

An Atypical ASP.NET Core 6
Design Patterns Guide
Second Edition

A SOLID adventure into architectural principles and design patterns using
.NET 6 and C# 10

Carl-Hugo Marcotte

BIRMINGHAM—MUMBAI

An Atypical ASP.NET Core 6 Design Patterns Guide
Second Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Senior Publishing Product Manager: Suman Sen
Acquisition Editor – Peer Reviews: Gaurav Gavas
Project Editor: Amisha Vathare
Content Development Editor: Edward Doxey
Copy Editor: Safis Editing
Technical Editor: Tejas Mhasvekar
Proofreader: Safis Editing
Indexer: Hemangini Bari
Presentation Designer: Ganesh Bhadwalkar

First published: December 2020
Second edition: March 2022

Production reference: 2280622

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80324-984-1
www.packt.com

http://www.packt.com

Foreword

After 10 years of abiding partnership with Carl-Hugo, I still remember the production support project
that ushered this partnership in—the application’s accuracy and reliability were the overriding factors,
providing the final product’s competitive edge. This project brought to light Carl-Hugo’s talent and
his solid grasp of the .NET programming platform, which spurred me on to entrust him with more
sensitive and crucial projects, laying the groundwork for our extended partnership.

We started tackling projects that had been on hold for a long time, requiring deep analysis, and more
importantly, acute imagination to put them across using .NET programs. Once again, Carl-Hugo’s
knowledge and skills stood out, leading to robust and flexible .NET application designs.

Carl-Hugo has consolidated his expertise by spending several years teaching programming. His book
An Atypical ASP.NET Core 6 Design Patterns Guide, Second Edition unites that experience with his long-
term expertise in the field. I highly recommend reading the book and putting it into practice as I’ve
already had the opportunity to attend some of his training sessions and bear witness to this manual’s
consistency and practical features.

Abdelhamid Zebdi

IT Director at Nortek Air Solutions (2007-2017), IT OPS Management at House of Commons of Canada
(2017-present).

Contributors

About the author
Carl-Hugo Marcotte has been developing, designing, and architecting web applications professionally
since 2005, wrote his first line of code at about eight years old, and holds a bachelor’s degree in computer
science.

After working at a firm for a few years, he became an independent consultant, and developed projects
of different sizes for SMEs and educational institutions. He is now a Senior Solutions Architect at Export
Development Canada and is passionate about software architecture, C#, ASP.NET Core, and the Cloud.

He loves to share his knowledge, which led him to teach programming, write a blog, and create,
maintain, and contribute to multiple open-source projects.

I want to thank everyone who supported me during my journey into the world of authoring, especially my
other half and partner in life, Cathie, who is always there no matter the idea I pursue.

About the reviewer
Damir Arh has many years of experience with software development and maintenance; from complex
enterprise software projects to modern consumer-oriented mobile applications. Although he has
worked with a wide spectrum of different languages, his favorite language remains C#. In his drive
towards better development processes, he is a proponent of test-driven development, continuous
integration, and continuous deployment. He shares his knowledge by speaking at local user groups
and conferences, blogging, and writing articles. He has received the prestigious Microsoft MVP award
for developer technologies 10 times in a row. In his spare time, he’s always on the move: hiking,
geocaching, running, and rock climbing.

Join our book’s Discord space
Join the book’s Discord workspace for Ask me Anything session with the authors:

https://packt.link/ASPdotNET6DesignPatterns

https://packt.link/ASPdotNET6DesignPatterns

Table of Contents

Preface xxiii

Section 1: Principles and Methodologies

Chapter 1: Introduction 1

What is a design pattern? �� 2
Anti-patterns and code smells ��� 3

Anti-patterns • 3
Anti-pattern – God Class • 3

Code smells • 4
Code smell – Control Freak • 4
Code smell – Long Methods • 4

Understanding the web – request/response ��� 5
Getting started with �NET �� 9

.NET SDK versus runtime • 9

.NET 5+ versus .NET Standard • 9
Visual Studio Code versus Visual Studio versus the command-line interface • 10

An overview of project templates • 11
Running and building your program • 12

Technical requirements • 12
Summary ��� 13
Questions ��� 13
Further reading �� 13

Chapter 2: Automated Testing 15

An overview of automated testing ��� 15
Unit testing • 16

Table of Contentsviii

Integration testing • 16
End-to-end testing • 17
Other types of tests • 17
Picking the right test style • 18
Testing approaches • 19
Refactoring • 20
Technical debt • 20

Testing �NET applications ��� 21
Creating an xUnit test project • 21
Getting started with xUnit • 21

Facts • 21
Assertions • 23
Theories • 25
Closing words • 30

Arrange, Act, Assert • 31
Organizing your tests • 31

Unit tests • 32
Integration tests • 34

ASP.NET Core integration testing • 35
Classic web application • 35
Minimal hosting • 37

Important testing principles ��� 39
Summary ��� 40
Questions ��� 40
Further reading �� 40

Chapter 3: Architectural Principles 41

The SOLID principles ��� 41
Single responsibility principle (SRP) • 42

Project – BookStore • 42
What is an interface? • 52

Open/Closed principle (OCP) • 53
Project – IAttacker • 53

Liskov substitution principle (LSP) • 62
Project – HallOfFame • 64
Conclusion • 73

Interface segregation principle (ISP) • 73

Table of Contents ix

Project – Ninja versus Pirate • 74
Project – Bookstore update • 77
Conclusion • 80

Dependency inversion principle (DIP) • 81
Direct dependency • 81
Inverted dependency • 81
Inverting subsystems using DIP • 82
Project – Dependency inversion • 83
Conclusion • 86
What’s next? • 86

Other important principles ��� 87
Separation of concerns • 87
Don’t repeat yourself (DRY) • 88
Keep it simple, stupid (KISS) • 89

Summary ��� 89
Questions ��� 90
Further reading �� 90

Section 2: Designing for ASP.NET Core

Chapter 4: The MVC Pattern Using Razor 93

The Model View Controller design pattern ��� 93
Goal • 94
Design • 94
Anatomy of ASP.NET Core MVC • 95

Directory structure • 96
Controller • 97
Model • 98
View • 99
Default routing • 100

Conclusion • 101
The View Model design pattern ��� 101

Goal • 101
Design • 102
Project – View models (a list of students) • 103
Conclusion • 105

Summary ��� 106

Table of Contentsx

Questions ��� 106
Further reading �� 106

Chapter 5: The MVC Pattern for Web APIs 107

An overview of REST ��� 107
HTTP methods • 108
Status code • 108
HTTP headers • 109
Versioning • 110

Default versioning strategy • 110
Versioning strategy • 111

Wrapping up • 111
The Model View Controller design pattern ��� 111

Goal • 112
Design • 112
Anatomy of ASP.NET Core web APIs • 113

The entry point • 113
Directory structure • 114
Controller • 114
Returning values • 115
Attribute routing • 117

Conclusion • 119
The Data Transfer Object design pattern ��� 119

Goal • 119
Design • 120
Project – DTO • 120
Conclusion • 127

API contracts �� 128
Summary ��� 131
Questions ��� 132
Further reading �� 132

Chapter 6: Understanding the Strategy, Abstract Factory,
and Singleton Design Patterns 133

The Strategy design pattern �� 133
Goal • 134
Design • 134

Table of Contents xi

Project – Strategy • 135
Conclusion • 140

The Abstract Factory design pattern �� 141
Goal • 141
Design • 141
Project – AbstractVehicleFactory • 143
Conclusion • 147

The Singleton design pattern �� 148
Goal • 148
Design • 149
An alternate (better) way • 151
Code smell – Ambient Context • 152
Conclusion • 154

Summary ��� 155
Questions ��� 155

Chapter 7: Deep Dive into Dependency Injection 157

What is dependency injection? �� 157
The composition root • 159
Registering your features elegantly • 159
Object lifetime • 161
Code smell – Control Freak • 163

Using external IoC containers ��� 164
Revisiting the Strategy pattern �� 166

Constructor injection • 166
Property injection • 166
Method injection • 167
Project – Strategy • 168

Adding the View Model • 170
Adding a guard clause • 171

Conclusion • 172
Revisiting the Singleton pattern �� 173

Project – Application state • 173
Project – Wishlist • 178
Conclusion • 184

Understanding the Service Locator pattern ��� 184
Project – ServiceLocator • 184

Table of Contentsxii

Implementing method injection • 187
Implementing constructor injection • 187
Implementing a minimal API • 188

Conclusion • 188
Revisiting the Factory pattern ��� 189

Project – Factory • 189
Conclusion • 192

Summary ��� 192
Questions ��� 193
Further reading �� 193

Chapter 8: Options and Logging Patterns 195

The Options pattern ��� 195
Getting started • 195

IOptionsMonitor<TOptions> • 197
IOptionsFactory<TOptions> • 197
IOptionsSnapshot<TOptions> • 197
IOptions<TOptions> • 198

Project – CommonScenarios • 198
Named options • 201
Using settings • 204

Project – OptionsConfiguration • 206
Implementing a configurator object • 208
Using multiple configurator objects • 209
Exploring other configuration possibilities • 210

Project – OptionsValidation • 211
Eager validation • 211
Data annotations • 212
Validation types • 213

Project – OptionsValidationFluentValidation • 216
Workaround – Injecting options directly • 218
Conclusion • 220

Becoming familiar with �NET logging abstractions �� 221
About logging • 221
Writing logs • 222
Log levels • 227
Logging providers • 229

Table of Contents xiii

Configuring logging • 229
Structured logging • 233
Conclusion • 234

Summary ��� 234
Questions ��� 235
Further reading �� 235

Section 3: Designing at Component Scale

Chapter 9: Structural Patterns 239

Implementing the Decorator design pattern �� 239
Goal • 239
Design • 240
Project – Adding behaviors • 243

DecoratorA • 244
DecoratorB • 245

Project – Decorator using Scrutor • 246
Conclusion • 248

Implementing the Composite design pattern ��� 249
Goal • 249
Design • 249
Project – BookStore • 250
Conclusion • 261

Implementing the Adapter design pattern ��� 261
Goal • 261
Design • 262
Project – Greeter • 263
Conclusion • 265

Implementing the Façade design pattern �� 265
Goal • 265
Design • 266
Project – The façades • 267

Opaque façade • 267
Transparent façade • 270
The program • 273
Flexibility in action • 275
Alternative façade patterns • 276

Table of Contentsxiv

Conclusion • 276
Summary ��� 277
Questions ��� 278
Further reading �� 278

Chapter 10: Behavioral Patterns 279

Implementing the Template Method pattern ��� 279
Goal • 279
Design • 279
Project – Building a search machine • 280
Conclusion • 284

Implementing the Chain of Responsibility pattern ��� 285
Goal • 285
Design • 285
Project – Message interpreter • 286
Project – Improved message interpreter • 291
Project – A final, finer-grained design • 294
Conclusion • 298

Summary ��� 299
Questions ��� 299

Chapter 11: Understanding the Operation Result Design Pattern 301

The Operation Result pattern �� 301
Goal • 302
Design • 302
Project – Implementing different Operation Result patterns • 303

The consumer • 303
The simplest form of the Operation Result pattern • 304
A single error message • 305
Adding a return value • 307
Multiple error messages • 308
Adding message severity • 310
Sub-classes and factories • 315

Advantages and disadvantages • 318
Advantages • 318
Disadvantages • 318

Summary ��� 319

Table of Contents xv

Questions ��� 320
Further reading �� 320

Section 4: Designing at Application Scale

Chapter 12: Understanding Layering 323

Introducing layering �� 323
Classic layering model • 324
Splitting the layers • 327
Layers versus tiers versus assemblies • 328

What is an assembly? • 328
Responsibilities of the common layers �� 329

Presentation • 329
Domain • 329

Rich domain model • 330
Anemic domain model • 331
Service layer • 333

Data • 334
Repository pattern • 335
Unit of Work pattern • 337

Abstract layers ��� 339
Sharing the model �� 342
Clean Architecture ��� 346
Implementing layering in real life ��� 351

To be or not to be a purist? • 351
Building a façade over a database • 352

Summary ��� 354
Questions ��� 355
Further reading �� 355

Chapter 13: Getting Started with Object Mappers 357

Object mapper ��� 357
Goal • 358
Design • 358
Project – Mapper • 359
Code smell – Too many dependencies • 364

Table of Contentsxvi

Pattern – Aggregate Services • 365
Pattern – Mapping Façade • 367
Project – Mapping service • 368
Project – AutoMapper • 371
Conclusion • 378

Summary ��� 378
Questions ��� 379
Further reading �� 379

Chapter 14: Mediator and CQRS Design Patterns 381

A high-level overview of Vertical Slice Architecture �� 381
Implementing the Mediator pattern �� 383

Goal • 383
Design • 383
Project – Mediator (IMediator) • 385
Project – Mediator (IChatRoom) • 389
Conclusion • 394

Implementing the CQRS pattern ��� 394
Goal • 395
Design • 395
Project – CQRS • 396
Code smell – Marker Interfaces • 410

Metadata • 410
Dependency identifier • 411

Conclusion • 414
Using MediatR as a mediator ��� 415

Project – Clean Architecture with MediatR • 415
Conclusion • 421

Summary ��� 421
Questions ��� 422
Further reading �� 422

Chapter 15: Getting Started with Vertical Slice Architecture 423

Vertical Slice Architecture �� 423
What are the advantages and disadvantages? • 425
Anti-pattern – Big Ball of Mud • 427
Project – Vertical Slice Architecture • 427

Table of Contents xvii

Project organization • 428
Exploring a feature • 430
Request validation • 437
Testing • 442

Continuing your journey • 446
Conclusion • 448

Summary ��� 448
Questions ��� 449
Further reading �� 449

Chapter 16: Introduction to Microservices Architecture 451

What are microservices? ��� 452
Cohesive unit of business • 452
Ownership of data • 453
Microservice independence • 453

An introduction to event-driven architecture ��� 454
Domain events • 455
Integration events • 455
Application events • 455
Enterprise events • 455
Conclusion • 456

Getting started with message queues ��� 457
Conclusion • 459

Implementing the Publish-Subscribe pattern �� 460
Message brokers • 463
The event sourcing pattern • 463
Example • 465
Conclusion • 473

Introducing Gateway patterns ��� 474
Gateway Routing pattern • 475
Gateway Aggregation pattern • 478
Backends for Frontends pattern • 480
Mixing and matching gateways • 481
Conclusion • 482

Revisiting the CQRS pattern �� 484
Conclusion • 487

Table of Contentsxviii

Exploring the Microservice Adapter pattern �� 488
Adapting an existing system to another • 489
Decommissioning a legacy application • 491
Adapting an event broker to another • 496
Conclusion • 498

Summary ��� 499
Questions ��� 500
Further reading �� 500

Section 5: Designing the Client Side

Chapter 17: ASP.NET Core User Interfaces 503

Getting familiar with Razor Pages ��� 503
Design • 505
Routing • 508
Conclusion • 508

Organizing the user interface �� 509
Partial views • 509

Project – Shared form • 510
Conclusion • 513

Tag Helpers • 513
Built-in Tag Helpers • 515
Creating a custom Tag Helper • 524
Creating an RSS feed TagHelperComponent • 526
Conclusion • 529

View components • 529
Project – Reusable employee count • 530
Conclusion • 532

Display and editor templates ��� 533
Display templates • 533
Editor templates • 535
Project – Composite BookStore revisited • 537
Conclusion • 543

Summary ��� 544
Questions ��� 544
Further reading �� 545

Table of Contents xix

Chapter 18: A Brief Look into Blazor 547

Overview of Blazor Server ��� 548
Overview of Blazor WebAssembly ��� 549
Getting familiar with Razor components ��� 550

Creating Razor components • 551
C#-only components • 551
Razor-only components • 552
Razor and C# hybrid components • 553

CSS isolation • 554
Component life cycle • 556
Event handling • 558

The Model-View-Update pattern �� 560
Goal • 561
Design • 561
Project – Counter • 562
Conclusion • 566

A medley of Blazor features ��� 566
Summary ��� 569
Questions ��� 569
Further reading �� 570
An end is simply a new beginning ��� 571

Appendices

Appendix A 575

Older C# features ��� 575
The null-coalescing operator (C# 2.0) • 575
Expression-bodied member (C# 6-7) • 576
Throw expressions (C# 7.0) • 577
Tuples (C# 7.0+) • 578
Default literal expressions (C# 7.1) • 582
Switch expressions (C# 8) • 583
Discards (C# 7) • 584
Async main (C# 7.1) • 585
User-defined conversion operators (C# 1) • 586
Local functions (C# 7) and a static local function (C# 8) • 588

Table of Contentsxx

What’s new in �NET 5 and C# 9? ��� 592
Top-level statements • 592
Target-typed new expressions • 593
Init-only properties • 594
Record classes • 594

Simplifying the record creation • 595
The with keyword • 596
Deconstruction • 596
Equality comparison • 597
Conclusion • 598

What’s new in �NET 6 and C# 10? ��� 598
File-scoped namespaces • 599
Global using directives • 599
Implicit using directives • 600
Constant interpolated strings • 601
Record struct • 601
Minimal hosting model • 602
Minimal APIs • 603
Nullable reference types • 605

Appendix B 607

An overview of containers ��� 607
Docker ��� 608

Docker Compose • 611
Orchestration ��� 615

Project Tye • 616
Kubernetes • 616

Scaling ��� 618
Summary ��� 619
Further reading �� 619

Assessment Answers 621

Chapter 1 ��� 621
Chapter 2 ��� 621
Chapter 3 ��� 621
Chapter 4 ��� 621
Chapter 5 ��� 622

Table of Contents xxi

Chapter 6 ��� 622
Chapter 7 ��� 622
Chapter 8 ��� 622
Chapter 9 ��� 623
Chapter 10 ��� 623
Chapter 11 ��� 623
Chapter 12 ��� 623
Chapter 13 ��� 624
Chapter 14 ��� 624
Chapter 15 ��� 624
Chapter 16 ��� 625
Chapter 17 ��� 625
Chapter 18 ��� 625

Acronyms Lexicon 627

Other Books You May Enjoy 631

Index 635

Preface

Design patterns are a set of solutions to many of the common problems occurring in software
development. They are essential for any experienced developer and professionals crafting software
solutions of any scale.

We start by exploring basic design patterns, automated testing, the SOLID architectural principles,
dependency injection, and other ASP.NET Core mechanisms. Then we explore component-scale
patterns oriented toward small chunks of software. Next, we move on to application-scale patterns
and techniques, where we explore higher-level patterns and how to structure the application as a
whole. The book covers many fundamental Gang of Four (GoF) patterns, such as strategy, singleton,
decorator, façade, and composite. The chapters are organized based on scale and topics, allowing you
to start small with a strong base and build slowly on top of it, the same way you would build a program.
Many use cases in the book combine more than one design pattern to display alternate usage. It also
shows that design patterns are tools to be used, not complex concepts to be feared. Finally, we tackle
the client side to connect the dots and make ASP.NET Core a viable full stack alternative.

This book is a journey to learn the reasoning behind the craft. By the end of the book, you will be
able to mix and match design patterns and will have learned how to think about architecture. You
will learn techniques to help you create the building blocks that you need to solve your unique day-
to-day design problems.

Who this book is for
The book is intended for intermediate software and web developers with an understanding of .NET
who want to write flexible, maintainable, and robust code for building scalable web applications. The
book assumes knowledge of C# programming and an understanding of web concepts such as HTTP.

What this book covers
Section 1, Principles and Methodologies
This section contains the book’s foundations: an overview of unit testing and xUnit, the SOLID principles,
and some theory and examples on how to design software.

Chapter 1, Introduction, contains the prerequisites and an explanation of how the book works as well
as a few important topics that will be useful to a software developer.

Prefacexxiv

Chapter 2, Automated Testing, introduces you to the basics of unit testing and the xUnit testing framework
as well as to some good practices and methodologies to help write unit tests.

Chapter 3, Architectural Principles, lays the architectural groundwork with crucial principles used
throughout the book and extremely important to any engineer trying to write SOLID code.

Section 2, Designing for ASP.NET Core
This section introduces ASP.NET Core-specific subjects, including Model-View-Controller (MVC),
View Models, Data Transfer Objects (DTO), and other classic design patterns. We also deep dive into
dependency injection and explore the evolved usage of certain patterns in ASP.NET Core as pillars of
modern software engineering.

Chapter 4, The MVC Pattern Using Razor, introduces you to the MVC and the View Model design patterns
to render views using Razor and ASP.NET Core MVC.

Chapter 5, The MVC Pattern for Web APIs, takes you further on the ASP.NET Core MVC journey, focusing
on web APIs. We explore the DTO pattern and API contracts.

Chapter 6, Understanding the Strategy, Abstract Factory, and Singleton Design Patterns, introduces you to
the traditional implementation of three GoF design patterns: Strategy, Abstract Factory, and Singleton.

Chapter 7, Deep Dive into Dependency Injection, takes the ASP.NET Core dependency injection container
for a ride, introducing you to one of the most important aspects of modern software development. This
chapter connects ASP.NET Core and the SOLID principles. Once the basics of dependency injection
are laid out, we review the previous three GoF design patterns and revisit them using dependency
injection, opening the way to build testable, flexible, and reliable software.

Chapter 8, Options and Logging Patterns, takes ASP.NET Core-related subjects and digs into them. We
cover different options patterns and the abstraction provided to us. We also explore how to leverage
logging in .NET 6.

Section 3, Designing at Component Scale
This section focuses on component design, where we study how an individual piece of software can be
crafted to achieve a particular goal. We explore a few more GoF patterns that should help you design
SOLID data structures and components as well as simplify the complexity of our code by encapsulating
our logic in smaller units.

Chapter 9, Structural Patterns, introduces four new GoF structural design patterns and a few variants,
such as transparent façades and opaque façades. It also introduces you to Scrutor, an open source
project that adds support for the dependency injection of decorators.

Chapter 10, Behavioral Patterns, introduces two GoF behavioral design patterns and concludes by mixing
them together as a final improvement on the code sample’s design.

Chapter 11, Understanding the Operation Result Design Pattern, covers multiple variants of the Operation
Result design pattern, structuring a result object to carry more than a simple result.

Preface xxv

Section 4, Designing at Application Scale
This section takes a step toward application design and introduces layering, vertical slices, and
microservices. We overview each technique making sure you know how to get started. We also cover
different component-level patterns that help put those architectural styles together.

Chapter 12, Understanding Layering, introduces you to layering and clean architecture, covering
the primary objectives behind the presentation, domain, data (persistence) layers, and their clean
architecture counterparts, which is the apogee of layering. It also highlights the evolution of application
design in the last few decades, helping you understand where it started (the beginning of the chapter)
and where it is now (the end of the chapter).

Chapter 13, Getting Started with Object Mappers, covers object mapping (that is, copying an object
into another), also known as the Translator pattern, the Mapper pattern, and Entity Translator. The
chapter introduces AutoMapper at the end, an open source library, to help us cover the most common
scenarios automatically.

Chapter 14, Mediator and CQRS Design Patterns, introduces the Command Query Responsibility
Segregation (CQRS) and the Mediator patterns. After covering those two patterns, we explore an open
source tool called MediatR, which is foundational to many subsequent subjects.

Chapter 15, Getting Started with Vertical Slice Architecture, introduces Vertical Slice Architecture. It uses
a number of the previous patterns and tools that we have explored to piece together a different way
to see the design of an application. It also introduces FluentValidation, which gets added to MediatR
and AutoMapper.

Chapter 16, Introduction to Microservices Architecture, introduces microservices, what they are, what they
are not, and talks about a few related patterns. It introduces many concepts, such as message queues,
events, Publish-Subscribe, and Gateway patterns. We also revisit CQRS at cloud scale.

Section 5, Designing the Client Side
This section introduces multiple UI patterns that we can use when developing ASP.NET Core 6
applications, such as Blazor, Razor Pages, and various types of components. It overviews what ASP.
NET Core 6 offers in terms of UIs, leading to additional learning paths if you are interested.

Chapter 17, ASP.NET Core User Interfaces, explores most of the UI elements available to us in ASP.NET
Core 6, such as Razor Pages, Partial Views, Tag Helpers, View Components, Display Templates, and
Editor Templates.

Chapter 18, A Brief Look into Blazor, touches upon Blazor Server quickly, then explores Blazor
WebAssembly (Wasm) to complete our journey and transform C#/.NET into a full-stack alternative
to other JavaScript technologies. We explore Razor Components and the Model-View-Update design
pattern. We end the chapter with a medley of possibilities you can start digging into.

Appendices
The appendices contain additional information about supporting subjects related to the technology
used and explored in the book.

Prefacexxvi

Appendix A explores numerous C# features spanning a wide range of versions, including .NET 6 and C#
10. If you don’t understand a piece of code in the book, that feature is most likely covered in Appendix
A. Even if you understood all the code, you should find some good tips there.

Appendix B covers additional microservices-related topics like an overview of containers with a cheat
sheet-like list of useful Docker commands, an overview of orchestration, and some notions related
to scaling applications.

To get the most out of this book
You must know C# and how to program. Boolean logic, loops, and other basic programming constructs
should be mastered, including object-oriented programming basics. Some knowledge of ASP.NET will
be beneficial. Knowing how to read UML class and sequence diagrams is an asset, but not required.

The code samples and resources are available on GitHub (https://adpg.link/net6). The README.md
file at the root of the repository is filled with information to help you find the code and resources you
are looking for.

Most links are shortened in the form of https: //adpg.link/**** so readers of a physical copy can
easily type URLs quickly.

In the book, I use a mix of Visual Studio 2022 (which has a free version) and Visual Studio Code (free).
I recommend that you use one or both of those. The IDE is unrelated to most of the content. You could
use Notepad if you are impetuous enough (I don’t recommend that). Unless you install Visual Studio,
which comes with the .NET SDK, you may need to install the .NET 6 SDK. The SDK comes with the
dotnet CLI as well as the building tools for running and testing your programs. I develop on Windows,
but you should be able to use another OS. OS-related topics are very limited, even inexistent. The code
compiles on both Windows and Linux.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/An-
Atypical-ASP.NET-Core-6-Design-Patterns-Guide. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https://static.packt-cdn.com/downloads/9781803249841_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. For example, “Mount the
downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

https://adpg.link/net6
https://github.com/PacktPublishing/An-Atypical-ASP.NET-Core-6-Design-Patterns-Guide
https://github.com/PacktPublishing/An-Atypical-ASP.NET-Core-6-Design-Patterns-Guide
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803249841_ColorImages.pdf

Preface xxvii

A block of code is set as follows:

public class FactTest
{
 [Fact]
 public void Should_be_equal()
 {
 var expectedValue = 2;
 var actualValue = 2;
 Assert.Equal(expectedValue, actualValue);
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

public class AsyncFactTest
{
 [Fact]
 public async Task Should_be_equal()
 {
 var expectedValue = 2;
 var actualValue = 2;
 await Task.Yield();
 Assert.Equal(expectedValue, actualValue);
 }
}

Any command-line input or output is written as follows:

Passed! - Failed: 0, Passed: 23, Skipped: 0, Total: 23,
Duration: 22 ms - MyApp.Tests.dll (net6.0)

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in
menus or dialog boxes, also appear in the text like this. For example: “Select System info from the
Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Prefacexxviii

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of your
message. If you have questions about any aspect of this book, please email us at questions@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book we would be grateful if you would report this to us. Please visit,
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission
Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

For more information about Packt, please visit packtpub.com.

Share your thoughts
Once you’ve read An Atypical ASP.NET Core 6 Design Patterns Guide, Second Edition, we’d love to hear
your thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://packtpub.com
https://www.packtpub.com/

Section 1: Principles and
Methodologies
This section focuses on architectural principles and development methodologies that we use throughout
the book. These introductory chapters are essential for progressing toward making great architectural
decisions.

We first look at how to approach the book itself, explore prerequisites, and see a few helpful topics.
Then, we cover automated testing and xUnit, to finally jump into the architectural principles, where
we begin our study of the fundamentals of modern software engineering.

This section comprises the following chapters:

• Chapter 1, Introduction
• Chapter 2, Automated Testing
• Chapter 3, Architectural Principles

1
Introduction

The goal of this book is not to create yet another design pattern book; instead, the chapters are organized
according to scale and topic, allowing you to start small with a strong foundation and build slowly
upon it, in just the same way that you would build a program.

Instead of this being a guide that covers a few ways of applying a design pattern, we will explore the
thought processes behind the systems we are designing from a software engineer’s point of view.

This is not a magic recipe book, and from experience, there is no magic recipe when designing software;
there is only your logic, knowledge, experience, and analytical skills. Let’s define “experience” as your
past successes and failures. And don’t worry, you will fail during your career, but don’t get discouraged
by it. The faster you fail, the faster you can recover and learn, leading to successful products. Many
techniques covered in this book should help you achieve that goal. Everyone has failed and made
mistakes; you aren’t the first, and you certainly won’t be the last. To paraphrase a well-known saying
of Roosevelt’s, the people that never fail are the ones who never do anything.

The high-level plan looks like this:

• We will explore basic patterns, unit testing, architectural principles, and some crucial
ASP.NET Core mechanisms.

• Then, we will move up to the component scale, exploring patterns oriented toward small
chunks of software and individual units.

• After that, we will move to application-scale patterns and techniques, where we explore
higher-level patterns and how to structure an application as a whole.

• Afterward, we will tackle the client side to connect the dots and make ASP.NET a viable full
stack alternative.

Many subjects covered throughout the book could have a book of their own. Once you are done with this
book, you should have plenty of ideas about where to continue your journey into software architecture.

Introduction2

Here are a few pointers that I believe are worth stating:

• The chapters are organized to start with small-scale patterns and then progress to higher-level
ones, making the learning curve easier.

• Instead of giving you a recipe, the book focuses on the thinking behind things and shows the
evolution of some techniques to help you understand why the evolution happened.

• Many use cases combine more than one design pattern to illustrate alternate usage, so that
you can understand the patterns and use them efficiently. This also shows that design patterns
are not beasts to tame but tools to use, manipulate, and bend to your will.

• As in real life, no textbook solution can solve all our problems, and real problems are always
more complicated than what’s explained in textbooks. In this book, my goal is to show you
how to mix and match patterns to think “architecture,” instead of giving you step-by-step
instructions to reproduce.

This chapter introduces the different concepts that we will be exploring throughout the book, including
refreshers on a few notions. We will also cover .NET and its tooling, as well as the technical requirements,
such as where the source code is located.

The following topics will be covered in this chapter:

• What is a design pattern?
• Anti-patterns and code smells
• Understanding the web – request/response
• Getting started with .NET

What is a design pattern?
Since you just purchased a book about design patterns, I guess that you have some idea of what design
patterns are, but let’s just make sure that we are on the same page.

Abstract definition: A design pattern is a proven technique that can be used to solve a specific problem.

In this book, we will apply different patterns to solve different problems and leverage some open
source tools to go further, faster! Abstract definitions make people sound intelligent and all, but there
is no better way to learn than by experimenting with something, and design patterns are no different.

If that definition does not make sense to you yet, don’t worry. You should have enough information by
the end of the book to correlate the multiple practical examples and explanations with that definition,
making it clear enough.

I like to compare programming to playing with LEGO® because what you have to do is generally
the same: put small pieces together to create something bigger. It could be a castle, a spaceship, or
something else that you want to build. With that analogy in mind, a design pattern is a plan to assemble
a solution that fits one or more scenarios; a tower or a reactor, for example. Therefore, if you lack
imagination or skills in the case of LEGO®, possibly because you are too young, your castle might not
look as good as someone else’s who has more experience. Design patterns give you the tools you need,
helping you put beautiful and reliable pieces together to improve your masterpiece.

Chapter 1 3

However, instead of snapping LEGO® blocks together, you nest code blocks and interweave objects
in a virtual environment!

Before going into more detail, well-thought-out applications of design patterns should improve your
application designs. That is true whether you are designing a small component or a whole system.
However, be careful: throwing patterns into the mix just to use them can lead to the opposite result.
Aim to write readable code that solves the issue at hand, not at over-engineering systems with as many
patterns as you can.

As we have briefly mentioned, there are design patterns that are applicable to multiple software
engineering levels, and in this book, we will start small and grow to cloud scale! We will follow a
smooth learning curve, starting with simpler patterns and code samples that bend good practices to
focus on the patterns, and finally ending with more advanced full stack topics, integrating multiple
patterns and good practices.

Of course, some subjects are overviews more than deep dives, like automated testing, because no one
can fit it all in a single book. Nonetheless, I’ve done my best to give you as much information about as
many architecture-related subjects as I can, and I hope you’ll find this book a helpful and enjoyable read.

Let’s start with the opposite of design patterns because it is essential to identify wrong ways of doing
things if you want to avoid making those mistakes or correct them when you see them. Knowing the
right way to overcome specific problems using design patterns is crucial.

Anti-patterns and code smells
Anti-patterns and code smells are architectural bad practices or tips about possible bad design. Learning
about best practices is as important as learning about bad ones, which is where we start. There are
multiple anti-patterns and code smells throughout the book to help you get started.

Anti-patterns
An anti-pattern is the opposite of a design pattern: it is a proven flawed technique that will most likely
cause you some trouble and cost you time and money (and probably give you a headache or two along
the way).

An anti-pattern is a pattern that seems to be a good idea and that seems to be the solution you were
looking for, but that in the end will most likely cause more harm than good. Some anti-patterns started
as legitimate design patterns and were labeled anti-patterns later. Sometimes, it is a matter of opinion,
and sometimes the classification can be influenced by the programming language.

Let’s look at an example next. We will explore some other anti-patterns throughout the book.

Anti-pattern – God Class
A God class is a class that handles way too many things. It is usually a central class that many other
classes inherit from or use; it is the class that knows and manages everything in the system; it is the
class. On the other hand, it is also the class that nobody wants to update, and the class that breaks the
application every time somebody touches it: it is an evil class!

Introduction4

The best way to fix this is to separate responsibilities and distribute them to multiple classes instead
of only one. We will see how to split responsibilities throughout the book, which helps create more
robust software.

If you have a personal project with a God class at its core, start by reading the book, and then try to
apply the principles and patterns that you learn to divide that class into multiple smaller classes that
interact together. Try to organize those new classes into cohesive units, modules, or assemblies.

We will be getting into architectural principles very soon, which will open the way to concepts such
as responsibility segregation.

Code smells
A code smell is an indicator of a possible problem. It points to areas of your design that could benefit
from a redesign. By “code smell,” we mean “code that stinks” or “code that does not smell right.”

It is important to note that a code smell only indicates the possibility of a problem; it does not mean
that there is a problem. They usually are good indicators though, so it is worth taking the time to
analyze a “smelly” part of your software.

An excellent example of this is when many comments are being used to explain the logic of a method.
That often means that the code could be split into smaller methods with proper names, leading to
more readable code and allowing you to get rid of those pesky comments.

Another note about comments is that they don’t evolve, so what often happens is that the code described
by the comments changes but the comment remains the same. That leaves a false or obsolete description
of a block of code that can lead a developer astray.

The same is also true with method names. Sometimes, the method’s name and its body tell a different
story, leading to the same issues. Nevertheless, it is rare that this will happen since programmers tend
to read and write code better than spoken language comments. Nonetheless, keep both in mind when
reading, writing, or reviewing code.

Code smell – Control Freak
An excellent example of a code smell is when you use the new keyword. This is an indication of a
hardcoded dependency where the creator controls the new object and its lifetime. This is also known
as the Control Freak anti-pattern, but I prefer to box it as a code smell instead of an anti-pattern since
the new keyword is not intrinsically wrong.

At this point, you may be wondering how it is possible not to use the new keyword in object-oriented
programming, but rest assured, we will cover that and expand on the control freak code smell in
Chapter 7, Deep Dive into Dependency Injection.

Code smell – Long Methods
The long methods code smell is when a method starts to extend to more than 10 to 15 lines of code.
That is a good indicator that you should think about that method differently. Having comments that
separate multiple code blocks is a good indicator of a method that may be too long.

Chapter 1 5

Here are a few examples of what might be the case:

• The method contains complex logic intertwined in multiple conditional statements.
• The method contains a big switch block.
• The method does too many things.
• The method contains duplications of code.

To fix this, you could do the following:

• Extract one or more private methods.
• Extract some code to new classes.
• Reuse the code from external classes.
• If you have a lot of conditional statements or a huge switch block, you could leverage a design

pattern such as the Chain of Responsibility, or CQRS, which you will learn about in Chapter 10,
Behavioral Patterns, and Chapter 14, Mediator and CQRS Design Patterns.

Usually, each problem has one or more solutions; you need to spot the problem and then find, choose,
and implement one of the solutions. Let’s be clear here: a method containing 16 lines does not
necessarily need refactoring; it could be OK. Remember that a code smell indicates that there might
be a problem, not that there necessarily is one—apply common sense.

Understanding the web – request/response
Before going any further, it is imperative to understand the basic concept of the web. The idea behind
HTTP 1.X is that a client sends an HTTP request to a server, and then the server responds to that
client. That can sound trivial if you have web development experience. However, it is one of the most
important web programming concepts, irrespective of whether you are building web APIs, websites,
or complex cloud applications.

Let’s reduce an HTTP request lifetime to the following:

1. The communication starts.
2. The client sends a request to the server.
3. The server receives the request.
4. The server most likely does something (executes some code/logic).
5. The server responds to the client.
6. The communication ends.

After that cycle, the server is no longer aware of the client. Moreover, if the client sends another request,
the server is unaware that it responded to a request earlier for that same client because HTTP is stateless.

There are mechanisms for creating a sense of persistence between requests for the server to be “aware”
of its clients. The most well known of these is probably cookies.

If we dig a little deeper, an HTTP request is composed of a header and an optional body. The most
commonly used HTTP methods are GET and POST. Made popular by web APIs, we could also add PUT,
DELETE, and PATCH to that list.

Introduction6

Although not every HTTP method accepts a body, can respond with a body, or should be idempotent,
here is a quick reference table:

Method Request has body Response has body Idempotent

GET No* Yes Yes

POST Yes Yes No

PUT Yes No Yes

PATCH Yes Yes No

DELETE May May Yes

An idempotent request is a request that always yields the same result, whether it is sent once or
multiple times. For example, sending the same POST request multiple times should create multiple
similar entities, while sending the same DELETE request multiple times should delete a single entity.
The status code of an idempotent request may vary, but the server state should remain the same. We
will explore some of those concepts in more depth in Chapter 5, The MVC Pattern for Web APIs.

Here is an example of a GET request (without a body since that’s not allowed for GET requests):

GET http: //www.forevolve.com/ HTTP/1.1
Host: www.forevolve.com
Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.110 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/
apng,*/*;q=0.8
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9,fr-CA;q=0.8,fr;q=0.7
Cookie: ...

The HTTP header is composed of a list of key/value pairs representing metadata that a client wants to
send to the server. In this case, I queried my blog using the GET method and Google Chrome attached
some additional information to the request. I replaced the Cookie header’s value with ... because
cookies can be quite large and are irrelevant to this sample. Nonetheless, cookies are passed back
and forth like any other HTTP header.

* Sending a body with a GET request is not forbidden by the HTTP specifications, but the
semantics of such a request is not defined either. It is best to avoid sending GET requests
with a body.

Chapter 1 7

When the server decides to respond to the request, it returns a header and an optional body, following
the same principles as the request. The first line indicates the status of the request: whether it was
successful. In our case, the status code was 200, which indicates success. Each server can add more
or less information to their response, as can you in your code.

Here is the response to the previous request:

HTTP/1.1 200 OK
Server: GitHub.com
Content-Type: text/html; charset=utf-8
Last-Modified: Wed, 03 Oct 2018 21:35:40 GMT
ETag: W/"5bb5362c-f677"
Access-Control-Allow-Origin: *
Expires: Fri, 07 Dec 2018 02:11:07 GMT
Cache-Control: max-age=600
Content-Encoding: gzip
X-GitHub-Request-Id: 32CE:1953:F1022C:1350142:5C09D460
Content-Length: 10055
Accept-Ranges: bytes
Date: Fri, 07 Dec 2018 02:42:05 GMT
Via: 1.1 varnish
Age: 35
Connection: keep-alive
X-Served-By: cache-ord1737-ORD
X-Cache: HIT
X-Cache-Hits: 2
X-Timer: S1544150525.288285,VS0,VE0
Vary: Accept-Encoding
X-Fastly-Request-ID: 98a36fb1b5642c8041b88ceace73f25caaf07746

<Response body truncated for brevity>

Important note about cookies

The client sends cookies, and the server returns them for every request-response cycle.
This could kill your bandwidth or slow down your application if you pass too much infor-
mation back and forth (cookies or otherwise). One good example would be a serialized
identity cookie that is very large.

Another example, one that is unrelated to cookies but that created such a back and forth,
was the good old Web Forms ViewState. This was a hidden field sent with every request.
That field could become very large when left unchecked.

Nowadays, with high-speed internet, it is easy to forget about those issues, but they can
significantly impact the user experience of a client using a slow network.

Introduction8

Now that the browser has received the server’s response, in the case of HTML pages, it starts rendering
it. Then, for each resource, it sends another HTTP call to its URI and loads it. A resource is an external
asset, such as an image, a JavaScript file, a CSS file, or a font.

After the response, the server is no longer aware of the client; the communication has ended. It is
essential to understand that to create a pseudo-state between each request, we need to use an external
mechanism. That mechanism could be the session-state leveraging cookies, simply using cookies, or
some other ASP.NET Core mechanisms; or we could create a stateless application. I recommend going
stateless whenever you can.

As you can imagine, the backbone of the internet is its networking stack. The Hypertext Transfer
Protocol (HTTP) is the highest layer of that stack (layer 7). HTTP is an application layer built on the
Transmission Control Protocol (TCP). TCP (layer 4) is the transport layer, which defines how data is
moved over the network (for instance, the transmission of data, the amount of transmitted data, and
error checking). TCP uses the Internet Protocol (IP) layer to reach the computer it tries to talk to. IP
(layer 3) represents the network layer, which handles packet IP addressing.

A packet is a chunk of data that is transmitted over the wire. We could send a large file directly from
a source to a destination machine, but that is not practical, so the network stack breaks down large
items into smaller packets. For example, the source machine breaks a file into multiple packets, sends
them to the target machine, and then the target reassembles them back into the source file. This
process allows numerous senders to use the same wire instead of waiting for the first transmission
to be done. If a packet gets lost in transit, the source machine can also send only that packet back to
the target machine.

Rest assured, you don’t need to understand every detail behind networking to program web applications,
but it is always good to know that HTTP uses TCP/IP and chunks big payloads into smaller packets.
Moreover, HTTP/1 allows a limited number of parallel requests that a browser can open. This knowledge
can help you optimize your apps. For example, a high number of assets to load, their size, and the
order in which they are sent to the browser can increase the page load time, the perceived page load
time, or paint time.

To conclude this subject and not dig too deep into networking, HTTP/1 is older but foundational.
HTTP/2 is more efficient and supports streaming multiple assets using the same TCP connection. It
also allows the server to send assets to the client before it requests the resources, called a server push.

If you find HTTP interesting, HTTP/2 is an excellent place to start digging deeper, as well as the newest
experimental HTTP/3 specifications.

Note

If you are interested in learning more about session and state management, I left a link
in the Further reading section at the end of the chapter.

Chapter 1 9

Getting started with .NET
A bit of history: .NET Framework 1.0 was first released in 2002. .NET is a managed framework that
compiles your code into an Intermediate Language (IL) named Microsoft Intermediate Language
(MSIL). That IL code is then compiled into native code and executed by the Common Language Runtime
(CLR). The CLR is now known simply as the �NET runtime. After releasing several versions of .NET
Framework, Microsoft never delivered on the promise of an interoperable stack. Moreover, many
flaws were built into the core of .NET Framework, tying it to Windows.

Mono, an open source project, was developed by the community to enable .NET code to run on non-
Windows OSes. Mono was used and supported by Xamarin, acquired by Microsoft in 2016. Mono
enabled .NET code to run on other OSes like Android and iOS. Later, Microsoft started to develop an
official cross-platform .NET SDK and runtime they named .NET Core.

The .NET team did a magnificent job building ASP.NET Core from the ground up, cutting out
compatibility with the older .NET Framework versions. That brought its share of problems at first,
but .NET Standard alleviated the interoperability issues between the old .NET and the new .NET.

After years of improvements and two major versions in parallel (Core and Framework), Microsoft
reunified most .NET technologies into .NET 5 (now .NET 6) and the promise of a shared Base Class
Library (BCL). With .NET 5, .NET Core simply became .NET while ASP.NET Core remained ASP.NET
Core. There is no .NET Core 4, to avoid any potential confusion with .NET Framework 4.X.

New major versions of .NET should release every year now. Even-number releases are Long-Term
Support (LTS) releases with free support for 3 years, and odd-number releases (Current) have free
support for only 18 months.

The good thing behind this book is that the architectural principles and design patterns covered should
remain relevant in the future and are not tightly coupled with the versions of .NET you are using. Minor
changes to the code samples should be enough to migrate your knowledge and code to new versions.

Now, let’s cover some key information about the .NET ecosystem.

.NET SDK versus runtime
You can install different binaries grouped under SDKs and runtimes. The SDK allows you to build and
run .NET programs, while the runtime only allows you to run .NET programs.

As a developer, you want to install the SDK on your deployment environment. On the server, you want
to install the runtime. The runtime is lighter, while the SDK contains more tools, including the runtime.

.NET 5+ versus .NET Standard
When building .NET projects, there are multiple types of projects, but basically, we can separate them
into two categories:

• Applications
• Libraries

Introduction10

Applications target a version of .NET, such as net5.0 and net6.0. Examples of that would be an
ASP.NET application or a console application.

Libraries are bundles of code compiled together, often distributed as a NuGet package. .NET Standard
class library projects allow code to be shared between .NET Core, .NET 5+, and .NET Framework
projects. .NET Standard came into play to bridge the compatibility gap between .NET Core and .NET
Framework, which eased the transition. Things were not easy when .NET Core 1.0 first came out.

With .NET 5 unifying all the platforms and becoming the future of the unified .NET ecosystem, .NET
Standard is no longer needed. Moreover, app and library authors should target the base Target Framework
Moniker (TFM), as in net5.0 and net6.0. You should target netstandard2.0 or netstandard2.1 only
when needed, for example, to share code with .NET Framework, and avoid targeting .NET Standard
1.X. Microsoft also introduced OS-specific TFMs with .NET 5 and 6 that allow code to use OS-specific
APIs like net6.0-android and net6.0-tvos. You can also target multiple TFMs when needed.

The next versions of .NET should be built over .NET (Core) 5, while .NET Framework 4.X is going to
stay where it is today, receiving only security patches and minor updates. For example, .NET 6 is built
over .NET 5.

Visual Studio Code versus Visual Studio versus the command-
line interface
How can one of these projects be created? .NET Core comes with the dotnet command-line interface
(CLI), which exposes multiple commands, including new. Running the dotnet new command in a
terminal generates a new project.

To create an empty class library, we can run the following commands:

md MyProject
cd MyProject
dotnet new classlib

That would generate an empty class library in the newly created MyProject directory. The -h option
can come in handy when discovering available commands and their options. You can use dotnet -h to
find the available SDK commands, or dotnet new -h to find out about options and available templates.

The CLI enables us to automate our workflows in continuous integration (CI) pipelines, while
developing locally, or through any other process.

Note

I’m sure that we are going to see .NET Standard libraries stick around for a while. All proj-
ects are not just going to migrate from .NET Framework to .NET 5 magically, and people
are likely to want to continue sharing code between the two.

Chapter 1 11

The CLI also makes it easier to write documentation that anyone can follow; it is way easier and faster
to write a few commands in a terminal than install programs like Visual Studio and emulators.

Visual Studio Code is my favorite text editor. I don’t use it much for .NET coding, but I still do to
reorganize projects, when it’s CLI time, or for any other task that is easier to complete using a text
editor, such as writing documentation using Markdown, writing JavaScript or TypeScript, or managing
JSON, YAML, or XML files. To create a project or solution, or to add a NuGet package using Visual
Studio Code, open a terminal and use the CLI.

As for Visual Studio, my favorite IDE, it uses the CLI under the hood to create the same projects,
making it consistent between tools. Visual Studio adds a user interface over the CLI, which is a good
example of leveraging it.

You can also create and install additional dotnet new project templates in the CLI or even create global
tools. Those topics are beyond the scope of this book.

An overview of project templates
Here is an example of the templates that are installed (dotnet new --list):

Figure 1.1: Project templates

A study of all the templates is beyond the scope of this book, but I’d like to visit the few that are worth
mentioning, some of which we will use later:

• dotnet new console creates a console application
• dotnet new classlib creates a class library
• dotnet new xunit creates an xUnit test project
• dotnet new web creates an empty web project
• dotnet new mvc scaffolds an MVC application
• dotnet new webapi scaffolds a web API application

Introduction12

Running and building your program
If you are using Visual Studio, you can always hit the play button, or F5, and run your app. If you
are using the CLI, you can use one of the following commands (and more). Each of them also offers
different options to control their behavior. Add the -h flag with any command to get help on that
command, such as dotnet build -h:

Command Description

dotnet restore Restore the dependencies (a.k.a. NuGet packages) based on the .csproj or
.sln file present in the current dictionary.

dotnet build Build the application based on the .csproj or .sln file present in the
current dictionary. It implicitly runs the restore command first.

dotnet run Run the current application based on the .csproj file present in the current
dictionary. It implicitly runs the build and restore commands first.

dotnet watch run

Watch for file changes. When a file has changed, the CLI updates the code
from that file using the hot-reload feature. When that is impossible, it
rebuilds the application and then reruns it (equivalent to executing the
run command again). If it is a web application, the page should refresh
automatically.

dotnet test
Run the tests based on the .csproj or .sln file present in the current
directory. It implicitly runs the build and restore commands first. We
cover testing in the next chapter.

dotnet watch test Watch for file changes. When a file has changed, the CLI reruns the tests
(equivalent to executing the test command again).

dotnet publish
Publish the current application, based on the .csproj or .sln file present
in the current directory, to a directory or remote location, such as a hosting
provider. It implicitly runs the build and restore commands first.

dotnet pack
Create a NuGet package based on the .csproj or .sln file present in the
current directory. It implicitly runs the build and restore commands first.
You don’t need a .nuspec file.

dotnet clean Clean the build(s) output of a project or solution based on the .csproj or
.sln file present in the current directory.

Technical requirements
Throughout the book, we will explore and write code. I recommend that you install Visual Studio,
Visual Studio Code, or both to help with that. Other alternatives are Visual Studio for Mac, Riders, or
any other text editor of your choice. I use Visual Studio and Visual Studio Code.

Unless you install Visual Studio, which comes with the .NET SDK, you may need to install it. The SDK
comes with the CLI that we explored earlier, as well as the build tools for running and testing your
programs. Have a look at the README.md file in the GitHub repository for more information and links
to those resources.

Chapter 1 13

The source code of all chapters is available for download on GitHub at the following address: https://
adpg.link/net6.

Summary
In this chapter, we took a look at design patterns, anti-patterns, and code smells. We also explored a
few of them. We then moved on to a recap of the request/response cycle of a typical web application.

We continued by exploring .NET essentials, such as SDK versus runtime and app targets versus .NET
Standard. This has set us up to explore the different possibilities we have when building our .NET
applications. We then dug a little more into the .NET CLI, where I laid down a list of essential commands,
including dotnet build and dotnet watch run. We also covered how to create new projects.

