

React 17 Design Patterns and
Best Practices
Third Edition

Design, build, and deploy production-ready web applications
using industry-standard practices

Carlos Santana Roldán

BIRMINGHAM - MUMBAI

React 17 Design Patterns and Best Practices
Third Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Rohit Rajkumar
Senior Editor: Hayden Edwards
Content Development Editor: Abhishek Jadhav
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Tejal Soni
Production Designer: Roshan Kawale

First published: January 2017
Second edition: March 2019
Third published: May 2021

Production reference: 1140521

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-044-4

www.packt.com

http://www.packt.com

To my lovely wife, Cristina, for her patience and support.

– Carlos Santana

About the author
Carlos Santana Roldán is a senior web developer with more than 13 years of experience.
Currently, he is working as a senior software engineer at Snapchat. He is the founder of
http:/​/​js.​education, where he teaches people web technologies such as React, Node.js,
JavaScript, and TypeScript.

http://js.education
http://js.education
http://js.education
http://js.education
http://js.education
http://js.education
http://js.education

About the reviewers
Phily Austria is a hands-on software engineering manager with a professional degree
and 15 years of experience. He is currently a software engineering manager at Endpoint
Closing, Inc. and still works hands-on in React.js. At this moment, he is interested in
FinTech, PropTech, and blockchain.

Phily lives in Los Angeles with his wife, Ashley, and his very cute daughter, Chalida.

Before he became an engineering manager, Phily got a graduate degree in computer
software engineering from Cal State Fullerton. He was a frontend engineer for 10 years,
working with VanillaJS, jQuery, BackboneJS, EmberJS, AngularJS, and now React.js.

I would like to thank Packt and Carlos, the author, for the opportunity to review this book.
Anyone who reads this book will become a React expert who can deploy their code to
production. Not only are the fundamental React topics written about in detail here, but
you will also find practical code and a step-by-step guide to ensure you understand
everything about React with up-to-date information. Last but not least, thank you for
picking up this book. I hope it makes you a React expert.

Kirill Ezhemenskii is an experienced software engineer, a frontend and mobile developer,
a solution architect, and the CTO at a healthcare company. He's a functional programming
advocate and an expert in the React stack, GraphQL, and TypeScript. He's also a React
Native mentor.

Emmanuel Demey works with the JavaScript ecosystem on a daily basis. He spends his
time sharing his knowledge with anyone and everyone. His first goal at work is to help the
people he works with. He has spoken at French conferences (such as Devfest Nantes,
Devfest Toulouse, Sunny Tech, and Devoxx France) about topics related to the web
platform, such as JavaScript frameworks (Angular, React.js, and Vue.js), accessibility, and
Nest.js. He has been a trainer for 10 years at Worldline and Zenika (two French consulting
companies). He also the co-leader of the Google Developer of Lille group and the co-
organizer of the Devfest Lille conference.

Table of Contents
Preface 1

Section 1: Hello React!
Chapter 1: Taking Your First Steps with React 8

Technical requirements 9
Differentiating between declarative and imperative programming 10
How React elements work 12
Unlearning everything 14
Understanding JavaScript fatigue 16
Introducing TypeScript 19

TypeScript features 20
Converting JavaScript code into TypeScript 20
Types 22
Interfaces 24

Extending 24
Implementing 25
Declaration merging 26

Summary 27

Chapter 2: Cleaning Up Your Code 28
Technical requirements 28
Using JSX 29

Babel 7 30
Creating our first element 31
DOM elements and React components 32
Props 32
Children 33
Differences with HTML 34

Attributes 34
Style 34
Root 35
Spaces 36
Boolean attributes 37

Spread attributes 37
Template literals 38
Common patterns 38

Multiline 38
Multi-properties 40
Conditionals 40
Loops 44

Table of Contents

[ii]

Control statements 44
Sub-rendering 47

Styling code 47
EditorConfig 48
Prettier 48
ESLint 50

Installation 51
Configuration 51
Git Hooks 53

Functional programming 54
First-class functions 55
Purity 55
Immutability 56
Currying 57
Composition 57
FP and UIs 58

Summary 58

Section 2: How React Works
Chapter 3: React Hooks 60

Technical requirements 60
Introducing React Hooks 61

No breaking changes 61
Using the State Hook 61
Rules of Hooks 63

Rule 1: Only call Hooks at the top level 63
Rule 2: Only call Hooks from React Functions 63

Migrating a class component to React Hooks 64
Understanding React effects 68

Understanding useEffect 69
Firing an effect conditionally 69

Understanding useCallback, useMemo, and memo 70
Memoizing a component with memo 74
Memoizing a value with useMemo 77
Memoizing a function definition with useCallback 82
Memoizing function passed as an argument in effect 87

Understanding the useReducer Hook 91
Summary 99

Chapter 4: Exploring Popular Composition Patterns 100
Technical requirements 100
Communicating components 101

Using the children prop 101
Exploring the container and presentational patterns 103
Understanding HOCs 108

Table of Contents

[iii]

Understanding FunctionAsChild 112
Summary 113

Chapter 5: Understanding GraphQL with a Real Project 114
Technical requirements 114
Installing PostgreSQL 115

Best tools for PostgreSQL database management 116
Creating our .env file and configuration files 116

Configuring our .env file 117
Creating a basic config file 117

Configuring Apollo Server 119
Defining our GraphQL types, queries, and mutations 121

Queries 122
Mutations 122

Merging our type definitions 123
Creating our resolvers 124

Creating the getUsers query 125
Creating the getUserData query 126
Creating the mutations 127

Merging our resolvers 127
Creating Sequelize models 128
Connecting Sequelize to a PostgreSQL database 130
Authentication functions 130

What is JSON Web Token? 131
JWT functions 131
Creating authentication functions 133
Types and interfaces 134

Running our project for the first time 136
Testing our GraphQL queries and mutations 138

Validations 144
Performing a login 148
Building a frontend login system with Apollo Client 154

Configuring Webpack 5 154
Configuring our TypeScript 157
Configuring the Express server 158
Creating our frontend configuration 160
Creating the user middleware 161
Creating JWT functions 164
Creating our GraphQL queries and mutations 165
Creating our user context to handle the login and the connected user 166
Configuring our Apollo Client 168
Creating our app routes 169
Creating our pages 170
Creating our Login components 171
Creating our Dashboard components 174

Table of Contents

[iv]

Testing our login system 175
Summary 180

Chapter 6: Managing Data 181
Technical requirements 181
Introducing the React Context API 181

Creating our first context 182
Wrapping our components with the provider 184
Consuming context with useContext 185

Introducing React Suspense with SWR 187
Introducing SWR 187
Building a Pokedex! 187
Testing our React Suspense 194

Summary 200

Chapter 7: Writing Code for the Browser 201
Technical requirements 202
Understanding and implementing forms 202

Uncontrolled components 202
Controlled components 206

Handling events 208
Exploring refs 211
Implementing animations 213

React Motion 215
Exploring SVG 216
Summary 218

Section 3: Performance, Improvements, and Production!
Chapter 8: Making Your Components Look Beautiful 220

Technical requirements 220
CSS in JavaScript 221
Understanding and implementing inline styles 223
Exploring the Radium library 227
Using CSS modules 231

Webpack 5 231
Setting up a project 232
Locally scoped CSS 238
Atomic CSS modules 244
React CSS modules 245

Implementing styled-components 247
Summary 250

Chapter 9: Server-Side Rendering for Fun and Profit 251
Technical requirements 251
Understanding universal applications 252

Table of Contents

[v]

Reasons for implementing SSR 253
Implementing search engine optimization 253
A common code base 254
Better performance 255
Don't underestimate the complexity 255

Creating a basic example of SSR 256
Implementing data fetching 262
Using Next.js to create a React application 266
Summary 269

Chapter 10: Improving the Performance of Your Applications 271
Technical requirements 272
Reconciliation 272
Keys 274
Optimization techniques 274
Tools and libraries 276

Immutability 276
Babel plugins 277

Summary 278

Chapter 11: Testing and Debugging 280
Technical requirements 280
Understanding the benefits of testing 281
Painless JavaScript testing with Jest 282
Testing events 288
Using React DevTools 290
Using Redux DevTools 291
Summary 292

Chapter 12: React Router 293
Technical requirements 293
Installing and configuring React Router 294
Creating our sections 294
Adding parameters to the routes 300
Summary 308

Chapter 13: Anti-Patterns to Be Avoided 309
Technical requirements 309
Initializing the state using properties 310
Using indexes as a key 312
Spreading properties on DOM elements 315
Summary 317

Chapter 14: Deploying to Production 318
Technical requirements 318

Table of Contents

[vi]

Creating our first DigitalOcean Droplet 318
Signing up to DigitalOcean 319
Creating our first Droplet 321
Installing Node.js 325
Configuring Git and GitHub 325
Turning off our Droplet 330

Configuring nginx, PM2, and a domain 331
Installing and configuring nginx 332
Setting up a reverse proxy server 333
Adding a domain to our Droplet 334

Implementing CircleCI for continuous integration 338
Adding an SSH key to CircleCI 340
Configuring CircleCI 344
Creating ENV variables in CircleCI 346

Summary 351

Chapter 15: Next Steps 352
Technical requirements 352
Contributing to React 353
Distributing your code 354

Knowing the best practices when pushing open source code 355
Publishing an npm package 358
Summary 359

About Packt 360

Other Books You May Enjoy 361

Index 364

Preface
React is an open source, adaptable JavaScript library for building complex user interfaces
from small, detached bits called components. This book will help you to use React
effectively to make your applications more flexible, easier to maintain, and improve their
performance while giving your workflow a huge boost by improving speed without
affecting quality.

You'll start by understanding the internals of React, before gradually moving on to writing
maintainable and clean code. The chapters that follow will show you how to build
components that are reusable across the application, how to structure applications, and
how to create forms that actually work. Later, you will build on your knowledge by
exploring how to style React components and optimize them to make applications faster
and more responsive. Finally, you'll learn how to write tests effectively and learn how to
contribute to React and its ecosystem.

By the end of this book, you'll be able to avoid the process of trial and error and
developmental headaches, and instead have the skills you need to efficiently build and
deploy real-world React web applications.

Who this book is for
This book is for web developers who want to increase their understanding of React and
apply it to real-life app development. Intermediate-level experience with React and
JavaScript is assumed.

What this book covers
Chapter 1, Taking Your First Steps with React, covers some basic concepts that are important
for following the rest of the book, and that are crucial to working with React daily. We will
learn how to write declarative code and will gain a clear understanding of the difference
between the components we create and the elements React uses to display instances on the
screen. We'll then learn the reasons behind the choice of co-locating logic and templates
together, and why that unpopular decision has been a big win for React. We will go
through the reasons why it is common to feel fatigued in the JavaScript ecosystem, but we'll
also see how to avoid those problems by following an iterative approach. Finally, we will
see what the new create-react-app CLI is, and with that, we'll be ready to start writing
some real code.

Preface

[2]

Chapter 2, Cleaning Up Your Code, teaches you a great deal about how JSX works and how to
use it in the right way in our components. We start from the basics of the syntax to create a
solid knowledge base that will enable us to master JSX and its features. We will look at how
ESLint and its plugins can help us find problems faster and enforce a consistent style guide
across our code base. Finally, we will go through the basics of functional programming to
understand the important concepts to use when writing a React application. Now that our
code is clean, we are ready to start digging deeper into React and learn how to write truly
reusable components.

Chapter 3, React Hooks, teaches you how to use the new React Hooks and how to build your
own Hooks.

Chapter 4, Exploring Popular Composition Patterns, explains how to compose our reusable
components and make them communicate effectively. Then, we will go through some of
the most interesting composition patterns in React. We will also see how React tried to
solve the problem of sharing functionalities between components with mixins. We'll then
learn how to deal with context without needing to couple our components to it, thanks to
HOCs. Finally, we'll see how we can compose components dynamically by following the
FunctionAsChild pattern.

Chapter 5, Understanding GraphQL with a Real Project, explains how to use GraphQL queries
and mutations with a real project, where you will learn how to build an authentication
system with GraphQL, JWT tokens, and Node.js.

Chapter 6, Managing Data, goes through some of the most common patterns to make a child
and parent communicate using callbacks. We'll then learn how we can use a common
parent to share data across components that are not directly connected. We will start with a
simple component, which will be able to load data from GitHub, and we'll make it reusable
with HOCs, and then go on to learn how we can use react-refetch to apply data
fetching patterns to our components and avoid reinventing the wheel. Finally, we'll learn
how to use the new Context API.

Chapter 7, Writing Code for the Browser, looks at different things we can do when we target
the browser with React, from form creation to events; from animations to SVGs. React gives
us a declarative way to manage all the aspects we need to deal with when we create a web
application. React gives us access to the actual DOM nodes in a way that we can perform
imperative operations with them, which is useful if we need to integrate React with an
existing imperative library.

Chapter 8, Making Your Components Look Beautiful, studies the reasons why regular CSS may
not be the best approach for styling components, along with the various alternative
solutions. Moving through the chapter, we'll learn to use inline styles in React, along with
the downsides of this, which can be fixed by using the Radium library. At the end, a new

Preface

[3]

library, styled-components, will be introduced, along with an outline of the modern
approach that it offers.

Chapter 9, Server-Side Rendering for Fun and Profit, invites you to follow certain steps to set
up a server-side rendered application. By the end of this chapter, we will be able to build a
universal application and be aware of its pros and cons.

Chapter 10, Improving the Performance of Your Applications, takes a quick look at the basic
components of the performance of React, and how we can use some APIs to help the library
find the optimal path to update the DOM without degrading the user experience. We will
also learn how to monitor performance and find bottlenecks using some tools that we can
import into our code base. At the end, we'll see how immutability and PureComponent are
the perfect tools to build fast React applications.

Chapter 11, Testing and Debugging, explains why it is important to test our applications,
along with an outline of the most popular tools that we could use to create tests with React.
We will also learn to set up a Jest environment to test components using Enzyme, along
with a discussion of what Enzyme is and why it is a must for testing React applications. By
covering all these topics, at the end of the chapter, we will be able to create a test
environment from scratch and write tests for our application's components.

Chapter 12, React Router, looks at certain steps that will help us to implement React Router in
our application. Moving ahead, as we complete each section, we will add dynamic routes
and understand how exactly React Router works. We will learn how to install and
configure React Router, along with adding a component, exact prop, and parameters to
routes.

Chapter 13, Anti-Patterns to be Avoided, is all about the common anti-patterns we should
avoid when using React. We will study why mutating the state is harmful to performance.
Choosing the right keys and helping the reconciler will also be covered in this chapter,
along with the reason why spreading props on DOM elements is bad and how we can
avoid doing that.

Chapter 14, Deploying to Production, covers how to deploy our React application using
Node.js and nginx on an Ubuntu server from Google Cloud, along with configuring nginx,
PM2, and a domain. Implementing CircleCI for continuous integration will also be covered.

Chapter 15, Next Steps, demonstrates how we can contribute to the React library by opening
issues and pull requests, and explains why it is important to give back to the community
and share our code. At the end, we will cover the most important aspects to keep in mind
when pushing open source code, along with how we can publish an npm package and how
to use semantic versioning.

Preface

[4]

To get the most out of this book
To master React, you need to have a fundamental knowledge of JavaScript and Node.js.
This book is mostly targeted at web developers, and, at the time of writing, the following
assumptions were made of the reader:

The reader knows how to install the latest version of Node.js.
The reader is an intermediate developer who can understand JavaScript ES6
syntax.
The reader has some experience of CLI tools and Node.js syntax.

Download the example code files
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-

Third-Edition. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781800560444_​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560444_ColorImages.pdf

Preface

[5]

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

const name = `Carlos`
const multilineHtml = `<p>
 This is a multiline string
 </p>`
console.log(`Hi, my name is ${name}`)

Any command-line input or output is written as follows:

npm install -g @babel/preset-env @babel/preset-react

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[6]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Hello React!

The objective of this section is to explain to you the basic concepts of declarative
programming, React elements, and how to use TypeScript.

We will cover the following chapters in this section:

Chapter 1, Taking Your First Steps with React
Chapter 2, Cleaning Up Your Code

1
Taking Your First Steps with

React
Hello, readers!

This book assumes that you already know what React is and what problems it can solve for
you. You may have written a small/medium application with React, and you want to
improve your skills and answer all of your open questions. You should know that React is
maintained by the developers at Facebook and hundreds of contributors within the
JavaScript community. React is one of the most popular libraries for creating UIs, and it is
well known to be fast, thanks to its smart way of working with the Document Object
Model (DOM). It comes with JSX, a new syntax for writing markup in JavaScript, which
requires you to change your thinking regarding the separation of concerns. It has many
cool features, such as server-side rendering, which gives you the power to write universal
applications.

In this first chapter, we will go through some basic concepts that are essential to master in
order to use React effectively, but are straightforward enough for beginners to figure out:

The difference between imperative and declarative programming
React components and their instances, and how React uses elements to control
the UI flow
How React changed the way we build web applications, enforcing a different
new concept of separation of concerns, and the reasons behind its unpopular
design choice
Why people feel JavaScript fatigue, and what you can do to avoid the most
common errors developers make when approaching the React ecosystem
How TypeScript changed the game

Taking Your First Steps with React Chapter 1

[9]

Technical requirements
In order to follow this book, you need to have some minimal experience using the terminal
to run a few Unix commands. Also, you need to install Node.js. You have two options. The
first one is to download Node.js directly from the official website, https:/ ​/​nodejs. ​org,
and the second option (recommended) is to install Node Version Manager (NVM)
from https:/​/​github. ​com/ ​nvm- ​sh/ ​nvm.

If you decide to go with NVM, you can install any version of Node.js you want and switch
the versions with the nvm install command:

"node" is an alias for the latest version:
nvm install node

You can also install a global version of node (will install the latest
from that version):
nvm install 10
nvm install 9
nvm install 8
nvm install 7
nvm install 6

Or you can install a very specific version:
nvm install 6.14.3

After you have installed the different versions, you can switch them by using the nvm
use command:

nvm use node # for latest version
nvm use 10
nvm use 6.14.3

Finally, you can specify a default node version by running the following command:

nvm alias default node
nvm alias default 10
nvm alias default 6.14.3

https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm

Taking Your First Steps with React Chapter 1

[10]

In short, here is a list of the requirements to complete the chapter:

Node.js (12+): https:/ ​/ ​nodejs. ​org
NVM: https:/ ​/​github. ​com/ ​nvm- ​sh/​nvm

VS Code: https:/ ​/​code. ​visualstudio. ​com

TypeScript: https:/ ​/​www. ​npmjs. ​com/ ​package/ ​typescript

You can find the code for this chapter in the book's GitHub repository: https:/ ​/ ​github.
com/​PacktPublishing/ ​React- ​17- ​Design- ​Patterns- ​and- ​Best- ​Practices- ​Third- ​Edition.

Differentiating between declarative and
imperative programming
When reading the React documentation or blog posts about React, you will have
undoubtedly come across the term declarative. One of the reasons why React is so
powerful is that it enforces a declarative programming paradigm.

Therefore, to master React, it is essential to understand what declarative programming
means and what the main differences between imperative and declarative programming
are. The easiest way to approach this is to think about imperative programming as a way of
describing how things work, and declarative programming as a way of describing what
you want to achieve.

Entering a bar for a beer is a real-life example in the imperative world, where normally you
will give the following instructions to the bartender:

Find a glass and collect it from the shelf.1.
Place the glass under the tap.2.
Pull down the handle until the glass is full.3.
Hand me the glass.4.

In the declarative world, you would just say "Can I have a beer, please?"

The declarative approach assumes that the bartender already knows how to serve a beer, an
important aspect of the way declarative programming works.

Let's move into a JavaScript example. Here we will write a simple function that, given an
array of lowercase strings, returns an array with the same strings in uppercase:

toUpperCase(['foo', 'bar']) // ['FOO', 'BAR']

https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://www.npmjs.com/package/typescript
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition

Taking Your First Steps with React Chapter 1

[11]

An imperative function to solve the problem would be implemented as follows:

const toUpperCase = input => {
 const output = []
 for (let i = 0; i < input.length; i++) {
 output.push(input[i].toUpperCase())
 }
 return output
}

First of all, an empty array to contain the result is created. Then, the function loops through
all the elements of the input array and pushes the uppercase values into the empty array.
Finally, the output array is returned.

A declarative solution would be as follows:

const toUpperCase = input => input.map(value => value.toUpperCase())

The items of the input array are passed to a map function that returns a new array
containing the uppercase values. There are some significant differences to note: the former
example is less elegant and it requires more effort to be understood. The latter is terser and
easier to read, which makes a huge difference in big code bases, where maintainability is
crucial.

Another aspect worth mentioning is that in the declarative example, there is no need to use
variables, nor to keep their values updated during the execution. Declarative programming
tends to avoid creating and mutating a state.

As a final example, let's see what it means for React to be declarative. The problem we will
try to solve is a common task in web development: creating a toggle button.

Imagine a simple UI component such as a toggle button. When you click it, it turns green
(on) if it was previously gray (off), and switches to gray (off) if it was previously green (on).

The imperative way of doing this would be as follows:

const toggleButton = document.querySelector('#toggle')

toogleButton.addEventListener('click', () => {
 if (toggleButton.classList.contains('on')) {
 toggleButton.classList.remove('on')
 toggleButton.classList.add('off')
 } else {
 toggleButton.classList.remove('off')
 toggleButton.classList.add('on')
 }
})

Taking Your First Steps with React Chapter 1

[12]

It is imperative because of all the instructions needed to change the classes. In contrast, the
declarative approach using React would be as follows:

// To turn on the Toggle
<Toggle on />

// To turn off the toggle
<Toggle />

In declarative programming, developers only describe what they want to achieve, and
there's no need to list all the steps to make it work. The fact that React offers a declarative
approach makes it easy to use, and consequently, the resulting code is simple, which often
leads to fewer bugs and more maintainability.

In the next section, you will learn how React elements work and you will get more context
on how props are being passed on a React component.

How React elements work
This book assumes that you are familiar with components and their instances, but there is
another object you should know about if you want to use React effectively – the element.

Whenever you call createClass, extend Component, or declare a stateless function, you
are creating a component. React manages all the instances of your components at runtime,
and there can be more than one instance of the same component in memory at a given point
in time.

As mentioned previously, React follows a declarative paradigm, and there's no need to tell
it how to interact with the DOM; you declare what you want to see on the screen, and React
does the job for you.

As you might have already experienced, most other UI libraries work the other way round:
they leave the responsibility of keeping the interface updated to the developer, who has to
manage the creation and destruction of the DOM elements manually.

To control the UI flow, React uses a particular type of object, called an element, which
describes what has to be shown on the screen. These immutable objects are much
simpler compared to the components and their instances and contain only the information
that is strictly needed to represent the interface.

Taking Your First Steps with React Chapter 1

[13]

The following is an example of an element:

 {
 type: Title,
 props: {
 color: 'red',
 children: 'Hello, Title!'
 }
 }

Elements have type, which is the most important attribute, and some properties. There is
also a particular property, called children, that is optional and represents the direct
descendant of the element.

type is important because it tells React how to deal with the element itself. If type is a
string, the element represents a DOM node, while if type is a function, the element is
a component.

DOM elements and components can be nested with each other as follows, to represent the
render tree:

 {
 type: Title,
 props: {
 color: 'red',
 children: {
 type: 'h1',
 props: {
 children: 'Hello, H1!'
 }
 }
 }
 }

When the type of the element is a function, React calls the function, passing props to get
back the underlying elements. It keeps on performing the same operation recursively on
the result until it gets a tree of DOM nodes that React can render on the screen. This process
is called reconciliation, and it is used by both React DOM and React Native to create the
UIs of their respective platforms.

React is a game-changer, so at the beginning, the React syntax might seem weird to you, but
once you understand how it works, you will love it, and for this, you need to unlearn
everything you know so far.

Taking Your First Steps with React Chapter 1

[14]

Unlearning everything
Using React for the first time usually requires an open mind because it is a new way of
designing web and mobile applications. React tries to innovate the way we build UIs
following a path that breaks most of the well-known best practices.

In the last two decades, we learned that the separation of concerns is important, and we
used to think about it as separating the logic from the templates. Our goal has always been
to write the JavaScript and the HTML in different files. Various templating solutions have
been created to help developers achieve this.

The problem is that most of the time, that kind of separation is just an illusion and the truth
is that the JavaScript and the HTML are tightly coupled, no matter where they live.

Let's see an example of a template:

{{#items}}
 {{#first}}
 {{name}}
 {{/first}}
 {{#link}}
 {{name}}
 {{/link}}
{{/items}}

The preceding snippet is taken from the Mustache website, one of the most popular
templating systems.

The first row tells Mustache to loop through a collection of items. Inside the loop, there is
some conditional logic to check whether the #first and #link properties exist and,
depending on their values, a different piece of HTML is rendered. Variables are wrapped in
curly braces.

If your application only has to display some variables, a templating library could represent
a good solution, but when it comes to starting to work with complex data structures, things
change. Templating systems and their Domain-Specific Language (DSL) offer a subset of
features, and they try to provide the functionalities of a real programming language
without reaching the same level of completeness. As shown in the example, templates
highly depend on the models they receive from the logic layer to display the information.

Taking Your First Steps with React Chapter 1

[15]

On the other hand, JavaScript interacts with the DOM elements rendered by the templates
to update the UI, even if they are loaded from separate files. The same problem applies to
styles – they are defined in a different file, but they are referenced in the templates, and the
CSS selectors follow the structure of the markup, so it is almost impossible to change one
without breaking the other, which is the definition of coupling. That is why the classic
separation of concerns ended up being more the separation of technologies, which is, of
course, not a bad thing, but it doesn't solve any real problems.

React tries to move a step forward by putting the templates where they belong – next to the
logic. The reason it does that is that React suggests you organize your applications by
composing small bricks called components. The framework should not tell you how to
separate the concerns because every application has its own, and only the developers
should decide how to limit the boundaries of their applications.

The component-based approach drastically changes the way we write web applications,
which is why the classic concept of separation of concerns is gradually being taken over by
a much more modern structure. The paradigm enforced by React is not new, and it was not
invented by its creators, but React has contributed to making the concept mainstream and,
most importantly, popularized it in such a way that it is easier to understand for developers
with different levels of expertise.

Rendering of a React component looks like this:

return (
 <button style={{ color: 'red' }} onClick={this.handleClick}>
 Click me!
 </button>
)

We all agree that it seems a bit weird in the beginning, but that is just because we are not
used to that kind of syntax. As soon as we learn it and we realize how powerful it is, we
understand its potential. Using JavaScript for both logic and templating not only helps us
separate our concerns in a better way, but it also gives us more power and more
expressivity, which is what we need to build complex UIs.

That is why even if the idea of mixing JavaScript and HTML sounds weird in the
beginning, it is vital to give React 5 minutes. The best way to get started with new
technology is to try it on a small side project and see how it goes. In general, the right
approach is always to be ready to unlearn everything and change your mindset if the long-
term benefits are worth it.

Taking Your First Steps with React Chapter 1

[16]

There is another concept that is pretty controversial and hard to accept, and that the
engineers behind React are trying to push to the community: moving the styling logic
inside the component, too. The end goal is to encapsulate every single technology used to
create our components and separate the concerns according to their domain and
functionalities.

Here is an example of a style object taken from the React documentation:

const divStyle = {
 color: 'white',
 backgroundImage: `url(${imgUrl})`,
 WebkitTransition: 'all', // note the capital 'W' here
 msTransition: 'all' // 'ms' is the only lowercase vendor prefix
}
ReactDOM.render(<div style={divStyle}>Hello World!</div>, mountNode)

This set of solutions, where developers use JavaScript to write their styles, is known
as #CSSinJS, and we will talk about it extensively in Chapter 8, Making Your Components
Look Beautiful.

In the next section, we will see how to avoid JavaScript fatigue, which is caused by the large
number of configurations that are needed to run a React application (webpack mainly).

Understanding JavaScript fatigue
There is a prevailing opinion that React consists of a vast set of technologies and tools, and
if you want to use it, you are forced to deal with package managers, transpilers, module
bundlers, and an infinite list of different libraries. This idea is so widespread and shared
among people that it has been clearly defined, and has been given the name JavaScript
fatigue.

It is not hard to understand the reasons behind this. All the repositories and libraries in the
React ecosystem are made using shiny new technologies, the latest version of JavaScript,
and the most advanced techniques and paradigms.

Moreover, there is a massive number of React boilerplate on GitHub, each with tens of
dependencies to offer solutions for any problems. It is straightforward to think that all these
tools are required to start using React, but this is far from the truth. Despite this common
way of thinking, React is a pretty tiny library, and it can be used inside any page (or even
inside JSFiddle) in the same way everyone used to use jQuery or Backbone, just by
including the script on the page before the closing body element.

Taking Your First Steps with React Chapter 1

[17]

There are two scripts because React is split into two packages:

react: Implements the core features of the library
react-dom: Contains all the browser-related features

The reason behind this is that the core package is used to support different targets, such as
React DOM in browsers and React Native on mobile devices. Running a React application
inside a single HTML page does not require any package manager or complex operation.
You can just download the distribution bundle and host it yourself (or use https:/ ​/​unpkg.
com/​), and you are ready to get started with React and its features in a few minutes.

Here are the URLs to be included in the HTML to start using React:

https:/​/ ​unpkg. ​com/ ​react@17. ​0.​1/​umd/ ​react. ​production. ​min.​js

https:/​/ ​unpkg. ​com/ ​react- ​dom@17. ​0. ​1/​umd/ ​react- ​dom. ​production. ​min. ​js

If we add the core React library only, we cannot use JSX because it is not a standard
language supported by the browser; but the whole point is to start with the bare minimum
set of features and add more functionalities as soon as they are needed. For a simple UI, we
could just use createElement (_jsx on React 17) and only when we start building
something more complex can we include a transpiler to enable JSX and convert it into
JavaScript. As soon as the app grows a bit more, we may need a router to handle different
pages and views, and we can include that as well.

At some point, we may want to load data from some API endpoints, and if the application
keeps growing, we will reach the point where we need some external dependencies to
abstract complex operations. Only at that very moment should we introduce a package
manager. Then, the time will come to split our application into separate modules and
organize our files in the right way. At that point, we should start thinking about using a
module bundler.

Following this simple approach, there's no fatigue. Starting with a boilerplate that has 100
dependencies and tens of npm packages of which we know nothing is the best way to get
lost. It is important to note that every programming-related job (and frontend engineering
in particular) requires continuous learning. It is the nature of the web to evolve at a
breakneck pace and change according to the needs of both users and developers. This is the
way our environment has worked since the beginning and is what makes it very exciting.

https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react@17.0.1/umd/react.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js
https://unpkg.com/react-dom@17.0.1/umd/react-dom.production.min.js

Taking Your First Steps with React Chapter 1

[18]

As we gain experience working on the web, we learn that we cannot master everything and
we should find the right way to keep ourselves updated to avoid fatigue. We are able to
follow all the new trends without jumping into the new libraries for the sake of it unless we
have time for a side project.

It is astonishing how, in the JavaScript world, as soon as a specification is announced or
drafted, someone in the community implements it as a transpiler plugin or a polyfill, letting
everyone else play with it while the browser vendors agree and start supporting it.

This is something that makes JavaScript and the browser a completely different
environment compared to any other language or platform. The downside of it is that things
change quickly, but it is just a matter of finding the right balance between betting on new
technologies versus staying safe.

In any case, Facebook developers care a lot about the Developer Experience (DX), and they
listen carefully to the community. So, even if it is not true that to use React we are required
to learn hundreds of different tools, they realized that people were feeling the fatigue and
they released a CLI tool that makes it incredibly easy to scaffold and run a real React
application.

The only requirement is to use a node.js/npm environment and install the CLI tool
globally as follows:

npm install -g create-react-app

When the executable is installed, we can use it to create our application, passing a folder
name:

create-react-app hello-world --template typescript

Finally, we move into the folder of our application with cd hello-world, and we just run
the following command:

npm start

Taking Your First Steps with React Chapter 1

[19]

Magically, our application is running with a single dependency, but with all the features
needed to build a complete React application using the most advanced techniques. The
following screenshot shows the default page of an application created with create-
react-app:

This is basically your first React application.

Introducing TypeScript
TypeScript is a typed superset of JavaScript that is compiled to JavaScript, which means
TypeScript is JavaScript with some additional features. TypeScript was designed by
Anders Hejlsberg (the designer of C#) at Microsoft and is open source.

Let's see what the features of TypeScript are and how to convert JavaScript to TypeScript.

Taking Your First Steps with React Chapter 1

[20]

TypeScript features
This section will try to summarize the most important features you should be taking
advantage of:

TypeScript is JavaScript: Any JavaScript code you write will work with
TypeScript, which means if you already know how to use JavaScript basically
you have all you need to do TypeScript; you just need to learn how to add types
to your code. All the TypeScript code is transformed into JavaScript at the end.
JavaScript is TypeScript: This just means that you can rename any valid .js file
with the .ts extension, and it will work.
Error checking: TypeScript compiles the code and checks for errors, which helps
a lot to highlight errors before we run our code.
Strong typing: By default, JavaScript is not strongly typed. With TypeScript, you
can add types to all your variables and functions, and you can even specify the
returned value types.
Object-oriented programming supported: It supports concepts such as classes,
interfaces, inheritance, and so on.

Converting JavaScript code into TypeScript
In this section, we will see how to transform some JavaScript code into TypeScript.

Let's suppose we have to check whether a word is a palindrome. The JavaScript code for
this algorithm will be as follows:

function isPalindrome(word) {
 const lowerCaseWord = word.toLowerCase()
 const reversedWord = lowerCaseWord.split('').reverse().join('')

 return lowerCaseWord === reversedWord
}

You can name this file palindrome.ts.

Taking Your First Steps with React Chapter 1

[21]

As you can see, we are receiving a string variable (word), and we are returning a boolean
value, so how will this be translated to TypeScript?

function isPalindrome(word: string): boolean {
 const lowerCaseWord = word.toLowerCase()
 const reversedWord = lowerCaseWord.split('').reverse().join('')

 return lowerCaseWord === reversedWord
}

You're probably thinking great, I just specified the string type as word and boolean type
to the function returned value, but now what?

If you try to run the function with some value that is different from a string, you will get a
TypeScript error:

console.log(isPalindrome('Level')) // true
console.log(isPalindrome('Anna')) // true
console.log(isPalindrome('Carlos')) // false
console.log(isPalindrome(101)) // TS Error
console.log(isPalindrome(true)) // TS Error
console.log(isPalindrome(false)) // TS Error

So, if you try to pass a number to the function, you will get the following error:

That's why TypeScript is very useful because it will force you to be more strict and explicit
with your code.

Taking Your First Steps with React Chapter 1

[22]

Types
In the last example, we saw how to specify some primitive types for our function parameter
and returned value, but you're probably wondering how you can describe an object or
array with more details. Types can help us to describe our objects or arrays in a better way.
For example, let's suppose you want to describe a User type to save the information into
the database:

type User = {
 username: string
 email: string
 name: string
 age: number
 website: string
 active: boolean
}

const user: User = {
 username: 'czantany',
 email: 'carlos@milkzoft.com',
 name: 'Carlos Santana',
 age: 33,
 website: 'http://www.js.education',
 active: true
}

// Let's suppose you will insert this data using Sequelize...
models.User.create({ ...user }}

Taking Your First Steps with React Chapter 1

[23]

We get the following error if you forget to add one of the nodes or put an invalid value in
one of them:

If you need optional nodes, you can always put a ? next to the name of the node, as shown
in the following code block:

type User = {
 username: string
 email: string
 name: string
 age?: number
 website: string
 active: boolean
}

You can name type as you want, but a good practice to follow is to add a
prefix of T, so, for example, the User type will become TUser. In this way,
you can quickly recognize that it is type and you don't get confused
thinking it is a class or a React component.

Taking Your First Steps with React Chapter 1

[24]

Interfaces
Interfaces are very similar to types and sometimes developers don't know the differences
between them. Interfaces can be used to describe the shape of an object or function
signature just like types, but the syntax is different:

interface User {
 username: string
 email: string
 name: string
 age?: number
 website: string
 active: boolean
}

You can name an interface as you want, but a good practice to follow is to
add a prefix of I, so, for example, the User interface will become IUser.
In this way, you can quickly recognize that it is an interface and you don't
get confused thinking it is a class or a React component.

An interface can also be extended, implemented, and merged.

Extending
An interface or type can also be extended, but again the syntax will differ, as shown in the
following code block:

// Extending an interface
interface IWork {
 company: string
 position: string
}

interface IPerson extends IWork {
 name: string
 age: number
}

// Extending a type
type TWork = {
 company: string
 position: string
}

type TPerson = TWork & {
 name: string

Taking Your First Steps with React Chapter 1

[25]

 age: number
}

// Extending an interface into a type
interface IWork {
 company: string
 position: string
}

type TPerson = IWork & {
 name: string
 age: number
}

As you can see, by using the & character, you can extend a type, while you extend an
interface using the extends keyword.

Implementing
A class can implement an interface or type alias in the same exact way. But it cannot
implement (or extend) a type alias that names a union type, for example:

// Implementing an interface
interface IWork {
 company: string
 position: string
}

class Person implements IWork {
 name: 'Carlos'
 age: 33
}

// Implementing a type
type TWork = {
 company: string
 position: string
}

class Person2 implements TWork {
 name: 'Cristina'
 age: 32
}

// You can't implement a union type
type TWork2 = { company: string; position: string } | { name: string; age:

Taking Your First Steps with React Chapter 1

[26]

number }

class Person3 implements TWork2 {
 company: 'Google'
 position: 'Senior Software Engineer'
}

If you write that code, you will get the following error in your editor:

As you can see, you are not able to implement a union type.

Declaration merging
Unlike a type, an interface can be defined multiple times and will be treated as a single
interface (all declarations will be merged), as shown in the following code block:

interface IUser {
 username: string
 email: string
 name: string
 age?: number
 website: string
 active: boolean
}

interface IUser {
 country: string
}

const user: IUser = {
 username: 'czantany',
 email: 'carlos@milkzoft.com',

Taking Your First Steps with React Chapter 1

[27]

 name: 'Carlos Santana',
 country: 'Mexico',
 age: 33,
 website: 'http://www.js.education',
 active: true
}

This is very useful when you need to extend your interfaces in different scenarios by just re-
defining the same interface.

Summary
In this first chapter, we have learned some basic concepts that are very important for
following the rest of the book, and that are crucial to working with React daily. We now
know how to write declarative code, and we have a clear understanding of the difference
between the components we create and the elements that React uses to display their
instances on the screen.

We learned the reasons behind the choice of locating logic and templates together, and why
that unpopular decision has been a big win for React. We went through the reasons why it
is common to feel fatigued in the JavaScript ecosystem, but we have also seen how to avoid
those problems by following an iterative approach.

We learned how to use TypeScript to create some basic types and interfaces. Finally, we
have seen what the new create-react-app CLI is, and we are now ready to start writing
some real code.

In the next chapter, you will learn how to use JSX/TSX code and apply very useful
configurations to improve your code style.

2
Cleaning Up Your Code

This chapter assumes that you already have experience with JSX and you want to improve
your skills to use it effectively. To use JSX/TSX without any problems or unexpected
behaviors, it is essential to understand how it works under the hood, and the reasons why
it is a useful tool for building UIs.

Our goal is to write clean JSX/TSX code, maintain it, and know where it comes from, how it
gets translated to JavaScript, and what features it provides.

In this chapter, we will cover the following topics:

What is JSX and why should we use it?
What is Babel and how can we use it to write modern JavaScript code?
The main features of JSX and the differences between HTML and JSX
Best practices to write JSX in an elegant and maintainable way
How linting, and ESLint in particular, can make our JavaScript code consistent
across applications and teams
The basics of functional programming and why following a functional paradigm
will make us write better React components

Technical requirements
To complete this chapter, you will need the following:

Node.js 12+
Visual Studio Code

Cleaning Up Your Code Chapter 2

[29]

Using JSX
In the previous chapter, we saw how React changes the concept of separation of concerns,
moving the boundaries inside components. We also learned how React uses the elements
returned by the components to display the UI on the screen.

Let's now look at how we can declare our elements inside our components.

React provides two ways to define our elements. The first one is by using JavaScript
functions, and the second one is by using JSX, an optional XML-like syntax. The following
is a screenshot of the examples section of the official React.js website (https:/ ​/​reactjs.
org/​#examples):

To begin with, JSX is one of the main reasons why people fail to approach React, because
looking at the examples on the home page and seeing JavaScript mixed with HTML for the
first time can seem strange to most of us.

As soon as we get used to it, we realize that it is very convenient, precisely because it is
similar to HTML and looks very familiar to anyone who has already created UIs on the
web. The opening and closing tags make it easier to represent nested trees of elements,
something that would have been unreadable and hard to maintain using plain JavaScript.

Let's take a look at JSX in more detail in the following sub-sections.

https://reactjs.org/#examples
https://reactjs.org/#examples
https://reactjs.org/#examples
https://reactjs.org/#examples
https://reactjs.org/#examples
https://reactjs.org/#examples
https://reactjs.org/#examples
https://reactjs.org/#examples

Cleaning Up Your Code Chapter 2

[30]

Babel 7
To use JSX (and some features of ES6) in our code, we have to install the new Babel 7. Babel
is a popular JavaScript compiler widely adopted within the React community.

First of all, it is important to clearly understand the problems it can solve for us and why
we need to add a step to our process. The reason is that we want to use features of the
language that have not yet been added in the browser, our target environment. Those
advanced features make our code cleaner for developers, but the browser cannot
understand and execute it.

The solution is to write our scripts in JSX and ES6 and, when we are ready to ship, we
compile the sources into ES5, the standard specification implemented in major browsers
today.

Babel can compile ES6 code into ES5 JavaScript, as well as compile JSX into JavaScript
functions. This process is called transpilation because it compiles the source into a new
source rather than into an executable.

In older versions of Babel 6.x, you installed the babel-cli package and you got babel-
node and babel-core, and now everything is separated:
@babel/core, @babel/cli, @babel/node, and so on.

To install Babel, we need to install @babel/core and @babel/node as follows:

npm install -g @babel/core @babel/node

If you do not want to install it globally (developers usually tend to avoid this), you can
install Babel locally to a project and run it through an npm script, but for this chapter, a
global instance is fine.

When the installation is complete, we can run the following command to compile any
JavaScript file:

babel source.js -o output.js

One of the reasons why Babel is so powerful is because it is highly configurable. Babel is
just a tool to transpile a source file into an output file, but to apply some transformations,
we need to configure it.

Luckily, there are some very useful presets of configurations that we can easily install and
use:

npm install -g @babel/preset-env @babel/preset-react

Cleaning Up Your Code Chapter 2

[31]

Once the installation is complete, we create a configuration file called .babelrc in the
root folder, and put the following lines into it to tell Babel to use those presets:

{
 "presets": [
 "@babel/preset-env",
 "@babel/preset-react"
]
}

From this point on, we can write ES6 and JSX in our source files and execute the output files
in the browser.

Creating our first element
Now that our environment has been set up to support JSX, we can dive into the most basic
example: generating a div element. This is how you would create a div element with
the _jsx function:

_jsx('div', {})

This is the JSX for creating a div element:

<div />

It looks similar to regular HTML.

The big difference is that we are writing the markup inside a .js file, but it is important to
note that JSX is only syntactic sugar, and it gets transpiled into JavaScript before being
executed in the browser.

In fact, our <div /> element is translated into _jsx('div', {}) when we run Babel,
which is something we should always keep in mind when we write our templates.

In React 17, React.createElement('div') is deprecated, now
internally using react/jsx-runtime to render the JSX, meaning that we
will have something such as _jsx('div', {}). Basically, this means that
you don't need to import the React object anymore in order to write JSX
code.

Cleaning Up Your Code Chapter 2

[32]

DOM elements and React components
With JSX, we can create both HTML elements and React components; the only difference is
whether or not they start with a capital letter.

For example, to render an HTML button, we use <button />, while to render
the Button component, we use <Button />. The first button is transpiled into the
following:

_jsx('button', {})

The second one is transpiled into the following:

_jsx(Button, {})

The difference here is that in the first call, we are passing the type of the DOM element as a
string, while in the second call, we are passing the component itself, which means that it
should exist in the scope to work.

As you may have noticed, JSX supports self-closing tags, which are pretty good for keeping
the code terse and do not require us to repeat unnecessary tags.

Props
JSX is very convenient when your DOM elements or React components have props. Using
XML is pretty easy to set attributes on elements:

The equivalent in JavaScript would be as follows:

_jsx("img", {
 src: "https://www.js.education/images/logo.png",
 alt: "JS Education"
})

This is far less readable, and even with only a couple of attributes, it is harder to read
without a bit of reasoning.

Cleaning Up Your Code Chapter 2

[33]

Children
JSX allows you to define children to describe the tree of elements and compose complex
UIs. A basic example is a link with text inside it, as follows:

Click me!

This would be transpiled into the following:

_jsx(
 "a",
 { href: "https://www.js.education" },
 "Click me!"
)

Our link can be enclosed inside a div element for some layout requirements, and the JSX
snippet to achieve that is as follows:

<div>
 Click me!
</div>

The JavaScript equivalent is as follows:

_jsx(
 "div",
 null,
 _jsx(
 "a",
 { href: "https://www.js.education" },
 "Click me!"
)
)

It should now be clear how the XML-like syntax of JSX makes everything more readable
and maintainable, but it is always important to know the JavaScript parallel to our JSX has
control over the creation of elements. The good part is that we are not limited to having
elements as children of elements, but we can use JavaScript expressions, such as functions
or variables.

To do this, we have to enclose the expression within curly braces:

<div>
 Hello, {variable}.
 I'm a {() => console.log('Function')}.
</div>

Cleaning Up Your Code Chapter 2

[34]

The same applies to non-string attributes, as follows:

Click me!

As you see, any variable or function should be enclosed with curly braces.

Differences with HTML
So far, we have looked at the similarities between JSX and HTML. Let's now look at the
little differences between them and the reasons they exist.

Attributes
We must always keep in mind that JSX is not a standard language and that it gets
transpiled into JavaScript. Because of this, some attributes cannot be used.

For example, instead of class, we have to use className, and instead of for, we have to
use htmlFor, as follows:

<label className="awesome-label" htmlFor="name" />

The reason for this is that class and for are reserved words in JavaScript.

Style
A pretty significant difference is the way the style attribute works. We will look at how to
use it in more detail in Chapter 8, Making Your Components Look Beautiful, but now we will
focus on the way it works.

The style attribute does not accept a CSS string as the HTML parallel does, but it expects a
JavaScript object where the style names are camelCased:

<div style={{ backgroundColor: 'red' }} />

As you can see, you can pass an object to the style prop, meaning you can even have your
styles in a separate variable if you want:

const styles = {
 backgroundColor: 'red'
}

<div style={styles} />

Cleaning Up Your Code Chapter 2

[35]

This is the best way to have better control of your inline styles.

Root
One important difference with HTML worth mentioning is that since JSX elements get
translated into JavaScript functions, and you cannot return two functions in JavaScript,
whenever you have multiple elements at the same level, you are forced to wrap them in a
parent.

