same closure as before. This time,
however, | have added a line and reassigned the divisor variable, setting it to 45. When we
call the function executeClosure and pass the parameter 125, the closure will execute 125/45
even though the divisor variable is out of scope at the point of execution and it has been
changed since the closure was defined. Code Listing 93 correctly computes the result that
125/45 is 2.

A closure, therefore, is a function we can pass around and that is able to refer to variables that
are not in scope.

107

Shorthand syntax

There is a shorthand syntax for simple closures. We can use the _ (the underscore wild card

symbol) to mean a single parameter, if there is one. So if the closure takes only a single

parameter, we can use the _ instead of a formal parameter list. See Code Listing 94 for an

example of this.

Code Listing 94: Shorthand for Closure

object MainObject {
def main(args: Array[String]) = {

// Define divisor variable.
var divisor =

// Define a closure using _ syntax:
var divideClosure = (_:Int) / divisor

// Again, this closure will divide 125 by 9
// and return 13:
println("125/9=" + divideClosure())

Notice that in Code Listing 94 we need to specify the data type of the _ symbol with (_: Int).

If the data type is specified in the closure already, we can use the underscore by itself.

Code Listing 95 shows a slightly more complicated example of a closure. This particular use of

a closure is commonly used for performing operations on lists and arrays.

Code Listing 95: Passing Functionality as a Parameter

object MainObject {
def main(args: Array[String]) = {

// Define a functions which takes two ints, x and y
// and a function to perform between them called func:
def performOperation
(x: Int, y: Int, func: (Int, Int)=>Int):
Int = func(x, y)

// Call the perform operation function with 78 and 26

// as the Int parameters, and with the closure (a, b)=>
// a-b as the func parameter:

println("78-26=" + performOperation(73, , (a, b)=>a-b))

// Call the perform operation function with 6 and 5
// as the Int parameters, and with _+_short hand
// closure as the func parameter:

108

109

println("6+5=" + performOperation(6, 5, _+_))

}
}

In Code Listing 95, we define a function called performOperation. The function takes three
parameters—two Int and a function. The function parameter is called func. It takes two inputs
of its own and returns an Int (this is all specified by the (Int, Int)=>Int). The
performOperation function performs whichever operation we pass as a final argument
between the two Int parameters and returns the result.

Tip: Notice the use of the wild card symbol in the second call to the closure in Code
Listing 95. When we use multiple wild cards, such as _+_, thefirst is assigned to the first
parameter and the second to the second parameter, etc. The _+_is shorthand for a+b
since ais the first parameter and is substituted for the first occurrence of _. And b is the
second parameter—it is therefore substituted with the second instance of _.

The most important aspect of Code Listing 95 is how we call the function. Notice that with the
first call to performOperation, we pass 78, 26 as the integer parameters, then we specify the
functionality of the func closure using (a, b)=>a-b. This means we want the second parameter
to be subtracted from the first, so that the first print1ln will output 78-26=52. The second call
uses the wild card symbol and the shorthand syntax for the functionality.

Chapter 10 Conclusion

This has been a short introduction to some of the fascinating mechanisms and features of the
Scala language. Scala is a flexible and powerful general-purpose language, it is built upon the
Java Runtime Environment, and it can be easily incorporated into existing Java applications.
The language offers a rich set of mechanisms that address many of the shortcomings of the
Java language, and it is an interesting blend of functional and object-oriented programming
paradigms.

I hope you have enjoyed this e-book. | have certainly enjoyed writing it. Many other interesting
topics remain, such as the yield keyword and currying. And there are many Scala-related
resources available (both for free and in book form). Scala is one of the most fascinating of the
modern languages, and it is being quickly adopted by programmers. If you are interested in
learning more about Scala, | recommend the following sources:

Scala Documentation: http://docs.scala-lang.org/ and http://docs.scala-lang.org/tutorials/.

Programming in Scala by Martin Odersky, Lex Spoon, and Bill Venners. Available as a free PDF
e-book.

Scala by Example by Martin Odersky. Available as a free PDF e-book.
Tutorialspoint Scala Tutorials.

Programming Scala by Dean Wampler and Alex Payne. Published by O’Reilly. Available from
Amazon.

110

http://docs.scala-lang.org/
http://docs.scala-lang.org/tutorials/

	Table of Contents
	The Story behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Chapter 1 Introduction
	Installation
	Selecting a workspace
	Hello World
	Running the application
	Debug and run configurations
	Problems and errors

	Chapter 2 Variables and Values
	Identifier names
	Data Types
	Literals
	Integer literals
	Floating-point literals
	Other literals

	Comments
	Casting

	Chapter 3 Expressions and Functions
	Expressions
	Creating and calling functions
	Named arguments
	Default parameters
	Functions as data

	Variable parameters
	Evaluation of functions

	Chapter 4 Control Structures
	“If” statements
	For loops
	until vs. to
	Multiple range for loops
	For loop filters

	While loops
	Do while loops
	Example programs
	Testing if a number is prime
	The Goldbach conjecture

	Chapter 5 Arrays and Lists
	Arrays
	Accessing and setting elements
	Val vs. var arrays

	Multidimensional arrays
	ArrayBuffer
	Lists
	Multiple dimensional lists
	Useful methods on lists
	Tabulate method
	Concatenate operator
	Take, drop, and SplitAt

	Folding

	Chapter 6 Other Collection Types
	Stacks and Queues
	Sets
	Mutable sets
	Tuples
	Accessing elements of a Tuple
	Naming elements of a Tuple
	Two elements Tuples shortcut
	Maps and Tuples
	Mutable Maps

	Chapter 7 Classes and Objects
	Classes
	Adding a new class
	Method 1: Adding a new class file
	Method 2: Adding class to an existing file

	Class syntax
	Val vs. var in object-oriented programming
	Private modifier
	Member methods
	Constructors

	Inheritance
	Abstract classes

	Chapter 8 Pattern Matching
	Using OR with pattern matching
	Variable scoping
	Cases and classes
	Wild card
	Using Any as a data type

	Chapter 9 Closures
	Shorthand syntax

	Chapter 10 Conclusion