In the next two chapters, we explore automated testing and architectural principles. These are
foundational chapters for anyone wishing to build robust, flexible, and maintainable applications.

Questions
Let’s take a look at a few practice questions:

1. Can we add a body to a GET request?
2. Why are long methods a code smell?
3. Is it true that .NET Standard should be your default target when creating libraries?
4. What is a code smell?

Further reading
Here are some links to consolidate what has been learned in the chapter:

• Overview of how .NET is versioned: https://adpg.link/n52L
• .NET CLI overview: https://adpg.link/Lzx3
• Custom templates for dotnet new: https://adpg.link/74i2
• Session and state management in ASP.NET Core: https://adpg.link/Xzgf

https://adpg.link/net6
https://adpg.link/net6
https://adpg.link/n52L
https://adpg.link/Lzx3
https://adpg.link/74i2
https://adpg.link/Xzgf

Introduction14

Join our book’s Discord space
Join the book’s Discord workspace for Ask me Anything session with the authors:

https://packt.link/ASPdotNET6DesignPatterns

https://packt.link/ASPdotNET6DesignPatterns

2
Automated Testing

This chapter focuses on automated testing and how helpful it can be for crafting better software. It
also covers a few different types of tests and the foundation of test-driven development (TDD). We also
outline how testable ASP.NET Core is and how much easier it is to test ASP.NET Core applications than
old ASP.NET MVC applications. This chapter is an overview of automated testing, its principles, xUnit,
and more. While other books cover this topic more in-depth, this chapter covers the foundational
aspect of automated testing, built upon throughout the book.

In this chapter, we cover the following topics:

• An overview of automated testing
• Testing .NET applications
• Important testing principles

An overview of automated testing
Testing is an integral part of the development process, and automated testing becomes crucial in the
long run. You can always run your ASP.NET Core website, open a browser, and click everywhere to test
your features. That’s a legitimate approach, but it is harder to test individual rules or more complex
algorithms that way. Another downside is the lack of automation; when you first start with a small
app containing a few pages, a few endpoints, or a few features, it may be fast to perform those tests
manually. However, as your app grows, it becomes more tedious, takes longer, and the likelihood of
making a mistake increases. Don’t get me wrong here; you will always need real users to test out your
applications, but you may want those tests to focus on the UX, the content, or on some experimental
features that you are building instead of bug reports that automated tests could have caught early on.

There are multiple types of tests, and developers are very creative at finding new ways to test things.
Here is a list of three broad categories that represent how we can divide automated testing from a
code correctness standpoint:

• Unit tests
• Integration tests
• End-to-end (E2E) tests

Automated Testing16

The test pyramid is a good way of explaining a few concepts around automated testing. You want
different granularity of tests, and you want a different number of tests depending on their complexity.
The following test pyramid shows the three types of tests stated above. However, you can add all the
other types of tests in there if you want to. Moreover, that’s just an abstract guideline to give you an
idea. The most important aspect is the return on investment (ROI). If you can write one integration test
that covers a large surface and is fast enough, this might be worth doing instead of multiple unit tests.

Figure 2.1: The test pyramid

Unit testing
Unit tests focus on individual units, like testing the outcome of a method. Unit tests should be fast and
should not rely on any infrastructure such as a database. Those are the kinds of tests you want the most
because they run fast, and each one tests a precise code path. They should also help you design your
application better because you use your code in the tests, so you become its first consumer, leading to
you finding some design flaws and making your code better. If you don’t like using your code in your
tests, that is a good indicator that nobody else will. Unit tests should focus on testing algorithms (the
ins and outs) and domain logic, not the code itself; how you wrote the code should have no impact on
the intent of the test. For example, you are testing that a Purchase method executes the logic required
to purchase one or more items, not that you created the variable X or Y or Z inside that method. Don’t
discourage yourself if you find it challenging; writing a good test suite is not as easy as it sounds.

Integration testing
Integration tests focus on the interaction between components, such as what happens when a
component queries the database or what happens when two components interact with each other.

Chapter 2 17

Integration tests often require some infrastructure to interact with, which makes them slower to run.
By following the classic testing model, you want integration tests, but you want fewer of them than
unit tests. An integration test can be very close to an E2E test but without using a production-like
environment.

End-to-end testing
End-to-end tests focus on application-wide behaviors, such as what happens when a user clicks on a
specific button, navigates to a particular page, posts a form, or sends a PUT request to some web API
endpoint. E2E tests focus on testing the whole application from the user’s perspective, not just part
of it, as unit and integration tests do. E2E tests are usually run on actual infrastructure to test your
application and your deployment.

Other types of tests
There are other types of automated tests. For example, we could do load testing, performance testing,
regression testing, contract testing, penetration testing, functional testing, smoke testing, and more.
You can automate tests for almost anything you want to validate, but some tests are more challenging
to automate or more fragile than others, such as UI tests. That said, if you can automate a test in a
reasonable timeframe, do it! In the long run, it should pay off.

One more thing; don’t blindly rely on metrics such as code coverage. Those metrics make for cute
badges in your GitHub project’s readme.md file but can lead you off track, resulting in you writing
useless tests. Don’t get me wrong, code coverage is a great metric when used correctly, but remember
that one good test can be better than a lousy test suite covering 100% of your codebase.

Writing good tests is not easy and comes with practice.

Before moving forward to testing styles, let’s inspect a hypothetical system and explore a more efficient
way to test it.

Note

We break the test pyramid rule later, so always be critical of rules and principles; sometimes,
it can be better to break or bend them. For example, having one good integration test can
be better than N unit tests; don’t discard that fact when writing your tests.

Note

One piece of advice: keep your test suite healthy by adding missing test cases and remov-
ing obsolete or useless tests. Think about use case coverage, not about how many lines of
code are covered by your tests.

Automated Testing18

Picking the right test style
Next is a dependency map of a hypothetical system. We use that diagram to pick the most meaningful
type of test possible for each piece of the program. In real life, that diagram will most likely be in your
head, but in this case, I drew it out. Let’s inspect that diagram before I explain its content:

Figure 2.2: Dependency map of a hypothetical system

In the diagram, the Actor can be anything from a user to another system. Presentation is the piece of
the system that the Actor is interacting with that forwards the request to the system itself (this could
be a user interface). D1 is a component that has to decide what to do next based on the user input. C1
to C6 are other components of the system (could be classes, for example). DB is a database.

D1 must choose between three code paths: interact with the components C1, C4, or C6. This type of
logic is usually a good subject for unit tests, ensuring the algorithm yields the correct result based on
the input parameter. Why pick a unit test? We can test multiple scenarios very quickly, try extreme
cases, out-of-bound data cases, and more. We usually mock the dependencies away in this type of test
and assert that the subject under test made the expected call on the desired component.

Then, if we look at the other code paths, we could write one or more integration tests for component
C1, testing the whole chain in one go (C1, C5, and C3) instead of writing multiple mock-heavy unit
tests for each component. If there is any logic that we need to test in components C1, C5, or C3, we
can always add a few unit tests; that’s what they are for.

Finally, C4 and C6 are both using C2. Depending on the code (that we don’t have here), we could write
integration tests for C4 and C6, testing C2 simultaneously. Another way would be to unit test C4 and
C6, and then write integration tests between C2 and the DB. If C2 has no logic, the latter could be the
best and the fastest, while the former will most likely yield results that give you more confidence in
your test suite in a continuous delivery model.

When it is an option, I recommend evaluating the possibility of writing fewer meaningful integration
tests that assert the correctness of a use case over a suite of mock-heavy unit tests.

Chapter 2 19

That may seem to go “against” the test pyramid, but does it? If you spend less time (thus lower costs)
testing more use cases (adding more value), that sounds like a win to me. Moreover, we must not forget
that mocking dependencies tends to make you waste time fighting the framework or other libraries
instead of testing something meaningful.

Now that we have explored the fundamentals of automated testing, it is time to explore testing
approaches and TDD, which is a way to apply those testing concepts.

Testing approaches
There are various approaches to testing, such as behavior-driven development (BDD), acceptance
test-driven development (ATDD), and test-driven development (TDD). The DevOps culture brings a
mindset to the table that focuses on embracing automated testing in line with its continuous integration
(CI) and continuous deployment (CD) ideals. CD is really where a robust and healthy suite of tests
shine, giving you a high degree of confidence in your code, high enough to deploy the program when
all tests pass.

TDD is a method of developing software that states that you should write one or more tests before
writing the actual code. In a nutshell, you invert your development flow by following the Red-Green-
Refactor technique, which goes like this:

1. You write a failing test (red).
2. You write just enough code to make your test pass (green).
3. You refactor that code to improve the design by ensuring that all of the tests are still passing.

ATDD is similar to TDD but focuses on acceptance (or functional) tests instead of software units and
involves multiple parties like customers, developers, and testers.

BDD is another complementary technique originating from TDD and ATDD. BDD focuses on formulating
test cases around application behaviors using spoken language and also involves multiple parties like
customers, developers, and testers. Moreover, practitioners of BDD often leverage the given–when–then
grammar to formalize their test cases. Because of that, BDD output is in a human-readable format
allowing stakeholders to consult such artifacts.

The given–when–then template defines the way to describe the behavior of a user story or acceptance
test, like this:

• Given one or more preconditions (context)
• When something happens (behavior)
• Then one or more observable changes are expected (measurable side effects)

Note

We explore the meaning of refactoring in the next section.

Automated Testing20

For the sake of simplicity, we stick to unit testing, integration testing, and a tad of TDD in the book.
ATDD and BDD are great areas to dig deeper into and can help design better apps; defining precise user-
centric specifications can help build only what is needed, prioritize better, and improve communication
between parties. Nonetheless, let’s go back to the main track and define refactoring.

Refactoring
Refactoring is about (continually) improving the code without changing its behavior.

Having an automated test suite should help you achieve that goal and should help you discover when
you break something. No matter whether you do TDD or not, I do recommend refactoring as often
as possible; this helps clean your codebase, and it should also help you get rid of some technical debt
at the same time.

Okay, but what is technical debt?

Technical debt
Technical debt represents the corners you cut short while developing a feature or a system. That
happens no matter how hard you try because life is life, and there are delays, deadlines, budgets, and
people, including developers.

The most important point is to understand that you cannot avoid technical debt altogether, so it’s better
to embrace that fact and learn to live with it instead of fighting it. From that point forward, you can
only try to limit the amount of technical debt that you, or someone else, generates.

One way to limit the piling up of technical debt is to refactor the code often. So, factor the refactoring
time into your time estimates. Another way is to improve collaboration between all the parties involved.
Everyone must work toward the same goal if you want your projects to succeed.

You will at some point cut the usage of best practices short due to external forces like people or time
constraints. The key is to come back at it as soon as possible to repay that technical debt, and automated
tests are there to help you refactor that code and get rid of that debt elegantly. Depending on the size
of your workplace, there will be more or fewer people between you and that decision.

Nevertheless, don’t let the technical debt pile up too high, or you may not be able to pay it back, and at
some point, that’s where a project begins to break and fail. Don’t be mistaken; a project in production
can be a failure. Delivering a product does not guarantee success, and I’m talking about the quality of
the code here, not the amount of generated revenue (I’ll leave that to other people to evaluate).

Next, we look at testing ASP.NET Core applications.

Tip

I realize that some of these things might be out of your control, so you may have to live with
more technical debt than you had hoped for. However, even when things are out of your
control, nothing stops you from becoming a pioneer and working toward changing the
enterprise’s culture for the better. Don’t be afraid to become a leader, an agent of change.

Chapter 2 21

Testing .NET applications
The ASP.NET Core team made our life easier by designing ASP.NET Core for testability; most testing is
way easier than before the ASP.NET Core era. Back when .NET Core was in pre-release, I discovered that
the .NET team was using xUnit to test their code and that it was the only testing framework available.
xUnit has become my favorite testing framework, and I use it throughout the book.

We are not going into full TDD mode, as it would deviate our focus from the matter at hand, but I did
my best to tag automated testing along for the ride! Why are we talking about tests in an architectural
book? Because testability is usually the sign of a good design, which allows some concepts to be proven
by using tests instead of words.

Moreover, in many code samples, the test cases are the consumers, making the program lighter without
building an entire user interface over it. That allows us to focus on the patterns we are exploring
instead of getting our focus scattered over some boilerplate code.

Let’s start by creating a test project.

Creating an xUnit test project
To create a new xUnit test project, you can run the dotnet new xunit command, and the CLI does
the job for you by creating a project containing a UnitTest1 class. That command does the same as
creating a new xUnit project from Visual Studio.

For unit testing projects, name the project the same as the project you want to test and append .Tests
to it. For example, MyProject would have an associated MyProject.Tests project associated with it.
We explore more details in the Organizing your tests section below.

The template already defines all the required NuGet packages, so you can start testing right away; after
adding a reference to your project under test, of course.

Next, we explore some xUnit features.

Getting started with xUnit
In xUnit, the [Fact] attribute is the way to create unique test cases, while the [Theory] attribute is
the way to make data-driven test cases. Let’s start with facts.

Facts
Any method with no parameter can become a test method by decorating it with a [Fact] attribute,
like this:

public class FactTest
{
 [Fact]
 public void Should_be_equal()
 {
 var expectedValue = 2;

Automated Testing22

 var actualValue = 2;
 Assert.Equal(expectedValue, actualValue);
 }
}

You can also decorate asynchronous methods with the fact attribute when the code under test needs it:

public class AsyncFactTest
{
 [Fact]
 public async Task Should_be_equal()
 {
 var expectedValue = 2;
 var actualValue = 2;
 await Task.Yield();
 Assert.Equal(expectedValue, actualValue);
 }
}

In the preceding code, the highlighted line conceptually represents an asynchronous operation and
does nothing more than allow the use of the async/await keywords.

From the Visual Studio Test Explorer, that test case looks like this:

Figure 2.3: Test results in Visual Studio

Running the dotnet test CLI command should yield a result similar to the following:

Passed! - Failed: 0, Passed: 23, Skipped: 0, Total: 23,
Duration: 22 ms - MyApp.Tests.dll (net6.0)

Note

The test classes are nested in the xUnitFeaturesTest class, part of the MyApp namespace,
and under the MyApp.Tests project.

Chapter 2 23

As we can read from the preceding output, all tests are passing, none have failed, and none were
skipped. It is as simple as that to create test cases using xUnit.

Have you noticed the Assert keyword? If you are not familiar with it, we explore assertions next.

Assertions
We just learned about facts and will head toward theories next. Meanwhile, let’s visit a few ways to
assert correctness. We use barebone xUnit functionality in this section, but you can bring in the
assertion library of your choice if you have one.

In xUnit, the assertion throws an exception when it fails. You do not have to handle those; that’s the
mechanism to propagate the failure result up to the test runner.

We won’t explore all possibilities here, but let’s start with a few common use cases. The code is broken
down to make the explanations clearer:

public class AssertionTest
{
 [Fact]
 public void Exploring_xUnit_assertions()
 {
 object obj1 = new MyClass { Name = "Object 1" };
 object obj2 = new MyClass { Name = "Object 1" };
 object obj3 = obj1;
 object? obj4 = default(MyClass);

In the preceding code, we declare a few objects that are used by the assertions next. All variables are of
the object type to leverage the IsType method later. The MyClass class is defined after the assertions:

 Assert.Equal(expected: 2, actual: 2);
 Assert.NotEqual(expected: 2, actual: 1);

The preceding two assertions are explicit and compare whether the actual value is equal, or not equal,
to the expected value. Assert.Equal is probably the most commonly used assertion method.

 Assert.Same(obj1, obj3);
 Assert.NotSame(obj2, obj3);
 Assert.Equal(obj1, obj2);

Tip

As a rule of thumb, it is better to assert a result (Equal) than assert that the value is dif-
ferent (NotEqual). Except in a few rare cases, asserting equality will yield more accurate
results and close the door to missing defects.

Automated Testing24

The first two assertions are very similar to the equality ones, but assert that the objects are the same
instance, or not (have the same reference or not). The third one asserts that the two objects are equals
and leverages record classes to make it that easy; obj1 and obj2 are not the same but are equal (see
Appendix A for more information on record classes):

 Assert.Null(obj4);
 Assert.NotNull(obj3);

These two are also very explicit, asserting that the value is null or not:

 var instanceOfMyClass = Assert.IsType<MyClass>(obj1);
 Assert.Equal(expected: "Object 1", actual: instanceOfMyClass.Name);

The first preceding line asserts that obj1 is of the MyClass type and then returns the argument (obj1)
converted to the asserted type (MyClass). If the type is incorrect, the IsType method will throw an
exception:

 var exception = Assert.Throws<SomeCustomException>(
 testCode: () => OperationThatThrows("Toto")
);
 Assert.Equal(expected: "Toto", actual: exception.Name);

 static void OperationThatThrows(string name)
 {
 throw new SomeCustomException { Name = name };
 }

The highlighted line of the preceding code asserts that the testCode argument throws an exception
of the SomeCustomException type. The testCode argument is executing the OperationThatThrows
inline function, which does just that. What is often very important is to test the fact that the exception
properties, like the message, are well-formatted. Whether you want to assert the error message or
another property of the exception, it is a well-used pattern that the Throws method allows us to do
easily, as the second line does by asserting that the value of the exception.Name property is equal to
the one passed as an argument of the inline function ("Toto"). The same behavior as IsType happens
here; if the exception is of the wrong type or no exception is thrown at all, the Throws method will
throw an exception:

 }
 private record class MyClass
 {
 public string? Name { get; set; }
 }

Chapter 2 25

 private class SomeCustomException : Exception
 {
 public string? Name { get; set; }
 }
}

The remaining two classes are utilities used in the tests with nothing special to them; their purpose
was to help us play with xUnit assertions.

We covered a few assertion methods, but many others are part of xUnit, like the Collection, Contains,
False, and True methods. We use many assertions throughout the book, so if these are still unclear,
you will have a chance to learn more about them.

Next, let’s look at data-driven test cases using theories.

Theories
For more complex test cases, we can use theories. A theory is defined in two parts:

• A [Theory] attribute.
• At least one of the three following data attributes: [InlineData], [MemberData], or [ClassData].

Interestingly, you are not limited to only one type of data attribute; you can use as many as you need
to suit your needs and feed a theory with the appropriate data.

When writing a theory, your primary constraint is to ensure that the number of values matches the
number of parameters defined in the test method. For example, a theory with one parameter must
be fed with one value. Let’s look at some examples.

The [InlineData] attribute is the most suitable for constant values or smaller sets of values. Inline
data is the most straightforward way of the three because of the proximity of the test values and the
test method.

Here is an example of a theory using inline data:

public class InlineDataTest
{
 [Theory]
 [InlineData(1, 1)]
 [InlineData(2, 2)]
 [InlineData(5, 5)]
 public void Should_be_equal(int value1, int value2)
 {
 Assert.Equal(value1, value2);
 }
}

Automated Testing26

That test method yields three test cases in the Test Explorer, where each can pass or fail individually:

Figure 2.4: Test results

Then, the [MemberData] and [ClassData] attributes can be used to simplify the test method’s
declaration. When it is impossible to instantiate the data in the attribute, reuse the data in multiple
test methods, or encapsulate the data away from the test class.

Here is an example of [MemberData] usage:

public class MemberDataTest
{
 public static IEnumerable<object[]> Data => new[]
 {
 new object[] { 1, 2, false },
 new object[] { 2, 2, true },
 new object[] { 3, 3, true },
 };

 public static TheoryData<int, int, bool> TypedData =>new TheoryData<int,
int, bool>
 {
 { 3, 2, false },
 { 2, 3, false },
 { 5, 5, true },
 };

 [Theory]
 [MemberData(nameof(Data))]
 [MemberData(nameof(TypedData))]
 [MemberData(nameof(ExternalData.GetData), 10, MemberType =
typeof(ExternalData))]

Chapter 2 27

 [MemberData(nameof(ExternalData.TypedData), MemberType =
typeof(ExternalData))]
 public void Should_be_equal(int value1, int value2, bool shouldBeEqual)
 {
 if (shouldBeEqual)
 {
 Assert.Equal(value1, value2);
 }
 else
 {
 Assert.NotEqual(value1, value2);
 }
 }

 public class ExternalData
 {
 public static IEnumerable<object[]> GetData(int start) => new[]
 {
 new object[] { start, start, true },
 new object[] { start, start + 1, false },
 new object[] { start + 1, start + 1, true },
 };
 public static TheoryData<int, int, bool> TypedData => new
TheoryData<int, int, bool>
 {
 { 20, 30, false },
 { 40, 50, false },
 { 50, 50, true },
 };
 }
}

The preceding test case should yield 12 results. If we break it down, the code starts by loading three
sets of data from the IEnumerable<object[]> Data property by decorating the test method with the
[MemberData(nameof(Data))] attribute. This is how to load data from a member of the class the test
method is declared in.

Then, the second property is very similar to the Data property, but replaces IEnumerable<object[]>
with a TheoryData<…> class, making it more readable and type-safe. This is my preferred way of
defining member data and what I recommend you to do. Like the first one, we feed those three sets of
data to the test method by decorating it with the [MemberData(nameof(TypedData))] attribute. Once
again, it is part of the test class.

Automated Testing28

The third data feeds three more sets of data to the test method. However, that data originates from
the GetData method of the ExternalData class, sending 10 as an argument during the execution (the
start parameter). To do that, we must specify the MemberType instance where the method is located
so xUnit knows where to look. In this case, we pass the argument 10 as the second parameter of the
MemberData constructor. However, in other cases, you can pass zero or more arguments there.

Finally, we are doing the same for the ExternalData.TypedData property, which is represented by
the [MemberData(nameof(ExternalData.TypedData), MemberType = typeof(ExternalData))]
attribute. Once again, the only difference is that the property is defined using TheoryData instead of
IEnumerable<object[]>, which makes its intent clearer.

When running the tests, the data provided by the [MemberData] attributes is combined, which yields
the following result in the Test Explorer:

Figure 2.5: Test results

These are only a few examples of what we can do with the [MemberData] attribute. The goal is to cover
just enough cases to get you started.

Last but not least, the [ClassData] attribute gets its data from a class implementing
IEnumerable<object[]> or inheriting from TheoryData<…>. The concept is the same as the other
two. Here is an example:

public class ClassDataTest
{

Chapter 2 29

 [Theory]
 [ClassData(typeof(TheoryDataClass))]
 [ClassData(typeof(TheoryTypedDataClass))]
 public void Should_be_equal(int value1, int value2, bool shouldBeEqual)
 {
 if (shouldBeEqual)
 {
 Assert.Equal(value1, value2);
 }
 else
 {
 Assert.NotEqual(value1, value2);
 }
 }
 public class TheoryDataClass : IEnumerable<object[]>
 {
 public IEnumerator<object[]> GetEnumerator()
 {
 yield return new object[] { 1, 2, false };
 yield return new object[] { 2, 2, true };
 yield return new object[] { 3, 3, true };
 }
 IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
 }
 public class TheoryTypedDataClass : TheoryData<int, int, bool>
 {
 public TheoryTypedDataClass()
 {
 Add(102, 104, false);
 }
 }
}

These are very similar to [MemberData], but instead of pointing to a member, we point to a type.

In TheoryDataClass, implementing the IEnumerable<object[]> interface makes it easy to
yield return the results. On the other hand, in the TheoryTypedDataClass class, by inheriting
TheoryData, we can leverage a list-like Add method. Once again, I find inheriting from TheoryData
more explicit, but either way works with xUnit. You have many options, so choose the best one for
your use case.

Automated Testing30

Here is the result in the Test Explorer, which is very similar to the other attributes:

Figure 2.6: Test Explorer

That’s it for the theories—next, a few last words before organizing our tests.

Closing words
Now that facts, theories, and assertions are out of the way, xUnit offers other mechanics to allow
developers to inject dependencies into their test classes. These are named fixtures. Fixtures allow
dependencies to be reused by all of the test methods of a test class by implementing the IClassFixture<T>
interface. Fixtures are very helpful for costly dependencies, like creating an in-memory database. With
fixtures, you can create the dependency once and use it multiple times. The ValuesControllerTest
class in the MyApp.IntegrationTests project shows that in action.

It is important to note that xUnit creates an instance of the test class for every test run, so your
dependencies are recreated every time if you are not using the fixtures.

You can also share the dependency provided by the fixture between multiple test classes by using
ICollectionFixture<T>, [Collection], and [CollectionDefinition] instead. We won’t get into
the details here, but at least you know it’s possible and know what types to look for when you need
something similar.

Finally, if you have worked with other testing frameworks, you might have encountered setup and
teardown methods. In xUnit, there are no particular attributes or mechanisms for handling setup
and teardown code. Instead, xUnit uses existing OOP concepts:

• To set up your tests, use the class constructor.
• To tear down (clean up) your tests, implement IDisposable or IAsyncDisposable and dispose

of your resources there.

That’s it, xUnit is very simple and powerful, which is the main reason why I adopted it as my main
testing framework several years ago and why I chose it for this book.

Next, we learn to write readable test methods.

Chapter 2 31

Arrange, Act, Assert
One well-known method for writing readable tests is Arrange, Act, Assert (AAA or 3A). This technique
allows you to clearly define your setup (arrange), the operation under test (act), and your assertions
(assert). One efficient way to use this technique is to start by writing the 3A as comments in your test
case and then write the test code in between. Here is an example:

[Fact]
public void Should_be_equals()
{
 // Arrange
 var a = 1;
 var b = 2;
 var expectedResult = 3;

 // Act
 var result = a + b;

 // Assert
 Assert.Equal(expectedResult, result);
}

Of course, that test case cannot fail, but the three blocks are easily identifiable with the 3A comments.

In general, you want the Act block of your unit tests to be a single line, making the test focus clear.
If you need more than one line, the chances are that something is wrong in the test or the design.

One last tip before learning to organize tests into projects, directories, and files: when the tests are
very small (only a few lines), getting rid of the comments might help readability. Furthermore, when
you don’t need the Arrange block, please don’t leave the comment there; delete it.

Organizing your tests
There are many ways of organizing test projects inside a solution, and I tend to create a unit test
project for each project in the solution and one or more integration test projects. It depends on the
type of project.

Since unit tests are directly related to single units of code, it makes sense to organize them into a one-
on-one relationship. Since integration tests could also span multiple projects, it is hard to put a hard
rule in place. One integration test project could be fine, while one integration test project per project
under test could be better in another context. Trust your judgment and change the solution structure
if your first choice causes you trouble later.

Automated Testing32

Folder-wise, at the solution level, creating the application and its related libraries in an src directory
helps isolate the actual solution code from the test projects created under a test directory, like this:

Figure 2.7: The Automated Testing Solution Explorer, displaying how the projects are organized

That’s a well-known and effective way of organizing a solution in the .NET world.

However, sometimes, it is not possible to do that. One such use case would be microservices written
under a single solution. In that case, you might want the tests to live closer to your microservices, and
not split them between a root src and test folders.

Let’s now dig deeper into organizing unit tests.

Unit tests
I find it convenient to create unit tests in the same namespace as the subject under test when creating
unit tests. That helps get tests and code aligned without adding any additional using statements. To
make it easier when creating files, you can change the default namespace used by Visual Studio
when creating a new class in your test project by adding <RootNamespace>[Project under test
namespace]</RootNamespace> to a PropertyGroup of the test project file (*.csproj), like this:

<PropertyGroup>
 ...
 <RootNamespace>MyApp</RootNamespace>
</PropertyGroup>

Note

Some people may recommend creating a single unit test project per solution instead of
one per project, and I think that for most solutions, it is a matter of preference. If you
have a preferred way to organize yours, by all means, use that approach instead! That
said, I find that one unit test project per assembly is more portable and easier to navigate.

Chapter 2 33

By convention, I name test classes [class under test]Test.cs and create them in the same directory
as in the original project, depicted by the following solution with the ValuesController class:

Figure 2.8: The Automated Testing Solution Explorer, displaying how tests are organized

Finding tests is easy when you follow that simple rule. For the test code itself, I follow a multi-level
structure similar to the following:

• One test class is named the same as the class under test

• One nested test class per method to test from the class under test

• One test method per test case of the method under test

I find this helps to organize tests efficiently by test case while keeping a clear hierarchy. Let’s look at
a small test class:

namespace MyApp.IntegrationTests.Controllers
{
 public class ValuesControllerTest
 {
 public class Get : ValuesControllerTest
 {

Automated Testing34

 [Fact]
 public void Should_return_the_expected_strings()
 {
 // Arrange
 var sut = new ValuesController();
 // Act
 var result = sut.Get();
 // Assert
 Assert.Collection(result.Value,
 x => Assert.Equal("value1", x),
 x => Assert.Equal("value2", x)
);
 }
 }
 }
}

This convention allows you to set up tests step by step. For example, by inheriting the outer class (the
ValuesControllerTest class here), you can create top-level private mocks or classes shared by all
nested classes. Then, for each method to test, you can modify the setup or create other private test
elements in the nested classes (the Get class here). Finally, you can do more configuration per test
case inside the test method (the Should_return_the_expected_strings method here).

One word of advice: don’t go too hard on reusability inside your test classes as it can make tests harder
to read from an external eye, such as a reviewer or another developer that needs to play there. Unit
tests should remain clear, small, and easy to read: a unit of code testing another unit of code.

Now that we have explored organizing unit tests, let’s have a look at integration tests.

Integration tests
Integration tests are harder to organize because they depend on multiple units and can cross project
boundaries and interact with various dependencies.

As mentioned before, you can create one integration test project for most simple solutions or many for
more complex scenarios. When writing many integration tests without crossing project boundaries,
I’d look at creating one integration test project per project to test by following a similar convention as
with unit tests: [Project under test].IntegrationTests.

Inside those projects, it depends on how you want to attack the problem and the structure of the
solution itself. Start by identifying the features under test. Name the test classes in a way that mimics
your requirements, organize those into sub-folders (maybe a sub-unit of the requirements), and code
test cases as methods. You can also leverage nested classes, as we did with unit tests.

Next, we implement an integration test by leveraging ASP.NET Core features.

Chapter 2 35

ASP.NET Core integration testing
Microsoft built ASP.NET Core from the ground up. They fixed and improved so many things that I
cannot enumerate them all here, including testability. Let’s start by talking about the structure of a

.NET program. There are two ways to structure your program:

• The classic ASP.NET Core Program and the Startup classes. You might find this model in existing
projects (created prior to .NET 6).

• The minimal hosting model introduced in .NET 6 encourages you to write the start up code in
the Program.cs file by leveraging top-level statements. You will most likely find this model in
new projects (created after the release of .NET 6).

No matter how you choose to write your program, that’s the place to define how the application boots
and its composition. Moreover, we can leverage the same testing tools more or less seamlessly.

The scope of our integration test is to call the endpoint of a controller over HTTP and assert the
response. Luckily, in .NET Core 2.1, the .NET team added the WebApplicationFactory<TEntry>
class to make the integration testing of web applications easier. With that class, we can boot up an
ASP.NET Core application in-memory and query it using the supplied HttpClient—all of that in just
a few lines of code. The test classes also provide extension points to configure the server, such as
replacing implementations with mocks, stubs, or any other test-specific elements that we may require.

Classic web application
In a classic ASP.NET Core application, the TEntry generic parameter is usually the Startup or Program
class of your project under test but could be anything. I created a few test cases in the Automated
Testing solution under the MyApp.IntegrationTests project to show you this functionality.

Here is the broken-down code:

namespace MyApp.IntegrationTests.Controllers
{
 public class ValuesControllerTest :
 IClassFixture<WebApplicationFactory<Startup>>
 {
 private readonly HttpClient _httpClient;

 public ValuesControllerTest(WebApplicationFactory<Startup>
 webApplicationFactory)
 {
 _httpClient = webApplicationFactory.CreateClient();
 }

Automated Testing36

In the preceding class declaration, we are injecting a WebApplicationFactory<Startup> object into
the constructor. That is possible because the class is implementing the IClassFixture<T> interface.
We could also use the factory to configure the test server, but since it was not needed here, we only
keep a reference on the HttpClient, preconfigured to connect to the in-memory test server:

public class Get : ValuesControllerTest {
 public Get(WebApplicationFactory<Startup> webApplicationFactory) :
base(webApplicationFactory) { }
 [Fact]
 public async Task Should_respond_a_status_200_OK()
 {
 // Act
 var result = await _httpClient.GetAsync("/api/values");
 // Assert
 Assert.Equal(HttpStatusCode.OK, result.StatusCode);
 }

In the preceding test case, we use HttpClient to query the http: //localhost/api/values URI,
accessible through the in-memory server. Then, we assert that the status code of the HTTP response
was a success (200 OK):

 [Fact]
 public async Task Should_respond_the_expected_strings()
 {
 // Act
 var result = await _httpClient
 .GetFromJsonAsync<string[]>("/api/values");
 // Assert
 Assert.Collection(result,
 x => Assert.Equal("value1", x),
 x => Assert.Equal("value2", x)
);
 }
}}}

This last test sends an HTTP request to the in-memory server, like the previous one, but deserializes
the body’s content as a string[] to ensure the values are the same as expected instead of validating
the status code. If you’ve worked with an HttpClient before, this should be very familiar to you.

When running those tests, an in-memory web server starts. Then, HTTP requests are sent to that server,
testing the complete application. In this case, the tests are simple, but you can create more complex
test cases in more complex programs.

You can run .NET tests within Visual Studio or use the CLI by running the dotnet test command. In
VS Code, you can use the CLI or find an extension to help with test runs.

Chapter 2 37

Next, we explore how to do the same for minimal APIs.

Minimal hosting
If you are using minimal hosting, you must use a workaround. We explore a few workarounds here
and leverage minimal APIs, allowing you to pick the one you prefer. These work with regular MVC
projects as well.

The first workaround is to use any other class in the assembly as the TEntryPoint of
WebApplicationFactory<TEntryPoint> instead of the Program or Startup class. This makes what
WebApplicationFactory does a little less explicit, but that’s all.

The second workaround is to add a line at the bottom of the Program.cs file (or anywhere else in the
project for that matter) to make the internal autogenerated program class public so that the compiler
does not complain about inconsistent accessibility.

Here is the complete Program.cs file with that added line (highlighted):

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();
app.MapGet("/", () => "Hello World!");
app.Run();
public partial class Program { }

Then, the test cases are very similar to the ones of the classic web application that we just explored:

namespace MyMinimalApiApp.IntegrationTests
{
 public class ProgramTest : IClassFixture<WebApplicationFactory<Program>>
 {
 private readonly HttpClient _httpClient;
 public ProgramTest(WebApplicationFactory<Program>
webApplicationFactory)
 {
 _httpClient = webApplicationFactory.CreateClient();
 }

 public class Get : ProgramTest
 {
 public Get(WebApplicationFactory<Program> webApplicationFactory) :
base(webApplicationFactory) { }

 [Fact]
 public async Task Should_respond_a_status_200_OK()
 {
 var result = await _httpClient.GetAsync("/");

Automated Testing38

 Assert.Equal(HttpStatusCode.OK, result.StatusCode);
 }
 [Fact]
 public async Task Should_respond_hello_world()
 {
 var result = await _httpClient
 .GetStringAsync("/");
 Assert.Equal("Hello World!", result);
 }
 }
 }
}

The only change is the expected result as the endpoint returns a text/plain string instead of a
collection of strings serialized as JSON. If the two endpoints were producing the same thing, those
parts of the tests would have also been the same.

The third workaround is to instantiate WebApplicationFactory manually. However, instead of using the
Program class, which should not exist or be inaccessible, we can use the AutoGeneratedProgram class
or any other class from that assembly. I prefer the Program or AutoGeneratedProgram class to make
the intent clearer, but I ran into some issues when using AutoGeneratedProgram with .NET 6 builds.

The code is very similar to the previous workaround, but WebApplicationFactory is instantiated
manually instead:

public class ProgramTestWithoutFixture : IAsyncDisposable
{
 private readonly WebApplicationFactory<SomeOtherClass> _webApplicationFactory;
 private readonly HttpClient _httpClient;

 public ProgramTestWithoutFixture()
 {
 _webApplicationFactory = new WebApplicationFactory<SomeOtherClass>();

Experiment

I found that executing the two tests under ProgramTestWithoutFixture always takes
a few more milliseconds than using the IClassFixture. The same happened for the
tests in the ProgramTestWithoutFixtureNoReuse class, which always takes a few more
milliseconds than the other two classes. This experiment led me to think it could get way
worse with more than two tests, so I recommend sticking to class fixtures.

Chapter 2 39

 _httpClient = _webApplicationFactory.CreateClient();
 }
 //…
}

I omitted the test cases in the preceding code block because they are the same as the previous
workarounds. The full source code is available on GitHub: https://adpg.link/vzkr.

And that’s it. We have covered multiple ways to work around integration testing minimal APIs
simplistically and elegantly. Next, we explore a few testing principles before moving to architectural
principles in the next chapter.

Important testing principles
One essential thing to remember when writing tests is to test use cases, not the code itself; we are
testing features’ correctness, not code correctness. Of course, if the expected outcome of a feature
is correct, that also means the codebase is correct. However, it is not always true for the other way
around; correct code may yield an incorrect outcome. Also, remember that code costs money to write
while features deliver value.

To help with that, the test requirements usually revolve around the inputs and outputs. When specific
values go into your subject under test, you expect particular values to come out. Whether you are
testing a simple Add method where the ins are two or more numbers and the out is the sum of those
numbers, or a more complex feature where the ins come from a form and the out is the record getting
persisted in a database, most of the time, we are testing the ins and outs.

That’s the first principle you must know about. The interaction between two components or two
systems should always be tied to a data contract, whether using a classic request/response model
over a REST API where the data contract is the API signature, or using an event-driven architecture
approach and the data contract is the event signature or, even simpler, ComponentA returns an object
that is injected into ComponentB; the correctness of those interactions gravitates around the ins and
outs. Test those as units or test the integration between those units, and you should be on the right
way to writing strong test suites.

The second concept I want you to learn is a trick to divide those units: everything in a program is a
query or a command. No matter how you organize your code, from a simple single-file application to
a microservices architecture-base Netflix clone, all operations, single or compounded, are queries or
commands. Thinking about a system this way should help you test the ins and outs.

But what’s a query? A query means getting some ins, like the unique identifier of a database record,
and getting some outs, like the record itself. It could also be some part of the code asking how many
times it should retry an HTTP GET request when it fails. These are the easiest to test: you push some
ins and receive some outs to assert.

And what’s a command? We could see a command as a unit of code that mutates the state of an entity.
A command could be to hide a panel in a GUI or update a record in a database. It does not matter what
the command does as much as the fact that it changes something somewhere.

https://adpg.link/vzkr

Automated Testing40

Now that we have laid this out, it should become easier to write tests if you divide your code into small
units, like commands and queries. But what if a unit must perform multiple operations, such as read
from a database, and then send multiple commands? Well, if you create multiple smaller units, and
then another unit that interacts with those other building blocks, you should be able to test each piece
in isolation and integrate them together.

In a nutshell, when writing automated tests, we assert the output of the unit undergoing testing. That
unit optionally had some input parameters and is a query or a command.

We explore numerous techniques throughout the book to help you achieve that level of separation,
starting with architectural principles in the next chapter.

Summary
This chapter covered automated testing such as unit and integration tests. We also briefly covered
end-to-end tests, but it would be tough to cover that in a few pages since this is tied to an application
and its implementation. Nonetheless, all is not lost since the notions covered to write integration tests
can also be used for end-to-end testing.

We looked at xUnit, the testing framework used throughout the book, and a way of organizing tests. We
explored ways to pick the correct type of test and some guidelines about choosing the right quantity
of each kind of test. Then we saw how ASP.NET Core makes it easier than ever before to test our web
applications by allowing us to mount and run our ASP.NET Core application in memory. Finally, we
explored some high-level concepts that should guide you in writing testable, flexible, and reliable
programs.

Now that we have talked about testing, we are ready to explore a few architectural principles to help
us increase programs’ testability. Those are a crucial part of modern software engineering and go
hand in hand with automated testing.

Questions
Let’s take a look at a few practice questions:

1. Is it true that in TDD, you write tests before the code to be tested?
2. What is the role of unit tests?
3. How big can a unit test be?
4. What type of test is usually used when the subject under test has to access a database?
5. Is doing TDD required?

Further reading
Here are some links to build upon what we have learned in the chapter:

• xUnit: https://xunit.net/
• If you use Visual Studio, I have a few handy snippets to help improve productivity. They are

available on GitHub: https://adpg.link/5TbY

https://xunit.net/
https://adpg.link/5TbY

3
Architectural Principles

This chapter focuses on fundamental architectural principles. The reason behind this is simple: those
principles are the foundation of modern software engineering. Moreover, we apply these principles
throughout the book to make sure that we write better code and make better design decisions by the end.

In this chapter, we cover the following topics:

• The SOLID principles and their importance
• The separation of concerns principle
• The DRY principle
• The KISS principle

The SOLID principles
SOLID is an acronym representing five principles that extend the basic OOP concepts of Abstraction,
Encapsulation, Inheritance, and Polymorphism. They add more details about what to do and how to
do it, guiding developers toward more robust and flexible designs.

It is also important to note that they are principles, not rules to follow at all costs. Weigh the cost in
the context of what you are building. If you are building a small tool, it may be OK to cut it short more
than when designing a business-critical application. For the latter case, you may want to consider being
stricter. However, following them is usually a good idea, irrespective of the size of your application,
which is the main reason to cover them here, in the beginning, before digging into design patterns.

The SOLID acronym represents the following:

• Single responsibility principle
• Open/Closed principle
• Liskov substitution principle
• Interface segregation principle
• Dependency inversion principle

By following these principles, your systems should become easier to test and maintain.

Architectural Principles42

Single responsibility principle (SRP)
Essentially, the SRP means that a single class should hold one, and only one, responsibility, leading
me to the following quote:

OK, but why? Before giving you the answer, think about one or more times a specification was added,
updated, or removed from one project you worked on. Then, think about how easier it would have
been if every class in your system had only a single responsibility: one reason to change.

I don’t know if you visualized that clearly or not, but I can think of a few projects off the top of my
head that would have benefited from this principle. Software maintainability problems can be due to
both tech and non-tech people. I think that nothing is black or white and that most situations are gray;
sometimes, it is of a darker or lighter gray, but gray nonetheless. That lack of absoluteness is also true
when designing software: do your best, learn from your mistakes, and be humble.

Let’s review why that principle exists:

• Applications are born to change.
• To make our classes more reusable and create more flexible systems.
• To help maintain applications. Since you know the only thing a class does before updating it, you

can quickly foresee the impact on the system, unlike with classes that hold many responsibilities,
where updating one can break one or more other parts.

• To make our classes more readable. Fewer responsibilities lead to less code, and less code
is simpler to visualize in a few seconds, leading to a quicker understanding of that piece of
software.

Let’s try this out in action.

Project – BookStore
I have written some horrible code that violates a few principles, including the SRP. Let’s start by
analyzing the code to partially fix it so that it no longer violates the SRP.

The following is an example of poorly written code:

public class Book
{
 public int Id { get; set; }
 public string? Title { get; set; }
 private static int _lastId = 0;
 public static List<Book> Books { get; }
 public static int NextId => ++_lastId;
 static Book()
 {
 Books = new List<Book>

“There should never be more than one reason for a class to change.”

— Robert C. Martin, originator of the single responsibility principle

Chapter 3 43

 {
 new Book
 {
 Id = NextId,
 Title = "Some cool computer book"
 }
 };
 }
 public Book(int? id = null)
 {
 Id = id ?? default;
 }
 public void Save()
 {
 // Create the book if it does not exist,
 // otherwise, find its index and replace it
 // by the current object.
 if (Books.Any(x => x.Id == Id))
 {
 var index = Books.FindIndex(x => x.Id == Id);
 Books[index] = this;
 }
 else
 {
 Books.Add(this);
 }
 }
 public void Load()
 {
 // Validate that an Id is set
 if (Id == default(int))
 {
 throw new Exception("You must set the Id to the Book Id you want to
load.");
 }
 // Get the book
 var book = Books.FirstOrDefault(x => x.Id == Id);
 // Make sure it exist
 if (book == null)
 {
 throw new Exception("This book does not exist");

Architectural Principles44

 }
 // Copy the book properties to the current object
 Id = book.Id; // this should already be set
 Title = book.Title;
 }
 public void Display()
 {
 Console.WriteLine($"Book: {Title} ({Id})");
 }
}

That class contains all the responsibilities of that super small console application. There is also the
Program class, which includes a quick and dirty user interface, the consumer of the Book class.

The program offers the following options:

Figure 3.1: The program’s user interface

The Program class structure is as follows:

public class Program
{
 public static void Main(string[] args)
 {
 // Omitted code
 }
 // The methods we explore next go here
}

I omitted the Main method code because it is just a big switch statement with Console.WriteLine
calls. It dispatches the user input to the other methods (explained later) when a user makes a choice.
See https://adpg.link/jpxa for more information on the Main method. Next, the method called
when a user chooses 1:

https://adpg.link/jpxa

Chapter 3 45

private static void FetchAndDisplayBook()
{
 var book = new Book(id: 1);
 book.Load();
 book.Display();
}

The FetchAndDisplayBook() method loads the book instance with an id equal to 1 and then displays
it in the console. Next, the method called when a user chooses 2:

private static void FailToFetchBook()
{
 var book = new Book();
 book.Load(); // Exception: You must set the Id to the Book Id you want to
load.
 book.Display();
}

The FailToFetchBook() method loads a book instance without specifying an id, which results in an
exception thrown when loading the data; refer to the book.Load() method (preceding code block,
first highlight). Next, the method called when a user chooses 3:

private static void BookDoesNotExist()
{
 var book = new Book(id: 999);
 book.Load();
 book.Display();
}

The BookDoesNotExist() method loads a book instance that does not exist, leading to an exception
being thrown when loading the data; refer to the book.Load() method (preceding code block, second
highlight). Next, the method called when a user chooses 4:

private static void CreateOutOfOrderBook()
{
 var book = new Book
 {
 Id = 4, // this value is not enforced by anything and will be
overridden at some point.
 Title = "Some out of order book"
 };
 book.Save();
 book.Display();
}

Architectural Principles46

The CreateOutOfOrderBook() method creates a book instance specifying an id manually. That ID
could be overridden by the auto-incremental mechanism of the Book class. Here is a sequence that
shows how to achieve such an override:

1. Start the program; there is one book: ID: 1.
2. Choose option 4; there are two books: ID: 1 and 4.
3. Choose option 6 and enter any title; there are three books: ID: 1, 4, and 2.
4. Choose option 6 and enter any title; there are four books: ID: 1, 4, 2, and 3.
5. Choose option 6 and enter any title; there are still four books, but the second one’s title

(ID: 4) was updated instead of creating a fifth book.

These kinds of behaviors are good indicators of a problem in the design of a program. Next, the method
called when a user chooses 5:

private static void DisplayTheBookSomewhereElse()
{
 Console.WriteLine("Oops! Can't do that, the Display method only write to
the \"Console\".");
}

The DisplayTheBookSomewhereElse() method points to another problem with that design. We cannot
display the books anywhere else other than in the console because the Book class owns the display
mechanism; refer to the book.Display() method. Next, the method called when a user chooses 6:

private static void CreateBook()
{
 Console.Clear();
 Console.WriteLine("Please enter the book title: ");
 var title = Console.ReadLine();
 var book = new Book {
 Id = Book.NextId,
 Title = title
 };
 book.Save();
}

The CreateBook() method lets us create new books. It uses the Book.NextId static property, which
increments the Id. That breaks encapsulation and leaks the creation logic to the consumer, which
is another problem associated with the design that we will fix later. Next, the method called when a
user chooses 7:

private static void ListAllBooks()
{
 foreach (var book in Book.Books)
 {

Chapter 3 47

 book.Display();
 }
}

The ListAllBooks() method displays all of the books that we have created in the program.

Before going further, I’d like you to think about what is wrong in the Book class and how many
responsibilities there are that violate the SRP. Once done, please continue reading.

OK, let’s start by isolating the features:

• The class is a data structure that represents a book (Id, Title).
• It saves and loads data, including keeping a list of all existing books (Books, Save(), Load()).
• It “manages” auto-incremented IDs by exposing the NextId property that hacks the feature

into the program.
• It plays the presenter role, outputting a book in the console with its Display() method.

From those four points, what roles could we extract?

• It is a book.
• It performs data access (manages the data).
• It presents the book to the user by outputting itself in the console.

These three elements are responsibilities, which is an excellent starting point for splitting the Book
class. Let’s look at those three classes:

• We can keep the Book class and make it a simple data structure that represents a book.
• We can create a BookStore class whose role is to access the data.
• We can create a BookPresenter class that outputs (presents) a book on the console.

Here are those three classes:

public class Book
{
 public int Id { get; set; }
 public string? Title { get; set; }
}
public class BookStore
{
 private static int _lastId = 0;
 private static List<Book> _books;
 public static int NextId => ++_lastId;
 static BookStore()
 {
 _books = new List<Book>
 {

Architectural Principles48

 new Book
 {
 Id = NextId,
 Title = "Some cool computer book"
 }
 };
 }
 public IEnumerable<Book> Books => _books;
 public void Save(Book book)
 {
 // Create the book when it does not exist,
 // otherwise, find its index and replace it
 // by the specified book.
 if (_books.Any(x => x.Id == book.Id))
 {
 var index = _books.FindIndex(x => x.Id == book.Id);
 _books[index] = book;
 }
 else
 {
 _books.Add(book);
 }
 }
 public Book? Load(int bookId)
 {
 return _books.FirstOrDefault(x => x.Id == bookId);
 }
}
public class BookPresenter
{
 public void Display(Book book)
 {
 Console.WriteLine($"Book: {book.Title} ({book.Id})");
 }
}

That does not fix every problem yet, but at least it is a good start. By extracting the responsibilities,
we have achieved the following:

• The FailToFetchBook() use case has been fixed (see the Load() method).
• Fetching a book is now more elegant and more intuitive.
• We also opened a possibility about the DisplayTheBookSomewhereElse() use case (to be

revisited later).

Chapter 3 49

From an SRP standpoint, we still have a problem or two:

• The auto-incremented ID is still exposed publicly, and BookStore is not managing it, meaning
the responsibility leaks to consumers.

• The Save() method handles adding and updating books, which seems like two responsibilities,
not one.

For the following updates, we focus on those two problems that share a synergy, making them easier
to fix independently than together (dividing responsibility between the methods).

What we are about to do is the following:

1. Hide the BookStore.NextId property to fix encapsulation (not the SRP, but it is essential
nonetheless).

2. Split the BookStore.Save() method into two methods: Add() and Replace().
3. Update our user interface: Program.cs.

After hiding the NextId property, we need to move that feature inside the BookStore class. The most
logical place would be the Save() method (not yet split in two) since we want a new unique identifier
for each new book. Here are the changes:

public class BookStore
{
 ...
 private static int NextId => ++_lastId;
 ...
 public void Save(Book book)
 {
 ...
 else
 {
 book.Id = NextId;
 _books.Add(book);
 }
 }
}

The auto-incremented identifier is still a half-baked feature. To help improve it more, let’s split the
Save() method into two. By looking at the resulting code, we can imagine that handling both use
cases was easier to write. It is also easier to read and clearer to use for any developer who may come
into contact with that code in the future. See for yourself:

public void Add(Book book)
{
 if (book.Id != default)
 {

Architectural Principles50

 throw new Exception("A new book cannot be created with an id.");
 }
 book.Id = NextId;
 _books.Add(book);
}
public void Replace(Book book)
{
 if (!_books.Any(x => x.Id == book.Id))
 {
 throw new Exception($"Book {book.Id} does not exist!");
 }
 var index = _books.FindIndex(x => x.Id == book.Id);
 _books[index] = book;
}

Now we are beginning to get somewhere. We have successfully split the responsibilities into three
classes and split the Save() method, such that both handle only a single operation.