Let's look at a simple example:

<div />
<div />

This gives us the following error:

Adjacent JSX elements must be wrapped in an enclosing tag.

On the other hand, the following works:

<div>
 <div />
 <div />
</div>

Before, React forced you to return an element wrapped with an <div> element or any other
tag; since React 16.2.0, it is possible to return an array directly as follows:

return [
 <li key="1">First item,
 <li key="2">Second item,
 <li key="3">Third item
]

Or you can even return a string directly, as shown in the following code block:

return 'Hello World!'

Also, React now has a new feature called Fragment that also works as a special wrapper
for elements. It can be specified with React.Fragment:

import { Fragment } from 'react'

return (
 <Fragment>
 <h1>An h1 heading</h1>
 Some text here.

Cleaning Up Your Code Chapter 2

[36]

 <h2>An h2 heading</h2>
 More text here.
 Even more text here.
 </Fragment>
)

Or you can use empty tags (<></>):

return (
 <>
 <ComponentA />
 <ComponentB />
 <ComponentC />
 </>
)

Fragment won't render anything visible on the DOM; it is just a helper tag to wrap your
React elements or components.

Spaces
There's one thing that could be a little bit tricky in the beginning and, again, it concerns the
fact that we should always keep in mind that JSX is not HTML, even if it has XML-like
syntax. JSX handles the spaces between text and elements differently from HTML, in a way
that's counter-intuitive.

Consider the following snippet:

<div>
 My
 name is
 Carlos
</div>

In a browser that interprets HTML, this code would give you My name is Carlos, which
is exactly what we expect.

In JSX, the same code would be rendered as MynameisCarlos, which is because the three
nested lines get transpiled as individual children of the div element, without taking the
spaces into account. A common solution to get the same output is putting a space explicitly
between the elements, as follows:

<div>
 My
 {' '}
 name is

Cleaning Up Your Code Chapter 2

[37]

 {' '}
 Carlos
</div>

As you may have noticed, we are using an empty string wrapped inside a JavaScript
expression to force the compiler to apply a space between the elements.

Boolean attributes
A couple more things are worth mentioning before really starting regarding the way you
define Boolean attributes in JSX. If you set an attribute without a value, JSX assumes that its
value is true, following the same behavior as the HTML disabled attribute, for example.

This means that if we want to set an attribute to false, we have to declare it explicitly as
false:

<button disabled />
React.createElement("button", { disabled: true })

The following is another example of the Boolean attribute:

<button disabled={false} />
React.createElement("button", { disabled: false })

This can be confusing in the beginning, because we may think that omitting an attribute
would mean false, but it is not like that. With React, we should always be explicit to avoid
confusion.

Spread attributes
An important feature is the spread attribute operator (...), which comes from the
rest/spread properties for ECMAScript proposal, and is very convenient whenever we want
to pass all the attributes of a JavaScript object to an element.

A common practice that leads to fewer bugs is not to pass entire JavaScript objects down to
children by reference, but to use their primitive values, which can be easily validated,
making components more robust and error-proof.

Cleaning Up Your Code Chapter 2

[38]

Let's see how it works:

const attrs = {
 id: 'myId',
 className: 'myClass'
}
return <div {...attrs} />

The preceding code gets transpiled into the following:

var attrs = {
 id: 'myId',
 className: 'myClass'
}

return _jsx('div', attrs)

Template literals
Templates literals are string literals allowing embedded expressions. You can use multiline
strings and string interpolation features with them.

Template literals are enclosed by the backtick (` `) character instead of double or single
quotes. Also, template literals can contain placeholders. You can add them using the dollar
sign and curly braces (${expression}):

const name = `Carlos`
const multilineHtml = `<p>
 This is a multiline string
 </p>`
console.log(`Hi, my name is ${name}`)

Common patterns
Now that we know how JSX works and can master it, we are ready to see how to use it in
the right way following some useful conventions and techniques.

Multiline
Let's start with a very simple one. As stated previously, one of the main reasons we should
prefer JSX over React's _jsx function is because of its XML-like syntax, and because
balanced opening and closing tags are perfect to represent a tree of nodes.

Cleaning Up Your Code Chapter 2

[39]

Therefore, we should try to use it in the right way and get the most out of it. One example
is as follows; whenever we have nested elements, we should always go multiline:

<div>
 <Header />
 <div>
 <Main content={...} />
 </div>
</div>

This is preferable to the following:

<div><Header /><div><Main content={...} /></div></div>

The exception is if the children are not elements such as text or variables. In that case, it
makes sense to remain on the same line and avoid adding noise to the markup, as follows:

<div>
 <Alert>{message}</Alert>
 <Button>Close</Button>
</div>

Always remember to wrap your elements inside parentheses when you write them on
multiple lines. JSX always gets replaced by functions, and functions written on a new line
can give you an unexpected result because of automatic semicolon insertion. Suppose, for
example, that you are returning JSX from your render method, which is how you create UIs
in React.

The following example works fine because the div element is on the same line as the
return:

return <div />

The following, however, is not right:

return
 <div />

The reason for this is that you would then have the following:

return
_jsx("div", null)

This is why you have to wrap the statement in parentheses, as follows:

return (
 <div />
)

Cleaning Up Your Code Chapter 2

[40]

Multi-properties
A common problem in writing JSX comes when an element has multiples attributes. One
solution is to write all the attributes on the same line, but this would lead to very long lines
that we do not want in our code (see the following section for how to enforce coding style
guides).

A common solution is to write each attribute on a new line, with one level of indentation,
and then align the closing bracket with the opening tag:

<button
 foo="bar"
 veryLongPropertyName="baz"
 onSomething={this.handleSomething}
/>

Conditionals
Things get more interesting when we start working with conditionals, for example, if we
want to render some components only when certain conditions are matched. The fact that
we can use JavaScript in our conditions is a big plus, but there are many different ways to
express conditions in JSX, and it is important to understand the benefits and problems of
each one of these to write code that is both readable and maintainable.

Suppose we want to show a logout button only if the user is currently logged in to our
application.

A simple snippet to start with is as follows:

let button
if (isLoggedIn) {
 button = <LogoutButton />
}
return <div>{button}</div>

This works, but it is not very readable, especially if there are multiple components and
multiple conditions.

In JSX, we can use an inline condition:

<div>
 {isLoggedIn && <LoginButton />}
</div>

Cleaning Up Your Code Chapter 2

[41]

This works because if the condition is false, nothing gets rendered, but if the condition is
true, the createElement function of LoginButton gets called, and the element is
returned to compose the resulting tree.

If the condition has an alternative (the classic if...else statement) and we want, for
example, to show a logout button if the user is logged in and a login button otherwise, we
can use JavaScript's if...else statement as follows:

let button

if (isLoggedIn) {
 button = <LogoutButton />
} else {
 button = <LoginButton />
}
return <div>{button}</div>

Alternatively, and better still, we can use a ternary condition that makes the code more
compact:

<div>
 {isLoggedIn ? <LogoutButton /> : <LoginButton />}
</div>

You can find the ternary condition used in popular repositories, such as the Redux real-
world example (https:/ ​/​github. ​com/ ​reactjs/ ​redux/ ​blob/ ​master/ ​examples/ ​real-
world/​src/​components/ ​List. ​js#L28), where the ternary is used to show a Loading label if
the component is fetching the data, or Load More inside a button depending on the value
of the isFetching variable:

<button [...]>
 {isFetching ? 'Loading...' : 'Load More'}
</button>

Let's now look at the best solution for when things get more complicated and, for example,
we have to check more than one variable to determine whether to render a component or
not:

<div>
 {dataIsReady && (isAdmin || userHasPermissions) &&
 <SecretData />
 }
</div>

https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28

Cleaning Up Your Code Chapter 2

[42]

In this case, it is clear that using the inline condition is a good solution, but the readability is
strongly impacted. Instead, we can create a helper function inside our component and use it
in JSX to verify the condition:

const canShowSecretData = () => {
 const { dataIsReady, isAdmin, userHasPermissions } = props
 return dataIsReady && (isAdmin || userHasPermissions)
}
return (
 <div>
 {this.canShowSecretData() && <SecretData />}
 </div>
)

As you can see, this change makes the code more readable and the condition more explicit.
If you look at this code in 6 months, you will still find it clear just by reading the name of
the function.

The same applies to computed properties. Suppose you have two single properties for
currency and value. Instead of creating the price string inside render, you can create a
function:

const getPrice = () => {
 return `${props.currency}${props.value}`
}
return <div>{getPrice()}</div>

This is better because it is isolated and you can easily test it if it contains logic.

Going back to conditional statements, other solutions require using external dependencies.
A good practice is to avoid external dependencies as much as we can to keep our bundle
smaller, but it may be worth it in this particular case because improving the readability of
our templates is a big win.

The first solution is render-if, which we can install with the following:

npm install --save render-if

We can then easily use it in our projects, as follows:

const { dataIsReady, isAdmin, userHasPermissions } = props

const canShowSecretData = renderIf(
 dataIsReady && (isAdmin || userHasPermissions)
);
return (
 <div>

Cleaning Up Your Code Chapter 2

[43]

 {canShowSecretData(<SecretData />)}
 </div>
);

Here, we wrap our conditions inside the renderIf function.

The utility function that gets returned can be used as a function that receives the JSX
markup to be shown when the condition is true.

One goal is to never add too much logic inside our components. Some of them will require
a bit of it, but we should try to keep them as simple as possible so that we can easily spot
and fix errors.

We should at least try to keep the renderIf method as clean as possible and to do that, we
can use another utility library, called react-only-if, which lets us write our components
as if the condition is always true by setting the conditional function using a Higher-Order
Component (HOC).

We will talk about HOCs extensively in Chapter 4, Exploring Popular Composition Patterns,
but for now, you just need to know that they are functions that receive a component and
return an enhanced one by adding some properties or modifying their behavior.

To use the library, we need to install it as follows:

npm install --save react-only-if

Once it is installed, we can use it in our apps in the following way:

import onlyIf from 'react-only-if'

const SecretDataOnlyIf = onlyIf(
 ({ dataIsReady, isAdmin, userHasPermissions }) => dataIsReady &&
 (isAdmin || userHasPermissions)
)(SecretData)

const MyComponent = () => (
 <div>
 <SecretDataOnlyIf
 dataIsReady={...}
 isAdmin={...}
 userHasPermissions={...}
 />
 </div>
)

export default MyComponent

Cleaning Up Your Code Chapter 2

[44]

As you can see here, there is no logic at all inside the component itself.

We pass the condition as the first parameter of the onlyIf function, and when the
condition is matched, the component is rendered.

The function used to validate the condition receives the props, state, and context of the
component.

In this way, we avoid polluting our component with conditionals so that it is easier to
understand and reason about.

Loops
A very common operation in UI development is to display lists of items. When it comes to
showing lists, using JavaScript as a template language is a very good idea.

If we write a function that returns an array inside our JSX template, each element of the
array gets compiled into an element.

As we have seen before, we can use any JavaScript expressions inside curly braces, and the
most common way to generate an array of elements, given an array of objects, is to use map.

Let's dive into a real-world example. Suppose you have a list of users, each one with a
name property attached to it.

To create an unordered list to show the users, you can do the following:

 {users.map(user => {user.name})}

This snippet is incredibly simple and incredibly powerful at the same time, where the
power of HTML and JavaScript converge.

Control statements
Conditionals and loops are very common operations in UI templates, and you may feel
wrong using the JavaScript ternary or the map function to perform them. JSX has been built
in such a way that it only abstracts the creation of the elements, leaving the logic parts to
real JavaScript, which is great except that sometimes, the code becomes less clear.

Cleaning Up Your Code Chapter 2

[45]

In general, we aim to remove all the logic from our components, and especially from our
render methods, but sometimes we have to show and hide elements according to the state
of the application, and very often we have to loop through collections and arrays.

If you feel that using JSX for that kind of operation will make your code more readable,
there is a Babel plugin available to do just that: jsx-control-statements.

This follows the same philosophy as JSX, and it does not add any real functionality to the
language; it is just syntactic sugar that gets compiled into JavaScript.

Let's see how it works.

First of all, we have to install it:

npm install --save jsx-control-statements

Once it is installed, we have to add it to the list of our Babel plugins in our .babelrc file:

"plugins": ["jsx-control-statements"]

From now on, we can use the syntax provided by the plugin and Babel will transpile it
together with the common JSX syntax.

A conditional statement written using the plugin looks like the following snippet:

<If condition={this.canShowSecretData}>
 <SecretData />
</If>

Cleaning Up Your Code Chapter 2

[46]

This gets transpiled into a ternary expression as follows:

{canShowSecretData ? <SecretData /> : null}

The If component is great, but if, for some reason, you have nested conditions in your
render method, it can easily become messy and hard to follow. This is where
the Choose component comes in handy:

<Choose>
 <When condition={...}>
 if
 </When>
 <When condition={...}>
 else if
 </When>
 <Otherwise>
 else
 </Otherwise>
</Choose>

Please note that the preceding code gets transpiled into multiple ternaries.

Finally, there is a component (always remember that we are not talking about real
components but just syntactic sugar) to manage the loops that is also very convenient:

 <For each="user" of={this.props.users}>
 {user.name}
 </For>

The preceding code gets transpiled into a map function – no magic there.

If you are used to using linters, you might wonder why the linter is not complaining about
that code. The user variable does not exist before the transpilation, nor is it wrapped in a
function. To avoid those linting errors, there is another plugin to install: eslint-plugin-
jsx-control-statements.

If you did not understand the previous sentence, don't worry; we will talk about linting in
the upcoming section.

Cleaning Up Your Code Chapter 2

[47]

Sub-rendering
It is worth stressing that we always want to keep our components very small and our
render methods very clean and simple.

However, that is not an easy goal, especially when you are creating an application
iteratively, and in the first iteration, you are not sure exactly how to split the components
into smaller ones. So, what should we be doing when the render method becomes too big
to maintain? One solution is to split it into smaller functions in a way that lets us keep all
the logic in the same component.

Let's look at an example:

const renderUserMenu = () => {
 // JSX for user menu
}
const renderAdminMenu = () => {
 // JSX for admin menu
}
return (
 <div>
 <h1>Welcome back!</h1>
 {userExists && renderUserMenu()}
 {userIsAdmin && renderAdminMenu()}
 </div>
)

This is not always considered best practice because it seems more obvious to split the
component into smaller ones. However, sometimes it helps to keep the
render method cleaner. For example, in the Redux real-world examples, a sub-render
method is used to render the load more button.

Now that we are JSX power users, it is time to move on and see how to follow a style guide
within our code to make it consistent.

Styling code
In this section, you will learn how to implement EditorConfig and ESLint to improve your
code quality by validating your code style. It is important to have a standard code style in
your team and avoid using different code styles.

Cleaning Up Your Code Chapter 2

[48]

EditorConfig
EditorConfig helps developers to maintain consistent coding styles between different IDEs.

EditorConfig is supported by a lot of editors. You can check whether your editor is
supported or not on the official website, https:/ ​/​www. ​editorconfig. ​org.

You need to create a file called .editorconfig in your root directory – the configuration
I use is this one:

root = true

[*]
indent_style = space
indent_size = 2
end_of_line = lf
charset = utf-8
trim_trailing_whitespace = true
insert_final_newline = true

[*.html]
indent_size = 4

[*.css]
indent_size = 4

[*.md]
trim_trailing_whitespace = false

You can affect all the files with [*], and specific files with [.extension].

Prettier
Prettier is an opinionated code formatter, supported by many languages that can be
integrated with most editors. This plugin is really useful because you can format the code
on saving and you don't need to discuss the code style in code reviews, which will save you
a lot of time and energy.

https://www.editorconfig.org
https://www.editorconfig.org
https://www.editorconfig.org
https://www.editorconfig.org
https://www.editorconfig.org
https://www.editorconfig.org
https://www.editorconfig.org
https://www.editorconfig.org
https://www.editorconfig.org

Cleaning Up Your Code Chapter 2

[49]

If you work with Visual Studio Code, you have to install the Prettier extension first:

Then, if you want to configure the option to format when you save a file, you need to go to
Settings, search Format on Save, and check that option:

This will affect all your projects because it is a global setting. If you want to apply this
option just in a specific project, you have to create a .vscode folder inside your project and
a settings.json file with the following code:

{
 "editor.defaultFormatter": "esbenp.prettier-vscode",
 "editor.formatOnSave": true
}

Then you can configure the options you want in your .prettierrc file – this is the
configuration I normally use:

{
 "arrowParens": "avoid",
 "bracketSpacing": true,
 "jsxSingleQuote": false,
 "printWidth": 100,
 "quoteProps": "as-needed",
 "semi": false,
 "singleQuote": true,

Cleaning Up Your Code Chapter 2

[50]

 "tabWidth": 2,
 "trailingComma": "none",
 "useTabs": false
}

This will help you or your team to standardize the code style.

ESLint
We always try to write the best code possible, but sometimes errors happen, and spending
a few hours catching a bug due to a typo is very frustrating. Luckily, some tools can help us
check the correctness of our code as soon as we type it. These tools are not able to tell us
whether our code is going to do what it's supposed to do, but they can help us to avoid
syntactical errors.

If you come from a static language, such as C#, you are used to getting that kind of warning
inside your IDE. Douglas Crockford made linting popular in JavaScript with JSLint
(initially released in 2002) a few years ago; then we had JSHint, and finally, the de facto
standard in the React world nowadays is ESLint.

ESLint is an open-source project released in 2013 that became popular thanks to the fact
that it is highly configurable and extensible.

In the JavaScript ecosystem, where libraries and techniques change very quickly, it is
crucial to have a tool that can be easily extended with plugins, and rules that can be
enabled and disabled when needed. Most importantly, nowadays we use transpilers, such
as Babel, and experimental features that are not part of the standard version of JavaScript,
so we need to be able to tell our linter which rules we are following in our source files. Not
only does a linter help us to make fewer errors, or at least find those errors sooner, but it
enforces some common coding style guides, which is important especially in big teams
with many developers, each one with their favorite coding style.

It is very hard to read the code in a code base where different files, or even various
functions, are written using inconsistent styles. For that reason, let's look at ESLint in more
detail.

Cleaning Up Your Code Chapter 2

[51]

Installation
First of all, we have to install ESLint and some plugins as follows:

npm install -g eslint eslint-config-airbnb eslint-config-prettier eslint-
plugin-import eslint-plugin-jsx-a11y eslint-plugin-prettier eslint-plugin-
react

Once the executable is installed, we can run it with the following command:

eslint source.ts

The output will tell us if there are errors within the file.

When we install and run it for the first time, we do not see any errors because it is
completely configurable and it does not come with any default rules.

Configuration
Let's start configuring ESLint. It can be configured using a .eslintrc file that lives in the
root folder of the project. To add some rules, let's create a .eslintrc file configured for
TypeScript and add one basic rule:

{
 "parser": "@typescript-eslint/parser",
 "plugins": ["@typescript-eslint", "prettier"],
 "extends": [
 "airbnb",
 "eslint:recommended",
 "plugin:@typescript-eslint/eslint-recommended",
 "plugin:@typescript-eslint/recommended",
 "plugin:prettier/recommended"
],
 "settings": {
 "import/extensions": [".js", ".jsx", ".ts", ".tsx"],
 "import/parsers": {
 "@typescript-eslint/parser": [".ts", ".tsx"]
 },
 "import/resolver": {
 "node": {
 "extensions": [".js", ".jsx", ".ts", ".tsx"]
 }
 }
 },
 "rules": {
 "semi": [2, "never"]

Cleaning Up Your Code Chapter 2

[52]

 }
}

This configuration file needs a bit of explanation: "semi" is the name of the rule and [2,
"never"] is the value. It is not very intuitive the first time you see it.

ESLint rules have three levels that determine the severity of the problem:

off (or 0): The rule is disabled.
warn (or 1): The rule is a warning.
error (or 2): The rule throws an error.

We are using the 2 value because we want ESLint to throw an error every time our code
does not follow the rule. The second parameter tells ESLint that we want the semicolon to
never be used (the opposite is always). ESLint and its plugins are very well documented,
and for any single rule, you can find the description of the rule and some examples of when
it passes and when it fails.

Now create an index.ts file with the following content:

const foo = 'bar';

If we run eslint index.js, we get the following:

Extra semicolon (semi)

This is great; we set up the linter and it is helping us follow our first rule.

Here are other rules that I prefer to turn off or change:

"rules": {
 "semi": [2, "never"],
 "@typescript-eslint/class-name-casing": "off",
 "@typescript-eslint/interface-name-prefix": "off",
 "@typescript-eslint/member-delimiter-style": "off",
 "@typescript-eslint/no-var-requires": "off",
 "@typescript-eslint/ban-ts-ignore": "off",
 "@typescript-eslint/no-use-before-define": "off",
 "@typescript-eslint/ban-ts-comment": "off",
 "@typescript-eslint/explicit-module-boundary-types": "off",
 "no-restricted-syntax": "off",
 "no-use-before-define": "off",
 "import/extensions": "off",
 "import/prefer-default-export": "off",
 "max-len": [
 "error",

Cleaning Up Your Code Chapter 2

[53]

 {
 "code": 100,
 "tabWidth": 2
 }
],
 "no-param-reassign": "off",
 "no-underscore-dangle": "off",
 "react/jsx-filename-extension": [
 1,
 {
 "extensions": [".tsx"]
 }
],
 "import/no-unresolved": "off",
 "consistent-return": "off",
 "jsx-a11y/anchor-is-valid": "off",
 "sx-a11y/click-events-have-key-events": "off",
 "jsx-a11y/no-noninteractive-element-interactions": "off",
 "jsx-a11y/click-events-have-key-events": "off",
 "jsx-a11y/no-static-element-interactions": "off",
 "react/jsx-props-no-spreading": "off",
 "jsx-a11y/label-has-associated-control": "off",
 "react/jsx-one-expression-per-line": "off",
 "no-prototype-builtins": "off",
 "no-nested-ternary": "off",
 "prettier/prettier": [
 "error",
 {
 "endOfLine": "auto"
 }
]
 }

Git Hooks
To avoid having unlinted code in our repository, what we can do is add ESLint at one point
of our process using Git Hooks. For example, we can use husky to run our linter in a Git
Hook called pre-commit, and it is also useful to run our unit tests on the Hook called pre-
push.

To install husky, you need to run the following command:

npm install --save-dev husky

Cleaning Up Your Code Chapter 2

[54]

Then, in our package.json file, we can add this node to configure the tasks we want to
run in the Git Hooks:

{
 "scripts": {
 "lint": "eslint --ext .tsx,.ts src",
 "lint:fix": "eslint --ext .tsx,.ts --fix src",
 "test": "jest src"
 },
 "husky": {
 "hooks": {
 "pre-commit": "npm lint",
 "pre-push": "npm test"
 }
 }
}

There is a special option (flag) for the ESlint command called --fix – with this option,
ESLint will try to fix all our linter errors automatically (not all of them). Be careful with this
option because sometimes it can affect a little bit of our code style. Another useful flag is --
ext to specify the extensions of the files we want to validate, in this case just the .tsx and
.ts files.

In the next section, you will learn about how Functional Programming (FP) works and
topics such as first-class objects, purity, immutability, currying, and composition.

Functional programming
Apart from following the best practices when we write JSX and using a linter to enforce
consistency and find errors earlier, there is one more thing we can do to clean up our code:
follow an FP style.

As discussed in Chapter 1, Taking Your First Steps with React, React has a declarative
programming approach that makes our code more readable. FP is a declarative paradigm,
where side effects are avoided and data is considered immutable to make the code easier to
maintain and reason about.

Don't consider the following sub-sections as an exhaustive guide to FP; it is only an
introduction to get started with some concepts that are commonly used in React of which
you should be aware.

Cleaning Up Your Code Chapter 2

[55]

First-class functions
JavaScript has first-class functions because they are treated like any other variable, meaning
you can pass a function as a parameter to other functions, or it can be returned by another
function and be assigned as a value to a variable.

This allows us to introduce the concept of Higher-Order Functions (HoFs). HoFs are
functions that take a function as a parameter, and optionally some other parameters,
and return a function. The returned function is usually enhanced with some special
behaviors.

Let's look at an example:

const add = (x, y) => x + y

const log = fn => (...args) => {
 return fn(...args)
}

const logAdd = log(add)

Here, a function is adding two numbers that enhance a function that logs all the parameters
and then executes the original function.

This concept is pretty important to understand because in the React world, a common
pattern is to use HOCs to treat our components as functions, and to enhance them with
common behaviors. We will see HOCs and other patterns in Chapter 4, Exploring Popular
Composition Patterns.

Purity
An important aspect of FP is to write pure functions. You will encounter this concept very
often in the React ecosystem, especially if you look into libraries such as Redux.

What does it mean for a function to be pure?

A function is pure when there are no side effects, which means that the function does not
change anything that is not local to the function itself.

For example, a function that changes the state of an application, or modifies variables
defined in the upper scope, or a function that touches external entities, such as the
Document Object Model (DOM), is considered impure. Impure functions are harder to
debug, and most of the time it is not possible to apply them multiple times and expect to
get the same result.

Cleaning Up Your Code Chapter 2

[56]

For example, the following function is pure:

const add = (x, y) => x + y

It can be run multiple times, always getting the same result, because nothing is stored
anywhere and nothing gets modified.

The following function is not pure:

let x = 0
const add = y => (x = x + y)

Running add(1) twice, we get two different results. The first time we get 1, but the second
time we get 2, even if we call the same function with the same parameter. The reason we
get that behavior is that the global state gets modified after every execution.

Immutability
We have seen how to write pure functions that don't mutate the state, but what if we need
to change the value of a variable? In FP, a function, instead of changing the value of a
variable, creates a new variable with a new value and returns it. This way of working with
data is called immutability.

An immutable value is a value that cannot be changed.

Let's look at an example:

const add3 = arr => arr.push(3)
const myArr = [1, 2]

add3(myArr); // [1, 2, 3]
add3(myArr); // [1, 2, 3, 3]

The preceding function doesn't follow immutability because it changes the value of the
given array. Again, if we call the same function twice, we get different results.

We can change the preceding function to make it immutable using concat, which returns a
new array without modifying the given one:

const add3 = arr => arr.concat(3)
const myArr = [1, 2]
const result1 = add3(myArr) // [1, 2, 3]
const result2 = add3(myArr) // [1, 2, 3]

After we have run the function twice, myArr still has its original value.

Cleaning Up Your Code Chapter 2

[57]

Currying
A common technique in FP is currying. Currying is the process of converting a function
that takes multiple arguments into a function one argument at a time and
returning another function. Let's look at an example to clarify the concept.

Let's start with the add function we have seen before and transform it into a curried
function.

Say we have the following code:

const add = (x, y) => x + y

We can instead define the function as follows:

const add = x => y => x + y

We use it in the following way:

const add1 = add(1)
add1(2); // 3
add1(3); // 4

This is a pretty convenient way of writing functions because, since the first value is stored
after the application of the first parameter, we can reuse the second function multiple times.

Composition
Finally, an important concept in FP that can be applied to React is composition. Functions
(and components) can be combined to produce new functions with more advanced features
and properties.

Consider the following functions:

const add = (x, y) => x + y
const square = x => x * x

These functions can be composed together to create a new function that adds two numbers
and then doubles the result:

const addAndSquare = (x, y) => square(add(x, y))

Following this paradigm, we end up with small, simple, testable pure functions that can be
composed together.

Cleaning Up Your Code Chapter 2

[58]

FP and UIs
The last step is to learn how we can use FP to build UIs, which is what we use React for.

We can think about a UI as a function to which the state of the application is applied as
follows:

UI = f(state)

We expect this function to be idempotent so that it returns the same UI given the same state
of the application.

Using React, we create our UIs using components we can consider functions, as we will see
in the following chapters.

Components can be composed to form the final UI, which is a property of FP.

There are a lot of similarities in the way we build UIs with React and the principles of FP,
and the more we are aware of it, the better our code will be.

Summary
In this chapter, we learned a great deal about how JSX works and how to use it in the right
way in our components. We started from the basics of the syntax to create a solid
knowledge base that will enable us to master JSX and its features.

In the second part, we looked at how to configure Prettier and how ESLint and its plugins
can help us find problems faster and enforce a consistent style guide across our code base.

Finally, we went through the basics of FP to understand the important concepts to use
when writing a React application.

Now that our code is clean, we are ready to start digging deeper into React and learn how
to write truly reusable components in the next chapter.

2
How React Works

This section explains how to use the new React Hooks, their rules, and how you can create
your own Hooks. Also covered will be how you can migrate your current React class
components applications to the new React Hooks.

We will cover the following chapters in this section:

Chapter 3, React Hooks
Chapter 4, Exploring Popular Composition Patterns
Chapter 5, Understanding GraphQL with a Real Project
Chapter 6, Managing Data
Chapter 7, Writing Code for the Browser

3
React Hooks

React is evolving really quickly and since React 16.8, the new React Hooks have
been introduced, which are a game-changer as regards React development in that they will
boost the speed of coding and improve the performance of our applications. React enables
us to write React applications using only functional components, meaning there is no
longer any need to use class components.

In this chapter, we will cover the following topics:

The new React Hooks and how to use them
The rules of the Hooks
How to migrate a class component to React Hooks
Understanding the component life cycle with Hooks and effects
How to fetch data with Hooks
How to memorize components, values, and functions with memo, useMemo, and
useCallback

How to implement useReducer

Technical requirements
To complete this chapter, you will require the following:

Node.js 12+
Visual Studio Code

You can find the code for this chapter in the book's GitHub repository at https:/ ​/​github.
com/​PacktPublishing/ ​React- ​17- ​Design- ​Patterns- ​and- ​Best- ​Practices- ​Third- ​Edition/
tree/​main/​Chapter03.

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter03

React Hooks Chapter 3

[61]

Introducing React Hooks
React Hooks are a new addition in React 16.8. They let you use state and other React
features without writing a React class component. React Hooks are also backward-
compatible, which means it does not contain any breaking change and it does not replace
your knowledge of React concepts. Over the course of this chapter, we will see an overview
of Hooks for experienced React users, and we are also going to learn some of the most
common React Hooks such as useState, useEffect, useMemo, useCallback and memo.

No breaking changes
Many people think that with the new React Hooks, class components are now obsolete in
React, but this statement is incorrect. There are no plans to remove classes from React. The
Hooks don't replace your knowledge of React concepts. Instead, Hooks provide a more
direct API to the React concepts, such as props, state, context, refs, and life cycle, which you
already know.

Using the State Hook
You probably know how to use the component state by using it in a class with
this.setState. Now you can use the component state by using the new React useState
Hook.

First, you need to extract the useState Hook from React:

import { useState } from 'react'

Since React 17, the React object is no longer required to render JSX code.

Then you need to declare the state you want to use by defining the state and the setter for
this specific state:

const Counter = () => {
 const [counter, setCounter] = useState<number>(0)
}

React Hooks Chapter 3

[62]

As you can see, we are declaring the counter state with the setCounter setter and we are
specifying that we will only accept numbers, and finally, we set the initial value with zero.

In order to test our state, we need to create a method that will be triggered by the onClick
event:

const Counter = () => {
 const [counter, setCounter] = useState<number>(0)
 const handleCounter = (operation) => {
 if (operation === 'add') {
 return setCounter(counter + 1)
 }
 return setCounter(counter - 1)
 }
}

Finally, we can render the counter state and some buttons to increase or decrease the
counter state:

return (
 <p>
 Counter: {counter}

 <button onClick={() => handleCounter('add')}>+ Add</button>
 <button onClick={() => handleCounter('subtract')}>- Subtract</button>
 </p>
)

If you click on the + Add button one time, you should see 1 for Counter:

And if you click the - Subtract button twice, then you should see -1 for Counter:

As you can see, the useState Hook is a game-changer in React and makes it very easy to
handle the state in a functional component.

React Hooks Chapter 3

[63]

Rules of Hooks
React Hooks are basically JavaScript functions, but there are two rules that you need to
follow in order to use them. React provides a linter plugin to enforce those rules for you,
which you can install by running the following command:

npm install --save-dev eslint-plugin-react-hooks

Let's look at these two rules.

Rule 1: Only call Hooks at the top level
From the official React documentation (https:/ ​/​reactjs. ​org/ ​docs/ ​hooks- ​rules. ​html):

"Don’t call Hooks inside loops, conditions, or nested functions. Instead, always use
Hooks at the top level of your React function. By following this rule, you ensure that
Hooks are called in the same order each time a component renders. That's what allows
React to correctly preserve the state of Hooks between multiple useState and useEffect
calls."

Rule 2: Only call Hooks from React Functions
From the official React documentation (https:/ ​/​reactjs. ​org/ ​docs/ ​hooks- ​rules. ​html):

"Don't call Hooks from regular JavaScript functions. Instead, you can:

Call Hooks from React function components.
Call Hooks from custom Hooks (we'll learn about them on the next
page).

By following this rule, you ensure that all stateful logic in a component is clearly visible
from its source code."

In the next section, we will learn how to migrate a class component to use the new React
Hooks.

https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html

React Hooks Chapter 3

[64]

Migrating a class component to React
Hooks
Let's transform a code that is currently using class components and is also using some life
cycle methods. In this example, we are fetching the issues from a GitHub repository and
listing them.

For this example, you will need to install axios to perform the fetch:

npm install axios

This is the class component version:

// Dependencies
import { Component } from 'react'
import axios from 'axios'

// Types
type Issue = {
 number: number
 title: string
 state: string
}
type Props = {}
type State = { issues: Issue[] };

class Issues extends Component<Props, State> {
 constructor(props: Props) {
 super(props)

 this.state = {
 issues: []
 }
 }

 componentDidMount() {
 axios
 .get('https://api.github.com/repos/ContentPI/ContentPI/issues')
 .then((response: any) => {
 this.setState({
 issues: response.data
 })
 })
 }

 render() {

React Hooks Chapter 3

[65]

 const { issues = [] } = this.state

 return (
 <>
 <h1>ContentPI Issues</h1>

 {issues.map((issue: Issue) => (
 <p key={issue.title}>
 #{issue.number} {' '}
 <a href=
{`https://github.com/ContentPI/ContentPI/issues/${issue.number}`}
 target="_blank">{issue.title} {' '}
 {issue.state}
 </p>
))}
 </>
)
 }
}

export default Issues

If you render this component, you should see something like this:

React Hooks Chapter 3

[66]

React Hooks Chapter 3

[67]

Now, let's transform our code to be a functional component using React Hooks. The first
thing we need to do is to import some React functions and types:

// Dependencies
import { FC, useState, useEffect } from 'react'
import axios from 'axios'

Now we can remove the Props and State types we created previously and just leave the
Issue type:

// Types
type Issue = {
 number: number
 title: string
 state: string
}

After this, you can change the class definition to use a functional component:

const Issues: FC = () => {...}

The FC type is used to define a Functional Component in React. If you need to pass some
props to the component, you can pass them like this:

type Props = {
 propX: string
 propY: number
 propZ: boolean
}

const Issues: FC<Props> = () => {...}

The next thing we need to do is to replace our constructor and our state definition by using
the useState Hook:

// The useState hook replace the this.setState method
const [issues, setIssues] = useState<Issue[]>([])

We have used the life cycle method called componentDidMount before, which is executed
when the component is mounted and is going to run just once. The new React Hook, called
useEffect, will now handle all the life cycle methods using different syntax for each one,
but for now, let's see how we can get the same effect of componentDidMount into our new
functional component:

// When we use the useEffect hook with an empty array [] on the
// dependencies (second parameter)
// this represents the componentDidMount method (will be executed when the

React Hooks Chapter 3

[68]

// component is mounted).
useEffect(() => {
 axios
 .get('https://api.github.com/repos/ContentPI/ContentPI/issues')
 .then((response: any) => {
 // Here we update directly our issue state
 setIssues(response.data)
 })
}, [])

And finally, we just render our JSX code:

return (
 <>
 <h1>ContentPI Issues</h1>

 {issues.map((issue: Issue) => (
 <p key={issue.title}>
 #{issue.number} {' '}
 <a href=
 {`https://github.com/ContentPI/ContentPI/issues/${issue.number}`}
 target="_blank">{issue.title} {' '}
 {issue.state}
 </p>
))}
 </>
)

As you can see, the new Hooks help us to simplify our code a lot and makes more sense.
Also, we reduced our code by 10 lines (the class component code has 53 lines and the
functional component has 43 lines).

Understanding React effects
In this section, we will learn the difference between the component life cycle methods that
we used on class components and the new React effects. Even if you have read in other
places that they are the same, just with a different syntax, this is not correct.

React Hooks Chapter 3

[69]

Understanding useEffect
When you work with useEffect, you need to think in effects. If you want to perform the
equivalent method of componentDidMount using useEffect, you can do the following:

useEffect(() => {
 // Here you perform your side effect
}, [])

The first parameter is the callback of the effect that you want to execute, and the second
parameter is the dependencies array. If you pass an empty array ([]) on the dependencies,
the state and props will have their original initial values.

However, it is important to mention that even though this is the closest equivalent for
componentDidMount, it does not have the same behavior. Unlike componentDidMount
and componentDidUpdate, the function that we pass to useEffect fires after layout and
paint, during a deferred event. This normally works for many common side effects, such as
setting up subscriptions and event handlers, because most types of work shouldn't block
the browser from updating the screen.

However, not all effects can be deferred. For example, you would get a blink if you need to
mutate the Document Object Model (DOM). This is the reason why you must fire the
event synchronously before the next paint. React provides one Hook called
useLayoutEffect, which works in the exact same way as useEffect.

Firing an effect conditionally
If you need to fire an effect conditionally, then you should add a dependency to the array of
dependencies, otherwise, you will execute the effect multiple times and this may cause an
infinite loop. If you pass an array of dependencies, the useEffect Hook will only run if
one of those dependencies changes:

useEffect(() => {
 // When you pass an array of dependencies the useEffect hook will only
 // run
 // if one of the dependencies changes.
}, [dependencyA, dependencyB])

If you understand how the React class life cycle methods works, basically,
useEffect behaves in the same way as componentDidMount,
componentDidUpdate, and componentWillUnmount combined.

React Hooks Chapter 3

[70]

The effects are very important, but let's also explore some other important new Hooks,
including useCallback, useMemo, and memo.

Understanding useCallback, useMemo, and
memo
In order to understand the difference between useCallback, useMemo and memo, we will
do a to-do list example. You can create a basic application by using create-react-app
and typescript as a template:

create-react-app todo --template typescript

Right after that, you can remove all the extra files (App.css, App.test.ts, index.css,
logo.svg, reportWebVitals.ts, and setupTests.ts). You just need to keep the
App.tsx file, which will contain the following code:

// Dependencies
import { useState, useEffect, useMemo, useCallback } from 'react'

// Components
import List, { Todo } from './List'

const initialTodos = [
 { id: 1, task: 'Go shopping' },
 { id: 2, task: 'Pay the electricity bill'}
]

function App() {
 const [todoList, setTodoList] = useState(initialTodos)
 const [task, setTask] = useState('')

 useEffect(() => {
 console.log('Rendering <App />')
 })

 const handleCreate = () => {
 const newTodo = {
 id: Date.now(),
 task
 }
 // Pushing the new todo to the list
 setTodoList([...todoList, newTodo])
 // Resetting input value
 setTask('')

React Hooks Chapter 3

[71]

 }

 return (
 <>
 <input
 type="text"
 value={task}
 onChange={(e) => setTask(e.target.value)}
 />

 <button onClick={handleCreate}>Create</button>

 <List todoList={todoList} />
 </>
)
}

export default App

Basically, we are defining some initial tasks and creating the todoList state, which we will
pass to the list component. Then you need to create the List.tsx file with the following
code:

// Dependencies
import { FC, useEffect } from 'react'

// Components
import Task from './Task'

// Types
export type Todo = {
 id: number
 task: string
}

interface Props {
 todoList: Todo[]
}

const List: FC<Props> = ({ todoList }) => {
 useEffect(() => {
 // This effect is executed every new render
 console.log('Rendering <List />')
 })

 return (

 {todoList.map((todo: Todo) => (

React Hooks Chapter 3

[72]

 <Task key={todo.id} id={todo.id} task={todo.task} />
))}

)
}

export default List

As you can see, we are rendering each task of the todoList array by using the Task
component and we pass task as a prop. I also added a useEffect Hook to see how many
renders we are performing.

Finally, we create our Task.tsx file with the following code:

import { FC, useEffect } from 'react'

interface Props {
 id: number
 task: string
}

const Task: FC<Props> = ({ task }) => {
 useEffect(() => {
 console.log('Rendering <Task />', task)
 })

 return (
 {task}
)
}

export default Task

React Hooks Chapter 3

[73]

This is how we should see the to-do list:

As you can see, when we render our to-do list, by default, we are performing two renders
of the Task component, one render for List, and the other for the App component.

Now, if we try to write a new task in the input, we can see that for each letter we write, we
will again see all of those renders:

React Hooks Chapter 3

[74]

As you can see, by just writing Go, we have two new batches of renders, so we can
determine that this component does not have good performance, and this is where memo
can help us to improve performance. In the next sections, we are going to learn how to
implement memo, useMemo, and useCallback to memoize a component, a value, and a
function.

Memoizing a component with memo
The memo High Order Component (HOC) is similar to PureComponent of a React class
because it performs a shallow comparison of the props (meaning a superficial check), so if
we try to render a component with the same props all the time, the component will render
just once and will memorize. The only way to re-render the component is when a prop
changes its value.

React Hooks Chapter 3

[75]

In order to fix our components to avoid the multiple renders when we write in the input,
we need to wrap our components on the memo HOC.

The first component we will fix is our List component, and you just need to effect import
memo and wrap the component on export default:

import { FC, useEffect, memo } from 'react'

...

export default memo(List)

Then you need to do the same with the Task component:

import { FC, useEffect, memo } from 'react'

...

export default memo(Task)

Now, when we try to write Go again in the input, let's see how many renders we get this
time:

React Hooks Chapter 3

[76]

Now, we just get the first batch of renders the first time, and then, when we write Go, we
just get two more renders of the App component, which is totally fine because the task state
(input value) that we are changing is actually part of the App component.

Also, we can see how many renders we are performing when we create a new task by
clicking on the Create button:

If you see, the first 16 renders are the word counting of the Go to the doctor string, and
then, when you click on the Create button, you should see one render of the Task
component, one render of List, and one render of the App component. As you can see, we
have improved performance a lot, and we are just performing the exact need that it renders.

React Hooks Chapter 3

[77]

At this point, you're probably thinking that the correct way is to always
add memo to our components, or maybe you're thinking why React
doesn't do this by default for us?

The reason is performance, which means it is not a good idea to add
memo to all our components unless it is totally necessary, otherwise, the
process of shallow comparisons and memorization will have inferior
performance than if we don't use it.

I have a rule when it comes to establishing whether it is a good idea to use
memo, and this rule is straightforward: just don't use it. Normally, when
we have small components or basic logic, we don't need this unless you're
working with large data from some API or your component needs to
perform a lot of renders (normally huge lists), or when you notice that
your app is going slow. Only in that case would I recommend using
memo.

Memoizing a value with useMemo
Let's suppose that we now want to implement a search feature in our to-do list. The first
thing we need to do is to add a new state called term to the App component:

const [term, setTerm] = useState('')

Then we need to create a function called handleSearch:

const handleSearch = () => {
 setTerm(task)
}

Right before the return, we will create filterTodoList, which will filter the to-dos based
on the task, and we will add a console there to see how many times it is being rendered:

const filteredTodoList = todoList.filter((todo: Todo) => {
 console.log('Filtering...')
 return todo.task.toLowerCase().includes(term.toLocaleLowerCase())
})

React Hooks Chapter 3

[78]

Finally, we need to add a new button next to the Create button that already exists:

<button onClick={handleSearch}>Search</button>

At this point, I recommend that you remove or comment console.log in the List and
Task components so that we can focus on the performance of filtering:

React Hooks Chapter 3

[79]

When you run the application again, you will see that filtering is being executed twice, and
then the App component as well, and everything looks good here, but what's the problem
with this? Try to write Go to the doctor again in the input and let's see how many
Rendering and Filtering you get:

React Hooks Chapter 3

[80]

As you can see, for each letter you write, you will get two filtering calls and one App render
and you don't need to be a genius to see that this is bad performance; and not to mention
that if you are working with a large data array, this will be worse, so how can we fix this
issue?

The useMemo Hook is our hero in this situation, and basically, we need to move our filter
inside useMemo, but first let's see the syntax:

const filteredTodoList = useMemo(() => SomeProcessHere, [])

The useMemo Hook will memorize the result (value) of a function and will have some
dependencies to listen to. Let's see how we can implement it:

const filteredTodoList = useMemo(() => todoList.filter((todo: Todo) => {
 console.log('Filtering...')
 return todo.task.toLowerCase().includes(term.toLowerCase())
}), [])

Now, if you write something again in the input, you will see that filtering won't be
executed all the time, as was the case previously:

React Hooks Chapter 3

[81]

This is great, but there is still one small problem. If you try to click on the Search button, it
won't filter, and this is because we missed the dependencies. Actually, if you see the
console warnings, you will see this warning:

You need to add the term and todoList dependencies to the array:

const filteredTodoList = useMemo(() => todoList.filter((todo: Todo) => {
 console.log('Filtering...')
 return todo.task.toLowerCase().includes(term.toLocaleLowerCase())
}), [term, todoList])

It should now work if you write Go and click on the Search button:

Here, we have to use the same rule that we used for memo; just don't use
it until absolutely necessary.

React Hooks Chapter 3

[82]

Memoizing a function definition with useCallback
Now we will add a delete task feature to learn how useCallback works. The first thing we
need to do is to create a new function called handleDelete in our App component:

const handleDelete = (taskId: number) => {
 const newTodoList = todoList.filter((todo: Todo) => todo.id !== taskId)
 setTodoList(newTodoList)
}

And then you need to pass this function to the List component as a prop:

<List todoList={filteredTodoList} handleDelete={handleDelete} />

Then, in our List component, you need to add the prop to the Props interface:

interface Props {
 todoList: Todo[]
 handleDelete: any
}

Next, you need to pull it from the props and pass it down to the Task component:

const List: FC<Props> = ({ todoList, handleDelete }) => {
 useEffect(() => {
 // This effect is executed every new render
 console.log('Rendering <List />')
 })

 return (

 {todoList.map((todo: Todo) => (
 <Task
 key={todo.id}
 id={todo.id}
 task={todo.task}
 handleDelete={handleDelete}
 />
))}

)
}

React Hooks Chapter 3

[83]

In the Task component, you need to create a button that will execute handleDelete
onClick:

interface Props {
 id: number
 task: string
 handleDelete: any
}

const Task: FC<Props> = ({ id, task, handleDelete }) => {
 useEffect(() => {
 console.log('Rendering <Task />', task)
 })

 return (
 {task} <button onClick={() => handleDelete(id)}>X</button>
)
}

At this point, I recommend that you remove or comment console.log in the List and
Task components, so we can focus on the performance of filtering. Now you should see the
X button next to the task:

React Hooks Chapter 3

[84]

If you click on the X for Go shopping, you should be able to remove it:

React Hooks Chapter 3

[85]

So far, so good, right? But again we have a little issue with this implementation. If you now
try to write something in the input, such as Go to the doctor, let's see what happens:

If you see, we are performing 71 renders of all the components again. At this point, you are
probably thinking about, what is going on if we have already implemented the memo HOC to
memorize the components? But the problem now is that our handleDelete function is being
passed in two components, from App to List and to Task, and the issue is that this
function is regenerated every time we have a new re-render, in this case, every time we
write something. So how do we fix this problem?