The Program members now look like this:

private static readonly BookStore _bookStore = new BookStore();
private static readonly BookPresenter _bookPresenter = new BookPresenter();
//...
private static void FetchAndDisplayBook()
{
 var book = _bookStore.Load(1);
 _bookPresenter.Display(book!);
 // In the preceding line, the null forgiving operator ('!')
 // tells the analyzer that the 'book' variable is not null
 // because we know it isn't. In a more dynamic scenario, we
 // should validate if the book variable is not null.
}
private static void FailToFetchBook()
{
 // This cannot happen anymore,
 // this has been fixed automatically.
}
private static void BookDoesNotExist()
{
 var book = _bookStore.Load(999);
 if (book == null)
 {
 // Book does not exist

Chapter 3 51

 }
}
private static void CreateOutOfOrderBook()
{
 var book = new Book
 {
 Id = 4,
 Title = "Some out of order book"
 };
 _bookStore.Add(book); // Exception: A new book cannot be created with an
id.
 _bookPresenter.Display(book);
}
private static void DisplayTheBookSomewhereElse()
{
 Console.WriteLine("This is now possible, but we need a new Presenter; not
100% there yet!");
}
private static void CreateBook()
{
 Console.Clear();
 Console.WriteLine("Please enter the book title: ");
 var title = Console.ReadLine();
 var book = new Book { Title = title };
 _bookStore.Create(book);
}
private static void ListAllBooks()
{
 foreach (var book in _bookStore.Books)
 {
 _bookPresenter.Display(book);
 }
}

Apart from automatically fixing the FailToFetchBook method, I found the code easier to read. For
example, the first following line (Fixed Program) is explaining the intent better than the next two
(Initial Program):

// Fixed Program
// Intent: loads a book from a bookstore
var book = _bookStore.Load(999);

Architectural Principles52

// Initial Program
// Intent: loads a book; unclear
var book = new Book(id: 999);
book.Load();

Aside from readability, the Program class of the Fixed Program project no longer manages the book’s ID
when creating a book. It is now only managing the user interface and interaction with the bookstore API.

To conclude, one thing to be careful about when thinking about the SRP is not to over-separate
classes. The more classes in a system, the more complex to assemble the system can become, and
the harder it can be to debug or to follow the execution paths. On the other hand, many well-separated
responsibilities should lead to a better, more testable system.

How to describe “one reason” or “a single responsibility” is unfortunately impossible to define, and
I don’t have a hard guideline to give you here. As a rule of thumb, aim at packing a cohesive set of
functionalities in a single class that revolves around its responsibility. Any excess logic should be
stripped out and missing pieces added in.

A good indicator of the SRP violation is when you don’t know how to name an element, like a class.
That is often a good pointer that the element should not reside there, should be extracted, or split
into multiple smaller pieces.

Another good indicator is when a method becomes too big, maybe containing many if statements or
loops. In that case, you should split that method into multiple smaller methods, classes, or any other
construct that suits your requirements. That should make the code easier to read and make the initial
method’s body cleaner. It often also helps you get rid of useless comments and improve testability.
Remember that naming methods and other elements clearly is very important.

Next, we explore how to change behaviors without modifying code, but before that, let’s have a look
at interfaces.

What is an interface?
Interfaces are one of the most useful tools in the C# box for creating flexible and maintainable software
alike. I’ll try to give you a clear definition of an interface, but don’t worry; it is tough to understand
and grasp the power of interfaces from an explanation:

• The role of an interface is to define a cohesive contract (public methods, properties, and events).
In its theoretical form, there is no code in an interface; it is only a contract. In practice, since
C# 8, we can create default implementation in interfaces, which could be helpful to limit
breaking changes in a library (such as adding a method to an interface without breaking any
class implementing that interface).

• An interface should be small (ISP), and its members should align toward a common goal
(cohesion) and share a single responsibility (SRP).

• In C#, a class can implement multiple interfaces, exposing multiples of those public contracts,
or, more accurately, be any and all of them. By leveraging polymorphism, a class can be used
as any of the interfaces it implements as well as its supertype (if any).

Chapter 3 53

Let’s be honest. That definition is still a bit abstract, but rest assured, we use interfaces intensively
throughout the book, so by the end, interfaces should not hold many secrets for you.

Open/Closed principle (OCP)
Let’s start this section with a quote from Bertrand Meyer, the person who first wrote the term
open/closed principle in 1988:

OK, but what does that mean? It means that you should be able to change the class behaviors from
the outside without altering the code itself.

The best way to pull that off is to assemble the application using multiple well-designed units of code,
sewed together using dependency injection.

To illustrate that, let’s play with a ninja, a sword, and a shuriken, but be careful; that’s dangerous ground!
There are two versions of the project in GitHub, one that does not leverage the OCP (NinjaBeforeOCP)
and another that does (NinjaOCP). In the chapter, we explore both versions in order.

Project – IAttacker
The example is a small hypothetical game where an implementation of an IAttacker interface can
attack any implementation of the IAttackable interface, as shown below:

public interface IAttacker : IAttackable
{
 AttackResult Attack(IAttackable target);
}
public interface IAttackable
{
 string Name { get; }
 Vector2 Position { get; set; }
}

Of course, for a ninja to attack another ninja, they must have access to weapons. Here is the Weapon
base class:

public abstract class Weapon
{
 public abstract float MinRanged { get; }

On another more fundamental note

A class does not inherit from an interface; it implements an interface. However, an
interface can inherit from another interface.

“Software entities (classes, modules, functions, and so on) should be open for extension
but closed for modification.”

Architectural Principles54

 public abstract float MaxRanged { get; }

 public virtual string Name => GetType().Name;
 public virtual bool CanHit(float distance)
 => distance >= MinRanged && distance <= MaxRanged;
}

The preceding code shows that derived types are responsible for setting the MinRanged and MaxRanged
properties, while the Weapon class is responsible for computing if it can hit at a certain distance or not.

As for the implementations, in the first part of the example, we use two weapons: Sword and Shuriken.
In the next iteration, we add the Pistol. Here is the code that covers all of those weapons:

public class Sword : Weapon
{
 public override float MinRanged { get; } = 0;
 public override float MaxRanged { get; } = Vector2.Distance(Vector2.Zero,
Vector2.One);
}
public class Shuriken : Weapon
{
 public override float MinRanged { get; } = Vector2.Distance(Vector2.Zero,
Vector2.One);
 public override float MaxRanged { get; } = 20;
}
public class Pistol : Weapon
{
 public override float MinRanged { get; } = Vector2.Distance(Vector2.Zero,
Vector2.One);
 public override float MaxRanged { get; } = 50;
}

Those three classes are very thin and barely contain any code. The only logic is that the melee weapon
can hit from a range of 0 to Vector2.Distance(Vector2.Zero, Vector2.One), while the range weapons
can hit from a range of Vector2.Distance(Vector2.Zero, Vector2.One) to 20 for the shuriken or
50 for the pistol.

Distances

When I coded this, I saw each unit as one meter, so a sword can reach around the attacker’s
position while the ranged weapons can hit targets at longer distances. Those distances
are arbitrary and are not supposed to be realistic.

Chapter 3 55

Finally, the last pieces of code shared by both versions of the project are the AttackResult class,
which we use to display the results, and the AttackableExtensions class, which helps with distance
computation and movement:

public class AttackResult
{
 public string Weapon { get; }
 public string Attacker { get; }
 public string Target { get; }
 public bool Succeeded { get; }
 public float Distance { get; }

 public AttackResult(Weapon weapon, IAttacker attacker, IAttackable target)
 {
 Weapon = $"{weapon.Name} (Min: {weapon.MinRanged}, Max: {weapon.
MaxRanged})";
 Attacker = $"{attacker.Name} (Position: {attacker.Position})";
 Target = $"{target.Name} (Position: {target.Position})";
 Distance = attacker.DistanceFrom(target);
 Succeeded = weapon.CanHit(Distance);
 }
}
public static class AttackableExtensions
{
 public static float DistanceFrom(this IAttackable attacker, IAttackable
target)
 {
 return Vector2.Distance(attacker.Position, target.Position);
 }
 public static IAttackable MoveTo(this IAttackable target, float x, float y)
 {
 target.Position = new Vector2(x, y);
 return target;
 }
}

In the preceding code, the AttackResult class is responsible for keeping a hold on the result of an attack.

Architectural Principles56

As we can see in the following consumer code, we display the results right away, not keeping hold of
those values. Nevertheless, since we computed strings and are not referencing any external object,
we don’t have the problem described in the previous note; we flattened our “point in time:”

public static async Task ExecuteSequenceAsync<T>(T theBluePhantom, T
theUnseenMirage, Func<string, Task> writeAsync)
 where T : IAttackable, IAttacker
{
 // The Blue Phantom attacks The Unseen Mirage with a first attack
 var result = theBluePhantom.Attack(theUnseenMirage);
 await PrintAttackResultAsync(result);

 // The Unseen Mirage moves away from The Blue Phantom
 theUnseenMirage.MoveTo(5, 5);
 await PrintMovementAsync(theUnseenMirage);

 // The Blue Phantom attacks The Unseen Mirage with a second attack
 var result2 = theBluePhantom.Attack(theUnseenMirage);
 await PrintAttackResultAsync(result2);

 // The Unseen Mirage moves further away from The Blue Phantom
 theUnseenMirage.MoveTo(20, 20);
 await PrintMovementAsync(theUnseenMirage);

 // The Blue Phantom attacks The Unseen Mirage with a third attack
 var result3 = theBluePhantom.Attack(theUnseenMirage);
 await PrintAttackResultAsync(result3);

 // The Unseen Mirage strikes back at The Blue Phantom from a distance
 var result4 = theUnseenMirage.Attack(theBluePhantom);
 await PrintAttackResultAsync(result4);

 // Output

Note

In our case, we only need to display strings. However, in a more advanced program, we
might need more than this. In that case, be careful about parameters that are passed
by references like what we are injecting in the AttackResult constructor, as they can
continue to change after object creation. For example, if we create the result of an attack
and then move the target before displaying the result, the target’s position change could
wield an inconsistent result.

Chapter 3 57

 async Task PrintAttackResultAsync(AttackResult attackResult)
 {
 if (attackResult.Succeeded)
 {
 await writeAsync($"{attackResult.Attacker} hits {attackResult.
Target} using {attackResult.Weapon} at distance {attackResult.
Distance}!{Environment.NewLine}");
 }
 else
 {
 await writeAsync($"{attackResult.Attacker} misses {attackResult.
Target} using {attackResult.Weapon} at distance {attackResult.Distance}...
{Environment.NewLine}");
 }
 }

 async Task PrintMovementAsync(IAttackable ninja)
 {
 await writeAsync($"{ninja.Name} moved to {ninja.Position}.{Environment.
NewLine}");
 }
}

The preceding code shows the sequence of events that both the pre- and post-OCP code samples use.
In a nutshell, that code makes the ninjas attack each other. It’s like a video game, but without the
controls, graphics, and interactive elements that make a game a game.

OK, now that all that code is out of the way, let’s look at the initial implementation of the Ninja class
before improving it to follow the OCP:

namespace NinjaBeforeOCP;
public class Ninja : IAttackable, IAttacker
{
 private readonly Weapon _sword = new Sword();
 private readonly Weapon _shuriken = new Shuriken();

 public string Name { get; }
 public Vector2 Position { get; set; }

 public Ninja(string name, Vector2? position = null)
 {
 Name = name;
 Position = position ?? Vector2.Zero;

Architectural Principles58

 }

 public AttackResult Attack(IAttackable target)
 {
 var distance = this.DistanceFrom(target);
 if (_sword.CanHit(distance))
 {
 return new AttackResult(_sword, this, target);
 }
 else
 {
 return new AttackResult(_shuriken, this, target);
 }
 }
}

In the preceding code, the highlighted lines show the two weapons the ninja can use. The shuriken
is a ranged weapon, while the sword is a melee weapon.

Next, let’s look at the program code that consumes the Ninja class before we execute it:

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();
app.MapGet("/", async (HttpContext context) =>
{
 // Create actors
 var target = new Ninja("The Unseen Mirage");
 var ninja = new Ninja("The Blue Phantom");

 // Execute the sequence of actions
 await Logic.ExecuteSequenceAsync(ninja, target, writeAsync: s => context.
Response.WriteAsync(s));
});
app.Run();

When we execute that version of the program and navigate to https: //localhost:3001/, we get the
following results:

The Blue Phantom (Position: <0, 0>) hits The Unseen Mirage (Position: <0, 0>)
using Sword (Min: 0, Max: 1.4142135) at distance 0!
The Unseen Mirage moved to <5, 5>.
The Blue Phantom (Position: <0, 0>) hits The Unseen Mirage (Position: <5, 5>)
using Shuriken (Min: 1.4142135, Max: 20) at distance 7.071068!
The Unseen Mirage moved to <20, 20>.

Chapter 3 59

The Blue Phantom (Position: <0, 0>) misses The Unseen Mirage (Position: <20,
20>) using Shuriken (Min: 1.4142135, Max: 20) at distance 28.284271...
The Unseen Mirage (Position: <20, 20>) misses The Blue Phantom (Position: <0,
0>) using Shuriken (Min: 1.4142135, Max: 20) at distance 28.284271...

The above result makes sense; it is what we built. However, I have the following questions for you (try
to answer the first one before reading the second one):

• Are there any issues with that code, and if so, what could they be?
• How can a ninja use a pistol instead of a shuriken?

To answer those questions, based on the Ninja class we covered, we must modify the class or create
a new one that defines a different set of weapons. This is a problem as in most games, you can loot
new items. If we think about it, with this design, we would need to create one ninja class per item set,
which is not a viable option for any game bigger than this.

To fix this, we apply the OCP and open the Ninja class to create ninjas with different weapon sets. We
want to compose the Ninja instances instead of relying on a hardcoded set of weapons.

The best way of implementing this is the Strategy pattern, which we explore in more detail in Chapter
6, Understanding the Strategy, Abstract Factory, and Singleton Design Patterns, and Chapter 7, Deep Dive
into Dependency Injection. For now, let’s forget about those fancy names, and let’s look at the updated
version of the Ninja class after applying the OCP:

public class Ninja : IAttackable, IAttacker
{
 private readonly Weapon _meleeWeapon;
 private readonly Weapon _rangedWeapon;

 public string Name { get; }
 public Vector2 Position { get; set; }

 public Ninja(string name, Weapon meleeWeapon, Weapon rangedWeapon, Vector2?
position = null)

Composition over inheritance

Composition improves code reuse since multiple classes can use those other smaller
classes. We are using this principle throughout the book, including in this example. The
idea is to have an object use other objects to achieve the correct behaviors instead of
inheriting a base class. For example, the first Ninja implementation is composed of a
set of hardcoded weapons, and after applying the OCP, the second Ninja class (that we
explore next) is composed dynamically using dependency injection. None of them inherit
a base class; they implement two interfaces instead and leverage other classes, such as
the Weapon class, to handle part of its behavior.

Architectural Principles60

 {
 Name = name;
 Position = position ?? Vector2.Zero;
 _meleeWeapon = meleeWeapon;
 _rangedWeapon = rangedWeapon;
 }

 public AttackResult Attack(IAttackable target)
 {
 var distance = this.DistanceFrom(target);
 if (_meleeWeapon.CanHit(distance))
 {
 return new AttackResult(_meleeWeapon, this, target);
 }
 else
 {
 return new AttackResult(_rangedWeapon, this, target);
 }
 }
}

I tried to keep the code as close to the first code sample as possible to make it easier to focus on the
differences. The highlighted lines of the preceding code point to the following differences:

• The _shuriken field was renamed _rangedWeapon, and _sword was renamed _meleeWeapon.
• The weapons are set through constructor parameters during the instantiation of the Ninja

class instead of hardcoded.

That’s it. The rest of the class remained the same. The first change makes the code more readable,
helping to understand what each field holds. Now that we can set the weapons, it is not necessarily
a sword and a shuriken anymore; it can be what we set them to be during the object construction.

The second change is the key here. It is one way of applying the OCP, showing the concept. It allows
consumers to change the behavior of the Ninja class without modifying the code itself. To prove that,
let’s visit and execute the following endpoint and then inspect the result:

app.MapGet("/old", async (HttpContext context) =>
{
 // Create actors
 var target = new Ninja("The Unseen Mirage", new Sword(), new Shuriken());
 var ninja = new Ninja("The Blue Phantom", new Sword(), new Shuriken());

 // Execute the sequence of actions

Chapter 3 61

 await Logic.ExecuteSequenceAsync(ninja, target, writeAsync: s => context.
Response.WriteAsync(s));
});

By running the program and navigating to the https: //localhost:3002/old URL, we obtain the same
result as before because both ninjas are identical, holding a sword and a shuriken.

Now, let’s try that pistol by giving it to The Unseen Mirage. I highlighted the only change in the following
endpoint code:

app.MapGet("/", async (HttpContext context) =>
{
 // Create actors
 var target = new Ninja("The Unseen Mirage", new Sword(), new Pistol());
 var ninja = new Ninja("The Blue Phantom", new Sword(), new Shuriken());

 // Execute the sequence of actions
 await Logic.ExecuteSequenceAsync(ninja, target, writeAsync: s => context.
Response.WriteAsync(s));
});

By navigating to the https: //localhost:3002/ URL, we can notice a subtle but important difference:

The Blue Phantom (Position: <0, 0>) hits The Unseen Mirage (Position: <0, 0>)
using Sword (Min: 0, Max: 1.4142135) at distance 0!
The Unseen Mirage moved to <5, 5>.
The Blue Phantom (Position: <0, 0>) hits The Unseen Mirage (Position: <5, 5>)
using Shuriken (Min: 1.4142135, Max: 20) at distance 7.071068!
The Unseen Mirage moved to <20, 20>.
The Blue Phantom (Position: <0, 0>) misses The Unseen Mirage (Position: <20,
20>) using Shuriken (Min: 1.4142135, Max: 20) at distance 28.284271...
The Unseen Mirage (Position: <20, 20>) hits The Blue Phantom (Position: <0, 0>)
using Pistol (Min: 1.4142135, Max: 50) at distance 28.284271!

Have you spotted the difference? The Unseen Mirage hits The Blue Phantom at a distance of 28.284271
instead of missing. Due to the OCP, we can now change the program’s behavior by creating and using
new weapons without altering the Ninja class code.

In a more complex application, combining composition and dependency injection could allow
changing the behaviors of the whole program from a single place, called the composition root, without
changing our existing code; “open for extension, but closed for modification.” To add new weapons, we
can create new classes and do not need to modify existing ones, which we are doing in a later example.

Those new terms could be overwhelming at first, but we cover them in more detail in subsequent
chapters and use those techniques extensively throughout the book. The crucial part is the OCP
concepts, not the fancy names.

Architectural Principles62

Next, we explore the principle we could perceive as the most complex of the five.

Liskov substitution principle (LSP)
The LSP emanated from Barbara Liskov at the end of the ‘80s and was revisited during the ‘90s by
both Liskov and Jeannette Wing to create the principle that we know and use today. It is also similar
to Design by contract, by Bertrand Meyer.

The LSP focuses on preserving subtype behaviors, which leads to system stability. Before going any
further, let’s start with the formal definition introduced by Wing and Liskov:

This means that you should be able to swap an object of type T with an object of type S, where S is the
subtype of T, without breaking your program’s correctness.

Without putting in some effort, you can’t violate the following rules in C#, but they are still worth
mentioning:

• The contravariance of method arguments in the subtype.
• The covariance of return types in the subtype.

Before moving on with the LSP, let’s look at covariance and contravariance. We won’t go too deep into
this, so we don’t move too far away from the LSP, but in a nutshell, covariance and contravariance
represent specific polymorphism scenarios. They allow reference types to be converted into other
types implicitly. They apply to generic type arguments, delegates, and array types. Chances are, you
will never need to remember this.

Let’s start with the class hierarchy we are using in the covariance and contravariance examples:

public class Weapon { }
public class Sword : Weapon { }
public class TwoHandedSword : Sword { }

Covariance means you can return (output) the instance of a subtype as its supertype. Here is an
example:

[Fact]
public void Covariance_tests()

A bit of history

The first appearance of the OCP, in 1988, was referring to inheritance, and OOP has evolved
a lot since then. You should, most of the time, opt for composition over inheritance.
Inheritance is still a useful concept, but you should be careful when using it; it is a concept
that is easy to misuse, creating direct coupling between classes and deep hierarchy. We
explore that more throughout the book.

Let ∅(𝑥𝑥𝑥 be a property provable about objects x of type T. Then, ∅(𝑦𝑦𝑦 should be true
for objects y of type S, where S is a subtype of T.

Chapter 3 63

{
 Assert.IsType<Sword>(Covariance());
 Assert.Throws<InvalidCastException>(() => BreakCovariance());
}

// We can return a Sword into a Weapon
private Weapon Covariance()
 => new Sword();

// We cannot return a Sword into a TwoHandedSword
private TwoHandedSword BreakCovariance()
 => (TwoHandedSword)new Sword();

As shown in the preceding example, one way to break covariance is to return a supertype as a subtype.

On the other hand, contravariance means you can input the instance of a subtype as its supertype.
It is basically the same thing but for inputs, like this:

[Fact]
public void Contravariance_tests()
{
 // We can pass a Sword as a Weapon
 Contravariance(new Sword());

 // We cannot pass a Weapon as a Sword
 BreakContravariance(new Weapon()); // Compilation error
}
private void Contravariance(Weapon weapon) { }
private void BreakContravariance(Sword weapon) { }

The same polymorphic rule applies, as we can see from the preceding code. We can use a subtype as
a supertype.

Then, we must follow a few more rules to prove subtype correctness. Subtype correctness means a
subtype will not break the program more than its supertype if one is swapped by the other.

Any precondition implemented in a supertype should yield the same outcome in its subtypes, but
subtypes can be less strict about it, never more� For example, if a supertype validates that an argument
cannot be null, the subtype could remove that validation but not add stricter validation rules.

Note

I left a link in the Further reading section that explains covariance and contravariance if
you want to know more since we just covered the basics here.

Architectural Principles64

Any postcondition implemented in a supertype should yield the same outcome in its subtypes, but
subtypes can be more strict about it, never less� For example, if the supertype never returns null,
the subtype should not return null either or risk breaking the consumers of the object that are not
testing for null. On the other hand, if the supertype does not guarantee the returned value cannot
be null, then a subtype could decide never to return null, making both instances interchangeable.

Subtypes must preserve the invariance of the supertype. In other words, the behaviors of the supertype
must not change. For example, a subtype must pass all the tests written for the supertype, so there is
no variance between them (they don’t vary/they react the same).

Finally, we must add the “history constraint” to that list of rules, which states that what would happen
in the supertype must still happen in the subtype. While subtypes can add new properties (state) and
methods (behaviors), they must not modify the supertype state in any new way.

OK, at this point, you are right to feel that this is rather complex. Rest assured that this is the less
important of those principles, yet the more complex, and we are moving as far as we can from
inheritance, so this should not apply often.

That said, I’d summarize all that previous complexity by the following:

In your subtypes, add new behaviors; don’t change existing ones.

By doing that, you should be able to swap an instance of a class for one of its subclasses without
breaking anything.

It is important to note that changing existing behaviors also means throwing new exceptions in subtypes.
A supertype can throw subtyped exceptions because the error handling of existing consumers will
catch the subtyped exceptions.

As a side note, before even bothering with the LSP, start by applying the “is-a” rule from inheritance;
if a subtype is not a supertype, don’t use inheritance or rethink your inheritance chain.

To make a LEGO® analogy: LSP is like swapping a 4x2 blue block with a 4x2 green block: neither the
structural integrity of the structure nor the role of the block changed, just its color.

Let’s jump into some code to visualize that in practice.

Project – HallOfFame
Now, let’s see what this looks like in code. We explore a hall of fame feature of a fictive game that we
are working on.

Tip

An excellent way of enforcing those behavioral constraints is automated testing. You could
write a test suite and run it against all subclasses of a specific supertype to enforce the
preservation of behaviors.

Chapter 3 65

Feature description: the game should accumulate the number of enemies killed during the game
session. At the end of a game session where you killed at least 100 enemies, your ninja should reach
the hall of fame. The hall of fame should be ordered from the best score to the worst.

We created the following automated tests to enforce those rules, with sut (subject under test) being
of the HallOfFame type. Here is the empty implementation of the HallOfFame class:

public class HallOfFame
{
 public virtual void Add(Ninja ninja)
 => throw new NotImplementedException();
 public virtual IEnumerable<Ninja> Members
 => throw new NotImplementedException();
}

The Add() method should add ninjas that killed more than 100 enemies:

public static TheoryData<Ninja> NinjaWithAtLeast100Kills => new
TheoryData<Ninja>
{
 new Ninja { Kills = 100 },
 new Ninja { Kills = 101 },
 new Ninja { Kills = 200 },
};
// The following theory is executed three times.
// Once with 100 kills, then 101, then 200 as
// defined in the preceding property.
[Theory]
[MemberData(nameof(NinjaWithAtLeast100Kills))]
public void Add_should_add_the_specified_ninja(Ninja expectedNinja)
{
 // Act
 sut.Add(expectedNinja);

 // Assert
 Assert.Collection(sut.Members,

Note

In the following test code, I’m not following the convention about writing tests that I ex-
plained in the previous chapter because I need inheritance to reuse my test suite for the
three versions of the code. That was impossible to do using nested classes due to how C#
works. As the saying goes, that is the exception that proves the rule.

Architectural Principles66

 ninja => Assert.Same(expectedNinja, ninja)
);
}

The Add() method should not add a ninja more than once:

[Fact]
public void Add_should_not_add_existing_ninja()
{
 // Arrange
 var expectedNinja = new Ninja { Kills = 200 };

 // Act
 sut.Add(expectedNinja);
 sut.Add(expectedNinja);

 // Assert
 Assert.Collection(sut.Members,
 ninja => Assert.Same(expectedNinja, ninja)
);
}

The Add() method should validate that a ninja has at least 100 kills before adding it to the Members
collection of the HallOfFame instance under test:

[Fact]
public void Add_should_not_add_ninja_with_less_than_100_kills()
{
 // Arrange
 var ninja = new Ninja { Kills = 99 };

 // Act
 sut.Add(ninja);

 // Assert
 Assert.Empty(sut.Members);
}

The Members property of the HallOfFame class should return the ninja ordered by their number of
kills, from the most to the least:

[Fact]
public void Members_should_return_ninja_ordered_by_kills_desc()
{

Chapter 3 67

 // Arrange
 sut.Add(new Ninja { Kills = 100 });
 sut.Add(new Ninja { Kills = 150 });
 sut.Add(new Ninja { Kills = 200 });

 // Act
 var result = sut.Members;

 // Assert
 Assert.Collection(result,
 ninja => Assert.Equal(200, ninja.Kills),
 ninja => Assert.Equal(150, ninja.Kills),
 ninja => Assert.Equal(100, ninja.Kills)
);
}

The test cases we explored prove the correctness of the hall of fame feature we are about to develop.
We created the tests first, as prescribed by test-driven development (TDD), and now, it is time to look
at the implementation of the HallOfFame class:

public class HallOfFame
{
 protected HashSet<Ninja> InternalMembers { get; } = new();
 public virtual void Add(Ninja ninja)
 {
 if (InternalMembers.Contains(ninja))
 {
 return;
 }
 if (ninja.Kills >= 100)
 {
 InternalMembers.Add(ninja);
 }
 }
 public virtual IEnumerable<Ninja> Members
 => new ReadOnlyCollection<Ninja>(
 InternalMembers
 .OrderByDescending(x => x.Kills)
 .ToArray()
);
}

Architectural Principles68

Now that we have completed our feature and pushed our changes, we demo the hall of fame to our
stakeholders. The feature works as expected, and we are now ready to break the LSP before fixing
the issues.

Update 1: Adding a hall of heroes
After the demo, an idea arises: why not add a hall of heroes for players who do not qualify for the hall
of fame? After deliberation, we decided that we should implement that feature.

Feature description: the game should accumulate the number of enemies killed during the game
session (already done) and add all ninjas to the hall of heroes, no matter the score. The results should
be ordered by the best score first, in descending order, and each ninja should only be present once.

The first idea that arises to implement this feature quickly is to reuse the hall of fame code. In step
one, we decide to create a HallOfHeroes class that inherits the HallOfFame class and rewrite the Add()
method to support the new specifications.

After thinking about it, do you think that change would break the LSP?

Before giving you the answer, let’s look at that HallOfHeroes class:

namespace LSP.Examples.Update1;
public class HallOfHeroes : HallOfFame
{
 public override void Add(Ninja ninja)
 {
 if (InternalMembers.Contains(ninja))
 {
 return;
 }
 InternalMembers.Add(ninja);
 }
}

Since the LSP states that subclasses can be less strict about preconditions, removing the number of kill
preconditions should be acceptable.

Now, if we run the tests built for HallOfFame using HallOfHeroes instead, the only test that fails is
related to our precondition, so the subclass changed no behavior, and all use cases are still valid.

Note

Do you think the hall of heroes is a hall of fame? Have we broken the first rule of
inheritance? Nevertheless, we continue with this debatable choice with a focus on learn-
ing the LSP.

Chapter 3 69

To test our features more efficiently, we can encapsulate all shared tests into a base class but keep
Add_should_not_add_ninja_with_less_than_100_kills only for the HallOfFame tests.

With that in place to validate our code, we can begin to explore the role of the LSP as we can use an
instance of HallOfHeroes everywhere our program expects a HallOfFame instance without breaking it.

Next, we explore the test classes that we use to test the HallOfFame and HallOfHeroes classes. Let’s
start with the complete BaseLSPTest class that we broke down previously:

namespace LSP.Examples;
public abstract class BaseLSPTest
{
 protected abstract HallOfFame sut { get; }
 public static TheoryData<Ninja> NinjaWithAtLeast100Kills => new()
 {
 new Ninja { Kills = 100 },
 new Ninja { Kills = 101 },
 new Ninja { Kills = 200 },
 };

 [Fact]
 public virtual void Add_should_not_add_existing_ninja()
 {
 // Arrange
 var expectedNinja = new Ninja { Kills = 200 };

 // Act
 sut.Add(expectedNinja);
 sut.Add(expectedNinja);

 // Assert
 Assert.Collection(sut.Members,
 ninja => Assert.Same(expectedNinja, ninja)
);
 }

 [Theory]
 [MemberData(nameof(NinjaWithAtLeast100Kills))]
 public void Add_should_add_the_specified_ninja(Ninja expectedNinja)
 {
 // Act
 sut.Add(expectedNinja);

Architectural Principles70

 // Assert
 Assert.Collection(sut.Members,
 ninja => Assert.Same(expectedNinja, ninja)
);
 }

 [Fact]
 public void Members_should_return_ninja_ordered_by_kills_desc()
 {
 // Arrange
 sut.Add(new Ninja { Kills = 100 });
 sut.Add(new Ninja { Kills = 150 });
 sut.Add(new Ninja { Kills = 200 });

 // Act
 var result = sut.Members;

 // Assert
 Assert.Collection(result,
 ninja => Assert.Equal(200, ninja.Kills),
 ninja => Assert.Equal(150, ninja.Kills),
 ninja => Assert.Equal(100, ninja.Kills)
);
 }
}

Now, let’s look at the new HallOfFameTest class, which is way simpler and looks like the following:

namespace LSP.Examples;
public class HallOfFameTest : BaseLSPTest
{
 protected override HallOfFame sut { get; } = new HallOfFame();

 [Fact]
 public void Add_should_not_add_ninja_with_less_than_100_kills()
 {
 // Arrange
 var ninja = new Ninja { Kills = 99 };

 // Act
 sut.Add(ninja);

Chapter 3 71

 // Assert
 Assert.Empty(sut.Members);
 }
}

The preceding test class tests the HallOfFame class and inherits from BaseLSPTest. It adds one test
case that only applies to itself: a ninja must have at least 100 kills to be added to the hall of fame.

Finally, the HallOfHeroesTest class is almost empty:

namespace LSP.Examples.Update1;
public class HallOfHeroesTest : BaseLSPTest
{
 protected override HallOfFame sut { get; }
 = new HallOfHeroes();
}

In the preceding code, there is nothing more to add; the tests from the inherited BaseLSPTest class
are covering the whole feature. The highlighted line represents the subject under test, which is the
HallOfHeroes class this time instead of the HallOfFame class.

That new feature is implemented, but we are not done yet. Everything is still working as intended, no
issues with the LSP, we have not broken the principle yet, but that’s what we are doing next.

Update 2: Breaking the LSP
Later on, the game uses those classes. However, another developer, Joe, decides to use HallOfHeroes
in a new feature, but he needs to know when duplicated ninjas are added, so he decides to replace the
return; statement with throw new DuplicateNinjaException() instead. He is proud of this feature
and shows that to the team.

Do you think Joe’s update is breaking the LSP?

The class looks like this after the changes:

namespace LSP.Examples.Update2;
public class HallOfHeroes : HallOfFame
{
 public override void Add(Ninja ninja)
 {
 if (InternalMembers.Contains(ninja))
 {
 throw new DuplicateNinjaException();
 }
 InternalMembers.Add(ninja);
 }
}

Architectural Principles72

public class DuplicateNinjaException : Exception
{
 public DuplicateNinjaException()
 : base("Cannot add the same ninja twice!") { }
}

Yes, it is violating the LSP. Moreover, if our engineer had run the tests, it would have been clear that
one test was failing!

What do you think is violating the LSP?

The existing code was not expecting a DuplicateNinjaException to be thrown anywhere by a
HallOfFame instance, which could have created runtime crashes, possibly breaking the game. Throwing
new exceptions in subclasses is forbidden as per the LSP.

Update 3: Back on track with the LSP
To fix his mistake and conform to the LSP, our engineer decides to add an AddingDuplicateNinja
event to the HallOfHeroes class and then subscribes to that event instead of catching the
DuplicateNinjaException.

Would that fix the previous LSP violation?

The updated code looks like this:

namespace LSP.Examples.Update3;
public class HallOfHeroes : HallOfFame
{
 public event EventHandler<AddingDuplicateNinjaEventArgs>
AddingDuplicateNinja;

 public override void Add(Ninja ninja)
 {
 if (InternalMembers.Contains(ninja))
 {
 OnAddingDuplicateNinja(new AddingDuplicateNinjaEventArgs(ninja));
 return;
 }
 InternalMembers.Add(ninja);
 }

 protected virtual void OnAddingDuplicateNinja(AddingDuplicateNinjaEventArgs e)
 {
 AddingDuplicateNinja?.Invoke(this, e);
 }

Chapter 3 73

}
public class AddingDuplicateNinjaEventArgs : EventArgs
{
 public Ninja DuplicatedNinja { get; }

 public AddingDuplicateNinjaEventArgs(Ninja ninja)
 {
 DuplicatedNinja = ninja ?? throw new
ArgumentNullException(nameof(ninja));
 }
}

Yes, that fix allowed the existing code to run smoothly while adding the new feature that Joe (our
fictive dev) required. Publishing an event instead of throwing an Exception was just one way to fix
our fictional problem. In a real-life scenario, you should choose the solution that fits your problem
best. In our case, it was a straightforward and low-effort fix, which was perfect.

The important part of the example is that introducing a new exception type can seem harmless, but
can actually cause much harm. The same goes for other LSP violations.

Conclusion
Once again, this is only a principle, not a law. A good tip would be to see the violation of the LSP as
a code smell. From there, perform some analysis to see whether you have a design problem and the
impact. Use your analytical skills on a case-by-case basis and conclude whether or not it would be
acceptable to break the LSP in that specific case.

We could also name this principle the backward-compatibility principle because everything that worked
in a way before should still work at least the same after the substitution, which is why this principle
is important.

The more we advance, the more we move away from inheritance and the less we need this principle.
Don’t get me wrong here; if you use inheritance, do your best to apply the LSP, and you will most likely
be rewarded by doing so.

Interface segregation principle (ISP)
Let’s start with another famous quote by Robert C. Martin:

What does that mean? It means the following:

• You should create interfaces.
• You should value small interfaces more.
• You should not try to create a multipurpose interface as “an interface to rule them all”.

“Many client-specific interfaces are better than one general-purpose interface.”

Architectural Principles74

An interface could refer to a class interface here (all exposed elements of a class), but I prefer to focus
on C# interfaces instead, as we use them a lot throughout the book. If you know C++, you could see
an interface as a header file.

Project – Ninja versus Pirate
Let’s have a second look at the code shared by the two versions of the OCP ninja example, where we
can find multiple granular interfaces. The IAttacker interface defines an Attack method to target an
IAttackable instance. The IAttacker interface is also an IAttackable interface as attackers should
be attackable; if you can attack, you can be attacked. The IAttackable interface exposes a name and
a position but could also include other properties, such as hit points and defense.

By dividing functionalities into multiple interfaces, we can more easily reuse or extend them. Let’s
extend the code sample by creating a Pirate class, its new pirate arsenal, and new default behavior.
Let’s start by looking at the new pirate weapons:

public class Kick : Weapon
{
 public override float MinRanged { get; } = 0;
 public override float MaxRanged { get; } = 0;
}

public class Cutlass : Sword { }
public class BoardingAxe : Weapon
{
 public override float MinRanged { get; } = 0;
 public override float MaxRanged { get; } = 5;
}

public class Blunderbuss : Weapon
{
 public override float MinRanged { get; } = 3;
 public override float MaxRanged { get; } = 100;
}

The weapons are very simple and don’t require further explanation. The class that interests us most
is the Pirate class itself:

public class Pirate : IAttackable, Iattacker
{
 private readonly List<Weapon> _weapons;
 public Pirate(string name, params Weapon[] weapons)
 {
 _weapons = new(weapons);
 Name = name;

Chapter 3 75

 }

 public string Name { get; }
 public Vector2 Position { get; set; }

 public AttackResult Attack(Iattackable target)
 {
 var distance = this.DistanceFrom(target);
 foreach (var weapon in _weapons)
 {
 if(weapon.CanHit(distance))
 {
 return new AttackResult(weapon, this, target);
 }
 }
 return new(new NoWeapon(), this, target);
 }

 private class NoWeapon : Weapon
 {
 public override float MinRanged => 0;
 public override float MaxRanged => 0;
 public override string Name { get; } = "Nothing";
 public override bool CanHit(float distance) => false;
 }
}

The preceding code shows a similar implementation to the Ninja class, but owning more than two
weapons. Moreover, the highlighted line points to the new default behavior of the pirate, in case no
weapon can hit the target. That was an easy way to implement that use case using only a few lines of
code.

So far, there is nothing new here but a few different implementation details. Let’s get another entity
into the world now; a barrel:

public class Barrel : IAttackable
{
 public string Name => nameof(Barrel);
 public Vector2 Position { get; set; }
}

The Barrel class is a little different from the Pirate and Ninja classes because it only implements
the IAttackable interface; a barrel cannot attack and just stands there.

Architectural Principles76

We can see that the ISP comes into play in the program, where a pirate starts to attack a ninja and a
barrel:

app.MapGet("/", async (HttpContext context) =>
{
 // Create actors
 var theUnseenMirage = new Ninja("The Unseen Mirage", new Sword(), new
Pistol());
 var blackbeard = new Pirate("Blackbeard", new Kick(), new Cutlass(), new
BoardingAxe(), new Blunderbuss());
 var barrel = new Barrel().MoveTo(20, 45);

 // Execute a sequence of actions
 await PrintAttackResultAsync(blackbeard.Attack(theUnseenMirage));
 await PrintMovementAsync(theUnseenMirage.MoveTo(1, 1));
 await PrintAttackResultAsync(theUnseenMirage.Attack(blackbeard));
 await PrintAttackResultAsync(blackbeard.Attack(theUnseenMirage));
 await PrintMovementAsync(theUnseenMirage.MoveTo(3, 3));
 await PrintAttackResultAsync(theUnseenMirage.Attack(blackbeard));
 await PrintAttackResultAsync(blackbeard.Attack(theUnseenMirage));
 await PrintMovementAsync(theUnseenMirage.MoveTo(5, 5));
 await PrintAttackResultAsync(theUnseenMirage.Attack(blackbeard));
 await PrintAttackResultAsync(blackbeard.Attack(theUnseenMirage));
 await PrintMovementAsync(theUnseenMirage.MoveTo(40, 40));
 await PrintAttackResultAsync(theUnseenMirage.Attack(blackbeard));
 await PrintAttackResultAsync(blackbeard.Attack(theUnseenMirage));
 await PrintMovementAsync(theUnseenMirage.MoveTo(80, 80));
 await PrintAttackResultAsync(theUnseenMirage.Attack(blackbeard));
 await PrintAttackResultAsync(blackbeard.Attack(theUnseenMirage));
 await PrintAttackResultAsync(blackbeard.Attack(barrel));

 // Utilities
 async Task PrintAttackResultAsync(AttackResult attackResult){...}
 async Task PrintMovementAsync(IAttackable attackable){...}
});

In the preceding code, all the highlighted lines leverage the IAttackable interface. Without it, an
instance of the Pirate class could not attack an instance of a Ninja class and vice versa.

Chapter 3 77

The ISP is telling us to create a smaller cohesive set of functionalities that can be reused and extended,
and that’s what gave us the power to add a pirate so easily.

Looking back at the line that instantiates the barrel variable, we see the MoveTo extension method
leveraging the ISP. The MoveTo extension method works on any instance of an IAttackable interface,
another use of the separation into multiple interfaces, as dictated by the ISP.

We could do many things by leveraging those two interfaces that would have been impossible or
had made less sense if we had a single INinja interface, for example. We could create more types of
enemies, decor elements, and add new features by introducing new interfaces.

Nevertheless, I hope this visual explanation of the ISP helps you visualize the concept. Next, we explore
another sample that extends our bookstore project.

Project – Bookstore update
Context: We are building a web application with different roles; some users are administrators, and
some consume the app. The administrators can read and write all of the data in the system while the
normal users can only read. UI-wise, there are two distinct parts: the public UI and an admin panel.

Since users are not allowed to write data, we don’t want to expose those methods there just in case
certain developers decide to use them at some point in time. We don’t want unused code to linger
around in places where that code should not be used. On the other hand, we don’t want to create two
classes either, one that reads and one that writes; we prefer keeping only one data access class, which
should be easier to maintain.

To do that, let’s start by remodeling the earlier BookStore class by extracting an interface. To improve
readability, let’s rename the Load() method to Find(), and then let’s add a Remove() method, which
was missing before. The new interface looks like this:

public interface IBookStore
{
 IEnumerable<Book> Books { get; }
 Book? Find(int bookId);
 void Create(Book book);
 void Replace(Book book);
 void Remove(Book book);
}

Then, to ensure that consumers cannot alter our IBookStore instances from the outside (encapsulation),
let’s also update the Books property of our BookStore class to return a ReadOnlyCollection<Book> type
instead of the _books field directly. This only affects the implementation, but allows me to introduce
the concept (see note).

Architectural Principles78

Now, let’s look at that updated BookStore class:

public class BookStore : IBookStore
{
 private static int _lastId = 0;
 private static List<Book> _books;
 private static int NextId => ++_lastId;
 static BookStore()
 {
 _books = new List<Book>
 {
 new Book
 {
 Id = NextId,
 Title = "Some cool computer book"
 }
 };
 }
 public IEnumerable<Book> Books => new ReadOnlyCollection<Book>(_books);
 public Book? Find(int bookId)
 {
 return _books.FirstOrDefault(x => x.Id == bookId);
 }
 public void Create(Book book)
 {
 if (book.Id != default(int))
 {
 throw new Exception("A new book cannot be created with an id.");

Note

The System.Collections.ObjectModel namespace contains a few read-only classes:

a) ReadOnlyCollection<T>

b) ReadOnlyDictionary<TKey,TValue>

c) ReadOnlyObservableCollection<T>

Those are very useful for exposing data to the clients without allowing them to modify it.
In our example, the IEnumerable<Book> instance is of the ReadOnlyCollection<Book>
type. We could have kept returning our internal List<Book> instances but some clever
developer could have figured this out, cast IEnumerable<Book> to a List<Book>, and
added some books to it, thereby breaking encapsulation!

Chapter 3 79

 }
 book.Id = NextId;
 _books.Add(book);
 }
 public void Replace(Book book)
 {
 if (!_books.Any(x => x.Id == book.Id))
 {
 throw new Exception($"Book {book.Id} does not exist!");
 }
 var index = _books.FindIndex(x => x.Id == book.Id);
 _books[index] = book;
 }
 public void Remove(Book book)
 {
 if (!_books.Any(x => x.Id == book.Id))
 {
 throw new Exception($"Book {book.Id} does not exist!");
 }
 var index = _books.FindIndex(x => x.Id == book.Id);
 _books.RemoveAt(index);
 }
}

When looking at that code, if we expose the interface in the public UI, we also expose the write
methods we want to avoid.

To solve our design problem, we can use the ISP and start by splitting the IBookStore interface into
two: IBookReader and IBookWriter:

public interface IBookReader
{
 IEnumerable<Book> Books { get; }
 Book? Find(int bookId);
}
public interface IBookWriter
{
 void Create(Book book);
 void Replace(Book book);
 void Remove(Book book);
}

Architectural Principles80

By following the ISP, we could split IBookWriter into three interfaces: IBookCreator, IBookReplacer,
and IBookRemover. A word of warning: We must be careful because doing ultra-granular interface
segregation like that could create quite a mess in your system, but it could also be super beneficial,
depending on the context and your goals.

Now, we need to update our BookStore class. First, we have to implement our two new interfaces:

public class BookStore : IBookReader, IBookWriter
{
 // ...
}

That was easy! With that new BookStore class, we can use IBookReader and IBookWriter independently
like this:

IBookReader reader = new BookStore();
IBookWriter writer = new BookStore();
// ...
var book3 = reader.Find(3);
// ...
writer.Create(new Book { Title = "Some nice new title!" });
// ...

If we focus on the reader and writer variables, we can see that we can now use only the IBookReader
interface on the public side, hiding the BookStore implementation behind the interface. On the
administrator side, we could use both interfaces to manage books.

Conclusion
To summarize the idea behind the ISP, if you have multiple smaller interfaces, it is easier to reuse
them and expose only the features you need instead of exposing APIs that are not needed. This is the
goal: only depend on interfaces that you consume. Furthermore, it is easier to compose bigger pieces
using multiple specialized interfaces by implementing them as needed than remove methods from a
big interface if we don’t need them in one of its implementations.

Tip

Be careful not to overuse this principle blindly. Think about cohesion and what you
are trying to build, and not about how granular an interface can blindly become. The
finer-grained your interfaces, the more flexible your system could be, but remember that
flexibility has a cost, and that cost can become very high, very quickly.

Chapter 3 81

If you don’t see all of the benefits yet, don’t worry. All the pieces should come together as we move on
to the next principle, dependency injection, and the rest of the book.

Dependency inversion principle (DIP)
And yet another quote, from Robert C. Martin (including the implied context from Wikipedia):

In the previous section, I introduced you to interfaces with the SRP and the ISP. Interfaces are one of
the pivotal elements of our SOLID arsenal! Moreover, using interfaces is the best way to approach the
DIP. Of course, abstract classes are also abstractions, but you should depend on interfaces whenever
possible instead.

Why not use abstract classes, you might think? An abstract class is an abstraction but is not 100%
abstract, and if it is, you should replace it with an interface. Abstract classes are used to encapsulate
default behaviors that you can then inherit in sub-classes. They are helpful, but interfaces are more
flexible, more powerful, and better suited to design contracts. Nonetheless, don’t just discard abstract
classes. To extrapolate on this, I’d say: never discard anything blindly.

Moreover, using interfaces can save you countless hours of struggling and complex workaround when
programming unit tests. That is even more true if you are building a framework or library that other
people use. In that case, please be kind and provide your consumers with interfaces to mock if they
need to.

All of that talk about interfaces is nice, but how can the flow of dependencies be inverted? Let’s begin
by comparing a direct dependency and an inverted dependency.

Direct dependency
If we have a Ninja class using a Sword instance, the dependency graph should look like this because
the Ninja class directly depends on the Sword class:

Figure 3.2: Direct dependency schema

Inverted dependency
As you can see in the following diagram, the Ninja class now depends only on the new IWeapon interface.
We achieved this by inverting the dependency flow. Doing this gives us the flexibility to change the
type of weapon without any impact on the system’s stability and without altering the Ninja class,
especially if we also followed the OCP. Indirectly, Ninja still uses a Weapon class instance, thereby
breaking the direct dependency.

One should “depend upon abstractions, [not] concretions.”

Architectural Principles82

Here is the updated schema:

Figure 3.3: Indirect dependency schema

Inverting subsystems using DIP
To go a little further, you can also isolate and decouple a complete subsystem this way by creating
two or more assemblies:

1. An abstraction assembly containing only interfaces.
2. One or more other assemblies that contain the implementation of the contracts from that

first assembly.

There are multiple examples of this in .NET, such as the Microsoft.Extensions.DependencyInjection.
Abstractions and Microsoft.Extensions.DependencyInjection assemblies. We are also exploring
this concept in Chapter 12, Understanding Layering.

Before jumping into more code, let’s take a look at another schema representing this idea. This time,
it is related to abstracting data access from the database itself (we also talk more about this later):

Figure 3.4: Diagram representing how to break tight coupling by inverting dependencies

Chapter 3 83

In the diagram, the App package directly depends on the Abstractions package, while two
implementations are available: Local and Sql. From there, we should be able to swap one implementation
for the other without breaking the App. The reason is that we depend on the abstractions and coded
the app using those abstractions. No matter what implementations are used, the program should run
just fine unless something is wrong with the implementation itself.

Another example that I recently designed in a microservices-based application is a Publish-Subscribe
(Pub-Sub) communication library. There are some abstractions that the microservices use, and there
are one or more implementations that are swappable, so one microservice could use a provider, while
another microservice could use another provider without depending on it directly. We discuss the
Pub-Sub pattern and microservices architecture in Chapter 16, Introduction to Microservices Architecture.
Until then, think of a microservice as a small application.

Project – Dependency inversion
Context: We just learned about the DIP and want to apply it to our bookstore app. Since we do not have
any real user interface yet, we believe it makes sense to create multiple reusable assemblies that our
ASP.NET Core app can use later, allowing us to swap one GUI with another. Meanwhile, we are going
to test our code using a little console application.

There are three projects:

• GUI: the console app
• Core: the application logic
• Data: the data access

Using a classical dependency hierarchy, we would end up with the following dependency graph:

Figure 3.5: Diagram representing assemblies that directly depend on the next assembly

Packages

The packages described here could be namespaces as well as assemblies. By dividing
responsibilities around assemblies, it creates the possibility to load only the implemen-
tations that need to be loaded. For example, one app could load the “local” assembly, and
another app could load the “SQL” assembly, while a third app could load both.

Layering

This concept is called layering. We visit layering in more depth later. For now, you can
think of it as splitting responsibilities into different assemblies.

Architectural Principles84

This is not very flexible as all assemblies are directly linked to the next in line, creating a strong,
unbreakable bond between them. Let’s now revisit this using the DIP.

In the solution, there are four projects; three libraries and one console. Their goals are as follows:

• DIP.Console is the entry point, the program. Its role is to compose and run the application.
It uses DIP.Core and defines what implementation should be used to cover the DIP.Data
interfaces, in this case, DIP.Data.InMemory.