React Hooks Chapter 3

[86]

The useCallback Hook is the hero in this case and is very similar to useMemo in the
syntax, but the main difference is that instead of memorizing the result value of a function,
as useMemo does, it is memorizing the function definition instead:

const handleDelete = useCallback(() => SomeFunctionDefinition, [])

Our handleDelete function should be like this:

const handleDelete = useCallback((taskId: number) => {
 const newTodoList = todoList.filter((todo: Todo) => todo.id !== taskId)
 setTodoList(newTodoList)
}, [todoList])

Now, it should work just fine if we write Go to the doctor again:

React Hooks Chapter 3

[87]

Now, instead of 71 renders, we just have 23, which is normal, and we are also able to delete
tasks:

As you can see, the useCallback Hook helps us to improve performance significantly. In
the next section, you will learn how to memorize a function passed as an argument in the
useEffect Hook.

Memoizing function passed as an argument in
effect
There is a special case where we will need to use the useCallback Hook, and this is when
we pass a function as an argument in a useEffect Hook, for example, in our App
component. Let's create a new useEffect block:

const printTodoList = () => {
 console.log('Changing todoList')

React Hooks Chapter 3

[88]

}

useEffect(() => {
 printTodoList()
}, [todoList])

In this case, we are listening for changes on the todoList state. If you run this code and
you create or remove a task, it will work just fine (remember to remove all the other
consoles first):

Everything works fine, but let's add todoList to the console:

const printTodoList = () => {
 console.log('Changing todoList', todoList)
}

React Hooks Chapter 3

[89]

If you're using Visual Studio Code, you will get the following warning:

Basically, it is asking us to add the printTodoList function to the dependencies:

useEffect(() => {
 printTodoList()
}, [todoList, printTodoList])

But now, after we do that, we get another warning:

The reason why we get this warning is that we are now manipulating a state (consoling the
state), which is why we need to add a useCallback Hook to this function to fix this issue:

const printTodoList = useCallback(() => {
 console.log('Changing todoList', todoList)
}, [todoList])

Now, when we delete a task, we can see that todoList updated correctly:

React Hooks Chapter 3

[90]

At this point, this may be information overload for you, so let's have a quick recap:

memo:

Memorizes a component
Re-memorizes when props change
Avoids re-renders

useMemo:

Memorizes a calculated value
For computed properties
For heavy processes

useCallback:

Memorizes a function definition to avoid redefining it on each render.
Use it whenever a function is passed as an effect argument.
Use it whenever a function is passed by props to a memorized component.

And finally, do not forget the golden rule: Do not use them until absolutely necessary.

In the next section, we are going to learn how to use the new useReducer Hook.

React Hooks Chapter 3

[91]

Understanding the useReducer Hook
You probably have some experience of using Redux (react-redux) with class
components, and if that is the case, then you will understand how useReducer works. The
concepts are basically the same: actions, reducers, dispatch, store, and state. Even if, in
general, it seems very similar to react-redux, they have some differences. The main
difference is that react-redux provides middleware and wrappers such as thunk, sagas,
and many more besides, while useReducer just gives you a dispatch method that you
can use to dispatch plain objects as actions. Also, useReducer does not have a store by
default; instead, you can create one using useContext, but this is just reinventing the
wheel.

Let's create a basic application to understand how useReducer works. You can start by
creating a new React app:

create-react-app reducer --template typescript

Then, as always, you can delete all files in your src folder except App.tsx and index.tsx
to start a brand-new application.

We will create a basic Notes application where we can list, delete, create, or update our
notes using useReducer. The first thing you need to do is import the Notes component,
which we will create later, into your App component:

import Notes from './Notes'

function App() {
 return (
 <Notes />
)
}

export default App

Now, in our Notes component, you first need to import useReducer and useState:

import { useReducer, useState, ChangeEvent } from 'react'

React Hooks Chapter 3

[92]

Then we need to define some TypeScript types that we need to use for our Note object, the
Redux action, and the action types:

type Note = {
 id: number
 note: string
}

type Action = {
 type: string
 payload?: any
}

type ActionTypes = {
 ADD: 'ADD'
 UPDATE: 'UPDATE'
 DELETE: 'DELETE'
}

const actionType: ActionTypes = {
 ADD: 'ADD',
 DELETE: 'DELETE',
 UPDATE: 'UPDATE'
}

After this, we need to create initialNotes (also known as initialState) with some
dummy notes:

const initialNotes: Note[] = [
 {
 id: 1,
 note: 'Note 1'
 },
 {
 id: 2,
 note: 'Note 2'
 }
]

React Hooks Chapter 3

[93]

If you remember how the reducers work, then this will seem very similar to how we handle
the reducer using a switch statement, so as to perform basic operations such as ADD,
DELETE, and UPDATE:

const reducer = (state: Note[], action: Action) => {
 switch (action.type) {
 case actionType.ADD:
 return [...state, action.payload]

 case actionType.DELETE:
 return state.filter(note => note.id !== action.payload)
 case actionType.UPDATE:
 const updatedNote = action.payload
 return state.map((n: Note) => n.id === updatedNote.id ?
 updatedNote : n)
 default:
 return state
 }
}

Finally, the component is very straightforward. Basically, you get the notes and the
dispatch method from the useReducer Hook (similar to useState), and you need to
pass the reducer function and initialNotes (initialState):

const Notes = () => {
 const [notes, dispatch] = useReducer(reducer, initialNotes)
 const [note, setNote] = useState('')
 ...
}

Then, we have a handleSubmit function to create a new note when we write something in
the input. Then, we press Enter:

const handleSubmit = (e: ChangeEvent<HTMLInputElement>) => {
 e.preventDefault()

 const newNote = {
 id: Date.now(),
 note
 }

 dispatch({ type: actionType.ADD, payload: newNote })
}

React Hooks Chapter 3

[94]

Finally, we render our Notes list with map, and we also create two buttons, one for delete
and one for update, and then the input should be wrapped into a <form> tag:

return (
 <div>
 <h2>Notes</h2>

 {notes.map((n: Note) => (
 <li key={n.id}>
 {n.note} {' '}
 <button
 onClick={() => dispatch({
 type: actionType.DELETE,
 payload: n.id
 })}
 >
 X
 </button>

 <button
 onClick={() => dispatch({
 type: actionType.UPDATE,
 payload: {...n, note}
 })}
 >
 Update
 </button>

))}

 <form onSubmit={handleSubmit}>
 <input
 placeholder="New note"
 value={note}
 onChange={e => setNote(e.target.value)}
 />
 </form>
 </div>
)

export default Notes

React Hooks Chapter 3

[95]

If you run the application, you should see the following output:

React Hooks Chapter 3

[96]

As you can see in the React DevTools, the Reducer object contains the two notes that we
have defined as our initial state. Now, if you write something in the input and you press
Enter, you should be able to create a new note:

React Hooks Chapter 3

[97]

Then, if you want to delete a note, you just need to click on the X button. Let's remove Note
2:

Finally, you can write anything you want in the input, and if you click on the Update
button, you will change the note value:

React Hooks Chapter 3

[98]

Nice, huh? As you can see the useReducer Hook is pretty much the same as redux in
terms of the dispatch method, actions, and reducers, but the main difference is that this is
limited just to the context of your component and its child, so if you need a global store to
be accessible from your entire application then you should use react-redux instead.

React Hooks Chapter 3

[99]

Summary
I hope you enjoyed reading this chapter, which is full of very good information pertaining
to the new React Hooks. So far, you have learned how the new React Hooks work, how to
fetch data with Hooks, how to migrate a class component to React Hooks, how the effects
work, the difference between memo, useMemo, and useCallback, and finally, you learned
how the useReducer Hook works and the main difference compared with react-redux.
This will help you to improve the performance of your React components.

In the next chapter, we will go through some of the most popular composition patterns and
tools.

4
Exploring Popular Composition

Patterns
Now, it's time to learn how to make components communicate with each other
effectively. React is powerful because it lets you build complex applications comprising
small, testable, and maintainable components. Applying this paradigm, you can take
control of every single part of the application.

In this chapter, we will go through some of the most popular composition patterns and
tools.

We will cover the following topics:

How components communicate with each other using props and children
The container and presentational patterns and how they can make our code more
maintainable
What higher-order components (HOCs) are and how, thanks to them, we can
structure our applications in a better way
What the function of the child component pattern is and what its benefits are

Technical requirements
To complete this chapter, you will need the following:

Node.js 12+
Visual Studio Code

You can find the code for this chapter in the book's GitHub Repository
at https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practic
es-Third-Edition/tree/main/Chapter04.

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter04

Exploring Popular Composition Patterns Chapter 4

[101]

Communicating components
Reusing functions is one of our goals as developers, and in the previous chapter, we saw
how React makes it easy to create reusable components. Reusable components can be
shared across multiple domains of your application to avoid duplication.

Small components with a clean interface can be composed together to create complex
applications that are powerful and maintainable at the same time.

Composing React components is pretty straightforward; you just have to include them in
the render:

const Profile = ({ user }) => (
 <>
 <Picture profileImageUrl={user.profileImageUrl} />
 <UserName name={user.name} screenName={user.screenName} />
 </>
)

For example, you can create a Profile component by simply composing
a Picture component to display the profile image and a UserName component to display
the name and the screen name of the user.

In this way, you can produce new parts of the user interface very quickly, writing only a
few lines of code. Whenever you compose components, as in the preceding example, you
share data between them using props. Props are the way a parent component can pass its
data down the tree to every component that needs it (or part of it).

When a component passes some props to another component, it is called the owner,
irrespective of the parent-child relationship between them. For example, in the preceding
snippet, Profile is not the direct parent of Picture (the div tag is), but Profile owns
Picture because it passes down the props to it.

In the next section, you will learn about the children prop and how to use it correctly.

Using the children prop
There is a special prop that can be passed from the owners to the components defined
inside their render—children.

Exploring Popular Composition Patterns Chapter 4

[102]

In the React documentation, it is described as opaque because it is a property that does not
tell you anything about the value it contains. Subcomponents defined inside the render of a
parent component usually receive props that are passed as attributes of the component
itself in JSX, or as a second parameter of the _jsx function. Components can also be
defined with nested components inside them, and they can access those children using the
children prop.

Consider that we have a Button component that has a text property representing the text
of the button:

const Button = ({ text }) => (
 <button className="btn">{text}</button>
)

The component can be used in the following way:

<Button text="Click me!" />

And this will render the following code:

<button class="btn">Click me!</button>

Now, suppose we want to use the same button with the same class name in multiple parts
of our application, and we also want to be able to display more than a simple string. Our UI
consists of buttons with text, buttons with text and icons, and buttons with text and labels.

In most cases, a good solution would be to add multiple parameters to Button or to create
different versions of Button, each one with its single specialization, for
example, IconButton.

However, we should realize that Button could just be a wrapper, and we are able to render
any element inside it and use the children property:

const Button = ({ children }) => (
 <button className="btn">{children}</button>
)

By passing the children prop, we are not limited to a simple single text property, but
we can pass any element to Button, and it is rendered in place of the children property.

In this case, any element that we wrap inside the Button component will be rendered as a
child of the button element with btn as the class name.

Exploring Popular Composition Patterns Chapter 4

[103]

For example, if we want to render an image inside the button and some text wrapped into a
span tag, we can do this:

<Button>

 Click me!
</Button>

The preceding snippet gets rendered in the browser as follows:

<button class="btn">

 Click me!
</button>

This is a pretty convenient way to allow components to accept any children elements and
wrap those elements inside a predefined parent.

Now, we can pass images, labels, and even other React components inside
the Button component, and they will be rendered as its children. As you can see in the
preceding example, we defined the children property as an array, which means that we
can pass any number of elements as the component's children.

We can pass a single child, as shown in the following code:

<Button>
 Click me!
</Button>

Let's now explore the container and the presentational pattern in the next section.

Exploring the container and presentational
patterns
In the last chapter, we saw how to take a coupled component and make it reusable step by
step. Now we will see how to apply a similar pattern to our components to make them
clearer and more maintainable.

React components typically contain a mix of logic and presentation. By logic, we refer to
anything that is unrelated to the UI, such as API calls, data manipulation, and event
handlers. The presentation is the part inside render where we create the elements to be
displayed on the UI.

Exploring Popular Composition Patterns Chapter 4

[104]

In React, there are simple and powerful patterns, known as container and presentational,
which we can apply when creating components that help us to separate those two concerns.

Creating well-defined boundaries between logic and presentation not only makes
components more reusable, but also provides many other benefits, which you will learn
about in this section. Again, one of the best ways to learn new concepts is by seeing
practical examples, so let's delve into some code.

Suppose we have a component that uses geolocation APIs to get the position of the user
and displays the latitude and longitude on the page in the browser.

First, we create a Geolocation.tsx file in our components folder and define
the Geolocation component using a functional component:

import { useState, useEffect } from 'react'

const Geolocation = () => {}

export default Geolocation

We then define our states:

const [latitude, setLatitude] = useState<number | null>(null)
const [longitude, setLongitude] = useState<number | null>(null)

Now, we can use the useEffect Hook to fire the request to the APIs:

useEffect(() => {
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(handleSuccess)
 }
}, [])

When the browser returns the data, we store the result into the state using the following
function (place this function before the useEffect Hook):

const handleSuccess = ({
 coords: {
 latitude,
 longitude
 }
}: { coords: { latitude: number; longitude: number }}) => {
 setLatitude(latitude)
 setLongitude(longitude)
}

Exploring Popular Composition Patterns Chapter 4

[105]

Finally, we show the latitude and longitude values:

return (
 <div>
 <h1>Geolocation:</h1>
 <div>Latitude: {latitude}</div>
 <div>Longitude: {longitude}</div>
 </div>
)

It is important to note that, during the first render, latitude and longitude
are null because we asked the browser for the coordinates when the component was
mounted. In a real-world component, you might want to display a spinner until the data
gets returned. To do that, you can use one of the conditional techniques we saw in Chapter
2, Cleaning Up Your Code.

Now, this component does not have any problems, and it works as expected. Wouldn't it be
nice to separate it from the part where the position gets requested and loaded to iterate
faster on it?

We will use the container and presentational patterns to isolate the presentational part. In
this pattern, every component is split into two smaller ones, each one with its clear
responsibilities. The container knows everything about the logic of the component and is
where the APIs are called. It also deals with data manipulation and event handling.

The presentational component is where the UI is defined, and it receives data in the form of
props from the container. Since the presentational component is usually logic-free, we can
create it as a functional, stateless component.

There are no rules that say that the presentational component must not have a state (for
example, it could keep a UI state inside it). In this case, we need a component to display the
latitude and longitude, so we are going to use a simple function.

First of all, we should rename our Geolocation component to GeolocationContainer:

const GeolocationContainer = () => {...}

We will also change the filename
from Geolocation.tsx to GeolocationContainer.tsx.

This rule is not strict, but it is a best practice that's widely used in the React community to
append Container to the end of the Container component name and give the original
name to the presentational one.

Exploring Popular Composition Patterns Chapter 4

[106]

We also have to change the implementation of render and remove all the UI parts of it, as
follows:

return (
 <Geolocation latitude={latitude} longitude={longitude} />
)

As you can see in the preceding snippet, instead of creating the HTML elements inside the
return of the container, we just use the presentational one (which we will create next), and
we pass the state to it. The states are latitude and longitude, which are null by default,
and they contain the real position of the user when the browser fires the callback.

Let's create a new file, called Geolocation.tsx, where we define the functional
component as follows:

import { FC } from 'react'

type Props = {
 latitude: number
 longitude: number
}

const Geolocation: FC<Props> = ({ latitude, longitude }) => (
 <div>
 <h1>Geolocation:</h1>
 <div>Latitude: {latitude}</div>
 <div>Longitude: {longitude}</div>
 </div>
)

export default Geolocation

Functional components are an incredibly elegant way to define UIs. They are pure
functions that, given a state, return the elements of it. In this case, our function receives
latitude and longitude from the owner, and it returns the markup structure to display
it.

Exploring Popular Composition Patterns Chapter 4

[107]

If you run the components in the browser the first time, the browser will require your
permission to allow it to know about your location:

After you allow the browser to know your location, you will see something like this:

Following the container and presentational pattern, we created a dumb reusable
component that we can put in our Style Guide so that we can pass fake coordinates to it. If
in some other parts of the application we need to display the same data structure, we do
not have to create a new component; we just wrap this one into a new container that, for
example, could load the latitude and longitude from a different endpoint.

At the same time, other developers in our team can improve the container that uses
geolocation by adding some error-handling logic, without affecting its presentation. They
can even build a temporary presentational component just to display and debug data and
then replace it with the real presentational component when it is ready.

Being able to work in parallel on the same component is a big win for teams, especially for
those companies where building interfaces is an iterative process.

Exploring Popular Composition Patterns Chapter 4

[108]

This pattern is simple but very powerful, and when applied to big applications, it can make
a difference when it comes to the speed of development and the maintainability of the
project. On the other hand, applying this pattern without a real reason can give us the
opposite problem and make the code base less useful as it involves the creation of more
files and components.

So, we should think carefully when we decide that a component has to be refactored
following the container and presentational patterns. In general, the right path to follow is
starting with a single component and splitting it only when the logic and the presentation
become too coupled where they shouldn't be.

In our example, we began from a single component, and we realized that we could separate
the API call from the markup. Deciding what to put in the container and what goes into the
presentation is not always straightforward; the following points should help you make that
decision:

The following are the characteristics of container components:

They are more concerned with behavior.
They render their presentational components.
They make API calls and manipulate data.
They define event handlers.

The following are the characteristics of presentational components:

They are more concerned with the visual representation.
They render the HTML markup (or other components).
They receive data from the parents in the form of props.
They are often written as stateless functional components.

As you can see, these patterns form a really powerful tool that will help you to develop
your web applications faster. Let's see what HOCs are in the next section.

Understanding HOCs
In the Functional programming section of Chapter 2, Cleaning Up Your Code, we mentioned the
concept of higher-order functions (HOFs), which are functions that, given a function,
enhance it with some extra behaviors, returning a new one. When we apply the idea
of HOFs to components, we call these higher-order components (or HOCs for brevity).

Exploring Popular Composition Patterns Chapter 4

[109]

First of all, let's see what HoC looks like:

const HoC = Component => EnhancedComponent

HOCs are functions that take a component as input and return an enhanced one as the
output.

Let's start with a very simple example to understand what an enhanced component looks
like.

Suppose, for whatever reason, you need to attach the same className property to every
component. You could go and change all the render methods by adding
the className property to each of them, or you could write an HOC such as the following:

const withClassName = Component => props => (
 <Component {...props} className="my-class" />
)

In the React community, it is very common to have the prefix with for
HOCs.

The preceding code can be a little difficult to understand initially; let's go through it
together.

We declare a withClassName function that takes a Component and returns another
function. The returned function is a functional component that receives some props and
renders the original component. The collected props are spread, and a className property
with the "my-class" value is passed to the functional component.

The reason why HOCs usually spread the props they receive on the component is because
they tend to be transparent and only add the new behavior.

This is pretty simple and not very useful, but it should give you a better understanding of
what HOCs are and what they look like. Let's now see how we can use
the withClassName HOC in our components.

First of all, we create a stateless functional component that receives the class name and
applies it to a div tag:

const MyComponent = ({ className }) => (
 <div className={className} />
)

Exploring Popular Composition Patterns Chapter 4

[110]

Instead of using the component directly, we pass it to an HOC, as follows:

const MyComponentWithClassName = withClassName(MyComponent)

Wrapping our components into the withClassName function, we ensure that it receives
the className property.

Now, let's move on to something more exciting, and let's create an HOC to detect the
InnerWidth. First of all, we have to create a function that receives a Component:

import { useEffect, useState } from 'react'

const withInnerWidth = Component => props => {
 return <Component {...props} />
}

You may have spotted a pattern in the way HOCs are named. It is a common practice to
prefix HOCs that provide some information to the components they enhance using
the with pattern.

Now you need to define the innerWidth state and the handleResize function:

const withInnerWidth = Component => props => {
 const [innerWidth, setInnerWidth] = useState(window.innerWidth)

 const handleResize = () => {
 setInnerWidth(window.innerWidth)
 }

 return <Component {...props} />
}

Then we add the effects:

useEffect(() => {
 window.addEventListener('resize', handleResize)

 return () => { // <<< This emulates the componentWillUnmount
 window.removeEventListener('resize', handleResize)
 }
}, []) // <<< This emulates the componentDidMount

Finally, the original component gets rendered in the following way:

return <Component {...props} innerWidth={innerWidth} />

Exploring Popular Composition Patterns Chapter 4

[111]

As you may note here, we are spreading the props as we saw before, but we are also
passing the innerWidth state.

We are storing the innerWidth value as a state to achieve the original behavior, but we do
not pollute the state of the component; we use props instead.

Using props is always a good solution to enforce reusability.

Now, using an HOC and getting the innerWidth value is pretty straightforward.

The new React Hooks can easily replace an HOC by creating custom
Hooks.

We create a functional component that expects innerWidth as a property:

const MyComponent = ({ innerWidth }) => {
 console.log('window.innerWidth', innerWidth)
 ...
}

We enhance it as follows:

const MyComponentWithInnerWidth = withInnerWidth(MyComponent)

First of all, we do not pollute any state, and we do not require the component to implement
any function. This means that the component and the HOC are not coupled, and they can
both be reused across the application.

Again, using props instead of state lets us make our component dumb so that we can use it
in our Style Guide, ignoring any complex logic and just passing down the props.

In this particular case, we could create a component for each of the
different innerWidth sizes we support.

Consider the following example:

<MyComponent innerWidth={320} />

Or consider the following:

<MyComponent innerWidth={960} />

Exploring Popular Composition Patterns Chapter 4

[112]

As you can see, by using the HOCs we can pass a component and then return a new
component with extra functionalities. Some of the most common HOCs are connect from
Redux and createFragmentContainer from Relay.

Understanding FunctionAsChild
There is a pattern that is gaining consensus within the React community, known
as FunctionAsChild. It is widely used in the popular react-motion library, which we
will see in Chapter 7, Writing Code for the Browser.

The main concept is that, instead of passing a child in the form of a component, we define a
function that can receive parameters from the parent. Let's see what it looks like:

const FunctionAsChild = ({ children }) => children()

As you can see, FunctionAsChild is a component that has a children property defined
as a function and, instead of being used as a JSX expression, it gets called.

The preceding component can be used in the following way:

<FunctionAsChild>
 {() => <div>Hello, World!</div>}
</FunctionAsChild>

It is as simple as it looks: the children function is fired in the render method of the parent,
and it returns the Hello, World! text wrapped in a div tag, which is displayed on the
screen.

Let's delve into a more meaningful example where the parent component passes some
parameters to the children function.

Create a Name component that expects a function as children and passes it the World
string:

const Name = ({ children }) => children('World')

The preceding component can be used in the following way:

<Name>
 {name => <div>Hello, {name}!</div>}
</Name>

Exploring Popular Composition Patterns Chapter 4

[113]

The snippet renders Hello, World! again, but this time the name has been passed by the
parent. It should be clear how this pattern works, so let's look at the advantages of this
approach.

The first benefit is that we can wrap components, passing the variables at runtime rather
than fixed properties, as we do with HOCs.

A good example is a Fetch component that loads some data from an API endpoint and
returns it to the children function:

<Fetch url="...">
 {data => <List data={data} />}
</Fetch>

Secondly, composing components with this approach does not force children to use some
predefined prop names. Since the function receives variables, their names can be decided
by the developers who use the component. That makes the FunctionAsChild solution
more flexible.

Last but not least, the wrapper is highly reusable because it does not make any assumptions
about children it receives—it just expects a function. Due to this, the same
FunctionAsChild component can be used in different parts of the application, serving
various children components.

Summary
In this chapter, we learned how to compose our reusable components and make them
communicate effectively. Props are a way to decouple components from each other and
create a clean and well-defined interface.

Then, we went through some of the most interesting composition patterns in React. The
first one was the so-called container and the other was the presentational pattern.
These patterns helped us to separate the logic from the presentation and create more
specialized components with a single responsibility.

We learned how to deal with context without needing to couple our components to it,
thanks to HOCs. Finally, we saw how we could compose components dynamically by
following the FunctionAsChild pattern.

In the next chapter, we will learn about GraphQL and how to create JWT tokens, perform a
login, and create models with Sequelize.

5
Understanding GraphQL with a

Real Project
GraphQL is a query language for APIs that helps them work with your existing data. It
provides a complete description of the data in your API, and you can only request the exact
data you need and nothing more. It also makes it easier to improve APIs if they need it and
has very powerful developer tools.

In this chapter, we are going to learn how to use GraphQL in a real project by creating a
basic login and user registration system.

We will cover the following topics in this chapter:

Installing PostgreSQL
Creating environment variables with a .env file
Configuring Apollo Server
Defining GraphQL queries and mutations
Working with resolvers
Creating Sequelize models
Implementing JWTs
Using GraphQL Playground
Performing authentication

Technical requirements
To complete this chapter, you will need the following:

Node.js 12+
Visual Studio Code

Understanding GraphQL with a Real Project Chapter 5

[115]

PostgreSQL
Homebrew (https:/ ​/​brew. ​sh)
pgAdmin 4 (https:/ ​/​www. ​pgadmin. ​org/ ​download/ ​)
OmniDB (https:/ ​/​omnidb. ​org)

You can find the code for this chapter in this book's GitHub
repository: https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-
Practices-Third-Edition/tree/main/Chapter05.

Installing PostgreSQL
For this example, we will use a PostgreSQL database, so you'll need to install PostgreSQL to
be able to run this project on your machine.

If you have a macOS machine, the easiest way to install PostgreSQL is by doing so with
Homebrew. You just need to run the following command:

brew install postgres

Once you've installed it, you need to run the following command:

ln -sfv /usr/local/opt/postgresql/*.plist ~/Library/LaunchAgents

Then, you can create two new aliases to start and stop your PostgreSQL server:

alias pg_start="launchctl load ~/Library/LaunchAgents"
alias pg_stop="launchctl unload ~/Library/LaunchAgents"

Now, you should be able to start your PostgreSQL server by using pg_start or stop it
with pg_stop.

After this, you need to create your first database, like so:

createdb `whoami`

Now, you can connect to PostgreSQL using the psql command.

If you get an error stating role "postgresql" does not exist, you can fix it by
running the following command:

createuser -s postgres

https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://brew.sh
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://omnidb.org
https://omnidb.org
https://omnidb.org
https://omnidb.org
https://omnidb.org
https://omnidb.org
https://omnidb.org
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05

Understanding GraphQL with a Real Project Chapter 5

[116]

If you did everything correctly, you should see something like this:

If you use Windows, you can download PostgreSQL at https:/ ​/ ​www.
postgresql. ​org/ ​download/ ​windows/ ​ and for those that use Linux
(Ubuntu), you can download it from https:/ ​/​www. ​postgresql. ​org/
download/ ​linux/ ​ubuntu/ ​.

Best tools for PostgreSQL database management
One of the bests tools for PostgreSQL database management is pgAdmin 4 (https:/ ​/​www.
pgadmin.​org/​download/ ​). I like this tool as it can be used to create new servers, users, and
databases. The other tool I like to use to perform SQL queries and work with data is
OmniDB (https:/ ​/ ​omnidb. ​org). I highly recommend that you install both tools.

Remember to create a database in order to use it in this example.

Sometimes, you may get an error when you start your PostgreSQL server
that could say something like
FATAL: lock file "postmaster.pid" already exists.

If you get this error, you can easily fix it by running the rm
/usr/local/var/postgres/postmaster.pid command. Then, you
will be able to start your PostgreSQL server.

Creating our .env file and configuration files
First, you need to create a backend directory in your GraphQL project (graphql/backend),
after that let's review the huge list of NPM packages you will need to install (the most
relevant):

npm init --yes

npm install @contentpi/lib @graphql-tools/load-files @graphql-tools/merge
apollo-server dotenv express jsonwebtoken pg pg-hstore sequelize ts-node

https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://omnidb.org
https://omnidb.org
https://omnidb.org
https://omnidb.org
https://omnidb.org
https://omnidb.org
https://omnidb.org

Understanding GraphQL with a Real Project Chapter 5

[117]

npm install --save-dev husky jest prettier sequelize-mock ts-jest ts-node-
dev typescript eslint @types/jsonwebtoken

The scripts you should have in your package.json file should be as follows:

"scripts": {
 "dev": "ts-node-dev src/index.ts",
 "start": "ts-node dist/index.js",
 "build": "tsc -p .",
 "lint": "eslint . --ext .js,.tsx,.ts",
 "lint:fix": "eslint . --fix --ext .js,.tsx,.ts",
 "test": "jest src"
}

In the next section, we are going to configure our environment variables.

Configuring our .env file
A .env file (also known as dotenv) is a configuration file to specify your application's
environment variables. Normally your application won't change from development,
staging, or production environments but they normally need a different configuration: the
most common variables to change are the base URL, API URL, or even your API keys.

Before we jump into the actual login code, we need to create a file called .env (normally,
this file is ignored by .gitignore), which will allow us to use private data, such as the
database connection and security secrets. A file already exists in the repository called
.env.example; you just need to rename it and put your connection data inside it. This will
look something like this:

DB_DIALECT=postgres
DB_PORT=5432
DB_HOST=localhost
DB_DATABASE=<your-database>
DB_USERNAME=<your-username>
DB_PASSWORD=<your-password>

Creating a basic config file
For this project, we need to create a config file, which should be created at
/backend/config/config.json. Here, we will define some basic configurations, such as
our server's port and some security information:

Understanding GraphQL with a Real Project Chapter 5

[118]

{
 "server": {
 "port": 5000
 },
 "security": {
 "secretKey": "C0nt3ntP1",
 "expiresIn": "7d"
 }
}

Then, you need to create an index.ts file. This will bring in all the database connection
information we defined in the .env file using the dotenv package and then export three
configuration variables called $db, $security, and $server:

// Dependencies
import dotenv from 'dotenv'

// Configuration
import config from './config.json'

// Loading .env vars
dotenv.config()

// Types
type Db = {
 dialect: string
 host: string
 port: string
 database: string
 username: string
 password: string
}

type Security = {
 secretKey: string
 expiresIn: string
}

type Server = {
 port: number
}

// Extracting data from .env file
const {
 DB_DIALECT = '',
 DB_PORT = '',
 DB_HOST = '',
 DB_DATABASE = '',

Understanding GraphQL with a Real Project Chapter 5

[119]

 DB_USERNAME = '',
 DB_PASSWORD = '',
} = process.env

const db: Db = {
 dialect: DB_DIALECT,
 port: DB_PORT,
 host: DB_HOST,
 database: DB_DATABASE,
 username: DB_USERNAME,
 password: DB_PASSWORD
}

// Configuration
const { security, server } = config

export const $db: Db = db
export const $security: Security = security
export const $server: Server = server

If your .env file is not at the root or does not exist, all your variables are going to be
undefined.

Configuring Apollo Server
Apollo Server is the most popular open source library that works with GraphQL (server
and client). It has a lot of documentation and is really easy to implement.

The following diagram explains how Apollo Server works in the client and the server:

Understanding GraphQL with a Real Project Chapter 5

[120]

We are going to use Express to set up our Apollo Server and Sequelize ORM to handle our
PostgreSQL database. So, initially, we need to do some imports. The required file can be
found at /backend/src/index.ts:

// Dependencies
import { ApolloServer, makeExecutableSchema } from 'apollo-server'

// Models
import models from './models'

// Type Definitions & Resolvers
import resolvers from './graphql/resolvers'
import typeDefs from './graphql/types'

// Configuration
import { $server } from '../config'

First, we need to create our schema using makeExecutableSchema by passing typeDefs
and resolvers:

// Schema
const schema = makeExecutableSchema({
 typeDefs,
 resolvers
})

Then, we need to create an instance of ApolloServer, where we need to pass the schema
and the models in the context:

// Apollo Server
const apolloServer = new ApolloServer({
 schema,
 context: {
 models
 }
})

Finally, we need to synchronize Sequelize. Here, we are passing some optional variables
(alter and force). If force is true and you change your Sequelize models, this will
delete your tables, including their values, and force you to create the tables again, while if
force is false and alter is true, then you will only update the table fields, without
this affecting your values. So, you need to be careful with this option as you can lose all
your data by accident. Then, after the sync, we must run our Apollo Server, which is
listening to port 5000 ($server.port):

const alter = true

Understanding GraphQL with a Real Project Chapter 5

[121]

const force = false

models.sequelize.sync({ alter, force }).then(() => {
 apolloServer
 .listen($server.port)
 .then(({ url }) => {
 // eslint-disable-next-line no-console
 console.log(`Running on ${url}`)
 })
})

This will help us synchronize our database with our models so that any time we make a
change to the models, the tables are going to be updated.

Defining our GraphQL types, queries, and
mutations
Now that you've created your Apollo Server instance, you need to create your GraphQL
types. In this case, we will create some types, queries, and mutations for users.

The first thing you need to do is define your scalar types at
/backend/src/graphql/types/Scalar.graphql:

scalar UUID
scalar Datetime
scalar JSON

Now, let's create our User.graphql file with our initial User type:

type User {
 id: UUID!
 username: String!
 password: String!
 email: String!
 privilege: String!
 active: Boolean!
 createdAt: Datetime!
 updatedAt: Datetime!
}

As you can see, we are using some scalar types such as UUID and Datetime to define some
fields in our User type. In this case, when you define a type in GraphQL, you need to do so
with the type keyword, followed by the type's name capitalized. Then, you can define your
fields inside the curly braces, {}.

Understanding GraphQL with a Real Project Chapter 5

[122]

There are some primitive data types in GraphQL such as String, Boolean, Float,
and Int. You can define custom scalar types as we did with UUID, Datetime, and JSON,
and you can also define custom types such as the User type and specify whether we want
an array of that type; for example, [User].

The ! character after the types means the field is non-nullable.

Queries
GraphQL queries are used to read or fetch values from a data store.

Now that you know how to define custom types, let's define our Query type. Here, we are
going to define getUsers and getUserData. The first will retrieve a list of users, while the
second will bring us the data of the specific user:

type Query {
 getUsers: [User!]
 getUserData(at: String!): User!
}

In this case, our getUsers query is going to return an array of users ([User!]), while our
getUserData query, which requires the at (access token) attribute, will return a single
User!. Remember that with any query you add here, you will need to define it under your
resolvers later (we will do that in the next section).

Mutations
Mutations are used to write or post values – that is, to modify data in the data store – and
return a value if you want to do some comparisons with REST, such as perform any POST,
PUT, or DELETE actions. The Mutation type works exactly the same as the Query type in
there you need to define your mutations and specify what arguments you will receive and
what data you will return:

type Mutation {
 createUser(input: CreateUserInput): User!
 login(input: LoginInput): AuthPayload!
}

Understanding GraphQL with a Real Project Chapter 5

[123]

As you can see, we have defined two mutations. The first is createUser, to register or
create a new user in our data store, while the second one is to perform a login. As you
may have noticed, both are receiving the input argument with some different values
(CreateUserInput and LoginInput), called input types, which are used as query or
mutation parameters. Finally, they will return the User! type and AuthPayload!,
respectively. Let's learn how to define those inputs:

input CreateUserInput {
 username: String!
 password: String!
 email: String!
 privilege: String!
 active: Boolean!
}

input LoginInput {
 email: String!
 password: String!
}

type AuthPayload {
 token: String!
}

The inputs are normally used with mutations, but you can also use them with queries.

Merging our type definitions
Now that we've defined all our types, queries, and mutations, we need to merge all our
GraphQL files to create our GraphQL schema, which is basically one big file containing all
our GraphQL definitions.

For this, you need to create a file called /backend/src/graphql/types/index.ts that
contains the following code:

import path from 'path'
import { loadFilesSync } from '@graphql-tools/load-files'
import { mergeTypeDefs } from '@graphql-tools/merge'

const typesArray = loadFilesSync(path.join(__dirname, './'), { extensions:
['graphql'] })

export default mergeTypeDefs(typesArray)

Understanding GraphQL with a Real Project Chapter 5

[124]

We are using @graphql-tools packages to load our GraphQL files and merging them into
typesArray using the mergeTypesDefs method.

Creating our resolvers
A resolver is a function that's responsible for generating data for a field in your GraphQL
schema. It can normally generate the data in any way you want, in that it can fetch data
from a database or by using a third-party API.

To create our user resolvers, you need to create a file
called /backend/src/graphql/resolvers/user.ts. Let's create a skeleton of what our
resolver should look like. Here, we need to specify the functions that are defined under
Query and Mutation in our GraphQL schema. So, your resolver should look like this:

export default {
 Query: {
 getUsers: () => {},
 getUserData: () => {},
 },
 Mutation: {
 createUser: () => {},
 login: () => {}
 }
}

As you can see, we are returning an object with two main nodes called Query and
Mutation, and we are mapping the queries and the mutations we defined in our GraphQL
schema (the User.graphql file). Of course, we need to make some changes to receive some
parameters and return some data, but I wanted to show you the basic skeleton of a resolver
file first.

The first thing you need to do is add some imports to the file:

// Lib
import { getUserData } from '../../lib/jwt'

// Interfaces
import {
 IUser,
 ICreateUserInput,
 IModels,
 ILoginInput,
 IAuthPayload
} from '../../types'

Understanding GraphQL with a Real Project Chapter 5

[125]

// Utils
import { doLogin, getUserBy } from '../../lib/auth'

We will create the doLogin and getUserBy functions in the next section.

Creating the getUsers query
Our first method will be the getUsers query. Let's see how we need to define it:

getUsers: (
 _: any,
 args: any,
 ctx: { models: IModels }
): IUser[] => ctx.models.User.findAll(),

In any query or mutation method, we always receive four parameters: the parent (defined
as _), arguments (defined as args), the context (defined as ctx), and info (which is
optional).

If you want to simplify the code a little bit, you can destructure the context, like this:

getUsers: (
 _: any,
 args: any,
 { models }: { models: IModels }
): IUser[] => models.User.findAll(),

In our next resolver function, we are going to destructure our arguments as well. Just as a
reminder, the context is being passed in our Apollo Server setup (we did this previously):

// Apollo Server
const apolloServer = new ApolloServer({
 schema,
 context: {
 models
 }
})

The context is very important when we need to share something globally in our resolvers.

Understanding GraphQL with a Real Project Chapter 5

[126]

Creating the getUserData query
This function needs to be async because we need to perform some asynchronous
operations, such as getting the connected user via an at (access token) if a user already has
a valid session. Then, we can validate whether this is a real user by looking at our database.
This helps stop people from modifying the cookies or trying to do some form of injection. If
we don't find a connected user, then we return an object of the user that contains empty
data:

getUserData: async (
 _: any,
 { at }: { at: string },
 { models }: { models: IModels }
): Promise<any> => {
 // Get current connected user
 const connectedUser = await getUserData(at)

 if (connectedUser) {
 // Validating if the user is still valid
 const user = await getUserBy(
 {
 id: connectedUser.id,
 email: connectedUser.email,
 privilege: connectedUser.privilege,
 active: connectedUser.active
 },
 models
)

 if (user) {
 return connectedUser
 }
 }

 return {
 id: '',
 username: '',
 password: '',
 email: '',
 privilege: '',
 active: false
 }
}

Understanding GraphQL with a Real Project Chapter 5

[127]

Creating the mutations
Our mutations are very simple – we just need to execute some functions and pass all our
arguments by spreading the input value (this is coming from our GraphQL schema). Let's
see what our Mutation node should look like:

Mutation: {
 createUser: (
 _: any,
 { input }: { input: ICreateUserInput },
 { models }: { models: IModels }
): IUser => models.User.create({ ...input }),
 login: (
 _: any,
 { input }: { input: ILoginInput },
 { models }: { models: IModels }
): Promise<IAuthPayload> => doLogin(input.email, input.password, models)
}

You need to pass the email, password, and models to the doLogin function.

Merging our resolvers
As we did with our types definitions, we need to merge all our resolvers using the
@graphql-tools packages. You need to create the following file at
/backend/src/graphql/resolvers/index.ts:

import path from 'path'
import { loadFilesSync } from '@graphql-tools/load-files'
import { mergeResolvers } from '@graphql-tools/merge'

const resolversArray = loadFilesSync(path.join(__dirname, './'))
const resolvers = mergeResolvers(resolversArray)

export default resolvers

This will combine all your resolvers into an array of resolvers.

Understanding GraphQL with a Real Project Chapter 5

[128]

Creating Sequelize models
Before we jump into the authentication functions, we need to create our User model in
Sequelize. For this, we need to create a file at /backend/src/models/User.ts. Our
model will have the following fields:

id

username

password

email

privilege

active

Let's see the code:

// Dependencies
import { encrypt } from '@contentpi/lib'

// Interfaces
import { IUser, IDataTypes } from '../types'

export default (sequelize: any, DataTypes: IDataTypes): IUser => {
 const User = sequelize.define(
 'User',
 {
 id: {
 primaryKey: true,
 allowNull: false,
 type: DataTypes.UUID,
 defaultValue: DataTypes.UUIDV4()
 },
 username: {
 type: DataTypes.STRING,
 allowNull: false,
 unique: true,
 validate: {
 isAlphanumeric: {
 args: true,
 msg: 'The user just accepts alphanumeric characters'
 },
 len: {
 args: [4, 20],
 msg: 'The username must be from 4 to 20 characters'
 }
 }

Understanding GraphQL with a Real Project Chapter 5

[129]

 },
 password: {
 type: DataTypes.STRING,
 allowNull: false
 },
 email: {
 type: DataTypes.STRING,
 allowNull: false,
 unique: true,
 validate: {
 isEmail: {
 args: true,
 msg: 'Invalid email'
 }
 }
 },
 privilege: {
 type: DataTypes.STRING,
 allowNull: false,
 defaultValue: 'user'
 },
 active: {
 type: DataTypes.BOOLEAN,
 allowNull: false,
 defaultValue: false
 }
 },
 {
 hooks: {
 beforeCreate: (user: IUser): void => {
 user.password = encrypt(user.password)
 }
 }
 }
)

 return User
}

As you can see, we are defining a Sequelize Hook called beforeCreate, which helps us
encrypt (using sha1) the user password right before the data is saved. Finally, we return
the User model.

Understanding GraphQL with a Real Project Chapter 5

[130]

Connecting Sequelize to a PostgreSQL
database
Now that we've created the user model, we need to connect Sequelize to our PostgreSQL
database and put all our models together. You need to add the following code to the
/backend/src/models/index.ts file:

// Dependencies
import { Sequelize } from 'sequelize'

// Configuration
import { $db } from '../../config'

// Interfaces
import { IModels } from '../types'

// Db Connection
const { dialect, port, host, database, username, password } = $db

// Connecting to the database
const uri =
`${dialect}://${username}:${password}@${host}:${port}/${database}`
const sequelize = new Sequelize(uri)

// Models
const models: IModels = {
 User: require('./User').default(sequelize, Sequelize),
 sequelize
}

export default models

Authentication functions
Step by step, we are putting all the puzzle pieces together. Now, let's look at the
authentication functions we are using to validate whether a user is connected or not and get
the user's data. For this, we need to use JSON Web Tokens (JWTs).

Understanding GraphQL with a Real Project Chapter 5

[131]

What is JSON Web Token?
JWT is an open standard – RFC 7519 (https:/ ​/​tools. ​ietf. ​org/​html/ ​rfc7519) – which is
useful for transmitting information between parties as a JSON object. The advantage of
JWTs is that they are digitally signed, which is why they can be verified and trusted. It uses
the HMAC algorithm to sign the token by using a secret or a public key pair using RSA or
ECDSA.

JWT functions
Let's create some functions that will help verify a JWT and get the user data. For this, we
need to create the jwtVerify, getUserData, and createToken functions. This file should
be created at /backend/src/lib/jwt.ts:

// Dependencies
import jwt from 'jsonwebtoken'
import { encrypt, setBase64, getBase64 } from '@contentpi/lib'

// Configuration
import { $security } from '../../config'

// Interface
import { IUser } from '../types'

const { secretKey } = $security

export function jwtVerify(accessToken: string, cb: any): void {
 // Verifiying our JWT token using the accessToken and the secretKey
 jwt.verify(
 accessToken,
 secretKey,
 (error: any, accessTokenData: any = {}) => {
 const { data: user } = accessTokenData

 // If we get an error or the user is not found we return false
 if (error || !user) {
 return cb(false)
 }

 // The user data is on base64 and getBase64 will retreive the
 // information as JSON object
 const userData = getBase64(user)

 return cb(userData)
 }

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

Understanding GraphQL with a Real Project Chapter 5

[132]

)
}

export async function getUserData(accessToken: string): Promise<any> {
 // We resolve the jwtVerify promise to get the user data
 const UserPromise = new Promise(resolve =>
 jwtVerify(accessToken, (user: any) => resolve(user))
)

 // This will get the user data or false (if the user is not connected)
 const user = await UserPromise

 return user
}

export const createToken = async (user: IUser): Promise<string[]> => {
 // Extracting the user data
 const { id, username, password, email, privilege, active } = user

 // Encrypting our password by combining the secretKey and the password
 // and converting it to base64
 const token = setBase64(`${encrypt($security.secretKey)}${password}`)

 // The "token" is an alias for password in this case
 const userData = {
 id,
 username,
 email,
 privilege,
 active,
 token
 }

 // We sign our JWT token and we save the data as Base64
 const _createToken = jwt.sign(
 { data: setBase64(userData) },
 $security.secretKey,
 { expiresIn: $security.expiresIn }
)

 return Promise.all([_createToken])
}

As you can see, jwt.sign is used to create a new JWT, while jwt.verify is used to
validate our JWT.

Understanding GraphQL with a Real Project Chapter 5

[133]

Creating authentication functions
Now that we've created the JWT functions, we need to create some functions that will help
us log in at /backend/src/lib/auth.ts:

// Dependencies
import { AuthenticationError } from 'apollo-server'

// Utils
import { encrypt, isPasswordMatch } from '@contentpi/lib'

// Interface
import { IUser, IModels, IAuthPayload } from '../types'

// JWT
import { createToken } from './jwt'

export const getUserBy = async (
 where: any,
 models: IModels
): Promise<IUser> => {
 // We find a user by a WHERE condition
 const user = await models.User.findOne({
 where,
 raw: true
 })

 return user
}

export const doLogin = async (
 email: string,
 password: string,
 models: IModels
): Promise<IAuthPayload> => {
 // Finding a user by email
 const user = await getUserBy({ email }, models)

 // If the user does not exists we return Invalid Login
 if (!user) {
 throw new AuthenticationError('Invalid Login')
 }

 // We verify that our encrypted password is the same as the user.password
 // value
 const passwordMatch = isPasswordMatch(encrypt(password), user.password)

 // We validate that the user is active

Understanding GraphQL with a Real Project Chapter 5

[134]

 const isActive = user.active

 // If the password does not match we return invalid login
 if (!passwordMatch) {
 throw new AuthenticationError('Invalid Login')
 }

 // If the account is not active we return an error
 if (!isActive) {
 throw new AuthenticationError('Your account is not activated yet')
 }

 // If the user exists, the password is correct and the account is active
 // then we create the JWT token
 const [token] = await createToken(user)

 // Finally we return the token to Graphql
 return {
 token
 }
}

Here, we are validating whether the user exists by email, whether the password is correct,
and whether the account is active in order to create the JWT.

Types and interfaces
Finally, we need to define our types and interfaces for all our Sequelize models and
GraphQL inputs. For this, you need to create a file at /backend/src/types/types.ts:

export type User = {
 username: string
 password: string
 email: string
 privilege: string
 active: boolean
}

export type Sequelize = {
 _defaults?: any
 name?: string
 options?: any
 associate?: any
}

Understanding GraphQL with a Real Project Chapter 5

[135]

Now, let's create our interfaces at /backend/src/types/interfaces.ts:

// Types
import { User, Sequelize } from './types'

// Sequelize
export interface IDataTypes {
 UUID: string
 UUIDV4(): string
 STRING: string
 BOOLEAN: boolean
 TEXT: string
 INTEGER: number
 DATE: string
 FLOAT: number
}

// User
export interface IUser extends User, Sequelize {
 id: string
 token?: string
 createdAt?: Date
 updatedAt?: Date
}

export interface ICreateUserInput extends User {}

export interface ILoginInput {
 email: string
 password: string
}

export interface IAuthPayload {
 token: string
}

// Models
export interface IModels {
 User: any
 sequelize: any
}

Finally, we need to export both files in /backend/src/types/index.ts:

export * from './interfaces'
export * from './types'

Understanding GraphQL with a Real Project Chapter 5

[136]

When you need to add more models, remember to always add your types and interfaces to
those files.

Finally, you need to create your tsconfig.json file at the root directory:

{
 "compilerOptions": {
 "baseUrl": "./src",
 "esModuleInterop": true,
 "module": "commonjs",
 "noImplicitAny": true,
 "outDir": "dist",
 "resolveJsonModule": true,
 "sourceMap": true,
 "target": "es6",
 "typeRoots": ["./src/@types", "./node_modules/@types"]
 },
 "include": ["src/**/*.ts"],
 "exclude": ["node_modules"]
}

In the next section, we are going to run our project and create our tables.

Running our project for the first time
If you followed the previous sections correctly and run the npm run dev command, you
should be able to see that the Users table is being created and that Apollo Server is running
on port 5000:

Understanding GraphQL with a Real Project Chapter 5

[137]

Now, let's say that you want to modify your user model and change the "username" field
to "username2". Let's see what will happen:

[INFO] 23:45:16 Restarting: /Users/czantany/projects/React-Design-Patterns-
and-Best-Practices-Third-
Edition/Chapter05/graphql/backend/src/models/User.ts has been modified
Executing (default): CREATE TABLE IF NOT EXISTS "Users" ("id" UUID NOT NULL
, "username2" VARCHAR(255) NOT NULL UNIQUE, "password" VARCHAR(255) NOT
NULL, "email" VARCHAR(255) NOT NULL UNIQUE, "privilege" VARCHAR(255) NOT
NULL DEFAULT 'user', "active" BOOLEAN NOT NULL DEFAULT false, "createdAt"
TIMESTAMP WITH TIME ZONE NOT NULL, "updatedAt" TIMESTAMP WITH TIME ZONE NOT
NULL, PRIMARY KEY ("id"));
Executing (default): ALTER TABLE "public"."Users" ADD COLUMN "username2"
VARCHAR(255) NOT NULL UNIQUE;
Executing (default): ALTER TABLE "Users" ALTER COLUMN "password" SET NOT
NULL;ALTER TABLE "Users" ALTER COLUMN "password" DROP DEFAULT;ALTER TABLE
"Users" ALTER COLUMN "password" TYPE VARCHAR(255);
Executing (default): ALTER TABLE "Users" ALTER COLUMN "email" SET NOT
NULL;ALTER TABLE "Users" ALTER COLUMN "email" DROP DEFAULT;ALTER TABLE
"Users" ADD UNIQUE ("email");ALTER TABLE "Users" ALTER COLUMN "email" TYPE
VARCHAR(255) ;
Executing (default): ALTER TABLE "Users" ALTER COLUMN "privilege" SET NOT
NULL;ALTER TABLE "Users" ALTER COLUMN "privilege" SET DEFAULT 'user';ALTER
TABLE "Users" ALTER COLUMN "privilege" TYPE VARCHAR(255);
Executing (default): ALTER TABLE "Users" ALTER COLUMN "active" SET NOT
NULL;ALTER TABLE "Users" ALTER COLUMN "active" SET DEFAULT false;ALTER
TABLE "Users" ALTER COLUMN "active" TYPE BOOLEAN;
Executing (default): ALTER TABLE "Users" ALTER COLUMN "createdAt" SET NOT
NULL;ALTER TABLE "Users" ALTER COLUMN "createdAt" DROP DEFAULT;ALTER TABLE
"Users" ALTER COLUMN "createdAt" TYPE TIMESTAMP WITH TIME ZONE;
Running on http://localhost:5000/

This will execute the following SQL query:

Executing (default): ALTER TABLE "public"."Users" ADD COLUMN "username2"
VARCHAR(255) NOT NULL UNIQUE;
Executing (default): ALTER TABLE "public"."Users" DROP COLUMN "username";

Now, let's suppose you changed the force constant in your index.ts file to true. The
following will happen:

Understanding GraphQL with a Real Project Chapter 5

[138]

As you can see, if force is true, it will execute DROP TABLE IF EXISTS "Users"
CASCADE;. This will completely remove your table and values and then recreate your table
from scratch. That's why you need to be careful when you use the force option.

At this point, if you open http://localhost:5000, you should be able to see your
GraphQL Playground:

Now, we are ready to test our queries and mutations.

Testing our GraphQL queries and mutations
Great! At this point, you're very close to executing your first GraphQL query and mutation.
The first query we will execute is going to be getUsers. The following is the correct syntax
for running a query:

query {
 getUsers {
 id

Understanding GraphQL with a Real Project Chapter 5

[139]

 username
 email
 privilege
 }
}

When you don't have any attribute to pass to the query, you just need to specify the name
of the query under the query {...} block and then specify the fields you want to retrieve
once you've executed your query. In this case, we want to fetch the id, username, email,
and privilege fields.

If you run this query, you will probably get an empty array of data. This is because we
don't have any users registered yet:

This means we need to execute our createUser mutation in order to register our first user.
One thing I like about GraphQL Playground is that you have all the schema documentation
in the DOCS tab on the right-hand side. If you click on the DOCS tab, you will see all your
queries and mutations listed. Let's click there and select our createUser mutation to see
what needs to be called and what data may be returned:

Understanding GraphQL with a Real Project Chapter 5

[140]

Understanding GraphQL with a Real Project Chapter 5

[141]

As you can see, the createUser mutation needs an input argument, which is
CreateUserInput. Let's click on that input:

Awesome! Now, we know that we need to pass the username, password, email,
privilege, and active fields in order to create a new user and that we will receive the
same fields, plus the generated ID, for the user. Let's do this!

Create a new tab so that you don't lose the code of your first query and then write the
mutation:

mutation {
 createUser(
 input: {
 username: "admin",
 email: "admin@js.education",
 password: "123456",
 privilege: "god",

Understanding GraphQL with a Real Project Chapter 5

[142]

 active: true
 }
) {
 id
 username
 email
 password
 privilege
 }
}

As you can see, your mutation needs to be written under the mutation {...} block, and
you must pass the input argument as an object. Finally, you must specify the fields you
want to retrieve once the mutation has been executed correctly. If everything is OK, you
should see something like this:

If you're curious and wish to take a look at the terminal where you're running your Apollo
Server, you will see the SQL query that was performed for this user:

Executing (default): INSERT INTO "Users"
("id","username","password","email","privilege","active","createdAt","updat
edAt") VALUES ($1,$2,$3,$4,$5,$6,$7,$8) RETURNING
"id","username","password","email","privilege","active","createdAt","update
dAt";

Understanding GraphQL with a Real Project Chapter 5

[143]

The VALUES variables are handled by Apollo Server, so you won't see the actual values in
there, but you can find out which operation is being executed in the database.

Now, go back to your first query (getUsers) and run it again!

Nice – this is your first query and mutation that have been executed correctly in GraphQL.
If you want to see this data in your database, you can use OmniDB to view your Users
table in your PostgreSQL database:

As you can see, our first record has its own id field (UUID) and also has an encrypted
password field (do you remember our beforeCreate Hook in the user model?). By
default, Sequelize will create the createdAt and updatedAt fields.

Understanding GraphQL with a Real Project Chapter 5

[144]

Validations
As you may recall, regarding our user model, you will want to make sure all the validations
we did are working fine, such as whether the user is unique or whether their email is valid
and unique. You just need to execute the exact same mutation again:

Understanding GraphQL with a Real Project Chapter 5

[145]

As you can see, we will get a "username must be unique" error message because we've
already registered the "admin" username. Now, let's try to change the username to
"admin2" but leave the email as is (admin@js.education):

Understanding GraphQL with a Real Project Chapter 5

[146]

We will also get an "email must be unique" error for the email. Now, try to change the
email to something invalid, such as admin@myfakedomain:

Understanding GraphQL with a Real Project Chapter 5

[147]

Now, we're getting an "Invalid email" error message. This is just amazing, don't you
think? Now, let's stop playing with the validations and add a new valid user (username:
admin2, email: admin2@js.education). Once you've created your second user, run our
getUsers query once more. However, this time, add the "active" field to the list of fields
we want to return:

Now, we have two registered users, and both are inactive accounts (active = false).

One thing I love about GraphQL is that when you're writing your queries or mutations and
you don't remember a certain field, GraphQL will always show you the list of available
fields for that query or mutation. For example, if you just write the letter p for the
password, you will see something like this:

Understanding GraphQL with a Real Project Chapter 5

[148]

Now, we are ready to try and log in!

Performing a login
I want to congratulate you for getting to this point in this book – I know we have covered a
lot, but we are almost there! Now, we are going to try and log in with GraphQL (how crazy
is that?).

First, we need to write our login mutation:

mutation {
 login(
 input: {
 email: "fake@email.com",
 password: "123456"
 }
) {
 token
 }
}

Understanding GraphQL with a Real Project Chapter 5

[149]

Then, we need to log our user in by using "fake@email.com" as our email and
"123456" as our password. These do not exist in our database:

Because the email does not exist in our database, an "Invalid Login" error message will
be returned. Now, let's add the correct email but use a fake password:

Understanding GraphQL with a Real Project Chapter 5

[150]

As you can see, we are receiving the exact same error ("Invalid Login"). This is because
we don't want to provide too much information about what's wrong with the login as
someone may be trying to hack another user. If we say something such as "Invalid
password" or "Your email does not exist in our system", we are giving the
attackers extra information that they may find useful.

Understanding GraphQL with a Real Project Chapter 5

[151]

Now, let's try to connect with the correct user and password (admin@js.education /
123456) and see what happens:

Now, we are receiving an error stating "Your account is not activated yet". This
is OK because our user has not been activated yet. Normally, when a user is registered in a
system, you need to send a link to their email so that they can activate their account. We
don't have this feature at the moment, but let's suppose we sent that email and the user has
already activated their account. We can simulate this by manually changing the value in
our database using OnmiDB. We can do this by performing an UPDATE SQL query:

Now, let's try to log in again!

Understanding GraphQL with a Real Project Chapter 5

[152]

Nice – we are in baby! You at this point:

We are anonymous, we are legion, we do not forgive, we do not forget, expect us!

Now that we've logged in and retrieved our JWT, let's copy that huge string and use it in
our getUserData query to see whether we can get the user's data:

query {
 getUserData(at:
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkYXRhIjoiZXlKcFpDSTZJalEzTnpsaU16Q
TJMV1U0TW1NdE5HVmtNUzFoWldNM0xXSXdaVEl5TWpSaU5UUTNaU0lzSW5WelpYSnVZVzFsSWpv
aVlXUnRhVzRpTENKbGJXRnBiQ0k2SW1Ga2JXbHVRR3B6TG1Wa2RXTmhkR2x2YmlJc0luQnlhWFp
wYkdWblpTSTZJbWR2WkNJc0ltRmpkR2wyWlNJNmRISjFaU3dpZEc5clpXNGlPaUpOUkdjeldWUk
ZNMXBVWjNwTmJWVjVXV3BWTWs1SFJtMWFiVTB6V21wTk5GbFVRWGxhVkdSb1RVUm9iVTFIVlROT
mJWa3dXVlJrYWs1SFJUUmFSRUUxV1RKRmVrNTZXWGxaVjFreVRWZFZNVTlVVlhsTlJHc3dUVEpT

Understanding GraphQL with a Real Project Chapter 5

[153]

YWsxcVdUQlBWRkp0VDBSck1FMVhTVDBpZlE9PSIsImlhdCI6MTYxNzY5ODY4OSwiZXhwIjoxNjE
4MzAzNDg5fQ.6icaBFibjEOICUt5QQ0OPAoDsb7_ohb8W10JzHnbf7k") {
 id
 email
 privilege
 active
 }
}

If everything went well, then you should get the user's data:

If you change or remove any letter from the string (meaning the token is invalid), then you
should get empty user data:

Now that our login system works perfectly in the backend, it is time to implement this in
the frontend application. We'll do this in the next section.

Understanding GraphQL with a Real Project Chapter 5

[154]

Building a frontend login system with Apollo
Client
In the previous section, we learned how to build the backend for a login system using
Apollo Server to create our GraphQL queries and mutations. You are probably thinking,
Great, I have the backend working, but how can I use this on the frontend? And you're right – I
always like to explain things with full examples and not just show basic things, even if this
will take longer to do, so let's get started!

You can find the code for the example in this section at https:/ ​/ ​github. ​com/
PacktPublishing/​React- ​17- ​Design- ​Patterns- ​and- ​Best- ​Practices- ​Third- ​Edition/ ​tree/
main/​Chapter05/​graphql/ ​frontend.

Configuring Webpack 5
Instead of using a create-react-app project, we will configure a React project from
scratch using Webpack 5 and Node.

The first thing we need to do is install all the packages we are going to use:

npm init --yes

npm install @apollo/client @contentpi/lib cookie-parser cors express
express-session jsonwebtoken react react-dom react-cookie react-router-dom
styled-components

npm install --save-dev @babel/core @babel/preset-env @babel/preset-react
buffer cross-env crypto-browserify dotenv prettier stream-browserify ts-
loader ts-node ts-node-dev typescript webpack webpack-cli webpack-dev-
server html-webpack-plugin

The buffer, crypto-browserify, and stream-browserify are polyfills that were
included by default in Webpack <= 4. However, in the latest version (Webpack 5), these are
not included anymore, so you will get the following error:

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter05/graphql/frontend

Understanding GraphQL with a Real Project Chapter 5

[155]

You need to have those scripts in your package.json:

"scripts": {
 "start": "ts-node src/server",
 "dev": "ts-node-dev src/server",
 "webpack": "cross-env NODE_ENV=development webpack serve --mode
development",
 "build": "cross-env NODE_ENV=production webpack --mode production",
 "clean": "rimraf dist/ && rimraf public/app",
 "lint": "eslint . --ext .js,.tsx,.ts",
 "lint:fix": "eslint . --fix --ext .js,.tsx,.ts",
 "test": "jest src",
 "test:coverage": "jest src --coverage"
 }

Let's check our Webpack 5 configuration file (/frontend/webpack.config.ts):

// Dependencies
import path from 'path'
import webpack, { Configuration } from 'webpack'
import HtmlWebPackPlugin from 'html-webpack-plugin'

// Environment
const isProduction = process.env.NODE_ENV === 'production'

const webpackConfig: Configuration = {
 devtool: !isProduction ? 'source-map' : false,
 target: 'web',
 mode: isProduction ? 'production' : 'development',
 entry: './src/index.tsx',
 output: {
 path: path.join(__dirname, 'dist'),
 filename: '[name].js',
 publicPath: '/'
 },
 resolve: {
 extensions: ['.ts', '.tsx', '.js', '.json'],
 fallback: { // This is to fix the polifylls errors
 buffer: require.resolve('buffer'),
 crypto: require.resolve("crypto-browserify"),
 stream: require.resolve("stream-browserify")
 }
 },
 module: {
 rules: [
 {
 test: /\.(ts|tsx)$/,
 use: {

Understanding GraphQL with a Real Project Chapter 5

[156]

 loader: 'ts-loader',
 options: {
 transpileOnly: true
 }
 },
 exclude: /node_modules/
 }
]
 },
 optimization: {
 splitChunks: { // This will split our bundles into vendor.js and
 // main.js
 cacheGroups: {
 default: false,
 commons: {
 test: /node_modules/,
 name: 'vendor',
 chunks: 'all'
 }
 }
 }
 },
 plugins: [
 new webpack.HotModuleReplacementPlugin(),
 new HtmlWebPackPlugin({
 template: './src/index.html',
 filename: './index.html',
 publicPath: !isProduction ? 'http://localhost:8080/' : '' // For dev
 // we will read the bundle from localhost:8080 (webpack-dev-server)
 })
]
}

export default webpackConfig

At this point, you need to create the index.html file, which should be
at /frontend/src/index.html:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1,
 maximum-scale=1" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Login System</title>
 </head>

Understanding GraphQL with a Real Project Chapter 5

[157]

 <body>
 <div id="root"></div>
 </body>
</html>

In the next section, we will configure our TypeScript.

Configuring our TypeScript
Our tsconfig.json file should look like this:

{
 "compilerOptions": {
 "sourceMap": true,
 "target": "es5",
 "lib": ["dom", "dom.iterable", "esnext"],
 "allowJs": true,
 "skipLibCheck": true,
 "esModuleInterop": true,
 "allowSyntheticDefaultImports": true,
 "strict": true,
 "forceConsistentCasingInFileNames": true,
 "noFallthroughCasesInSwitch": true,
 "module": "commonjs",
 "moduleResolution": "node",
 "resolveJsonModule": true,
 "isolatedModules": true,
 "noEmit": true,
 "jsx": "react-jsx",
 "noImplicitAny": false,
 "types": ["node", "express"]
 },
 "include": ["src"]
}

Now, let's learn how to configure the Express server.

Understanding GraphQL with a Real Project Chapter 5

[158]

Configuring the Express server
Our application requires the Express server so that we can perform validations. These will
help us find out whether the user is connected (using a custom middleware, which I'll
explain later) and can also configure our Express sessions. We have four main routes on our
site:

/: Our home page (handled by React).
/dashboard: Our dashboard, which is protected. Only connected users with god
or admin permissions are allowed (handled by Express first then by React).
/login: Our login page (handled by React).
/logout: This will delete our existing session (handled by Express).

Let's look at our server code. The following file should exist
at /frontend/src/server.ts:

// Dependencies
import express, { Request, Response, NextFunction } from 'express'
import path from 'path'
import cookieParser from 'cookie-parser'
import cors from 'cors'
import session from 'express-session'

// Middleware
import { isConnected } from './lib/middlewares/user'

// Config
import config from './config'

// Express app
const app = express();
const port = process.env.NODE_PORT || 3000
const DIST_DIR = path.join(__dirname, '../dist')
const HTML_FILE = path.join(DIST_DIR, 'index.html')

// Making the dist directory static
app.use(express.static(DIST_DIR));

// Middlewares
app.use(
 session({
 resave: false,
 saveUninitialized: true,
 secret: config.security.secretKey
 })

Understanding GraphQL with a Real Project Chapter 5

[159]

)
app.use(express.json());
app.use(express.urlencoded({ extended: true }));
app.use(cookieParser(config.security.secretKey))
app.use(cors({ credentials: true, origin: true }))

// Routes
app.get('/dashboard',
 isConnected(
 true,
 ['god', 'admin'], // Those are the allowed permissions
 `/login?redirectTo=/dashboard` // If the user is not allowed will be
 // redirect to this path
),
 (req: Request, res: Response, next: NextFunction) => {
 // If the user isConnected then we allow the access to the dashboard
 // page otherwise will be redirect to /login
 next()
 }
)

// Forcing only No connected users to access to /login, if a connected user
// try to access will be redirect to the homepage
app.get('/login', isConnected(false), (req: Request, res: Response, next:
NextFunction) => {
 next()
})

app.get(`/logout`, (req: Request, res: Response) => {
 // This will cler our "at" cookie and redirect to home
 res.clearCookie('at')
 res.redirect('/')
})

app.get('*', (req: Request, res: Response) => {
 // We render our React application
 res.sendFile(HTML_FILE)
})

// Listening
app.listen(port, () => console.log(`Running at http://localhost:${port}`))

As you can see, we are protecting our dashboard route with the isConnected middleware.
Here, we are validating that we only accept users that are not connected in the login route.

Understanding GraphQL with a Real Project Chapter 5

[160]

Creating our frontend configuration
Now, we need to create our frontend configuration. So, let's create
the common.json configuration at /frontend/src/config/common.json:

{
 "server": {
 "port": 3000
 },
 "security": {
 "secretKey": "C0nt3ntP1", // This needs to be the same as the backend
 // secretKey
 "expiresIn": "7d"
 }
}

Now, let's create our local.json file:

{
 "baseUrl": "http://localhost:3000",
 "apiUrl": "http://localhost:5000/graphql"
}

Now, we need to create our production.json file; for now since we don't have an actual
production environment we will use the same localhost URL, but once you put this project
in a production environment then you will need to change it for the actual domain name:

{
 "baseUrl": "http://localhost:3000",
 "apiUrl": "http://localhost:5000/graphql"
}

Now that we've defined our configuration files, we need to create an index.ts file so that
we can merge and export our configuration as an object:

// Configuration
import common from './common.json'
import local from './local.json'
import production from './production.json'

// Interface
interface IConfig {
 baseUrl: string
 apiUrl: string
 server: {
 port: number
 }

Understanding GraphQL with a Real Project Chapter 5

[161]

 security: {
 secretKey: string
 expiresIn: string
 }
}

const { NODE_ENV = 'development' } = process.env

// development => local
let environment = 'local'

if (NODE_ENV !== 'development') {
 environment = NODE_ENV
}

// Configurations by environment
const config: IConfig = {
 ...common,
 ...(environment === 'local' ? local : production)
}

// Environments validations
export const isLocal = () => environment === 'local'
export const isProduction = () => environment === 'production'

export default config

Now, we need to create a user called middleware and the jwt functions to validate
whether the user is connected and has the correct privileges.

Creating the user middleware
A middleware is a function that has access to the request object (req), the response object
(res), and the next function in the application's request-response cycle. The next function is
a function in the Express router that, when invoked, executes the middleware succeeding
the current middleware. The following diagram describes the middleware flow:

Understanding GraphQL with a Real Project Chapter 5

[162]

In our case, we will create the isConnected middleware to validate if a user is connected
and has the correct privileges. If not, then we will break the flow and redirect them to the
login page. If the user is valid, we will execute the next piece of middleware, which will
render our React application.

The following diagram describes this process:

Let's apply the theoretical part to our code. The required file should exist
at /frontend/src/lib/middlewares/user.ts:

// Dependencies
import { Request, Response, NextFunction } from 'express'

// Lib
import { getUserData } from '../jwt'

Understanding GraphQL with a Real Project Chapter 5

[163]

export const isConnected = (isLogged = true, privileges = ['user'],
redirectTo = '/') => async (
 req: Request,
 res: Response,
 next: NextFunction
): Promise<void> => {
 // Getting the user information by passing our 'at' cookie
 const user = await getUserData(req.cookies.at)

 if (!user && !isLogged) {
 // This is to allow No connected users
 return next()
 }

 // Allowing just connected users and validating privileges...
 if (user && isLogged) {
 // If the user is connected and is god...
 if (privileges.includes('god') && user.privilege === 'god') {
 return next()
 }

 // If the user is conencted and is admin...
 if (privileges.includes('admin') && user.privilege === 'admin') {
 return next()
 }

 // If the user is connected but is not god or admin.
 res.redirect(redirectTo)
 } else {
 // If the user is not connected
 res.redirect(redirectTo)
 }
}

Basically, with this middleware, we can control whether we want to validate whether the
user is connected (isLogged = true). Then, we can validate specific privileges
(privileges = ['god', 'admin']) and redirect the user if they are not connected or do
not have the correct privileges (redirectTo = '/').

As you can see, we are using the getUserData function from jwt. We'll create
our jwt functions in the next section.

Understanding GraphQL with a Real Project Chapter 5

[164]

Creating JWT functions
In the previous section, when I explained the backend code, I talked about JWTs. In the
frontend, we need those functions to validate our token and get the user's data. Let's create
a file containing the following code at /frontend/src/lib/jwt.ts:

// Dependencies
import jwt from 'jsonwebtoken'
import { getBase64 } from '@contentpi/lib'

// Configuration
import config from '../config'

// Getting our secretKey
const {
 security: { secretKey }
} = config

export function jwtVerify(accessToken: any, cb: any): void {
 // Validating our accessToken
 jwt.verify(accessToken, secretKey, (error: any, accessTokenData: any =
 {}) => {
 const { data: user } = accessTokenData

 // If we got an error or the user is not connected we return false
 if (error || !user) {
 return cb(false)
 }

 // Getting the user data
 const userData = getBase64(user)

 return cb(userData)
 })
}

export async function getUserData(accessToken: any): Promise<any> {
 // This is an async function to retrieve the user data from the
 // jwtVerify function
 const UserPromise = new Promise(resolve => jwtVerify(accessToken, (user:
 any) => resolve(user)))

 const user = await UserPromise

 return user
}

Understanding GraphQL with a Real Project Chapter 5

[165]

As you can see, our getUserData function will retrieve the user data using accessToken,
which we grabbed from the cookies. It is important that the JWT is valid.

Creating our GraphQL queries and mutations
We've already created the required queries and mutations in our backend project. At this
point, we need to create some files that will execute them in our frontend project. For now,
we just need to define our getUserData query and our login mutation.

Let's create our getUserData query
at /frontend/src/graphql/user/getUserData.query.ts:

// Dependencies
import { gql } from '@apollo/client'

export default gql`
 query getUserData($at: String!) {
 getUserData(at: $at) {
 id
 email
 username
 privilege
 active
 }
 }
`

Our login mutation should be at /frontend/src/graphql/user/login.mutation.ts:

// Dependencies
import { gql } from '@apollo/client'

export default gql`
 mutation login($email: String!, $password: String!) {
 login(input: { email: $email, password: $password }) {
 token
 }
 }
`

Understanding GraphQL with a Real Project Chapter 5

[166]

Now that we have defined our query and mutation, let's create the user context so that we
can use them.

Creating our user context to handle the login and
the connected user
In our user context, we are going to have a login method that will execute our mutation and
validate whether the email and password are correct. We are also going to export the user
data.

Let's create this context at /frontend/src/contexts/user.tsx:

// Dependencies
import { FC, createContext, ReactElement, useState, useEffect } from
'react'
import { useCookies } from 'react-cookie'
import { getGraphQlError, redirectTo, getDebug } from '@contentpi/lib'
import { useQuery, useMutation } from '@apollo/client'

// Mutations
import LOGIN_MUTATION from '../graphql/user/login.mutation'

// Queries
import GET_USER_DATA_QUERY from '../graphql/user/getUserData.query'

// Interfaces
interface IUserContext {
 login(input: any): any
 connectedUser: any
}

interface IProps {
 page?: string
 children: ReactElement
}

// Creating context
export const UserContext = createContext<IUserContext>({
 login: () => null,
 connectedUser: null
})

const UserProvider: FC<IProps> = ({ page = '', children }): ReactElement =>
{
 const [cookies, setCookie] = useCookies()

Understanding GraphQL with a Real Project Chapter 5

[167]

 const [connectedUser, setConnectedUser] = useState(null)

 // Mutations
 const [loginMutation] = useMutation(LOGIN_MUTATION)

 // Queries
 const { data: dataUser } = useQuery(GET_USER_DATA_QUERY, {
 variables: {
 at: cookies.at || ''
 }
 })

 // Effects
 useEffect(() => {
 if (dataUser) {
 if (!dataUser.getUserData.id && page !== 'login') {
 // If the user session is invalid and is on a different page than
 // login
 // we redirect them to login
 redirectTo('/login?redirectTo=/dashboard')
 } else {
 // If we have the user data available we save it in our
 // connectedUser state
 setConnectedUser(dataUser.getUserData)
 }
 }
 }, [dataUser, page])

 async function login(input: { email: string; password: string }):
 Promise<any> {
 try {
 // Executing our loginMutation passing the email and password
 const { data: dataLogin } = await loginMutation({
 variables: {
 email: input.email,
 password: input.password
 }
 })

 if (dataLogin) {
 // If the login was success, we save the token in our "at" cookie
 setCookie('at', dataLogin.login.token, { path: '/' })

 return dataLogin.login.token
 }
 } catch (err) {
 // If there is an error we return it
 return getGraphQlError(err)

Understanding GraphQL with a Real Project Chapter 5

[168]

 }
 }

 // Exporting our context
 const context = {
 login,
 connectedUser
 }

 return <UserContext.Provider
value={context}>{children}</UserContext.Provider>
}

export default UserProvider

As you can see, we are handling the login and got the connectedUser data in our context.
Here, we are executing GET_USER_DATA_QUERY all the time to verify whether the user is
connected (validating against the database and not just with the cookies).

Configuring our Apollo Client
So far, we have created a lot of code, but none of it is going to work if we don't configure
our Apollo Client. To configure it, we need to add it to our index file
at /frontend/src/index.tsx:

// Dependencies
import { render } from 'react-dom'

// Apollo
import { ApolloProvider, ApolloClient, InMemoryCache } from
'@apollo/client';

// Components
import AppRoutes from './AppRoutes'

// Config
import config from './config'

// Apollo Client configuration
const client = new ApolloClient({
 uri: config.apiUrl,
 cache: new InMemoryCache()
});

render(
 <ApolloProvider client={client}>

Understanding GraphQL with a Real Project Chapter 5

[169]

 <AppRoutes />
 </ApolloProvider>
, document.querySelector('#root'))

Basically, we are passing config.apiUrl, which is where GraphQL Playground is
running (http://localhost:5000/graphql), and then wrapping
our AppRoutes component with the ApolloProvider component.

Creating our app routes
We are going to use react-router-dom to create our application routes. Let's create the
required code at /frontend/src/AppRoutes.tsx:

// Dependencies
import { BrowserRouter as Router, Route, Switch } from 'react-router-dom'

// Components
import HomePage from './pages/home'
import DashboardPage from './pages/dashboard'
import LoginPage from './pages/login'
import Error404 from './pages/error404'

const AppRoutes = () => (
 <Router>
 <Switch>
 <Route path="/" component={HomePage} exact />
 <Route path="/dashboard" component={DashboardPage} exact />
 <Route path="/login" component={LoginPage} exact />
 <Route component={Error404} />
 </Switch>
 </Router>
)pag

export default AppRoutes

As you can see, we are adding some pages to our routes, such
as HomePage, DashboardPage (protected), and LoginPage. If the user tries to access a
different URL, then we will display an Error404 component. We'll create these pages in
the next section.

Understanding GraphQL with a Real Project Chapter 5

[170]

Creating our pages
The Home page should be at /frontend/src/pages/home.tsx:

const Page = () => (
 <div className="home">
 <h1>Home</h1>

 Go to Dashboard

 </div>
)

export default Page

The Dashboard page should be at /frontend/src/pages/dashboard.tsx:

// Components
import DashboardLayout from '../components/dashboard/DashboardLayout'

// Contexts
import UserProvider from '../contexts/user'

const Page = () => (
 <UserProvider>
 <DashboardLayout />
 </UserProvider>
)

export default Page

The Login page should be at /frontend/src/pages/login.tsx:

// Dependencies
import { FC, ReactElement } from 'react'
import { isBrowser } from '@contentpi/lib'

// Contexts
import UserProvider from '../contexts/user'

// Components
import LoginLayout from '../components/users/LoginLayout'

interface IProps {
 currentUrl: string
}

Understanding GraphQL with a Real Project Chapter 5

[171]

const Page: FC<IProps> = ({
 currentUrl = isBrowser() ? window.location.search.replace
 ('?redirectTo=', '') :''}): ReactElement => (
 <UserProvider page="login">
 <LoginLayout currentUrl={currentUrl} />
 </UserProvider>
)

export default Page

Finally, we need to create our Error404 page (/frontend/src/pages/error404.tsx):

const Page = () => (
 <div className="error404">
 <h1>Error404</h1>
 </div>
)

export default Page

We are almost done. The last piece of this puzzle is to create the Login and
Dashboard components. We'll do that in the next section.

Creating our Login components
I created some basic components for our login and our dashboard. Of course, their styles
can be improved, but let's see how they work and how our login system is going to look.

The first file you need to create is called LoginLayout.tsx at
/frontend/src/components/users/LoginLayout.tsx:

// Dependencies
import { redirectTo } from '@contentpi/lib'
import { FC, ReactElement, useContext, useEffect } from 'react'

// Contexts
import { UserContext } from '../../contexts/user'

// Components
import Login from './Login'

// Interfaces
interface IProps {
 currentUrl: string
}

Understanding GraphQL with a Real Project Chapter 5

[172]

const Layout: FC<IProps> = ({ currentUrl }): ReactElement => {
 const { login } = useContext(UserContext)

 return (
 <Login login={login} currentUrl={currentUrl} />
)
}

export default Layout

The layout file is good when we want to add a specific layout to our components. It is also
good for consuming data from a context and passing the data or functions as props.

Our Login component should look like this
(/frontend/src/components/users/Login.tsx):

// Dependencies
import { FC, ReactElement, useState, ChangeEvent } from 'react'
import { redirectTo } from '@contentpi/lib'

// Interfaces
import { IUser } from '../../types'

// Styles
import { StyledLogin } from './Login.styled'

interface IProps {
 login(input: any): any
 currentUrl: string
}

const Login: FC<IProps> = ({ login, currentUrl }) => {
 // States
 const [values, setValues] = useState({
 email: '',
 password: ''
 })
 const [errorMessage, setErrorMessage] = useState('')
 const [invalidLogin, setInvalidLogin] = useState(false)

 // Methods
 const onChange = (e: ChangeEvent<HTMLInputElement>): void => {
 const {
 target: { name, value }
 } = e

 if (name) {
 setValues((prevValues: any) => ({

Understanding GraphQL with a Real Project Chapter 5

[173]

 ...prevValues,
 [name]: value
 }))
 }
 }

 const handleSubmit = async (user: IUser): Promise<void> => {
 // Here we execute the login mutation
 const response = await login(user)

 if (response.error) {
 // If the login is invalid...
 setInvalidLogin(true)
 setErrorMessage(response.message)
 } else {
 // If the login is correct...
 redirectTo(currentUrl || '/')
 }
 }

 return (
 <>
 <StyledLogin>
 <div className="wrapper">
 {invalidLogin && <div className="alert">{errorMessage}</div>}
 <div className="form">
 <p>
 <input
 autoComplete="off"
 type="email"
 className="email"
 name="email"
 placeholder="Email"
 onChange={onChange}
 value={values.email}
 />
 </p>

 <p>
 <input
 autoComplete="off"
 type="password"
 className="password"
 name="password"
 placeholder="Password"
 onChange={onChange}
 value={values.password}
 />

Understanding GraphQL with a Real Project Chapter 5

[174]

 </p>

 <div className="actions">
 <button name="login" onClick={(): Promise<void> =>
 handleSubmit(values)}>
 Login
 </button>
 </div>
 </div>
 </div>
 </StyledLogin>
 </>
)
}

export default Login

We'll create the Dashboard components in the next section.

Creating our Dashboard components
Now, let's create our Dashboard components. The first one should be
the DashboardLayout.tsx file
at /frontend/src/components/dashboard/DashboardLayout.tsx:

// Dependencies
import { FC, ReactElement, useContext } from 'react'

// Contexts
import { UserContext } from '../../contexts/user'

// Components
import Dashboard from './Dashboard'

const Layout: FC = () => {
 const { connectedUser } = useContext(UserContext)
 // We only render the Dashboard if the user is connected
 if (connectedUser) {
 return (
 <Dashboard connectedUser={connectedUser} />
)
 }

 return <div />
}

Understanding GraphQL with a Real Project Chapter 5

[175]

export default Layout

This is how we protect our Dashboard page to allow only connected users. Now, let's
create our Dashboard component at
/frontend/src/components/dashboard/Dashboard.tsx:

interface IProps {
 connectedUser: any
}

const Dashboard = ({ connectedUser }) => (
 <div className="dashboard">
 <h1>Welcome, {connectedUser.username}!</h1>

 Logout

 </div>
)

export default Dashboard

And with that, we're done! We'll test the login system in the next section.

Testing our login system
If you followed the previous sections correctly, then you should be able to run the login
system successfully. To do this, we need to open three terminals:

In the first one, you need to run your backend project (npm run dev).
In the second one in your frontend project, you need to build your project (npm
run build).
In the last one, you need to run the node server in the frontend project (npm run
dev).

Understanding GraphQL with a Real Project Chapter 5

[176]

When you open http://localhost:3000 for the first time, you should be able to see
the Home page:

Then, if you click on the Go to Dashboard (http://localhost:3000/dashboard) link,
you will be redirected to http://localhost:3000/login?redirectTo=/dashboard, as
shown in the following screenshot:

Understanding GraphQL with a Real Project Chapter 5

[177]

This is our login form. If you try to log in with some fake credentials, you should get an
error:

If you want to see the GraphQL request, you can do so on the Chrome Network tab:

Understanding GraphQL with a Real Project Chapter 5

[178]

Here, you can see the query you're executing and the variables you're sending (email and
password). You can see the response on the Preview tab:

As you can see, we are getting an "Invalid Login" error message, and that's why we are
rendering it in our Login component. Now, let's try to connect with the correct account
(admin@js.education / 123456).

If your login is correct, then you should be redirected to the dashboard, where you will see
the following page:

Also, you can take a look at the query that is being executed to retrieve the user data
(getUserData):

Understanding GraphQL with a Real Project Chapter 5

[179]

Here, you will see that the payload is being returned:

We are getting the user information from the access token (at). Now, if you refresh the
page, you should remain connected to the page. This is because we saved a cookie
containing our token:

Now, let's try to modify the cookie by changing any letter of the token. For example, let's
change the first two letters (ey) to XX:

Here, you will receive empty data for the user. This is going to invalidate the session and
redirect you to the login page again:

Understanding GraphQL with a Real Project Chapter 5

[180]

At this point, you have learned how to implement GraphQL in a backend and how to
consume queries and mutations in the frontend.

This login system is part of a course I'm doing on YouTube where I'm teaching viewers
how to develop a headless CMS from scratch, so if you're eager to learn more, you can
check out the course at https:/ ​/​www. ​youtube. ​com/​watch? ​v=​4n1AfD6aV4M.

Summary
I really hope you enjoyed reading this chapter, which contained a lot of information about
GraphQL and how to create JWTs, perform a login, and create models with Sequelize.

It is now time to talk about data fetching and one-way data flow, which is what we will
look at in the next chapter.

https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M
https://www.youtube.com/watch?v=4n1AfD6aV4M

6
Managing Data

Proper data fetching goes through some of the most common patterns to make a child and
parent communicate using callbacks. We'll learn how we can use a common parent to share
data across components that are not directly connected. We will then start learning about
the new React Context API and React Suspense.

We will cover the following topics in this chapter:

React Context API
How to consume a context with useContext
How to use React Suspense with SWR

Technical requirements
To complete this chapter, you will need the following:

Node.js 12+
Visual Studio Code

You can find the code for this chapter in the book's GitHub
repository: https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-
Practices-Third-Edition/tree/main/Chapter06.

Introducing the React Context API
The React Context API has been officially added since version 16.3.0; before it was just
experimental. The new Context API is a game-changer. A lot of people are moving away
from Redux in order to use the new Context API. Context provides a way to share data
between components without passing a prop to all the child components.

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter06

Managing Data Chapter 6

[182]

Let's see a basic example where we can use the new Context API. We will do the same
example we did in Chapter 3, React Hooks, where we fetched some GitHub issues, but now
using the Context API.

Creating our first context
The first thing you need to do is to create the issue context. For this, you can create a folder
called contexts inside your src folder and then inside that, add the Issue.tsx file.

Then, you need to import some functions from React and axios:

import { FC, createContext, useState, useEffect, ReactElement, useCallback
} from 'react'
import axios from 'axios'

At this point, it is clear that you should install axios. If you still don't have it, just do the
following:

npm install axios
npm install --save-dev @types/axios

Then we need to declare our interfaces:

export type Issue = {
 number: number
 title: string
 url: string
 state: string
}

interface Issue_Context {
 issues: Issue[]
 url: string
}

interface Props {
 url: string
}

The first thing we need to do after this is to create our context by using the createContext
function and define the value we want to export:

export const IssueContext = createContext<Issue_Context>({
 issues: [],
 url: ''
})

Managing Data Chapter 6

[183]

Once we have IssueContext, we need to create a component where we can receive props,
set some states, and perform the fetch by using useEffect, and then we render
IssueContext.Provider where we specify the context (value) we will export:

const IssueProvider: FC<Props> = ({ children, url }) => {
 // State
 const [issues, setIssues] = useState<Issue[]>([])

 const fetchIssues = useCallback(async () => {
 const response = await axios(url)

 if (response) {
 setIssues(response.data)
 }
 }, [url])

 // Effects
 useEffect(() => {
 fetchIssues()
 }, [fetchIssues])

 const context = {
 issues,
 url
 }

 return <IssueContext.Provider
value={context}>{children}</IssueContext.Provider>
}

export default IssueProvider

As you know, every time you want to use a function inside the useEffect Hook, you need
to wrap your function with the useCallback Hook. A good practice if you want to use
async/await is to have it in a separate function and not directly in useEffect.

Once we perform the fetch and get the data in our issues state, then we add all the values
we want to export as context, then when we render IssueContext.Provider, we pass the
context on the value prop, and finally, we render the children of the component.

Managing Data Chapter 6

[184]

Wrapping our components with the provider
The way you consume a context is divided into two parts. The first one is where you wrap
your app with your context provider, so this code can be added to App.tsx (normally all
the providers are defined in parent components).

Notice that here we are importing the IssueProvider component:

// Providers
import IssueProvider from '../contexts/Issue'

// Components
import Issues from './Issues'

const App = () => {
 return (
 <IssueProvider url=
 "https://api.github.com/repos/ContentPI/ContentPI/issues">
 <Issues />
 </IssueProvider>
)
}

export default App;

As you can see we are wrapping the Issues component with IssueProvider, which
means inside the Issues component we can consume our context and get the issues value.

Many people get confused with this sometimes. If you forget to wrap your
components with the provider, then you can't consume your context
inside your components, and the hard part is that you probably won't get
any error; you will just get some undefined data, which makes this hard to
identify.

Managing Data Chapter 6

[185]

Consuming context with useContext
If you've already placed IssueProvider in App.tsx, now you can consume your context
in your Issues component by using the useContext Hook.

Notice that here we are importing the IssueContext context (between { }):

// Dependencies
import { FC, useContext } from 'react'

// Contexts
import { IssueContext, Issue } from '../contexts/Issue'

const Issues: FC = () => {
 // Here you consume your Context, and you can grab the issues value.
 const { issues, url } = useContext(IssueContext)

 return (
 <>
 <h1>ContentPI Issues from Context</h1>

 {issues.map((issue: Issue) => (
 <p key={`issue-${issue.number}`}>
 #{issue.number} {' '}
 {issue.title} {' '}
 {issue.state}
 </p>
))}
 </>
)
}

export default Issues

Managing Data Chapter 6

[186]

If you did everything correctly, you should be able to see the issues list:

The Context API is super useful when you want to separate your application from your
data and do all the fetching in there. Of course, there are multiple uses for the Context API,
which can also be used for theming or to pass functions; it all depends on your application.

In the next section, we are going to learn how to implement React Suspense using the
SWR library.

Managing Data Chapter 6

[187]

Introducing React Suspense with SWR
React Suspense was introduced in React 16.6. Right now (April 2021) this feature is still
experimental and you should not use it in your production applications. Suspense lets you
suspend component rendering until a condition is met. You can render a loading
component or anything you want as a fallback of Suspense. Right now there are only two
use cases for this:

Code splitting: When you split your application and you're waiting to download
a chunk of your app when a user wants to access it
Data fetching: When you're fetching data

In both scenarios, you can render a fallback, which can normally be a loading spinner, some
loading text, or even better, a placeholder skeleton.

WARNING: The new React Suspense feature is still experimental so I
recommend you do not use it on production because it is not yet available
in a stable release.

Introducing SWR
Stale-While-Revalidate (SWR) is a React Hook for data fetching; it is an HTTP cache
invalidation strategy. SWR is a strategy to first return the data from cache (stale), then send
the fetch request (revalidate), and finally, return with up-to-date data, and was developed
by Vercel, the company that created Next.js.

Building a Pokedex!
I could not find a better example to explain React Suspense and SWR than building a
Pokedex. We will use a public Pokemon API (https:/ ​/​pokeapi. ​co); gotta catch 'em all!

The first thing you need to do is to install some packages:

npm install swr react-loading-skeleton styled-components

For this example, you will need to create the Pokemon directory at
src/components/Pokemon. The first thing we need to do to work with SWR is to create a
fetcher file where we will perform our requests.

https://pokeapi.co
https://pokeapi.co
https://pokeapi.co
https://pokeapi.co
https://pokeapi.co
https://pokeapi.co
https://pokeapi.co

Managing Data Chapter 6

[188]

This file should be created at src/components/Pokemon/fetcher.ts:

const fetcher = (url: string) => {
 return fetch(url).then((response) => {
 if (response.ok) {
 return response.json()
 }

 return {
 error: true
 }
 })
}

export default fetcher

If you notice, we are returning an object with an error if the response is not successful. This
is because sometimes we can get a 404 error from the API that can cause the app to break.

Once you have created your fetcher, let's modify App.tsx to configure SWRConfig and
enable Suspense:

// Dependencies
import { SWRConfig } from 'swr'

// Components
import PokeContainer from './Pokemon/PokeContainer'
import fetcher from './Pokemon/fetcher'

// Styles
import { StyledPokedex, StyledTitle } from './Pokemon/Pokemon.styled'

const App = () => {
 return (
 <>
 <StyledTitle>Pokedex</StyledTitle>

 <SWRConfig
 value={{
 fetcher,
 suspense: true,
 }}
 >
 <StyledPokedex>
 <PokeContainer />
 </StyledPokedex>
 </SWRConfig>
 </>

Managing Data Chapter 6

[189]

)
}

export default App

As you can see, we need to wrap our PokeContainer component inside SWRConfig to be
able to fetch the data. The PokeContainer component will be our parent component
where we will add our first Suspense. This file exists
at src/components/Pokemon/PokeContainer.tsx:

import { FC, Suspense } from 'react'

import Pokedex from './Pokedex'

const PokeContainer: FC = () => {
 return (
 <Suspense fallback={<h2>Loading Pokedex...</h2>}>
 <Pokedex />
 </Suspense>
)
}

export default PokeContainer

As you can see, we are defining a fallback for our first Suspense, which is just Loading
Pokedex... text. You can render whatever you want in there, React components or plain
text. Then, we have our Pokedex component inside Suspense.