• DIP.Core is the program core, the shared logic. Its only dependency is on DIP.Data, abstracting
away the implementation.

• DIP.Data contains persistence interfaces: IBookReader and IBookWriter. It also contains the
data model (the Book class).

• DIP.Data.InMemory is a concrete implementation of DIP.Data.

To visualize the assemblies’ relationships, let’s take a look at the following diagram:

Figure 3.6: Diagram representing assemblies that invert the dependency flow, breaking coupling
between DIP.Core and DIP.Data.InMemory

The preceding diagram shows that the Core assembly depends on the Data assembly but gets the Data.
InMemory assembly to work with at runtime because the Console composed the application this way.

Note

To keep it simple and to focus on only one portion of the code, I only abstracted the data
portion of the program. We explore dependency inversion in more depth further on in
the book, along with dependency injection.

For now, we focus on the DIP.Data and DIP.Data.InMemory projects of the current
code sample.

Chapter 3 85

This would allow the Console to compose the program differently while not changing the Core library.
For example, the Console program could use another implementation, say, Data.SqlServer (not in
the diagram) instead of Data.InMemory. This example represents dependency inversion; Core does
not depend directly on the implementation (Data.InMemory), but on the abstractions (Data) instead.
Next, we look at some code to understand the concept.

If we start by looking at the PublicService class of the Core project, we can see that it only depends
on the Data project’s IBookReader interface:

namespace DIP.Core;
public class PublicService
{
 private readonly IBookReader _bookReader;
 public PublicService(IBookReader bookReader)
 {
 _bookReader = bookReader;
 }
 public Task<IEnumerable<Book>> FindAllAsync()
 {
 return Task.FromResult(_bookReader.Books);
 }
 public Task<Book?> FindAsync(int bookId)
 {
 var book = _bookReader.Find(bookId);
 return Task.FromResult(book);
 }
}

The PublicService class defines a few methods that use the IBookReader abstraction to query books.
PublicService plays the consumer role and doesn’t know about any concrete class. Even if we wanted
to, the implementation is not accessible from this project. We succeeded; we inverted the dependency.
Yes, as easy as that.

Without any concrete implementation, an interface does nothing, so the other part of the DIP is to
configure the consumer by defining the implementations that back those abstractions. To help us out,
let’s create a private class named Composer inside Program to centralize that step.

Note

Having a public field such as _bookReader breaks encapsulation, so don’t do that in your
projects. I just wanted to keep the focus of the example on the DIP. We see how to take
advantage of the DIP using good practices later, including leveraging dependency injection.

Architectural Principles86

That is, once again, not something you usually want to do in a real project, but until we cover dependency
injection, we have to rely on a more manual approach, so let’s take a look at that light version, focusing
on PublicService:

private static class Composer
{
 private readonly static BookStore BookStore = new();
 // ...
 public static PublicService CreatePublicService()
 {
 return new PublicService(
 bookReader: BookStore
);
 }
}

The CreatePublicService() method is responsible for building the PublicService instance. In it, we
assign an instance of the concrete class, BookStore, to the public IBookReader _bookReader; field,
leaving PublicService unaware of its _bookReader implementation.

This little sample shows how to invert dependency, making sure of the following:

• The code always depends on abstraction (interfaces).
• The projects also depend on abstractions (depending on DIP.Data instead of

DIP.Data.InMemory).

Conclusion
The conclusion of this principle is strongly tied to what is coming next. Nevertheless, the idea is to
depend on abstractions (interfaces or abstract classes). Try to stick to interfaces as much as possible.
They are pure contracts, which makes them more flexible than abstract classes. Abstract classes are
still useful, and we explore ways to leverage them in the book.

Depending upon concretions creates tight coupling between classes, which leads to a system that can
be harder to maintain. The cohesion between your dependencies plays an essential role in whether the
coupling will help or hurt you in the long run. More on that later. Once again, don’t discard concrete
types everywhere blindly.

What’s next?
The words dependency injection came out a few times, and you may be curious about it, so let’s take a
peek at what that is. Dependency injection, or Inversion of Control (IoC), is a mechanism (a concept)
that is a first-class citizen of ASP.NET Core. It allows you to map abstractions to implementations, and
when you need a new type, the whole object tree gets created automatically for you by following your
configuration. Once you get used to it, you cannot go back; but beware of the challenges as you may
need to “unlearn” a part of what you know to embrace this new technique.

Chapter 3 87

Enough talking. Let’s get through those last sections before getting too excited about dependency
injection. We start that journey in Chapter 7, Deep Dive into Dependency Injection.

Other important principles
I found a few other principles to talk about briefly before going further:

• Separation of concerns
• Don’t repeat yourself (DRY)
• Keep it simple, stupid (KISS)

Of course, after reading the SOLID principles, you may find these more basic, but they are still
complementary to what we just learned.

Separation of concerns
The idea is to separate your software into logical blocks, where each block is a concern; this can go
from factoring a program into modules to applying the SRP to some subsystems. That can be applied
to any programming paradigm. How to encapsulate a specific concern depends on the paradigm
and the concern’s level. The higher the level, the broader the solution; the lower the level, the more
granular it becomes.

For example, the following applies:

• By using aspect-oriented programming (AOP), we could see security or logging as cross-cutting
concerns, encapsulating the code in an aspect.

• By using object-oriented programming (OOP), we could also see security or logging as a cross-
cutting concern, encapsulating shared logic in an ASP.NET Core filter.

• By using OOP again, we could see the rendering of a web page and the handling of an HTTP
request as two concerns, leading to the MVC pattern; the view “renders” the page, while the
controller handles the HTTP request.

• By using any paradigm, we could see adding extension points as a concern, leading to a plugin-
based design.

• Using any paradigm again, we could see a component responsible for copying an object into
another as a concern. In contrast, another component’s responsibility could be to orchestrate
those copies efficiently by following some rules, such as limiting the amount of copy that can
happen in parallel, queuing the overflowing operations, and more.

Note

There are many other principles, some that you may already know, some that you will most
likely learn about later, but at some point, I have to choose the subjects or face writing
an encyclopedia-sized book.

Architectural Principles88

As you may have noticed with those examples, a concern can be a significant matter or a tiny detail;
nonetheless, it is imperative to consider concerns when dividing your software into pieces to create
cohesive units. A good separation of concerns should help you create modular designs and help you
face design dilemmas more effectively.

Don’t repeat yourself (DRY)
OK, this principle’s name is self-explanatory, and, as we already saw with the SRP and the OCP, we
can, and should, extend and encapsulate logic into smaller units, aiming at reusability and lower
maintenance costs.

The DRY principle explains it more or less the other way around by stating the following:

When you have duplicated logic in your system, encapsulate it and reuse that new encapsulation in multiple
places instead.

The goal is to avoid making multiple changes when a specification changes. Why? To avoid forgetting
to make one or to avoid creating inconsistencies and bugs in the program.

It is imperative to regroup duplicated logic by concern, not only by the similarities of code itself. Let’s
look at those two methods from the Program class of a previous sample:

private static async Task PublicAppAsync()
{
 var publicService = Composer.CreatePublicService();
 var books = await publicService.FindAllAsync();
 foreach (var book in books)
 {
 presenter.Display(book);
 }
}
private static async Task AdminAppAsync()
{
 var adminService = Composer.CreateAdminService();
 var books = await adminService.FindAllAsync();
 foreach (var book in books)
 {
 presenter.Display(book);
 }
}

The code is very similar, but extracting a single method out of those would be a mistake. Why? Because
the public program and the admin program can have different reasons to change (adding filters in the
admin panel, but not in the public section, for example).

Chapter 3 89

However, we could create a display method in the presenter class that handles a collection of books,
replacing the foreach loop with a presenter.Display(books) call. We could then move those two
methods out of Program without much impact. In the future, that would allow us to support multiple
implementations, one for the admins and one for the public users for added flexibility.

Keep it simple, stupid (KISS)
This is probably one of the most straightforward principles, yet one of the most important. Like in
the real world, the more moving pieces, the more chances something breaks. This principle states to
keep your systems simple and that the best solutions are often the simplest.

Of course, adding interfaces, abstraction layers, and complex object hierarchy adds complexity, but
what are the added benefits of that complexity? If we take interfaces as an example, they add flexibility
and testability but break the code into more pieces and make the program flow harder to follow.

So if you can write the same program with less complexity, I’d say do it. That’s also why anticipating
future needs is often a bad thing and could make you introduce complexity for features that may
never come.

That said, I think I talked enough about this one, and I’ll leave you to it.

Summary
In this chapter, we covered many architectural principles. We began by exploring the five SOLID
principles and their importance in modern software engineering to jump to the DRY, KISS, and
separation of concerns principles, which add some more guidance to the mix. By following those
principles, you should be able to build better, more maintainable software.

As we also covered, principles are only principles, not laws. You must always be careful not to abuse
them, so they remain helpful instead of harmful. The context is always important; internal tools and
critical business apps require different levels of tinkering. Try not to over-engineer everything and
try to keep it simple, stupid.

With all of those principles in our toolbox, we are now ready to jump into design patterns and get our
design level one step further! In the next few chapters, we explore how to implement some of the
most frequently used Gang of Four (GoF) patterns and how those are applied at another level with
dependency injection. Dependency injection is going to help follow the SOLID principles in our day-
to-day designs, but before that, in the next two chapters, we explore ASP.NET Core MVC.

Tip

I have told you this already, but here I go again. When you don’t know how to name a
class or a method, you may have isolated an invalid or an incomplete concern. This is a
good indicator that you should go back to the drawing board. That said, naming is hard,
so sometimes that’s just it.

Architectural Principles90

Questions
Let’s take a look at a few practice questions:

1. How many principles are represented by the SOLID acronym?
2. Is it true that when following the SOLID principles, the idea is to create bigger components

that can each manage more elements of a program by creating God-sized classes?
3. By following the DRY principle, you want to remove all code duplication from everywhere,

irrespective of the source, and encapsulate that code into a reusable component. Is this
affirmation correct?

4. Is it true that the ISP tells us that creating multiple smaller interfaces is better than creating
one large one?

5. What principle tells us that creating multiple smaller classes that handle a single responsibility
is better than one class handling multiple responsibilities?

Further reading
• Covariance and contravariance (C#): https://adpg.link/BxBG

Join our book’s Discord space
Join the book’s Discord workspace for Ask me Anything session with the authors:

https://packt.link/ASPdotNET6DesignPatterns

https://adpg.link/BxBG
https://packt.link/ASPdotNET6DesignPatterns

Section 2: Designing for
ASP.NET Core
This section introduces ASP.NET Core Model View Controller (MVC) and its web API counterpart. We
explore Razor Pages, MVC, and HTTP-based RESTful services. Then we explore a number of more ad-
vanced techniques used to push the MVC pattern further, such as view models and data transfer objects.

Afterward, we dig into some classic design patterns to warm us up. Finally, we take those patterns to
the next level using dependency injection, which is at the core of modern ASP.NET Core applications.
Those subjects lay out the fundamental knowledge that we build upon until the end of the book and,
most likely, for the rest of your career as an ASP.NET Core developer.

Finally, we dig into some ASP.NET Core-specific patterns, such as the options pattern and the .NET
logging abstractions.

This section comprises the following chapters:

• Chapter 4, The MVC Pattern using Razor
• Chapter 5, The MVC Pattern for Web APIs
• Chapter 6, Understanding the Strategy, Abstract Factory, and Singleton Design Patterns
• Chapter 7, Deep Dive into Dependency Injection
• Chapter 8, Options and Logging Patterns

4
The MVC Pattern Using Razor

This chapter explains the Model View Controller (MVC) and View Model design patterns and contains
an overview of the ASP.NET Core MVC framework pieces in case you are not familiar with them. MVC
segregates the responsibilities of rendering a user interface into three parts: the model, the view, and
a controller.

The MVC pattern is probably one of the most extensively adapted architectural patterns for displaying
web user interfaces. Why? Because it matches the concept behind HTTP/1 and the classic web almost to
perfection. MVC might serve you well for a typical server-rendered web application using the request-
response pattern. A single-page application (SPA) framework could be best for more user-intensive
user interfaces. For page-oriented applications, Razor Pages is a strong contestant.

From the old ASP.NET MVC to ASP.NET Core, the MVC framework is cleaner, leaner, faster, and more
flexible than ever before. Moreover, dependency injection is now built into the heart of ASP.NET, which
helps leverage its power. We cover dependency injection in Chapter 7, Deep Dive into Dependency Injection.

The ASP.NET Core pipeline uses a series of middleware to handle cross-cutting concerns, such as
authentication and routing. MVC is an opt-in feature now, like pretty much everything else. You can
opt in to MVC, Razor Pages, or web APIs and configure them with only a few statements.

In this chapter, we cover the following topics:

• The Model View Controller design pattern
• The View Model design pattern

The Model View Controller design pattern
When using ASP.NET Core MVC, there are two broad usages of the MVC framework:

• The first use is to display a web user interface, using a classic client-server application model
where the page is composed on the server. The result is then sent back to the client. To build
this type of application, you can use Razor, which allows developers to mix C# and HTML to
build rich user interfaces elegantly. From my perspective, Razor is the technology that made
me embrace MVC in the first place when ASP.NET MVC 3 came out in 2011.

The MVC Pattern Using Razor94

• The second use of MVC is to build web APIs. The presentation (or the view) becomes a data
contract in a web API instead of a user interface. The contract is defined by the expected input
and output, as with any API. The most significant difference is that a web API acts as a remote
API. Essentially, inputs and outputs are serialized data structures, usually JSON or XML, mixed
with HTTP verbs such as GET and POST. More on that in Chapter 5, The MVC Pattern for Web APIs.

Goal
In a classic server-rendered web user interface, the objective of the MVC pattern is to separate the
rendering of a page into three distinct components that interact with each other. Doing this helps
have smaller pieces that are easier to maintain instead of one bigger piece.

Design
MVC divides the application into three distinct parts, where each has a single responsibility:

• Model: The model is a data structure representing the domain that we are modeling.
• View: The view’s responsibility is to present a model to a user, in our case, as a web user

interface, so mainly HTML, CSS, and JavaScript.
• Controller: The controller is the key component of MVC. It plays a coordinating role between

the request from a user and its response. The controller’s code should remain minimal and
should not include complex logic or manipulation. The controller’s primary responsibility is
to handle requests and dispatch responses. The controller is an HTTP bridge.

If we put all of that back together, the controller is the entry point of every request, the view composes
the response (the user interface that shapes the user’s experience), and both share the model. The
model is fetched or manipulated by the controller and sent to the view for rendering. The user then
sees the requested resource in their browser.

Note

Throughout the book, we explore multiple alternatives to move the complex logic
out of the controllers, especially in Section 4: Designing at Application Scale. In a
nutshell, you can leverage many patterns that we cover in this book to achieve that,
including the Command Query Separation (CQS), Mediator, and Layering patterns.

Chapter 4 95

The following diagram illustrates the MVC concept:

Figure 4.1: MVC workflow

We can interpret Figure 4.1 as the following:

1. The user requests an HTTP resource (routed to an action of a controller).
2. The controller reads or updates the model to be used by the view.
3. The controller then dispatches the model to the view for rendering.
4. The view uses the model to render the HTML page.
5. That rendered page is sent to the user over HTTP.
6. The user’s browser displays the page like any other web page; it is only HTML after all.

Next, we look into ASP.NET Core MVC itself, how the directories are organized by default, what
controllers are, and how routing works.

Anatomy of ASP.NET Core MVC
We use the default template to explore MVC anatomy. To generate a new MVC project, you can execute
the dotnet new mvc command or use Visual Studio. In this section, we explore the pieces the template
generates to understand how they fit together.

The first piece is the entry point; the Program class. Since .NET 6, there is no more Startup class by
default in many templates, and the Program class is autogenerated. Using top-level statements and the
minimal hosting model leads to a simplified Program.cs file (see Appendix A for more information).

The MVC Pattern Using Razor96

Here is an example:

var builder = WebApplication.CreateBuilder(args);
// Add services to the container.
builder.Services.AddControllersWithViews();

var app = builder.Build();
if (!app.Environment.IsDevelopment())
{
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
}
app.UseHttpsRedirection();
app.UseStaticFiles();
app.UseRouting();
app.UseAuthorization();
app.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
app.Run();

In the preceding code, the Program.cs file, we have the same control over the building blocks but they
are centralized in a single file. The highlighted lines are the MVC pieces’ registration. As it explicitly
states, the AddControllersWithViews method adds support for controllers and views while the other
lines add middlewares that enable routing, static files (like CSS, images, and JavaScript), and the
default route.

Next, let’s look at how the files are organized.

Directory structure
The default ASP.NET Core MVC directory structure is very explicit. There is a Controllers directory,
a Models directory, and a Views directory. By convention, we create controllers in the Controllers
directory, models in the Models directory, and views in the Views directory.

However, the Views directory is a little different. To keep your project organized, each controller
has its own subdirectory under Views. For example, the views for HomeController are found in the
Views/Home directory.

Note

In the previous model containing two files, the builder variable was instantiated in the
Program class while the builder.Services property and the app variable were managed
in the Startup class. If you are more fond of the Startup class, you can still create one.

Chapter 4 97

The Views/Shared directory is a particular case. The views in that subdirectory are accessible by all
other views and controllers alike. In that directory, we usually create global views, such as layouts,
menus, and other similar elements.

Figure 4.2: MVC directory structure

You can create your controller classes anywhere; they don’t need to be in any specific folder. You can
leverage sub directory structures or areas to help keep a clean project structure and organize your
controllers. The same goes for the model classes.

Controller
The easiest way to create a controller is to create a class inheriting from Microsoft.AspNetCore.Mvc.
Controller. By convention, the class’s name is suffixed by Controller. That base class adds all the
utility methods you should need to return the appropriate view, like the View() method.

Once you have a controller class, you need to add actions. Actions are public methods that represent
the operations that a user can perform.

More precisely, the following define a controller:

• A controller exposes one or more actions.
• An action can take zero or more input parameters.
• An action can return zero or one output value.

The MVC Pattern Using Razor98

• The action is what handles the actual request.
• We can group cohesive actions under the same controller, thus creating a unit.

For example, the following represents the HomeController class containing a single Index action:

public class HomeController : Controller
{
 public IActionResult Index() => View();
}

That Index method (action) returns its default view by leveraging the View method offered by the
Controller class. In this case, MVC will serve the Home/Index.cshtml view to the user, which usually
represents the home page.

Let’s look at the model next.

Model
An MVC model is a class that contains properties or methods, like any other class. Let’s inspect the
ErrorViewModel class, which represents a model created by the default template:

namespace MVC6.Models;
public class ErrorViewModel
{
 public string? RequestId { get; set; }
 public bool ShowRequestId => !string.IsNullOrEmpty(RequestId);
}

The preceding code shows that the ErrorViewModel class contains two properties, the ShowRequestId
property computed automatically and the RequestId property.

If you wonder where the parentheses of the namespace declaration went, that’s new syntactic sugar
from C# 10 where we can make a file-scoped namespace declaration like this. See Appendix A for more
information about C# features.

To send a model to the view, we pass it as an argument of the View method. Here is the Error action
of the HomeController class from the MVC template:

public IActionResult Error()
{
 return View(new ErrorViewModel { RequestId = Activity.Current?.Id ??
HttpContext.TraceIdentifier });
}

In the preceding code, we leverage the same View method as the Index action but pass an ErrorViewModel
instance as an argument. The code sets the RequestId property to either Activity.Current?.Id (an
optional distributed trace activity) or HttpContext.TraceIdentifier (the request ID generated by
Kestrel).

Chapter 4 99

As simple as that, the Error action sends the ErrorViewModel model to the Shared/Error.cshtml view
to display an error page to the user. Of course, the real challenge is designing those models according
to your domain.

Next, let’s look at the structure of a view.

View
Razor is a C#-based templating language that allows creating HTML-like pages and views (there is
also a VB.NET version). Razor is a very convenient way of writing complex web UI logic productively.
Razor views are stored in .cshtml files. The Razor view engine compiles that markup to C# classes
that ASP.NET Core MVC leverages to render the HTML to the users.

Let’s look at the Error action’s view as an example:

@model ErrorViewModel
@{
 ViewData["Title"] = "Error";
}
@if (Model?.ShowRequestId ?? false)
{
 <p>
 Request ID:
 <code>@Model?.RequestId</code>
 </p>
}

I omitted most of the HTML in the preceding code to keep the noise to a minimum. Nevertheless, the
first line of the view defines the type of model it expects using the @model directive. In this case, the
view expects the model to be an instance of the ErrorViewModel class.

Then, highlighted in the code, the Model property can be used to access the properties of the model
using the Razor syntax.

Now that we have explored the core mechanics, let’s look at routing.

Note

Setting the EmitCompilerGeneratedFiles property to true in the csproj file tells
the compiler to write the generated cshtml.g.cs files to disk. Doing this is a good way
to inspect how .NET magically generates those views. The default directory is under
obj/[configuration]/[version]/generated/.

The MVC Pattern Using Razor100

Default routing
ASP.NET Core has a routing mechanism that allows developers to define one or more routes to know
which controller should handle a specific HTTP request. A route is a URL template that maps HTTP
requests to C# code.

The MVC template defines the following default pattern:

app.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");

The first fragment is about controllers, where the following apply:

• {controller} maps the request to a {controller}Controller class. For example, Home would
map to the HomeController class.

• {controller=Home} means that the HomeController class is the default controller, which is
used if no {controller} is supplied.

The second fragment is about actions:

• {action} maps the request to a controller method (the action).
• Like its controller counterpart, {action=Index} means that the Index method is the default

action. For example, if we had a ProductsController class in our application, making a GET
request to https: //localhost/Products would make MVC invoke the ProductsController.
Index() method.

The last fragment is about an optional id parameter:

• {id} means that any value following the action name maps to the id parameter of that action
method.

• The ? in {id?} means the parameter is optional.

Let’s look at some examples to wrap up our study of the default routing template:

• Calling /Some/Action would map to SomeController.Action().
• Calling /Some would map to SomeController.Index().
• Calling / would map to HomeController.Index().
• Calling /Some/Action/123 would map to SomeController.Action(123).

Note

In a Create, Read, Update, Delete (CRUD) controller, Index is where you usually
define your list.

Chapter 4 101

Conclusion
We could talk about MVC for the remainder of the book, but we would be missing the point. This
chapter and the next aim to cover the possibilities to help you understand the MVC pattern and
ASP.NET Core, but nothing too in depth regarding the framework itself.

We covered the different building blocks and mechanisms of MVC, which should be enough to continue.
We use ASP.NET Core throughout the book, covering many aspects in different contexts.

Using the MVC pattern helps us follow the SOLID principles in the following ways:

• S: The MVC pattern divides the rendering of a page into three different roles.
• O: N/A
• L: N/A
• I: The MVC pattern helps divide one responsibility into three smaller ones (SRP), up to a

certain extent creating three smaller interfaces. However, controllers can become bloated
with capabilities and contain many actions. For example, a simple CRUD controller has a total
of eight actions to begin with: one action for the list and the details page, and two actions for
the create, edit, and delete pages. From there if you add more capabilities, the controller will
just become fatter and fatter. One way to help is to create reusable components. We explore
ways to create and reuse smaller pieces of UI in Chapter 17, ASP.NET Core User Interfaces, but
that may not fix this potential problem entirely. Razor Pages might be a good alternative to
investigate as well. The other two pieces (the views and models) should have a smaller API
surface (interface) with the MVC pattern.

• D: N/A

Next, we improve the M part of the MVC pattern.

The View Model design pattern
The View Model pattern is used when building ASP.NET Core MVC applications but can be applied
to other technologies. Typically, you access data from a data source and then render a view based on
that data. That is where the view model comes into play. Instead of sending the raw data directly to
the view, you copy the required data to another class that carries only the required information to
render that view, nothing more.

Using this technique, you can even compose a complex view model, adding filtering, sorting, and
more without altering your data or domain models. Those features are presentation-centric and, as
such, the view model’s responsibility is to meet the view’s requirements in terms of the presentation
of information, which is in line with the Single Responsibility Principle (SRP) explored in Chapter 3,
Architectural Principles.

Goal
The goal of the View Model pattern is to create a model specific to a view, decoupling the other parts
of the software from the view. As a rule of thumb, you want each view to be strongly typed with its own
view model class to make sure that views are not coupled with each other, thereby causing possible
maintenance issues in the long run.

The MVC Pattern Using Razor102

View models allow developers to gather data in a particular format and send it to the view in another
format that’s better suited for rendering that specific view. That improves the application’s testability,
which in turn should increase the overall code quality and stability.

In other words, the view model is the data contract that a controller’s action uses to communicate
information to a view.

Design
Here is a revised MVC workflow that supports view models:

Figure 4.3: MVC workflow with view models

We can interpret Figure 4.3 as follows:

1. The user requests an HTTP resource (routed to the action of a controller).
2. The controller reads or updates the model.
3. The controller creates the view model.
4. The controller dispatches the view model to the view for rendering.
5. The view uses the view model to render the HTML page.
6. That rendered page is sent to the user over HTTP.
7. The browser displays the page like any other web page.

Chapter 4 103

In the previous diagram, have you noticed that the model is now decoupled from the view? That’s what
the View Model pattern brings to the table: a clear line between the user interfaces and the domain.

Project – View models (a list of students)
Context: We must build a list of students. Each list item must display a student’s name and the number
of classes that student is registered in.

The UI/UX experts came up with the following list that includes badges to improve the customer
experience (I know, what a sophisticated design, right?):

Figure 4.4: Students list with their number of classes

To keep things simple and create our prototype, we load in-memory data through the StudentService
class.

It is important to remember that the view model must only contain the required information to display
the view. The view model classes, located in StudentListViewModels.cs, look like the following:

namespace ViewModels;

public record class StudentListViewModel(
 IEnumerable<StudentListItemViewModel> Students
);
public record class StudentListItemViewModel(
 int Id,
 string Name,
 int ClassCount
);

This is one of the scenarios where keeping more than one class in the same file makes sense, hence
the plural filename. That said, if you can’t stand having multiple classes in a single file, feel free to
split them up in your project. You can refer to Appendix A for more information about record class.

The MVC Pattern Using Razor104

The StudentController class is the key element and has an Index action that handles GET requests.
Each request fetches the students, creates the view model, and then dispatches it to the view. Here
is the controller code:

namespace ViewModels.Controllers;
public class StudentsController : Controller
{
 private readonly StudentService _studentService = new();
 public async Task<IActionResult> IndexAsync()
 {
 // Get data from the data store
 var students = await _studentService.ReadAllAsync();

 // Create the ViewModel, based on the data
 var viewModel = new StudentListViewModel(
 Students: students.Select(student => new StudentListItemViewModel(
 Id: student.Id,
 Name: student.Name,
 ClassCount: student.Classes.Count()
))
);

 // Return the View
 return View(viewModel);
 }
}

Note

In a larger application, we could create subdirectories or use namespaces to keep our
view model classes’ names unique and organized, for example, /Models/Students/
ListViewModels.cs.

Another alternative is to create view models in a /ViewModels/ directory instead of the
default /Models/ one. We could also create the view model classes as nested classes
under their controller.

For example, a StudentsController class could have a nested ListViewModel class,
callable like this: StudentsController.ListViewModel.

These are all valid options. Once again, do as you prefer and what suits your project best.

Chapter 4 105

The view renders the students as a Bootstrap 3 list-group, using a badge to display the ClassCount
property, as defined by our initial specifications.

@model StudentListViewModel
@{
 ViewData["Title"] = "Students";}
<h2>Students list</h2>
<ul class="list-group">
 @foreach (var item in Model!.Students)
 {
 <li class="list-group-item">
 @Html.DisplayFor(modelItem => item.
ClassCount)
 @Html.DisplayFor(modelItem => item.Name)

 }

With the preceding few lines of code and the View Model pattern, we decoupled the Student model
from the view with the StudentListViewModel class, serving as a transitory model. Moreover, we limit
the amount of information passed to the view by replacing the Student.Classes property with the
StudentListItemViewModel.ClassCount property, which only contains the required information to
render the view (the number of classes a student is in).

Conclusion
If you are still uncertain about this pattern, we use view models and other similar concepts throughout
the book. That said, when you choose one pattern over another, it is essential to review the requirements
of that specific project or feature as it dictates whether your choice is rational.

For example, if the following apply to your project:

• It is a simple data-driven user interface, tightly coupled with a database.
• It has no or minimal logic.
• It is not going to evolve (this one rarely happens and is very hard to predict).

In that case, view models may only add development time to your project, while you could have Visual
Studio almost scaffold it all for you instead. Nothing stops you from using a view model or two when
you need it, such as creating a dashboard or some more complex views.

Bootstrap 3

It is important to note that new .NET projects reference a more recent version of Bootstrap,
which can translate into minor differences. We used Bootstrap only to make the UI look
better; it was not part of the subject we are studying, hence keeping the older version.

The MVC Pattern Using Razor106

For non-trivial projects, I recommend defaulting to view models. We explore multiple ways of organizing
and building applications later in Section 4: Designing at Application Scale of the book.

Using the View Model pattern helps us follow the SOLID principles in the following ways:

• S: A view model adds clear boundaries between the domain model and the view, leading to
two distinct responsibilities to help keep things isolated.

• O: N/A
• L: N/A
• I: A view model allows us to limit the amount of information sent to the view, keeping that

information to a minimum. The View Model pattern introduces two possibly smaller interfaces:
one for the view and one for the domain.

• D: N/A

Summary
In this chapter, we explored ASP.NET Core MVC, which allows us to create rich web user interfaces
with Razor and C#.

We saw how to decouple the model from the presentation using view models. View models are classes
specially crafted around a view. For example, rather than passing a data or domain model to a view
and letting the view do calculations, the controller does the calculation instead and passes the results
to the view. This way, the view only has one responsibility: displaying the user interface, the page.

In the next chapter, we explore the web API counterpart to the MVC and View Model patterns. We
then look at our first Gang of Four (GoF) design patterns and deep dive into ASP.NET Core dependency
injection. All of that pushes us further down the path of designing better applications.

Questions
Let’s take a look at a few practice questions:

1. What is the role of the controller in the MVC pattern?
2. What Razor directive indicates the type of model that a view accepts?
3. With how many views should a view model be associated?
4. Can a view model add flexibility to a system?
5. Can a view model add robustness to a system?

Further reading
• Routing in ASP.NET Core: https://adpg.link/YHVJ

Tip

For scaffolding-heavy projects, you can customize the templates Visual Studio uses to
make it even faster.

https://adpg.link/YHVJ

5
The MVC Pattern for Web APIs

In the previous chapter, we explored displaying web user interfaces with the Model View Controller
(MVC) pattern using Razor. This chapter covers the web API version of the ASP.NET Core MVC
framework, which is a crucial part of most modern technology stacks. A web API allows us to send
data to the user, usually another machine, instead of a user interface, as we did in the previous chapter.
Moreover, we use the technologies and patterns learned in this chapter throughout the book. Avoiding
user interfaces makes code easier to follow.

Web APIs are used in projects of all types and sizes, from microservices to mobile apps, passing by
single-page applications (SPA).

In this chapter, we cover the following topics:

• An overview of REST
• The Model View Controller design pattern
• Anatomy of ASP.NET Core web APIs
• The Data Transfer Object design pattern
• API contracts

An overview of REST
REST, or Representational State Transfer, is a way to create internet-based services, known as web
services or web APIs, that commonly use HTTP as their transport protocol. It allows the well-known
HTTP specifications to be reused instead of recreating new ways of exchanging data. For example,
returning an HTTP status code 200 OK indicates success, while 400 Bad Request indicates failure.

In a nutshell, we can state the following:

• Each HTTP endpoint is a resource.
• Each resource can be secured independently.
• Calling the same resource twice should result in the same operation executed twice. For

example, executing two POST /entities should result in two new entities, while fetching
GET /entities/some-id should return the same entity twice.

The MVC Pattern for Web APIs108

• The service should be stateless, meaning that it does not persist information about its clients
between requests.

• The response from a RESTful service (GET) should be cacheable.

There are multiple other elements that we could talk about here, but those are the fundamental ones
that should allow a neophyte to get a good initial idea of what a RESTful service is.

Web APIs are probably the most commonly used way to create interoperable web services for other
machines to interact with our system. We could write entire books devoted to web APIs and REST, but
the goal is to know just enough to get started. Nevertheless, here is some broadly applicable guidance
about RESTful APIs to kickstart you.

HTTP methods
The HTTP methods, known as verbs, should define what operation an endpoint performs. It helps to
make the intent clear. Here is a list of the most frequently used methods, what they are for, and their
expected success status code:

Method Typical role Success status code

GET Read data: a list or a single entity. 200 OK

POST Create a new entity. 201 CREATED

PUT Replace an entity. 200 OK or 204 No Content

DELETE Delete an entity. 200 OK or 204 No Content

PATCH Partially update an entity. 200 OK

With these, we can start describing our API endpoints. But what are those status codes? That’s what
we briefly explore next.

Status code
HTTP status codes are the way to transmit what happened during an operation back to the consumer.
The following table explains some common ones:

Status code Role

200 OK Tells the client the request has succeeded. It usually includes data related to an
operation or an entity in the body of the response.

201 CREATED Tells the client the request has succeeded and the system created a resource. It
should also include a Location HTTP header pointing to the newly created
resource and including the new entity in the response body.

202 ACCEPTED Tells the client the request has been accepted for processing but is not processed
yet. In an event-driven system (see Chapter 16, Introduction to Microservices
Architecture), this could mean that an event has been published, the current
resource has completed its job (published the event), but to know more, the client
needs to contact another resource, wait for a notification, just wait, or can’t know.

Chapter 5 109

204 NO
CONTENT

Tells the client the request has succeeded with no content in the response body.

302 FOUND Tells the client to follow the specified Location header, which represents the
redirection target.

400 BAD
REQUEST

Tells the client about a validation error, generally related to badly formatted input
data, missing data, or something similar.

401
UNAUTHORIZED

Tells the client that it must authenticate to access the resource.

403 FORBIDDEN Tells the client that it does not have the required rights to access the resource
(authorization).

404 NOT FOUND Tells the client that the resource does not exist or was not found.

409 CONFLICT Tells the client that a conflict has occurred. A typical scenario would be that the
entity has changed between its last GET and its current operation (likely a PUT
request).

500 INTERNAL
SERVER ERROR

Tells the client that an unhandled error occurred on the server side and prevented
it from fulfilling the request.

Those status codes are not entirely arbitrary, and there is a logic behind classifying them. The status
codes touching similar subjects are grouped under the same “hundredth,” for example:

• The 1XX status code (omitted from the preceding table) represents informational continuation
results, usually handled automatically by the server, such as 100 Continue and 101 Switching
Protocols.

• 2XX are successful results.
• 3XX are related to redirections.
• 4XX are request errors (from the client side), usually introduced by the user, such as an empty

required field.
• 5XX are server-side errors that the client cannot do anything about.

Next, keeping status codes in mind, we overview how to pass more metadata between the client and
the server.

HTTP headers
Web services, like RESTful and web APIs, leverage HTTP headers to transmit clients’ information and
describe their options and capabilities. Some headers are part of the request, while some are part of
the response.

One well-known header is the Location header that we use for different purposes. For example:

• After creating an entity (201 Created), the Location header should point to the GET endpoint
where the client can access that new entity.

The MVC Pattern for Web APIs110

• After starting an asynchronous operation (202 Accepted), the Location header could point to
the status endpoint where you can poll for the state of the operation (has it completed, failed,
or is it still ongoing).

• When redirecting a client, the Location header contains the destination URL. The following
status codes are the most common for redirections: 301 Moved Permanently, 302 Found,
303 See Other, 307 Temporary Redirect, and 308 Permanent Redirect.

The Retry-After header can also come in handy when mixed with 202 Accepted,
301 Moved Permanently, 429 Too Many Requests, or 503 Service Unavailable. The ETag header
identifies the version of the entity and can be used in conjunction with If-Match to avoid mid-air
collisions. The ETag and If-Match headers form a sort of optimistic concurrency method that prevents
request two from overwriting changes made by request one when changes are happening simultaneously
or not in the expected order; a.k.a. a way to manage conflicts. We can also add the following to
the mix as an example of HTTP headers that describe a REST endpoint: Allow, Authorization, and
Cache-Control. The list is very long, and it would help no one to enumerate all HTTP headers here.
Nonetheless, I hope this gives you a clear-enough idea to get started.

Next, we look at versioning because nothing stays the same forever, business needs change, entities
are modified, and APIs must evolve.

Versioning
Versioning is a crucial aspect of a REST API. Unless you are your only consumer, you’ll need a way for
the API clients to query specific API versions when the contract changes. Whether the version of the
API is long-lived or transitory (during the decommissioning cycle of an old endpoint, for example),
both ends of the pipe must know what to expect; what API contract to respect.

Next, we explore a few ways to think about our versioning strategy.

Default versioning strategy
The first thing to think about when versioning is the default strategy. What happens when no version
is specified? Will the endpoint return an error, return the first version, or return the latest version?

If the API returns an error, chances are you put that versioning strategy in place from day one, so clients
are already aware that a version is required. In this case, there is no real drawback. On the other hand,
putting this default strategy in place after the fact will most likely break all clients that are not up to
date, which might not be the best idea (a good deployment strategy could help mitigate problems).

The next way is always to return the first version. This method is an excellent way to preserve backward
compatibility. You can add more endpoint versions without breaking your consumers.

The opposite way is always to return the latest version. For consumers, this means specifying a version
to consume or be up to date or break, and this might not be the best user experience to provide to
your consumers. Nonetheless, many have opted for this default strategy.

You could also pick any version as the default for the API (like version 3.2, for example) or even choose
a different version per endpoint. No matter what you choose, always think it through by weighing the
pros and cons.

Chapter 5 111

Next, we explore ways to define those versions.

Versioning strategy
Of course, there are multiple ways to think this through. You can leverage URL patterns to define
and include the API version, like https: //localhost/v2/some-entities. This is easier to query
from a browser, making it simple to know the version at a glance, but the endpoint is not pointing
to a unique resource anymore (a key principle of REST) as each resource has one endpoint for each
version. Nonetheless, this way of versioning an API is used extensively and is one of the most popular,
if not the most popular, ways of doing REST versioning, even if it violates one of its core principles.

The other way is to use HTTP headers. You can use a custom header like api-version or
Accept-version, for example, or the Accept standard header. This allows resources to have unique
endpoints while enabling multiple versions of each entity (multiple versions of each API contract
describing the same entity).

For example, a client could specify an HTTP header while calling the endpoint like this (custom header):

GET https: //localhost/some-entities
Accept-version: v2

Or like the following, by leveraging the Accept header for content negotiation:

GET https: //localhost/some-entities
Accept: application/vnd.yourapp.v2+json

Whether you are using one way or another, headers or URLs, you’ll most likely need to version your
APIs at some point. It does not matter much the way you choose. Some people are strong advocates of
one way or the other, but in the end, the decision should be taken on a case-by-case basis; what best
covers your needs and capacities: simplicity, formality, or a mix of both.

Wrapping up
With a method (verb), the client (and the endpoint) can express the intent to create, update, read,
or delete an entity. With a status code, the endpoint can tell the client the state of the operation. By
adding more headers, both clients and endpoints can add more metadata to the request or response.
Finally, by adding versioning, the endpoint can evolve without breaking existing clients while giving
options to consumers about the version they want to consume.

With what we just covered, you should have more than what’s needed to follow along with the examples
in this book. However, if you are interested in RESTful services, I recommend learning more on that
subject after completing this book.

The Model View Controller design pattern
Now that we have explored the basics of ASP.NET Core MVC in Chapter 4, The MVC Pattern Using Razor,
and REST, it is time to jump into ASP.NET Core web APIs and return data instead of a user interface.

The MVC Pattern for Web APIs112

In the past few years, the number of web APIs just exploded to a gazillion; everybody builds APIs
nowadays, not because people are blindly following a trend but based on good reasons. Here are a
few examples of what makes web APIs so appealing:

• It is an efficient way of sharing data between systems.
• It allows interoperability between technologies by dialoguing in universal languages, such as

JSON or XML.
• It allows your backend to be centralized and shared with multiple frontends such as mobile,

desktop, and web applications.
• It allows you to gate (secure, protect, or hide) downstream systems, with APIs acting as gateways.
• It allows the encapsulation of units of logic in reusable, independent, and possibly even tiny

systems.

Those reasons make it easier to reuse backend systems and share them with multiple user interfaces
or other backends. For example, think of any mobile app you know; it probably has an iOS,
Android, and web app to maintain. In that case, sharing part of the backend can be an excellent way
to save time and money.

Goal
In a web API, the objective of the MVC pattern is to separate displaying (serializing) an entity into
three distinct components that interact with each other. Doing this helps have smaller pieces that are
easier to maintain and test than big bloated ones that are very hard to test in isolation.

Design
MVC divides the application into three distinct parts, where each has a single responsibility:

• Model: The model is a data structure representing the domain that we are modeling.
• View: The view’s responsibility is to present a model to a user; in this case, the view is a

serialized model.
• Controller: The controller is the key component of MVC. It plays the coordinator role between

a request from a user to its response. The code of a controller should remain minimal and
should not include complex logic or manipulation. The controller’s primary responsibility is
to handle a request and dispatch a response. The controller is an HTTP bridge.

Here is an updated diagram that represents the MVC flow of a web API:

Chapter 5 113

Figure 5.1: Workflow of a web API

There are only a couple of differences between rendering a user interface and building a web API:

• Instead of sending HTML to the browser, the API outputs a serialized data structure.
• The client wants to consume the data instead of having a browser display it.

Based on this diagram, we are sending our model directly to the client. In most scenarios, we don’t
want to do that, and instead, we want to send only the portion of the data we need in the format we
want. We will be covering this next with the DTO pattern, but first, let’s dig into ASP.NET Core web APIs.

Anatomy of ASP.NET Core web APIs
We use the default template to explore web APIs’ anatomy. To generate a new web API project, you
can execute the dotnet new webapi command or use Visual Studio. This section explores the pieces
the template generates to understand how they fit together, leading to a good starting point.

The entry point
The first piece is the entry point: the Program class. Since .NET 6, there is no more Startup class by
default in many templates, and the Program class is autogenerated. Using top-level statements and the
minimal hosting model leads to a simplified Program.cs file (see Appendix A for more information).

The MVC Pattern for Web APIs114

Here is an example:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddControllers();
builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();

var app = builder.Build();
// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
}
app.UseHttpsRedirection();
app.UseAuthorization();
app.MapControllers();
app.Run();

In the preceding code, the Program.cs file is very similar to what the MVC template generated. We
also have the same control over the building blocks as before .NET 6, but everything is centralized in
a single file. The highlighted lines are the web API pieces’ registration.

The default template also registers Swagger to generate OpenAPI specs automatically and a UI to
visualize them. More on that in the API contracts section at the end of the chapter.

Directory structure
The default directory structure is a lightweight version of what the MVC template generates. It contains
a single Controllers folder. However, you could create a Models folder to store your models or use any
other structure you prefer. The only piece tied to a directory structure was the views, which are not part
of web APIs. We explore many ways of designing applications in Section 4, Designing at Application Scale.

That’s it for the directory structure. Next, we look at the central part of this pattern—the controllers.

Controller
The easiest way to create a controller is to create a class inheriting from ControllerBase. However,
while ControllerBase adds many beneficial methods, the only requirement is to decorate the controller
class with the [ApiController] attribute. As with MVC, by convention, the controller’s class name
is suffixed by Controller.

Chapter 5 115

The endpoints are exposed by creating action methods like MVC. The difference is that instead of
returning a view, an action returns data. We look at that next.

Returning values
The objective of building a web API is to return data to its consumers and execute remote operations
securely. Most of the plumbing is done for us by the ASP.NET Core code, including serialization. Most
of the ASP.NET Core pipeline is customizable, which is out of the scope of this chapter.

That said, before returning values, let’s look at a few helpers provided by the ControllerBase class.
These are very valuable, even if not necessary:

• The StatusCode method allows specifying the status code that you want to return. You can
use constants defined in the StatusCodes class to help or pass an int directly. You can also
optionally pass a second argument that will be serialized as the body of the response.

• The Ok method allows returning a status code 200 OK with an optional body.
• The Created, CreatedAtAction, and other similar methods allow returning a status code

201 Created, including different options to craft the Location URL representing the newly
created resource and optionally serialize that new entity as part of the response body.

• The NoContent method allows returning a status code 204 No Content and an empty body.
• The NotFound method allows returning a status code 404 Not Found with an optional body.
• The BadRequest method allows returning a status code 400 Bad Request with an optional

body representing the problems.
• The Redirect, RedirectPermanent, and other similar methods allow returning a redirection

status code like 302 Found and 301 Moved Permanently while exposing different options to
craft the Location URL representing the redirection the client should follow.

• The Accepted, AcceptedAtAction, and other similar methods allow the status code
202 Accepted to be returned, along with an optional body and different options to craft the
Location URL representing the status endpoint.

• The Conflict method allows the status code 409 Conflict to be returned with an optional
body representing the error.

There are other methods as part of the ControllerBase class that are self-discoverable using IntelliSense
(code completion). Those helper methods create the return value for you, which you could manually
do yourself. You could even create your own classes that extend IActionResult. Customization aside,
you should go a long way with the helper methods that the ControllerBase class exposes. Now that
we explored these, let’s look at ways to return data to the client:

Note

ControllerBase, ApiControllerAttribute, and attribute routing classes come from
the Microsoft.AspNetCore.Mvc namespace.

The MVC Pattern for Web APIs116

• You can return the model directly.
• You can return an ActionResult<TValue> class.
• You can return an ActionResult class.
• You can return an IActionResult interface.

Starting with the last two, the IActionResult interface and the ActionResult class are more abstract.
They are constraining you to use the helper methods exposed by ControllerBase or construct the
resulting instances yourself to return values. Moreover, they are not auto-discoverable by OpenAPI
tools like Swagger.

Here is an example (without routing) based on the WeatherForecastController generated, where the
actions return a collection of WeatherForecast objects, leveraging the Ok method (highlighted code):

public class WeatherForecastController : ControllerBase
{
 public IActionResult InterfaceAction()
 => Ok(GetWeatherForecasts());

 public ActionResult ClassAction()
 => Ok(GetWeatherForecasts());

 private static WeatherForecast[] GetWeatherForecasts()
 => Enumerable.Range(1, 5)
 .Select(index => new WeatherForecast
 {
 Date = DateTime.Now.AddDays(index),
 TemperatureC = Random.Shared.Next(-20, 55),
 Summary = _summaries[Random.Shared.Next(_summaries.Length)]
 })
 .ToArray();
}

The problem with the preceding code is API discoverability. However, we could decorate our actions
with the ProducesResponseType attribute to circumvent that, like this:

[ProducesResponseType(typeof(WeatherForecast[]), StatusCodes.Status200OK)]
public IActionResult InterfaceAction() { ... }

In the preceding code, we specify the return type as the first argument and the status code as the
second, using the StatusCodes class constants. We can add multiples of those to define alternate
states, such as 404 and 400. We can also define conventions that apply more broad rules, which we
won’t cover here (refer to the Further reading section at the end of the chapter).

All other actions use the GetWeatherForecasts method. The critical part of that method is that it
returns a collection of WeatherForecast objects.

Chapter 5 117

Next, let’s explore returning the model directly (without the routing):

public IEnumerable<WeatherForecast> Get()
 => GetWeatherForecasts();

As we can see from the preceding code, the Get action method is nothing more than any other method.
However, the response is a 200 OK status code and a WeatherForecast JSON array body that looks
like this:

[
 {
 "date": "2021-11-13T10:39:48.857043-05:00",
 "temperatureC": -4,
 "temperatureF": 25,
 "summary": "Cool"
 },
 ...
]

Thanks to class conversion operators (see Appendix A for more info), we can do the same with
ActionResult<T> as well, like this:

public ActionResult<IEnumerable<WeatherForecast>> GenericClassActionDirect()
 => GetWeatherForecasts();

Moreover, with ActionResult<T>, we can return other results. Here is an example using the Ok method
(highlighted):

public ActionResult<IEnumerable<WeatherForecast>> GenericClassActionOk()
 => Ok(GetWeatherForcasts());

To prove that point, here is a similar method that returns a 404 Not Found response:

public ActionResult<IEnumerable<WeatherForecast>> GenericClassActionNotFound()
 => NotFound();

To conclude returning values, we have multiple ways of doing it, with ActionResult<T> being the
most flexible in terms of feature support. On the other hand, IActionResult is the most abstract one.

Next, we look at routing requests to those action methods.

Attribute routing
Attribute routing maps an HTTP request to a controller action. Those attributes decorate the controllers
and the actions to create the complete routes. To cover attribute routing, let’s use the following
controller without any implementation code to focus only on attributes:

[ApiController]
[Route("[controller]")]

The MVC Pattern for Web APIs118

public class ValuesController : ControllerBase
{
 [HttpGet]
 public ActionResult<IEnumerable<string>> Get() => default!;
 [HttpGet("{id}")]
 public ActionResult<string> Get(int id) => default!;
 [HttpPost]
 public void Post([FromBody] string value) { }
 [HttpPut("{id}")]
 public void Put(int id, [FromBody] string value) { }
 [HttpDelete("{id}")]
 public void Delete(int id) { }
}

The Route attributes and Http[Method] attributes define what a user should query to reach a specific
resource. The Route attribute allows us to define a routing pattern, like MVC, that applies to all HTTP
methods under the decorated controller. The Http[Method] attributes define the HTTP method used to
reach that action method. They also offer the possibility to set an optional route pattern to handle more
complex routes, including passing parameters. Those attributes are very helpful in crafting concise
and clear URLs while keeping the routing system close to the controller. All routes must be unique.

Based on the code, [Route("[controller]")] means that the actions of this controller are reachable
through /values (the Controller suffix is ignored, as with MVC). Then, the other attributes tell
ASP.NET to map specific requests to specific methods. For example, [HttpGet] tells ASP.NET that
GET /values should map to the Get() method. The [HttpGet("{id}")] attribute tells the routing
engine that GET /values/1 requests should be routed to the Get(int id) method instead. Both are
mapping the GET method, but the id parameter helps differentiate them. The other attributes are
doing the same but aim at a different HTTP method.

The FromBody attribute tells the model binder to use the HTTP request body for that value. Other
attributes tell the model binder where to look to fetch the decorated value. Here is the list:

• FromBody, to look at the body and choose a formatter based on Content-Type.
• FromForm, to look at the form collection; the fields of an HTML form.
• FromHeader, to look at the HTTP headers.
• FromQuery, to look at the query string.
• FromRoute, to look at the MVC route data.
• FromServices, to inject a service from the dependency injection container.

If we look back at ValuesController, it defines the following endpoints:

URL Action/Method
GET /values Get()

GET /values/1 Get(int id)

Chapter 5 119

POST /values void Post([FromBody] string value)

PUT /values/1 void Put(int id, [FromBody] string value)

DELETE /values/1 void Delete(int id)

When designing a web API, the URL leading to your endpoints should be clear and concise, making
it easier for consumers to discover and learn the API. You want to group your resources by concern,
hierarchically, to create a cohesive URI space that is easy to use and understand. Clients must be able
to understand the logic behind the endpoints easily. Think about your endpoints as a consumer of the
web API. I would even extend that suggestion to any API; always think about the consumer of your
code to create the best possible API.