Now let's take a look at our Pokedex component where we are going to fetch data for the
first time by using the useSWR Hook:

// Dependencies
import { FC, Suspense } from 'react'
import useSWR from 'swr'

// Components
import LoadingSkeleton from './LoadingSkeleton'
import Pokemon from './Pokemon'

import { StyledGrid } from './Pokemon.styled'

const Pokedex: FC = () => {
 const { data: { results } } =
 useSWR('https://pokeapi.co/api/v2/pokemon?limit=150')
 return (
 <>
 {results.map((pokemon: { name: string }) => (

Managing Data Chapter 6

[190]

 <Suspense fallback={<StyledGrid><LoadingSkeleton /></StyledGrid>}>
 <Pokemon key={pokemon.name} pokemonName={pokemon.name} />
 </Suspense>
))}
 </>
)
}

export default Pokedex

As you can see, we are fetching the first 150 Pokemon because I'm old school and those
were the first generation. Right now I don't know how many Pokemon exist. Also, if you
notice, we are grabbing the results variable that comes from the data (this is the actual
response from the API). Then we map our results to render each Pokemon but we add a
Suspense component to each one with a <LoadingSkeleton /> fallback (<StyledGrid
/> has some CSS styles to make it look nicer), and finally, we pass pokemonName to our
<Pokemon> component, and this is because the first fetch just brings us the name of the
Pokemon but we need to do another fetch to bring the actual Pokemon data (name, types,
power, and so on).

Then, finally, our Pokemon component will perform a specific fetch by the Pokemon name
and will render the data:

// Dependencies
import { FC } from 'react'
import useSWR from 'swr'

// Styles
import { StyledCard, StyledTypes, StyledType, StyledHeader } from
'./Pokemon.styled'

type Props = {
 pokemonName: string
}

const Pokemon: FC<Props> = ({ pokemonName }) => {
 const { data, error } =
 useSWR(`https://pokeapi.co/api/v2/pokemon/${pokemonName}`)

 // Do you remember the error we set on the fetcher?
 if (error || data.error) {
 return <div />
 }

 if (!data) {
 return <div>Loading...</div>

Managing Data Chapter 6

[191]

 }

 const { id, name, sprites, types } = data
 const pokemonTypes = types.map((pokemonType: any) =>
 pokemonType.type.name)

 return (
 <StyledCard pokemonType={pokemonTypes[0]}>
 <StyledHeader>
 <h2>{name}</h2>
 <div>#{id}</div>
 </StyledHeader>

 <StyledTypes>
 {pokemonTypes.map((pokemonType: string) => (
 <StyledType key={pokemonType}>{pokemonType}</StyledType>
))}
 </StyledTypes>
 </StyledCard>
)
}

export default Pokemon

Basically, in this component, we put together all the Pokemon data (id, name, sprites,
and types) and we render the information. As you have seen, I'm using
styled components, which are amazing, so if you want to know the styles I'm using for
Pokedex, here is the Pokemon.styled.ts file:

import styled from 'styled-components'

// Type colors
const type: any = {
 bug: '#2ADAB1',
 dark: '#636363',
 dragon: '#E9B057',
 electric: '#ffeb5b',
 fairy: '#ffdbdb',
 fighting: '#90a4b5',
 fire: '#F7786B',
 flying: '#E8DCB3',
 ghost: '#755097',
 grass: '#2ADAB1',
 ground: '#dbd3a2',
 ice: '#C8DDEA',
 normal: '#ccc',

Managing Data Chapter 6

[192]

 poison: '#cc89ff',
 psychic: '#705548',
 rock: '#b7b7b7',
 steel: '#999',
 water: '#58ABF6'
}

export const StyledPokedex = styled.div`
 display: flex;
 flex-wrap: wrap;
 flex-flow: row wrap;
 margin: 0 auto;
 width: 90%;

 &::after {
 content: '';
 flex: auto;
 }
`

type Props = {
 pokemonType: string
}

export const StyledCard = styled.div<Props>`
 position: relative;
 ${({ pokemonType }) => `
 background: ${type[pokemonType]} url(./pokeball.png) no-repeat;
 background-size: 65%;
 background-position: center;
 `}
 color: #000;
 font-size: 13px;
 border-radius: 20px;
 margin: 5px;
 width: 200px;

 img {
 margin-left: auto;
 margin-right: auto;
 display: block;
 }
`

export const StyledTypes = styled.div`
 display: flex;
 margin-left: 6px;
 margin-bottom: 8px;

Managing Data Chapter 6

[193]

`

export const StyledType = styled.span`
 display: inline-block;
 background-color: black;
 border-radius: 20px;
 font-weight: bold;
 padding: 6px;
 color: white;
 margin-right: 3px;
 opacity: 0.4;
 text-transform: capitalize;
`

export const StyledHeader = styled.div`
 display: flex;
 justify-content: space-between;
 width: 90%;

 h2 {
 margin-left: 10px;
 margin-top: 5px;
 color: white;
 text-transform: capitalize;
 }

 div {
 color: white;
 font-size: 20px;
 font-weight: bold;
 margin-top: 5px;
 }
`

export const StyledTitle = styled.h1`
 text-align: center;
`

export const StyledGrid = styled.div`
 display: flex;
 flex-wrap: wrap;
 flex-flow: row wrap;
 div {
 margin-right: 5px;
 margin-bottom: 5px;
 }
`

Managing Data Chapter 6

[194]

Finally, our LoadingSkeleton component should be like this:

import { FC } from 'react'
import Skeleton from 'react-loading-skeleton'

const LoadingSkeleton: FC = () => (
 <div>
 <Skeleton height={200} width={200} />
 </div>
)

export default LoadingSkeleton

This library is amazing. It lets you create skeleton placeholders to wait for the data. Of
course, you can build as many forms as you want. You have probably seen this effect on
sites such as LinkedIn or YouTube.

Testing our React Suspense
Once you have all the pieces of the code working, there is a trick you can do in order to see
all the Suspense fallbacks. Normally, if you have a high-speed connection, it is hard to see
it, but you can slow down your connection to see how everything is being rendered. You
can do this by selecting Slow 3G connection in your Network tab on your Chrome
inspector:

Once you set the Slow 3G preset and you run your project, the first fallback you will see
is Loading Pokedex...:

Managing Data Chapter 6

[195]

Then, you will see the Pokemon fallbacks that are rendering SkeletonLoading for each
Pokemon that is being loaded:

Managing Data Chapter 6

[196]

Normally those loaders have animation but you won't see that in this book, of course! And
then you will start seeing how the data is rendering and some images start appearing:

Managing Data Chapter 6

[197]

If you wait until all the data has downloaded correctly, you should now see the Pokedex
with all the Pokemon:

Managing Data Chapter 6

[198]

Pretty nice, huh? But there is something else to mention; as I mentioned before, SWR will
bring the data from the cache first and then will revalidate the data all the time to see
whether there are new updates. This means that any time the data changes, SWR will
perform another fetch to re-validate whether the old data is still valid or needs to be
replaced by new ones. You can see this effect even if you move out from the Pokedex tab to
another and then you come back. You'll see that your Network terminal for the first time
should look like this:

Managing Data Chapter 6

[199]

As you can see, we performed 151 initial requests (1 for the Pokemon lists and 150 others, 1
for each Pokemon), but if you change the tab and you come back, you will see how
SWR is fetching again:

Managing Data Chapter 6

[200]

Now you can see that it is performing 302 requests (another 151). This is very useful when
you have real-time data that you want to fetch every second or every minute.

Right now, React Suspense does not have a defined pattern of use, which means you can
find different ways to use it and there are not yet some good practices defined for this. I
found SWR is the easiest and most understandable way of playing with React Suspense and
I think it is a very powerful library that can be used even without Suspense.

Summary
I really hope you enjoyed reading this chapter, which contains a lot of information about
the React Context API and how to implement React Suspense with SWR.

In the next chapter, we will learn how to handle forms and animations.

7
Writing Code for the Browser

There are some specific operations we can do when we work with React and the browser.
For example, we can ask our users to enter some information using forms, and in this
chapter, we will look at how we can apply different techniques to deal with forms. We can
implement uncontrolled components and let the fields keep their internal states, or we can
use controlled ones, where we have full control over the state of the fields.

In this chapter, we will also look at how events in React work and how the library
implements some advanced techniques to give us a consistent interface across different
browsers. We will look at some interesting solutions that the React team has implemented
to make the event system very performant.

After events, we will jump into refs to look at how we can access the underlying DOM
nodes in our React components. This represents a powerful feature, but it should be used
carefully because it breaks some of the conventions that make React easy to work with.

After refs, we will look at how we can implement animations easily with the React add-ons
and third-party libraries such as react-motion. Finally, we will learn how easy it is to
work with Scalable Vector Graphics (SVG) in React, and how we can create dynamically
configurable icons for our applications.

In this chapter, we will go through the following topics:

Using different techniques to create forms with React
Listening to DOM events and implementing custom handlers
A way of performing imperative operations on DOM nodes using refs
Creating simple animations that work across different browsers
The React way of generating SVG

Writing Code for the Browser Chapter 7

[202]

Technical requirements
To complete this chapter, you will need the following:

Node.js 12+
Visual Studio Code

You can find the code for this chapter in the book's GitHub
repository: https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-
Practices-Third-Edition/tree/main/Chapter07.

Understanding and implementing forms
In this chapter, we are going to learn how to implement forms with React. As soon as we
start building a real application with React, we need to interact with the users. If we want to
ask for information from our users within the browser, forms are the most common
solution. Due to the way the library works and its declarative nature, dealing with input
fields and other form elements is non-trivial with React, but as soon as we understand its
logic, it will become clear. In the next sections, we are going to learn how to use
uncontrolled and controlled components.

Uncontrolled components
Uncontrolled components are like regular HTML form inputs for which you will not be
able to manage the value yourself but instead, the DOM will take care of handling the value
and you can get this value by using a React ref. Let's start with a basic example—displaying
a form with an input field and a Submit button.

The code is pretty straightforward:

import { useState, ChangeEvent, MouseEvent } from 'react'

const Uncontrolled = () => {
 const [value, setValue] = useState('')

 return (
 <form>
 <input type="text" />
 <button>Submit</button>
 </form>
)

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter07

Writing Code for the Browser Chapter 7

[203]

}

export default Uncontrolled

If we run the preceding snippet in the browser, we will see exactly what we expect—an
input field in which we can write something and a clickable button. This is an example of
an uncontrolled component, where we do not set the value of the input field, but we let the
component manage its own internal state.

Most likely, we want to do something with the value of the element when the Submit
button is clicked. For example, we may want to send the data to an API endpoint.

We can do this easily by adding an onChange listener (we will talk more about event
listeners later in this chapter). Let's look at what it means to add a listener.

We need to create the handleChange function:

const handleChange = (e: ChangeEvent<HTMLInputElement>) => {
 console.log(e.target.value)
}

The event listener is receiving an event object, where the target represents the field that
generated the event, and we are interested in its value. We start by just logging it because it
is important to proceed with small steps, but we will store the value into the state soon.

Finally, we render the form:

return (
 <form>
 <input type="text" onChange={handleChange} />
 <button>Submit</button>
 </form>
)

If we render the component inside the browser and type the word React into the form
field, we will see something like the following inside the console:

R
Re
Rea
Reac
React

The handleChange listener is fired every time the value of the input changes. Therefore,
our function is called once for each typed character. The next step is to store the value that's
entered by the user and make it available when the user clicks the Submit button.

Writing Code for the Browser Chapter 7

[204]

We just have to change the implementation of the handler to store it in the state instead of
logging it, as follows:

const handleChange = (e: ChangeEvent<HTMLInputElement>) => {
 setValue(e.target.value)
}

Getting notified of when the form is submitted is very similar to listening to the change
event of the input field; they are both events that are called by the browser when something
happens.

Let's define the handleSubmit function, where we just log the value. In a real-world
scenario, you could send the data to an API endpoint or pass it to another component:

const handleSubmit = (e: MouseEvent<HTMLButtonElement>) => {
 e.preventDefault()
 console.log(value)
}

This handler is pretty straightforward; we just log the value currently stored in the state.
We also want to overcome the default behavior of the browser when the form is submitted,
to perform a custom action. This seems reasonable, and it works very well for a single field.
The question now is, what if we have multiple fields? Suppose we have tens of different
fields?

Let's start with a basic example, where we create each field and handler manually and look
at how we can improve it by applying different levels of optimization.

Let's create a new form with first and last name fields. We can reuse the
Uncontrolled component and add some new states:

const [firstName, setFirstName] = useState('')
const [lastName, setLastName] = useState('')

We initialize the two fields inside the state and we define an event handler for each one of
the fields as well. As you may have noticed, this does not scale very well when there are
lots of fields, but it is important to understand the problem clearly before moving to a more
flexible solution.

Now, we implement the new handlers:

const handleChangeFirstName = ({ target: { value } }) => {
 setFirstName(value)
}
const handleChangeLastName = ({ target: { value } }) => {
 setLastName(value)

Writing Code for the Browser Chapter 7

[205]

}

We also have to change the submit handler a little bit so that it displays the first and the last
name when it gets clicked:

const handleSubmit = (e: MouseEvent<HTMLButtonElement>) => {
 e.preventDefault()
 console.log(`${firstName} ${lastName}`)
}

Finally, we render the form:

return (
 <form onSubmit={handleSubmit}>
 <input type="text" onChange={handleChangeFirstName} />
 <input type="text" onChange={handleChangeLastName} />
 <button>Submit</button>
 </form>
)

We are ready to go: if we run the preceding component in the browser, we will see two
fields, and if we type Carlos into the first one and Santana into the second one, we will
see the full name displayed in the browser console when the form is submitted.

Again, this works fine, and we can do some interesting things this way, but it does not
handle complex scenarios without requiring us to write a lot of boilerplate code.

Let's look at how we can optimize it a little bit. Our goal is to use a single change handler so
that we can add an arbitrary number of fields without creating new listeners.

Let's go back to the component and let's change our states:

const [values, setValues] = useState({ firstName: '', lastName: '' })

We may still want to initialize the values, and later in this section, we will look at how to
provide prefilled values for the form.

Now, the interesting bit is the way in which we can modify the onChange handler
implementation to make it work in different fields:

const handleChange = ({ target: { name, value } }) => {
 setValues({
 ...values,
 [name]: value
 })
}

Writing Code for the Browser Chapter 7

[206]

As we have seen previously, the target property of the event we receive represents the
input field that has fired the event, so we can use the name of the field and its value as
variables.

We then have to set the name for each field:

return (
 <form onSubmit={handleSubmit}>
 <input
 type="text"
 name="firstName"
 onChange={handleChange}
 />
 <input
 type="text"
 name="lastName"
 onChange={handleChange}
 />
 <button>Submit</button>
 </form>
)

That's it! We can now add as many fields as we want without creating additional handlers.

Controlled components
A controlled component is a React component that controls the values of input elements in
a form by using the component state.

Here we are going to look at how we can prefill the form fields with some values, which we
may receive from the server or as props from the parent. To understand this concept fully,
we will start again from a very simple stateless function component, and we will improve it
step by step.

The first example shows a predefined value inside the input field:

const Controlled = () => (
 <form>
 <input type="text" value="Hello React" />
 <button>Submit</button>
 </form>
)

If we run this component inside the browser, we realize that it shows the default value as
expected, but it does not let us change the value or type anything else inside it.

Writing Code for the Browser Chapter 7

[207]

The reason it does this is that in React, we declare what we want to see on the screen, and
setting a fixed-value attribute always results in rendering that value, no matter what other
actions are taken. This is unlikely to be a behavior we want in a real-world application.

If we open the console, we get the following error message. React itself is telling us that we
are doing something wrong:

You provided a `value` prop to a form field without an `onChange` handler.
This will render a read-only field.

Now, if we just want the input field to have a default value and we want to be able to
change it by typing, we can use the defaultValue property:

import { useState } from 'react'

const Controlled = () => {
 return (
 <form>
 <input type="text" defaultValue="Hello React" />
 <button>Submit</button>
 </form>
)
}

export default Controlled

In this way, the field is going to show Hello React when it is rendered, but then the user
can type anything inside it and change its value. Now let's add some states:

const [values, setValues] = useState({ firstName: 'Carlos', lastName:
'Santana' })

The handlers are the same as the previous ones:

const handleChange = ({ target: { name, value } }) => {
 setValues({
 [name]: value
 })
}
const handleSubmit = (e) => {
 e.preventDefault()
 console.log(`${values.firstName} ${values.lastName}`)
}

Writing Code for the Browser Chapter 7

[208]

In fact, we will use the value attributes of the input fields to set their initial values, as well
as the updated one:

return (
 <form onSubmit={handleSubmit}>
 <input
 type="text"
 name="firstName"
 value={values.firstName}
 onChange={handleChange}
 />
 <input
 type="text"
 name="lastName"
 value={values.lastName}
 onChange={handleChange}
 />
 <button>Submit</button>
 </form>
)

The first time the form is rendered, React uses the initial values from the state as the value
of the input fields. When the user types something into the field, the handleChange
function is called and the new value for the field is stored in the state.

When the state changes, React re-renders the component and uses it again to reflect the
current values of the input fields. We now have full control over the values of the fields,
and we call this pattern controlled components.

In the next section, we are going to work with events, which are a fundamental part of
React to handle data coming from forms.

Handling events
Events work in a slightly different way across various browsers. React tries to abstract the
way events work and give developers a consistent interface to deal with. This is a great
feature of React because we can forget about the browsers we are targeting and write event
handlers and functions that are vendor-agnostic.

To offer this feature, React introduced the concept of the synthetic event. A synthetic event
is an object that wraps the original event object provided by the browser, and it has the
same properties, no matter where it is created.

Writing Code for the Browser Chapter 7

[209]

To attach an event listener to a node and get the event object when the event is fired, we can
use a simple convention that recalls the way events are attached to the DOM nodes. In fact,
we can use the word on plus the camelCased event name (for example, onKeyDown) to
define the callback to be fired when the events happen. A popular convention is to name
the event handler functions after the event name and prefix them using handle (for
example, handleKeyDown).

We have seen this pattern in action in the previous examples, where we were listening to
the onChange event of the form fields. Let's reiterate a basic event listener example to see
how we can organize multiple events inside the same component in a nicer way. We are
going to implement a simple button, and we start, as usual, by creating a component:

const Button = () => {

}
export default Button

Then we define the event handler:

const handleClick = (syntheticEvent) => {
 console.log(syntheticEvent instanceof MouseEvent)
 console.log(syntheticEvent.nativeEvent instanceof MouseEvent)
}

As you can see here, we are doing a very simple thing: we just check the type of the event
object we receive from React and the type of native event attached to it. We expect the first
to return false and the second to return true.

You should never need to access the original native event, but it is good to know you can
do it if you need to. Finally, we define the button with the onClick attribute to which we
attach our event listener:

return (
 <button onClick={handleClick}>Click me!</button>
)

Now, suppose we want to attach a second handler to the button that listens to the double-
click event. One solution would be to create a new separate handler and attach it to the
button using the onDoubleClick attribute, as follows:

<button
 onClick={handleClick}
 onDoubleClick={handleDoubleClick}
>
 Click me!
</button>

Writing Code for the Browser Chapter 7

[210]

Remember that we always aim to write less boilerplate and avoid duplicating code. For that
reason, a common practice is to write a single event handler for each component, which
can trigger different actions according to the event type.

This technique is described in a collection of patterns by Michael Chan:
http://reactpatterns.com/#event-switch.

Let's implement the generic event handler:

const handleEvent = (event) => {
 switch (event.type) {
 case 'click':
 console.log('clicked')
 break
 case 'dblclick':
 console.log('double clicked')
 break
 default:
 console.log('unhandled', event.type)
 }
}

The generic event handler receives the event object and switches on the event type to fire
the right action. This is particularly useful if we want to call a function on each event (for
example, analytics) or if some events share the same logic.

Finally, we attach the new event listener to the onClick and onDoubleClick attributes:

return (
 <button
 onClick={handleEvent}
 onDoubleClick={handleEvent}
 >
 Click me!
 </button>
)

From this point on, whenever we need to create a new event handler for the same
component, instead of creating a new method and binding it, we can just add a new case to
the switch.

http://reactpatterns.com/#event-switch

Writing Code for the Browser Chapter 7

[211]

A couple more interesting things to know about events in React are that synthetic events
are reused and that there is a single global handler. The first concept means that we cannot
store a synthetic event and reuse it later because it becomes null right after the action. This
technique is very good in terms of performance, but it can be problematic if we want to
store the event inside the state of the component for some reason. To solve this problem,
React gives us a persist method on the synthetic events, which we can call to make the
event persistent so that we can store it and retrieve it later.

The second very interesting implementation detail is again about performance, and it is to
do with the way React attaches the event handlers to the DOM.

Whenever we use the on attribute, we are describing to React the behavior we want to
achieve, but the library does not attach the actual event handler to the underlying DOM
nodes.

What it does instead attaches a single event handler to the root element, which listens to all
the events, thanks to event bubbling. When an event we are interested in is fired by the
browser, React calls the handler on the specific components on its behalf. This technique is
called event delegation and is used for memory and speed optimization.

In our next section, we are going to explore React refs and see how we can take advantage
of them.

Exploring refs
One of the reasons people love React is that it is declarative. Being declarative means that
you just describe what you want to be displayed on the screen at any point in time and
React takes care of the communications with the browser. This feature makes React very
easy to reason about and very powerful at the same time.

However, there might be some cases where you need to access the underlying DOM nodes
to perform some imperative operations. This should be avoided because, in most cases,
there is a more React-compliant solution to achieve the same result, but it is important to
know that we have the option to do it and to know how it works so that we can make the
right decision.

Suppose we want to create a simple form with an input element and a button, and we want
it to behave in such a way that when the button is clicked, the input field gets
focused. What we want to do is call the focus method on the input node, the actual DOM
instance of the input, inside the browser's window.

Writing Code for the Browser Chapter 7

[212]

Let's create a component called Focus; you need to import useRef and create an inputRef
constant:

import { useRef } from 'react'

const Focus = () => {
 const inputRef = useRef(null)
}

export default Focus

Then, we implement the handleClick method:

const handleClick = () => {
 inputRef.current.focus()
}

As you can see, we are referencing the current attribute of inputRef and calling the
focus method on it.

To understand where it comes from, you just have to check the implementation of render:

return (
 <>
 <input
 type="text"
 ref={inputRef}
 />
 <button onClick={handleClick}>Set Focus</button>
 </>
)

Here comes the core of the logic. We create a form with an input element inside it and we
define a function on its ref attribute.

The callback we defined is called when the component gets mounted, and the element
parameter represents the DOM instance of the input. It is important to know that, when the
component gets unmounted, the same callback is called with a null parameter to free the
memory.

What we are doing in the callback is storing the reference of the element to be able to use it
in the future (for example, when the handleClick method is fired). Then, we have the
button with its event handler. Running the preceding code in a browser will show the form
with the field and the button, and clicking on the button will focus the input field, as
expected.

Writing Code for the Browser Chapter 7

[213]

As we mentioned previously, in general, we should try to avoid using refs
because they force the code to be more imperative, and they become
harder to read and maintain.

Implementing animations
When we think about UIs and the browser, we must surely think about animations as well.
Animated UIs are more pleasant for users, and they are a very important tool to show users
that something has happened or is about to occur.

This section does not aim to be an exhaustive guide to creating animations and beautiful
UIs; the goal here is to provide you with some basic information about the common
solutions we can put in place to animate our React components.

For a UI library such as React, it is crucial to provide an easy way for developers to create
and manage animations. React comes with an add-on, called react-addons-css-
transition-group, which is a component that helps us build animations in a declarative
way. Again, being able to perform operations declaratively is incredibly powerful, and it
makes the code much easier to reason about and share with the team.

Let's look at how to apply a simple fade-in effect to text with the React add-on, and
then we will perform the same operation using react-motion, a third-party library that
makes creating complex animations even easier.

The first thing we need to do to start building an animated component is to install the add-
on:

npm install --save react-addons-css-transition-group @types/react-addons-
css-transition-group

Once we have done that, we can import the component:

import CSSTransitionGroup from 'react-addons-css-transition-group'

Then, we just wrap the component to which we want to apply the animation:

const Transition = () => (
 <CSSTransitionGroup
 transitionName="fade"
 transitionAppear
 transitionAppearTimeout={500}
 >
 <h1>Hello React</h1>

Writing Code for the Browser Chapter 7

[214]

 </CSSTransitionGroup>
)

As you can see, there are some props that need explaining.

First, we are declaring the transitionName prop. ReactCSSTransitionGroup applies a
class with the name of that property to the child element so that we can then use CSS
transitions to create our animations.

With a single class, we cannot easily create a proper animation, and that is why the
transition group applies multiple classes according to the state of the animation. In this
case, with the transitionAppear prop, we are telling the component that we want to
animate the children when they appear on the screen.

So, what the library does is apply the fade-appear class (where fade is the value of
the transitionName prop) to the component as soon as it gets rendered. On the next tick,
the fade-appear-active class is applied so that we can fire our animation from the initial
state to the new one, using CSS.

We also have to set the transitionAppearTimeout property to tell React the length of the
animation so that it doesn't remove elements from the DOM before animations are
completed.

The CSS to make an element fade-in is as follows.

First, we define the opacity of the element in the initial state:

.fade-appear {
 opacity: 0.01;
}

Then, we define our transition using the second class, which starts as soon as it gets applied
to the element:

.fade-appear.fade-appear-active {
 opacity: 1;
 transition: opacity .5s ease-in;
}

We are transitioning the opacity from 0.01 to 1 in 500ms using the ease-in function. This
is pretty easy, but we can create more complex animations, and we can also animate
different states of the component. For example, the *-enter and *-enter-active classes
are applied when a new element is added as a child of the transition group. A similar thing
applies to remove elements.

Writing Code for the Browser Chapter 7

[215]

In our next section, we are going to check out the most popular library to create animations
in React: react-motion, which is maintained by Cheng Lou. It provides a very clean and
easy-to-use API that gives us a very powerful tool to create any animations.

React Motion
React Motion is an animation library for React applications that make it easy to create and
implement realistic animations. As soon as the complexity of the animations grows, or
when we need animations that depend on other animations, or when we need to apply
some physics-based behavior to our components (which is a bit more advanced), we will
realize that the transition group is not helping us enough, so we may consider using a
third-party library.

To use it, we first have to install it:

npm install --save react-motion @types/react-motion

Once the installation is successfully completed, we need to import the Motion component
and the spring function. Motion is the component we will use to wrap the
elements we want to animate, while the function is a utility that can interpolate a value
from its initial state to the final one:

import { Motion, spring } from 'react-motion'

Let's look at the code:

const Transition = () => (
 <Motion
 defaultStyle={{ opacity: 0.01 }}
 style={{ opacity: spring(1) }}
 >
 {interpolatingStyle => (
 <h1 style={interpolatingStyle}>Hello React</h1>
)}
 </Motion>
)

There are a lot of interesting things here. First, you may have noticed that this component
uses the function as a child pattern (see Chapter 4, Exploring Popular Composition Patterns),
which is a pretty powerful technique to define children that receive values at runtime.

Then, we can see that the Motion component has two attributes: the first one
is defaultStyle, which represents the initial style attribute. Again, we set the opacity
to 0.0.1 to hide the element and start the fade.

Writing Code for the Browser Chapter 7

[216]

The style attribute represents the final style instead, but we do not set the value
directly; instead, we use the spring function so that the value is interpolated from the
initial state to the final one.

On each iteration of the spring function, the child function receives the interpolated style
for the given point in time and, just by applying the received object to the style attribute
of the component, we can see the transition of the opacity.

This library can do some more cool stuff, but the first things to learn about are the basic
concepts, and this example should clarify them.

It is also interesting to compare the two different approaches of the transition group
and react-motion to be able to choose the right one for the project you are working on.

Finally, in our next section, we are going to see how we can work with SVG in React.

Exploring SVG
Last but not least, one of the most interesting techniques we can apply in the browser to
draw icons and graphs is Scalable Vector Graphics (SVG).

SVG is great because it is a declarative way of describing vectors and it fits perfectly with
the purposes of React. We used to use icon fonts to create icons, but they have well-known
problems, with the first being that they are not accessible. It is also pretty hard to position
icon fonts with CSS, and they do not always look beautiful in all browsers. These are the
reasons we should prefer SVG for our web applications.

From a React point of view, it does not make any difference if we output a div or an SVG
element from the render method, and this is what makes it so powerful. We also tend to
choose SVG because we can easily modify them at runtime using CSS and JavaScript,
which makes them an excellent candidate for the functional approach of React.

So, if we think about our components as a function of their props, we can easily imagine
how we can create self-contained SVG icons that we can manipulate by passing different
props to them. A common way to create SVG in a web app with React is to wrap our
vectors into a React component and use the props to define their dynamic values.

Let's look at a simple example where we draw a blue circle, thus creating a React
component that wraps an SVG element:

const Circle = ({ x, y, radius, fill }) => (
 <svg>

Writing Code for the Browser Chapter 7

[217]

 <circle cx={x} cy={y} r={radius} fill={fill} />
 </svg>
)

As you can see, we can easily use a stateless functional component that wraps the SVG
markup, and it accepts the same props as SVG does.

An example usage is as follows:

<Circle x={20} y={20} radius={20} fill="blue" />

We can obviously use the full power of React and set some default parameters so that, if the
circle icon is rendered without props, we still show something.

For example, we can define the default color:

const Circle = ({ x, y, radius, fill = 'red' }) => (...)

This is pretty powerful when we build UIs, especially in a team where we share our icon set
and we want to have some default values in it, but we also want to let other teams decide
their settings without having to recreate the same SVG shapes.

However, in some cases, we prefer to be more strict and fix some values to keep
consistency. With React, this is a super simple task.

For example, we can wrap the base circle component into RedCircle, as follows:

const RedCircle = ({ x, y, radius }) => (
 <Circle x={x} y={y} radius={radius} fill="red" />
)

Here, the color is set by default and it cannot be changed, while the other props are
transparently passed to the original circle.

The following screenshot shows two circles, blue and red, that are generated by React using
SVG:

Writing Code for the Browser Chapter 7

[218]

We can apply this technique and create different variations of the circle, such
as SmallCircle and RightCircle, and everything else we need to build our UIs.

Summary
In this chapter, we looked at the different things we can do when we target the browser
with React, from form creation to events, and animations to SVG. Also, we learned how to
use the new useRef Hook. React gives us a declarative way to manage all the aspects we
need to deal with when we create a web application.

In case we need it, React gives us access to the actual DOM nodes in a way that means we
can perform imperative operations with them, which is useful if we need to integrate React
with an existing imperative library.

The next chapter will be about CSS and inline styles, and it will clarify what it means to
write CSS in JavaScript.

3
Performance, Improvements,

and Production!
This section explains how to improve the performance of your React applications, how to
handle styles with CSS modules and styled-components, and finally how to deploy your
applications to production.

We will cover the following chapters in this section:

Chapter 8, Making Your Components Look Beautiful
Chapter 9, Server-Side Rendering for Fun and Profit
Chapter 10, Improving the Performance of Your Applications
Chapter 11, Testing and Debugging
Chapter 12, React Router
Chapter 13, Anti-Patterns to be Avoided
Chapter 14, Deploying to Production
Chapter 15, Next Steps

8
Making Your Components Look

Beautiful
Our journey into React best practices and design patterns has now reached the point where
we want to make our components look beautiful. To do that, we will go through all the
reasons why regular CSS may not be the best approach for styling components, and we will
check out various alternative solutions.

Starting with inline styles, then Radium, CSS modules, and styled-components, this
chapter will guide you through the magical world of CSS in JavaScript.

In this chapter, we will cover the following topics:

Common problems with regular CSS at scale
What it means to use inline styles in React and the downsides
How the Radium library can help fix issues of inline styles
How to set up a project from scratch using Webpack and CSS modules
Features of CSS modules and why they represent a great solution to avoid global
CSS
styled-components, a new library that offers a modern approach to styling
React components

Technical requirements
To complete this chapter, you will need the following:

Node.js 12+
Visual Studio Code

Making Your Components Look Beautiful Chapter 8

[221]

You can find the code for this chapter in the book's GitHub repository: https:/ ​/ ​github.
com/​PacktPublishing/ ​React- ​17- ​Design- ​Patterns- ​and- ​Best- ​Practices- ​Third- ​Edition/
tree/​main/​Chapter08.

CSS in JavaScript
In the community, everyone agrees that a revolution took place in the styling of React
components in November 2014, when Christopher Chedeau gave a talk at the NationJS
conference.

Also known as vjeux on the internet, Christopher works at Facebook and contributes to
React. In his talk, he went through all the problems related to CSS on the scale that they
were facing at Facebook. It is worth understanding all of them because some
are pretty common and they will help us introduce concepts such as inline
styles and locally scoped class names.

The following is a list of the issues with CSS, basically problems with CSS at scale:

Global namespace
Dependencies
Dead code elimination
Minification
Sharing constants
Non-deterministic resolution
Isolation

The first well-known problem of CSS is that all the selectors are global. No matter how we
organize our styles, using namespaces or a procedure such as the Block, Element, Modifier
(BEM) methodology, in the end, we are always polluting the global namespace, which we
all know is wrong. It is not only wrong in principle, but it also leads to many errors in big
code bases, and it makes maintainability very hard in the long term. Working with big
teams, it is non-trivial to know whether a particular class or element has already been
styled, and most of the time, we tend to add more classes instead of reusing existing ones.

The second problem with CSS regards the definition of the dependencies. It is very hard, in
fact, to state clearly that a particular component depends on a specific CSS and that the CSS
has to be loaded for the style to be applied. Since styles are global, any style from any file
can be applied to any element, and losing control is very easy.

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter08

Making Your Components Look Beautiful Chapter 8

[222]

The third is that frontend developers tend to use preprocessors to be able to split their CSS
into submodules, but in the end, a big, global CSS bundle is generated for the browser.
Since CSS code bases tend to become huge quickly, we lose control over them, and the third
problem is to do with dead code elimination. It is not easy to identify quickly which styles
belong to which component, and this makes deleting code incredibly hard. In fact, due to
the cascading nature of CSS, removing a selector or a rule can result in an unintended result
within the browser.

Another pain of working with CSS concerns the minification of the selectors and the class
names, both in the CSS and in the JavaScript application. It might seem an easy task but it is
not, especially when classes are applied on the fly or concatenated in the client; this is the
fourth problem.

Not being able to minify and optimize class names is pretty bad for performance, and it can
make a huge difference to the size of the CSS. Another pretty common operation that is
non-trivial with regular CSS is sharing constants between the styles and the client
application. We often need to know the height of a header, for example, to recalculate the
position of other elements that depend on it.

Usually, we read the value in the client using the JavaScript APIs, but the optimal solution
would be to share constants and avoid doing expensive calculations at runtime. This
represents the fifth problem that vjeux and the other developers at Facebook tried to solve.

The sixth issue concerns the non-deterministic resolution of CSS. In fact, in CSS, the order
matters, and if the CSS is loaded on demand, the order is not guaranteed, which leads to
the wrong styles being applied to the elements.

Suppose, for example, that we want to optimize the way we request CSS, loading the CSS
related to a particular page only when the users navigate to it. If the CSS related to this last
page has some rules that also apply to the elements of different pages, the fact that it has
been loaded last could affect the styling of the rest of the app. For example, if the user goes
back to the previous page, they might see a page with a UI that is slightly different than the
first time they visited it.

It is incredibly hard to control all the various combinations of styles, rules, and navigation
paths, but again, being able to load the CSS when needed could have a critical impact on
the performance of a web application.

Making Your Components Look Beautiful Chapter 8

[223]

Last but not least, the seventh problem of CSS, according to Christopher Chedeau, is related
to isolation. In CSS, it is almost impossible to achieve proper isolation between files or
components. Selectors are global, and they can easily be overwritten. It is tricky to predict
the final style of an element just by knowing the class names applied to it because styles are
not isolated and other rules in other parts of the application can affect unrelated elements.
This can be solved by using inline styles.

In the following section, we will look at what it means to use inline styles with React and
the benefits and downsides of it.

Understanding and implementing inline
styles
The official React documentation suggests developers use inline styles to style their React
components. This seems odd because we all learned in past years that separating the
concerns is important and we should not mix markup and CSS.

React tries to change the concept of separation of concerns by moving it from the separation
of technologies to the separation of components. Separating markup, styling, and logic into
different files when they are tightly coupled and where one cannot work without the other
is just an illusion. Even if it helps keep the project structure cleaner, it does not give any real
benefit.

In React, we compose components to create applications where components are a
fundamental unit of our structure. We should be able to move components across the
application, and they should provide the same result regarding both logic and UI, no
matter where they get rendered.

This is one of the reasons why collocating the styles within our components and applying
them using inline styles on the elements could make sense in React.

First, let's look at an example of what it means to use the style attribute of the nodes to
apply the styling to our components in React. We are going to create a button with the
text Click me! and we are going to apply color and background color to it:

const style = {
 color: 'palevioletred',
 backgroundColor: 'papayawhip'
};
const Button = () => <button style={style}>Click me!</button>;

Making Your Components Look Beautiful Chapter 8

[224]

As you can see, it is pretty easy to style elements with inline styles in React. We just have to
create an object where the attributes are the CSS rules, and the values are the values we
would use in a regular CSS file.

The only differences are that the hyphenated CSS rules must be camelCased to be
JavaScript-compliant, and the values are strings, so they have to be wrapped in quote
marks.

There are some exceptions regarding the vendor prefixes. For example, if we want to define
a transition on webkit, we should use the WebkitTransition attribute, where
the webkit prefix begins with a capital letter. This rule applies to all the vendor prefixes,
except for ms, which is lowercase.

Other use cases are numbers – they can be written without quotes or units of measurement
and, by default, they are treated as pixels.

The following rule applies a height of 100 pixels:

const style = {
 height: 100
}

By using inline styles, we can also do things that are hard to implement with regular CSS.
For example, we can recalculate some CSS values on the client at runtime, which is a very
powerful concept, as you will see in the following example.

Suppose you want to create a form field in which the font size changes according to its
value. So, if the value of the field is 24, the font size is going to be 24 pixels. With normal
CSS, this behavior is almost impossible to reproduce without putting in a huge effort and
duplicated code.

Let's look at how easy it is to use inline styles instead, by creating a FontSize component
first and then declare a value state:

import { useState, ChangeEvent } from 'react'

const FontSize = () => {
 const [value, setValue] = useState<number>(16)
}

export default FontSize

Making Your Components Look Beautiful Chapter 8

[225]

We implement a simple change handler, where we use the target attribute of the event to
retrieve the current value of the field:

const handleChange = (e: ChangeEvent<HTMLInputElement>) => {
 setValue(Number(e.target.value))
}

Finally, we render the input file of the number type, which is a controlled component
because we keep its value updated by using the state. It also has an event handler, which is
fired every time the value of the field changes.

Last but not least, we use the style attribute of the field to set its font-size value. As you
can see, we are using the camelCased version of the CSS rule to follow the React
convention:

return (
 <input
 type="number"
 value={value}
 onChange={handleChange}
 style={{ fontSize: value }}
 />
)

Rendering the preceding component, we can see an input field, which changes its font size
according to its value. The way it works is that when the value changes, we store the new
value of the field inside the state. Modifying the state forces the component to re-render,
and we use the new state value to set the display value of the field and its font size; it's easy
and powerful.

Every solution in computer science has its downsides, and it always represents a trade-off.
In the case of inline styles, unfortunately, the problems are many.

For example, with inline styles, it is not possible to use pseudo-selectors (for
example, :hover) and pseudo-elements, which is a pretty significant limitation if you are
creating a UI with interactions and animations.

There are some workarounds and, for example, you can always create real elements instead
of pseudo ones, but for the pseudo-classes, it is necessary to use JavaScript to simulate the
CSS behavior, which is not optimal.

Making Your Components Look Beautiful Chapter 8

[226]

The same applies to media queries, which cannot be defined using inline styles, and it
makes it harder to create responsive web applications. Since styles are declared using
JavaScript objects, it is also not possible to use style fallbacks:

display: -webkit-flex;
display: flex;

JavaScript objects cannot have two attributes with the same name. Style fallbacks should be
avoided, but it is always good to have the ability to use them if needed.

Another feature of CSS that it is not possible to emulate using inline styles is animations.
The workaround here is to define animations globally and use them inside the style
attribute of the elements. With inline styles, whenever we need to override a style with
regular CSS, we are always forced to use the !important keyword, which is bad practice
because it prevents any other style from being applied to the element.

The most difficult thing that happens to work with inline styles is debugging. We tend to
use class names to find elements in the browser DevTools to debug and check which styles
have been applied. With inline styles, all the styles of the items are listed in their style
attribute, which makes it very hard to check and debug the result.

For example, the button that we created earlier in this section is rendered in the following
way:

<button style="color:palevioletred;background-color:papayawhip;">Click
me!</button>

By itself, it does not seem very hard to read, but if you imagine you have hundreds of
elements and hundreds of styles, you realize that the problem becomes very complicated.

Also, if you are debugging a list where every single item has the same style attribute, and
if you modify one on the fly to check the result in the browser, you will see that you are
applying the styles only to it and not to all the other siblings, even if they share the same
style.

Last but not least, if we render our application on the server-side (we will cover this topic
in Chapter 9, Server-Side Rendering for Fun and Profit), the size of the page is bigger when
using inline styles.

With inline styles, we are putting all the content of the CSS into the markup, which adds an
extra number of bytes to the file that we send to the clients and makes the web application
appear slower. Compression algorithms can help with that because they can easily
compress similar patterns, and, in some cases, loading the critical path CSS is a good
solution; but in general, we should try to avoid it.

Making Your Components Look Beautiful Chapter 8

[227]

It turns out that inline styles give more problems than the problems they try to solve. For
this reason, the community created different tools to solve the problems of inline styles but
keeping the styles inside the components, or local to the components, to get the best of both
worlds.

After Christopher Chedeau's talk, a lot of developers started talking about inline styles, and
many solutions and experiments have been made to find new ways of writing CSS in
JavaScript. In the beginning, there were two or three solutions, while today there are more
than 40.

In the following sections, we will go through the most popular solutions.

Exploring the Radium library
One of the first libraries that were created to solve the problems of inline styles that we
encountered in the previous section is Radium. It is maintained by the great developers
at Formidable Labs, and it is still one of the most popular solutions.

In this section, we will look at how Radium works, which problems it solves, and why it is
a great library to use in conjunction with React for styling components. We are going to
create a very simple button, similar to the one we built in the example earlier in this
chapter.

We will start with a basic button without styling, and we will add some basic styling, as
well as pseudo-classes and media queries, so that we can learn about the main features of
the library.

The button we will start with is created as follows:

const Button = () => <button>Click me!</button>

First, we have to install Radium using npm:

npm install --save radium @types/radium

Once the installation is complete, we can import the library and wrap the button in it:

import Radium from 'radium'
const Button = () => <button>Click me!</button>
export default Radium(Button)

Making Your Components Look Beautiful Chapter 8

[228]

The Radium function is a Higher-Order Component (HOC) (see Chapter 4, Exploring All
Composition Patterns), which extends the functionalities of Button, returning a new
enhanced component. If we render the button inside the browser, we will not see anything
in particular at the moment, because we are not applying any styles to it.

Let's start with a simple style object, where we set the background color, the padding, the
size, and a couple of other CSS properties. As we saw in the previous section, inline styles
in React are defined using JavaScript objects with camelCased CSS properties:

const styles = {
 backgroundColor: '#ff0000',
 width: 320,
 padding: 20,
 borderRadius: 5,
 border: 'none',
 outline: 'none'
}

The preceding snippet is no different from plain inline styles with React, and if we pass it to
our button as follows, we can see all the styles applied to the button inside the browser:

const Button = () => <button style={styles}>Click me!</button>

The result is the following markup:

<button data-radium="true" style="background-color: rgb(255, 0, 0); width:
320px; padding: 20px; border-radius: 5px; border: none; outline:
none;">Click me!</button>

The only difference you can see here is that there is a data-radium attribute set
to true attached to the element.

Now, we have seen that inline styles do not let us define any pseudo-classes; let's take a
look at how to solve the problem using Radium.

Using pseudo-classes, such as :hover, with Radium is pretty straightforward. We have to
create a :hover property inside our style object, and Radium will do the rest:

const styles = {
 backgroundColor: '#ff0000',
 width: 320,
 padding: 20,
 borderRadius: 5,
 border: 'none',
 outline: 'none',
 ':hover': {
 color: '#fff'

Making Your Components Look Beautiful Chapter 8

[229]

 }
}

If you apply this style object to your button and render it on the screen, you can see that
passing the mouse over the button results in a button with white text, as opposed to the
default black one. That is great! We can use pseudo-classes and inline styles together.

However, if you open your DevTools and try to force the :hover status in
the Styles panel, you will see that nothing happens. The reason you can see the hover
effect but you cannot simulate it with CSS is that Radium uses JavaScript to apply and
remove the hover state defined in the style object.

If you hover over the element with the DevTools open, you can see that the style string
changes and the color gets added to it dynamically:

<button data-radium="true" style="background-color: rgb(255, 0, 0); width:
320px; padding: 20px; border-radius: 5px; border: none; outline: none;
color: rgb(255, 255, 255);">Click me!</button>

The way Radium works is by adding an event handler for each one of the events that can
trigger the behavior of pseudo-classes and listening to them.

As soon as one of the events gets fired, Radium changes the state of the component, which
re-renders with the right style for the state. This might seem weird in the beginning, but
there are no real downsides to this approach, and the difference regarding performance is
not perceivable.

We can add new pseudo-classes, for example, :active, and they will work as well:

const styles = {
 backgroundColor: '#ff0000',
 width: 320,
 padding: 20,
 borderRadius: 5,
 border: 'none',
 outline: 'none',
 ':hover': {
 color: '#fff'
 },
 ':active': {
 position: 'relative',
 top: 2
 }
}

Making Your Components Look Beautiful Chapter 8

[230]

Another critical feature that Radium enables is media queries. Media queries are crucial for
creating responsive applications, and Radium again uses JavaScript to enable that CSS
feature in our application.

Let's look at how it works – the API is pretty similar; we have to create a new attribute on
our style object and nest the styles that must be applied when the media query matches
inside it:

const styles = {
 backgroundColor: '#ff0000',
 width: 320,
 padding: 20,
 borderRadius: 5,
 border: 'none',
 outline: 'none',
 ':hover': {
 color: '#fff'
 },
 ':active': {
 position: 'relative',
 top: 2
 },
 '@media (max-width: 480px)': {
 width: 160
 }
}

There is one thing we must do to make media queries work, and that is wrapping our
application in the StyleRoot component provided by Radium.

For the media queries to work properly, especially with server-side rendering, Radium will
inject the rules related to the media query in a style element inside the Document Object
Model (DOM), with all the properties set as !important.