Conclusion
As for MVC, we could talk about web APIs for the remainder of the book, but we would be missing
the point. Hopefully, the subset of features we covered here was enough to fill the gap you might have
had. Otherwise, we are not done with web APIs, so more knowledge pieces will likely fall in place.

In this MVC section oriented toward web APIs, we explored the pattern itself, the default template,
how to create controllers and action methods, as well as how to route requests to those actions.

Using the MVC pattern helps us follow the SOLID principles in the following ways:

• S: The MVC pattern divides the rendering of a data structure into three different roles. Based
on what we explored so far, the framework handles the “View” (serialization) part, leaving us
only two pieces to manage: the Model and the Controller.

• O: N/A
• L: N/A
• I: As with MVC, controllers can become bloated with capabilities. However, unlike MVC, web

API controllers don’t have those views to render, making them leaner by keeping their interface
more cohesive. We could also leverage Minimal APIs to skip the need for controllers altogether.

• D: N/A

Next, we explore the Data Transfer Object pattern to isolate the API’s model from the domain. We dig
deeper into models, data, and domains in Chapter 12, Understanding Layering.

The Data Transfer Object design pattern
The Data Transfer Object (DTO) pattern is the equivalent of the View Model pattern, but for web APIs.
Instead of targeting a view, we are targeting the consumers of a web API endpoint.

Goal
The goal is to control the inputs and outputs of an endpoint by decoupling the API contract from the
application’s inner workings. DTOs empower us to define our APIs without thinking about the underlying
data structures, leaving us the choice to craft our web services the way we want. More precisely, we
can craft them the way we want the consumers to interact with them. So, no matter the underlying
system, we can use DTOs to design endpoints that are easier to consume, maintain, and evolve.

The MVC Pattern for Web APIs120

Other possible objectives are to save bandwidth by limiting the amount of information that the API
transmits, flatten the data structure, or add API-only features.

Design
Let’s start by analyzing a schema, which you may find similar to the one we saw when visiting view
models:

Figure 5.2: MVC workflow with a DTO

The same few differences between view models and DTOs can be applied here, following the same
idea: decoupling the domain from the view (data). These design patterns are the same, but one targets
a view and the other the input and output of a web service.

Project – DTO
Context: In a new application, our UX experts figured that displaying statistics about our customers’
contracts on a new dashboard would be a fantastic idea, and that would save lots of time for the
managers. In addition to that, when a user clicks on a customer, our UX experts decided it would be best
to display the customer’s full details when the manager needs to dig deeper into that customer’s data.

The system is composed of multiple user interfaces querying a single web API. To keep it simple, we
focus on the backend part of the system.

Next are the expected output from our two endpoints, starting with the first endpoint that should
return a list of customers comprising the following information:

Chapter 5 121

[
 {
 "id": 0,
 "name": "...",
 "totalNumberOfContracts": 0,
 "numberOfOpenContracts": 0
 }
]

The second endpoint should return the details of the specified customer with its complete list of
contracts. We need to provide the information in the following format:

{
 "id": 0,
 "name": "...",
 "contracts":
 [
 {
 "id": 0,
 "name": "...",
 "description": "...",
 "workTotal": 0,
 "workDone": 0,
 "workState": "New|InProgress|Completed",
 "primaryContactFirstname": "...",
 "primaryContactLastname": "...",
 "primaryContactEmail": "..."
 }
]
}

Our data structure looks like this:

namespace DTOs.Models;
public record class Customer(
 int Id,
 string Name,
 List<Contract> Contracts
);

public record class Contract(
 int Id,

The MVC Pattern for Web APIs122

 string Name,
 string Description,
 ContractWork Work,
 ContactInformation PrimaryContact
);

public record class ContractWork(int Total, int Done)
{
 public WorkState State =>
 Done == 0 ? WorkState.New :
 Done == Total ? WorkState.Completed :
 WorkState.InProgress;
}

public record class ContactInformation(
 string Firstname,
 string Lastname,
 string Email
);

public enum WorkState
{
 New,
 InProgress,
 Completed
}

A problem arose when analyzing the feature: our domain model and the model we needed to provide
to the UIs differ.

If we use our data structure directly, the user interfaces would have to make multiple HTTP requests
to build the dashboard. That would push the logic to the UIs and most likely even duplicate it. That
could become tedious to maintain, especially if we add other user interfaces.

Solution: Create two specialized resources in our web API that run the computation and return only
the required data.

Note

To keep it simple and abstract away the data access logic from the controller, we moved
that code to the CustomerRepository class, which provides static data to the controller,
omitted here.

Chapter 5 123

For the first endpoint, let’s create a new record class named CustomerSummaryDto that holds our two
statistics and our customer info:

public record class CustomerSummaryDto(
 [property: JsonPropertyName("id")]
 int Id,
 [property: JsonPropertyName("name")]
 string Name,
 [property: JsonPropertyName("totalNumberOfContracts")]
 int TotalNumberOfContracts,
 [property: JsonPropertyName("numberOfOpenContracts")]
 int NumberOfOpenContracts
);

The action that returns the data, representing our first endpoint, goes as follows:

namespace DTOs.Controllers;

[Route("[controller]")]
[ApiController]
public class CustomersController : ControllerBase
{
 private readonly CustomerRepository _customerRepository = new();
 // GET customers
 [HttpGet]
 public ActionResult<IEnumerable<CustomerSummaryDto>> Get()
 {
 var customers = _customerRepository.ReadAll();
 var dto = customers.Select(customer => new CustomerSummaryDto(

Note

The properties decorated with JsonPropertyName attributes define the serialized prop-
erty name explicitly. That is one of the advantages of the DTO pattern. Since the DTOs are
unrelated to our other objects, we can manipulate them without any impact on the data
source, lowering the chance of unforeseen consequences, such as updating a DTO and
breaking the database. For example, adding JsonPropertyName attributes to a property
of the CustomerSummaryDto class has no impact on the Customer class.

In our case, the default serializer handles the naming convention automatically, so the
JsonPropertyName attributes are not adding any value other than academic (if you did not
know, now you know they exist). Nonetheless, it is good to know the options for scenarios
where the name must be changed manually (or other scenarios). This independence is
one of the key advantages.

The MVC Pattern for Web APIs124

 Id: customer.Id,
 Name: customer.Name,
 TotalNumberOfContracts: customer.Contracts.Count,
 NumberOfOpenContracts: customer.Contracts.Count(x => x.Work.State
!= WorkState.Completed)
)).ToArray();
 return dto;
 }
 // Omitted the second endpoint
}

What is happening is this:

1. We read the data from the CustomerRepository instance (could be from a database).
2. We transform it into an array of DTO objects (copying the data into new objects).
3. We return that DTO to the client.

If we run the application and navigate to GET /customers, we should see the following output:

[
 {
 "id": 1,
 "name": "Jonny Boy Inc.",
 "totalNumberOfContracts": 2,
 "numberOfOpenContracts": 1
 },
 {
 "id": 2,
 "name": "Some mega-corporation",
 "totalNumberOfContracts": 1,
 "numberOfOpenContracts": 1
 }
]

Now that the first endpoint is working, let’s attack the second one. Based on our requirements, we
need to create two classes for this one:

namespace DTOs.Models;

public record class CustomerDetailsDto(
 [property: JsonPropertyName("id")]
 int Id,
 [property: JsonPropertyName("name")]
 string Name,

Chapter 5 125

 [property: JsonPropertyName("contracts")]
 IEnumerable<ContractDetailsDto> Contracts
);
public record class ContractDetailsDto(
 [property: JsonPropertyName("id")]
 int Id,
 [property: JsonPropertyName("name")]
 string Name,
 [property: JsonPropertyName("description")]
 string Description,
 [property: JsonPropertyName("workTotal")]
 int WorkTotal,
 [property: JsonPropertyName("workDone")]
 int WorkDone,
 [property: JsonPropertyName("workState")]
 [property: JsonConverter(typeof(JsonStringEnumConverter))]
 WorkState WorkState,
 [property: JsonPropertyName("primaryContactFirstname")]
 string PrimaryContactFirstname,
 [property: JsonPropertyName("primaryContactLastname")]
 string PrimaryContactLastname,
 [property: JsonPropertyName("primaryContactEmail")]
 string PrimaryContactEmail
);

This time, we used the[JsonConverter(typeof(JsonStringEnumConverter))] attribute on the
ContractDetailsDto.WorkState property to tell the serializer that the WorkState enumeration should
be serialized as a string instead of a numeric index.

Now that we have a data structure to represent our DTO, let’s look at the controller’s code:

// GET customers/1
[HttpGet("{id}")]

Note

In the past, ASP.NET Core used JSON.NET as the underlying JSON serializer. Since
.NET Core 3.0, they added the System.Text.Json namespace, which contains a
brand new serializer. The new serializer is faster, but has fewer features. If you need
JSON.NET features, or for compatibility reasons, you can use it by referencing the
Microsoft.AspNetCore.Mvc.NewtonsoftJson NuGet package. Then, add a call
to the AddNewtonsoftJson() extension method on your IMvcBuilder object, like
services.AddControllers().AddNewtonsoftJson();.

The MVC Pattern for Web APIs126

public ActionResult<CustomerDetailsDto> Get(int id)
{
 var customer = _customerRepository.ReadOne(id);
 if (customer == default)
 {
 return NotFound();
 }
 var dto = new CustomerDetailsDto(
 Id: customer.Id,
 Name: customer.Name,
 Contracts: customer.Contracts.Select(contract => new
ContractDetailsDto(
 Id: contract.Id,
 Name: contract.Name,
 Description: contract.Description,

 // Flattening PrimaryContact
 PrimaryContactEmail: contract.PrimaryContact.Email,
 PrimaryContactFirstname: contract.PrimaryContact.Firstname,
 PrimaryContactLastname: contract.PrimaryContact.Lastname,

 // Flattening Work
 WorkDone: contract.Work.Done,
 WorkState: contract.Work.State,
 WorkTotal: contract.Work.Total
))
);
 return Ok(dto);
}

That action flattens the details of a Customer into a CustomerDetailsDto and returns 404 Not Found if
the Customer does not exist. For example, we moved the PrimaryContact object from the contracts to
the ContractDetailsDto object, flattening the data structure. The same happened with the Work object.

If we run the application and navigate to GET /customers/2, we should have the following output:

{
 "id": 2,
 "name": "Some mega-corporation",
 "contracts": [
 {
 "id": 3,
 "name": "Huge contract",

Chapter 5 127

 "description": "This is a huge contract of Some mega-corporation.",
 "workTotal": 15000,
 "workDone": 0,
 "workState": "New",
 "primaryContactFirstname": "Kory",
 "primaryContactLastname": "O'Neill",
 "primaryContactEmail": "kory.oneill@megacorp.com"
 }
]
}

And voilà! Our little application is working as expected and without much effort. We took some data,
converted it into a different format, computed some statistics, flattened some objects, and serialized
that as JSON so consumers could start using those two endpoints. All of that was made without any
alteration to our initial model but by creating DTOs instead.

Think of a controller as a bridge between HTTP and your application logic, or if you prefer, a very thin
layer allowing users to access your software over HTTP.

Now that we have explored DTOs, let’s dig deeper and discuss API contracts, which define our web APIs.

Conclusion
A data transfer object allows us to design an API endpoint with a specific data contract (input and
output) instead of exposing the domain model. This separation between the presentation and the
domain is a crucial element that leads to having multiple independent components instead of a bigger,
more fragile one.

We mostly focused on outputting DTOs, but we can also use DTOs to control the inputs. We leverage
that in Section 4, Designing at Application Scale.

Note

I would recommend moving as much logic as possible out of the controller in a more
significant project because we don’t want to break the single responsibility principle.
However, flattening the model into a DTO could arguably be considered the responsibility
of the controller. We could also use AutoMapper, a third-party library, to do that. More on
that in Chapter 13, Getting Started with Object Mappers.

Minimal APIs

If you are interested in minimal APIs, I also implemented the DTO example without using
MVC. The code is available in the GitHub repo: https://adpg.link/mRMf.

https://adpg.link/mRMf

The MVC Pattern for Web APIs128

Using the MVC pattern helps us follow the SOLID principles in the following ways:

• S: A DTO adds clear boundaries between the domain model and the API contract, dividing one
model into two distinct responsibilities to help keep things isolated.

• O: N/A
• L: N/A
• I: A DTO is a smaller, specifically crafted model that serves a clear purpose. With a DTO, we

now have two models, one for the domain and one for the view (API), leading to two specialized
interfaces instead of a generic one.

• D: N/A

I’m sure you have at least a small understanding of what an API contract is by now. Nonetheless, we
explore that subject in more detail next to make that understanding clearer.

API contracts
An API contract is the definition of a web API. Like any standard API, a consumer should know how
to call an endpoint and what to expect from it in return. Each endpoint should have a signature, like
a method, and should enforce that signature.

Using DTOs as input and output makes them part of that contract, adding even more value to them,
locking in place the contract instead of using a more volatile model shared across multiple parts
(layers) of the system. From this point forward, a DTO is more than a simple “object used to transfer
data.” It becomes an integral part of the contract, and the only reason for a DTO to change is directly
linked to that contract (and vice versa).

Now that we have an idea of what an API contract is, let’s see how to define those contracts to improve
teamwork, system collaboration, and discoverability for consumers of APIs.

To define API contracts, we could do the following:

• Open any text editor, such as MS Word or Notepad, and start writing out a document describing
our web APIs; this is probably the most tedious and least flexible way of doing it.

• Use Markdown for written specs and save those files within your project repo for easy
discoverability. Very similar to MS Word, but easier to have other devs consume those specs.

• Use an existing standard, such as the OpenAPI specification (formerly Swagger). This is more
complex to learn but yields better machine-to-machine consumption options.

Note

Most objects were record classes in the example, but you could also use normal
classes to achieve the same result. That should rarely be the case with DTOs, but
maybe you have other constraints, such as inheriting a non-record class or using
an older version of .NET/C#. Just in case, I included a normal class for each DTO,
including the Json*Attributes in the same file (commented out), available in
GitHub.

Chapter 5 129

• Use any other tools that fit our requirements.

Some people go even further when defining API contracts, but once again, it depends on each project,
your team, or the company you are working for. For now, let’s stay minimalist and define an API
contract as the API surface: its URL, method, input, and output.

Let’s analyze the preceding DTO sample. From a developer perspective, a contract is a model associated
with a URI and an HTTP method. For example, if we dissect CustomersController, we end up with
the two following endpoints:

• Read all customers
• Read one customer

“Read all customers” uses the GET method and listens to the /customers URL. It has no input parameter,
and it returns a collection of CustomerSummaryDto.

“Read one customer” also uses the GET method but listens to the /customers/{id} URI. The discriminator
between the two GET actions is the id parameter. When successful, the action returns an instance of
CustomerDetailsDto.

These are the contracts defining our API in a textual format. That is not the most technical way of
sharing this information, but it hopefully helped you understand the idea. Nonetheless, when you
cannot explain an idea using spoken language, it may indicate that your understanding is incomplete.

One way to be more formal about the API contracts is by leveraging the OpenAPI format. To do that,
we have two choices:

• Design the contract first, and then build the APIs.
• Build the APIs and extract the contract for others to consume it.

To design the contract first, you’ll need to familiarize yourself with the OpenAPI specification. I left a
link in the Further reading section below.

On the other hand, to automatically extract the OpenAPI specifications, you have nothing specific
to do, but ensure your endpoints are discoverable by the .NET ApiExplorer. The default template
registered Swagger for us, highlighted in the following code:

var builder = WebApplication.CreateBuilder(args);
builder.Services.AddControllers();
builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();

var app = builder.Build();

Tip

Postman is a fantastic tool for building web APIs documentation, test suites, and
experimenting with your APIs. It supports OpenAPI specifications, allows you to
create mock servers, supports environments, and more.

The MVC Pattern for Web APIs130

if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();
 app.UseDeveloperExceptionPage();
}
else
{
 app.UseHsts();
}
app.UseHttpsRedirection();
app.MapControllers();
app.Run();

With those few lines, when navigating to the /swagger/v1/swagger.json URL of the running web
API project, you can consult the API contracts defined with the OpenAPI standard. I won’t paste 187
lines of JSON here, so I’ll leave you to access it. Meanwhile, here is a high-level overview of the file:

Figure 5.3: High-level view of the autogenerated OpenAPI document

Now that we know this, one of those four lines (app.UseSwaggerUI();) is registering a user interface
to consult the preceding JSON from a nice-looking UI that also allows the endpoints to be tested.

Chapter 5 131

When navigating to the /swagger/index.html URL of the running web API project, you should have
access to the following page:

Figure 5.4: Swagger UI generated using OpenAPI

Now that we have peeked at the pieces from the default template, including the autogeneration of an
OpenAPI document and UI, it is time to move to the summary.

Summary
This chapter explored how easy it is to leverage web APIs and create web services that expose REST
endpoints to share data over HTTP. We also saw how to decouple the model from the “presentation”
using DTOs.

DTOs are the equivalent of view models, but for web services. They are classes specially crafted around a
specific resource: an HTTP endpoint. Instead of returning raw data to the client, a DTO can encapsulate
the result of computations, limit the number of exposed properties, aggregate results, and flatten
data structures to carefully craft the API contract representing the input and output of its endpoint.

Then we dug a little further along that path by defining that DTOs are part of the API contract defining
our web API, so its consumers know how to communicate with it. We also peeked at OpenAPI to help
share the contracts in a more standard way.

Now that we explored principles and methodologies as well as a few ASP.NET Core bases like MVC, it
is time to continue our learning and tackle some more design patterns and features.

The MVC Pattern for Web APIs132

In the following two chapters, we explore our first Gang of Four (GoF) design patterns and take a deep
dive into ASP.NET Core dependency injection (DI). All of this will help us to continue on the path we
started: to design better software.

Questions
Let’s look at a few practice questions:

1. In a REST API, what is the most common status code sent after creating an entity?
2. What attribute tells ASP.NET Core to bind the data of the request body to a parameter?
3. If you want to read data from the server, what HTTP method would you use?
4. Can DTOs add flexibility and robustness to a system?
5. Are DTOs part of an API contract?

Further reading
Here are some links to build on what we have learned in the chapter:

• OpenAPI specification: https://adpg.link/M4Uz
• Using web API conventions: https://adpg.link/ioKV
• Getting started with Swashbuckle and ASP.NET Core: https://adpg.link/ETja

Join our book’s Discord space
Join the book’s Discord workspace for Ask me Anything session with the authors:

https://packt.link/ASPdotNET6DesignPatterns

https://adpg.link/M4Uz
https://adpg.link/ioKV
https://adpg.link/ETja
https://packt.link/ASPdotNET6DesignPatterns

6
Understanding the Strategy,
Abstract Factory, and Singleton
Design Patterns
This chapter explores object creation using a few classic, simple, and yet powerful design patterns
from the Gang of Four (GoF). These patterns allow developers to encapsulate behaviors, centralize
object creation, add flexibility to their design, or control object lifetime. Moreover, they will most
likely be used in all software you build directly or indirectly in the future.

Why are they that important? Because they are the building blocks of robust object composition and
they help to create flexibility and reliability. Moreover, in Chapter 7, Deep Dive into Dependency Injection,
we leverage dependency injection to make those patterns even more powerful!

But first things first. The following topics will be covered in this chapter:

• The Strategy design pattern
• The Abstract Factory design pattern
• The Singleton design pattern

The Strategy design pattern
The Strategy pattern is a behavioral design pattern that allows us to change object behaviors at
runtime. We can also use this pattern to compose complex object trees and rely on it to follow the
Open/Closed Principle (OCP) without much effort.

GoF

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides are the authors of
Design Patterns: Elements of Reusable Object-Oriented Software (1994), and are also known
as the GoF. In that book, they introduce 23 design patterns, some of which we look at in
this book.

Understanding the Strategy, Abstract Factory, and Singleton Design Patterns134

As a follow-up on that last point, the Strategy pattern plays a significant role in the composition over
inheritance way of thinking. In this chapter, we focus on the behavioral part of the Strategy pattern. In
the next chapter, we cover how to use the Strategy pattern to compose systems dynamically.

Goal
The Strategy pattern’s goal is to extract an algorithm (strategy) from the host class needing it (the
context). That allows the consumer to decide on the strategy (algorithm) to use at runtime.

For example, we could design a system that fetches data from two different types of databases. Then
we could apply the same logic over that data and use the same user interface to display it. To achieve
this, using the Strategy pattern, we could create two strategies, one named FetchDataFromSql and
the other FetchDataFromCosmosDb. Then we could plug the strategy that we need at runtime in the
context class. That way, when the consumer calls the context, the context does not need to know
where the data comes from, how it is fetched, or what strategy is in use; it only gets what it needs to
work, delegating the fetching responsibility to an abstracted strategy.

Design
Before any further explanation, let’s take a look at the following class diagram:

Figure 6.1: Strategy pattern class diagram

The building blocks of the Strategy pattern go as follows:

• Context is a class that delegates one or more operations to an IStrategy implementation.
• IStrategy is an interface defining the strategies.
• ConcreteStrategy1 and ConcreteStrategy2 represent one or more different concrete

implementations of the IStrategy interface.

In the following diagram, we explore what happens at runtime. The actor represents any code
consuming the Context object.

Chapter 6 135

Figure 6.2: Strategy pattern sequence diagram

When the consumer calls the Context.SomeOperation() method, it does not know which
implementation is executed, which is an essential part of this pattern. Context should not be aware
of the strategy being used either. It should execute it through the interface without any knowledge
of the implementation past that point. That is the strength of the Strategy pattern: it abstracts the
implementation away from both the Context and the consumer. Because of that, we can change the
strategy during either the object creation or at runtime without the object knowing, changing its
behavior on the fly.

Project – Strategy
Context: We want to sort a collection using different strategies. Initially, we want to support sorting
the elements of a list in ascending or descending order.

Note

We could even generalize that last sentence and extend it to the use of any interface. Using
an interface removes the ties between the consumer and the implementation by relying
on the abstraction instead.

Understanding the Strategy, Abstract Factory, and Singleton Design Patterns136

To achieve this, we need to implement the following building blocks:

• The Context is the SortableCollection class.
• The Strategy is the ISortStrategy interface.
• The concrete strategies are:

a. SortAscendingStrategy

b. SortDescendingStrategy

The consumer is a small program that allows the user to choose a strategy, sort the collection, and
display the items. Let’s start with the ISortStrategy interface:

public interface ISortStrategy
{
 IOrderedEnumerable<string> Sort(IEnumerable<string> input);
}

That interface contains only one method that expects a collection of strings as input, and that returns
an ordered collection of strings. Now let’s inspect the two implementations:

public class SortAscendingStrategy : ISortStrategy
{
 public IOrderedEnumerable<string> Sort(IEnumerable<string> input)
 => input.OrderBy(x => x);
}
public class SortDescendingStrategy : ISortStrategy
{
 public IOrderedEnumerable<string> Sort(IEnumerable<string> input)
 => input.OrderByDescending(x => x);
}

Both implementations are super simple as well, using Language Integrated Query (LINQ) to sort the
input and return the result directly. Both implementations use expression-bodied methods, which
we talked about in Chapter 4, The MVC Pattern Using Razor.

The next building block to inspect is the SortableCollection class. It is not a collection in itself (it
does not implement IEnumerable or other collection interfaces), but it is composed of multiple string
items (the Items property) and can sort them using an ISortStrategy, like this:

Tip

When using expression-bodied methods, please ensure that you do not make the method
harder to read for your colleagues by creating very complex one-liners. Writing multiple
lines often makes the code clearer except in the case of tiny methods like in the preceding
example.

Chapter 6 137

public sealed class SortableCollection
{
 public ISortStrategy? SortStrategy { get; set; }
 public IEnumerable<string> Items { get; private set; }

 public SortableCollection(IEnumerable<string> items)
 {
 Items = items;
 }

 public void Sort()
 {
 if (SortStrategy == null)
 {
 throw new NullReferenceException("Sort strategy not found.");
 }
 Items = SortStrategy.Sort(Items);
 }
}

This class is the most complex one so far, so let’s take a more in-depth look:

• The SortStrategy property holds a reference to an ISortStrategy implementation (that can
be null).

• The Items property holds a reference to the collection of strings contained in the
SortableCollection class.

• We set the initial IEnumerable<string> when creating an instance of SortableCollection,
through its constructor.

• The Sort method uses the current SortStrategy property to sort the Items. When there is no
strategy set, it throws a NullReferenceException.

With that code, we can see the Strategy pattern in action. The SortStrategy property represents
the current algorithm, respecting an ISortStrategy contract, which is updatable at runtime. The
SortableCollection.Sort() method delegates the work to that ISortStrategy implementation (the
concrete strategy). Therefore, changing the value of the SortStrategy property leads to a change of
behavior of the Sort() method, making this pattern very powerful yet simple.

Let’s experiment with this by looking at MyConsumerApp, a console application that uses the previous
code:

public class Program
{
 private static readonly SortableCollection _data = new
SortableCollection(new[] { "Lorem", "ipsum", "dolor", "sit", "amet." });

Understanding the Strategy, Abstract Factory, and Singleton Design Patterns138

The _data instance represents the context, our sortable collection of items. Next, an empty Main
method:

 public static void Main(string[] args) { /*...*/ }

To keep it focused on the pattern, I took away the console logic from the book, which is irrelevant for
now, but the code is available in the GitHub repository.

 private static string SetSortAsc()
 {
 _data.SortStrategy = new SortAscendingStrategy();
 return "The sort strategy is now Ascending";
 }

The preceding method sets the strategy to a new instance of SortAscendingStrategy.

 private static string SetSortDesc()
 {
 _data.SortStrategy = new SortDescendingStrategy();
 return "The sort strategy is now Descending";
 }

The preceding method sets the strategy to a new instance of SortDescendingStrategy.

 private static string SortData()
 {
 try
 {
 _data.Sort();
 return "Data sorted";
 }
 catch (NullReferenceException ex)
 {
 return ex.Message;
 }
 }

Chapter 6 139

The SortData method calls the Sort() method, which delegates the call to an optional ISortStrategy
implementation.

 private static string PrintCollection()
 {
 var sb = new StringBuilder();
 foreach (var item in _data.Items)
 {
 sb.AppendLine(item);
 }
 return sb.ToString();
 }
}

This last method displays the collection in the console to visually validate the correctness of the code.

When we run the program, the following menu appears:

Figure 6.3: Output showing the Options menu

When a user selects an option, the program calls the appropriate method, as described earlier.

When executing the program, if you display the items (1), they appear in their initial order. If you
assign a strategy (3 or 4), sort the collection (2), then display the list again, the order will have changed
and will now be different, based on the selected algorithm.

Let’s analyze the sequence of events when you select the following options:

1. Select the sort ascending strategy (3).
2. Sort the collection (2).

Understanding the Strategy, Abstract Factory, and Singleton Design Patterns140

Next is a sequence diagram that represents this:

Figure 6.4 : Sequence diagram sorting the items using the “sort ascending” strategy (options 3 then 2)

The preceding diagram shows the Program creating a strategy and assigning it to SortableCollection.
Then, when the Program calls the Sort() method, the SortableCollection instance delegates the
sorting computation to the underlying algorithm implemented by the SortAscendingStrategy class,
a.k.a. the strategy.

From the pattern standpoint, the SortableCollection class, a.k.a. the context, is responsible for
keeping a hold on the current strategy and for using it.

Conclusion
The Strategy design pattern is very effective at delegating responsibilities to other objects, allowing
you to delegate the responsibility of an algorithm to other objects while keeping its usage trivial. It also
allows having a rich interface (context) with behaviors that can change during the program’s execution.

The strategy does not have to be exposed directly; it can also be private to the class, hiding its presence
to the outside world (the consumers); we talk more about this in the next chapter. Meanwhile, the
Strategy pattern is excellent at helping us follow the SOLID principles:

• S: It helps to extract responsibilities to external classes and use them, interchangeably, later.
• O: It allows extending classes without updating its code by changing the current strategy at

runtime.

Chapter 6 141

• L: It does not rely on inheritance. Moreover, it plays a large role in the composition over inheritance
principle, helping us avoid inheritance altogether and, at the same time, the LSP.

• I: By creating smaller strategies based on lean and focused interfaces, the Strategy pattern is
an excellent enabler for respecting the ISP.

• D: The creation of dependencies is moved from the class using the strategy (the context) to the
class’s consumer. That makes the context depend on abstraction instead of implementation,
inverting the flow of control.

Next, let’s explore the Abstract Factory pattern.

The Abstract Factory design pattern
The Abstract Factory design pattern is a creational design pattern from the GoF. We use creational
patterns to create other objects, and factories are a very popular way of doing that.

The Strategy pattern is the backbone of dependency injection, enabling the composition of complex
object trees, while factories are used to create some of those complex objects that can’t be assembled
automatically by a dependency injection library. More on that in the next chapter.

Goal
The Abstract Factory pattern is used to abstract the creation of a family of objects. It usually implies
the creation of multiple object types within that family. A family is a group of related or dependent
objects (classes).

Let’s think about creating automotive vehicles. There are multiple types of vehicles, and for each type,
there are multiple models. We can use the Abstract Factory pattern to make our life easier for this
type of scenario.

Design
With Abstract Factory, the consumer asks for an abstract object and gets one. The factory is an
abstraction, and the resulting objects are also abstractions, decoupling the object creation from the
consumers.

C# Features

If you looked at the implementation of the Main method (omitted here), you might
have noticed that I used a few newer C# features like default literal expressions,
switch expressions, and discards. Those are covered in Appendix A.

Note

There is also the Factory Method pattern, which focuses on creating a single type of ob-
ject instead of a family. We only cover Abstract Factory here, but we use other types of
factories later in the book.

Understanding the Strategy, Abstract Factory, and Singleton Design Patterns142

That allows adding or removing families of objects produced together without impacting the consumers
(all actors communicate through abstractions).

In our case, the family (the object set the factory can produce) is composed of a car and a bike, and
each factory (family) must produce both of those objects.

If we think about vehicles, we could have the ability to create low- and high-grade models of each
vehicle type. Here is a diagram representing how to achieve that using the Abstract Factory pattern:

Figure 6.5: Abstract Factory class diagram

In the diagram, we have the following:

• IVehicleFactory is an Abstract Factory defining two methods: one that creates cars of type
ICar and another that creates bikes of type IBike.

• HighGradeVehicleFactory is an implementation of the Abstract Factory that handles high-
grade vehicle model creation. This concrete factory returns instances of type HighGradeCar
or HighGradeBike.

• LowGradeVehicleFactory is an implementation of our Abstract Factory that handles low-
grade vehicle model creation. This concrete factory returns instances of type LowGradeCar
or LowGradeBike.

• LowGradeCar and HighGradeCar are two implementations of ICar.
• LowGradeBike and HighGradeBike are two implementations of IBike.

Chapter 6 143

Based on that diagram, a consumer uses the IVehicleFactory interface and should not be aware of
the concrete factory used underneath, abstracting away the vehicle creation process.

Project – AbstractVehicleFactory
Context: We need to support the creation of multiple models of vehicles. We also need to be able to add
new models as they become available without impacting the system. To begin with, we only support
high-grade and low-grade models and the program only supports the creation of cars and bikes.

For the sake of our demo, the vehicles are just empty classes and interfaces:

public interface ICar { }
public interface IBike { }
public class LowGradeCar : ICar { }
public class LowGradeBike : IBike { }
public class HighGradeCar : ICar { }
public class HighGradeBike : IBike { }

Let’s now look at the part that we want to study—the factories:

public interface IVehicleFactory
{
 ICar CreateCar();
 IBike CreateBike();
}
public class LowGradeVehicleFactory : IVehicleFactory
{
 public IBike CreateBike() => new LowGradeBike();
 public ICar CreateCar() => new LowGradeCar();
}
public class HighGradeVehicleFactory : IVehicleFactory
{
 public IBike CreateBike() => new HighGradeBike();
 public ICar CreateCar() => new HighGradeCar();
}

The factories are simple implementations that describe the pattern well:

• LowGradeVehicleFactory creates low-grade models.
• HighGradeVehicleFactory creates high-grade models.

The consumer is an xUnit test project. Unit tests are often your first consumers, especially if you are
doing test-driven development (TDD).

Understanding the Strategy, Abstract Factory, and Singleton Design Patterns144

The AbstractFactoryBaseTestData class encapsulates some of our test data classes’ utilities and is
not relevant to our pattern study. Nevertheless, it can be useful to have all of the code on hand, and
it is a very small class; so let’s start there:

public abstract class AbstractFactoryBaseTestData : IEnumerable<object[]>
{
 private readonly TheoryData<IVehicleFactory, Type> _data = new
TheoryData<IVehicleFactory, Type>();
 protected void AddTestData<TConcreteFactory, TExpectedVehicle>()
 where TConcreteFactory : IVehicleFactory, new()
 {
 _data.Add(new TConcreteFactory(), typeof(TExpectedVehicle));
 }
 public IEnumerator<object[]> GetEnumerator() => _data.GetEnumerator();
 IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
}

That class is an IEnumerable<object[]> with a private collection of TheoryData<T1, T2>, and an
AddTestData<TConcreteFactory, TExpectedVehicle>() method that is used by other classes, to
feed our theories.

The data inheriting from the AbstractFactoryBaseTestData class that we are going to feed to our
theories looks like this:

public class AbstractFactoryTestCars : AbstractFactoryBaseTestData
{
 public AbstractFactoryTestCars()
 {
 AddTestData<LowGradeVehicleFactory, LowGradeCar>();
 AddTestData<HighGradeVehicleFactory, HighGradeCar>();
 }
}
public class AbstractFactoryTestBikes : AbstractFactoryBaseTestData
{
 public AbstractFactoryTestBikes()
 {
 AddTestData<LowGradeVehicleFactory, LowGradeBike>();
 AddTestData<HighGradeVehicleFactory, HighGradeBike>();
 }
}

With the implementation details abstracted, the preceding code is straightforward. If we take a closer
look at the AbstractFactoryTestCars class, it creates two sets of test data:

• A LowGradeVehicleFactory that should create a LowGradeCar instance.

Chapter 6 145

• A HighGradeVehicleFactory that should create a HighGradeCar instance.

The same goes for the AbstractFactoryTestBikes data:

• A LowGradeVehicleFactory that should create a LowGradeBike instance.
• A HighGradeVehicleFactory that should create a HighGradeBike instance.

Now, let’s look at the test class and theories using that test data:

public class AbstractFactoryTest
{
 [Theory]
 [ClassData(typeof(AbstractFactoryTestCars))]
 public void Should_create_a_Car_of_the_specified_type(IVehicleFactory
vehicleFactory, Type expectedCarType)
 {
 // Act
 ICar result = vehicleFactory.CreateCar();
 // Assert
 Assert.IsType(expectedCarType, result);
 }
 [Theory]
 [ClassData(typeof(AbstractFactoryTestBikes))]
 public void Should_create_a_Bike_of_the_specified_type(IVehicleFactory
vehicleFactory, Type expectedBikeType)
 {
 // Act
 IBike result = vehicleFactory.CreateBike();
 // Assert
 Assert.IsType(expectedBikeType, result);
 }
}

In the preceding code, we have two theories that each use the data contained in the class, defined
by the [ClassData(...)] attribute (see the highlighted code). That data is used by the test runner to
populate the value of the test method’s parameters. So the test runner executes a test once per set of
data. In this case, each method runs twice.

The execution of each test method goes as follows:

• We use the Abstract Factory IVehicleFactory vehicleFactory to create an ICar or an IBike
instance.

• We test that instance against the expected concrete type to ensure it is the right type; that type is
specified by Type expectedCarType or Type expectedBikeType, depending on the test method.

Understanding the Strategy, Abstract Factory, and Singleton Design Patterns146

We now have four tests; two bike tests (Vehicles.AbstractFactoryTest.Should_create_a_Bike_of_
the_specified_type) executed with the following arguments:

(vehicleFactory: HighGradeVehicleFactory { }, expectedBikeType:
typeof(Vehicles.Models.HighGradeBike))
(vehicleFactory: LowGradeVehicleFactory { }, expectedBikeType: typeof(Vehicles.
Models.LowGradeBike))

And two car tests (Vehicles.AbstractFactoryTest.Should_create_a_Car_of_the_specified_type)
executed with the following arguments:

(vehicleFactory: HighGradeVehicleFactory { }, expectedCarType: typeof(Vehicles.
Models.HighGradeCar))
(vehicleFactory: LowGradeVehicleFactory { }, expectedCarType: typeof(Vehicles.
Models.LowGradeCar))

If we review the tests’ execution, both test methods are unaware of types. They use the Abstract Factory
(IVehicleFactory) and test the result against the expected type without any knowledge of what they
were testing, but the abstraction (or contract). That shows how loosely coupled the consumers (tests)
and factories are.

In a real program, we would use the ICar or the IBike instances to execute some logic, compute
statistics, or do anything relevant to that program. Maybe that could be a racing game or a rich person’s
garage management system, who knows!

The important part of this project is the abstraction of the object creation process. The consumer code
was not aware of the implementations.

To prove our design’s flexibility, based on the Abstract Factory pattern, let’s add a new concrete factory
named MiddleEndVehicleFactory. That factory should return a MiddleEndCar or a MiddleEndBike
instance. Once again, the car and bike are just empty classes (of course, in your programs they will
do something):

public class MiddleGradeCar : ICar { }
public class MiddleGradeBike : IBike { }

Note

I used ICar and IBike to type the variables instead of var, to make the type of
the result variable clearer. In another context, I would have used var instead.

Note

The code of the second part of the project is part of another solution, named
MiddleEndVehicleFactory, so you can compare the first version with its evolution.

Chapter 6 147

The new MiddleEndVehicleFactory looks pretty much the same as the other two:

public class MiddleEndVehicleFactory : IVehicleFactory
{
 public IBike CreateBike() => new MiddleGradeBike();
 public ICar CreateCar() => new MiddleGradeCar();
}

As for the test class, we don’t need to update the test methods (the consumers); we only need to update
the setup to add new test data (see the highlighted lines):

public class AbstractFactoryTestCars : AbstractFactoryBaseTestData
{
 public AbstractFactoryTestCars()
 {
 AddTestData<LowGradeVehicleFactory, LowGradeCar>();
 AddTestData<HighGradeVehicleFactory, HighGradeCar>();
 AddTestData<MiddleEndVehicleFactory, MiddleGradeCar>();
 }
}
public class AbstractFactoryTestBikes : AbstractFactoryBaseTestData
{
 public AbstractFactoryTestBikes()
 {
 AddTestData<LowGradeVehicleFactory, LowGradeBike>();
 AddTestData<HighGradeVehicleFactory, HighGradeBike>();
 AddTestData<MiddleEndVehicleFactory, MiddleGradeBike>();
 }
}

If we run the tests, we now have six passing tests (two theories with three test cases each). So, without
updating the consumer (the AbstractFactoryTest class), we were able to add a new family of vehicles,
the middle-end cars and bikes; kudos to the Abstract Factory pattern for that wonderfulness!

Conclusion
Abstract Factory is an excellent pattern to abstract away the creation of object families, isolating each
family and its concrete implementation, leaving the consumers unaware of (decoupled from) the
family being created at runtime.

We talk more about factories in the next chapter; meanwhile, let’s see how the Abstract Factory pattern
can help us follow the SOLID principles:

• S: Each concrete factory has the sole responsibility of creating a family of objects. You could
combine Abstract Factory with other creational patterns such as the Prototype and Builder
patterns for more complex creational needs.

Understanding the Strategy, Abstract Factory, and Singleton Design Patterns148

• O: The consumer is open to extension but closed for modification; as we did in the “expansion”
sample, we can add new families without modifying the code that uses it.

• L: We are aiming at composition, so there’s no need for any inheritance, implicitly discarding
the need for the LSP. If you use abstract classes in your design, you need to make sure you
don’t break the LSP when creating new abstract factories.

• I: By extracting an abstraction that creates other objects, it makes that interface very focused
on one task, which is in line with the ISP, creating flexibility at a minimal cost.

• D: By depending only on interfaces, the consumer is not aware of the concrete types that it
is using.

Next, we explore the last design pattern of the chapter.

The Singleton design pattern
The Singleton design pattern allows creating and reusing a single instance of a class. We could use
a static class to achieve almost the same goal, but not everything is doable using static classes. For
example, implementing an interface or passing the instance as an argument cannot be done with a
static class; you cannot pass static classes around, you can only use them directly.

We are exploring the Singleton pattern in this chapter because it relates to dependency injection.
Knowing about the patterns in this order should help you with the next chapter.

In my opinion, the Singleton pattern in C# is an anti-pattern. Unless I cannot rely on dependency
injection, I don’t see how this pattern can serve a purpose. That said, it is a classic, so let’s start by
studying it, then move to a better alternative in the next chapter.

Here are a few reasons why we are covering this pattern:

• It translates into a singleton scope in the next chapter.
• Without knowing about it, you cannot locate it, nor try to remove it, nor avoid its usage.
• It is a simple pattern to explore, which is excellent for a first chapter about design patterns.
• It leads to other patterns, such as the Ambient Context pattern.

Goal
The Singleton pattern limits the number of instances of a class to one. Then, the idea is to reuse the
same instance subsequently. A singleton encapsulates both the object logic itself and its creational
logic. For example, the Singleton pattern could lower the cost of instantiating an object with a large
memory footprint since it’s instantiated only once.

Can you think of a SOLID principle that gets broken right there?

The Singleton pattern promotes that one object must have two responsibilities, breaking the Single
Responsibility Principle (SRP). A singleton is the object and its own factory.

Chapter 6 149

Design
This design pattern is straightforward and is limited to a single class. Let’s start with a class diagram:

Figure 6.6: Singleton pattern class diagram

The Singleton class is composed of the following:

• A private static field that holds its unique instance.
• A public static Create() method that creates or returns the unique instance.
• A private constructor, so external code cannot instantiate it without passing by the Create

method.

Now, in code, it can be translated to the following:

public class MySingleton
{
 private static MySingleton? _instance;
 private MySingleton() { }
 public static MySingleton Create()
 {
 if(_instance == default(MySingleton))
 {
 _instance = new MySingleton();
 }
 return _instance;
 }
}

Note

You can name the Create() method anything or even get rid of it, as we see in the
next example. We could name it GetInstance(), or it could be a static property
named Instance or bear any other relevant name.

Understanding the Strategy, Abstract Factory, and Singleton Design Patterns150

We can see in the following unit test that MySingleton.Create() always returns the same instance:

public class MySingletonTest
{
 [Fact]
 public void Create_should_always_return_the_same_instance()
 {
 var first = MySingleton.Create();
 var second = MySingleton.Create();
 Assert.Same(first, second);
 }
}

And voilà! We have a working Singleton pattern, which is extremely simple—probably the most simple
design pattern that I can think of.

Here is what is happening under the hood:

1. The first time that a consumer calls MySingleton.Create(), it creates the first instance of
MySingleton. Since the only constructor is private, it can only be created from the inside.
You cannot instantiate MySingleton (using new MySingleton()) from the outside of the class
because there is no public constructor.

2. That first instance is then persisted to the _instance field for future use.
3. When a consumer calls MySingleton.Create() a second time, it returns the _instance field,

reusing the previous (and only) instance of the class.

If you want your singleton to be thread-safe, you may want to lock the instance creation, like this:

public class MySingletonWithLock
{
 private readonly static object _myLock = new();
 private static MySingletonWithLock? _instance;
 private MySingletonWithLock() { }
 public static MySingletonWithLock Create()
 {
 lock (_myLock)
 {
 if (_instance == default)
 {
 _instance = new MySingletonWithLock();
 }
 }
 return _instance;
 }
}

Chapter 6 151

In the preceding code, we make sure two threads are not attempting to access the Create method
simultaneously, to ensure that they are not getting different instances. We could use double-checked
locking to optimize that pattern, but instead, we explore another, shorter way of achieving thread safety.

An alternate (better) way
Previously, we used the “long way” of implementing the Singleton pattern and had to implement a
thread-safe mechanism. Now that classic is behind us. We can shorten that to get rid of the Create()
method, like this:

public class MySimpleSingleton
{
 public static MySimpleSingleton Instance { get; } = new
MySimpleSingleton();
 private MySimpleSingleton() { }
}

This way, you can use the singleton instance directly through its Instance property, like this:

MySimpleSingleton.Instance.SomeOperation();

We can prove the correctness of that claim by executing the following test method:

[Fact]
public void Create_should_always_return_the_same_instance()
{
 var first = MySimpleSingleton.Instance;
 var second = MySimpleSingleton.Instance;
 Assert.Same(first, second);
}

By doing this, our singleton becomes thread-safe as the property initializer creates the singleton
instance instead of nesting it inside an if statement. It is usually best to delegate responsibilities to
the language or the framework whenever possible.

Beware of the arrow operator

It may be tempting to use the arrow operator => to initialize the Instance property like
this: public static MySimpleSingleton Instance => new MySimpleSingleton();,
but doing so would return a new instance every time. This would defeat the purpose of
what we want to achieve. On the other hand, the property initializer is run only once.

The arrow operator makes the Instance property an expression-
bodied member, which is the equivalent of creating the following getter:
get { return new MySimpleSingleton(); }. Consult Appendix A for more information
about expression-bodies statements.

The use of a static constructor would also be a valid, thread-safe alternative, once again
delegating the job to the language.

Understanding the Strategy, Abstract Factory, and Singleton Design Patterns152

Code smell – Ambient Context
That last implementation of the Singleton pattern led us to the Ambient Context pattern. We could
even call the Ambient Context an anti-pattern, but let’s just state that it is a consequential code smell.

I don’t like ambient contexts for multiple reasons. First, I do my best to stay away from anything global.
Globals can be very convenient at first because they are easy to use. They are always there and accessible
whenever needed: easy. However, they can have many drawbacks in terms of flexibility and testability.

When using an ambient context, the following occurs:

• The system will most likely become less flexible. A global object is harder to replace and
cannot easily be swapped for another object. Also, the implementation cannot be different
based on its consumer.

• Global objects are hard to mock, which can lead to a system that is hard to test.
• The system can become brittle; for example, if some part of your system messes up your global

object, that may have unexpected consequences on other parts of your system, and you may
have a hard time finding out the root cause of those errors.

• Another thing that does not help is the lack of isolation since consumers are usually directly
coupled with the ambient context. Not being able to isolate components from those global
objects can be a hassle, as stated in the previous points.

Now that we’ve talked about globals, an ambient context is a global instance, usually available through
a static property. The Ambient Context pattern is not purely evil, but it is a code smell that smells bad.
There are a few examples in .NET Framework, such as System.Threading.Thread.CurrentPrincipal
and System.Threading.Thread.CurrentThread, that are scoped to a thread instead of being purely
global like most static members. An ambient context does not have to be a singleton, but that is what
they are most of the time. Creating a non-global (scoped) ambient context is harder, requires more
work, and is out of the scope of this book.

Is the Ambient Context pattern good or bad? I’d go with both! It is useful primarily because of its
convenience and ease of use while it is usually global. Most of the time, it could and should be designed
differently to reduce the drawbacks that globals bring.

Fun fact

Many years ago, before the JavaScript frameworks era, I ended up fixing a bug
in a system where some function was overriding the value of undefined due to
a subtle error. This is an excellent example of how global variables could impact
your whole system and make it more brittle. The same is true for the Ambient
Context and Singleton patterns in C#; globals can be dangerous and annoying.

Rest assured that, nowadays, browsers won’t let developers update the value of
undefined, but back then, it was possible.

Chapter 6 153

There are many ways of implementing an ambient context; it can be more complicated than a simple
singleton, and it can aim at another, more dynamic scope than a single global instance. However, to
keep it brief and straightforward, we are focusing only on the singleton version of the ambient context,
like this:

public class MyAmbientContext
{
 public static MyAmbientContext Current { get; } = new MyAmbientContext();
 private MyAmbientContext() { }
 public void WriteSomething(string something)
 {
 Console.WriteLine($"This is your something: {something}");
 }
}

That code is an exact copy of the MySimpleSingleton class, with a few subtle changes:

• Instance is named Current.
• The WriteSomething method is new but has nothing to do with the Ambient Context pattern

itself; it is just to make the class do something.

If we take a look at the test method that follows, we can see that we use the ambient context by calling
MyAmbientContext.Current, just like we did with the last singleton implementation:

[Fact]
public void Should_echo_the_inputted_text_to_the_console()
{
 // Arrange (make the console write to a StringBuilder
 // instead of the actual console)
 var expectedText = "This is your something: Hello World!" + Environment.
NewLine;
 var sb = new StringBuilder();
 using (var writer = new StringWriter(sb))
 {
 Console.SetOut(writer);
 // Act
 MyAmbientContext.Current.WriteSomething("Hello World!");
 }
 // Assert
 var actualText = sb.ToString();
 Assert.Equal(expectedText, actualText);
}

Understanding the Strategy, Abstract Factory, and Singleton Design Patterns154

The property could include a public setter (public static MyAmbientContext Current { get;
set; }), and it could support more complex mechanics. As always, it is up to you and your specifications
to build the right classes exposing the right behaviors.

To conclude this interlude: try to avoid ambient contexts and use instantiable classes instead. We see
how to replace a singleton with a single instance of a class using dependency injection in the next
chapter. That gives us a more flexible alternative to the Singleton pattern.

Conclusion
The Singleton pattern allows the creation of a single instance of a class for the whole lifetime of the
program. It leverages a private static field and a private constructor to achieve its goal, exposing
the instantiation through a public static method or property. We can use a field initializer, the Create
method itself, a static constructor, or any other valid C# options to encapsulate the initialization logic.

Now let’s see how the Singleton pattern can help us (not) follow the SOLID principles:

• S: The singleton violates this principle because it has two clear responsibilities:

a. It has the responsibility for which it has been created (not illustrated here), like any
other class.

b. It has the responsibility of creating and managing itself (lifetime management).

• O: The Singleton pattern also violates this principle. It enforces a single static instance, locked in
place by itself, which limits extensibility. The class must be modified to be updated, impossible
to extend without changing the code.

• L: There is no inheritance directly involved, which is the only good point.
• I: There is no interface involved, which is a violation of this principle.
• D: The singleton class has a rock-solid hold on itself. It also suggests using its static property

(or method) directly without using an abstraction, breaking the DIP with a sledgehammer.

As you can see, the Singleton pattern does violate all the SOLID principles but the LSP and should be
used with caution. Having only a single instance of a class and always using that same instance is a
legitimate concept. However, we see how to properly do this in the next chapter, leading me to the
following advice: do not use the Singleton pattern, and if you see it used somewhere, try refactoring
it out. Another good idea is to avoid the use of static members as much as possible as they create
global elements that can make your system less flexible and more brittle. There are occasions where
static members are worth using, but try keeping their number as low as possible. Ask yourself if that
static member or class could be replaced with something else before coding one.

Some may argue that the Singleton design pattern is a legitimate way of doing things. However, in
ASP.NET Core I cannot agree with them: we have a powerful mechanism to do it differently, called
dependency injection. When using other technologies, maybe, but not with .NET.

Chapter 6 155

Summary
In this chapter, we explored our first GoF design patterns. These patterns expose some of the essential
basics of software engineering, not necessarily the patterns themselves, but the concepts behind them:

• The Strategy pattern is a behavioral pattern that we use to compose most of our future classes.
It allows swapping behavior at runtime by composing an object with small pieces and coding
against interfaces, following the SOLID principles.

• The Abstract Factory pattern brings the idea of abstracting away object creation, leading to
a better separation of concerns. More specifically, it aims to abstract the creation of object
families and follow the SOLID principles.

• Even if we defined it as an anti-pattern, the Singleton pattern brings the application-level
objects to the table. It allows creating a single instance of an object that lives for the whole
lifetime of a program. The pattern violates most SOLID principles.

We also peeked at the Ambient Context code smell, which is used to create an omnipresent entity
accessible from everywhere. It is often implemented as a singleton and is a global object usually
defined using the static modifier.

In the next chapter, we finally jump into dependency injection to see how it helps us compose complex
yet maintainable systems. We also revisit the Strategy, the Factory, and the Singleton patterns to see
how to use them in a dependency-injection-oriented context and how powerful they really are.

Questions
Let’s take a look at a few practice questions:

1. Why is the Strategy pattern a behavioral pattern?
2. How could we define the goal of the creational patterns?
3. If I write the code public MyType MyProp => new MyType();, and I call the property twice (var

v1 = MyProp; var v2 = MyProp;), are v1 and v2 the same instance or two different instances?
4. Is it true that the Abstract Factory pattern allows us to add new families of elements without

modifying the existing consuming code?
5. Why is the Singleton pattern an anti-pattern?

7
Deep Dive into Dependency
Injection

In this chapter, we explore the ASP.NET Core Dependency Injection (DI) system and how to leverage
it efficiently, along with its limits and its capabilities. We also cover how to compose objects using DI,
the meaning of inversion of control, and how to use the built-in DI container. We cover the concepts
behind DI, too, and we also revisit our first three GoF design patterns using DI. This chapter is crucial
to your journey into modern application design.

The following topics will be covered in this chapter:

• What is dependency injection?
• Revisiting the Strategy pattern
• Revisiting the Singleton pattern
• Understanding the Service Locator pattern
• Revisiting the Factory pattern

What is dependency injection?
DI is a way to apply the Inversion of Control (IoC) principle. We could regard IoC as a broader version
of the dependency inversion principle (the D in SOLID).

The idea behind DI is to move the creation of dependencies from the objects themselves to the program’s
entry point (the composition root). That way, we can delegate the management of dependencies to an
IoC container (also known as a DI container), which does the heavy lifting.

For example, object A should not know about object B that it is using. Instead, A should use an interface,
I, implemented by B, and B should be resolved and injected at runtime.

Deep Dive into Dependency Injection158

Let’s decompose this:

• Object A should depend on interface I instead of concretion B.
• Instance B, injected into A, should be resolved at runtime by the IoC container.
• A should not be aware of the existence of B.
• A should not control the lifetime of B.

To go all out LEGO®, we could see IoC as drawing a plan to build a castle: you draw it, make or buy
the blocks, and then you press the start button and the blocks assemble themselves as per your plan.
By following that logic, you could create a new 4x4 block with a unicorn painted on its side, update
your plan, and then press the restart button to rebuild the castle with that new block inserted into it,
replacing an old one without affecting the structural integrity of the castle. By respecting the 4x4 block
contract, everything should be updatable without impacting the rest of the castle.

By following that idea, if we needed to manage every single LEGO® block one by one, it would become
incredibly complex very quickly! Therefore, managing all dependencies by hand in a project would
be super tedious and error-prone, even in the smallest program. To help us solve this issue, IoC
containers come into play.

The role of an IoC container is to manage objects for you. You configure them and then, when you
ask for some abstraction, the associated implementation is resolved by the container. Moreover, the
container manages the lifetime of dependencies, leaving your classes to do only one thing, the job you
designed them for, without thinking about their dependencies, their implementation, or their lifetime!

The bottom line is that an IoC container is a DI framework that does the autowiring for you. We could
regard DI as follows:

1. The consumer of a dependency states its needs about one or more dependencies.
2. The IoC container injects that dependency (implementation) upon creating the consumer,

fulfilling its needs at runtime.

Next, we explore different DI areas: where to configure the container, available options, and a common
object-oriented technique that is now a code smell.

Note

A DI container or IoC container is the same thing—they’re just different words that people
use. I use both interchangeably in real life, but I’ll do my best to stick with IoC container
in this book.

I chose the term IoC container because it seems more accurate than “DI container.” IoC is
the concept (the principle), while DI is a way of inverting the flow of control (applying IoC).
For example, you apply the IoC principle (inverting the flow) by injecting dependencies
at runtime (doing DI) using a container.

Chapter 7 159

The composition root
One of the first concepts behind DI is the composition root. The composition root is where you tell
the container about your dependencies: where you compose your dependency trees. The composition
root should be as close to the starting point of the program as possible.

From ASP.NET Core 6 onward, the composition root is in the Program.cs file, while previously it was
in either Program.cs or Startup.cs, or both.

The starting point of an ASP.NET Core application is the Program class, which is now autogenerated by
default. We must first create a WebApplicationBuilder (highlighted), and then we can use its Services
property to register our dependencies, like this:

var builder = WebApplication.CreateBuilder(args);
builder.Services.AddSingleton<Dependency1>();
builder.Services.AddSingleton<Dependency2>();
builder.Services.AddSingleton<Dependency3>();
builder.Services.AddDemoFeature();

Once that is done, we must create WebApplication itself (highlighted) to configure the ASP.NET Core
middleware pipeline. You can write any code before the Run method call that starts the application,
but this place is usually reserved for configuring the pipeline:

var app = builder.Build();
app.MapGet("/", () => "Hello World!");
// You can write any code here
app.Run();

It is imperative to remember that your program’s composition should be done in the composition root.
That removes the need for all of those pesky new keywords spread around your code base and all the
responsibilities that come with them. It centralizes the application’s composition into that location
(that is, creating the plan to assemble the LEGO® blocks).

Registering your features elegantly
As we just saw, you should register dependencies in the composition root, but you can still
organize your registration code. For example, you could split your application’s composition into
multiple methods or classes, and then call them from your composition root. You could also use an
auto-discovery mechanism to automate the registration of some services; we use packages that do
that in subsequent chapters.

Note

As a LEGO® analogy, the composition root could be the paper sheet on which you draw
your plan.

Deep Dive into Dependency Injection160

As an example, most features of ASP.NET Core and other popular libraries provide one or more
Add[Feature name]() extension methods to manage the registration of their dependencies, allowing
you to register a “bundle of dependencies” with one method call. That’s very useful for organizing
program composition into smaller, more cohesive units, such as by feature.

Using extension methods makes it reasonably easy to build such a bundle of dependencies to register
a feature. As a rule of thumb, you should do the following:

1. Create a static class named [subject]Extensions.
2. As per the Microsoft recommendation, create that class in the Microsoft.Extensions.

DependencyInjection namespace (the same as IServiceCollection).
3. From there, create your IServiceCollection extension methods. Unless you need to

return something else like a builder interface (see below), make sure to return the extended
IServiceCollection; this allows method calls to be chained.

Note

The critical part remains centralizing the program composition.

Side Note

A feature is the correct size as long as it stays cohesive. If your feature becomes too big,
does too many things, or starts to share dependencies with other features, it may be the
time for a redesign before losing control over it. That’s usually a good indicator of unde-
sired coupling.

Note

Builder interfaces are used to configure more complex features, like ASP.NET
Core MVC. For example, the AddControllers extension method returns an
IMvcBuilder interface that contains a PartManager property. Moreover, there
are extension methods that target the IMvcBuilder interface, allowing further
configuration of the feature by requiring its registration first; that is, you can’t
configure IMvcBuilder before calling AddControllers. You can also design your
features to leverage that pattern when needed.

Chapter 7 161

For example, if my feature were named Demo Feature, I’d write the following extension method:

using CompositionRoot.DemoFeature;
namespace Microsoft.Extensions.DependencyInjection
{
 public static class DemoFeatureExtensions
 {
 public static IServiceCollection AddDemoFeature(this IServiceCollection
services)
 {
 return services
 .AddSingleton<MyFeature>()
 .AddSingleton<IMyFeatureDependency, MyFeatureDependency>()
 ;
 }
 }
}

Then, to use it, we could enter the following in the composition root:

public void ConfigureServices(IServiceCollection services)
{
 services.AddDemoFeature();
}

If you are not familiar with extension methods, they come in handy for extending existing classes,
like what we just did. For example, you could build a sophisticated library and a set of easy-to-use
extension methods that allow consumers to learn and use your library easily while keeping advanced
options and customization opportunities to a maximum; think ASP.NET Core MVC or System.Linq.

Object lifetime
I’ve talked about this a few times already: no more new; that time is over! From now on, the IoC container
should do most of the jobs related to instantiating and managing objects for us.

However, before trying this out, we need to cover one last thing: object lifetime. When you create
instances manually, using the new keyword, you create a hold on that object; you know when you
create them and when you destroy them. That leaves no chance to control these objects from the
outside, enhance them, intercept them, or swap them for another implementation. This is known
as the Control Freak anti-pattern or code smell, explained in the Code smell – Control Freak section.

Deep Dive into Dependency Injection162

When using DI, you need to forget about controlling objects and start to think about using dependencies
— more explicitly, using their interfaces. In ASP.NET Core, there are three possible lifetimes to choose
from:

Lifetime Description Code sample

Transient
The container creates a new
object every time you ask
for one.

services.AddTransient<ISomeService,
SomeService>();

Scoped

The container creates an
object per HTTP request and
passes that object around to
all other objects that want
to use it.

services.AddScoped<ISomeService,
SomeService>();

Singleton

The container creates a
single instance of that
dependency and always
passes that unique object
around.

services.AddSingleton<ISomeService,
SomeService>();

From now on, we manage most of our objects using one of those three scopes. Here are some questions
to help you choose:

• Do I need a single instance of my dependency? Yes? Use the singleton lifetime.
• Do I need a single instance of my dependency shared over an HTTP request? Yes? Use the

scoped lifetime.
• Do I need a new instance of my dependency every time? Yes? Use the transient lifetime.

If you need a more complex lifetime, you may need to swap the built-in container to a third-party
one (see the Using external IoC container section) or create your dependency tree manually in the
composition root.

Chapter 7 163

There are multiple variants of the three preceding examples, but the lifetimes remain. We use the built-
in container throughout the book with many of its registration methods, so you should grow familiar
with it by the end. The system offers good discoverability, so you could explore the possibilities by
using IntelliSense or by reading the documentation.

Code smell – Control Freak
We’ve already stated that using the new keyword is a code smell or even an anti-pattern. However, do
not ban the new keyword just yet. Instead, every time you use it, ask yourself whether the object you
instantiated using the new keyword is a dependency that could be managed by the container and
injected instead.

Note

A more general approach to object lifetime is to design the components to be singletons.
When we can’t, then go for scoped. When scoped is also impossible, go for transient. This way,
we maximize instance reuse, lower the overhead of creating objects, lower the memory
cost of keeping those objects in memory, and lower the amount of garbage collection
needed to remove unused instances.

For example, we can pick singleton blindly for stateless objects.

For stateful objects, where multiple consumers use the same instance of an object having a
lifetime of singleton or scoped, we must ensure that the object is thread-safe since multiple
consumers could try to access it simultaneously.

For stateful objects, an important reason is around the data contained in that object (its
state). Say we load data that relates to the current user. In this case, we must make sure that
data does not get leaked to other users. To do so, we can define the lifetime of that object
to scoped when we want to allow reusing that state between multiple consumers. If that’s
not the case, we can choose a transient lifetime to ensure every consumer gets their own
instance. When that state object is reused often during a single request, a scoped lifetime
should improve the performance.

Another point around long-lived objects is that they are inspected only once in a while by
the garbage collector, while short-lived ones are often scanned and disposed of.

Deep Dive into Dependency Injection164

To help out with that, I borrowed two terms from Mark Seemann’s book Dependency Injection in .NET;
the name Control Freak also comes from that book. He describes the following two categories of
dependencies:

• Stable dependencies
• Volatile dependencies

Stable dependencies are dependencies that should not break your application when a new version
of it is released. They should use deterministic algorithms (input X should always produce output Y;
a.k.a. respecting the Liskov Substitution Principle (LSP), and you should not expect to change them
with something else in the future. I’d say that most data structures could fall into this category: Data
Transfer Objects (DTOs), List<T>, and so on. You can still instantiate objects using the new keyword
when they fall into this category; it is acceptable since they are not likely to break anything or to
change. But be careful because foreseeing whether a dependency is likely to change or not is very
hard, even impossible, as we can’t know for sure what the future has to offer. For example, elements
that are part of .NET could be considered stable dependencies.

Volatile dependencies are dependencies that can change, behaviors that could be swapped, or elements
you may want to extend, basically, most of the classes you create for your programs such as data
access and business logic classes. These are the dependencies that you should no longer instantiate
using the new keyword. The primary way to break the tight coupling between implementations is to
rely on interfaces instead.

To conclude this interlude: don’t be a control freak anymore, those days are behind you!

Next, we briefly explore an ASP.NET Core extension point before revisiting three design patterns, but
this time, by exploiting DI.

Using external IoC containers
ASP.NET Core provides an extensible built-in IoC container out of the box. It is not the most powerful
IoC container because it lacks some advanced features, but it can do the job for most applications.

Rest assured, if it does not, you can change it for another. If you are used to another IoC container and
want to stick to it or require some missing advanced features, you might want to do that.

As of today, Microsoft recommends using the built-in container first. If you don’t know ahead of time
all the DI features that you will need, I’d go with the following strategy:

1. Use the built-in container.

Tip

When in doubt, inject the dependency instead of using the new keyword.

Chapter 7 165

2. When something cannot be done with it, look at your design and see if you can redesign your
feature to work with the built-in container. This could help simplify your design and, at the
same time, help maintain your software in the long run.

3. If it is impossible to achieve your goal, then swap it for another IoC container.

Assuming the container supports it, it is super simple to swap. The third-party container
must implement the IServiceProviderFactory<TContainerBuilder> interface. Then, in the
Program.cs file, we must register that factory using the UseServiceProviderFactory<TContainerB
uilder> method, like this:

var builder = WebApplication.CreateBuilder(args);
builder.Host.UseServiceProviderFactory<ContainerBuilder>(new
ContainerBuilderFactory());

In this case, the ContainerBuilder and ContainerBuilderFactory classes are just wrappers around
ASP.NET Core, but your third-party container of choice should provide you with those types. I suggest
you visit their documentation to know more.

Once that factory is registered, we can configure the container using the ConfigureContainer<TCon
tainerBuilder> method as usual, like this:

builder.Host.ConfigureContainer<ContainerBuilder>((context, builder) =>
{
 builder.Services.AddSingleton<Dependency1>();
 builder.Services.AddSingleton<Dependency2>();
 builder.Services.AddSingleton<Dependency3>();
});

That’s the only difference; the rest of the Program.cs file is as usual.

As I sense that you don’t feel like implementing your own IoC container just yet (or even ever), don’t
worry; multiple third-party integrations already exist. Here is a non-exhaustive list:

• Autofac
• DryIoc
• Grace
• LightInject
• Lamar
• Stashbox
• Unity

Some libraries extend the default container and add functionalities to it, which is an option that we
explore in Chapter 9, Structural Patterns.

Next, we revisit the Strategy pattern, which will become the primary tool to compose our applications
and add flexibility to our systems.

Deep Dive into Dependency Injection166

Revisiting the Strategy pattern
In this section, we leverage the Strategy pattern to compose complex object trees and use DI to
dynamically create those instances without using the new keyword, moving away from being control
freaks and toward writing DI-ready code.

The Strategy pattern is a behavioral design pattern that we can use to compose object trees at runtime,
allowing extra flexibility and control over objects’ behavior. Composing our objects using the Strategy
pattern should make our classes easier to test and maintain and put us on a SOLID path.

From now on, we want to compose objects and lower the amount of inheritance to a minimum. We
call that principle composition over inheritance. The goal is to inject dependencies (composition)
into the current class instead of depending on base class features (inheritance). Moreover, that allows
behaviors to be extracted in external classes (SRP/ISP) and then reused in one or more other classes
(composition) through their interface (DIP).

The following list covers the most popular ways of injecting dependencies into objects:

• Constructor injection
• Property injection
• Method injection

We can also ask the container directly to resolve a dependency, which is known as the Service Locator
(anti-)pattern. We explore the Service Locator pattern later in this chapter.

Let’s look at some theory and then jump into the code to see DI in action.

Constructor injection
Constructor injection consists of injecting dependencies into the constructor as parameters. This is
the most popular and preferred technique by far. Constructor injection is useful for injecting required
dependencies; you can add null checks to ensure that, also known as the guard clause (see the Adding
a guard clause section).

Property injection
The built-in IoC container does not support property injection out of the box. The concept is to inject
optional dependencies into properties. Most of the time, you want to avoid doing this because property
injection leads to optional dependencies, leading to nullable properties, more null checks, and often
avoidable code complexity. So when we think about it, it is good that ASP.NET Core left this one out
of the built-in container.

You can usually remove the property injection requirements by reworking your design, leading to a
better design. If you cannot avoid using property injection, you must use a third-party container or
find a way to build the dependency yourself (maybe leveraging a factory).

Chapter 7 167

Nevertheless, from a high-level view, the container would do something like this:

1. Create a new instance of the class and inject all required dependencies into the constructor.
2. Find extension points by scanning properties (this could be attributes, contextual bindings,

or something else).
3. For each extension point, inject (set) a dependency, leaving unconfigured properties untouched,

hence its definition of an optional dependency.

There are a couple of exceptions to the previous statement regarding the lack of support:

• Razor components (Blazor) support property injection through the use of the [Inject] attribute.
• Razor contains the @inject directive, which generates a property to hold a dependency

(ASP.NET Core manages to inject it).

We can’t call that property injection per se because they are not optional but required, and the @inject
directive is more about generating code than doing DI. They are more about an internal workaround
than “real” property injection. That said, that is as close as .NET can get to property injection.

Method injection
ASP.NET Core supports method injection only at a few locations, such as in a controller’s actions
(methods), the Startup class (if you are using the pre-.NET 6 hosting model), and the middlewares’
Invoke or InvokeAsync methods. You are not able to liberally use method injection in your classes
without some work on your part.

Method injection is also used to inject optional dependencies into classes. We can also validate those
at runtime using null checks or any other required logic.

Tip

I recommend aiming for constructor injection instead. Not having property injection
should not cause you any problems.

Tip

I recommend aiming for constructor injection whenever you can. Only rely on method
injection when it is the only way or if it adds something. For example, in a controller,
injecting a transient service in the only action that needs it instead of the constructor
could save a lot of useless object instantiation and, by doing so, increase performance
(less instantiation and less garbage collection).

Deep Dive into Dependency Injection168

Project – Strategy
In the Strategy project, we use the Strategy pattern and constructor injection to add (compose) a
IHomeService dependency to the HomeController class.

The goal is to inject a dependency of the IHomeService type into the HomeController class. Then, send
a view model to the view to render the page.

The service goes like this:

namespace Strategy.Services
{
 public interface IHomeService
 {
 IEnumerable<string> GetHomePageData();
 }

 public class HomeService : IHomeService
 {
 public IEnumerable<string> GetHomePageData()
 {
 yield return "Lorem";
 yield return "ipsum";
 yield return "dolor";
 yield return "sit";
 yield return "amet";
 }
 }
}

The IHomeService interface is the dependency that we want the HomeController class to have. The
HomeService class is the implementation that we want to inject when instantiating HomeController,
thereby inverting the flow of dependency.

To do that, we inject IHomeService into the controller using constructor injection, leading to the
following steps:

1. Create a private IHomeService field in the HomeController class.
2. Create a HomeController constructor with a parameter of the IHomeService type.
3. Assign the argument to the field.

In code, it looks like this:

using Strategy.Services;
namespace Strategy.Controllers;
public class HomeController : Controller

Chapter 7 169

{
 private readonly IHomeService _homeService;
 public HomeController(IHomeService homeService)
 {
 _homeService = homeService;
 }
 // Omitted action methods
}

The use of private readonly fields is beneficial for two reasons:

• They are private, so you do not expose your dependencies outside of the class (encapsulation).
• They are readonly, so you can only set the value during the initialization; usually only once.

In the case of constructor injection, this ensures that the injected dependency, referenced by
the private field, cannot be changed by other parts of the class.

If we run the application now, we get the following error:

InvalidOperationException: Unable to resolve service for type
'Strategy.Services.IHomeService' while attempting to activate
'Strategy.Controllers.HomeController'.

This error tells us that we forgot about something essential: to tell the container about the dependency.

To do that, we need to map the injection of IHomeService to an instance of HomeService. Due to our
class’s nature, we are safe to use the singleton lifetime (one single instance). Using the extension
methods provided, in the composition root, we only need to add the following line:

builder.Services.AddSingleton<IHomeService, HomeService>();

Now, if we rerun the app, the home page should load. That tells ASP.NET to inject a HomeService
instance when a class depends on the IHomeService interface.

We have just completed our first implementation of constructor injection using ASP.NET Core—it’s
as easy as that.

To recap constructor injection, we need to do the following:

1. Create a dependency and its interface.
2. Inject that dependency into another class through its constructor.
3. Create a binding that tells the container how to handle the dependency.

Next, we practice the use of view models.

Note

We can also inject classes directly, but until you feel that you’ve mastered the SOLID
principles, I’d recommend sticking with injecting interfaces.

Deep Dive into Dependency Injection170

Adding the View Model
Now that we’ve injected the service that contains the data to display in the HomeController class, we
need to display it. To achieve that, we decided to use the View Model pattern. The view model’s goal
is to create a view-centric model and then use it to render that view.

Here is what we need to do:

1. Create a View Model class (HomePageViewModel).
2. Update the Home/Index view to use the view model and display the information that it contains.
3. Create and send an instance of HomePageViewModel to the view from the controller.

The HomePageViewModel class is exposing the SomeData property publicly and expects that data to be
injected when instantiated. The code looks like this:

namespace Strategy.Models;
public class HomePageViewModel
{
 public IEnumerable<string> SomeData { get; }
 public HomePageViewModel(IEnumerable<string> someData)
 {
 SomeData = someData ?? throw new
ArgumentNullException(nameof(someData));
 }
}

That’s another example of constructor injection.

Then, after a few updates (highlighted), the Views/Home/Index.cshtml view looks like this:

@model HomePageViewModel
@{
 ViewData["Title"] = "Home Page";
}
<div class="text-center">
 <h1 class="display-4">Welcome</h1>
 @if(Model != null)
 {
 <p>Here are your data:</p>
 <ul class="list-group">
 @foreach (var item in Model.SomeData)
 {
 <li class="list-group-item">@item
 }

 }
</div>

Chapter 7 171

Now we need to pass an instance of HomePageViewModel to the view. We are doing that in the Index
action, like this:

public IActionResult Index()
{
 var data = _homeService.GetHomePageData();
 var viewModel = new HomePageViewModel(data);
 return View(viewModel);
}

In that code, we used the _homeService field to retrieve the data through the IHomeService interface.
It is important to note that at this point, the controller is not aware of the implementation; it depends
only on the contract (the interface). Then we create the HomePageViewModel class using that data.
Finally, we dispatch the instance of HomePageViewModel to the view for rendering.

Next, we leverage a guard clause to make homeService mandatory.

Adding a guard clause
We’ve already stated that constructor injection is reliable and is used to inject the required dependencies.
However, one thing bothers me from the last code sample: nothing guarantees us that _homeService
is not null.

We could check for nulls in the Index method, like this:

public IActionResult Index()
{
 var data = _homeService?.GetHomePageData();
 var viewModel = new HomePageViewModel(data);
 return View(viewModel);
}

But as the controller grows, we may write null checks for that dependency many times in multiple
locations. Then we should do the same null check in the view. Otherwise, we would loop a null value,
which could cause a runtime error.

To avoid that duplication of logic and the number of possible errors that could come with it at the
same time, we can add a guard clause.

Note

As you may have noticed, I used the new keyword here. In this case, I find that instantiating
a view model inside the controller’s action is acceptable. However, we could have used
method injection or any other technique to help with object creation, such as a factory.

Deep Dive into Dependency Injection172

A guard clause does as its name implies: it guards against invalid values. Most of the time, it guards
against null. When you pass a null dependency into an object, the guard clause testing that parameter
should throw an ArgumentNullException.

By using a throw expression, from C# 7 (See Appendix A for more information), we can simply write this:

public HomeController(IHomeService homeService)
{
 _homeService = homeService ?? throw new
ArgumentNullException(nameof(homeService));
}

This throws an ArgumentNullException when homeService is null; otherwise, it assigns the
homeService parameter value to the _homeService field. Of course, with the introduction of the nullable
reference types (see Appendix A), the possibility of receiving a null argument is less likely, but it is
still possible that it happens at runtime.

We can apply a guard clause to the HomePageViewModel class as well, but it would be redundant to go
over that same process a second time.

We now have everything that we need to render the home page. More importantly, we achieved
that without directly coupling the HomeController class with HomeService. Instead, we depend only
on the IHomeService interface—a contract. By centralizing composition into the composition root,
we could change the resulting home page by swapping the IHomeService implementation in the
Program.cs file without impacting the controller or the view.

Conclusion
In this section, we saw that the strategy pattern went from a simple behavioral GoF pattern to the
cornerstone of DI. We explored different ways of injecting dependencies with a strong focus on
constructor injection.

Constructor injection is the most commonly used approach as it injects required dependencies, which
are the ones we most often need. Method injection allows injecting algorithms, shared states, or
contexts in a method that could not otherwise access that information. We can use property injection
to inject optional dependencies, which should happen as rarely as possible.

Important Note

A built-in container will automatically throw an exception if it can’t fulfill all dependen-
cies during the instantiation of a class (such as HomeController). That said, it does not
mean that all third-party containers act the same. Moreover, that does not protect you
from passing null to a manually instantiated instance (even if we should use DI, it does
not mean it won’t happen). As a matter of preference, I like to add them no matter what,
but they are not required.

Chapter 7 173

You can see optional dependencies as code smells because if the class has an optional role to play,
it also has a primary role leading to two responsibilities. Moreover, it could be better to move that
optional role to another class if it’s optional or redesign that part of the system.

To practice what you just learned, I invite you to create a class that implements IHomeService and
changes the mapping in the Program.cs file from HomeService to your new class and see how easy
it is to change the home page’s list. To go even further, you could connect your implementation to a
database, Azure Table, Redis, a JSON file, or any other data source that you can think of.

Next, we revisit a design pattern that is now an anti-pattern while exploring the singleton lifetime
replacing it.

Revisiting the Singleton pattern
The Singleton pattern is obsolete, goes against the SOLID principles, and we replace it with a lifetime,
as we’ve already seen. This section explores that lifetime and recreates the good old application state,
which turns out to be nothing more than a singleton scoped dictionary.

We explore two examples here: one about the application state, in case you were wondering where
that feature disappeared to. Then, the Wishlist project also uses the singleton lifetime to provide an
application-level feature. There are also a few unit tests to play with the testability and to allow safe
refactoring.

Project – Application state
You might remember the application state if you programmed ASP.NET using .NET Framework or
the “good” old classic ASP with VBScript. If you don’t, the application state was a key/value dictionary
that allowed you to store data globally in your application, shared between all sessions and requests.
That is one of the things that ASP always had and other languages, such as PHP, did not (or does not
easily allow).

For example, I remember designing a generic reusable typed shopping cart system with classic ASP/
VBScript. VBScript was not a strongly typed language and had limited object-oriented capabilities. The
shopping cart fields and types were defined at the application level (once per application), and then
each user had their own “instance” containing the products in their “private shopping cart” (created
once per session).

In ASP.NET Core, there is no more Application dictionary. To achieve the same goal, you could use a
static class or static members, which is not the best approach; remember that global objects (static)
make your application harder to test and less flexible. We could also use the Singleton pattern or
create an ambient context, which would allow us to create an application-level instance of an object.
We could even mix that with a factory to create end user shopping carts, but we won’t; these are not
the best solution either. Another way could be to use one of the ASP.NET Core caching mechanisms,
memory cache, or distributed cache, but this is a stretch.

We could also save everything in a database to persist the shopping cart between visits, but that is not
related to the application state and requires a user account, so we will not do that either.

Deep Dive into Dependency Injection174

We could save the shopping cart on the client-side using cookies, local storage, or any other modern
mechanism to save data on the user’s computer. However, we’d get even further from the application
state than using a database.

For most cases requiring an application state-like feature, the best approach would be to create a
standard class and an interface and then register the binding with a singleton lifetime in the container.
Finally, you inject it into the component that needs it, using constructor injection. Doing so allows
the mocking of dependencies and changing the implementations without touching the code but the
composition root.

Let’s implement a small program that simulates the application state. The API is a single interface
with two implementations. The program also exposes part of the API over HTTP, allowing users to
get or set a value associated with the specified key. We use the singleton lifetime to make sure the
data is shared between all requests.

The interface looks like the following:

public interface IApplicationState
{
 TItem? Get<TItem>(string key);
 bool Has<TItem>(string key);
 void Set<TItem>(string key, TItem value) where TItem : notnull;
}

We can get the value associated with a key, associate a value with a key (set), and validate whether a
key exists.

The Program.cs file contains the code responsible for handling HTTP requests. It is not using MVC,
but minimal APIs. The two implementations can be swapped by commenting or uncommenting the
first line of the Program.cs file, which is #define USE_MEMORY_CACHE. That changes the dependency
registration, as highlighted in the following code:

var builder = WebApplication.CreateBuilder(args);
#if USE_MEMORY_CACHE
 builder.Services.AddMemoryCache();
 builder.Services.AddSingleton<IApplicationState,
ApplicationMemoryCache>();
#else
 builder.Services.AddSingleton<IApplicationState,

Tip

Sometimes, the best solution is not the technically complex one or design pattern-oriented;
the best solution is often the simplest. Less code means less maintenance and fewer tests,
resulting in a simpler application.

Chapter 7 175

ApplicationDictionary>();
#endif
var app = builder.Build();
app.MapGet("/", (IApplicationState myAppState, string key) =>
{
 var value = myAppState.Get<string>(key);
 return $"{key} = {value ?? "null"}";
});
app.MapPost("/", (IApplicationState myAppState, SetAppState dto) =>
{
 myAppState.Set(dto.Key, dto.Value);
 return $"{dto.Key} = {dto.Value}";
});
app.Run();

public record class SetAppState(string Key, string Value);

The first implementation uses the memory cache system, and I thought it would be educational to
show that to you. Caching data in memory is something you might need to do sooner rather than
later. Second, we are hiding the cache system behind our implementation, which is also educational.
Finally, we needed two implementations, and using the cache system was a pretty straightforward
implementation.

Here is the ApplicationMemoryCache class:

public class ApplicationMemoryCache : IApplicationState
{
 private readonly IMemoryCache _memoryCache;

 public ApplicationMemoryCache(IMemoryCache memoryCache)
 {
 _memoryCache = memoryCache ?? throw new
ArgumentNullException(nameof(memoryCache));
 }

 public TItem Get<TItem>(string key)
 {
 return _memoryCache.Get<TItem>(key);
 }

 public bool Has<TItem>(string key)
 {
 return _memoryCache.TryGetValue<TItem>(key, out _);

Deep Dive into Dependency Injection176

 }

 public void Set<TItem>(string key, TItem value)
 {
 _memoryCache.Set(key, value);
 }
}

The second implementation uses ConcurrentDictionary<string, object> to store the application
state data and ensure thread safety as multiple users could simultaneously use the application state.
The ApplicationDictionary class is almost as simple as ApplicationMemoryCache:

public class ApplicationDictionary : IApplicationState
{
 private readonly ConcurrentDictionary<string, object> _memoryCache = new();

 public TItem? Get<TItem>(string key)
 {
 if (!Has<TItem>(key))
 {
 return default;
 }
 return (TItem)_memoryCache[key];
 }

 public bool Has<TItem>(string key)
 {
 return _memoryCache.ContainsKey(key) && _memoryCache[key] is TItem;
 }

 public void Set<TItem>(string key, TItem value)
 where TItem : notnull

Note

The ApplicationMemoryCache class is a thin layer over IMemoryCache, hiding the im-
plementation details. That type of class is called a façade. We talk more about the Façade
design pattern in Chapter 9, Structural Patterns.

Chapter 7 177

 {
 _memoryCache[key] = value;
 }
}

We can now use any of the two implementations without impacting the rest of the program. That
demonstrates the strength of DI when it comes to dependency management. Moreover, we control
the lifetime of the dependencies from the composition root.

If we were to use the IApplicationState interface in another class, say SomeConsumer, its usage could
look similar to the following:

namespace ApplicationState;
public class SomeConsumer
{
 private readonly IApplicationState _myApplicationWideService;

 public SomeConsumer(IapplicationState myApplicationWideService)
 {
 _myApplicationWideService = myApplicationWideService ?? throw new
ArgumentNullException(nameof(myApplicationWideService));
 }

 public void Execute()
 {
 if (_myApplicationWideService.Has<string>("some-key"))
 {
 var someValue = _myApplicationWideService.Get<string>("some-key");
 // Do something with someValue
 }
 // Do something else like:
 _myApplicationWideService.Set("some-key", "some-value");
 // More logic here
 }
}

In that code, SomeConsumer depends only on the IApplicationState interface, not on IMemoryCache or
Dictionary<string, object>. Using DI allows us to hide the implementation by inverting the control
of dependencies. It also breaks direct coupling between concrete implementations, programming
against interfaces like the DIP prescribes.

Deep Dive into Dependency Injection178

Here is a diagram illustrating our application state system, making it visually easier to notice how it
breaks coupling:

Figure 7.1: DI-oriented diagram representing the application state system

From this sample, let’s remember that the singleton lifetime allows us to reuse objects between requests
and share them application-wide. Moreover, hiding implementation details behind interfaces can
improve the flexibility of our design.

Project – Wishlist
Let’s get into another sample to illustrate the use of the singleton lifetime and DI. Seeing DI in action
should help with understanding it, and then leveraging it to create SOLID software.

Context: The application is a site-wide wishlist where users can add items. Items should expire every
30 seconds. When a user adds an existing item, the system should increment the count and reset the
item’s expiration time. That way, popular items stay on the list longer, making it to the top. The system
should sort the items by count (highest first) when displayed.

The program is a tiny web API that exposes two endpoints:

• Add an item to the wishlist (POST).

Note

30 seconds is very fast, but I’m sure that you don’t want to wait for days before an item
expires when running the app.

Chapter 7 179

• Read the wishlist (GET).

The wishlist interface looks like this:

public interface IWishList
{
 Task<WishListItem> AddOrRefreshAsync(string itemName);
 Task<IEnumerable<WishListItem>> AllAsync();
}
public record class WishListItem(string Name, int Count, DateTimeOffset
Expiration);

The two operations are there, and by making them async (returning a Task<T>), we could implement
another version that relies on a remote system, such as a database, instead of an in-memory store.
Then, the WishListItem record class is part of the IWishList contract; it is the model. To keep it
simple, the wishlist only stores the names of items.

In the composition root, we must set the IWishList implementation instance to a singleton scope,
so all users share the same instance. Meanwhile, let’s look at the minimal APIs that handle the HTTP
requests, highlighted below. To make it easier for you, here is the whole Program.cs file:

var builder = WebApplication.CreateBuilder(args);
builder.Services
 .ConfigureOptions<InMemoryWishListOptions>()
 .AddTransient<IValidateOptions<InMemoryWishListOptions>,
InMemoryWishListOptions>()
 .AddSingleton(serviceProvider => serviceProvider.
GetRequiredService<IOptions<InMemoryWishListOptions>>().Value)

 // The singleton registration
 .AddSingleton<IWishList, InMemoryWishList>()
;

Note

Trying to foresee the future is not usually a good idea, but designing APIs to be awaitable
is generally a safe bet. Other than this, I’d recommend you stick to your specifications and
use cases. When you try to solve problems that do not exist yet, you usually end up coding
a lot of useless stuff, leading to additional unnecessary maintenance and testing time.

Note

If you are wondering where IConfigureOptions, IValidateOptions, and IOptions
come from, we are covering the ASP.NET Core Options pattern in the next chapter.

Deep Dive into Dependency Injection180

var app = builder.Build();
app.MapGet("/", async (IWishList wishList) => await wishList.AllAsync());
app.MapPost("/", async (IWishList wishList, CreateItem? newItem) =>
{
 if (newItem?.Name == null)
 {
 return Results.BadRequest();
 }
 var item = await wishList.AddOrRefreshAsync(newItem.Name);
 return Results.Created("/", item);
});
app.Run();
public record class CreateItem(string? Name);

The GET endpoint delegates the logic to the injected IWishList implementation and returns the result,
while the POST endpoint also validates the CreateItem DTO.

To help us implement the InMemoryWishList class, we started by writing some tests to back our
specifications up. Since static members are hard to configure in tests (remember globals?), we borrowed
a concept from the ASP.NET Core memory cache and created an ISystemClock interface that abstracts
away the static call to DateTimeOffset.UtcNow. This way, we can program the value of UtcNow in our
tests to create expired items. Here’s the clock interface and implementation:

namespace Wishlist.Internal;
public interface ISystemClock
{
 DateTimeOffset UtcNow { get; }
}
public class SystemClock : ISystemClock
{
 public DateTimeOffset UtcNow => DateTimeOffset.UtcNow;
}

Note

As of .NET 6, we can’t use DataAnnotations to validate minimal APIs. At the end of the
chapter, I left a few links that explain the differences between minimal APIs and Control-
lers/MVC. Moreover, we explore FluentValidation in Chapter 15, Getting Started with Vertical
Slice Architecture, that we can leverage for more complex validation. In this case, it was
fairly simple to validate the input manually using a single if statement.

Chapter 7 181

The unit tests file would be many pages long, so here is the outline:

namespace Wishlist;
public class InMemoryWishListTest
{
 // Constructor and private fields omitted
 public class AddOrRefreshAsync : InMemoryWishListTest
 {
 [Fact]
 public async Task Should_create_new_item();
 [Fact]
 public async Task Should_increment_Count_of_an_existing_item();
 [Fact]
 public async Task Should_set_the_new_Expiration_date_of_an_existing_
item();
 [Fact]
 public async Task Should_set_the_Count_of_expired_items_to_1();
 [Fact]
 public async Task Should_remove_expired_items();
 }
 public class AllAsync : InMemoryWishListTest
 {
 [Fact]
 public async Task Should_return_items_ordered_by_Count_Descending();
 [Fact]
 public async Task Should_not_return_expired_items();
 }
 // Private helper methods omitted
}

Let’s analyze that code (see the source code on GitHub: https://adpg.link/ywy8). We mocked the
ISystemClock interface in the tests and programmed it to obtain the desired results based on each test
case. We also programmed some helper methods to make the tests easier to read. Those helpers use
tuples to return multiple values (See Appendix A for more information). Here is an example of such a
method setting the clock to the past:

// Mock definition:
private readonly Mock<ISystemClock> _systemClockMock = new();
// Lots of omitted code here
private (DateTimeOffset UtcNow, DateTimeOffset ExpectedExpiryTime)
SetUtcNowToExpired()

https://adpg.link/ywy8

Deep Dive into Dependency Injection182

{
 var delay = -(_options.ExpirationInSeconds * 2);
 var utcNow = DateTimeOffset.UtcNow.AddSeconds(delay);
 _systemClockMock.Setup(x => x.UtcNow).Returns(utcNow);
 var expectedExpiryTime = utcNow.AddSeconds(_options.ExpirationInSeconds);
 return (utcNow, expectedExpiryTime);
}

Now that we have those failing tests, here is the implementation of the InMemoryWishList class:

namespace Wishlist;
public class InMemoryWishList : IWishList
{
 private readonly InMemoryWishListOptions _options;
 private readonly ConcurrentDictionary<string, InternalItem> _items = new();
 public InMemoryWishList(InMemoryWishListOptions options)
 {
 _options = options ?? throw new ArgumentNullException(nameof(options));
 }
 public Task<WishListItem> AddOrRefreshAsync(string itemName)
 {
 var expirationTime = _options.SystemClock.UtcNow.AddSeconds(_options.
ExpirationInSeconds);
 _items
 .Where(x => x.Value.Expiration < _options.SystemClock.UtcNow)
 .Select(x => x.Key)
 .ToList()
 .ForEach(key => _items.Remove(key, out _))
 ;
 var item = _items.AddOrUpdate(
 itemName,
 new InternalItem(Count: 1,Expiration: expirationTime),
 (string key, InternalItem item) => item with { Count = item.Count +
1, Expiration = expirationTime }

);
 var wishlistItem = new WishListItem(
 Name: itemName,
 Count: item.Count,
 Expiration: item.Expiration
);
 return Task.FromResult(wishlistItem);

Chapter 7 183

 }
 public Task<IEnumerable<WishListItem>> AllAsync()
 {
 var items = _items
 .Where(x => x.Value.Expiration >= _options.SystemClock.UtcNow)
 .Select(x => new WishListItem(
 Name: x.Key,
 Count: x.Value.Count,
 Expiration: x.Value.Expiration
))
 .OrderByDescending(x => x.Count)
 .AsEnumerable()
 ;
 return Task.FromResult(items);
 }
 private record class InternalItem(int Count, DateTimeOffset Expiration);
}

The InMemoryWishList class uses ConcurrentDictionary<string, InternalItem> internally to store
the items and make the wishlist thread-safe. It also uses a with expression to manipulate and copy
the InternalItem record class.

The AllAsync method filters out expired items, while the AddOrRefreshAsync method removes expired
items. This might not be the most advanced logic ever, but that does the trick.

Back to DI, the line that makes the wishlist shared between users is in the composition root that we
explored earlier. As a reference, here it is:

builder.Services.AddSingleton<IWishList, InMemoryWishList>();

Yes, only that line makes all the difference between creating multiple instances and a single shared
instance. By setting the lifetime to Singleton, you can open multiple browsers and share the wishlist.

Exercise

You might have noticed the code is not the most elegant of all code, and I left it this
way on purpose. While using the test suite, I invite you to refactor the methods of the
InMemoryWishList class into more readable code.

I took a few minutes to refactor it myself and saved it as InMemoryWishListRefactored.
You can also uncomment the first line of InMemoryWishListTest.cs to test that class
instead of the main one. My refactoring is a way to make the code cleaner, to give you ideas.
It is not the only way, nor the best way, to write that class (the “best way” being subjective).

Deep Dive into Dependency Injection184

To POST to the API, I recommend using the Postman collection (https://adpg.link/postman6) that
comes with the book. The collection already contains multiple requests that you can execute in batches
or individually. You can also use the Swagger UI that I added to the project. I left the code out of the
chapter as it was not useful, but that’s the default URL that should open when starting the project. If
you prefer working in a terminal, you can use curl or Invoke-WebRequest, depending on your OS.

That’s it! All that code to demo what a single line can do, and we have a working program, as tiny as it is.

Conclusion
This section explored how to replace the classic Singleton pattern with a class registered with a singleton
lifetime. We looked at the old application state, learned that was no more, and implemented two
versions of it. We no longer need that, but it was a good way of learning about singletons.

We then implemented a wishlist system as a second example and concluded that the whole thing was
working due to, and managed by, a single line of the composition root: the call to the AddSingleton
method. Changing that line could drastically change the behavior of the system, even making it
unusable.

From now on, you can see the Singleton pattern as an anti-pattern in .NET, and unless you find strong
reasons to implement it, you should stick to normal classes and DI instead. Doing this moves the
creation responsibility from the singleton class to the composition root, which is the composition root’s
responsibility, leaving the class only one responsibility: perfectly in line with the Single Responsibility
Principle.

Next, we explore the Service Locator anti-pattern/code smell.

Understanding the Service Locator pattern
Service Locator is an anti-pattern that reverts the IoC principle to its Control Freak roots. The only
difference is using the IoC container to build the dependency tree instead of the new keyword.

There is some use of this pattern in ASP.NET, and some may argue that there are some reasons for
one to use the Service Locator pattern, but it should happen very rarely or never. For that reason, in
this book, let’s call Service Locator a code smell instead of an anti-pattern.

The DI container uses the Service Locator pattern internally to find dependencies, which is the correct
way of using it. In your applications, you want to avoid injecting an IServiceProvider to get the
dependencies you need from it, which revert to the classic flow of control.

My strong recommendation is don’t use Service Locator unless you know what you are doing and have
no other option. A good use of Service Locator could be to migrate a legacy system that is too big to
rewrite. So you could build the new code using DI and update the legacy code using the Service Locator
pattern, allowing both systems to live together or migrate one into the other, depending on your goal.

Project – ServiceLocator
The best way to avoid something is to know about it, so let’s see how to implement the Service Locator
pattern using IServiceProvider to find a dependency.

https://adpg.link/postman6

Chapter 7 185

The service we want to use is an implementation of IMyService. Let’s start with the interface:

namespace ServiceLocator;
public interface IMyService : IDisposable
{
 void Execute();
}

The interface implements the IDisposable interface and contains a single Execute method. Here
is the implementation, which does nothing more than throw an exception if the instance has been
disposed of:

namespace ServiceLocator;
public class MyServiceImplementation : IMyService
{
 private bool _isDisposed = false;
 public void Dispose() => _isDisposed = true;

 public void Execute()
 {
 if (_isDisposed)
 {
 throw new NullReferenceException("Some dependencies have been
disposed.");
 }
 }
}

Then, let’s add a controller that implements the Service Locator pattern:

namespace ServiceLocator;
public class MyController : ControllerBase
{
 private readonly IServiceProvider _serviceProvider;
 public MyController(IServiceProvider serviceProvider)
 {
 _serviceProvider = serviceProvider ?? throw new
ArgumentNullException(nameof(serviceProvider));
 }
 [Route("/service-locator")]
 public IActionResult Get()
 {
 using var myService = _serviceProvider.
GetRequiredService<IMyService>();

Deep Dive into Dependency Injection186

 myService.Execute();
 return Ok("Success!");
 }
}

In that code sample, instead of injecting IMyService into the constructor, we are injecting
IServiceProvider. Then, we use it (highlighted line) to locate the IMyService instance. Doing so
shifts the responsibility for creating the object from the container to the consumer (MyController,
in this case). MyController should not be aware of IServiceProvider and should let the container
do its job without interference.

What could go wrong? If we run the application and navigate to /service-locator, everything
works as expected. However, if we reload the page, we get an error thrown by the Execute() method
because we called Dispose() during the previous request. MyController should not control its injected
dependencies, which is the point that I am trying to emphasize here: leave the container to control the
lifetime of dependencies rather than trying to be a control freak. Using the Service Locator pattern
opens pathways toward those wrong behaviors, which will most likely cause more harm than good
in the long run.

Moreover, even though the ASP.NET Core container does not natively support this, we lose the ability
to inject dependencies contextually when using the Service Locator pattern because the consumer
controls its dependencies. What do I mean by contextually? One could inject instance A into a class
but instance B into another class.

Before exploring ways to fix this, here is the Program.cs code that powers this program:

var builder = WebApplication.CreateBuilder(args);
builder.Services
 .AddSingleton<IMyService, MyServiceImplementation>()
 .AddControllers()
;
var app = builder.Build();
app.MapControllers();
app.Run();

There is nothing fancy in the preceding code apart from enabling controller support and registering
our service. To fix the controller, we need to either remove the using statement or move away from
Service Locator and inject our dependencies instead. I picked moving away from the Service Locator
pattern, and we will tackle the following:

• Method injection
• Constructor injection
• Minimal API

Chapter 7 187

Implementing method injection
Let’s start by using method injection to demonstrate its use:

public class MethodInjectionController : ControllerBase
{
 [Route("/method-injection")]
 public IActionResult GetUsingMethodInjection([FromServices]IMyService
myService)
 {
 ArgumentNullException.ThrowIfNull(myService, nameof(myService));
 myService.Execute();
 return Ok("Success!");
 }
}

Let’s analyze the code:

• The FromServicesAttribute class tells the model binder about method injection. We can
inject zero or more services into any action by decorating its parameters with [FromServices].

• We added a guard clause to protect us from null. We leverage the ThrowIfNull method instead
of manually checking for null then throwing an exception (see Appendix A).

• Finally, we kept the original code except for the using statement.

Implementing constructor injection
Let’s continue by implementing the same solution using constructor injection. Our new controller
looks like this:

namespace ServiceLocator;
public class ConstructorInjectionController : ControllerBase
{
 private readonly IMyService _myService;
 public ConstructorInjectionController(IMyService myService)
 {
 _myService = myService ?? throw new
ArgumentNullException(nameof(myService));
 }
 [Route("/constructor-injection")]

Note

Method injection like this would be of good use for a controller with multiple
actions, but that uses IMyService in only one of them.

Deep Dive into Dependency Injection188

 public IActionResult GetUsingConstructorInjection()
 {
 _myService.Execute();
 return Ok("Success!");
 }
}

When using constructor injection, we ensure that IMyService is not null upon class instantiation.
Since it is a class member, it is even less tempting to call its Dispose() method in an action, leaving
that responsibility to the container (as it should be).

Both techniques are an acceptable replacement for the Service Locator anti-pattern. Let’s analyze the
code before moving to the next possibility:

• We implemented the strategy pattern with constructor injection.
• We added a guard clause to ensure that no null value could get in at runtime.
• We simplified the action to what it should do: to a bare minimum.

Implementing a minimal API
Minimal APIs allow us to implement method injection the same way we did previously but without
creating a controller. This approach is very beneficial for code samples, educational material, and
APIs representing a very thin controller layer. Here is the code to add to the Program.cs file:

app.MapGet("/minimal-api", (IMyService myService) =>
{
 myService.Execute();
 return "Success!";
});

That code does the same as the method injection sample without the guard clause that I omitted
because no external consumer is likely to inject nulls into it: the endpoint is a delegate that is passed
directly to the MapGet method. In other cases, where your delegates can be called by external code,
you could add a guard clause there as well.

Conclusion
Most of the time, by following the Service Locator anti-pattern, we only hide the fact that we are taking
control of objects instead of decoupling our components. The last example demonstrated a problem
when disposing of an object, which could happen using constructor injection. However, when thinking
about it, it is more tempting to dispose of an object that we create than one that is injected.

Moreover, the service locator takes control away from the container and moves it into the consumer,
against the Open-Closed Principle. You should be able to update the consumer by updating the
composition root’s bindings. In this case, we could change the binding, and it would work. In a
more advanced case, when requiring contextual injection, we would have difficulty binding two
implementations to the same interface, one for each context; it could even be impossible.

Chapter 7 189

The IoC container is responsible for weaving the program’s thread, connecting its pieces together
where each independent piece should be as clueless as possible about the others.

This anti-pattern also complicates testing. When unit testing your class, you need to mock a container
that returns a mocked service instead of mocking only the service.

One place where I can see its usage justified is in the composition root, where bindings are defined,
and sometimes, especially when using the built-in container, we can’t avoid it. Another place would
be a library that adds functionalities to the container. Other than that, try to stay away!

Next, we revisit our third and final pattern of this chapter.

Revisiting the Factory pattern
In the Strategy pattern example, we implemented a solution that instantiated HomePageViewModel using
the new keyword. While doing that is acceptable, we could use method injection instead, mixed with
the use of a factory. The Factory patterns are handy tools when the time comes to construct objects.
Let’s look at a few rewrites of the Strategy project using factories to explore some possibilities.

Project – Factory
Let’s start by mixing a factory with method injection and injecting the view model directly into our
method instead of injecting IHomeService. To achieve this, we rewrite the Index method of the
HomeController class to this:

public class HomeController : Controller
{
 public IActionResult Index([FromServices]HomePageViewModel viewModel)
 {
 return View(viewModel);
 }
 // Omitted Privacy() and Error()
}

The FromServicesAttribute class tells the ASP.NET Core pipeline to inject an instance of
HomePageViewModel directly into the method. Unfortunately, the IoC container is not yet aware of
how to create such an instance. Now, we use a factory instead of a static binding to explain to the
container what to do. Here is the Project.cs file (factory highlighted):

using Factory.Models;
using Factory.Services;

Beware

Moving the service locator elsewhere does not make it disappear; it only moves it around,
like any dependency.