This is to avoid flickering between the different styles that are applied to the document
before the library figures out which is the matching query. Implementing the styles inside a
style element prevents this by letting the browser do its regular job.

So, the idea is to import the Radium.StyleRoot component:

import Radium from 'radium'

Then, we can wrap our entire application inside it:

const App = () => {
 return (
 <Radium.StyleRoot>

Making Your Components Look Beautiful Chapter 8

[231]

 ...
 </Radium.StyleRoot>
)
}

As a result of this, if you open the DevTools, you can see that Radium injected the
following style into the DOM:

<style>@media (max-width: 480px) { .rmq-1d8d7428{width: 160px
!important;}}</style>

The rmq-1d8d7428 class has been applied to the button automatically as well:

<button class="rmq-1d8d7428" data-radium="true" style="background-color:
rgb(255, 0, 0); width: 320px; padding: 20px; border-radius: 5px; border:
none; outline: none;">Click me!</button>

If you now resize the browser window, you can see that the button becomes smaller for
small screens, as expected.

In the next section, we are going to learn how to use the CSS modules.

Using CSS modules
If you feel that inline styles are not a suitable solution for your project and your team, but
you still want to keep the styles as close as possible to your components, there is a solution
for you, called CSS modules. The CSS modules are CSS files in which all class names and
animation names are scoped locally by default. Let's see how we can use them in our
projects; but first, we need to configure Webpack.

Webpack 5
Before diving into CSS modules and learning how they work, it is important to understand
how they were created and the tools that support it.

In Chapter 2, Cleaning Up Your Code, we looked at how we can write ES6 code and transpile
it using Babel and its presets. As soon as the application grows, you may want to
split your code base into modules as well.

Making Your Components Look Beautiful Chapter 8

[232]

You can use Webpack or Browserify to divide the application into small modules that you
can import whenever you need them, while still creating a big bundle for the browser.
These tools are called module bundlers, and what they do is load all the dependencies of
your application into a single bundle that can be executed in the browser, which does not
have any concept of modules (yet).

In the React world, Webpack is especially popular because it offers many interesting and
useful features, with the first one being the concept of loaders. With Webpack, you can
potentially load any dependencies other than JavaScript, if there is a loader for it. For
example, you can load JSON files, as well as images and other assets, inside the bundle.

In May 2015, Mark Dalgleish, one of the creators of CSS modules, figured out that you
could import CSS inside a Webpack bundle as well, and he pushed the concept forward. He
thought that, since the CSS could be imported locally into a component, all the imported
class names could be locally scoped as well, this is great because this will isolate the styles.

Setting up a project
In this section, we will look at how to set up a very simple Webpack application, using
Babel to transpile the JavaScript and the CSS modules to load our locally scoped CSS into
the bundle. We will also go through all the features of CSS modules and look at the
problems they can solve. The first thing to do is move to an empty folder and run the
following command:

npm init

This will create a package.json file with some defaults.

Now, it is time to install the dependencies, with the first one being webpack and the second
being webpack-dev-server, which we will use to run the application locally and to create
the bundle on the fly:

npm install --save-dev webpack webpack-dev-server webpack-cli

Once Webpack is installed, it is time to install Babel and its loader. Since we are using
Webpack to create the bundle, we will use the Babel loader to transpile our ES6 code within
Webpack itself:

npm install --save-dev @babel/core @babel/preset-env @babel/preset-react
ts-loader

Making Your Components Look Beautiful Chapter 8

[233]

Finally, we install style-loader and the CSS loader, which are the two loaders we need
to enable the CSS modules:

npm install --save-dev style-loader css-loader

There is one more thing to do to make things easier, and that is to install html-webpack-
plugin, which is a plugin that can create an HTML page to host our JavaScript application
on the fly, just by looking into the Webpack configuration and without us needing to create
a regular file. Also, we need to install the fork-ts-checker-webpack-plugin package to
make TypeScript work with Webpack:

npm install --save-dev html-webpack-plugin fork-ts-checker-webpack-plugin
typescript

Last but not least, we install react and react-dom to use them in our simple example:

npm install react react-dom

Now that all the dependencies are installed, it is time to configure everything to make it
work.

First, you need to create a .babelrc file in your root path:

{
 "presets": ["@babel/preset-env", "@babel/preset-react"]
}

The first thing to do is add an npm script in package.json to run the webpack-dev-
server, which will serve the application in development:

"scripts": {
 "dev": "webpack serve --mode development --port 3000"
}

In Webpack 5, you need to use this way to call webpack instead of
webpack-dev-server but you still need to have this package installed.

Webpack needs a configuration file to know how to handle the different types of
dependencies we are using in our application, and to do so, we must create a file called
webpack.config.js, which exports an object:

module.exports = {}

Making Your Components Look Beautiful Chapter 8

[234]

The object we export represents the configuration object used by Webpack to create the
bundle, and it can have different properties depending on the size and the features of the
project.

We want to keep our example very simple, so we are going to add three attributes. The first
one is entry, which tells Webpack where the main file of our application is:

entry: './src/index.tsx'

The second one is module, which is where we tell Webpack how to load the external
dependencies. It has an attribute called rules, where we set a specific loader for each one
of the file types:

module: {
 rules: [
 {
 test: /\.(tsx|ts)$/,
 exclude: /node_modules/,
 use: {
 loader: 'ts-loader',
 options: {
 transpileOnly: true
 }
 }
 },
 {
 test: /\.css/,
 use: [
 'style-loader',
 'css-loader?modules=true'
]
 }
]
}

We are saying that the files that match the .ts or .tsx regular expression are loaded using
ts-loader so that they get transpiled and loaded into the bundle.

You may also have noticed that we added our presets in the .babelrc file. As we saw
in Chapter 2, Cleaning Up Your Code, the presets are sets of configuration options that
instruct Babel on how to deal with the different types of syntax (for example, TSX).

The second entry in the rules array tells Webpack what to do when a CSS file is imported,
and it uses css-loader with the modules flag enabled to activate CSS modules. The result
of the transformation is then passed to style-loader, which injects the styles into the
header of the page.

Making Your Components Look Beautiful Chapter 8

[235]

Finally, we enable the HTML plugin to generate the page for us, adding the script tag
automatically using the entry path we specified earlier:

const HtmlWebpackPlugin = require('html-webpack-plugin')
const ForkTsCheckerWebpackPlugin = require('fork-ts-checker-webpack-
plugin')

plugins: [
 new ForkTsCheckerWebpackPlugin(),
 new HtmlWebpackPlugin({
 title: 'Your project name',
 template: './src/index.html',
 filename: './index.html'
 })
]

The complete webpack.config.js should be as shown in the following code block:

const HtmlWebpackPlugin = require('html-webpack-plugin')
const path = require('path')
const ForkTsCheckerWebpackPlugin = require('fork-ts-checker-webpack-
plugin')

const isProduction = process.env.NODE_ENV === 'production'

module.exports = {
 devtool: !isProduction ? 'source-map' : false, // We generate source maps
 // only for development
 entry: './src/index.tsx',
 output: { // The path where we want to output our bundles
 path: path.resolve(__dirname, 'dist'),
 filename: '[name].[hash:8].js',
 sourceMapFilename: '[name].[hash:8].map',
 chunkFilename: '[id].[hash:8].js',
 publicPath: '/'
 },
 resolve: {
 extensions: ['.ts', '.tsx', '.js', '.json', '.css'] // Here we add the
 // extensions we want to support
 },
 target: 'web',
 mode: isProduction ? 'production' : 'development', // production mode
 // minifies the code
 module: {
 rules: [
 {
 test: /\.(tsx|ts)$/,
 exclude: /node_modules/,

Making Your Components Look Beautiful Chapter 8

[236]

 use: {
 loader: 'ts-loader',
 options: {
 transpileOnly: true
 }
 }
 },
 {
 test: /\.css/,
 use: [
 'style-loader',
 'css-loader?modules=true'
]
 }
]
 },
 plugins: [
 new ForkTsCheckerWebpackPlugin(),
 new HtmlWebpackPlugin({
 title: 'Your project name',
 template: './src/index.html',
 filename: './index.html'
 })
],
 optimization: { // This is to split our bundles into vendor and main
 splitChunks: {
 cacheGroups: {
 default: false,
 commons: {
 test: /node_modules/,
 name: 'vendor',
 chunks: 'all'
 }
 }
 }
 }
}

Then, to configure TypeScript, you need this tsconfig.json file:

{
 "compilerOptions": {
 "allowJs": true,
 "allowSyntheticDefaultImports": true,
 "baseUrl": "src",
 "esModuleInterop": true,
 "forceConsistentCasingInFileNames": true,
 "isolatedModules": true,

Making Your Components Look Beautiful Chapter 8

[237]

 "jsx": "react-jsx",
 "lib": ["dom", "dom.iterable", "esnext"],
 "module": "esnext",
 "moduleResolution": "node",
 "noEmit": true,
 "noFallthroughCasesInSwitch": true,
 "noImplicitAny": false,
 "resolveJsonModule": true,
 "skipLibCheck": true,
 "sourceMap": true,
 "strict": true,
 "target": "es6"
 },
 "include": ["src/**/*.ts", "src/**/*.tsx"],
 "exclude": ["node_modules"]
}

In order to import css files using TypeScript, you need to create a declarations file at
src/declarations.d.ts:

declare module '*.css' {
 const content: Record<string, string>
 export default content
}

Then, you need to create the main file at src/index.tsx:

import { render } from 'react-dom'

const App = () => {
 return <div>Hello World</div>
}

render(<App />, document.querySelector('#root'))

Finally, you need to create the initial HTML file at src/index.html:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0"
 />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title><%= htmlWebpackPlugin.options.title %></title>
 </head>
 <body>
 <div id="root"></div>

Making Your Components Look Beautiful Chapter 8

[238]

 </body>
</html>

We are done, and if we run the npm run dev command in the terminal and point the
browser to http://localhost:8080, we should be able to see the following markup
being served:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Your project name</title>
 <script defer src="/vendor.12472959.js"></script>
 <script defer src="/main.12472959.js"></script>
 </head>
 <body>
 <div id="root"></div>
 </body>
</html>

Perfect – our React application is working! Let's see now how we can add some CSS to our
project.

Locally scoped CSS
Now, it is time to create our app, which will consist of a simple button, of the same sort we
used in previous examples. We will use it to show all the features of the CSS modules.

Let's update the src/index.tsx file, which is the entry we specified in the Webpack
configuration:

import { render } from 'react-dom'

We can then create a simple button. As usual, we are going to start with a non-styled
button, and we will add the styles step by step:

 const Button = () => <button>Click me!</button>

Finally, we can render the button into the DOM:

render(<Button />, document.querySelector('#root'))

Making Your Components Look Beautiful Chapter 8

[239]

Now, suppose we want to apply some styles to the button – a background color, the size,
and so on. We create a regular CSS file, called index.css, and we put the following class
into it:

.button {
 background-color: #ff0000;
 width: 320px;
 padding: 20px;
 border-radius: 5px;
 border: none;
 outline: none;
}

Now, we said that with CSS modules we could import the CSS files into the JavaScript; let's
look at how it works.

Inside our index.js file where we defined the button component, we can add the
following line:

import styles from './index.css'

The result of this import statement is a styles object, where all the attributes are the
classes defined in index.css.

If we run console.log(styles), we can see the following object in the DevTools:

{
 button: "_2wpxM3yizfwbWee6k0UlD4"
}

So, we have an object where the attributes are the class names and the values are
(apparently) random strings. We will see later that they are non-random, but let's check
what we can do with that object first.

We can use the object to set the class name attribute of our button, as follows:

const Button = () => (
 <button className={styles.button}>Click me!</button>
);

If we go back to the browser, we can now see that the styles we defined in index.css have
been applied to the button. This is not magic, because if we check in DevTools, the class
that has been applied to the element is the same string that's attached to the style object
we imported inside our code:

<button class="_2wpxM3yizfwbWee6k0UlD4">Click me!</button>

Making Your Components Look Beautiful Chapter 8

[240]

If we look at the header section of the page, we can now see that the same class name has
also been injected into the page:

<style type="text/css">
 ._2wpxM3yizfwbWee6k0UlD4 {
 background-color: #ff0000;
 width: 320px;
 padding: 20px;
 border-radius: 5px;
 border: none;
 outline: none;
 }
</style>

This is how the CSS and the style loaders work.

The CSS loader lets you import the CSS files into your JavaScript modules and, when the
module flag is activated, all the class names are locally scoped to the module they are
imported into. As we mentioned previously, the string we imported was non-random, but
it is generated using the hash of the file and some other parameters in a way that is unique
within the code base.

Finally, style-loader takes the result of the CSS module's transformation and injects the
styles inside the header section of the page. This is very powerful because we have the full
power and expressiveness of the CSS, combined with the advantages of having locally
scoped class names and explicit dependencies.

As mentioned at the beginning of this chapter, CSS is global, and that makes it very hard to
maintain in large applications. With CSS modules, class names are locally scoped and they
cannot clash with other class names in different parts of the application, enforcing a
deterministic result.

Moreover, explicitly importing the CSS dependencies inside our components helps us see
clearly which components need which CSS. It is also very useful for eliminating dead code
because when we delete a component for any reason, we can tell exactly which CSS it was
using.

CSS modules are regular CSS, so we can use pseudo-classes, media queries, and
animations.

For example, we can add CSS rules such as the following:

.button:hover {
 color: #fff;
}
.button:active {

Making Your Components Look Beautiful Chapter 8

[241]

 position: relative;
 top: 2px;
}
@media (max-width: 480px) {
 .button {
 width: 160px
 }
}

This will be transformed into the following code and injected into the document:

._2wpxM3yizfwbWee6k0UlD4:hover {
 color: #fff;
}
._2wpxM3yizfwbWee6k0UlD4:active {
 position: relative;
 top: 2px;
}
@media (max-width: 480px) {
 ._2wpxM3yizfwbWee6k0UlD4 {
 width: 160px
 }
}

The class names get created and they get replaced everywhere the button is used, making it
reliable and local, as expected.

As you may have noticed, those class names are great, but they make debugging
pretty hard because we cannot easily tell which classes generated the hash. What we can do
in development mode is add a special configuration parameter, with which we can choose
the pattern that's used to produce the scoped class names.

For example, we can change the value of the loader as follows:

{
 test: /\.css/,
 use: [
 {
 loader: 'style-loader'
 },
 {
 loader: "css-loader",
 options: {
 modules: {
 localIdentName: "[local]--[hash:base64:5]"
 }
 }
 }

Making Your Components Look Beautiful Chapter 8

[242]

]
}

Here, localIdentName is the parameter, and [local] and [hash:base64:5] are
placeholders for the original class name value and a five-character hash. Other available
placeholders are [path], which represents the path of the CSS file, and [name], which is
the name of the source CSS file.

Activating the previous configuration option, the result we have in the browser is as
follows:

<button class="button--2wpxM">Click me!</button>

This is way more readable and easier to debug.

In production, we do not need class names like this, and we are more interested in
performance, so we may want shorter class names and hashes.

With Webpack, it is pretty straightforward because we can have multiple configuration
files that can be used in the different stages of our application life cycle. Also, in
production, we may want to extract the CSS file instead of injecting it into the browser from
the bundle so that we can have a lighter bundle and cache the CSS on a Content Delivery
Network for better performance.

To do that, you need to install another Webpack plugin, called mini-css-extract-
plugin, which can write an actual CSS file, putting in all the scoped classes that were
generated from CSS modules.

There are a couple of features of CSS modules that are worth mentioning.

The first one is the global keyword. Prefixing any class with :global, in fact, means
asking CSS modules not to scope the current selector locally.

For example, let's say we change our CSS as follows:

:global .button {
 ...
}

The output will be as follows:

.button {
 ...
}

Making Your Components Look Beautiful Chapter 8

[243]

This is good if you want to apply styles that cannot be scoped locally, such as third-party
widgets.

My favorite feature of CSS modules is composition. With composition, we can extract
classes from the same file or external dependencies and get all the styles applied to the
element.

For example, extract the rule to set the background to red from the rules for the button into
a separate block, as follows:

.background-red {
 background-color: #ff0000;
}

We can then compose it inside our button in the following way:

.button {
 composes: background-red;
 width: 320px;
 padding: 20px;
 border-radius: 5px;
 border: none;
 outline: none;
}

The result is that all the rules of the button and all the rules of the composes declaration are
applied to the element.

This is a very powerful feature and it works in a fascinating way. You might expect that all
the composed classes are duplicated inside the classes where they are referenced as
SASS @extend does, but that is not the case. Simply put, all the composed class names are
applied one after the other on the component in the DOM.

In our specific case, we would have the following:

<button class="_2wpxM3yizfwbWee6k0UlD4 Sf8w9cFdQXdRV_i9dgcOq">Click
me!</button>

Here, the CSS that is injected into the page is as follows:

.Sf8w9cFdQXdRV_i9dgcOq {
 background-color: #ff0000;
}
._2wpxM3yizfwbWee6k0UlD4 {
 width: 320px;
 padding: 20px;
 border-radius: 5px;

Making Your Components Look Beautiful Chapter 8

[244]

 border: none;
 outline: none;
}

As you can see, our CSS class names have unique names, which is good to isolate our
styles. Now, let's take a look at the Atomic CSS modules.

Atomic CSS modules
It should be clear how composition works and why it is a very powerful feature of CSS
modules. At YPlan, the company where I worked when I started writing this book, we tried
to push it a step further, combining the power of composes with the flexibility of Atomic
CSS (also known as Functional CSS).

Atomic CSS is a way to use CSS where every class has a single rule.

For example, we can create a class to set margin-bottom to 0:

.mb0 {
 margin-bottom: 0;
}

We can use another one to set font-weight to 600:

.fw6 {
 font-weight: 600;
}

Then, we can apply all those atomic classes to the elements:

<h2 class="mb0 fw6">Hello React</h2>

This technique is controversial and particularly efficient at the same time. It is hard to start
using it because you end up having too many classes in your markup, which makes it hard
to predict the final result. If you think about it, it is pretty similar to inline styles, because
you apply one class per rule, apart from the fact that you are using a shorter class name as a
proxy.

The biggest argument against Atomic CSS is usually that you are moving the styling logic
from the CSS to the markup, which is wrong. Classes are defined in CSS files, but they are
composed in the views, and every time you have to modify the style of an element, you end
up editing the markup.

On the other hand, we tried using Atomic CSS for a bit and we found that it makes
prototyping incredibly fast.

Making Your Components Look Beautiful Chapter 8

[245]

In fact, when all the base rules have been generated, applying those classes to the elements
and creating new styles is a very quick process, which is good. Second, using Atomic CSS,
we can control the size of the CSS file, because as soon as we create new components with
their styles, we are using existing classes and we do not need to create new ones, which is
great for performance.

So, we tried to solve the problems of Atomic CSS using CSS modules and we called the
technique Atomic CSS modules.

In essence, you start creating your base CSS classes (for example, mb0), and then, instead of
applying the class names one by one in the markup, you compose them into placeholder
classes using CSS modules.

Let's look at an example:

.title {
 composes: mb0 fw6;
}

Here's another example:

<h2 className={styles.title}>Hello React</h2>

This is great because you still keep the styling logic inside the CSS, and the CSS
module's composes does the job for you by applying all the single classes in the markup.

The result of the preceding code is as follows:

<h2 class="title--3JCJR mb0--21SyP fw6--1JRhZ">Hello React</h2>

Here, title, mb0, and fw6 are all applied automatically to the element. They are scoped
locally as well, so we have all the advantages of CSS modules.

React CSS modules
Last but not least, there is a great library that can help us work with CSS modules. You may
have noticed how we were using a style object to load all the classes of the CSS, and
because JavaScript does not support hyphenated attributes, we are forced to use a
camelCased class name.

Also, if we are referencing a class name that does not exist in the CSS file, there is no way to
know it, and undefined is added to the list of classes. For these and other useful features,
we may want to try a package that makes working with CSS modules even smoother.

Making Your Components Look Beautiful Chapter 8

[246]

Let's look at what this means by going back to the index.tsx file we were using
previously in this section with plain CSS modules, and changing it to use React CSS
modules instead.

The package is called react-css-modules, and the first thing we must do is install it:

npm install react-css-modules

Once the package is installed, we import it inside our index.tsx file:

import cssModules from 'react-css-modules'

We use it as an HOC, passing to it the Button component we want to enhance and the
styles object we imported from the CSS:

const EnhancedButton = cssModules(Button, styles)

Now, we have to change the implementation of the button to avoid using the styles
object. With React CSS modules, we use the styleName property, which is transformed
into a regular class.

The great thing about this is that we can use the class name as a string (for
example, "button"):

const Button = () => <button styleName="button">Click me!</button>;

If we now render EnhancedButton into the DOM, we will see that nothing has really
changed from before, which means that the library works.

Let's say we try to change the styleName property to reference a non-existing class name,
as follows:

import { render } from 'react-dom'
import styles from './index.css'
import cssModules from 'react-css-modules'

const Button = () => <button styleName="button1">Click me!</button>

const EnhancedButton = cssModules(Button, styles)

render(<EnhancedButton />, document.querySelector('#root'))

We will see the following error in the console of the browser by doing so:

Uncaught Error: "button1" CSS module is undefined.

Making Your Components Look Beautiful Chapter 8

[247]

This is particularly helpful when the code base grows and we have multiple developers
working on different components and styles.

Implementing styled-components
There is a library that is very promising because it takes into account all the problems other
libraries have encountered in styling components. Different paths have been followed for
writing CSS in JavaScript, and many solutions have been tried, so now the time is ripe for a
library that takes all the learning and then builds something on top of it.

The library is conceived and maintained by two popular developers in the JavaScript
community: Glenn Maddern and Max Stoiberg. It represents a very modern approach to the
problem, and it uses edge features of ES2015 and some advanced techniques that have been
applied to React to provide a complete solution for styling.

Let's look at how it is possible to create the same button we saw in the previous sections,
and check whether all the CSS features we are interested in (for example, pseudo-classes
and media queries) work with styled-components.

First, we have to install the library by running the following command:

npm install styled-components

Once the library is installed, we have to import it inside our component's file:

import styled from 'styled-components'

At that point, we can use the styled function to create any element by
using styled.elementName, where elementName can be a div, a button, or any other
valid DOM element.

The second thing to do is to define the style of the element we are creating and to do so, we
use an ES6 feature called tagged template literals, which is a way of passing template
strings to a function without them being interpolated beforehand.

This means that the function receives the actual template with all the JavaScript
expressions, and this makes the library able to use the full power of JavaScript to apply the
styles to the elements.

Let's start by creating a simple button with a basic styling:

const Button = styled.button`
 backgroundColor: #ff0000;
 width: 320px;

Making Your Components Look Beautiful Chapter 8

[248]

 padding: 20px;
 borderRadius: 5px;
 border: none;
 outline: none;
`;

This kind-of-weird syntax returns a proper React component called Button, which renders a
button element and applies to it all the styles defined in the template. The way the styles
are applied is by creating a unique class name, adding it to the element, and then injecting
the corresponding style in the head of the document.

The following is the component that gets rendered:

<button class="kYvFOg">Click me!</button>

The style that gets added to the page is as follows:

.kYvFOg {
 background-color: #ff0000;
 width: 320px;
 padding: 20px;
 border-radius: 5px;
 border: none;
 outline: none;
}

The good thing about styled-components is that it supports almost all the features of
CSS, which makes it a good candidate to be used in a real-world application.

For example, it supports pseudo-classes using a SASS-like syntax:

const Button = styled.button`
 background-color: #ff0000;
 width: 320px;
 padding: 20px;
 border-radius: 5px;
 border: none;
 outline: none;
 &:hover {
 color: #fff;
 }
 &:active {
 position: relative;
 top: 2px;
 }
`

Making Your Components Look Beautiful Chapter 8

[249]

It also supports media queries:

const Button = styled.button`
 background-color: #ff0000;
 width: 320px;
 padding: 20px;
 border-radius: 5px;
 border: none;
 outline: none;
 &:hover {
 color: #fff;
 }
 &:active {
 position: relative;
 top: 2px;
 }
 @media (max-width: 480px) {
 width: 160px;
 }
`;

There are many other features that this library can bring to your project.

For example, once you have created the button, you can easily override its styles and use it
multiple times with different properties. Inside the templates, it is also possible to use the
props that the component received and change the style accordingly.

Another great feature is theming. Wrapping your components in a ThemeProvider
component, you can inject a theme property down to the three component's children, which
makes it extremely easy to create UIs where part of the style is shared between components
and some other properties depend on the currently selected theme.

No doubt styled-components library is a game-changer when you are taking your styles
to the next level, at the beginning could seem weird because the way is implementing styles
with components, but once you get used to I guarantee will be your favorite styles package.

Making Your Components Look Beautiful Chapter 8

[250]

Summary
In this chapter, we looked at a lot of interesting topics. We started by going through the
problems of CSS at scale, specifically, the problems that they had at Facebook while dealing
with CSS. We learned how inline styles work in React and why it is good to co-locate the
styles within components. We also looked at the limitations of inline styles. Then, we
moved on to Radium, which solves the main problems of inline styles, giving us a clear
interface to write our CSS in JavaScript. For those who think that inline styles are a bad
solution, we moved into the world of CSS modules, setting up a simple project from
scratch.

Importing the CSS files into our components makes the dependencies clear, and scoping the
class names locally avoids clashes. We looked at how CSS module's composes is a great
feature, and how we can use it in conjunction with Atomic CSS to create a framework for
quick prototyping.

Finally, we had a quick look at styled-components, which is a very promising library
and is meant to change the way we approach the styling of components completely.

So far, you have learned about a lot of ways to work with CSS styles with React from inline
styles to CSS modules or using a library such as styled-components. In the next chapter,
we are going to learn how to implement and get the benefits from server-side rendering.

9
Server-Side Rendering for Fun

and Profit
The next step in building React applications is learning how server-side rendering works
and what benefits it can give us. The universal applications are better for SEO, and they
enable knowledge-sharing between the frontend and the backend. They can also improve
the perceived speed of a web application, which usually leads to increased conversions.
However, applying server-side rendering to a React application comes at a cost, and we
should think carefully about whether we need it or not.

In this chapter, you will see how to set up a server-side rendered application, and by the
end of the relevant sections, you will be able to build a universal application and
understand the pros and the cons of the technique.

In this chapter, we will cover the following topics:

Understanding what a universal application is
Figuring out the reasons why we may want to enable server-side rendering
Creating a simple static server-side rendered application with React
Adding data fetching to server-side rendering and understanding concepts such
as dehydration/hydration
Using Next.js by Zeith to easily create a React application that runs on both the
server and the client

Technical requirements
To complete this chapter, you will require the following:

Node.js 12+
Visual Studio Code

Server-Side Rendering for Fun and Profit Chapter 9

[252]

You can find the code for this chapter in the book's GitHub repository at https:/ ​/​github.
com/​PacktPublishing/ ​React- ​17- ​Design- ​Patterns- ​and- ​Best- ​Practices- ​Third- ​Edition/
tree/​main/​Chapter09.

Understanding universal applications
A universal application is an application that can run both on the server side and client side
with the same code. In this section, we will look at the reasons why we should consider
making our applications universal, and we will learn how React components can be easily
rendered on the server side.

When we talk about JavaScript web applications, we usually think of client-side code that
lives in the browser. The way they usually work is that the server returns an empty HTML
page with a script tag to load the application. When the application is ready, it
manipulates the DOM inside the browser to show the UI and to interact with users. This
has been the case for the last few years, and it is still the way to go for a huge number of
applications.

In this book, we have seen how easy it is to create applications using React components and
how they work within the browser. What we have not seen yet is how React can render the
same components on the server, giving us a powerful feature called Server-Side
Rendering (SSR).

Before going into the details, let's try to understand what it means to create applications
that render both on the server and the client. For years, we used to have completely
different applications for the server and client: for example, a Django application to render
the views on the server, and some JavaScript frameworks, such as Backbone or jQuery, on
the client. Those separate apps usually had to be maintained by two teams of developers
with different skill sets. If you needed to share data between the server-side rendered pages
and the client-side application, you could inject some variables inside a script tag. Using
two different languages and platforms, there was no way to share common information,
such as models or views, between the different sides of the application.

Since Node.js was released in 2009, JavaScript has gained a lot of attention and popularity
on the server side as well, thanks to web application frameworks, such as Express. Using
the same language on both sides not only makes it easy for developers to reuse their
knowledge, but also enables different ways of sharing code between the server and the
client.

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter09

Server-Side Rendering for Fun and Profit Chapter 9

[253]

With React in particular, the concept of isomorphic web applications became very popular
within the JavaScript community. Writing an isomorphic application means building an
application that looks the same on the server and the client. The fact that the same language
is used to write the two applications means that a big part of the logic can be shared, which
opens many possibilities. This makes the code base easier to reason about and avoids
unnecessary duplication.

React brings the concept a step forward, giving us a simple API to render our components
on the server and transparently applying all the logic needed to make the page interactive
(for example, event handlers) on the browser.

The term isomorphic does not fit in this scenario because, in the case of React, the
applications are the same, and that is why one of the creators of React Router, Michael
Jackson, proposed a more meaningful name for this pattern: Universal.

Reasons for implementing SSR
SSR is a great feature, but we should not jump into it just for the sake of it. We should have
a real and solid reason to start using it. In this section, we will look at how SSR can help our
application and what problems it can solve for us. In our next sections, we are going to
learn about SEO and how to improve the performance of our application.

Implementing search engine optimization
One of the main reasons why we may want to render our applications on the server side
is Search Engine Optimization (SEO).

If we serve an empty HTML skeleton to the crawlers of the main search engines, they are
not able to extract any meaningful information from it. Nowadays, Google seems to be able
to run JavaScript, but there are some limitations, and SEO is often a critical aspect of our
businesses.

For years, we used to write two applications: an SSR one for the crawlers, and another one
to be used on the client side by users. We used to do that because SSR applications could
not give us the level of interactivity users expect, while client-side applications did not get
indexed by search engines.

Server-Side Rendering for Fun and Profit Chapter 9

[254]

Maintaining and supporting two applications is difficult, and makes the code base less
flexible and less prone to changes. Luckily, with React, we can render our components on
the server side and serve the content of our applications to the crawlers in such a way that
it is easy for them to understand and index the content.

This is great, not only for SEO, but also for social sharing services. Platforms such as
Facebook or Twitter give us a way of defining the content of the snippets that are shown
when our pages are shared.

For example, using Open Graph, we can tell Facebook that, for a particular page, we want a
certain image to be shown and a particular title to be used as the title of the post. It is
almost impossible to do that using client-side-only applications because the engine that
extracts the information from the pages uses the markup returned by the server.

If our server returns an empty HTML structure for all the URLs, the result is that when the
pages are shared on the social networks, the snippets of our web application are empty as
well, which affects their virality.

A common code base
We do not have many options on the client side; our applications have to be written in
JavaScript. There are some languages that can be converted into JavaScript at build time,
but the concept does not change. The ability to use the same language on the server
represents a significant win regarding maintainability and knowledge-sharing across the
company.

Being able to share the logic between the client and the server makes it easy to apply any
changes on both sides without doing the work twice, which, most of the time, leads to
fewer errors and fewer problems.

The effort of maintaining a single code base is less than the work required to keep two
different applications up to date. Another reason why you might consider introducing
JavaScript on the server side in your team is sharing knowledge between frontend and
backend developers.

The ability to reuse the code on both sides makes collaboration easier, and the teams speak
a common language, which helps with making faster decisions and changes.

Server-Side Rendering for Fun and Profit Chapter 9

[255]

Better performance
Last, but not least, we all love client-side applications, because they are fast and responsive,
but there is a problem—the bundle has to be loaded and run before users can take any
action on the application.

This might not be a problem using a modern laptop or a desktop computer on a fast
internet connection. However, if we load a huge JavaScript bundle using a mobile device
with a 3G connection, users have to wait for a little while before interacting with the
application. This is not only bad for the UX in general, but it also affects conversions. It has
been proven by the major e-commerce websites that a few milliseconds added to the page
load can have an enormous impact on revenues.

For example, if we serve our application with an empty HTML page and a script tag on
the server and we show a spinner to our users until they can click on anything, the
perception of the speed of the website is significantly affected.

If we render our website on the server side instead and users start seeing some of the
content as soon as they hit the page, they are more likely to stay, even if they have to wait
the same amount of time before doing anything for real, because the client-side bundle has
to be loaded regardless of the SSR.

This perceived performance is something we can improve greatly using SSR because we
can output our components on the server and return some information to users straight
away.

Don't underestimate the complexity
Even if React provides an easy API to render components on the server, creating a
universal application has a cost. So, we should consider carefully before enabling it for one
of the preceding reasons and check whether our team is ready to support and maintain a
universal application.

As we will see in the coming sections, rendering components is not the only task that needs
to be done to create server-side rendered applications. We have to set up and maintain a
server with its routes and its logic, manage the server data flow, and so on. Potentially, we
want to cache the content to serve the pages faster and carry out many other tasks that are
required to maintain a fully functional universal application.

Server-Side Rendering for Fun and Profit Chapter 9

[256]

For this reason, my suggestion is to build the client-side version first, and only when the
web application is fully working on the server should you think about improving the
experience by enabling SSR. SSR should only be enabled when strictly necessary. For
example, if you need SEO or if you need to customize the social sharing information, you
should start thinking about it.

If you realize that your application takes a lot of time to load fully and you have already
done all the optimization (refer to the following Chapter 10, Improving the Performance of
Your Applications, for more on this topic), you can consider using SSR to offer a better
experience to your users and improve the perceived speed. Now that we have learned what
SSR is and the benefits of universal applications, let's jump into some basic examples of SSR
in our next section.

Creating a basic example of SSR
We will now create a very simple server-side application to look at the steps that are
needed to build a basic universal setup. It is going to be a minimal and simple setup on
purpose because the goal here is to show how SSR works rather than providing a
comprehensive solution or a boilerplate, even though you could use the example
application as a starting point for a real-world application.

This section assumes that all the concepts regarding JavaScript build tools,
such as webpack and its loaders, are clear, and it requires a little bit of
knowledge of Node.js. As a JavaScript developer, it should be easy for you
to follow this section, even if you have never seen a Node.js application
before.

The application will consist of two parts:

On the server side, where we will use Express to create a basic web server and
serve an HTML page with the server-side rendered React application
On the client side, where we will render the application, as usual, using react-
dom

Both sides of the application will be transpiled with Babel and bundled with webpack
before being run, which will let us use the full power of ES6 and the modules both on
Node.js and on the browser.

Let's start by creating a new project folder (you can call it ssr-project) and running the
following command to create a new package:

npm init

Server-Side Rendering for Fun and Profit Chapter 9

[257]

Once package.json is created, it is time to install the dependencies. We can start with
webpack:

npm install webpack

After this is done, it is time to install ts-loader and the presets that we need to write an
ES6 application using React and TSX:

npm install --save-dev @babel/core @babel/preset-env @babel/preset-
react ts-loader typescript

We also have to install a dependency, which we will need in order to create the server
bundle. webpack lets us define a set of externals, which are dependencies that we do not
want to add to the bundle. When creating a build for the server, in fact, we do not want to
add to the bundle of all the node packages that we use; we just want to bundle our server
code. There's a package that helps with that, and we can simply apply it to the external
entry in our webpack configuration to exclude all the modules:

npm install --save-dev webpack-node-externals

Great. It is now time to create an entry in the npm scripts section of package.json so
that we can easily run the build command from the terminal:

"scripts": {
 "build": "webpack"
}

Next, you need to create a .babelrc file in your root path:

{
 "presets": ["@babel/preset-env", "@babel/preset-react"]
}

We now have to create the configuration file, called webpack.config.js, to tell webpack
how we want our files to be bundled.

Let's start importing the library we will use to set our node externals. We will also define
the configuration for ts-loader, which we will use for both the client and the server:

const nodeExternals = require('webpack-node-externals')
const path = require('path')

const rules = [{
 test: /\.(tsx|ts)$/,
 use: 'ts-loader',
 exclude: /node_modules/
}]

Server-Side Rendering for Fun and Profit Chapter 9

[258]

In Chapter 8, Making Your Components Look Beautiful, we looked at how we had to export a
configuration object from the configuration file. There is one cool feature in webpack that
lets us export an array of configurations as well so that we can define both client and server
configurations in the same place and use both in one go.

The client configuration shown in the following block should be very familiar:

const client = {
 entry: './src/client.tsx',
 output: {
 path: path.resolve(__dirname, './dist/public'),
 filename: 'bundle.js',
 publicPath: '/'
 },
 module: {
 rules
 }
}

We are telling webpack that the source code of the client application is inside
the src folder, and we want the output bundle to be generated in the dist folder.

We also set the module loaders using the previous object we created with ts-loader. The
server configuration is slightly different; we need to define a different entry, output, and
add some new nodes, such as target, externals, and resolve:

const server = {
 entry: './src/server.ts',
 output: {
 path: path.resolve(__dirname, './dist'),
 filename: 'server.js',
 publicPath: '/'
 },
 module: {
 rules
 },
 target: 'node',
 externals: [nodeExternals()],
 resolve: {
 extensions: [".ts", ".tsx", ".js", ".json"],
 },
}

As you can see, entry, output, and module are the same, except for the filenames.

Server-Side Rendering for Fun and Profit Chapter 9

[259]

The new parameters are the target, where we specify the node to tell webpack to ignore
all the built-in system packages of Node.js, such as fs and externals, where we use the
library we imported earlier to tell webpack to ignore the dependencies.

Last, but not least, we have to export the configurations as an array:

module.exports = [client, server]

The configuration is done. We are now ready to write some code, and we will start with the
React application, which we are more familiar with.

Let's create an src folder and an app.ts file inside it.

The app.ts file should have the following content:

const App = () => <div>Hello React</div>

export default App

Nothing complex here; we import React, create an App component, which renders
the Hello React message, and export it.

Let's now create client.tsx, which is responsible for rendering the App component inside
the DOM:

import { render } from 'react-dom'
import App from './app'

render(<App />, document.getElementById('root'))

Again, this should sound familiar, since we import React, ReactDOM, and
the App component we created earlier, and we use ReactDOM to render it in a DOM element
with the app ID.

Let's now move to the server.

The first thing to do is to create a template.ts file, which exports a function that we will
use to return the markup of the page that our server will give back to the browser:

export default body => `
 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="UTF-8">
 </head>
 <body>
 <div id="root">${body}</div>

Server-Side Rendering for Fun and Profit Chapter 9

[260]

 <script src="/bundle.js"></script>
 </body>
 </html>`

It should be pretty straightforward. The function accepts body, which we will later see
contains the React app, and it returns the skeleton of the page.

It is worth noting that we load the bundle on the client side even if the app is rendered on
the server side. SSR is only half of the job that React does to render our application. We still
want our application to be a client-side application, with all the features we can use in the
browser, such as event handlers, for example.

After this, you need to install express, react, and react-dom:

npm install express react react-dom @types/express @types/react
@types/react-dom

Now it is time to create server.tsx, which has more dependencies and is worth exploring
in detail:

import React from 'react'
import express, { Request, Response } from 'express'
import { renderToString } from 'react-dom/server'
import path from 'path'
import App from './App'
import template from './template'

The first thing that we import is express, the library that allows us to create a web server
with some routes easily, and which is also able to serve static files.

Secondly, we import React and ReactDOM to render App, which we import as well. Notice
the /server path in the import statement of ReactDOM. The last thing we import is the
template we defined earlier.

Now we create an Express application:

const app = express()

We tell the application where our static assets are stored:

app.use(express.static(path.resolve(__dirname, './dist/public')))

As you may have noticed, the path is the same that we used in the client configuration of
webpack as the output destination of the client bundle.

Server-Side Rendering for Fun and Profit Chapter 9

[261]

Then, here comes the logic of SSR with React:

app.get('/', (req: Request, res: Response) => {
 const body = renderToString(<App />)
 const html = template(body)
 res.send(html)
})

We are telling Express that we want to listen to the / route, and when it gets hit by a client,
we render App to a string using the ReactDOM library. Here comes the magic and simplicity
of the SSR of React.

What renderToString does is return a string representation of the DOM elements
generated by our App component; the same tree that it would render in the DOM if we
were using the ReactDOM render method.

The value of the body variable is something like the following:

<div data-reactroot="" data-reactid="1" data-react-
checksum="982061917">Hello React</div>

As you can see, it represents what we defined in the render method of App, except for a
couple of data attributes that React uses on the client to attach the client-side application to
the server-side rendered string.

Now that we have the SSR representation of our app, we can use the template function to
apply it to the HTML template and send it back to the browser within the Express response.

Last, but not least, we have to start the Express application:

app.listen(3000, () => {
 console.log('Listening on port 3000')
})

We are now ready to go; there are only a few operations left. The first one is to define the
start script of npm and set it to run the node server:

"scripts": {
 "build": "webpack",
 "start": "node ./dist/server"
}

The scripts are ready, so we can first build the application with the following command:

npm run build

Server-Side Rendering for Fun and Profit Chapter 9

[262]

When the bundles are created, we can run the following command:

npm start

Point the browser to http://localhost:3000 and see the result.

There are two important things to note here. First, when we use the View Page
Source feature of the browser, we can see the source code of the application being rendered
and returned from the server, which we would not see if SSR was not enabled.

Second, if we open DevTools and we have the React extension installed, we can see that
the App component has been booted on the client as well.

The following screenshot shows the source of the page:

Great! Now that you have created your first React application using SSR, let's learn how to
fetch data in the next section.

Implementing data fetching
The example in the previous section should explain clearly how to set up a universal
application in React. It is pretty straightforward, and the main focus is on getting things
done.

However, in a real-world application, we will likely want to load some data instead of a
static React component, such as App in the example. Suppose we want to load Dan
Abramov's gists on the server and return the list of items from the Express app we just
created.

Server-Side Rendering for Fun and Profit Chapter 9

[263]

In the data fetching examples in Chapter 6, Managing Data, we looked at how we can
use useEffect to fire the data loading. That wouldn't work on the server because
components do not get mounted on the DOM and the life cycle Hook never gets fired.

Using Hooks that were executed earlier will not work either because the data fetching
operation is async, while renderToString is not. For that reason, we have to find a way
to load the data beforehand and pass it to the component as props.

Let's look at how we can take the application from the previous section and change it a bit
to make it load gists during the SSR phase.

The first thing to do is to change App.tsx to accept a list of gists as prop, and loop
through it in the render method to display their descriptions:

import { FC } from 'react'

type Gist = {
 id: string
 description: string
}

type Props = {
 gists: Gist[]
}

const App: FC<Props> = ({ gists }) => (

 {gists.map(gist => (
 <li key={gist.id}>{gist.description}
))}

)
export default App

Applying the concept that we learned in the previous chapter, we define a stateless
functional component, which receives gists as a prop and loops through the elements to
render a list of items. Now, we have to change the server to retrieve gists and pass them
to the component.

To use the fetch API on the server side, we have to install a library called isomorphic-
fetch, which implements the fetch standards. It can be used in Node.js and the browser:

npm install isomorphic-fetch @types/isomorphic-fetch

Server-Side Rendering for Fun and Profit Chapter 9

[264]

We first import the library into server.tsx:

import fetch from 'isomorphic-fetch'

The API call that we want to make looks as follows:

fetch('https://api.github.com/users/gaearon/gists')
 .then(response => response.json())
 .then(gists => {})

Here, gists are available to be used inside the last then function. In our case, we want to
pass them down to App.

Therefore, we can change the / route as follows:

app.get('/', (req, res) => {
 fetch('https://api.github.com/users/gaearon/gists')
 .then(response => response.json())
 .then(gists => {
 const body = renderToString(<App gists={gists} />)
 const html = template(body)
 res.send(html)
 })
})

Here, we first fetch gists, and then we render App to a string, passing the property.

Once App is rendered, and we have its markup, we use the template we used in
the previous section and return it to the browser.

Run the following command in the console and point the browser
to http://localhost:3000. You should be able to see a server-side render list of gists:

npm run build && npm start

To make sure that the list is rendered from the Express app, you can navigate to view-
source:http://localhost:3000 and you will see the markup and the descriptions
of gists.

That is great, and it looks easy, but if we check the DevTools console, we can see the
Cannot read property 'map' of undefined error. The reason we see the error is that, on the
client, we are rendering App again, but without passing gists to it.

Server-Side Rendering for Fun and Profit Chapter 9

[265]

This could sound counter-intuitive in the beginning because we might think that React is
smart enough to use gists rendered within the server-side string on the client. But that is
not what happens, so we have to find a way to make gists available on the client side as
well.

You may consider that you can execute the fetch again on the client. That would work, but
it is not optimal because you would end up firing two HTTP calls, one on the Express
server and one in the browser. If we think about it, we already made the call on the server,
and we have all the data we need. A typical solution to sharing data between the server and
the client is dehydrating the data in the HTML markup and hydrating it back in the
browser.

This seems like a complex concept, but it is not. We will now look at how easy it is to
implement. The first thing we must do is to inject gists in the template after we have
fetched them on the client.

To do this, we have to change the template slightly as follows:

export default (body, gists) => `
 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="UTF-8">
 </head>
 <body>
 <div id="root">${body}</div>
 <script>window.gists = ${JSON.stringify(gists)}</script>
 <script src="/bundle.js"></script>
 </body>
 </html>
`

The template function now accepts two parameters—body of the app and the collection
of gists. The first one is inserted inside the app element, while the second is used to define
a global gists variable attached to the window object so that we can use it in the client.

Inside the Express route (server.js), we just have to change the line where we generate
the template passing the body, as follows:

const html = template(body, gists)

Last, but not least, we have to use gists attached to a window inside client.tsx, which
is pretty easy:

ReactDOM.hydrate(
 <App gists={window.gists} />,

Server-Side Rendering for Fun and Profit Chapter 9

[266]

 document.getElementById('app')
)

Hydrate was introduced in React 16 and works similar to render on the client side,
irrespective of whether the HTML has server-rendered markup or not. If there is no
markup previously using SSR, then the hydrate method will fire a warning that you can
silence it by using the new suppressHydrationWarning attribute.

We read gists directly, and we pass them to the App component that gets rendered on the
client.

Now, run the following command again:

npm run build && npm start

If we point the browser window to http://localhost:3000, the error is gone, and if we
inspect the App component using React DevTools, we can see how the client-
side App component receives the collection of gists.

As we have created our first SSR application, let's now see how we can do this more easily
by using an SSR framework called Next.js in the next section.

Using Next.js to create a React application
You have looked at the basics of SSR with React, and you can use the project we created as
a starting point for a real app. However, you may think that there is too much boilerplate
and that you are required to know too many different tools to run a simple universal
application with React. This is a common feeling called JavaScript fatigue, as described in
the introduction to this book.

Luckily, Facebook developers and other companies in the React community are working
very hard to improve the DX and make the life of developers easier. You might have
used create-react-app at this point to try out the examples in the previous chapters, and
you should understand how it makes it very simple to create React applications without
requiring developers to learn many technologies and tools.

Now, create-react-app does not support SSR yet, but there's a company
called Vercel that has created a tool called Next.js, which makes it incredibly easy to
generate universal applications without worrying about configuration files. It also reduces
the boilerplate a lot.

Server-Side Rendering for Fun and Profit Chapter 9

[267]

It is important to say that using abstractions is always very good for building applications
quickly. However, it is crucial to know how the internals work before adding too many
layers, and that is why we started with the manual process before learning Next.js. We have
looked at how SSR works and how we can pass the state from the server to the client. Now
that the base concepts are clear, we can move to a tool that hides a little bit of complexity
and makes us write less code to achieve the same results.

We will create the same app where all gists from Dan Abramov are loaded, and you will
see how clean and simple the code is, thanks to Next.js.

First of all, create a new project folder (you can call it next-project) and run the
following command:

npm init

When this is done, we can install the Next.js library and React:

npm install next react react-dom typescript @types/react @types/node

Now that the project is created, we have to add an npm script to run the binary:

"scripts": {
 "dev": "next"
}

Perfect! It is now time to generate our App component.

Next.js is based on conventions, with the most important one being that you can create
pages to match the browser URLs. The default page is index, so we can create a folder
called pages and put an index.js file inside it.

We start importing the dependencies:

import fetch from 'isomorphic-fetch'

Again, we import isomorphic-fetch because we want to be able to use the fetch
function on the server side.

We then define a component called App:

const App = () => {

}

export default App

Server-Side Rendering for Fun and Profit Chapter 9

[268]

Then we define a static async function, called getInitialProps, which is where we
tell Next.js which data we want to load, both on the server side and on the client side. The
library will make the object returned from the function available as props inside the
component.

The static and async keywords applied to a class method mean that the function can be
accessed outside the instance of the class and that the function yields the execution of the
wait instructions inside its body.

These concepts are pretty advanced, and they are not part of the scope of this chapter, but if
you are interested in them, you should check out the ECMAScript proposals (https:/ ​/
github.​com/​tc39/ ​proposals).

The implementation of the method we just described is as follows:

App.getInitialProps = async () => {
 const url = 'https://api.github.com/users/gaearon/gists'
 const response = await fetch(url)
 const gists = await response.json()
 return {
 gists
 }
}

We are telling the function to fire the fetch and wait for the response; then we are
transforming the response into JSON, which returns a promise. When the promise is
resolved, we can return the props object with gists.

render of the component looks pretty similar to the preceding one:

return (

 {props.gists.map(gist => (
 <li key={gist.id}>{gist.description}
))}

)

Before you run the project, you need to configure tsconfig.json:

{
 "compilerOptions": {
 "baseUrl": "src",
 "esModuleInterop": true,
 "module": "esnext",
 "noImplicitAny": true,

https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://github.com/tc39/proposals

Server-Side Rendering for Fun and Profit Chapter 9

[269]

 "outDir": "dist",
 "resolveJsonModule": true,
 "sourceMap": false,
 "target": "es6",
 "lib": ["dom", "dom.iterable", "esnext"],
 "allowJs": true,
 "skipLibCheck": true,
 "strict": true,
 "forceConsistentCasingInFileNames": true,
 "noEmit": true,
 "moduleResolution": "node",
 "isolatedModules": true,
 "jsx": "preserve"
 },
 "include": ["src/**/*.ts", "src/**/*.tsx"],
 "exclude": ["node_modules"]
}

Now, open the console and run the following command:

npm run dev

We will see the following output:

> Ready on http://localhost:3000

If we point the browser to that URL, we can see the universal application in action. It is
really impressive how easy it is to set up a universal application with a few lines of code
and zero-configuration, thanks to Next.js.

You may also notice that if you edit the application inside your editor, you will be able to
see the results within the browser instantly without needing to refresh the page. That is
another feature of Next.js, which enables hot module replacement. It is incredibly useful in
development mode.

If you liked this chapter, go and give a star on GitHub: https:/ ​/​github. ​com/​zeit/ ​next. ​js.

Summary
The journey through SSR has come to an end. You are now able to create a server-side
rendered application with React, and it should be clear why it can be useful for you. SEO is
certainly one of the main reasons, but social sharing and performance are important factors
as well. You learned how it is possible to load the data on the server and dehydrate it in the
HTML template to make it available for the client-side application when it boots on the
browser.

https://github.com/zeit/next.js
https://github.com/zeit/next.js
https://github.com/zeit/next.js
https://github.com/zeit/next.js
https://github.com/zeit/next.js
https://github.com/zeit/next.js
https://github.com/zeit/next.js
https://github.com/zeit/next.js
https://github.com/zeit/next.js
https://github.com/zeit/next.js
https://github.com/zeit/next.js
https://github.com/zeit/next.js
https://github.com/zeit/next.js

Server-Side Rendering for Fun and Profit Chapter 9

[270]

Finally, you have looked at how tools such as Next.js can help you reduce the boilerplate
and hide some of the complexity that setting up a server-side render React application
usually brings to the code base.

In the next chapter, we will talk about how to improve the performance of our React
applications.

10
Improving the Performance of

Your Applications
The effective performance of a web application is critical to providing a good user
experience and improving conversions. The React library implements different techniques
to render our components fast and to touch the Document Object Model (DOM) as little as
possible. Applying changes to the DOM is usually expensive, and so minimizing the
number of operations is crucial.

However, there are some particular scenarios where React cannot optimize the process, and
it's up to the developer to implement specific solutions to make the application run
smoothly.

In this chapter, we will go through the basic concepts of React and we will learn how to use
some APIs to help the library find the optimal path to update the DOM without
degrading the user experience. We will also see some common mistakes that can harm our
applications and make them slower.

We should avoid optimizing our components for the sake of it, and it is important to apply
the techniques that we will see in the following sections only when they are needed.

In this chapter, we will cover the following topics:

How reconciliation works and how we can help React do a better job using the
keys
Common optimization techniques and common performance-related mistakes
What it means to use immutable data and how to do it
Useful tools and libraries to make our applications run faster

Improving the Performance of Your Applications Chapter 10

[272]

Technical requirements
To complete this chapter, you will require the following:

Node.js 12+
Visual Studio Code

You can find the code for this chapter in the book's GitHub Repository at https:/ ​/​github.
com/​PacktPublishing/ ​React- ​17- ​Design- ​Patterns- ​and- ​Best- ​Practices- ​Third- ​Edition/
tree/​main/​Chapter10.

Reconciliation
Most of the time, React is fast enough by default, and you do not need to do anything more
to improve the performance of your application. React utilizes different techniques to
optimize the rendering of the components on the screen.

When React has to display a component, it calls its render method and the render
methods of its children recursively. The render method of a component returns a tree of
React elements, which React uses to decide which DOM operations have to be done to
update the UI.

Whenever the component state changes, React calls the render method on the nodes again,
and it compares the result with the previous tree of React elements. The library is smart
enough to figure out the minimum set of operations required to apply the expected changes
on the screen. This process is called reconciliation, and it is managed transparently by
React. Thanks to that, we can easily describe how our components have to look at a given
point in time in a declarative way and let the library do the rest.

React tries to apply the smallest possible number of operations on the DOM because
touching the DOM is an expensive operation.

However, comparing two trees of elements is not free either, and React makes two
assumptions to reduce its complexity:

If two elements have a different type, they render a different tree.
Developers can use keys to mark children as stable across different render calls.

The second point is interesting from a developer's perspective because it gives us a tool to
help React render our views faster.

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter10

Improving the Performance of Your Applications Chapter 10

[273]

By default, when coming back to the children of a DOM node, both lists of children are
iterated by React at the same time, and whenever there is a difference, it creates a mutation.

Let's look at some examples. Converting between the following two trees will work well
when adding an element at the end of the children:

 Carlos
 Javier

 Carlos
 Javier
 Emmanuel

The two Carlos trees match the two Javier trees by React and
then it will insert the Emmanuel tree.

Inserting an element at the beginning produces an inferior performance if implemented
naively. If we look at the example, it works very poorly when converting between these
two trees:

 Carlos
 Javier

 Emmanuel
 Carlos
 Javier

Every child will be mutated by React, instead of it realizing that it can keep the subtrees
line, Carlos and
Javier, intact. This can possibly be an issue. This problem can, of course, be
solved and the way for this is the key attribute that is supported by React. Let's look at that
next.

Improving the Performance of Your Applications Chapter 10

[274]

Keys
Children possess keys and these keys are used by React to match children between the
subsequent tree and the original tree. The tree conversion can be made efficient by adding a
key to our previous example:

 <li key="2018">Carlos
 <li key="2019">Javier

 <li key="2017">Emmanuel
 <li key="2018">Carlos
 <li key="2019">Javier

React now knows that the 2017 key is the new one and that the 2018 and 2019 keys have
just moved.

Finding a key is not hard. The element that you will be displaying might already have a
unique ID. So the key can just come from your data:

<li key={element.id}>{element.title}

A new ID can be added to your model by you, or the key can be generated by some parts of
the content. The key has to only be unique among its siblings; it does not have to be unique
globally. An item index in the array can be passed as a key, but it is now considered a bad
practice. However, if the items are never recorded, this can work well. The reorders will
seriously affect performance.

If you are rendering multiple items using a map function and you don't specify the key
property, you will get this message: Warning: Each child in an array or iterator should
have a unique "key" prop.

Let's learn some optimization techniques in our next section.

Optimization techniques
It is important to notice that, in all the examples in this book, we are using apps that have
either been created with create-react-app or have been created from scratch, but always
with the development version of React.

Improving the Performance of Your Applications Chapter 10

[275]

Using the development version of React is very useful for coding and debugging as it gives
you all the necessary information to fix the various issues. However, all the checks and
warnings come with a cost, which we want to avoid in production.

So, the very first optimization that we should do to our applications is to build the bundle,
setting the NODE_ENV environment variable to production. This is pretty easy
with webpack, and it is just a matter of using DefinePlugin in the following way:

new webpack.DefinePlugin({
 'process.env': {
 NODE_ENV: JSON.stringify('production')
 }
})

To achieve the best performance, we not only want to create the bundle with the
production flag activated, but we also want to split our bundles, one for our application
and one for node_modules.

To do so, you need to use the new optimization node in webpack:

optimization: {
 splitChunks: {
 cacheGroups: {
 default: false,
 commons: {
 test: /node_modules/,
 name: 'vendor',
 chunks: 'all'
 }
 }
 }
}

Since webpack 4 has two modes, development and production, by default, production mode is
enabled, meaning the code will be minified and compressed when you compile your
bundles using the production mode; you can specify it with the following code block:

{
 mode: process.env.NODE_ENV === 'production' ? 'production' :
 'development',
}

Your webpack.config.ts file should look like this:

module.exports = {
 entry: './index.ts',
 optimization: {

Improving the Performance of Your Applications Chapter 10

[276]

 splitChunks: {
 cacheGroups: {
 default: false,
 commons: {
 test: /node_modules/,
 name: 'vendor',
 chunks: 'all'
 }
 }
 }
 },
 plugins: [
 new webpack.DefinePlugin({
 'process.env': {
 NODE_ENV: JSON.stringify('production')
 }
 })
],
 mode: process.env.NODE_ENV === 'production' ? 'production' :
 'development'
}

With this webpack configuration, we are going to get very optimized bundles, one for our
vendors and one for the actual application.

Tools and libraries
In the next section, we will go through a number of techniques, tools, and libraries that we
can apply to our code base to monitor and improve performance.

Immutability
The new React Hooks, such as React.memo, use a shallow comparison method against the
props, which means that if we pass an object as a prop and we mutate one of its values, we
do not get the expected behavior.

In fact, a shallow comparison cannot find mutation on the properties and the components
never get re-rendered, except when the object itself changes. One way to solve this issue is
by using immutable data, data that, once it gets created, cannot be mutated.

Improving the Performance of Your Applications Chapter 10

[277]

For example, we can set the state in the following mode:

const [state, setState] = useState({})

const obj = state.obj

obj.foo = 'bar'

setState({ obj })

Even if the value of the foo attribute of the object is changed, the reference to the object is
still the same and the shallow comparison does not recognize it.

What we can do instead is create a new instance every time we mutate the object, as
follows:

const obj = Object.assign({}, state.obj, { foo: 'bar' })

setState({ obj })

In this case, we get a new object with the foo property set to bar, and the shallow
comparison will be able to find the difference. With ES6 and Babel, there is another way to
express the same concept in a more elegant way, and it is by using the object spread
operator:

const obj = {
 ...state.obj,
 foo: 'bar'
}
setState({ obj })

This structure is more concise than the previous one, and it produces the same result, but,
at the time of writing, it requires the code to be transpiled in order to be executed inside the
browser.

React provides some immutability helpers to make it easy to work with immutable objects,
and there is also a popular library called immutable.js, which has more powerful
features, but it requires you to learn new APIs.

Babel plugins
There are also a couple of interesting Babel plugins that we can install and use to improve
the performance of our React applications. They make the applications faster, optimizing
parts of the code at build time.

Improving the Performance of Your Applications Chapter 10

[278]

The first one is the React constant elements transformer, which finds all the static elements
that do not change depending on the props and extracts them from render (or the
functional components) to avoid calling _jsx unnecessarily.

Using a Babel plugin is pretty straightforward. We first install it with npm:

npm install --save-dev @babel/plugin-transform-react-constant-elements

You need to create the .babelrc file and add a plugins key with an array that has a value
of the list of plugins that we want to activate:

{
 "plugins": ["@babel/plugin-transform-react-constant-elements"]
}

The second Babel plugin that we can choose to use to improve performance is the React
inline elements transform, which replaces all the JSX declarations (or the _jsx calls) with a
more optimized version of them to make execution faster.

Install the plugin using the following command:

npm install --save-dev @babel/plugin-transform-react-inline-elements

Next, you can easily add the plugin to the array of plugins in the .babelrc file, as follows:

{
 "plugins": ["@babel/plugin-transform-react-inline-elements"]
}

Both plugins should be used only in production because they make debugging harder in
development mode. So far, we have learned a lot of optimization techniques and how to
configure some plugins using webpack.

Summary
Our journey through performance is finished, and we can now optimize our applications to
give users a better UX.

In this chapter, we learned how the reconciliation algorithm works and how React always
tries to take the shortest path to apply changes to the DOM. We can also help the library to
optimize its job by using the keys. Once you've found your bottlenecks, you can apply one
of the techniques we have seen in this chapter to fix the issue.

Improving the Performance of Your Applications Chapter 10

[279]

We have learned how refactoring and designing the structure of your components in the
proper way could provide a performance boost. Our goal is to have small components that
do one single thing in the best possible way. At the end of the chapter, we talked about
immutability, and we've seen why it's important not to mutate data to
make React.memo and shallowCompare do their job. Finally, we ran through different
tools and libraries that can make your applications faster.

In the next chapter, we'll look at testing and debugging using Jest, React Testing Library,
and React DevTools.

11
Testing and Debugging

React, thanks to its components, makes it easy to test our applications. There are many
different tools that we can use to create tests with React, and here we'll cover the most
popular ones to understand the benefits they provide.

Jest is an all-in-one testing framework solution, maintained by Christopher Pojer from
Facebook and contributors within the community, and aims to give you the best developer
experience.

By the end of the chapter, you'll be able to create a test environment from scratch and write
tests for your application's components.

In this chapter, we will look at the following topics:

Why it is important to test our applications, and how they help developers move
faster
How to set up a Jest environment to test components using Enzyme
What React Testing Library is and why it is a must-have for testing React
applications
How to test events
React DevTools and some error-handling techniques

Technical requirements
To complete this chapter, you will need the following:

Node.js 12+
Visual Studio Code

You can find the code for this chapter in the book's GitHub
Repository: https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best
-Practices-Third-Edition/tree/main/Chapter11.

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter11

Testing and Debugging Chapter 11

[281]

Understanding the benefits of testing
Testing web UIs has always been a difficult job. From unit to end-to-end tests, the fact that
the interfaces depend on browsers, user interactions, and many other variables makes it
difficult to implement an effective testing strategy.

If you've ever tried to write end-to-end tests for the web, you'll know how complex it is to
get consistent results and how the results are often affected by false negatives due to
different factors, such as the network. Other than that, user interfaces are frequently
updated to improve the experience, maximize conversions, or simply add new features.

If tests are hard to write and maintain, developers are less prone to cover their applications.
On the other hand, tests are pretty important because they make developers more confident
with their code, which is reflected in speed and quality. If a piece of code is well tested (and
the tests are well written), developers can be sure that it works and is ready to ship.
Similarly, thanks to tests, it becomes easier to refactor the code because tests guarantee that
the functionalities do not change during the rewrite.

Developers tend to focus on the feature they are currently implementing, and sometimes it
is hard to know if other parts of the application are affected by those changes. Tests help to
avoid regressions because they can tell if the new code breaks the old tests. Greater
confidence in writing new features leads to faster releases.

Testing the main functionalities of an application makes the code base more solid, and
whenever a new bug is found, it can be reproduced, fixed, and covered by tests so that it
does not happen again in the future.

Luckily, React (and the component era) makes testing user interfaces easy and efficient.
Testing components, or trees of components, is a less arduous job because every single part
of the application has its responsibilities and boundaries. If components are built in the
right way, if they are pure and aim for composability and reusability, they can be tested as
simple functions.

Another great power that modern tools bring us is the ability to run tests using Node.js and
the console. Spinning up a browser for every single test makes tests slower and less
predictable, degrading the developer experience; instead, running the tests using the
console is faster.

Testing components only in the console can sometimes give unexpected behaviors when
they are rendered in a real browser, but in my experience this is rare. When we test React
components, we want to make sure that they work properly and that, given different sets of
props, their output is always correct.

Testing and Debugging Chapter 11

[282]

We may also want to cover all the various states that a component can have. The state
might change by clicking a button, so we write tests to check if all the event handlers are
doing what they are supposed to do.

When all the functionalities of the component are covered, but we want to do more, we can
write tests to verify the component's behavior on edge cases. Edge cases are states that the
component can assume when, for example, all the props are null, or there is an error. Once
the tests are written, we can be pretty confident that the component behaves as expected.

Testing a single component is great, but it does not guarantee that multiple individually
tested components will still work once they are put together. As we will see later, with
React we can mount a tree of components and test the integration between them.

There are different techniques that we can use to write tests, and one of the most popular
ones is test-driven development (TDD). Applying TDD means writing the tests first and
then writing the code to pass the tests.

Following this pattern helps us to write better code because we are forced to think more
about the design before implementing the functionalities, which usually leads to higher
quality.

Painless JavaScript testing with Jest
The most important way to learn how to test React components in the right way is by
writing some code, and that is what we are going to do in this section.

The React documentation says that at Facebook they use Jest to test their components.
However, React does not force you to use a particular test framework, and you can use
your favorite one without any problems. To see Jest in action, we are going to create a
project from scratch, installing all the dependencies and writing a component with some
tests. It'll be fun!

The first thing to do is to move into a new folder and run the following:

npm init

Once package.json is created, we can start installing the dependencies, with the first one
being the jest package itself:

npm install --save-dev jest

Testing and Debugging Chapter 11

[283]

To tell npm that we want to use the jest command to run the tests, we have to add the
following scripts to package.json:

"scripts": {
 "build": "webpack",
 "start": "node ./dist/server",
 "test": "jest",
 "test:coverage": "jest --coverage"
}

To write components and tests using ES6 and JSX, we have to install all Babel-related
packages so that Jest can use them to transpile and understand the code.

The second set of dependencies is installed as follows:

npm install --save-dev @babel/core @babel/preset-env @babel/preset-react
ts-jest

As you may know, we now have to create a .babelrc file, which is used by Babel to know
the presets and the plugins that we would like to use inside the project.

The .babelrc file looks like the following:

{
 "presets": ["@babel/preset-env", "@babel/preset-react"]
}

Now, it is time to install React and ReactDOM, which we need to create and render
components:

npm install --save react react-dom

The setup is ready, and we can run Jest against the ES6 code and render our components
into the DOM, but there is one more thing to do.

We need to install @testing-library/jest-dom and @testing-library/react:

npm install @testing-library/jest-dom @testing-library/react

After you have installed these packages, you have to create the jest.config.js file:

 module.exports = {
 preset: 'ts-jest',
 setupFilesAfterEnv: ['<rootDir>/setUpTests.ts']
}

Testing and Debugging Chapter 11

[284]

Then, let's create the setUpTests.ts file:

import '@testing-library/jest-dom/extend-expect'

Now, let's imagine we have a Hello component:

import React, { FC } from 'react'

type Props = {
 name: string
}

const Hello: FC<Props> = ({ name }) => <h1 className="Hello">Hello {name ||
'World'}</h1>

export default Hello

In order to test this component, we need to create a file with the same name but add the
.test (or .spec) suffix to the new file. This will be our test file:

import React from 'react'
import { render, cleanup } from '@testing-library/react'

import Hello from './index'

describe('Hello Component', () => {
 it('should render Hello World', () => {
 const wrapper = render(<Hello />)
 expect(wrapper.getByText('Hello World')).toBeInTheDocument()
 })

 it('should render the name prop', () => {
 const wrapper = render(<Hello name="Carlos" />)
 expect(wrapper.getByText('Hello Carlos')).toBeInTheDocument()
 });

 it('should has .Home classname', () => {
 const wrapper = render(<Hello />)
 expect(wrapper.container.firstChild).toHaveClass('Hello')
 });

 afterAll(cleanup)
})

Testing and Debugging Chapter 11

[285]

Then, in order to run the test, you need to execute the following command:

npm test

You should see this result:

The PASS label means that all tests have been passed successfully; if you failed at least one
test, you would see the FAIL label. Let's change one of our tests to make it fail:

it('should render the name prop', () => {
 const wrapper = render(<Hello name="Carlos" />)
 expect(wrapper.getByText('Hello World')).toBeInTheDocument()
});

Testing and Debugging Chapter 11

[286]

This is the result:

As you can see, the FAIL label is specified with an X. Also, the expected and received values
provide useful information, and you can see which value is expected and which value is
being received.

If you want to see the coverage percentage of all your unit tests, you can execute the
following command:

npm run test:coverage

Testing and Debugging Chapter 11

[287]

The result is the following:

The coverage also generates an HTML version of the result; it creates a directory called
coverage and inside another called Icov-report. If you open the index.html file in
your browser, you will see the HTML version as follows:

Now that you made your first tests and you know how to collect the coverage data, let's see
how we can test events in the next section.

Testing and Debugging Chapter 11

[288]

Testing events
The events are very common in any web application and we need to test them as well, so
let's learn how to test events. For this, let's create a new ShowInformation component:

import { FC, useState, ChangeEvent } from 'react'

const ShowInformation: FC = () => {
 const [state, setState] = useState({ name: '', age: 0, show: false })

 const handleOnChange = (e: ChangeEvent<HTMLInputElement>) => {
 const { name, value } = e.target

 setState({
 ...state,
 [name]: value
 })
 }

 const handleShowInformation = () => {
 setState({
 ...state,
 show: true
 })
 }

 if (state.show) {
 return (
 <div className="ShowInformation">
 <h1>Personal Information</h1>

 <div className="personalInformation">
 <p>
 Name: {state.name}
 </p>
 <p>
 Age: {state.age}
 </p>
 </div>
 </div>
)
 }

 return (
 <div className="ShowInformation">
 <h1>Personal Information</h1>

Testing and Debugging Chapter 11

[289]

 <p>
 Name:
 </p>

 <p>
 <input name="name" type="text" value={state.name}
onChange={handleOnChange} />
 </p>

 <p>
 <input name="age" type="number" value={state.age}
onChange={handleOnChange} />
 </p>

 <p>
 <button onClick={handleShowInformation}>Show Information</button>
 </p>
 </div>
)
}

export default ShowInformation

Now, let's create the test file at src/components/ShowInformation/index.test.tsx:

import { render, cleanup, fireEvent } from '@testing-library/react'

import ShowInformation from './index'

describe('Show Information Component', () => {
 let wrapper

 beforeEach(() => {
 wrapper = render(<ShowInformation />)
 })

 it('should modify the name', () => {
 const nameInput = wrapper.container.querySelector('input[name="name"]')
as HTMLInputElement
 const ageInput = wrapper.container.querySelector('input[name="age"]')
as HTMLInputElement

 fireEvent.change(nameInput, { target: { value: 'Carlos' } })
 fireEvent.change(ageInput, { target: { value: 33 } })

 expect(nameInput.value).toBe('Carlos')
 expect(ageInput.value).toBe('33')
 })

Testing and Debugging Chapter 11

[290]

 it('should show the personal information when user clicks on the button',
() => {
 const button = wrapper.container.querySelector('button')

 fireEvent.click(button)

 const showInformation =
wrapper.container.querySelector('.personalInformation')

 expect(showInformation).toBeInTheDocument()
 })

 afterAll(cleanup)
})

If you run the test and it works fine, you should see this:

Using React DevTools
When testing in the console is not enough, and we want to inspect our application while it
is running inside the browser, we can use React DevTools.

You can install this as a Chrome extension at the following URL: https:/ ​/
chrome. ​google. ​com/ ​webstore/ ​detail/ ​react- ​developer- ​tools/
fmkadmapgofadopljbjfkapdkoienihi? ​hl= ​en.

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

Testing and Debugging Chapter 11

[291]

The installation adds a tab to the Chrome DevTools called React, where you can inspect the
rendered tree of components and check which properties they have received and what their
state is at a particular point in time.

Props and states can be read, and they can be changed in real time to trigger updates in the
UI and see the results straight away. This is a must-have tool, and in the most recent
versions, it has a new feature that can be enabled by ticking the Trace React
Updates checkbox.

When this functionality is enabled, we can use our application and visually see which
components get updated when we perform a particular action. The updated components
are highlighted with colored rectangles, and it becomes easy to spot possible optimizations.

Using Redux DevTools
If you are using Redux in your application, you probably want to use Redux DevTools to be
able to debug your Redux flow. You can install it at the following URL: https:/ ​/​chrome.
google.​com/​webstore/ ​detail/ ​redux- ​devtools/ ​lmhkpmbekcpmknklioeibfkpmmfibljd? ​hl=
es.

Also, you need to install the redux-devtools-extension package:

npm install --save-dev redux-devtools-extension

Once you have installed React DevTools and Redux DevTools, you will need to configure
them.

If you try to use Redux DevTools directly, it won't work; this is because we need to pass the
composeWithDevTools method into the Redux store; this should be the
configureStore.ts file:

// Dependencies
import { createStore, applyMiddleware } from 'redux';
import thunk from 'redux-thunk';
import { composeWithDevTools } from 'redux-devtools-extension';

// Root Reducer
import rootReducer from '@reducers';

export default function configureStore({
 initialState,
 reducer
}) {
 const middleware = [

https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es

Testing and Debugging Chapter 11

[292]

 thunk
];
 return createStore(
 rootReducer,
 initialState,
 composeWithDevTools(applyMiddleware(...middleware))
);
}

This is the best tool to test our Redux applications.

Summary
In this chapter, you learned about the benefits of testing, and the frameworks you can use
to cover your React components with tests.

You learned how to implement and test components and events with React Testing Library,
how to use the Jest coverage, and how to use React DevTools and Redux DevTools. It is
important to bear in mind common solutions when it comes to testing complex
components, such as higher-order components or forms with multiple nested fields.

In the next chapter, you will learn how to implement routes in your application using React
Router.

12
React Router

React, unlike Angular, is a library instead of a framework, meaning specific functionalities
(for example, routing or PropTypes) are not part of the React Core. Instead, routing is
handled by a third-party library called React Router.

In this chapter, you will see how to implement React Router in your application, and by the
end of the relevant sections, you will be able to add dynamic routes and understand how
React Router works.

In this chapter, we will cover the following topics:

Understanding the differences between the react-router, react-router-
dom, and react-router-native packages
How to install and configure React Router
Adding the <Switch> component
Adding the exact property
Adding parameters to the routes

Technical requirements
To complete this chapter, you will need the following:

Node.js 12+
Visual Studio Code

You can find the code for this chapter in the book's GitHub Repository
at https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practic
es-Third-Edition/tree/main/Chapter12.

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter12

React Router Chapter 12

[294]

Installing and configuring React Router
After you create a new React application using create-react-app, the first thing you
need to do is to install React Router v5.x, using the following command:

npm install react-router-dom @types/react-router-dom

You probably are confused about why we are installing react-router-dom instead of
react-router. React Router contains all the common components of react-router-dom
and react-router-native. That means that if you are using React for the web, you
should use react-router-dom, and if you are using React Native, you need to use react-
router-native.

The react-router-dom package was created originally to contain version 4, and react-
router uses version 3. The react-router-dom package has some improvements over
react-router. They are listed here:

The improved <Link> component (which renders <a>).
Includes <BrowserRouter>, which interacts with the
browser window.history.
Includes <NavLink>, which is a <Link> wrapper that knows whether it's active
or not.
Includes <HashRouter>, which uses the hash in the URL to render the
components. If you have one static page, you should use this component instead
of <BrowserRouter>.

Creating our sections
Let's create some sections to test some basic routes. We need to create four stateless
components (About, Contact, Home, and Error404) and name them as index.tsx in
their directories.

You can add the following to the src/components/Home.tsx component:

const Home = () => (
 <div className="Home">
 <h1>Home</h1>
 </div>
)

export default Home

React Router Chapter 12

[295]

The src/components/About.tsx component can be created with the following:

const About = () => (
 <div className="About">
 <h1>About</h1>
 </div>
)

export default About

The following creates the src/components/Contact.tsx component:

const Contact = () => (
 <div className="Contact">
 <h1>Contact</h1>
 </div>
)

export default Contact

Finally, the src/components/Error404.tsx component is created as follows:

const Error404 = () => (
 <div className="Error404">
 <h1>Error404</h1>
 </div>
)

export default Error404

After we have created all the functional components, we need to modify our index.tsx
file to import our route file, which we will create in the next step:

// Dependencies
import { render } from 'react-dom'
import { BrowserRouter as Router } from 'react-router-dom'

// Routes
import AppRoutes from './routes'

render(
 <Router>
 <AppRoutes />
 </Router>,
 document.getElementById('root')
)

React Router Chapter 12

[296]

Now, we need to create the routes.tsx file, where we will render our Home component
when the user accesses the root path (/):

// Dependencies
import { Route } from 'react-router-dom'

// Components
import App from './App'
import Home from './components/Home'

const AppRoutes = () => (
 <App>
 <Route path="/" component={Home} />
 </App>
)

export default AppRoutes

After that, we need to modify our App.tsx file to render the route components as children:

import { FC, ReactNode } from 'react'
import './App.css'

type Props = {
 children: ReactNode
}

const App: FC<Props> = ({ children }) => (
 <div className="App">
 {children}
 </div>
)

export default App

If you run the application, you will see the Home component in the root (/):

React Router Chapter 12

[297]

Now, let's add Error404 when the user tries to access any other route:

// Dependencies
import { Route } from 'react-router-dom'

// Components
import App from './App'
import Home from './components/Home'
import Error404 from './components/Error404'

const AppRoutes = () => (
 <App>
 <Route path="/" component={Home} />
 <Route component={Error404} />
 </App>
)

export default AppRoutes

Let's run the application again. You will see that both the Home and Error404 components
are rendered:

You are probably wondering why this is happening. It's because we need to use the
<Switch> component to execute just one component if it matches the path. For this, we
need to import the Switch component and add it as a wrapper for our routes:

// Dependencies
import { Route, Switch } from 'react-router-dom'

// Components
import App from './App'
import Home from './components/Home'
import Error404 from './components/Error404'

React Router Chapter 12

[298]

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} />
 <Route component={Error404} />
 </Switch>
 </App>
)

export default AppRoutes

Now, if you go to the root (/), you will see that the Home component and Error404 won't
be executed at the same time, but if we go to /somefakeurl, we will see that the Home
component is executed as well, and this is a problem:

To fix the problem, we need to add the exact prop in the route that we want to match. The
problem is that /somefakeurl will match our root path (/), but if we want to be very
specific about the paths, we need to add the exact prop to our Home route:

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} exact />
 <Route component={Error404} />
 </Switch>
 </App>
)

React Router Chapter 12

[299]

Now, if you go to /somefakeurl one more time, you will be able to see the Error404
component:

Now, we can add our other components (About and Contact):

// Dependencies
import { Route, Switch } from 'react-router-dom'

// Components
import App from './App'
import About from './components/About'
import Contact from './components/Contact'
import Home from './components/Home'
import Error404 from './components/Error404'

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} exact />
 <Route path="/about" component={About} exact />
 <Route path="/contact" component={Contact} exact />
 <Route component={Error404} />
 </Switch>
 </App>
)

export default AppRoutes

Now, you can visit /about:

React Router Chapter 12

[300]

Alternatively, you can now visit /contact:

Now that you have implemented your first routes, now let's add some parameters to the
routes in the next section.

Adding parameters to the routes
So far, you have learned how to use React Router for basic routes (one-level routes). Now, I
will show you how to add some parameters to the routes and get them into our
components.

For this example, we will create a Contacts component to display a list of contacts when
we visit the /contacts route, but we will show the contact information (name, phone, and
email) when the user visits /contacts/:contactId.

The first thing we need to do is to create our Contacts component. Let's use the following
skeleton.

Let's use these CSS styles:

.Contacts ul {
 list-style: none;
 margin: 0;
 margin-bottom: 20px;
 padding: 0;
}

.Contacts ul li {
 padding: 10px;
}

.Contacts a {

React Router Chapter 12

[301]

 color: #555;
 text-decoration: none;
}

.Contacts a:hover {
 color: #ccc;
 text-decoration: none;
}

Once you have created the Contacts component, you need to import it into our route file:

// Dependencies
import { Route, Switch } from 'react-router-dom'

// Components
import App from './components/App'
import About from './components/About'
import Contact from './components/Contact'
import Home from './components/Home'
import Error404 from './components/Error404'
import Contacts from './components/Contacts'

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} exact />
 <Route path="/about" component={About} exact />
 <Route path="/contact" component={Contact} exact />
 <Route path="/contacts" component={Contacts} exact />
 <Route component={Error404} />
 </Switch>
 </App>
)

export default AppRoutes

Now, you will be able to see the Contacts component if you go to the /contacts URL:

React Router Chapter 12

[302]

Now that the Contacts component is connected to React Router, let's render our contacts
as a list:

import { FC, useState } from 'react'
import { Link } from 'react-router-dom'
import './Contacts.css'

type Contact = {
 id: number
 name: string
 email: string
 phone: string
}

const data: Contact[] = [
 {
 id: 1,
 name: 'Carlos Santana',
 email: 'carlos.santana@dev.education',
 phone: '415-307-3112'
 },
 {
 id: 2,
 name: 'John Smith',
 email: 'john.smith@dev.education',
 phone: '223-344-5122'
 },
 {
 id: 3,
 name: 'Alexis Nelson',
 email: 'alexis.nelson@dev.education',
 phone: '664-291-4477'
 }
]

const Contacts: FC = (props) => {
 // For now we are going to add our contacts to our
 // local state, but normally this should come
 // from some service.
 const [contacts, setContacts] = useState<Contact[]>(data)

 const renderContacts = () => (

 {contacts.map((contact: Contact, key) => (
 <li key={contact.id}>
 <Link to={`/contacts/${contact.id}`}>{contact.name}</Link>

))}

React Router Chapter 12

[303]

)

 return (
 <div className="Contacts">
 <h1>Contacts</h1>

 {renderContacts()}
 </div>
)
}

export default Contacts

As you can see, we are using the <Link> component, which will generate an <a> tag that
points to /contacts/contact.id, and this is because we will add a new nested route into
our route file to match the ID of the contact:

const AppRoutes = () => (
 <App>
 <Switch>
 <Route path="/" component={Home} exact />
 <Route path="/about" component={About} exact />
 <Route path="/contact" component={Contact} exact />
 <Route path="/contacts" component={Contacts} exact />
 <Route path="/contacts/:contactId" component={Contacts} exact />
 <Route component={Error404} />
 </Switch>
 </App>
)

React Router has a special prop called match, which is an object that contains all the data
related to the route, and if we have parameters, we will be able to see them in the match
object:

import { FC, useState } from 'react'
import { Link } from 'react-router-dom'
import './Contacts.css'

const data = [
 {
 id: 1,
 name: 'Carlos Santana',
 email: 'carlos.santana@js.education',
 phone: '415-307-3112'
 },
 {

React Router Chapter 12

[304]

 id: 2,
 name: 'John Smith',
 email: 'john.smith@js.education',
 phone: '223-344-5122'
 },
 {
 id: 3,
 name: 'Alexis Nelson',
 email: 'alexis.nelson@js.education',
 phone: '664-291-4477'
 }
]

type Contact = {
 id: number
 name: string
 email: string
 phone: string
}

type Props = {
 match: any
}

const Contacts: FC<Props> = (props) => {
 // For now we are going to add our contacts to our
 // local state, but normally this should come
 // from some service.
 const [contacts, setContacts] = useState<Contact[]>(data)

 // Let's see what contains the match object.
 console.log(props)

 const { match: { params: { contactId } } } = props
 // By default our selectedNote is false
 let selectedContact: any = false
 if (contactId > 0) {
 // If the contact id is higher than 0 then we filter it from our
 // contacts array.
 selectedContact = contacts.filter(
 contact => contact.id === Number(contactId)
)[0];
 }

 const renderSingleContact = ({ name, email, phone }: Contact) => (
 <>
 <h2>{name}</h2>
 <p>{email}</p>

React Router Chapter 12

[305]

 <p>{phone}</p>
 </>
)

 const renderContacts = () => (

 {contacts.map((contact: Contact, key) => (
 <li key={key}>
 <Link to={`/contacts/${contact.id}`}>{contact.name}</Link>

))}

)

 return (
 <div className="Contacts">
 <h1>Contacts</h1>
 {/* We render our selectedContact or all the contacts */}
 {selectedContact
 ? renderSingleContact(selectedContact)
 : renderContacts()}
 </div>
)
}

export default Contacts

The match prop looks like this:

As you can see, the match props contain a lot of useful information. React Router also
includes the object's history and location. Also, we can get all the parameters we pass
within the routes; in this case, we are receiving the contactId parameter.

React Router Chapter 12

[306]

If you run the application again, you should see your contacts like this:

If you click on John Smith (whose contactId is 2), you will see the contact information:

After this, you can add a navbar in the App component to access all the routes:

import { Link } from 'react-router-dom'
import './App.css'

const App = ({ children }) => (

React Router Chapter 12

[307]

 <div className="App">
 <ul className="menu">
 <Link to="/">Home</Link>
 <Link to="/about">About</Link>
 <Link to="/contacts">Contacts</Link>
 <Link to="/contact">Contact</Link>

 {children}
 </div>
)

export default App

Now, let's modify our App styles:

.App {
 text-align: center;
}

.App ul.menu {
 margin: 50px;
 padding: 0;
 list-style: none;
}

.App ul.menu li {
 display: inline-block;
 padding: 0 10px;
}

.App ul.menu li a {
 color: #333;
 text-decoration: none;
}

.App ul.menu li a:hover {
 color: #ccc;
}

React Router Chapter 12

[308]

Finally, you will see something like this:

Now you know how to add routes with parameters to your application – this is amazing,
right?

Summary
Our journey through React Router has come to an end, and now you know how to install
and configure React Router, how to create basic routes, and how to add parameters to the
nested routes.

In the next chapter, we will see how to avoid some of the most common anti-patterns in
React.

13
Anti-Patterns to Be Avoided

In this book, you've learned how to apply best practices when writing a React application.
In the first few chapters, we revisited the basic concepts to build a solid understanding, and
then we took a leap into more advanced techniques in the following chapters.

You should now be able to build reusable components, make components communicate
with each other, and optimize an application tree to get the best performance. However,
developers make mistakes, and this chapter is all about the common anti-patterns we
should avoid when using React.

Looking at common errors will help you to avoid them and will aid your understanding of
how React works and how to build applications in the React way. For each problem, we
will see an example that shows how to reproduce and solve it.

In this chapter, we will cover the following topics:

Initializing the state using properties
Using indexes as a key
Spreading properties on DOM elements

Technical requirements
To complete this chapter, you will need the following:

Node.js 12+
Visual Studio Code

You can find the code for this chapter in the book's GitHub repository: https:/ ​/ ​github.
com/​PacktPublishing/ ​React- ​17- ​Design- ​Patterns- ​and- ​Best- ​Practices- ​Third- ​Edition/
tree/​main/​Chapter13.

https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-17-Design-Patterns-and-Best-Practices-Third-Edition/tree/main/Chapter13

Anti-Patterns to Be Avoided Chapter 13

[310]

Initializing the state using properties
In this section, we will see how initializing the state using properties received from the
parent is usually an anti-pattern. I have used the word usually because, as we will see, once
we have it clear in our mind what the problems with this approach are, we might still
decide to use it.

One of the best ways to learn something is by looking at the code, so we will start by
creating a simple component with a + button to increment a counter.

The component is implemented using a class, as shown in the following snippet of code:

import { FC, useState } from 'react'

type Props = {
 count: number
}

const Counter: FC<Props> = (props) => {}

export default Counter

Now, let's set our count state:

const [state, setState] = useState<any>(props.count)

The implementation of the click handler is pretty straightforward – we just add 1 to the
current count value and store the resulting value back in state:

const handleClick = () => {
 setState({ count: state.count + 1 })
}

Finally, we render and describe the output, which is composed of the current value of the
count state, and the button to increment it:

return (
 <div>
 {state.count}
 <button onClick={handleClick}>+</button>
 </div>
)

Now, let's render this component, passing 1 as the count property:

<Counter count={1} />

Anti-Patterns to Be Avoided Chapter 13

[311]

It works as expected – each click on the + button increments the current value. So, what's
the problem?

There are two main errors, which are outlined as follows:

We have a duplicated source of truth.
If the count property passed to the component changes, the state does not get
updated.

If we inspect the Counter element using the React DevTools, we notice that Props and
State hold a similar value:

<Counter>
Props
 count: 1
State
 count: 1

This makes it unclear which is the current and trustworthy value to use inside the
component and to display to the user.

Even worse, clicking + once makes the values diverge. An example of this divergence is
shown in the following code:

<Counter>
Props
 count: 1
State
 count: 2

At this point, we can assume that the second value represents the current count, but this is
not explicit and can lead to unexpected behaviors, or wrong values down in the tree.

The second problem centers on how the class is created and instantiated by React. The
useState function of the component gets called only once when the component is created.

In our Counter component, we read the value of the count property and we store it in the
state. If the value of that property changes during the life cycle of the application (let's say it
becomes 10), the Counter component will never use the new value, because it has already
been initialized. This puts the component in an inconsistent state, which is not optimal and
hard to debug.

What if we really want to use the prop's value to initialize the component, and we know for
sure that the value does not change in the future?

Anti-Patterns to Be Avoided Chapter 13

[312]

In that case, it's best practice to make it explicit and give the property a name that makes
your intentions clear, such as initialCount. For example, let's say we change the prop
declaration of the Counter component in the following way:

type Props = {
 initialCount: number
}

const Counter: FC<Props> = (props) => {
 const [count, setState] = useState<any>(props.initialCount)
 ...
}

If we use it like so, it is clear that the parent only has a way to initialize the counter, but any
future values of the initialCount property will be ignored:

<Counter initialCount={1} />

In our next section, we are going to learn about keys.

Using indexes as a key
In Chapter 10, Improving the Performance of Your Applications, which talks about performance
and the reconciler, we saw how we can help React figure out the shortest path to update the
DOM by using the key prop.

The key property uniquely identifies an element in the DOM, and React uses it to check
whether the element is new or whether it has to be updated when the component
properties or state change.

Using keys is always a good idea and if you don't do it, React gives a warning in the
console (in development mode). However, it is not simply a matter of using a key;
sometimes, the value that we decide to use as a key can make a difference. In fact, using the
wrong key can give us unexpected behaviors in some instances. In this section, we will see
one of those instances.

Let's again create a List component, as shown here:

import { FC, useState } from 'react'

const List: FC = () => {

}

Anti-Patterns to Be Avoided Chapter 13

[313]

export default List

Then we define our state:

const [items, setItems] = useState(['foo', 'bar'])

The implementation of the click handler is slightly different from the previous one because
in this case, we need to insert a new item at the top of the list:

const handleClick = () => {
 const newItems = items.slice()
 newItems.unshift('baz')

 setItems(newItems)
}

Finally, in render, we show the list and the + button to add the baz item at the top of the
list:

return (
 <div>

 {items.map((item, index) => (
 <li key={index}>{item}
))}

 <button onClick={handleClick}>+</button>
 </div>
)

If you run the component inside the browser, you will not see any problems; clicking
the + button inserts a new item at the top of the list. But let's do an experiment.

Let's change render in the following way, adding an input field near each item. We
then use an input field because we can edit its content, making it easier to figure out the
problem:

return (
 <div>

 {items.map((item, index) => (
 <li key={index}>
 {item}
 <input type="text" />

))}

Anti-Patterns to Be Avoided Chapter 13

[314]

 <button onClick={handleClick}>+</button>
 </div>
)

If we run this component again in the browser, copy the values of the items in the input
fields, and then click +, we will get unexpected behavior.

As shown in the following screenshot, the items shift down while the input elements
remain in the same position, in such a way that their value does not match the value of the
items anymore:

Running the component, clicking +, and checking the console should give us all the
answers we need.

What we can see is that React, instead of inserting the new element on top, swaps the text of
the two existing elements, and inserts the last item at the bottom as if it was new. The
reason it does that is that we are using the index of the map function as the key.

In fact, the index always starts from 0, even if we push a new item to the top of the list, so
React thinks that we changed the values of the existing two, and added a new element at
index 2. The behavior is the same as it would have been without using the key property at
all.

Anti-Patterns to Be Avoided Chapter 13

[315]

This is a very common pattern because we may think that providing any key is always the
best solution, but it is not like that at all. The key has to be unique and stable, identifying
one, and only one, item.

To solve this problem, we can, for example, use the value of the item if we expect it not to
be repeated within the list, or create a unique identifier.

Spreading properties on DOM elements
There is a common practice that has recently been described as an anti-pattern by Dan
Abramov; it also triggers a warning in the console when you do it in your React
application.

It is a technique that is widely used in the community and I have personally seen it
multiple times in real-world projects. We usually spread the properties to the elements to
avoid writing every single one manually, which is shown as follows:

<Component {...props} />

This works very well and it gets transpiled into the following code by Babel:

_jsx(Component, props)

However, when we spread properties into a DOM element, we run the risk of adding
unknown HTML attributes, which is bad practice.

The problem is not related only to the spread operator; passing non-standard properties
one by one leads to the same issues and warnings. Since the spread operator hides the
single properties we are spreading, it is even harder to figure out what we are passing to
the element.

To see the warning in the console, a basic operation we can do is render the following
component:

const Spread = () => <div foo="bar" />

The message we get looks like the following because the foo property is not valid for
a div element:

Unknown prop `foo` on <div> tag. Remove this prop from the element

Anti-Patterns to Be Avoided Chapter 13

[316]

In this case, as we said, it is easy to figure out which attribute we are passing and remove it,
but if we use the spread operator, as in the following example, we cannot control which
properties are passed from the parent:

const Spread = props => <div {...props} />;

If we use the component in the following way, there are no issues:

<Spread className="foo" />

This, however, is not the case if we do something such as the following. React complains
because we are applying a non-standard attribute to the DOM element:

<Spread foo="bar" className="baz" />

One solution we can use to solve this problem is to create a property called domProps that
we can spread safely to the component because we are explicitly saying that it contains
valid DOM properties.