Deep Dive into Dependency Injection190

var builder = WebApplication.CreateBuilder(args);
builder.Services
 .AddSingleton<IHomeService, HomeService>()
 .AddTransient(serviceProvider =>
 {
 var homeService = serviceProvider.GetRequiredService<IHomeService>();
 var data = homeService.GetHomePageData();
 return new HomePageViewModel(data);
 })
 .AddSingleton<IHomeViewModelFactory, HomeViewModelFactory>()
 .AddControllersWithViews()
;
var app = builder.Build();
app.MapDefaultControllerRoute();
app.Run();

In the preceding code, we used another overload of the AddTransient() extension method and passed
Func<IServiceProvider, TService> implementationFactory as an argument. The highlighted code
represents our factory, and that factory is implemented as a service locator using the IServiceProvider
instance to create the IHomeService dependency that we use to instantiate HomePageViewModel.

We are using the new keyword here, but is this wrong? The composition root is where elements should
be created (or configured), so instantiating objects there is okay, as it is to use the Service Locator
pattern. However, you should aim to avoid it whenever possible. It is harder to avoid when using the
default container versus a full-featured third-party one, but we can avoid it in many cases.

We could also create a factory class to keep our composition root clean as we do with the
HomeViewModelFactory soon. While that is true, we would only move the code around, adding more
complexity to our program. That is the reason why creating view models inside your controller’s
actions is acceptable to reduce unnecessary complexity.

Moreover, creating view models inside actions should not negatively impact the program’s
maintainability in most cases since a view model is bound to a single view, controlled by a single
action, leading to a one-on-one relationship. Furthermore, it is way cheaper to implement, and it is
also easier to understand than roaming around the code to find what binding does what. However, the
biggest downside of instantiating view models manually in the action method is testability. It is easier
to inject the data we want from a test case than dealing with hardcoded object creation. Nonetheless,
the extra complexity that we are implementing here is rarely worth it for a view model but is a good
way to demonstrate the use of factories.

We could create a class to handle the factory logic for more complex scenarios or to clean the
composition root. We could also create a class and an interface to directly use the factory inside our
other classes. This approach comes in handy for creating your dependencies only when you need
them; this is also known as lazy loading. Lazy loading means to create the object only when needed,
deferring the overhead of doing so to the time of use or during its first use.

Chapter 7 191

Unless you need to reuse that creation logic in multiple places, creating a factory class may not be
worth it. Nevertheless, this is a convenient pattern worth remembering. Here is how to implement a
factory that returns an instance of PrivacyViewModel:

namespace Factory.Services;
public interface IHomeViewModelFactory
{
 PrivacyViewModel CreatePrivacyViewModel();
}
public class HomeViewModelFactory : IHomeViewModelFactory
{
 public PrivacyViewModel CreatePrivacyViewModel() => new()
 {
 Title = "Privacy Policy (from IHomeViewModelFactory)",
 Content = new HtmlString("<p>Use this page to detail your site's privacy
policy.</p>")
 };
}

The preceding code encapsulates the creation of PrivacyViewModel instances into HomeViewModelFactory.
The code is very basic; it creates an instance of the PrivacyViewModel class and fills its properties
with hardcoded values.

Now, to use that new factory, we update the controller, use constructor injection to inject
IHomeViewModelFactory into HomeController, and then use it from the Privacy() action method,
like this:

private readonly IHomeViewModelFactory _homeViewModelFactory;
public HomeController(IHomeViewModelFactory homeViewModelFactory)
{
 _homeViewModelFactory = homeViewModelFactory ?? throw new
ArgumentNullException(nameof(homeViewModelFactory));
}
// Omitted action methods
public IActionResult Privacy()
{
 var viewModel = _homeViewModelFactory.CreatePrivacyViewModel();
 return View(viewModel);
}

Note

There is an existing Lazy<T> class to help with lazy loading, but that is not the point of this
code sample. The idea is the same, though: we create the object only when first needed.

Deep Dive into Dependency Injection192

The preceding code is clear, simple, and easy to test.

By using this technique, we are not limited to one method. We can write multiple methods that each
encapsulate their own creational logic in the same factory. We could also pass additional objects to
the Create[object to create]() method (highlighted), like this:

public HomePageViewModel CreateHomePageViewModel(IEnumerable<string> someData)
 => new(someData);

The possibilities are almost endless when you think about it, so now that you’ve seen a few in action,
you may find other uses for a factory when you need to inject some classes with complex instantiation
logic into other objects.

One advantage of using factories like this is to inject dependencies into them and use them for that
complex instantiation logic. For example, you could inject a class that connects to a database and
leverage that data to build the object. Without a factory, the controller (in our case) would have that
added responsibility.

Conclusion
The use of a factory can be considered for multiple scenarios. Our example covered the fact that we
could create a factory in the composition root to instantiate dependencies (a Func<IServiceProvider,
TService>). We leveraged method injection to get that view model instance, and we saw that sometimes,
the new keyword should be used directly instead of trying to implement more complex code that
would, in the end, only move the problem around, leading to false decoupling with added complexity.

As a rule of thumb, creating view models in controller actions is acceptable, and classes containing
logic are the ones we want to inject to break tight coupling with. Just keep in mind that moving code
around your codebase does not make that code, logic, dependencies, or coupling disappear.

Moreover, we explored the creation of a factory class backed by an interface. Those are very helpful
for more complex instantiation, removing inlined factories from the composition root, or depending
on other services, like access to a database.

We use factories often, and now that you know more about them, I’m sure you’ll start to see them in
the .NET APIs if you have not already.

Summary
This chapter covered the basics of Dependency Injection and how to leverage it to follow the
Dependency Inversion Principle helped by the Inversion of Control principle. We then revisited the
Strategy design pattern, and saw how to use it to create a flexible, DI-ready system. We also revisited
the Singleton pattern, seeing that we can inject the same instance, system-wide, by using the singleton
lifetime when configuring dependencies in the container. We finally saw how to leverage factories to
handle complex object creation logic.

Chapter 7 193

We also talked about moving code around, the illusion of improvement, and the cost of engineering.
We saw that the new keyword could help reduce complexity when the construction logic is simple
enough and that it could save time and money. On the other hand, we also explored a few techniques
to handle object creation complexity to create maintainable and testable programs, such as factories,
and get away from the Control Freak code smell. We also visited the guard clause, which guards our
injected dependencies against null. This way, we can demand some required services using constructor
injection and use them from the class methods without testing for null every time.

We explored how the Service Locator (anti-)pattern can be harmful and how it can be leveraged
from the composition root to create complex objects dynamically. We also discussed why to keep its
usage frequency as close to never as possible. Understanding these patterns and code smells is very
important when it comes to keeping your systems maintainable as your programs grow in size. For
programs that require complex DI logic, conditional injection, multiple scopes, auto-implemented
factories, and other advanced features, we saw that it is possible to use third-party containers instead
of the built-in one.

In subsequent sections, we will explore tools that add functionality to the default container, reducing
the need to swap it for another. If you are building multiple smaller projects (microservices) instead
of a big one (a monolith), that may save you from requiring those extra features, but nothing is free,
and everything has a cost; more on this in Chapter 16, Introduction to Microservices Architecture.

In the next chapter, we are going to explore options and logging patterns. These ASP.NET Core patterns
aim to make our lives easier when managing such common problems.

Questions
Let’s take a look at a few practice questions:

1. What are the three DI lifetimes that we can assign to objects in ASP.NET Core?
2. What is the composition root for?
3. Is it true that we should avoid the new keyword when instantiating volatile dependencies?
4. What is the pattern that we revisited in this chapter that helps compose objects to eliminate

inheritance?
5. Is the Service Locator pattern a design pattern, a code smell, or an anti-pattern?

Further reading
Here are some links to build upon what we have learned in the chapter:

• Start up environment-specific composition root: https://adpg.link/GdjP
• If you need more options, such as contextual injection, you can check out an open source

library that I built. It adds support for new scenarios: https://adpg.link/S3aT
• Minimal APIs overview: https://adpg.link/q5pc
• Tutorial: Creating a minimal web API with ASP.NET Core: https://adpg.link/w32e

https://adpg.link/GdjP
https://adpg.link/S3aT
https://adpg.link/q5pc
https://adpg.link/w32e

Deep Dive into Dependency Injection194

Join our book’s Discord space
Join the book’s Discord workspace for Ask me Anything session with the authors:

https://packt.link/ASPdotNET6DesignPatterns

https://packt.link/ASPdotNET6DesignPatterns

8
Options and Logging Patterns

This chapter covers .NET-specific patterns that close the Designing for ASP.NET Core section of the
book. The Options pattern and logging features are two more building blocks of most applications that
come built in and that are extensible. We explore these abstractions while keeping it to a level where
we use them, not master every aspect of them. Once you’ve read this chapter, you should know how
to leverage the .NET options and settings infrastructure, as well as how to write application logs. We
also briefly explore how to customize those systems.

The following topics will be covered in this chapter:

• The Options pattern
• Becoming familiar with .NET logging abstractions

Let’s get started!

The Options pattern
With ASP.NET Core, we can use predefined mechanisms to enhance the usage of application settings.
These allow us to divide our configuration into multiple smaller objects, configure them during multiple
stages of the startup flow, validate them, and even watch for runtime changes with minimal effort.

The Options pattern’s goal is to use settings at runtime, allowing changes to the application to happen
without changing the code. The settings could be as simple as a string, a bool, a database connection
string, or a complex object that holds an entire subsystem’s configuration.

This section explores different tools offered by ASP.NET Core to manage, inject, and load configurations
and options into our programs. We will tackle different scenarios, from common ones to more advanced
ones.

Getting started
The Options pattern in ASP.NET Core allows us to seamlessly load settings from multiple sources. We
can customize these sources when creating IHostBuilder, or even use the default ones set by calling
WebApplication.CreateBuilder(args).

Options and Logging Patterns196

The default sources, in order, are as follows:

• appsettings.json

• appsettings.{Environment}.json

• User secrets; these are only loaded when the environment is Development
• Environment variables
• Command-line arguments

The order is also very important as the last to be loaded overrides any previous values. For example, you
can set a value in appsettings.json and override it in appsettings.Staging.json by redefining the
value in that file, user secrets, an environment variable or by passing it as a command-line argument
when you run your application.

There are four main ways to use settings: IOptionsMonitor<TOptions>, IOptionsFactory<TOptions>,
IOptionsSnapshot<TOptions>, and IOptions<TOptions>. In all these cases, we can inject that
dependency into a class to use the available settings. TOptions is the type that represents the settings
that we want to access.

The framework often returns an empty instance of your options class if you don’t configure it. We will
learn how to configure options properly in the next subsection, but keep in mind that using property
initializers inside your options class can also be a great way to ensure certain defaults are used. Don’t
use initializers for default values that change based on the environment (dev, staging, or production)
or for secrets such as connection strings and passwords. You can also use constants to centralize
those defaults somewhere in your codebase (making them easier to maintain). Nevertheless, proper
configuration and validation are always preferred, but both combined can add a safety net.

Based on the MyListOption class, because the default value of an int is 0, the default number of
items to display per page would be 0, leading to an empty list. However, we can configure this using
a property initializer, as shown in the example below:

public class MyListOption
{
 public int ItemsPerPage { get; set; } = 20;
}

The default number of items to display per page is now 20.

Next, we explore the different interfaces provided by .NET.

Note

In the source code for this chapter, I’ve included a few tests in the CommonScenarios.Tests
project that assert the lifetime of the different options interfaces. I haven’t included this
code here for brevity, but it describes the behavior of the different options via unit tests.
See https://adpg.link/T8Ro for more information.

https://adpg.link/T8Ro

Chapter 8 197

IOptionsMonitor<TOptions>
This interface is the most versatile of them all. It allows us to receive notifications about reloading the
configuration. It also supports caching and can have multiple configurations, each associated with a
name (named configuration). The injected IOptionsMonitor<TOptions> instance is always the same
(singleton lifetime). It also supports default settings (without a name) through its Value property.

IOptionsFactory<TOptions>
This interface is a factory, as we saw in Chapter 6, Understanding the Strategy, Abstract Factory, and
Singleton Design Patterns, and Chapter 7, Deep Dive into Dependency Injection. We use factories to
create instances; this one is no different. Unless it’s absolutely necessary, I’d suggest sticking with
IOptionsMonitor<TOptions> or IOptionsSnapshot<TOptions> instead.

One use of this factory could be to create multiple instances of settings while injecting only one
dependency, but that sounds more like a design flaw than a solution to me. Nevertheless, this could
be useful in some rare situations. Why a flaw? You revert to controlling your dependencies instead
of doing IoC.

How it works is simple: a new factory is created every time you ask for one (transient lifetime), and
each factory creates a new options instance every time you call its Create(name) method (transient
lifetime).

Options.DefaultName is the name that’s given to non-named options; this is usually handled for you
by the framework.

IOptionsSnapshot<TOptions>
This interface is useful when you need a snapshot of the settings, and is created once per request
(scoped lifetime). We can use it to get named options as well, such as IOptionsMonitor<TOptions>.
We can access the default options with the CurrentValue property.

Note

You receive an empty TOptions instance (new TOptions()) if you only configured named
options or configured no instance at all.

Note

You receive an empty TOptions instance (new TOptions()) if you only configured the
named options or configured no instance at all when calling factory.Create(Options.
DefaultName).

Note

You receive an empty TOptions instance (new TOptions()) if you only configured the
named options or configured no instance at all.

Options and Logging Patterns198

IOptions<TOptions>
This interface is the first that was added to ASP.NET Core. It does not support advanced scenarios such
as what snapshots and monitors do. Whenever you request an IOptions<TOptions> instance, you get
the same instance (singleton lifetime).

Next, we explore how to leverage those interfaces.

Project – CommonScenarios
This first example covers multiple basic use cases, such as injecting options, using named options,
and storing options values in settings.

Let’s start by learning how to leverage IOptions<TOptions>, which is the first and simplest interface
that comes out of .NET Core. We also define the groundwork of multiple subsequent scenarios. Like
most things we program from now on, the examples leverage dependency injection.

Let’s go over the process step by step:

1. Create an interface for the service classes, named IMyNameService.
2. Create options classes.
3. Code some unit tests against that interface. We reuse these tests for each implementation.
4. Code the first implementation.
5. Run our tests against that implementation.

Our interface is very simple and looks like this:

public interface IMyNameService
{
 string? GetName(bool someCondition);
}

It contains a single GetName method that takes someCondition as a parameter and returns a string,
from which we can expect its content to be a name.

Next, we create two options classes: one for this scenario and one for the others. The class that we
will use in the other scenarios is as follows:

public class MyOptions
{
 public string? Name { get; set; }
}

Note

IOptions<TOptions> does not support named options, so you can only access the default
options.

Chapter 8 199

The class that we will use in this scenario is as follows:

public class MyDoubleNameOptions
{
 public string? FirstName { get; set; }
 public string? SecondName { get; set; }
}

Now, as practitioners of test-driven design (TDD), let’s see the unit tests that act as our initial code
consumers. Our simple specifications are that when someCondition is true, GetName returns the
value of Option1Name, but when someCondition is false, GetName returns the value of Option2Name.

Let’s begin with our unit test:

public abstract class MyNameServiceTest<TMyNameService>
 where TMyNameService : class, IMyNameService
{
 protected readonly IMyNameService _sut;

 public const string Option1Name = "Options 1";
 public const string Option2Name = "Options 2";

 public MyNameServiceTest()
 {
 var services = new ServiceCollection();
 services.AddTransient<IMyNameService, TMyNameService>();
 services.Configure<MyOptions>("Options1", myOptions =>
 {
 myOptions.Name = Option1Name;
 });
 services.Configure<MyOptions>("Options2", myOptions =>
 {

Note

I have shown both classes here to save space later, so that I don’t have to copy the same
tests again while only making a small change. Moreover, they are small and straightfor-
ward classes.

Note

Option1Name and Option2Name are two constants containing irrelevant values (but dif-
ferent ones so that we can compare their output).

Options and Logging Patterns200

 myOptions.Name = Option2Name;
 });
 services.Configure<MyDoubleNameOptions>(options =>
 {
 options.FirstName = Option1Name;
 options.SecondName = Option2Name;
 });
 _sut = services.BuildServiceProvider()
 .GetRequiredService<IMyNameService>();
 }

Let’s analyze the first part of our test class:

• Our test class is abstract and generic, making it the base class of all IMyNameService tests.
• We created our subject under test by using the generic TMyNameService type as our

implementation.
• We configured two named MyOptions and one MyDoubleNameOptions. These are injected into

the service’s implementations; more on that later. In this case, we have configured the options’
properties manually. In programs, we usually move those values to configuration files or other
providers, such as appsettings.json; more on that later.

Then, we need to create the two test cases we discussed earlier:

 [Fact]
 public void GetName_should_return_Name_from_options1_when_someCondition_is_
true()
 {
 var result = _sut.GetName(true);
 Assert.Equal(Option1Name, result);
 }
 [Fact]
 public void GetName_should_return_Name_from_options2_when_someCondition_is_
false()
 {
 var result = _sut.GetName(false);
 Assert.Equal(Option2Name, result);
 }
}

Note

The name of each option is passed as an argument to the
services.Configure<MyOptions>("name", ...) method.

Chapter 8 201

Now, let’s create our implementation, named MyNameServiceUsingDoubleNameOptions. It uses the
IOptions<MyDoubleNameOptions> interface, which make it the simplest implementation we can use:

public class MyNameServiceUsingDoubleNameOptions : IMyNameService
{
 private readonly MyDoubleNameOptions _options;

 public MyNameServiceUsingDoubleNameOptions(IOptions<MyDoubleNameOptions>
options)
 {
 _options = options.Value;
 }

 public string? GetName(bool someCondition)
 {
 return someCondition ? _options.FirstName : _options.SecondName;
 }
}

This is a fairly simple implementation; we inject IOptions<MyDoubleNameOptions> into the constructor
and use the tertiary operator to return the first or second name from the options. Now that we have
our reusable tests and the MyNameServiceUsingDoubleNameOptions class, we can add the concrete
test class, which runs the actual tests against our implementation:

public class MyNameServiceUsingDoubleNameOptionsTest :
MyNameServiceTest<MyNameServiceUsingDoubleNameOptions> { }

Yes, that’s it; all the plumbing has been done in the base test. When running the tests, everything should
be green! By injecting options this way, we control their values from the composition root, allowing us
to configure them as we wish without impacting the consumers’ code of such options. Let’s continue
to explore more options, starting by naming options objects.

Named options
Using the Options pattern, we can register multiple instances of the same type and access them by name.

Note

Doing this breaks the inversion of control, dependency inversion, and open/closed prin-
ciples by giving back the dependencies’ creation control to the consuming class instead
of moving that responsibility out of it, up to the composition root.

Since the .NET teams deemed it appropriate to implement named options, we are going
to cover it here. Instead of hardcoding a magic string inside constructors, we could use
this pattern to build a dynamic application without compromising any principles by dy-
namically accessing the name of the options to create.

Options and Logging Patterns202

For this example, we are going to create three different implementations: one using
IOptionsFactory<MyOptions>, one using IOptionsMonitor<MyOptions>, and one using
IOptionsSnapshot<MyOptions>. All three use the test suite we created in the previous sample. Let’s
take a look at the code:

public class MyNameServiceUsingNamedOptionsFactory : IMyNameService
{
 private readonly MyOptions _options1;
 private readonly MyOptions _options2;

 public MyNameServiceUsingNamedOptionsFactory(IOptionsFactory<MyOptions>
myOptions)
 {
 _options1 = myOptions.Create("Options1");
 _options2 = myOptions.Create("Options2");
 }

 public string? GetName(bool someCondition)
 {
 return someCondition ? _options1.Name : _options2.Name;
 }
}

public class MyNameServiceUsingNamedOptionsMonitor : IMyNameService
{
 private readonly MyOptions _options1;
 private readonly MyOptions _options2;

 public MyNameServiceUsingNamedOptionsMonitor(IOptionsMonitor<MyOptions>
myOptions)
 {
 _options1 = myOptions.Get("Options1");
 _options2 = myOptions.Get("Options2");
 }

 public string? GetName(bool someCondition)
 {

This could use a database or some other settings, for example. The feature is not wrong
in itself, but problems could arise based on its usage.

Chapter 8 203

 return someCondition ? _options1.Name : _options2.Name;
 }
}

public class MyNameServiceUsingNamedOptionsSnapshot : IMyNameService
{
 private readonly MyOptions _options1;
 private readonly MyOptions _options2;

 public MyNameServiceUsingNamedOptionsSnapshot(IOptionsSnapshot<MyOptions>
myOptions)
 {
 _options1 = myOptions.Get("Options1");
 _options2 = myOptions.Get("Options2");
 }
 public string? GetName(bool someCondition)
 {
 return someCondition ? _options1.Name : _options2.Name;
 }
}

These three classes are very similar, except for their constructors; each is expecting a different
dependency.

Next, we need to create the following three simple classes:

public class MyNameServiceUsingNamedOptionsFactoryTest :
MyNameServiceTest<MyNameServiceUsingNamedOptionsFactory> {}

public class MyNameServiceUsingNamedOptionsMonitorTest :
MyNameServiceTest<MyNameServiceUsingNamedOptionsMonitor> {}

Note

My note about magic strings may make more sense now; each class requests a specific
set of options using a hardcoded name; that is, a magic string. Doing so limits our ability
to change the injected options in any single class from the composition root. To make
a change, we need to open the class, change the magic strings, save the class, and then
recompile. Moreover, strings are not automatically refactored using the tooling, leading
to inconsistencies and runtime errors. We can also make typos when writing those magic
strings, leading to unexpected runtime errors or behaviors. So, all in all, magic strings
are harder to maintain and should be avoided as much as possible.

Options and Logging Patterns204

public class MyNameServiceUsingNamedOptionsSnapshotTest :
MyNameServiceTest<MyNameServiceUsingNamedOptionsSnapshot> {}

Running these tests proves that our three new classes respect our use cases. With that, we have created
multiple classes that use named options.

With these, we explored the named options semantic behind each interface. If you can’t avoid using
named options, remember to pick the interface that has the correct lifetime for your use case. Moreover,
centralizing the names in constants should help you limit magic string issues. Unless you build a more
complex system, chances are that you are breaking many SOLID principles just by using named options.

Of course, building options manually like that is good for tests but in programs, you most likely have
one or more sources from where those options come from, which is what we explore next.

Using settings
Now that we’ve explored how to create options manually, let’s explore how to make that happen in an
ASP.NET Core application using appsettings.json instead.

The appsettings.json file allows you to define any setting, structured as you want, in the JSON
syntax. It is a great improvement from the key/value settings that we had in the web.config file before
ASP.NET Core. You can now define complex object hierarchies, which allow for better organization.
You also don’t need to program complex plumbing code, like you had to do to create custom
web.config sections.

Here are our JSON settings (default settings are omitted):

{
 "options1": {
 "name": "Options 1"
 },
 "options2": {
 "name": "Options 2"
 },
 "myDoubleNameOptions": {
 "firstName": "Options 1",
 "secondName": "Options 2"
 }
}

The data structures here are the same as our previously defined classes; that is, MyOptions and
MyDoubleNameOptions. That’s because we are about to load (deserialize) those settings into our classes
using the utilities provided by .NET.

Here is the first half of the Program.cs file, where we register our program dependencies:

var builder = WebApplication.CreateBuilder(args);
builder.Services

Chapter 8 205

 .Configure<MyOptions>(
 "Options1",
 builder.Configuration.GetSection("options1"))
 .Configure<MyOptions>(
 "Options2",
 builder.Configuration.GetSection("options2"))
 .Configure<MyDoubleNameOptions>(
 builder.Configuration.GetSection("myDoubleNameOptions"))
 .AddTransient<MyNameServiceUsingDoubleNameOptions>()
 .AddTransient<MyNameServiceUsingNamedOptionsFactory>()
 .AddTransient<MyNameServiceUsingNamedOptionsMonitor>()
 .AddTransient<MyNameServiceUsingNamedOptionsSnapshot>()
;

We are using two different extension methods here instead of configuring the options manually, as we
did previously. The builder.Configuration property is an instance of ConfigurationManager that
implements the IConfiguration interface, which allows us to access the application settings. Calling
builder.Configuration.GetSection("key") gives us another IConfiguration object—more precisely,
an IConfigurationSection object—where the keys match our settings. After that, we registered our
four services with a transient lifetime.

Once this is done, we can inject any of those dependencies anywhere we want to. For this example,
I’ve decided to leverage minimal APIs, leading to the following extremely simple endpoints (the other
half of the Program.cs file):

var app = builder.Build();
app.MapGet("/options/{someCondition}", (bool someCondition,
MyNameServiceUsingDoubleNameOptions service)
 => new { name = service.GetName(someCondition) });

app.MapGet("/factory/{someCondition}", (bool someCondition,
MyNameServiceUsingNamedOptionsFactory service)
 => new { name = service.GetName(someCondition) });

app.MapGet("/monitor/{someCondition}", (bool someCondition,
MyNameServiceUsingNamedOptionsMonitor service)
 => new { name = service.GetName(someCondition) });

Note

If you need to access a subsection, you can use the : sign. For example, with a con-
figuration that looks like { "object1": { "object2": {} } }, you could use
GetSection("object1:object2") to get the nested configuration object directly.

Options and Logging Patterns206

app.MapGet("/snapshot/{someCondition}", (bool someCondition,
MyNameServiceUsingNamedOptionsSnapshot service)
 => new { name = service.GetName(someCondition) });
app.Run();

Each endpoint takes a bool (from the route) and a service (from the IoC container) as parameters.
Each endpoint dispatches that bool to the injected service and returns an anonymous object that has a
name property. That object gets serialized as JSON with a 200 OK status code, thanks to minimal APIs.

That’s it! We’ve loaded options from JSON to our objects using a few lines of code. Feel free to run the
code, add breakpoints, and explore how the app behaves.

We connected the dots with those few additional lines by registering the dependencies with the IoC
container. We loaded the values from the appsettings.json file using the .NET configuration API and
can now consume those options using dependency injection.

These are very simple scenarios that allowed us to explore the basics of the .NET options. Moving
options to external sources, like in the appsettings.json file, opens the possibility to configure our
program without the need to recompile it. For example, we can have development settings, development
secrets (credentials for example), staging settings, production settings, and so on. Layering settings
the .NET way allows controlling the settings at different levels, including not committing credentials
to your Git repository or limiting access to production credentials.

Loading options from settings like we did here is a very likely scenario that happens in most programs.
Of course, there are even more options, leading us next to looking at different ways to configure
options objects.

Project – OptionsConfiguration
Now that we have covered some simple scenarios, let’s attack some more advanced possibilities, such as
creating types that will help configure, initialize, and validate our options, starting with configuration.

We can create types that implement IConfigureOptions<TOptions>, then register these implementations
as services to dynamically configure our options.

Note

I also added an endpoint that responds with a list of links when a user calls GET /.
I omitted the code as it is not relevant to the example, but it is convenient when running
it. If you have a plugin in your browser that formats the JSON string for you, the links
should be clickable. I use JSON Viewer, an open source project, in both Chrome and Edge
on Chromium for this.

Note

We can implement IConfigureNamedOptions<TOptions> for named options as well.

Chapter 8 207

First, we must lay out the groundwork for our little program:

1. The first building block is the options class that we want to configure:

namespace OptionsConfiguration;
public class ConfigureMeOptions
{
 public string? Title { get; set; }
 public IEnumerable<string> Lines { get; set; } = Enumerable.
Empty<string>();
}

2. Now, let’s define our application settings in the appsettings.json file (default settings omitted):

{
 "configureMe": {
 "title": "Configure Me!",
 "lines": [
 "This comes from appsettings!"
]
 }
}

3. Next, let’s make an endpoint that accesses the settings, serializes the result to a JSON string,
and then writes it to the response stream:

app.MapGet("/configure-me", (IOptionsMonitor<ConfigureMeOptions> options)
=> options);

This endpoint displays the latest options, even if we change the content of appsettings.json
without changing the code or restarting the server.

4. Before we can run the program, we need to tell ASP.NET about those settings:

builder.Services.Configure<ConfigureMeOptions>(builder.Configuration.
GetSection("configureMe"));

5. Now, when running the program and navigating to /configure-me, we should see the following:

{
 "CurrentValue": {
 "Title": "Configure Me!",
 "Lines": [
 "This comes from appsettings!"
]
 }
}

Options and Logging Patterns208

CurrentValue is the property name and can be accessed from IOptionsMonitor<TOptions>.
Besides that, the rest of the JSON code looks very similar to the value we configured in the
appsettings.json file.

Now that we’ve created the option class, configured the IoT container, added an endpoint, and
set values in the settings.json file, we are ready to implement our first object to configure the
ConfigureMeOptions instances.

Implementing a configurator object
Now, let’s configure our options in another class, enforcing the single responsibility principle. We
have an option object and another object that configures such options.

Let’s start by creating the Configure1ConfigureMeOptions class that adds a line to the
ConfigureMeOptions instance dynamically. To achieve this, we must create a class that implements
the IConfigureOptions<TOptions> interface, like this:

public class Configure1ConfigureMeOptions :
IConfigureOptions<ConfigureMeOptions>
{
 public void Configure(ConfigureMeOptions options)
 {
 options.Lines = options.Lines.Append("Added line 1!");
 }
}

We must then register it with the service collection:

builder.Services.AddSingleton<IConfigureOptions<ConfigureMeOptions>,
Configure1ConfigureMeOptions>();

From there, navigating to /configure-me should output the following:

{
 "currentValue": {
 "title": "Configure Me!",
 "lines": [
 "This comes from appsettings!",
 "Added line 1!"
]
 }
}

And voilà—we have a neat result that took almost no effort. This can lead to so many possibilities!
Implementing IConfigureOptions<TOptions> is the best way to configure the default values of an
options class. Next, we explore how a system reacts when having multiple of those configurators.

Chapter 8 209

Using multiple configurator objects
As fun as the previous example was, we now explore how we can register many
IConfigureOptions<TOptions> for the same TOptions instance as easily as registering a new service
binding.

For our purposes, let’s create another class that adds another line to the array. This allows us to follow
what is happening in the background (running a sort of trace):

public class Configure2ConfigureMeOptions :
IConfigureOptions<ConfigureMeOptions>
{
 public void Configure(ConfigureMeOptions options)
 {
 options.Lines = options.Lines.Append("Added line 2!");
 }
}

Now, we can register it:

builder.Services.AddSingleton<IConfigureOptions<ConfigureMeOptions>,
Configure2ConfigureMeOptions>();

The new output should be as follows:

{
 "currentValue": {
 "title": "Configure Me!",
 "lines": [
 "This comes from appsettings!",
 "Added line 1!",
 "Added line 2!"
]
 }
}

It is important to note that the dependencies that have been registered with IServiceCollection
are ordered, so by swapping the registration of Configure1ConfigureMeOptions and
Configure2ConfigureMeOptions, we would end up with the following output instead:

{
 "currentValue": {
 "title": "Configure Me!",
 "lines": [
 "This comes from appsettings!",
 "Added line 2!",
 "Added line 1!"

Options and Logging Patterns210

]
 }
}

Great, right? Now that we know we can create and use multiple configurator objects, we could have
many of those configurator objects that each configure part of a bigger options object or change
options objects we don’t control by creating a new configurator object. Next, we explore a few more
possibilities before looking at validating those options.

Exploring other configuration possibilities
There are other ways to configure options; for instance:

• We can call the Configure extension methods multiple times.
• ConfigureAll allows us to run configuration on all the options of any given TOptions. This

is primarily used to configure named options, but unnamed options are just named options
associated with the default name, so in our example, this works as well.

• PostConfigure and PostConfigureAll are the equivalents of Configure and ConfigureAll,
respectively, but they run at the end of the initialization process.

To demonstrate that, let’s add the following lines to the composition root:

builder.Services.Configure<ConfigureMeOptions>(options
 => options.Lines = options.Lines.Append("Another Configure call"));
builder.Services.PostConfigure<ConfigureMeOptions>(options
 => options.Lines = options.Lines.Append("What about PostConfigure?"));
builder.Services.PostConfigureAll<ConfigureMeOptions>(options
 => options.Lines = options.Lines.Append("Did you forgot about
PostConfigureAll?"));
builder.Services.ConfigureAll<ConfigureMeOptions>(options
 => options.Lines = options.Lines.Append("Or ConfigureAll?"));

When executing the program, we now end up with the following output:

{
 "currentValue": {
 "title": "Configure Me!",
 "lines": [
 "This comes from appsettings!",
 "Added line 1!",
 "Added line 2!",
 "Another Configure call",
 "Or ConfigureAll?",
 "What about PostConfigure?",
 "Did you forgot about PostConfigureAll?"

Chapter 8 211

]
 }
}

The registration order matters here because, under the hood, the framework is creating instances that
implement IConfigureOptions<ConfigureMeOptions> and registers them with the service collection.

The post-configuration extension points are a bit of a rule-breaker as they run after the configure
methods, but the order between them also matters. If options configuration is still unclear, please
play around with this example. I find experimentation to be one of the best ways to learn and improve.

Now that we know the options interface types, their lifetimes, and many ways to configure their values,
it is time to validate them and enforce a certain level of integrity in our programs.

Project – OptionsValidation
Another feature that comes out of the box is options validation, which allows us to run validation code
when a TOptions object is created. This code is guaranteed to run the first time an option is created
and does not account for subsequent options modifications. If the lifetime is transient, the validation
runs every time you get an options object. If its lifetime is scoped, it runs once per scope (once per
HTTP request in the case of ASP.NET Core). If its lifetime is singleton, it runs once per application.

To validate options, we can create validation types that implement the IValidateOptions<TOptions>
interface or use data annotations such as [Required]. Implementing the interface works very similarly
to the options configuration.

Eager validation
Eager validation has been added to .NET 6 and allows catching incorrectly configured options at
startup time, in a fail-fast mindset.

The Microsoft.Extensions.Hosting assembly adds the ValidateOnStart extension method to the
OptionsBuilder<TOptions> type.

There are different ways of using this, including the following, which binds a configuration section
to an option class:

services.AddOptions<Options>()
 .Configure(o => /* Omitted configuration code */)
 .ValidateOnStart()
;

The highlighted line is all we need to apply our validation rules during startup. I recommend using
this as your new default, so you know at startup time that options are misconfigured instead of later
at runtime, limiting unexpected issues.

Now that we know that, let’s look at how to configure options validation.

Options and Logging Patterns212

Data annotations
Let’s start by using System.ComponentModel.DataAnnotations types to decorate our options with
validation attributes. To demonstrate this, let’s look at two small tests:

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Options;
using System.ComponentModel.DataAnnotations;
using Xunit;

namespace OptionsValidation;

public class ValidateOptionsWithDataAnnotations
{
 [Fact]
 public void Should_pass_validation()
 {
 var services = new ServiceCollection();
 services.AddOptions<Options>()
 .Configure(o => o.MyImportantProperty = "Some important value")
 .ValidateDataAnnotations();
 var serviceProvider = services.BuildServiceProvider();
 var options = serviceProvider.
GetRequiredService<IOptionsMonitor<Options>>();
 Assert.Equal("Some important value", options.CurrentValue.
MyImportantProperty);
 }

 [Fact]
 public void Should_fail_validation()
 {
 var services = new ServiceCollection();
 services.AddOptions<Options>()
 .ValidateDataAnnotations();
 var serviceProvider = services.BuildServiceProvider();
 var options = serviceProvider.
GetRequiredService<IOptionsMonitor<Options>>();
 var error = Assert.Throws<OptionsValidationException>(() => options.
CurrentValue);
 Assert.Collection(error.Failures,
 f => Assert.Equal("DataAnnotation validation failed for 'Options'
members: 'MyImportantProperty' with the error: 'The MyImportantProperty field
is required.'.", f)

Chapter 8 213

);
 }

 private class Options
 {
 [Required]
 public string? MyImportantProperty { get; set; }
 }
}

From these tests, we can see that setting MyImportantProperty allows us to use our options object,
while not setting it throws an OptionsValidationException, alerting us of the error.

To tell .NET to validate data annotations on options, we must call the ValidateDataAnnotations
extension method, which is available from the Microsoft.Extensions.Options.DataAnnotations
assembly, like this:

services
 .AddOptions<Options>()
 .ValidateDataAnnotations()
;

That’s it—.NET does the job for us from there and validates our instance of the Options class using the
data annotation, like you can do when using EF Core or MVC model binding. In our case, .NET validates
that the value of the MyImportantProperty property is not null or empty ([Required] attribute).

From there, if we were running that code in an actual web app, we could add eager validation by calling
the ValidateOnStart method like this:

services.AddOptions<Options>()
 .ValidateDataAnnotations()
 .ValidateOnStart() // eager validation
;

Now that we know how to validate our options objects using data annotations, let’s see how to leverage
validation classes instead. Data annotations are good, but adding metadata to types is not always the
most flexible way of doing things, and requires reflection, which is sometimes less instinctive than
object-oriented programming. Reflection is also slower, but that is not as much of a concern nowadays
as it was years ago; nevertheless, keep an eye out when writing code that uses reflection, and don’t
worry about what the framework offers you.

Validation types
To implement validation types for options (options validators), we can create a class that implements
one or more IValidateOptions<TOptions> interfaces. One type can validate multiple options, and
multiple types can validate the same options, so the possible combinations should be covering all
possible use cases.

Options and Logging Patterns214

Using a custom class is no harder than using data annotations. However, it allows us to remove the
validation concerns away from the options class itself and code more complex validation logic. You
should pick the way that makes the most sense for your project.

Here is how to do this via code:

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Options;
using Xunit;

namespace OptionsValidation;

public class ValidateOptionsWithTypes
{
 [Fact]
 public void Should_pass_validation()
 {
 var services = new ServiceCollection();
 services.AddSingleton<IValidateOptions<Options>, OptionsValidator>();
 services.AddOptions<Options>()
 .Configure(o => o.MyImportantProperty = "Some important value")
 .ValidateOnStart()
 ;
 var serviceProvider = services.BuildServiceProvider();
 var options = serviceProvider.
GetRequiredService<IOptionsMonitor<Options>>();
 Assert.Equal("Some important value", options.CurrentValue.
MyImportantProperty);
 }

 [Fact]
 public void Should_fail_validation()
 {
 var services = new ServiceCollection();
 services.AddSingleton<IValidateOptions<Options>, OptionsValidator>();
 services.AddOptions<Options>().ValidateOnStart();
 var serviceProvider = services.BuildServiceProvider();
 var options = serviceProvider.
GetRequiredService<IOptionsMonitor<Options>>();
 var error = Assert.Throws<OptionsValidationException>(() => options.
CurrentValue);
 Assert.Collection(error.Failures,
 f => Assert.Equal("'MyImportantProperty' is required.", f)

Chapter 8 215

);
 }

 private class Options
 {
 public string? MyImportantProperty { get; set; }
 }

 private class OptionsValidator : IValidateOptions<Options>
 {
 public ValidateOptionsResult Validate(string name, Options options)
 {
 if (string.IsNullOrEmpty(options.MyImportantProperty))
 {
 return ValidateOptionsResult.Fail("'MyImportantProperty' is
required.");
 }
 return ValidateOptionsResult.Success;
 }
 }
}

As you can see, this is the same options class we used in the previous example, without the data
annotation, and both test cases are very similar as well. The difference is that instead of using the
[Required] attribute, we created the OptionsValidator class, which contains the validation logic.

OptionsValidator implements IValidateOptions<Options>, which only contains the
ValidateOptionsResult Validate(string name, Options options) method. This method allows
named and default options to be validated. The name argument represents the options’ names. In our
case, we implemented the required logic for all options. The ValidateOptionsResult class exposes
a few members to help us out, such as the Success and Skip fields, as well as two Fail() methods.

ValidateOptionsResult.Success indicates success. ValidateOptionsResult.Skip indicates that the
validator did not validate the options, most likely because it only validates certain named options but
not the given one. For failure, we can fail with either a single message or a collection of messages by
calling ValidateOptionsResult.Fail(message) or ValidateOptionsResult.Fail(messages).

The next step is to make the validator available in the IoC container. In our case, we could do this using
a simple services.AddSingleton<IValidateOptions<Options>, OptionsValidator>() call, but we
could also scan one or more assemblies to register all our validators “automagically.”

Then, as with the data annotations, the validation is executed against that instance when we first use
the options. Using types to validate options is handy when you don’t want to use data annotations, can’t
use data annotations, or need to implement certain logic that is easier with a class than with attributes.

Options and Logging Patterns216

Next, we glance at how to leverage options with FluentValidation.

Project – OptionsValidationFluentValidation
In this project, we validate options classes using FluentValidation. FluentValidation is a popular open
source library that provides a validation framework different from data annotations. We explore
FluentValidation more in Chapter 15, Getting Started with Vertical Slice Architecture, but that should not
hinder you from following along with this example.

There are existing packages built by different people around using FluentValidation to validate options,
but I want to show you how to leverage a few patterns that we’ve learned so far to implement it ourselves
with only a few lines of code. In this micro-project, we leverage:

• Dependency injection
• The Strategy design pattern
• The Options pattern
• Options validation: validation types
• Options validation: eager validation

Let’s start with the options class itself:

public class MyOptions
{
 public string? Name { get; set; }
}

The options class is very thin, containing only a nullable Name property. Next, let’s look at the
FluentValidation validator, which validates that the Name property is not empty:

public class MyOptionsValidator : AbstractValidator<MyOptions>
{
 public MyOptionsValidator()
 {
 RuleFor(x => x.Name).NotEmpty();
 }
}

If you have never used FluentValidation before, the AbstractValidator<T> class implements the
IValidator<T> interface and adds utility methods like RuleFor.

To make ASP.NET Core validate MyOptions instances using FluentValidation, we can implement an
IValidateOptions<TOptions> interface as we did in the previous example, inject our validator, and
then leverage it to ensure the validity of MyOptions objects.

Here is a generic implementation of such a class that could be reused for any type of options:

public class FluentValidateOptions<TOptions> : IValidateOptions<TOptions>
 where TOptions : class

Chapter 8 217

{
 private readonly IValidator<TOptions> _validator;
 public FluentValidateOptions(IValidator<TOptions> validator)
 {
 _validator = validator;
 }

 public ValidateOptionsResult Validate(string name, TOptions options)
 {
 var validationResult = _validator.Validate(options);
 if (validationResult.IsValid)
 {
 return ValidateOptionsResult.Success;
 }
 var errorMessages = validationResult.Errors.Select(x =>
x.ErrorMessage);
 return ValidateOptionsResult.Fail(errorMessages);
 }
}

In the preceding code, the FluentValidateOptions<TOptions> class adapts the
IValidateOptions<TOptions> interface to the IValidator<TOptions> interface by leveraging
FluentValidation in the Validate method. In a nutshell, we use the output of one system and make
it an input of another system.

Now that we have all the building blocks, let’s have a look at the composition root:

using FluentValidation;
using Microsoft.Extensions.Options;

var builder = WebApplication.CreateBuilder(args);
builder.Services
 .AddSingleton<IValidator<MyOptions>, MyOptionsValidator>()
 .AddSingleton<IValidateOptions<MyOptions>,
FluentValidateOptions<MyOptions>>()
;
builder.Services
 .AddOptions<MyOptions>()

This type of adaptation is known as the Adapter design pattern. We explore the Adapter
pattern in the next chapter.

Options and Logging Patterns218

 // Uncomment the following line to make the application start
 //.Bind(builder.Configuration.GetSection("MyOptions"))
 .ValidateOnStart()
;
var app = builder.Build();
app.MapGet("/", () => "Hello World!");
app.Run();

The highlighted code is the key to this system. It registers the FluentValidation MyOptionsValidator
that contains the validation rules. Then it registers the generic FluentValidateOptions<MyOptions>
instance as an IValidateOptions<MyOptions> interface that .NET will use to validate the MyOptions
options. The FluentValidateOptions class uses the MyOptionsValidator to internally validate the
options.

When running the program, unless you uncomment the Bind line, the console yields the following
error:

Unhandled exception. Microsoft.Extensions.Options.OptionsValidationException:
'Name' must not be empty.

This is a good use case that can leverage validation types instead of data annotations. Moreover, it
took around 50 lines of code to write a generic wrapper around FluentValidation and use it to validate
our options class.

Now that we’ve explored many ways to configure and validate options objects, it is time to look at
a way to inject options classes directly either by choice or to work around a library capability issue.

Workaround – Injecting options directly
The only negative point about the .NET Options pattern is that we need to tie our code to the framework’s
interfaces, meaning that we need to inject an interface like IOptionsMonitor<Options> instead of the
Options class itself. By letting the consumers choose the interface, we let them control the lifetime
of the options.

In most cases, I prefer to inject Options directly, controlling its lifetime from the composition root,
instead of letting the class itself control its dependencies. I’m a little anti-control-freak, I know.

It just so happens that we can circumvent this easily with a little trick. Here, we need to do two things:

1. Set up the Options pattern, as shown previously in this chapter.
2. Create a dependency binding that tells the container how to inject the options class that we

want directly.

Note

As we explored in the Getting started section of this chapter, the IOptions, IOptionsFactory,
IOptionsMonitor, and IOptionsSnapshot interfaces define the options object’s lifetime.

Chapter 8 219

The following code from the OptionsValidation project does the same thing as our previous examples
and uses scopes to demonstrate scoping:

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Options;
using Xunit;

namespace OptionsValidation
{
 public class ByPassingInterfaces
 {
 [Fact]
 public void Should_support_any_scope()
 {
 var services = new ServiceCollection();
 services.AddOptions<Options>()
 .Configure(o => o.MyImportantProperty = "Some important
value");

Here, we are registering the Options class and then configuring the default value of MyImportantProperty
like we did in previous examples:

 services.AddScoped(sp =>
sp.GetRequiredService<IOptionsSnapshot<Options>>().Value);

In the preceding code block, we registered the Options class using a factory method. That way, we
can inject the Options class directly (with a scoped lifetime). We control the creation and the lifetime
from that delegate (highlighted code).

And voilà, we can now inject Options directly into our system without the need to tie our classes with
any .NET-specific options interface. Next, we test that out:

 var serviceProvider = services.BuildServiceProvider();
 using var scope1 = serviceProvider.CreateScope();
 var options1 = scope1.ServiceProvider. GetService<Options>();
 var options2 = scope1.ServiceProvider. GetService<Options>();
 Assert.Same(options1, options2);

The preceding code asserts that the two instances acquired from the same scope are the same:

 using var scope2 = serviceProvider.CreateScope();
 var options3 = scope2.ServiceProvider. GetService<Options>();
 Assert.NotSame(options2, options3);
 }

Options and Logging Patterns220

The preceding code asserts that the options from two different scopes are not the same:

 private class Options
 {
 public string? MyImportantProperty { get; set; }
 }
 }
}

Finally, we had our Options class, which allowed us to write those tests.

This can also be a good workaround for an existing system that could benefit from the Options pattern
without us having to update its code, assuming the system is dependency injection-ready. We can also
use this trick to compile an assembly that does not depend on Microsoft.Extensions.Options. By
using this trick, we can set the lifetime of the options from the composition root (here we used scoped),
which is a more classic dependency injection-enabled flow.

Conclusion
The Options pattern is a great way to inject strongly typed options classes to configure our applications.
We first explored the following options interfaces:

• IOptionsMonitor<TOptions> or IOptions<TOptions> for singleton
• IOptionsSnapshot<TOptions> for scoped
• IOptionsFactory<TOptions> for transient

We also covered multiple ways to configure and validate our options classes. We can load settings
from a file or configure them using custom classes that implement the IConfigureOptions<TOptions>
interface. We can then validate options using data annotations or custom classes that implement the
IValidateOptions<TOptions> interface.

All in all, these .NET options provide us with very flexible ways to inject options into our systems, and
I strongly recommend that you start using them today, if you are not already. This can help improve
the testability of your systems, and it also makes it easier to manage the changes of your applications
since we can configure options from the composition root.

Finally, we explored a trick to bypass injecting the framework’s interfaces and injected the options
classes directly instead, leading to controlling the lifetime and the instantiation of options classes
from the composition root instead of from the consumer class.

The Options pattern helps us stay in line with the SOLID principles, as follows:

• S: The Options pattern divides managing settings into multiple pieces where each has a single
responsibility. Loading unmanaged settings into strongly typed classes is one responsibility,
validating options using classes is another, and configuring options from multiple independent
sources is one more. On the other hand, I find data annotations validation to mix two
responsibilities in the options class, bending this principle. If you like data annotations, I
don’t want to stop you from using them.

Chapter 8 221

Data annotations can improve development speed but make the validation rules harder to
test. For example, it is easier to test a Validate method that returns a ValidateOptionsResult
object than attributes.

• O: The different IOptions[*]<Toptions> interfaces break this principle by forcing the consumer
to decide what lifetime the options should have and what capabilities. To change the lifetime
of a dependency, we must update the consuming class when using the default interfaces. On
the other hand, we explored an easy and flexible workaround that allows us to bypass this
issue for many scenarios and inject the options directly, inverting the dependency flow again,
leading to open/closed consumers.

• L: N/A
• I: The IValidateOptions<TOptions> and IconfigureOptions<TOptions> interfaces are two

good examples of segregating a system into smaller interfaces where each has a single purpose.
• D: The Options framework is built around interfaces, allowing us to depend on abstractions.

The IOptions[*]<Toptions> interfaces are the exceptions to this. Even if they are interfaces,
they tie us to implementation details like the options lifetime. In this case, I think it is more
beneficial to inject the options object directly (a data contract) instead of those interfaces.

Next, we explore .NET logging, which is another very important aspect of building applications; good
traceability can make all the difference when observing or debugging applications.

Becoming familiar with .NET logging abstractions
Another improvement of .NET Core over .NET Framework is its logging abstractions. Instead of relying
on third-party libraries, the new, uniform system offers clean interfaces that are backed by a flexible
and robust mechanism that helps implement logging into your application. It also supports third-party
libraries that are streamlined through that abstraction. Before we look at the implementation in more
detail, let’s talk about logging.

About logging
Logging is the practice of writing messages into a log and cataloging information for later use. That
information can be used to debug errors, trace operations, analyze usage, or any other reason that
creative people can come up with. Logging is a cross-cutting concern, meaning it applies to every
piece of your application. We talk about layers in Chapter 12, Understanding Layering, but until then,
let’s just say that a cross-cutting concern affects all layers and cannot be centralized in just one.

A log is made up of log entries. We can view each log entry as an event that happened during the
program’s execution. Those events are then written to the log. This log can be a file, a remote system,
simply stdout, or a combination of multiple destinations.

When creating a log entry, we must also think about the level of that log entry. In a way, this level
represents the type of message or the level of importance that we want to log. It can also be used to
filter those logs. Trace, Error, and Debug are examples of log entry levels. Those levels are defined in
the Microsoft.Extensions.Logging.LogLevel enum.