For example, we can change the Spread component in the following way:

const Spread = props => <div {...props.domProps} />

We can then use it as follows:

<Spread foo="bar" domProps={{ className: 'baz' }} />

As we have seen many times with React, it's always good practice to be explicit.

Anti-Patterns to Be Avoided Chapter 13

[317]

Summary
Knowing all the best practices is always a good thing, but sometimes being aware of anti-
patterns helps us avoid taking the wrong path. Most importantly, learning the reasons why
some techniques are considered bad practice helps us understand how React works, and
how we can use it effectively.

In this chapter, we covered four different ways of using components that can harm the
performance and behavior of our web applications.

For each one of those, we used an example to reproduce the problem and supplied the
changes to apply in order to fix the issue.

We learned why using properties to initialize the state can result in inconsistencies between
the state and the properties. We also saw how using the wrong key attribute can produce
bad effects on the reconciliation algorithm. Finally, we learned why spreading non-
standard properties to DOM elements is considered an anti-pattern.

In the next chapter, we will look into deploying our React application to production.

14
Deploying to Production

Now that you have completed your first React application, it is time to learn how to deploy
it to the world. For this purpose, we will use the cloud service called DigitalOcean.

In this chapter, you will learn how to deploy your React application using Node.js and
nginx on an Ubuntu server from DigitalOcean.

In this chapter, we will cover the following topics:

Creating a DigitalOcean Droplet and configuring it
Configuring nginx, PM2, and a domain
Implementing CircleCI for continuous integration

Technical requirements
To complete this chapter, you will need the following:

Node.js 12+
Visual Studio Code

Creating our first DigitalOcean Droplet
I have used DigitalOcean for the last six years and I can say that it is one of the best cloud
services I have tried, not just because of the affordable costs, but also because it is super
easy and fast to configure, and the community has a lot of updated documentation to fix
most of the common issues related to server configuration.

At this point, you will need to invest some money to get this service. I will show you the
cheapest way to do this, and if in the future you want to increase the power of your
Droplets, you will be able to increase the capacity without redoing the configuration. The
lowest price for the very basic Droplet is $5.00 per month ($0.007 per hour).

Deploying to Production Chapter 14

[319]

We are going to use Ubuntu 20.04 (but feel free to use the latest version 21.04); you will
need to know some basic Linux commands to be able to configure your Droplet. If you're a
beginner using Linux, don't worry—I'll try to show you each step in a very easy way.

Signing up to DigitalOcean
If you don't have a DigitalOcean account, you can sign up at https:/ ​/​cloud.
digitalocean.​com/ ​registrations/ ​new.

You can sign up with your Google account, or by registering manually. Once you register
with Google, you will see the billing info view, as follows:

You can pay with your credit card or by using PayPal. Once you have configured your
payment information, DigitalOcean will ask you for some information about your project
so that it can configure your Droplet faster:

https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new

Deploying to Production Chapter 14

[320]

Deploying to Production Chapter 14

[321]

In the next section, we will create our first Droplet.

Creating our first Droplet
We will create a new Droplet from scratch. Follow these steps to do so:

Select the New Droplet option, as shown in the following screenshot:1.

Choose Ubuntu 20.04 (LTS) x64, as follows:2.

Deploying to Production Chapter 14

[322]

Then, choose the Basic plan, as shown here:3.

You can then choose $5/mo in the payment plan options:4.

Select a region. In this case, we will select the San Francisco region:5.

Deploying to Production Chapter 14

[323]

Create a root password, add the name of your Droplet and then click on the6.
Create Droplet button, as follows:

It will take around 30 seconds to create your Droplet. Once it has been created,7.
you will be able to see it:

Now, in your Terminal, you can access the Droplet by using the following8.
command:

ssh root@THE_DROPLET_IP

Deploying to Production Chapter 14

[324]

The first time you access it will ask you for the fingerprint, you just need to write9.
Yes, and then it will require your password (the one you defined when you
created your droplet).

Deploying to Production Chapter 14

[325]

Now we are all set to install Node.js, which we will be covering in the next section.

Installing Node.js
Now that you're connected to your Droplet, let's configure it. First, we need to install the
latest version of Node.js using a Personal Package Archive. The current version of Node at
the time of writing this book is 14.16.x. Follow these given steps to install Node.js:

If, when you are reading this paragraph, Node has a new version, change the1.
version in the setup_14.x command:

cd ~
curl -sL https://deb.nodesource.com/setup_14.x -o
nodesource_setup.sh

Once you get the nodesource_setup.sh file, run the following command:2.

sudo bash nodesource_setup.sh

Then, install Node by running the following command:3.

sudo apt install nodejs -y

If everything works fine, verify the installed version of Node and npm with the4.
following commands:

node -v
v14.16.1
npm -v
6.14.12

If you need a newer version of Node.js, you can always upgrade it.

Configuring Git and GitHub
I created a special repository for helping you to deploy your first React application to
production (https:/ ​/​github. ​com/ ​D3vEducation/ ​production).

https://github.com/D3vEducation/production
https://github.com/D3vEducation/production
https://github.com/D3vEducation/production
https://github.com/D3vEducation/production
https://github.com/D3vEducation/production
https://github.com/D3vEducation/production
https://github.com/D3vEducation/production
https://github.com/D3vEducation/production
https://github.com/D3vEducation/production
https://github.com/D3vEducation/production
https://github.com/D3vEducation/production

Deploying to Production Chapter 14

[326]

In your Droplet, you need to clone this Git repository (or your own repository if you have
your React application ready to be deployed). The production repository is public, but
normally you will use a private repository; in this case, you need to add the SSH key of
your Droplet to your GitHub account. To create this key, follow these steps:

Run the ssh-keygen command and then press Enter three times without writing1.
any passphrase:

If you left your Terminal inactive for more than five minutes, your
Droplet connection will probably be closed, and you will need to connect
again.

Once you have created your Droplet SSH key, you can see it by running the 2.
following command:

 vi /root/.ssh/id_rsa.pub

Deploying to Production Chapter 14

[327]

You will see something like this:

Copy your SSH key and then visit your GitHub account. Go to Settings | SSH3.
and GPG Keys (https:/ ​/ ​github. ​com/ ​settings/ ​ssh/ ​new). Then, paste your key
in the text area and add your title to the key:

Once you click on the Add SSH key button, you will see your SSH key, like so:4.

https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new
https://github.com/settings/ssh/new

Deploying to Production Chapter 14

[328]

Now you can clone our repository (or yours) using the following command:5.

git clone git@github.com:FoggDev/production.git

When you clone it for the first time, you will get a message asking you to allow6.
the RSA key fingerprint:

You have to write yes and then hit Enter to be able to clone it:7.

Then, you have to go to the production directory and install the npm packages:8.

cd production
npm install

If you want to test the application, just run the start script:9.

npm start

Then open your browser and go to your Droplet IP and add the port number. In10.
my case, it is http://144.126.222.17:3000:

Deploying to Production Chapter 14

[329]

This will run the project in development mode. If you want to run in production11.
mode, then use the following command:

npm run start:production

You should see PM2 running, as shown in the following screenshot:

Deploying to Production Chapter 14

[330]

If you run it and you view the Network tab in your Chrome DevTools, you will12.
see the bundles being loaded:

We now have our React application working in production, but let's see what else we can
do with DigitalOcean in the next section.

Turning off our Droplet
To turn off the Droplet, follow these steps:

If you want to turn off your Droplet, you can go to the Power section, or you can1.
use the ON/OFF switch:

Deploying to Production Chapter 14

[331]

DigitalOcean will charge you only when your Droplet is ON. If you click on the2.
ON switch to turn it off, then you will get the following confirmation message:

In this way, you can control your Droplet and avoid paying unnecessarily when you're not
using your Droplet.

Configuring nginx, PM2, and a domain
Our Droplet is ready to be used for production, but as you can see, we are still using port
3000. We need to configure nginx and implement a proxy to redirect the traffic from port
80 to 3000; this means we won't need to specify the port directly anymore. Node
Production Process Manager (PM2) will help us run the Node server in production
securely. Generally, if we run Node directly with the node or babel-node commands, and
there is an error in the app, then it will crash and will stop working. PM2 restarts the node
server if an error occurs.

First, in your Droplet, you need to install PM2 globally:

npm install -g pm2

PM2 will help us to run our React app in a very easy way.

Deploying to Production Chapter 14

[332]

Installing and configuring nginx
To install nginx, you need to execute the following command:

sudo apt-get update
sudo apt-get install nginx

After you have installed nginx, then you can start the configuration:

We need to adjust the firewall to allow the traffic for port 80. To list the available1.
application configurations, you need to run the following command:

sudo ufw app list
Available applications:
 Nginx Full
 Nginx HTTP
 Nginx HTTPS
 OpenSSH

Nginx Full means that it will allow the traffic from port 80 (HTTP) and port2.
443 (HTTPS). We haven't configured any domain with SSL, so, for now, we
should restrict the traffic to be sent just through port 80 (HTTP):

sudo ufw allow 'Nginx HTTP'
Rules updated
Rules updated (v6)

If you try to access the Droplet IP, you should see nginx working:

Deploying to Production Chapter 14

[333]

You can manage the nginx process with these commands:3.

Start server: sudo systemctl start nginx
Stop server: sudo systemctl stop nginx
Restart server: sudo systemctl restart nginx

Nginx is an amazing web server that is getting very popular nowadays.

Setting up a reverse proxy server
As I mentioned previously, we need to set up a reverse proxy server to send the traffic from
port 80 (HTTP) to port 3000 (React app). To do this, you need to open the following file:

sudo vi /etc/nginx/sites-available/default

The steps are as follows:

In the location / block, you need to replace the code in the file with the1.
following:

location / {
 proxy_pass http://localhost:3000;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection 'upgrade';
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
}

Once you have saved the file, you can verify whether there is a syntax error in2.
the nginx configuration with the following command:

sudo nginx -t

If everything is fine, then you should see this:3.

Finally, you need to restart the nginx server:4.

sudo systemctl restart nginx

Deploying to Production Chapter 14

[334]

Now, you should be able to access the React application without the port, as shown in the
following screenshot:

We are almost done! In the next section, we are going to add a domain to our Droplet.

Adding a domain to our Droplet
Using an IP to access a website is not nice; we always need to use a domain to help users
find our website easier. If you want to use a domain on your Droplet, you need to change
the nameservers of your domain to point to the DigitalOcean DNS. I normally use
GoDaddy to register my domains. To do so using GoDaddy, follow these steps:

 Go to https:/ ​/​dcc. ​godaddy. ​com/​manage/ ​YOURDOMAIN. ​COM/ ​dns, and then go to1.
the Nameservers section:

https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns
https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns

Deploying to Production Chapter 14

[335]

Click on the Change button, select Custom, and then specify the DigitalOcean2.
DNS:

Deploying to Production Chapter 14

[336]

Normally, it takes between 15 and 30 minutes for the DNS changes to be3.
reflected; for now, after you have updated your Nameservers, go to your Droplet
dashboard, and then choose the Add a domain option:

Deploying to Production Chapter 14

[337]

Then, write your domain name, select your Droplet, and click on the Add4.
Domain button:

Now, you have to create a new record for CNAME. Select the CNAME tab, and5.
in the HOSTNAME write www; in the alias field write @; by default, the TTL is
43200. All of this is to enable access to your domain using the www prefix:

Deploying to Production Chapter 14

[338]

If you did everything correctly, you should be able to access your domain and see
the React application working. As I said before, this process can take up to 30
minutes, but in some cases, it can take up to 24 hours depending on the DNS
propagation speed:

Amazing, now you have officially deployed your first React application to production!

Implementing CircleCI for continuous
integration
I've been using CircleCI for a while and I can tell you that it is one of the best CI solutions: it
is free for personal use, giving you unlimited repositories and users; you have 1,000 build
minutes per month, one container, and one concurrent job; if you need more, you can
upgrade the plan with an initial price of $50 per month.

Deploying to Production Chapter 14

[339]

The first thing you need to do is sign up on the site using your GitHub account (or
Bitbucket, if you prefer). If you choose to use GitHub, you need to authorize CircleCI in
your account, as shown in the following screenshot:

In the next section, we are going to add our SSH key to CircleCI.

Deploying to Production Chapter 14

[340]

Adding an SSH key to CircleCI
Now that you have created your account, CircleCI needs a way to log in to your
DigitalOcean Droplet to run the deploy script. Follow these steps to complete this task:

Create a new SSH key inside your Droplet using the following command:1.

ssh-keygen -t rsa
Then save the key as /root/.ssh/id_rsa_droplet with no password.
After go to .ssh directory
cd /root/.ssh

After that, let's add the key to our authorized_keys:2.

cat id_rsa_droplet.pub >> authorized_keys

Now, you need to download the private key. To verify that you can log in with3.
the new key, you need to copy it to your local machine, as follows:

In your local machine do:
scp root@YOUR_DROPLET_IP:/root/.ssh/id_rsa_droplet ~/.ssh/
cd .ssh
ssh-add id_rsa_droplet
ssh -v root@YOUR_DROPLET_IP

Deploying to Production Chapter 14

[341]

If you did everything correctly, you should be able to log in to your Droplet
without a password, and that means CircleCI can access our Droplet too:

Copy the content of your id_rsa_droplet.pub key and then go to your4.
repository settings (https:/ ​/​app. ​circleci. ​com/​settings/ ​project/ ​github/
YOUR_​GITHUB_ ​USER/ ​YOUR_ ​REPOSITORY):

https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY

Deploying to Production Chapter 14

[342]

Go to SSH Keys, as follows:5.

Deploying to Production Chapter 14

[343]

You can also access the URL https:/ ​/ ​app.​circleci. ​com/ ​settings/ ​project/6.
github/​YOUR_ ​GITHUB_ ​USER/ ​YOUR_ ​REPOSITORY/ ​shh, and then click on the Add
SSH Key button at the bottom:

Paste your private key, and then provide a name for the Hostname field; we will7.
name it DigitalOcean.

Now let's configure our CircleCI instance in the next section.

https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/shh

Deploying to Production Chapter 14

[344]

Configuring CircleCI
Now that you have configured access for CircleCI to your Droplet, you need to add a
config file to your project to specify the jobs you want to execute for the deployment
process. This process is shown in the following steps:

For this, you need to create the .circleci directory and add the following1.
inside the config.yml file:

version: 2.1
jobs:
 build:
 working_directory: ~/tmp
 docker:
 - image: cimg/node:14.16.1
 steps:
 - checkout
 - run: npm install
 - run: npm run lint
 - run: npm test
 - run: ssh -o StrictHostKeyChecking=no
$DROPLET_USER@$DROPLET_IP 'cd production; git checkout master; git
pull; npm install; npm run start:production;'
workflows:
 build-deploy:
 jobs:
 - build:
 filters:
 branches:
 only: master

When you have a .yml file, you need to be careful with the indentation; it is2.
similar to Python in that if you don't use indents correctly, you will get an error.
Let's see how this file is structured.
Specify the CircleCI version we will use. In this instance, you are using version3.
2.1 (the latest one at the time of writing this book):

version: 2.1

Inside jobs, we will specify that it needs to configure the container; we will4.
create it using Docker, and also outline the steps to follow for the deployment
process.

Deploying to Production Chapter 14

[345]

The working_directory will be the temporal directory we will use to install5.
the npm packages and run our deploy scripts. In this case, I decided to use
the tmp directory, as follows:

jobs:
 build:
 working_directory: ~/tmp

As I said before, we will create a Docker container, and in this instance, I selected6.
an existing image that includes node: 14.16.1. If you want to know about all
the available images, you can visit https:/ ​/​circleci. ​com/ ​docs/ ​2.​0/ ​circleci-
images:

docker:
 - image: cimg/node:14.16.1

For the code case, first do a git checkout to master, then on each run7.
sentence, you need to specify the scripts you want to run:

steps:
 - checkout
 - run: npm install
 - run: npm run lint
 - run: npm test
 - run: ssh -o StrictHostKeyChecking=no $DROPLET_USER@$DROPLET_IP
'cd production; git checkout master; git pull; npm install; npm run
start:production;'

Follow these steps:

First, you need to install the npm packages using npm install to be able to1.
perform the next tasks.
Execute the ESLint validation using npm run lint. If it fails, it will break the2.
deployment process, otherwise, it continues with the next run.
Execute the Jest validations using npm run test; if it fails, it will break the3.
deployment process, otherwise, it continues with the next run.
In the last step, we connect to our DigitalOcean Droplet, passing4.
the StrictHostKeyChecking=no flag to disable the strict host key checking. We
then use the $DROPLET_USER and $DROPLET_IP ENV variables to connect to it
(we will create those in the next step), and finally, we will specify all the
commands we will perform inside our Droplet using single quotes. These
commands are listed as follows:

https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images
https://circleci.com/docs/2.0/circleci-images

Deploying to Production Chapter 14

[346]

cd production: Grants access to the production (or your Git repository name).

git checkout master: This will check out the master branch.

git pull: Pulls the latest changes from our repository.

npm run start:production: This is the final step, which runs our project in
production mode.

Finally, let's add some environment variables to our CircleCI.

Creating ENV variables in CircleCI
As you saw previously, we are using the $DROPLET_USER and $DROPLET_IP variables, but
how do we define those? Follow these steps:

You need to go to your project settings again and select the Environment1.
Variables option. Then, you need to create the DROPLET_USER variable:

Deploying to Production Chapter 14

[347]

Then, you need to create the DROPLET_IP variable using your Droplet IP:2.

Now, you need to push the config file to your repository, and you will be ready3.
for the magic. Now that CircleCI is connected to your repository, every time you
push changes to master, it will fire a build.

Normally, the first two or three builds can fail due to syntax errors, indent errors
in our config, or maybe because we have linter errors or unit test errors. If you
have a failure, you will see something like this:

Deploying to Production Chapter 14

[348]

As you can see from the preceding screenshot, the first build failures at the4.
bottom say Build Error, and the second one says workflow build-deploy. This
basically means that in the first build I had a syntax error in the config.yml file.
After you fix all the syntax errors in the config.yml file and all the issues with5.
the linter or the unit tests, you should see a SUCCESS build, like this:

If you click on the build number, you can see all the steps that CircleCI executed6.
before publishing the new changes in your Droplet:

Deploying to Production Chapter 14

[349]

As you can see, the order of the steps is the same as we specified in our7.
config.yml file; you can even see the output of each step by clicking on it:

Deploying to Production Chapter 14

[350]

Now, let's suppose you have an error on your linter validation or in some unit8.
tests. Let's see what happen in that case, as follows:

As you can see, once an error is detected, it will exit with code 1. This means it will abort
the deployment and will mark it as a failure, and as you can see, none of the steps after npm
run lint are executed.

Deploying to Production Chapter 14

[351]

Another cool thing is that if you now go to your GitHub repository and check your
commits, you will see all the commits that had a successful build and all the commits that
had a failed build:

This is amazing – now you have your project configured to do deployments automatically
and it is connected to your GitHub repository.

Summary
Our journey through the deployment process has come to an end, and now you know how
to deploy your React application to the world (production), and also how to implement
CircleCI for continuous integration.

In the next chapter, we will learn how to publish npm packages.

15
Next Steps

React is one of the most amazing libraries that has been released in the last few years, not
only because of the library itself and its great features but also, most importantly, due to the
ecosystem that has been built around it.

Following the React community is very exciting and inspiring; there are new projects and
tools to learn about and play with every single day. Not just that, there are conferences and
meetups where you can talk to people in real life and build new relationships, blog posts
that you can read to improve your skills and learn more, and many other ways to become a
better developer.

The React ecosystem encourages best practices and love for open source developers, which
is fantastic for the future of our careers.

In this chapter, we will cover the following topics:

How to contribute to the React library by opening issues and pull requests
Why it is important to give back to the community and share your code
How to publish an npm package and how to use semantic versioning

Technical requirements
To complete this chapter, you will need the following:

Node.js 12+
Visual Studio Code

Next Steps Chapter 15

[353]

Contributing to React
One thing that people often want to do when they've used React for a while is to contribute
to the library. React is open source, which means that its source code is public and anyone
who's signed the Contributor License Agreement (CLA) can help to fix bugs, write
documentation, or even add new features.

You can read the full terms of the CLA at the following URL: https:/ ​/
code. ​facebook. ​com/ ​cla.

You need to make sure that any bug you post in React's GitHub repository is 100%
replicable. Once you verify this, and if you want to file an issue on GitHub, you can go
to https://github.com/facebook/react/issues/new. As you'll see, the issue comes with
some pre-filled instructions, with one of those being to set up the minimal demo. The other
questions help you to explain the problem and to describe current and expected behaviors.

It is important for you to read the Facebook Code of Conduct before participating or
contributing to the repository, at https:/ ​/ ​code.​facebook. ​com/ ​codeofconduct. The
document lists good behaviors that are expected from all community members and that
everyone should follow. Once the issue is filed, you have to wait for one of the core
contributors to examine it and tell you what they've decided to do with the bug. Depending
on the severity of it, they might fix it, or ask you to fix it.

In the second case, you can fork the repository and write code to solve the problem. It is
important to follow the coding style guides and write all the tests for the fix. It is also
crucial that all the old tests pass to make sure the new code does not introduce regressions
in the code base. When the fix is ready and all the tests are green, you can submit a pull
request, and wait for the core team members to review it. They may decide to merge it or
ask you to make some changes.

If you did not find a bug but you still want to contribute to the project, you can look into
the issues tagged with the good first issue label on GitHub: https:/ ​/​github. ​com/
facebook/​react/​labels/ ​good%20first%20issue. This is a great way to start contributing
and it is fantastic that the React team gives everyone, especially new contributors, the
possibility of being part of the project.

If you find a good first bug issue that has not already been taken by someone, you can add
a comment on the issue saying that you are interested in working on it. One of the core
members will get in touch with you. Make sure to discuss your approach and the path you
want to take with them before you start coding so that you do not have to rewrite the code
multiple times.

https://code.facebook.com/cla
https://code.facebook.com/cla
https://code.facebook.com/cla
https://code.facebook.com/cla
https://code.facebook.com/cla
https://code.facebook.com/cla
https://code.facebook.com/cla
https://code.facebook.com/cla
https://code.facebook.com/cla
https://code.facebook.com/cla
https://github.com/facebook/react/issues/new
https://github.com/facebook/react/issues/new
https://code.facebook.com/codeofconduct
https://code.facebook.com/codeofconduct
https://code.facebook.com/codeofconduct
https://code.facebook.com/codeofconduct
https://code.facebook.com/codeofconduct
https://code.facebook.com/codeofconduct
https://code.facebook.com/codeofconduct
https://code.facebook.com/codeofconduct
https://code.facebook.com/codeofconduct
https://code.facebook.com/codeofconduct
https://code.facebook.com/codeofconduct
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue
https://github.com/facebook/react/labels/good%20first%20issue

Next Steps Chapter 15

[354]

Another way of improving React is by adding new features. It is important to say that the
React team has a plan to follow, and the main features are designed and decided by the
core members.

If you are interested in knowing the next steps that the library will take,
you can find some of them under the Type: Big Picture label on
GitHub: https:/ ​/​github. ​com/ ​facebook/ ​react/ ​labels/
Type%3A%20Big%20Picture.

That said, if you have some good ideas about features that should be added to the library,
the first thing to do is open an issue and start talking with the React team. You should
avoid spending time writing code and submitting a pull request before asking them,
because the feature you have in mind might not fit into their plans, or might conflict with
other functionalities they are working on.

Distributing your code
Contributing to the React ecosystem does not only mean pushing code into the React
repository. To give back to the community and help developers, you can create packages,
write blog posts, answer questions on Stack Overflow, and perform many other activities.

Suppose, for example, you created a React component that solves a complex problem, and
you think that other developers would benefit from using it instead of investing time in
building their solutions. The best thing to do is to publish it on GitHub and make it
available for everyone to read and use. However, pushing the code to GitHub is only a
small action within a big process, and it comes with some responsibilities. So, you should
have a clear idea in mind about the reasons behind your choice.

The motivation behind why you want to share your code contributes to improving your
skills as a developer. Sharing your code, on the one hand, forces you to follow best practices
and write better code. On the other hand, it exposes your code to feedback and comments
from other developers. This is a big opportunity for you to receive tips and improve your
code to make it better.

Other than the suggestions related to the code itself, by pushing your code to GitHub, you
benefit from other people's ideas. In fact, you might have thought about a single problem
that your component can solve, but another developer may use it in a slightly different
way, finding new solutions for it. Moreover, they might need new features and they could
help you implement them, so that everyone, yourself included, can benefit from it. Building
software together is a great way to improve both your skills and your packages, and that is
why I strongly believe in open source.

https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture
https://github.com/facebook/react/labels/Type%3A%20Big%20Picture

Next Steps Chapter 15

[355]

Another significant opportunity that open source can give you is letting you get in touch
with smart and passionate developers from all around the world. Working closely with
new people who have different backgrounds and skillsets is one of the best ways to keep
our minds open and improve ourselves.

Sharing code also gives you some responsibilities and it could be time-consuming. In fact,
once the code is public and people can use it, you have to maintain it.

Maintaining a repository requires commitment because the more popular it gets and the
more people use it, the higher the number of questions and issues. For example, developers
may encounter bugs and open issues, so you have to go through all of them and try to
reproduce the problems. If the problems exist, then you have to write the fix and publish a
new version of the library. You could receive pull requests from developers, which could be
long and complex, and they need to be reviewed.

If you decide to ask people to co-maintain the project and help you with issues and pull
requests, you have to coordinate with them to share your vision and make decisions
together.

Knowing the best practices when pushing open
source code
We can go through some good practices that can help you make a better repository and
avoid some of the common pitfalls.

First of all, if you want to publish your React component, you have to write a
comprehensive set of tests. With public code and many people contributing to it, tests are
very helpful for many reasons:

They make the code more robust.
They help other developers understand what the code does.
They make it easier to find regression when new code is added.
They make other contributors more confident in writing the code.

The second important thing to do is add a README with a description of the component, an
example of its use, and documentation of the APIs and props that can be used. This helps
users of the package, but it also avoids people opening issues and asking questions about
how the library works and how it should be used.

Next Steps Chapter 15

[356]

It is also essential to add a LICENSE file to your repository to make people aware of what
they can and cannot do with your code. GitHub has a lot of ready-made templates to
choose from. Whenever you can, you should keep the package small and add as few
dependencies as you can. Developers tend to think carefully about size when they have to
decide whether to use a library or not. Remember that heavy packages have a bad impact
on performance.

Not only that, depending on too many third-party libraries can create problems if any of
them are not maintained or have bugs.

One tricky part in sharing React components comes when you have to decide on the
styling. Sharing JavaScript code is pretty straightforward while attaching the CSS is not as
easy as you may think. In fact, there are many different paths you can take to provide it:
from adding a CSS file to the package to using inline styles. The important thing to keep in
mind is that CSS is global and generic class names may conflict with ones that already exist
in the project where the component is imported.

The best choice is to include the fewest possible styles and make the component highly
configurable for end users. In this way, developers will be more likely to use it because it
can be adapted to their custom solutions.

To show that your component is highly customizable, you can add one or more examples to
the repository to make it easy for everyone to understand how it works and which props it
accepts. Examples are also useful so that you can test new versions of the component and
see whether there are unexpected breaking changes.

As we saw in Chapter 3, React Hooks, tools such as React Storybook can help you create
living style guides, which are easier for you to maintain and for the consumer of your
package to navigate and use.

An excellent example of a highly customizable library that uses Storybook to show all these
variations is react-dates from Airbnb. You should take that repository as the perfect
example of how to publish React components to GitHub.

Next Steps Chapter 15

[357]

As you can see, they use Storybook to show the different options of the component:

Last but not least, you might not just want to share your code – you may also want to
distribute your package. The most popular package manager for JavaScript is npm, which
we've used throughout this book to install packages and dependencies.

In the next section, we will see how easy it is to publish a new package with npm.

Other than npm, some developers may need to add your component as a global dependency
and use it without a package manager.

As we saw in Chapter 1, Taking Your First Steps with React, you can easily use React by just
adding a script tag pointing to https:/ ​/​unpkg. ​com/ ​. It is important to give the users of
your library the same option.

So, to offer a global version of your package, you should build the Universal Module
Definition (UMD) version as well. With webpack, this is pretty straightforward; you
just have to set libraryTarget in the output section of the configuration file.

https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/

Next Steps Chapter 15

[358]

Publishing an npm package
The most popular way of making a package available to developers is by publishing it
to npm, the package manager for Node.js.

We used it in all the examples in this book and you have seen how easy it is to install a
package; it is just a matter of running the npm install package, and that is it. What you
may not know is how easy it is to publish a package as well.

First of all, let's say you move into an empty directory and write the following in your
terminal:

npm init

A new package.json file will be created and some questions will be displayed. The first
one is the package name, which defaults to the folder name, and then the version number.
These are the most important ones because the first is the name that the users of your
package will refer to when they install and use it; the second helps you release new
versions of your package safely and without breaking other people's code.

The version number is composed of three numbers separated by a dot, and they all have a
meaning. The last number of the package on the right represents the patch, and it should be
increased when a new version of the library that contains bug fixes is pushed to npm.

The number in the middle indicates the minor version of the release, and it should be
changed when new features are added to the library. Those new features should not break
existing APIs. Finally, the first number on the left represents the major version, and it has to
be increased when a version containing breaking changes is released to the public.

Following this approach, called Semantic Versioning (SemVer), is good practice and it
makes your users more confident when they have to update your package.

The first version of a package is usually 0.1.0.

To publish an npm package, you must have an npm account, which you can easily create by
running the following command in the console, where $username is the name of your
choice:

npm adduser $username

Once the user is created, you can run the following command:

npm publish

Next Steps Chapter 15

[359]

A new entry will be added to the registry with the package name and the version you
specified in package.json.

Whenever you change something in your library and you want to push a new version, you
just have to run $type, where one patch is minor or major:

npm version $type

This command will bump the version automatically in your package.json file and it will
also create a commit and a tag if your folder is under version control.

Once the version number is increased, you just have to run npm publish again, and the
new version will be available to users.

Summary
In the last stop on this trip around the React world, we have seen some of the aspects that
make React great – its community and its ecosystem – and how to contribute to them.

You learned how to open an issue if you find a bug in React, and the steps to take to make it
easier for its core developers to fix it. You now know the best practices when making code
open source, and the benefits and the responsibilities that come with it.

Finally, you saw how easy it is to publish packages on the npm registry, and how to choose
the right version number to avoid breaking other people's code.

About Packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

The React Workshop
Brandon Richey, Ryan Yu, Endre Vegh, Theofanis Despoudis, Anton Punith,
Florian Sloot

ISBN: 978-1-83864-556-4

Use JSX to include logic in the view layer of applications
Get familiar with the important methods and events in the React lifecycle
Distinguish between class and functional component syntaxes
Create forms with Formik and handle errors
Understand the React Hooks API and the problems it can solve
Fetch outside data using the Axios library and populate the data to the app

https://www.packtpub.com/product/the-react-workshop/9781838645564

Other Books You May Enjoy

[362]

Full-Stack React, TypeScript, and Node
David Choi

ISBN: 978-1-83921-993-1

Discover TypeScript’s most important features and how they can be used to
improve code quality and maintainability
Understand what React Hooks are and how to build React apps using them
Implement state management for your React app using Redux
Set up an Express project with TypeScript and GraphQL from scratch
Build a fully functional online forum app using React and GraphQL
Add authentication to your web app using Redis
Save and retrieve data from a Postgres database using TypeORM
Configure NGINX on the AWS cloud to deploy and serve your apps

https://www.packtpub.com/product/full-stack-react-typescript-and-node/9781839219931

Other Books You May Enjoy

[363]

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please
visit authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com

Index

.

.env file
 configuring 117
 creating 116

A
animations
 implementing 213, 214
Apollo Client
 frontend login system, building 154
Apollo Server
 configuring 119, 120
Atomic CSS modules 244, 245
authentication functions
 about 130
 creating 133, 134
 JWT functions 131

B
Babel 7
 installing 30
Babel plugins 277
basic config file
 creating 117, 119
Block, Element, Modifier (BEM) methodology 221

C
children 33
children prop
 using 101, 102, 103
CircleCI
 configuring 344, 345
 ENV variables, creating 346, 347, 349, 350
 implementing, for continuous integration 338,

339

 SSH key, adding to 340, 341, 342, 343

class component
 migrating, to React Hooks 64, 65, 67, 68
code style
 about 47
 ESLint 50
 Prettier 48, 49
code
 distributing 354, 355
components
 communicating 101
 memoizing, with memo 74, 75, 76
 wrapping, with provider 184
composition 57, 243
conditionals 40
configuration files
 creating 116
container components
 characteristics 108
container pattern 103, 104, 105, 106, 107
context
 consuming, with useContext 185, 186
 creating 182, 183
Contributor License Agreement (CLA) 353
control statements 44, 45, 46
controlled components 206, 207, 208
coupling 15
create-react-app
 used, for creating application 70, 71, 72, 73
CSS modules
 using 231
CSS
 in JavaScript 221
 issues 221, 222, 223
currying 57

[365]

D
data fetching
 implementing 262, 263, 264, 265, 266
dead code elimination 222
declarative programming
 versus imperative programming 10, 11, 12
Developer Experience (DX) 18
DigitalOcean Droplet
 creating 318
DigitalOcean
 about 318
 signing up 319
 URL 319
div element
 creating 31
Document Object Model (DOM) 8, 55, 69, 230
DOM elements
 about 32
 properties, spreading on 315, 316
Domain-Specific Language (DSL) 14
dotenv 117
Droplet
 creating 321, 322, 323
 domain, adding to 334, 335, 336, 337, 338
 turning off 330, 331

E
edge cases 282
EditorConfig
 about 48
 reference link 48
element 12
ENV variables
 creating, in CircleCI 346, 347, 349, 350, 351
ESLint
 about 50
 configuring 51, 52
 installing 51
event bubbling 211
event delegation 211
events
 handling 208, 209, 210
 testing 288, 290
Express 252

F
Facebook Code of Conduct
 reference link 353
forms
 controlled components 206, 207
 implementing 202
 uncontrolled components 202, 203, 204, 205,

206

frontend login system, building with Apollo Client
 about 154
 Apollo Client, configuring 168, 169
 App Routes, creating 169
 Dashboard components, creating 174, 175
 Express Server, configuring 158, 159
 frontend configuration, creating 160, 161
 GraphQL mutations, creating 165
 GraphQL queries, creating 165
 JWT functions, creating 164, 165
 Login components, creating 171, 172
 login system, testing 175, 176, 177, 178, 179
 pages, creating 170, 171
 TypeScript, configuring 157
 user context, creating to handle connected user

166, 168
 user context, creating to handle login 166, 168
 user middleware, creating 161, 162, 163
 Webpack 5, configuring 154, 155, 156
function, passed as argument
 memoizing, in effect 87, 88, 89
function
 memoizing, with useCallback 82, 83, 84, 85, 86,

87

Functional CSS 244
functional programming (FP)
 basics 54
 composition 57
 currying 57
 first-class functions 55
 immutability 56
 purity 55
 user interfaces (UIs) 58
FunctionAsChild 112, 113

[366]

G
getUserData query
 creating 126
getUsers query
 creating 125
Git hooks 53, 54
Git
 configuring 325, 326, 327, 328, 329, 330
GitHub
 configuring 325, 326, 327, 328, 329, 330
GraphQL 114
GraphQL mutations
 about 122, 123
 defining 121, 122
 testing 138, 139, 141, 142, 143
 validations 144, 145, 147
GraphQL project
 running 136, 137, 138
GraphQL queries
 about 122
 defining 121, 122
 testing 138, 139, 141, 142, 143
 validations 144, 145, 147
GraphQL type definitions
 merging 123
GraphQL types
 defining 121, 122

H
Higher Order Component (HOC) 43, 108, 109,

110, 111
Higher-Order Functions (HOFs) 55, 108
HTML, versus JSX
 about 34
 attributes 34
 Boolean attributes 37
 root 35
 spaces 36
 style 34

I
immutability 56, 276, 277
immutable data 277
imperative programming

 versus declarative programming 10, 11, 12
indexes
 using, as key 312, 313, 314
inline styles
 implementing 223, 224, 225, 226
input types 123
interfaces
 defining, for Sequelize models 135
isomorphic application 253

J
JavaScript code
 converting, into TypeScript 20, 21
JavaScript fatigue 16, 17, 18, 19, 266
JavaScript
 CSS 221
Jest
 about 280
 painless JavaScript testing 282, 283, 284, 285,

286, 287
JSON Web Token (JWT) 131
JSX, patterns
 about 38
 conditionals 40, 41, 42, 43
 control statements 44, 45, 46
 loops 44
 multi-properties 40
 multiline 38, 39
 sub-rendering 47
JSX, versus HTML
 about 34
 attributes 34
 Boolean attributes 37
 root 35
 spaces 36
 style 34
JSX
 children 33
 div element, creating 31
 DOM elements 32
 props 32
 React components 32
 spread attribute operator 37, 38
 template literals 38
 using 29

[367]

JWT functions 131

K
keys
 about 274
 indexes, using as 312, 313, 314

L
linters 46
locally scoped CSS 238, 239, 240, 241, 242, 243
login
 performing 148, 149, 150, 151, 152, 153
loops 44

M
memo
 about 70, 90
 component, memoizing 74, 75, 76
middleware 161
module bundlers 232
mutations
 creating 127

N
Next.js
 about 266
 using, to create React application 266, 268, 269
nginx
 configuring 332
 installing 332
Node Production Process Manager (PM2) 331
Node.js
 installing 325
non-nullable 122
npm package
 publishing 358, 359

O
OmniDB
 download link 116
open source code
 pushing, best practices 355, 356, 357
optimization techniques 274, 275
owner 101

P
painless JavaScript testing
 with Jest 282, 283, 284, 285, 286, 287
parameters
 adding, to routes 300, 301, 302, 303, 305, 306,

308

pgAdmin 4
 download link 116
Pokedex
 building 187, 188, 189, 190, 191, 194
PostgreSQL Database Management
 tools 116
PostgreSQL database
 Sequelize, connecting to 130
PostgreSQL
 download link 116
 installing 115
presentational components
 about 105
 characteristics 108
presentational pattern 103, 104, 105, 106, 107,

108

Prettier 48, 49
properties
 spreading, on DOM elements 315, 316
 used, for initializing state 310, 311, 312
props 32
provider
 components, wrapping 184

R
Radium library
 exploring 227, 228, 229, 230
react 17
React application
 creating, with Next.js 266, 268, 269
React components 32
React constant elements transformer 278
React Context API 181
React CSS modules 245, 246
React DevTools
 using 290, 291
React effects
 about 68

[368]

 firing, conditionally 69
 useEffect 69
React elements
 working 12, 13
React Hooks
 about 61
 class component, migrating to 64, 65, 67, 68
 rules 63
React inline elements transform 278
React Motion 215
React Router
 about 293
 configuring 294
 installing 294
React Storybook 356
React Suspense
 testing 194, 195, 196, 197, 198, 199, 200
 with SWR 187
react-dom 17
React.js
 reference link 29
React
 about 14, 15, 16
 contributing to 353, 354
reconciliation 13, 272, 273
Redux DevTools
 reference link 291
 using 291
refs 211, 212
resolvers
 creating 124
 getUserData query, creating 126
 getUsers query, creating 125
 merging 127
 mutations, creating 127
reusable components 101
reverse proxy server
 setting up 333, 334
routes
 parameters, adding 300, 301, 302, 303, 305,

306, 308

S
Scalable Vector Graphics (SVG) 216, 217
Search Engine Optimization (SEO)

 implementing 253, 254
sections
 creating 294, 295, 296, 297, 298, 299, 300
Semantic Versioning (SemVer) 358
Sequelize models
 creating 128, 129
 interfaces, defining for 135
 types, defining for 134
Sequelize
 connecting, to PostgreSQL database 130
Server-Side Rendering (SSR), example
 creating 256, 257, 258, 259, 260, 261, 262
Server-Side Rendering (SSR)
 about 252
 implementation, reasons 253, 254, 255, 256
single event handler 210
single global handler 211
spread attribute operator 37, 38
SSH key
 adding, to CircleCI 340, 341, 342, 343
Stale-While-Revalidate (SWR) 187
State hook
 using 61, 62
state
 initializing, with properties 310, 311, 312
styled-components
 implementing 247, 248, 249
sub-rendering 47
synthetic event 208

T
tagged template literals 247
template literals 38
Test-driven development (TDD) 282
testing
 benefits 281
theming 249
tools
 for PostgreSQL Database Management 116
transpilation process 30
types
 defining, for Sequelize models 134
TypeScript, interfaces
 about 24
 declaration merging 26, 27

 extending 24, 25
 implementing 25, 26
TypeScript
 about 19
 features 20
 JavaScript code, converting into 20, 21
 types 22, 23

U
uncontrolled components 202, 203, 204, 205,

206

universal applications 252, 253
Universal Module Definition (UMD) 357
useCallback
 about 70, 90
 function definition, memoizing 82, 83, 84, 85,

86, 87
useContext
 used, for consuming context 185, 186
useEffect 69
useMemo
 about 70, 90
 value, memoizing 77, 78, 79, 80, 81
useReducer hook 91, 92, 93, 94, 95, 96, 97

V
vjeux 221

W
Webpack 5 231, 232
Webpack application
 setting up 232, 233, 234, 235, 236, 238

	Title Page
	Copyrights and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1: Hello React!
	Taking Your First Steps with React
	Technical requirements
	Differentiating between declarative and imperative programming
	How React elements work
	Unlearning everything
	Understanding JavaScript fatigue
	Introducing TypeScript
	TypeScript features
	Converting JavaScript code into TypeScript
	Types
	Interfaces
	Extending
	Implementing
	Declaration merging

	Summary

	Cleaning Up Your Code
	Technical requirements
	Using JSX
	Babel 7
	Creating our first element
	DOM elements and React components
	Props
	Children
	Differences with HTML
	Attributes
	Style
	Root
	Spaces
	Boolean attributes

	Spread attributes
	Template literals
	Common patterns
	Multiline
	Multi-properties
	Conditionals
	Loops
	Control statements
	Sub-rendering

	Styling code
	EditorConfig
	Prettier
	ESLint
	Installation
	Configuration
	Git Hooks

	Functional programming
	First-class functions
	Purity
	Immutability
	Currying
	Composition
	FP and UIs

	Summary

	Section 2: How React Works
	React Hooks
	Technical requirements
	Introducing React Hooks
	No breaking changes
	Using the State Hook
	Rules of Hooks
	Rule 1: Only call Hooks at the top level
	Rule 2: Only call Hooks from React Functions

	Migrating a class component to React Hooks
	Understanding React effects
	Understanding useEffect
	Firing an effect conditionally

	Understanding useCallback, useMemo, and memo
	Memoizing a component with memo
	Memoizing a value with useMemo
	Memoizing a function definition with useCallback
	Memoizing function passed as an argument in effect

	Understanding the useReducer Hook
	Summary

	Exploring Popular Composition Patterns
	Technical requirements
	Communicating components
	Using the children prop

	Exploring the container and presentational patterns
	Understanding HOCs
	Understanding FunctionAsChild
	Summary

	Understanding GraphQL with a Real Project
	Technical requirements
	Installing PostgreSQL
	Best tools for PostgreSQL database management

	Creating our .env file and configuration files
	Configuring our .env file
	Creating a basic config file

	Configuring Apollo Server
	Defining our GraphQL types, queries, and mutations
	Queries
	Mutations

	Merging our type definitions
	Creating our resolvers
	Creating the getUsers query
	Creating the getUserData query
	Creating the mutations

	Merging our resolvers
	Creating Sequelize models
	Connecting Sequelize to a PostgreSQL database
	Authentication functions
	What is JSON Web Token?
	JWT functions
	Creating authentication functions
	Types and interfaces

	Running our project for the first time
	Testing our GraphQL queries and mutations
	Validations

	Performing a login
	Building a frontend login system with Apollo Client
	Configuring Webpack 5
	Configuring our TypeScript
	Configuring the Express server
	Creating our frontend configuration
	Creating the user middleware
	Creating JWT functions
	Creating our GraphQL queries and mutations
	Creating our user context to handle the login and the connected user
	Configuring our Apollo Client
	Creating our app routes
	Creating our pages
	Creating our Login components
	Creating our Dashboard components
	Testing our login system

	Summary

	Managing Data
	Technical requirements
	Introducing the React Context API
	Creating our first context
	Wrapping our components with the provider
	Consuming context with useContext

	Introducing React Suspense with SWR
	Introducing SWR
	Building a Pokedex!
	Testing our React Suspense

	Summary

	Writing Code for the Browser
	Technical requirements
	Understanding and implementing forms
	Uncontrolled components
	Controlled components

	Handling events
	Exploring refs
	Implementing animations
	React Motion

	Exploring SVG
	Summary

	Section 3: Performance, Improvements, and Production!
	Making Your Components Look Beautiful
	Technical requirements
	CSS in JavaScript
	Understanding and implementing inline styles
	Exploring the Radium library
	Using CSS modules
	Webpack 5
	Setting up a project
	Locally scoped CSS
	Atomic CSS modules
	React CSS modules

	Implementing styled-components
	Summary

	Server-Side Rendering for Fun and Profit
	Technical requirements
	Understanding universal applications
	Reasons for implementing SSR
	Implementing search engine optimization
	A common code base
	Better performance
	Don't underestimate the complexity

	Creating a basic example of SSR
	Implementing data fetching
	Using Next.js to create a React application
	Summary

	Improving the Performance of Your Applications
	Technical requirements
	Reconciliation
	Keys
	Optimization techniques
	Tools and libraries
	Immutability
	Babel plugins

	Summary

	Testing and Debugging
	Technical requirements
	Understanding the benefits of testing
	Painless JavaScript testing with Jest
	Testing events
	Using React DevTools
	Using Redux DevTools
	Summary

	React Router
	Technical requirements
	Installing and configuring React Router
	Creating our sections
	Adding parameters to the routes
	Summary

	Anti-Patterns to Be Avoided
	Technical requirements
	Initializing the state using properties
	Using indexes as a key
	Spreading properties on DOM elements
	Summary

	Deploying to Production
	Technical requirements
	Creating our first DigitalOcean Droplet
	Signing up to DigitalOcean
	Creating our first Droplet
	Installing Node.js
	Configuring Git and GitHub
	Turning off our Droplet

	Configuring nginx, PM2, and a domain
	Installing and configuring nginx
	Setting up a reverse proxy server
	Adding a domain to our Droplet

	Implementing CircleCI for continuous integration
	Adding an SSH key to CircleCI
	Configuring CircleCI
	Creating ENV variables in CircleCI

	Summary

	Next Steps
	Technical requirements
	Contributing to React
	Distributing your code
	Knowing the best practices when pushing open source code

	Publishing an npm package
	Summary

	About Packt
	Other Books You May Enjoy
	Index