Options and Logging Patterns222

Another important aspect of a log entry is how it is structured. You can log a single string. Everyone
on your team could log single strings in their own way. But what happens when someone searches for
information? Chaos ensues! There’s the stress of not finding what that person is looking for and the
displeasure of the log’s structure, as experienced by that same person. One way to fix this is by using
structured logging. It is simple yet complex; you need to create a structure that every log entry follows.
That structure could be more or less complex. It could be serialized into JSON. The important part
is that the log entries are structured. We won’t get into this subject here, but if you have to decide on
a logging strategy, I recommend digging into structured logging first. If you are part of a team, then
chances are someone else already did. If that’s not the case, you can always bring it up. Continuous
improvement is a key aspect of life.

We could write a whole book on logging, best logging practices, structured logging, and distributed
logging, but this chapter aims to teach you how to use .NET logging abstractions.

Writing logs
First, the logging system is provider-based, meaning that you must register one or more
ILoggerProvider instances if you want your log entries to go somewhere. By default, when calling
Host.CreateDefaultBuilder(args) or WebApplication.CreateBuilder(args), it registers the
Console, Debug, EventSource, and EventLog (Windows only) providers, but this list can be modified.
You can add and remove providers if you need to. The required dependencies for using logging in the
application are also registered as part of this process.

Before we look at the code, let’s learn how to create log entries, which is the objective behind logging.
To create an entry, we can use one of the following interfaces: ILogger, ILogger<T>, or ILoggerFactory.
Let’s take a look at them in more detail:

• ILogger is the base abstraction.
• ILogger<T> uses T to automatically create the logging category.
• ILoggerFactory allows us to create an ILogger with a custom category name.

The following is the more commonly used pattern, which consists of injecting an ILogger<T> interface
and storing it in an ILogger field before using it, like this:

public class Service : IService
{
 private readonly ILogger _logger;
 public Service(ILogger<Service> logger)
 {
 _logger = logger ?? throw new ArgumentNullException(nameof(logger));

Note

The default configurations are part of the ConfigureDefaults extension method in the
HostingHostBuilderExtensions class (see GitHub: https://adpg.link/A5nF).

https://adpg.link/A5nF

Chapter 8 223

 }
 public void Execute()
 {
 _logger.LogInformation("Service.Execute()");
 }
}

In the preceding code, we have the private ILogger _logger field in the Service class. We inject an
ILogger<Service> logger that we store in that field and then use that member in the Execute method
to write an information-level message to the log.

The IService interface is very simple and only exposes a single Execute method for testing purposes:

public interface IService
{
 void Execute();
}

I loaded a small library that I created to test this out, which provides additional logging providers for
testing purposes. With that, we are creating a generic host (IHost) since we don’t need a WebApplication
in our tests, then we configure it:

namespace Logging;
public class BaseAbstractions
{
 [Fact]
 public void Should_log_the_Service_Execute_line()
 {
 // Arrange
 var lines = new List<string>();
 var host = Host.CreateDefaultBuilder()
 .ConfigureLogging(loggingBuilder =>
 {
 loggingBuilder.ClearProviders();
 loggingBuilder.AddAssertableLogger(lines);
 })
 .ConfigureServices(services =>
 {
 services.AddSingleton<IService, Service>();
 })
 .Build();
 var service = host.Services.GetRequiredService<IService>();

 // Act

Options and Logging Patterns224

 service.Execute();

 // Assert
 Assert.Collection(lines,
 line => Assert.Equal("Service.Execute()", line)
);
 }
 // Omitted IService, Service, and WebApplication test
}

In the Arrange phase of the test, we create some variables, configure IHost, and get an instance of
IService that we want to use to test the logging capabilities that we programmed in it.

The highlighted code removes all providers using the ClearProviders method and uses the
AddAssertableLogger extension method from the library that we loaded to add a new provider. We
could have just added a new provider if we wanted to, but I wanted to show you how to remove existing
providers so that we can start from a clean slate. That’s something you might need someday.

In the Act phase, we call the Execute method of our service. This method logs a line to the ILogger
implementation that is injected upon instantiation. Then, we assert that the line was written in the
lines list (that’s what AssertableLogger does; that is, it writes to a List<string>). From an ASP.NET
Core application, all that logging will go to the console by default. Logging is a great way to know what
is happening in the background when running the application.

The Service class is a simple consumer of an ILogger<Service> and uses that ILogger. You can do
the same for any class that you want to add logging support to. Change Service by the name of that
class to have a logger configured for your class. That generic argument becomes the category name
the logger uses when writing log entries.

Since ASP.NET Core uses a WebApplication instead of a generic IHost, here is the same test code
using that construct (usually written in Program.cs):

[Fact]
public void Should_log_the_Service_Execute_line_using_WebApplication()
{
 // Arrange
 var lines = new List<string>();
 var builder = WebApplication.CreateBuilder();
 builder.Logging.ClearProviders()
 .AddAssertableLogger(lines);

Note

The library that I loaded is available on NuGet and is named ForEvolve.Testing.Logging,
but this is irrelevant to understanding logging abstractions.

Chapter 8 225

 builder.Services.AddSingleton<IService, Service>();
 var app = builder.Build();
 var service = app.Services.GetRequiredService<IService>();

 // Act
 service.Execute();

 // Assert
 Assert.Collection(lines,
 line => Assert.Equal("Service.Execute()", line)
);
}

I highlighted the changes in the preceding code. In a nutshell, the extension methods used on the
generic host have been replaced by WebApplicationBuilder properties like Logging and Services.
Finally, the Create method creates a WebApplication instead of an IHost, exactly like in the
Program.cs file.

To wrap this up, these test cases allowed us to implement the most commonly used logging pattern
in ASP.NET Core and add a custom provider to make sure that we logged the correct information.
Logging is very important and adds visibility to production systems. Without logs, you don’t know
what is happening in your system, unless you are the only one using it, which is very unlikely. You
can also log what is happening in your infrastructure and run security scans in real time on those log
streams to quickly identify security breaches or system failures. These subjects are out of the scope
of this book, but having strong logging capabilities at the application level can only help your overall
logging strategy.

Before moving on to the next subject, let’s explore an example that leverages the ILoggerFactory
interface, sets a custom category name, and uses an ILogger instance to log a message. This should
be very similar to the previous example. Here’s the whole code:

namespace Logging;
public class LoggerFactoryExploration
{
 private readonly ITestOutputHelper _output;
 public LoggerFactoryExploration(ITestOutputHelper output)
 {
 _output = output ?? throw new ArgumentNullException(nameof(output));
 }

 [Fact]
 public void Create_a_ILoggerFactory()
 {
 // Arrange

Options and Logging Patterns226

 var lines = new List<string>();
 var host = Host.CreateDefaultBuilder()
 .ConfigureLogging(loggingBuilder => loggingBuilder
 .AddAssertableLogger(lines)
 .AddxUnitTestOutput(_output))
 .ConfigureServices(services => services.AddSingleton<Service>())
 .Build()
 ;
 var service = host.Services.GetRequiredService<Service>();

 // Act
 service.Execute();

 // Assert
 Assert.Collection(lines,
 line => Assert.Equal("LogInformation like any ILogger<T>.", line)
);
 }

 public class Service
 {
 private readonly ILogger _logger;
 public Service(ILoggerFactory loggerFactory)
 {
 ArgumentNullException.ThrowIfNull(loggerFactory);
 _logger = loggerFactory.CreateLogger("Some custom category name");
 }

 public void Execute()
 {
 _logger.LogInformation("LogInformation like any ILogger<T>.");
 }
 }
}

The preceding code should look very familiar. Let’s focus on the highlighted lines, which relate to
the current pattern:

1. We inject the ILoggerFactory interface into the Service class constructor (instead of an
ILogger<Service>).

2. We create an ILogger instance with the "Some custom category name" category name.
3. That logger is assigned to the _logger field.
4. We then use that ILogger like any other logger.

Chapter 8 227

As a rule of thumb, I suggest you stick with ILogger<T> as much as possible, but if you ever need a
more dynamic way for setting the category name for your logs, you can leverage the ILoggerFactory
instead. By default, when using ILogger<T>, the category name is the T parameter. The ILoggerFactory
interface is more of an internal piece than something made for us to consume; nonetheless, it exists
and could satisfy some use cases.

Now that we have covered how to write log entries, and since all log entries are not created equal,
let’s look at log levels next.

Log levels
In the previous examples, we used the LogInformation method to log information messages, but there
are other levels as well, shown in the following table:

Level Method Description Production

Trace LogTrace

This is used to capture detailed information
about the program, instrument execution
speed, and debugging. You can also log sensitive
information when using traces.

Disabled.

Debug LogDebug This is used to log debugging and development
information.

Disabled unless
troubleshooting.

Information LogInformation

This is used to track the flow of the application.
Normal events that occur in the system are often
information-level events, such as the system
started, the system stopped, and a user has
signed in.

Enabled.

Warning LogWarning

This is used to log abnormal behavior in the
application flow that does not cause the program
to stop, but that may need to be investigated; for
example, handled exceptions, failed network
calls, and accessing resources that do not exist.

Enabled.

Error LogError

This is used to log errors in the application flow
that do not cause the application to stop. Errors
must usually be investigated. Examples include
the failure of the current operation and an
exception that cannot be handled.

Enabled.

Note

In the preceding example, the ITestOutputHelper interface is part of the Xunit.
Abstractions assembly and allows us to write lines as standard output to the test log.
That output is available in the Visual Studio Test Explorer.

Options and Logging Patterns228

Critical LogCritical

This is used to log errors that require immediate
attention and represent a catastrophic state.
The program is most likely about to stop, and
the integrity of the application might be
compromised; for example, a hard drive is full,
the server is out of memory, or the database is in
a deadlocked state.

Enabled with
some alerts
that could be
configured
to trigger
automatically.

Those log levels tell the logger what severity a log entry is. Then, we can configure the system to log
only entries of at least a certain level, so we don’t fill out production logs with traces, for example.
As described in the preceding table, each log level serves one or more purposes. Nonetheless, your
project, team, or enterprise might have different guidelines in place.

In a project that I led, we benchmarked multiple ways to log simple and complex messages using
ASP.NET Core because we wanted to build clear and optimized guidelines around that. We could
not reach a fair conclusion when the messages were logged due to too much time variance between
benchmark runs. However, we observed a constant trend when messages were not logged (trace logs
with the minimum logging level configured to debug for example).

Based on that conclusion, I recommend logging the Trace and Debug messages using the following
construct instead of interpolation, string.Format, or other means. That may sound strange to optimize
for not logging something, but if you think about it, those log entries will be skipped in production, so
optimizing them will save your production app a few milliseconds of computing time here and there.

Let’s look at the fastest way to not write log entries:

_logger.LogTrace("Some: {variable}", variable);
// Or
_logger.LogTrace("Some: {0}", variable);

When the log level is disabled, such as in production, you only pay the price of a method call because
no processing is done on your log entries. On the other hand, if we use interpolation, the processing is
done, so that one argument is passed to the Log[Level] method, leading to a higher cost in processing
power for each log entry.

For lines that we know the program will log, like warnings, the way to go does not matter much since
the processing has to be done no matter how. Therefore, using interpolation in the code or letting the
logger do it later should yield a similar result. Of course, all other non-logging-specific optimization
applies, which is out of the scope of this book.

Note

One last note. I suggest you don’t try to over-optimize your code before there is a need for
that. The action of investing a lot of effort in optimizing something that does not need
optimizing is known as premature optimization. The idea is to optimize just enough,
bottlenecks, or when needed instead.

Chapter 8 229

Now that we know the log levels that .NET offers us, let’s overview the available logging providers.

Logging providers
To give you an idea of the possible built-in logging providers, here is a list from the official documentation
(see the Further reading section at the end of this chapter):

• Console
• Debug
• EventSource
• EventLog (Windows only)
• ApplicationInsights

The following is a list of third-party logging providers, also from the official documentation:

• elmah.io
• Gelf
• JSNLog
• KissLog.net
• Log4Net
• Loggr
• NLog
• Sentry
• Serilog
• Stackdriver

Now, if you need any of those or if your favorite logging library is part of the preceding list, you know
that you can use it. If it is not, maybe it supports ASP.NET Core but was not part of the documentation
when I consulted it.

Next, let’s learn how to configure the logging system.

Configuring logging
As with most of ASP.NET Core, we can configure logging. The default IHostBuilder, created when
calling Host.CreateDefaultBuilder(args), and the WebApplicationBuilder, created when calling
WebApplication.CreateBuilder, do a lot for us.

As we saw earlier, those methods register many configuration providers and load the Logging
section of the configuration. That section is present, by default, in the appsettings.json file. Like
all configurations, it is cumulative, so we can redefine part of it in another file or another provider.

I don’t want to spend too many pages on this, but it is good to know that you can customize
the minimum level of what you are logging. You can also use transformation files (such as
appsettings.Development.json) to customize those levels per environment.

Options and Logging Patterns230

For example, you can define your defaults in appsettings.json, then update a few for development
purposes in appsettings.Development.json, change production settings in appsettings.Production.
json, then change the staging settings in appsettings.Staging.json, and add some testing settings in
appsettings.Testing.json. Moreover, you can use environment variables or even secrets managers
like Azure Key Vault for more sensitive settings.

Before we move on, let’s take a peek at the default settings:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning"
 }
 }
}

We can define default levels (using Logging:LogLevel:Default) and a custom level for each category
(such as Logging:LogLevel:Microsoft) representing base namespaces. For example, from that
configuration file, the minimum level is Information, while every item that is part of the Microsoft
or Microsoft.* namespaces have a minimum level of Warning. That allows removing noise when
running the application. We can also leverage these configurations to debug certain parts of the
application by lowering the log level to Debug or Trace for only a subset of items (items from one or
more namespaces, for example).

We can also filter what we want to log on a provider basis, using configuration or code. In the
configuration file, we can change the default level of the console provider to Trace, like this:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning"
 },
 "Console": {
 "LogLevel": {
 "Default": "Trace"
 }
 }
 }
}

We kept the same default values but added the Logging:Console section (see highlighted code) with a
default LogLevel set to Trace. We could have defined more settings here, but that’s outside the scope
of this book.

Chapter 8 231

Instead, we can use one of the AddFilter extension methods, as shown in the following experimental
test code, or in conjunction with configurations.

Here is the service class that logs data:

public interface IService
{
 void Execute();
}
public class Service : IService
{
 private readonly ILogger _logger;
 public Service(ILogger<Service> logger)
 {
 _logger = logger ?? throw new ArgumentNullException(nameof(logger));
 }
 public void Execute()
 {
 _logger.LogInformation("[info] Service.Execute()");
 _logger.LogWarning("[warning] Service.Execute()");
 }
}

The preceding class is like other classes we used during the chapter but logs messages using two
different levels: Information and Warning. Here is a test case in which we leverage the AddFilter
method:

[Fact]
public void Should_filter_logs_by_provider()
{
 // Arrange
 var lines = new List<string>();
 var host = Host.CreateDefaultBuilder()
 .ConfigureLogging(loggingBuilder =>
 {
 loggingBuilder.ClearProviders();
 loggingBuilder.AddConsole();
 loggingBuilder.AddAssertableLogger(lines);
 loggingBuilder.AddxUnitTestOutput(_output);
 loggingBuilder
 .AddFilter<XunitTestOutputLoggerProvider>(
 level => level >= LogLevel.Warning
);
 })

Options and Logging Patterns232

 .ConfigureServices(services =>
 {
 services.AddSingleton<IService, Service>();
 })
 .Build();
 var service = host.Services.GetRequiredService<IService>();

 // Act
 service.Execute();

 // Assert
 Assert.Collection(lines,
 line => Assert.Equal("[info] Service.Execute()", line),
 line => Assert.Equal("[warning] Service.Execute()", line)
);
}

We created a generic host in the preceding test code and added three providers: the console and two
test providers — one that logs to a list and another that logs to the xUnit output. Then, we told the
system to filter out everything that is not at least a Warning from XunitTestOutputLoggerProvider
(see highlighted code); other providers are unaffected by that code.

We now know of two options to set the minimum logging levels:

• Code
• Configuration

You can tweak the way you configure your logging policies as needed. Code can be more testable,
while configurations can be updated at runtime without the need for deployment. Moreover, with
the cascading model, which allows us to override configuration, we can cover most use cases using
configurations. The biggest downside of configuration is that writing strings in a JSON file is more
error-prone than writing code (assuming you are not reverting to using strings there either).

That said, I usually stick with configurations to set those values as they do not change often. If you
prefer code, I’m not aware of any drawbacks, and it’s just a matter of preference.

Next, let’s look at a brief example of structured logging.

Note

In the code, the _output variable is an ITestOutputHelper, like we used previously in
this chapter.

Chapter 8 233

Structured logging
As stated at the beginning, structured logging can become very important and open opportunities.
Querying a data structure is always more versatile than querying a single line of text. That is even
more true if there is no clear guideline around logging, whether a line of text or a JSON-formatted
data structure.

To keep it simple, we leverage a built-in formatter (highlighted line below) that serializes our log
entries into JSON. Here is the Program.cs file:

var builder = WebApplication.CreateBuilder(args);
builder.Logging.AddJsonConsole();

var app = builder.Build();
app.MapGet("/", (ILoggerFactory loggerFactory) =>
{
 const string category = "root";
 var logger = loggerFactory.CreateLogger(category);
 logger.LogInformation("You hit the {category} URL!", category);
 return "Hello World!";
});
app.Run();

That transforms the console to logging JSON. For example, every time we hit the / URL, the console
displays the following JSON (but minified):

{
 "EventId": 0,
 "LogLevel": "Information",
 "Category": "root",
 "Message": "You hit the root URL!",
 "State": {
 "Message": "You hit the root URL!",
 "category": "root",
 "{OriginalFormat}": "You hit the {category} URL!"
 }
}

Without that formatter, the usual output would have been:

info: root[0]
 You hit the root URL!

Based on that comparison, it is easy to see that even if the JSON payload does not add much additional
information, it is easier to programmatically query.

Options and Logging Patterns234

The biggest benefit of structured logging is improved searchability. You can run more precise queries
at scale with a predefined data structure.

Of course, if you are setting up a production system, you would probably want more information
attached to such log items like the correlation ID of the request, optionally some information about
the current user, the server’s name on which the code is running, and possibly more details depending
on the application.

To take full advantage of structured logging, you may need more than the out-of-the-box features.
Some third-party libraries like Serilog offer those additional capabilities. However, defining the way
to send plain text to the logger could also be a start.

Each project should dictate the needs and depth of each of its features, including logging. Moreover,
structured logging is a broader subject that merits studying on its own. Nonetheless, I wanted to touch
on this subject a bit, and hopefully, you learned enough about logging to get started.

Conclusion
Logging is essential, and ASP.NET Core gives us various ways to log independently of third-party
libraries while allowing us to use our favorite logging framework. We can customize the way the logs
are written and categorized. We can use zero or more logging providers. We can also create custom
logging providers. Finally, we can use configurations or code to filter logs and much more.

What you must remember the most is the following pattern:

1. Inject an ILogger<T>, where T is the type of the class into which the logger is injected. T
becomes the category.

2. Save a reference of that logger into a private readonly ILogger field.
3. Use that logger in your methods to log messages using the appropriate log level.

With the .NET logging abstractions we covered in this chapter, you should have enough to get started.
Let’s recap what we explored in the chapter before learning about some structural design patterns.

Summary
.NET Core added many features, such as configuration and logging, that are now part of .NET. The new
APIs are better and provide more value than the old .NET Framework ones. Most of the boilerplate
code is gone, and almost everything is on an opt-in basis.

Options allows us to load and compose configurations from multiple sources while using those easily
in our systems through simple C# objects. It removes the hassle of the previous configuration from
web.config and makes it easy to use. No more complex boilerplate code is needed to create custom
web.config sections; just add a JSON object to appsettings.json, tell the system what section to
load, what the type should be, and voilà — you have your strongly typed options! The same simplicity
applies to consuming settings: inject the desired interface or the class itself and use it. With that, you
are up and running; no more static ConfigurationManager or other structures that are hard to test.

Chapter 8 235

Logging is also a great addition; it allows us to standardize the logging mechanism, making our systems
easier to maintain in the long run. For example, if you want to use a new third-party library or even
a custom-made one, you can load the provider into your Program, and the entire system will adapt
and start using it without any further changes. That’s what well-designed abstractions are supposed
to bring to a system.

This chapter closes the second section of this book that had ASP.NET Core at its center. In the next
three chapters, we explore design patterns to design flexible and robust components.

Questions
Let’s take a look at a few practice questions:

1. What is the lifetime of IOptionsMonitor<TOptions>?
2. What is the lifetime of IOptionsSnapshot<TOptions>?
3. What is the lifetime of IOptionsFactory<TOptions>?
4. Can we write log entries to the console and a file at the same time?
5. Is it true that we should log the trace- and debug-level log entries in a production environment?

Further reading
Here are some links to build upon what we learned in the chapter:

• [Official docs] Logging in .NET Core and ASP.NET Core: https://adpg.link/MUVG
• [Official docs] Options pattern in ASP.NET Core: https://adpg.link/RTGc

https://adpg.link/MUVG
https://adpg.link/RTGc

Section 3: Designing at
Component Scale
This section focuses on component design, where we study how an individual piece of software can
be crafted to achieve a specific goal. We do that by exploring a few structural Gang of Four patterns
to help design SOLID data structures and components. They also help simplify the complexity of our
code by encapsulating our logic in smaller units.

We continue with two behavioral patterns that help manage shared logic or simplify the efforts needed
to manage complex logic. We end the section by exploring how to transmit structured information
between components regarding operations’ errors and successes.

This section comprises the following chapters:

• Chapter 9, Structural Patterns
• Chapter 10, Behavioral Patterns
• Chapter 11, Understanding the Operation Result Design Pattern

9
Structural Patterns

This chapter explores four design patterns from the well-known Gang of Four (GoF). We use structural
patterns to create complex, flexible, and fine-grained classes.

Structural patterns help us build and organize complex object hierarchies in a maintainable fashion.
They allow us to add behaviors to existing classes dynamically, whether we designed the initial system
this way or as an afterthought that emerges out of necessity later in the program’s lifecycle.

The following topics will be covered in this chapter:

• Implementing the Decorator design pattern
• Implementing the Composite design pattern
• Implementing the Adapter design pattern
• Implementing the Façade design pattern

The first two patterns help us extend a class dynamically and efficiently manage a complex object
structure. The last two help us adapt an interface to another or shield a complex system with a simple
interface. Let’s begin!

Implementing the Decorator design pattern
The Decorator pattern allows us to extend objects at runtime while separating responsibilities. It
is a simple but powerful pattern. In this section, we explore how to implement this pattern in the
traditional way and how to leverage an open source tool named Scrutor to help us create powerful
dependency injection-ready decorators using .NET.

Goal
The decorator’s goal is to extend an existing object, at runtime, without changing its code. Moreover,
the decorated object should not be aware that it is being decorated, leaving it as a great candidate for
long-lived or complex systems that need to evolve. This pattern fits systems of all sizes.

I often use this pattern to add flexibility and create adaptability to a program for next to no cost. In
addition, small classes are easier to test, so the Decorator pattern adds ease of testability into the mix,
making it worth mastering.

Structural Patterns240

The Decorator pattern makes it easier to encapsulate responsibilities into multiple classes, instead
of packing multiple responsibilities inside a single class. Having multiple classes that each holds a
single responsibility makes the system easier to manage.

Design
A decorator class must both implement and use the interface that’s being implemented by the decorated
class. Let’s see this step by step, starting with a non-decorated class design:

Figure 9.1: A class diagram representing the ComponentA class implementing the
IComponent interface

In the preceding diagram, we have the following components:

• A client that calls the Operation() method of IComponent.
• ComponentA, which implements the IComponent interface.

This translates into the following sequence diagram:

Figure 9.2: A sequence diagram showing a consumer calling the Operation method of the ComponentA
class

Chapter 9 241

Now, say that we want to add some new behavior to ComponentA, but only in some cases. In other cases,
we want to keep the initial behavior. To do so, we could choose the Decorator pattern and implement
it as follows:

Figure 9.3: Decorator class diagram

Instead of modifying the ComponentA class, we created DecoratorA, which implements IComponent
as well. This way, Client can use an instance of DecoratorA instead of ComponentA and have access
to the new behavior, without impacting the other consumers of ComponentA. Then, to avoid rewriting
the whole component, an implementation of IComponent is injected when creating a new DecoratorA
instance (constructor injection). This new instance is stored in the component field and used by the
Operation() method (implicit use of the Strategy pattern).

We can translate the updated sequence like so:

Figure 9.4: Decorator sequence diagram

Structural Patterns242

In the preceding diagram, instead of calling ComponentA directly, Client calls DecoratorA, which in
turn calls ComponentA. Finally, DecoratorA does some postprocessing by calling its private method;
that is, AddBehaviorA().

To show you how powerful the Decorator pattern is before we jump into the code, know this: we can
chain decorators! Since our decorator depends on the interface (not the implementation), we could
inject another decorator, say DecoratorB, inside DecoratorA (or vice versa). We could then create an
infinite chain of rules that decorate one another, leading to a very powerful yet simple design.

Let’s take a look at the following class diagram, which represents our chaining example:

Figure 9.5: Decorator class diagram, including two decorators

Here, we created the DecoratorB class, which looks very similar to DecoratorA but has a private
AddBehaviorB() method instead of AddBehaviorA().

Let’s take a look at the sequence diagram for this:

Note

Nothing from the Decorator pattern limits us from doing preprocessing, postprocessing,
wrapping the decorated class’s call (the Operation method in this example) with some
logic (like an if statement or a try-catch), or all of that combined.

Note

The way we implement the decorator’s changes in behavior or state is irrelevant to the
pattern, which is why I excluded the AddBehaviorA() method from the initial class dia-
gram: to show you only the pattern. However, I added it to this one (Figure 9.5) to make
the idea behind having a second decorator clearer.

Chapter 9 243

Figure 9.6: Sequence diagram of two nested decorators

With this, we are beginning to see the power of decorators. In the preceding diagram, we can assess
that the behaviors of ComponentA have been changed twice without Client knowing about it. All those
classes are unaware of the next IComponent in the chain. They don’t even know that they are being
decorated. They only play their role in the plan—that’s all.

It is also important to note that the decorator’s power resides in its dependency on the interface,
not on an implementation, making it reusable. Based on that fact, we could swap DecoratorA and
DecoratorB to invert the order the new behaviors are applied without touching the code itself. We
could also apply the same decorator (say DecoratorC) to multiple IComponent implementations, like
decorating both DecoratorA and DecoratorB.

Project – Adding behaviors
To help visualize the Decorator pattern, let’s implement the previous example, which adds some
arbitrary behaviors. Each Operation() method returns a string that is then outputted to the response
stream. It is not fancy, but it shows how this works.

 First, let’s look at the IComponent interface and the ComponentA class:

public interface IComponent
{
 string Operation();
}
public class ComponentA : IComponent

Structural Patterns244

{
 public string Operation()
 {
 return "Hello from ComponentA";
 }
}

The IComponent interface only states that an implementation should have an Operation() method
that returns a string. The Operation() method implementation of the ComponentA class returns a
literal string.

Now that we described the first pieces, let’s look at the consumer, which is a minimal API endpoint:

var builder = WebApplication.CreateBuilder(args);
builder.Services.AddSingleton<IComponent, ComponentA>();

var app = builder.Build();
app.MapGet("/", (IComponent component) => component.Operation());
app.Run();

In the Program.cs file above, we register ComponentA as the implementation of IComponent, with a
singleton lifetime. We then inject an IComponent implementation when an HTTP request hits the /
endpoint. The delegate then calls the Operation() method (see highlight).

At this point, running the application (from any URL) will result in the following output:

Hello from ComponentA

This happened because the system injected an implementation of the IComponent interface of type
ComponentA into the / delegate, so the client outputs the result of ComponentA.

Next, we add the first decorator.

DecoratorA
Here, we want to modify the response without touching ComponentA. To do so, let’s create a decorator
named DecoratorA that wraps the Operation() result into a <DecoratorA> tag:

public class DecoratorA : IComponent
{
 private readonly IComponent _component;
 public DecoratorA(IComponent component)
 {
 _component = component ?? throw new
ArgumentNullException(nameof(component));
 }
 public string Operation()
 {

Chapter 9 245

 var result = _component.Operation();
 return $"<DecoratorA>{result}</DecoratorA>";
 }
}

DecoratorA depends on an implementation of IComponent. It uses that IComponent in the Operation()
method and wraps its result in an HTML-like (XML) tag.

Now that we have a decorator, we need to tell the IoC container to send an instance of DecoratorA
instead of ComponentA when injecting an IComponent interface.

DecoratorA should decorate ComponentA; or, more precisely, ComponentA should be injected into
DecoratorA.

To achieve this, we could register it as follows:

builder.Services.AddSingleton<IComponent>(serviceProvider => new DecoratorA(new
ComponentA()));

Here, we are telling ASP.NET Core to inject an instance of DecoratorA that decorates an instance of
ComponentA when injecting an IComponent interface. When we run the application, we should see the
following result in the browser:

<DecoratorA>Hello from ComponentA</DecoratorA>

Next, we create a second decorator.

DecoratorB
Now that we have a decorator, it is time to create a second decorator to demonstrate the power of
chaining decorators.

Context: At some point, we need to wrap that content once again, but we don’t want to modify any
existing classes. To achieve this, we concluded that creating a second decorator would be perfect, so
we created the following DecoratorB class:

public class DecoratorB : IComponent
{
 private readonly IComponent _component;
 public DecoratorB(IComponent component)
 {

Note

You may have noticed a few new keywords there, but even though it is not very elegant,
we can manually create new instances in the composition root without jeopardizing our
application’s health. We learn how to get rid of some of them later with the introduction
of Scrutor.

Structural Patterns246

 _component = component ?? throw new
ArgumentNullException(nameof(component));
 }
 public string Operation()
 {
 var result = _component.Operation();
 return $"<DecoratorB>{result}</DecoratorB>";
 }
}

It is very similar to DecoratorA, but the HTML-like tag is DecoratorB instead. The important and
similar part here is that we always depend on the IComponent abstraction, never on any concrete
class. This is what gives us the flexibility of decorating any IComponent, and this is what enables us
to chain decorators.

To complete this example, we need to update our composition root like this:

builder.Services.AddSingleton<IComponent>(serviceProvider => new DecoratorB(new
DecoratorA(new ComponentA())));

Now, we can decorate DecoratorA with DecoratorB, which, in turn, decorates ComponentA. Upon
running the application, you should see the following output:

<DecoratorB><DecoratorA>Hello from ComponentA</DecoratorA></DecoratorB>

And voilà! These decorators allowed us to modify the behavior of ComponentA without having an impact
on the code. However, our composition root is beginning to get messy as we are instantiating multiple
dependencies inside each other. This could make our application harder to maintain. Moreover, the
code is becoming harder to read. Furthermore, the code would be even harder to read if the decorators
were depending on other classes as well.

As we mentioned previously, you can use decorators to change the behavior or state of an object; be
creative. For example, you could create a class that queries remote resources, say over HTTP, and
then decorate that class with a small component that manages a memory cache of the results, limiting
the round trip to the remote server. You could then create another decorator that monitors the time
needed to query those resources and then log that somewhere. This could be a nice exercise to code
if you are looking to practice.

Next, we get rid of the new keywords.

Project – Decorator using Scrutor
The objective of this update is to simplify the composition of the system we just created. To achieve
this, we use Scrutor, an open source library that allows us to do just that, among other things.

Chapter 9 247

The first thing we need to do is install the NuGet package using Visual Studio or the CLI. When using
the CLI, run the following command:

dotnet add package Scrutor

Once Scrutor has been installed, you can use the Decorate<TService, TDecorator>() extension
method on IServiceCollection to add decorators.

By using Scrutor, we can update the following messy line:

builder.Services.AddSingleton<IComponent>(serviceProvider => new DecoratorB(new
DecoratorA(new ComponentA())))

And convert it into these three more elegant lines:

builder.Services
 .AddSingleton<IComponent, ComponentA>()
 .Decorate<IComponent, DecoratorA>()
 .Decorate<IComponent, DecoratorB>()
;

OK; what happened here?

We registered ComponentA as the implementation of IComponent, with a singleton lifetime, just like
the first time.

Then, by using Scrutor, we told the IoC container to override that first binding and to decorate the
already registered IComponent (ComponentA) with an instance of DecoratorA instead. Then, we overrode
the second binding by telling the IoC container to return an instance of DecoratorB that decorates
the last known binding of IComponent instead (DecoratorA).

The result is the same as what we did previously, but is now written in a more elegant and flexible
manner. The IoC container injects the equivalent of the following instance with a singleton lifetime:

var instance = new DecoratorB(new DecoratorA(new ComponentA()));

Whenever possible, keep your code simple. Using Scrutor is one way to achieve this. Code simplicity
helps in the long run as it is easier to read and follow, even for someone else reading it. Always consider
the fact that someone else may maintain your code.

Note

Why am I saying that it is more elegant and flexible? This is a simple example, but if we
start adding other dependencies to those classes, it could quickly end up as a complex
code block that could turn into a maintenance nightmare, become very hard to read,
and have manually managed lifetimes. Of course, if the system is simple, you can always
instantiate the decorators manually without loading an external library. Using methods
to encapsulate the initialization of some part of the system is also an option.

Structural Patterns248

To validate that both programs behave the same, with or without Scrutor, the following integration test
runs for both projects and ensures their correctness. See StartupTest.cs (https://adpg.link/Tbeh):

[Fact]
public async Task Should_return_a_double_decorated_string()
{
 // Arrange
 var client = _webApplicationFactory.CreateClient();
 // Act
 var response = await client.GetAsync("/");
 // Assert
 response.EnsureSuccessStatusCode();
 var body = await response.Content.ReadAsStringAsync();
 Assert.Equal(
 "Operation: <DecoratorB><DecoratorA>Hello from ComponentA</
DecoratorA></DecoratorB>",
 body
);
}

The preceding test sends an HTTP request to one of the applications running in memory and compares
the server response to the expected value. Since both projects should have the same output, that test
is reused in both DecoratorPlainStartupTest and DecoratorScrutorStartupTest.

Conclusion
The Decorator pattern is one of the simplest but most powerful design patterns out there. It augments
existing classes without modifying them. Moreover, if you don’t need to decorate all instances of X
by Y, you can encapsulate small blocks of logic, then create complex and granular object trees to fit
different needs; this can even be modified at runtime.

The Decorator pattern helps us stay in line with the SOLID principles, as follows:

• S: The Decorator pattern suggests creating small classes to add behaviors to other classes,
which segregates responsibilities.

• O: Decorators add behaviors to other classes without modifying them, which is literally the
definition of the OCP.

• L: N/A

Scrutor

You can also do assembly scanning using Scrutor (https://adpg.link/xvfS), which
allows you to perform automatic dependency registration. This is outside the scope of this
chapter, but it is worth looking into. Scrutor allows you to use the built-in IoC container
for more complex scenarios, postponing the need to replace it with a third-party one.

https://adpg.link/Tbeh
https://adpg.link/xvfS

Chapter 9 249

• I: By following the ISP, it should be easy to create decorators for your specific needs. If your
interfaces are too complex, packing in too many responsibilities, using decorators could be
harder. Having a hard time creating a decorator is a good indicator that something is wrong
with the design. A well-segregated interface should be easy to decorate.

• D: Depending on abstractions is the key to the Decorator’s power.

Next, we explore the Composite pattern, which helps us manage complex objects’ structures in a
different way than how the decorator does.

Implementing the Composite design pattern
The Composite design pattern is another structural GoF pattern that helps us manage complex object
structures.

Goal
The goal behind the Composite pattern is to create a hierarchical data structure where you don’t need
to differentiate groups of elements from a single element, making the hierarchy easy to use for its
consumers.

You could think of the Composite pattern as a way of building a graph or a tree with self-managing nodes.

Design
The design is straightforward; we have components and composites. Both implement a common interface
that defines the shared operations. The components are the single nodes, while the composites are
collections of components. Let’s take a look at a diagram:

Figure 9.7: Composite class diagram

Structural Patterns250

In the preceding diagram, Client depends on an IComponent interface. By doing so, it is unaware of the
implementation it is using; it could be a Component or a Composite. Then, we have two implementations:

• Component represents a single element; a leaf.
• Composite represents a collection of IComponent. The Composite object uses its children to

manage the hierarchy’s complexity by delegating part of the process to them.

Those three pieces, when put together, create the Composite design pattern. Considering that it is
possible to add Composite and Component as children of other Composite objects, it is possible to create
complex, non-linear, and self-managed data structures with next to no effort.

Project – BookStore
Let’s revisit the bookstore that we built in Chapter 3, Architectural Principles.

Context: The store is going so well that our little program is not enough anymore. Our fictional company
now owns multiple stores, so they need to divide those stores into sections, and they need to manage
book sets and single books. After a few minutes of gathering information, we realize that they can
have sets of sets, subsections, and possibly sub-stores, so we need a flexible design.

Let’s use the Composite pattern to solve this problem. The user interface that we are aiming to build
looks like this:

Note

You are not limited to one implementation of Component and one implementation of
Composite; you can create as many implementations of IComponent as you need to, based
on your use case. Then, you can mix and match them so your data structure fits your needs.
We explore how to display complex composites in Chapter 17, ASP.NET Core User Interfaces.

Chapter 9 251

Figure 9.8: The Bookstore project user interface rendered in a browser

Structural Patterns252

First, let’s look at the IComponent interface, which is the primary building block of the Composite
pattern:

public interface IComponent
{
 void Add(IComponent bookComponent);
 void Remove(IComponent bookComponent);
 string Display();
 int Count();
 string Type { get; }
}

This interface defines the following:

• The Add() and Remove() sub-components.
• Display(), for displaying the current component.
• Count(), for counting the number of books available from the current component.
• Knowing the Type of the component (displayed in the card’s footer).

From there, we need components. First, let’s focus on the BookComposite class, which abstracts away
most of the composite logic:

public abstract class BookComposite : IComponent
{
 protected readonly List<IComponent> children = new();
 public BookComposite(string name)
 {
 Name = name ?? throw new ArgumentNullException(nameof(name));
 }

 public string Name { get; }
 public virtual string Type => GetType().Name;

 // Not part of the IComponent interface.
 // Sets a different heading tag per sub-class,
 // see the AppendHeader method.
 protected abstract string HeadingTagName { get; }

 public virtual void Add(IComponent bookComponent)
 {
 children.Add(bookComponent);
 }

 public virtual int Count()

Chapter 9 253

 {
 return children.Sum(child => child.Count());
 }

 public virtual string Display()
 {
 var sb = new StringBuilder();
 sb.Append("<section class=\"card\">");
 AppendHeader(sb);
 AppendBody(sb);
 AppendFooter(sb);
 sb.Append("</section>");
 return sb.ToString();
 }
 private void AppendHeader(StringBuilder sb)
 {
 sb.Append($"<{HeadingTagName} class=\"card-header\">");
 sb.Append(Name);
 sb.Append($"{Count()}
books");
 sb.Append($"</{HeadingTagName}>");
 }
 private void AppendBody(StringBuilder sb)
 {
 sb.Append($"<ul class=\"list-group list-group-flush\">");
 children.ForEach(child =>
 {
 sb.Append($"<li class=\"list-group-item\">");
 sb.Append(child.Display());
 sb.Append("");
 });
 sb.Append("");
 }
 private void AppendFooter(StringBuilder sb)
 {
 sb.Append("<div class=\"card-footer text-muted\">");
 sb.Append($"<small class=\"text-muted text-right\">{Type}</small>");
 sb.Append("</div>");
 }

 public virtual void Remove(IComponent bookComponent)

Structural Patterns254

 {
 children.Remove(bookComponent);
 }
}

The BookComposite class implements the following shared features:

• Children management (highlighted in the code).
• Setting the Name property of the composite object.
• Automatically finding the Type name of its derived class.
• Counting the number of children (and, implicitly, the children’s children).
• Displaying the composite and its children.

Now, let’s take a look at a more complex composite example. By creating multiple classes, we can
pinpoint what responsibilities we have. In a real scenario, we may need to handle more than a name
and a count. Moreover, it shows how flexible the Composite pattern is.

Here is the full hierarchy that represents our bookstore:

Figure 9.9: Inheritance hierarchy of the BookStore project

Note

In this case, to focus on the Composite pattern, IComponent's implementations handle
how its data is presented. However, most of the time, I would not recommend doing so.
Why? Because we are giving too many responsibilities to those classes since we are tightly
coupling them with the HTML language. It makes the components harder to reuse. Think
Single-Responsibility Principle (SRP). We revisit these concepts in subsequent chapters
and fix this problem.

Note

Using the LINQ Sum() extension method in the children.Sum(child => child.Count());
expression allowed us to replace a more complex for loop and an accumulator variable.

Chapter 9 255

Under BookComposite, we have the following:

• Corporation, which represents the corporation that owns multiple stores. However, it is not
limited to owning stores; a corporation could own other corporations and stores, or any other
IComponent for that matter.

• Section, which is a section of a bookstore, or a category of books.
• Store, which represents a bookstore.
• Set, which is a book set, such as a trilogy.

All of these can be composed of any IComponent, making this an ultra-flexible data structure. Before
we move on, let’s look at the code for these BookComposite subclasses:

public class Corporation : BookComposite
{
 public Corporation(string name) : base(name) { }
 protected override string HeadingTagName => "h1";
}
public class Store : BookComposite
{
 public Store(string name) : base(name) { }
 protected override string HeadingTagName => "h2";
}
public class Section : BookComposite
{
 public Section(string name) : base(name) { }
 protected override string HeadingTagName => "h3";
}
public class Set : BookComposite
{
 public Set(string name, params IComponent[] books)
 : base(name)
 {
 foreach (var book in books)
 {
 Add(book);
 }
 }
 protected override string HeadingTagName => "h4";
}

As you can see, the code is straightforward; the subclasses inherit from BookComposite, which does
most of the work, leaving them to specify only the value of the HeadingTagName property. Set is different
and allows us to inject other IComponent objects into its constructor. This is going to be convenient
later when we assemble the tree (Hint: A book set contains multiple books).

Structural Patterns256

The last part of our Composite pattern’s implementation is the Book class:

public class Book : IComponent
{
 public Book(string title)
 {
 Title = title ?? throw new ArgumentNullException(nameof(title));
 }
 public string Title { get; set; }
 public string Type => "Book";
 public int Count() => 1;
 public string Display() => $"{Title} <small class=\"text-muted\">({Type})</
small>";
 public void Add(IComponent bookComponent) => throw new
NotSupportedException();
 public void Remove(IComponent bookComponent) => throw new
NotSupportedException();
}

The Book class is a little different as it is not a collection of other objects, but a single node. Let’s look
at the differences:

• It has a Title property, instead of Name. How to name a component is not defined in the
IComponent interface, so we can do what we want; in this case, a book has a title, not a name.

• It returns "Book" as the value of its Type property.
• It tells the callers that both the Add() and Remove() operations are not supported by throwing

an exception.
• Its Count() method always returns 1 because an instance of the Book class represents a single

book and, by extension, only represent themselves: one book; this is the leaf.
• The Display() method is also way simpler because it only needs to handle itself; there are

no children.

Before we jump into the program, let’s look at the last part that was added to help encapsulate the data
structure’s creation. This is not part of the Composite pattern, but now that we know what a factory
is, we can use one to encapsulate the creation logic of our data structure. The factory interface looks
like the following:

public interface ICorporationFactory
{
 Corporation Create();
}

The default concrete implementation of ICorporationFactory is DefaultCorporationFactory, and
it creates the following structure (visual representation; see https://adpg.link/2Vqw for the full-size
image):

https://adpg.link/2Vqw

Chapter 9 257

Figure 9.10: A representation of the data that the DefaultCorporationFactory class creates

Structural Patterns258

If we take a close look, we can see that the structure is non-linear. There are sections, subsections,
sets, and subsets. We could even add books directly to the store if we want. This whole structure is
defined using our composite model in DefaultCorporationFactory.

To keep it simple, let’s focus on the West Store’s Fiction section:

Figure 9.11: The Fiction section of the West Store data

In the West Store, we have a section that contains a fabricated book and a subsection named Science
fiction. In Science fiction, there is another fabricated book and a set of books named Star Wars. Three
subsets represent the three trilogies under the Star Wars set, which reveal the flexibility of the design.

Let’s take a look at the code that builds that section in isolation. Feel free to consult the full source
code for the complete example (https://adpg.link/DD8e). Here is the code:

public class DefaultCorporationFactory : ICorporationFactory
{
 public Corporation Create()
 {
 var corporation = new Corporation("My Huge Book Store Company!");
 corporation.Add(CreateEastStore());
 corporation.Add(CreateWestStore());
 return corporation;
 }
 private IComponent CreateWestStore()
 {
 var store = new Store("West Store");
 store.Add(CreateFictionSection());
 store.Add(CreateFantasySection());

https://adpg.link/DD8e

Chapter 9 259

 store.Add(CreateAdventureSection());
 return store;
 }
 private IComponent CreateFictionSection()
 {
 var section = new Section("Fiction");
 section.Add(new Book("Some alien cowboy"));
 section.Add(CreateScienceFictionSection());
 return section;
 }
 private IComponent CreateScienceFictionSection()
 {
 var section = new Section("Science Fiction");
 section.Add(new Book("Some weird adventure in space"));
 section.Add(new Set(
 "Star Wars",
 new Set(
 "Prequel trilogy",
 new Book("Episode I: The Phantom Menace"),
 new Book("Episode II: Attack of the Clones"),
 new Book("Episode III: Revenge of the Sith")
),
 new Set(
 "Original trilogy",
 new Book("Episode IV: A New Hope"),
 new Book("Episode V: The Empire Strikes Back"),
 new Book("Episode VI: Return of the Jedi")
),
 new Set(
 "Sequel trilogy",
 new Book("Episode VII: The Force Awakens"),
 new Book("Episode VIII: The Last Jedi"),
 new Book("Episode IX: The Rise of Skywalker")
)
));
 return section;
 }
 // ...
}

Structural Patterns260

I find the preceding code very exhaustive, making the creation of this part of the data structure clear.
Now that we’ve read part of the code of the factory, let’s head back to the Composite pattern and
learn how to display it. In short, we only need to call the Display() method of the root node of our
composite model (highlighted), like this:

using Composite.Services;

var builder = WebApplication.CreateBuilder(args);
builder.Services.AddSingleton<ICorporationFactory,
DefaultCorporationFactory>();

var app = builder.Build();
app.MapGet("/", async (HttpContext context, ICorporationFactory
corporationFactory) =>
{
 var compositeDataStructure = corporationFactory.Create();
 var output = compositeDataStructure.Display();
 context.Response.Headers.Add("Content-Type", "text/html; charset=utf-8");
 await context.Response.WriteAsync("[HTML removed for brevity]");
 await context.Response.WriteAsync(output);
 await context.Response.WriteAsync("[HTML removed for brevity]");
});
app.Run();

Let’s take a look at what’s happening in the preceding code:

• We are telling the IoC container to bind the DefaultCorporationFactory class to the
ICorporationFactory interface.

• In the minimal API delegate, we inject an implementation of ICorporationFactory, build the
data structure, and display it. This is the part that represents the consumer of our Composite
pattern implementation.

Now, let’s analyze the content of the MapGet delegate in more detail:

1. We use the injected ICorporationFactory corporationFactory parameter to create the data
structure.

2. We call the Display() method to generate the output; the highlighted line. This is where the
composite magic happens.

3. Finally, we write that output to the response stream by calling await context.Response.
WriteAsync(output);. We wrap the content of the output variable with omitted HTML that
adds the default tags like <html>, <head>, and <body>, registers Bootstrap, and so on.

The Composite pattern allowed us to render a complex data structure in a small method call. Since
each component handles itself in an autonomous fashion, the burden of handling this complexity is
taken away from the consumer.

Chapter 9 261

In another scenario, we could have used the data instead of blindly displaying it; we could have also
implemented a way of browsing that data or any other use cases that may come to mind. In this code
example, I added a bit of complexity on purpose so that we could experiment with the Composite
pattern in a more complex scenario while keeping extraneous details away from the code as much
as possible.

I encourage you to play around with the existing data structure so that you understand the pattern.
You could also try adding a Movie class to manage movies; a bookstore must diversify its activities.
You could also differentiate movies from books so that customers are not confused. The bookstores
could have physical and digital books as well.

If, after all of that, you are still looking for more, try building a new application from scratch and using
the Composite pattern to create, manage, and display a multi-level menu.

Conclusion
The Composite pattern is very effective at building, managing, and maintaining complex non-linear
data structures. Its power is primarily in its self-management capabilities. Each node, component,
or composite is responsible for its own logic, leaving little to no work for the composite’s consumers.

Using the Composite pattern helps us follow the SOLID principles in the following ways:

• S: It helps divide multiple elements of a complex data structure into small classes, in order to
split responsibilities.

• O: By allowing us to “mix and match” different implementations of IComponent, the Composite
pattern allows us to extend the data structure without impacting the other existing classes. For
example, you could create a new class that implements IComponent and start using it right
away, with no need to modify any other component classes.

• L: N/A
• I: The Composite pattern may violate the ISP when single items implement operations that

only impact the collections.
• D: All of the Composite pattern actors depend solely on IComponent.

Next, we move to a different type of structural pattern that adapts one interface to another.

Implementing the Adapter design pattern
The Adapter pattern is another structural GoF pattern that helps adapt the API of one class to the API
of another interface.

Goal
The adapter’s goal is to plug in a component that does not respect the expected contract and adapt it
so that it does. The adapter comes in handy when you cannot change the adaptee’s code or if you do
not want to change it.

Structural Patterns262

Design
Think of the adapter as a power outlet’s universal adapter; you can connect a North American device
to a European outlet by connecting it to the adapter and then connecting it to the power outlet. The
Adapter design pattern does exactly that, but for APIs.

Let’s start by looking at the following diagram:

Figure 9.12: Adapter class diagram

In the preceding diagram, we have the following actors:

• ITarget, which is the interface that holds the contract that we want (or have) to use.
• Adaptee, which is the concrete component that we want to use that does not conform to ITarget.
• Adapter, which adapts the Adaptee class to the ITarget interface.

There is a second way of implementing the Adapter pattern that implies inheritance. If you can go for
composition, go for it, but if you need access to protected methods or other internal states of Adaptee,
you can go for inheritance instead, like this:

Figure 9.13: Adapter class diagram inheriting the Adaptee

Chapter 9 263

The actors are the same, but instead of composing Adapter with Adaptee, Adapter inherits from
Adaptee. This makes Adapter become both an Adaptee and an ITarget.

Project – Greeter
Context: We’ve programmed a highly sophisticated greeting system that we want to reuse in a new
program. However, its interface does not match the new design, and we cannot modify it because
other systems use that greeting system.

To fix this problem, we decided to apply the Adapter pattern. Here is the code of the external greeter
(ExternalGreeter), and the new interface (IGreeter) used in the new system. This code must not
directly modify the ExternalGreeter class to prevent any breaking changes from occurring in other
systems:

public interface IGreeter
{
 string Greeting();
}
public class ExternalGreeter
{
 public string GreetByName(string name)
 {
 return $"Adaptee says: hi {name}!";
 }
}

Next is how the external greeter is adapted to meet the latest requirements:

public class ExternalGreeterAdapter : IGreeter
{
 private readonly ExternalGreeter _adaptee;
 public ExternalGreeterAdapter(ExternalGreeter adaptee)
 {
 _adaptee = adaptee ?? throw new ArgumentNullException(nameof(adaptee));
 }
 public string Greeting()
 {
 return _adaptee.GreetByName("ExternalGreeterAdapter");
 }
}

In the preceding code, the actors are as follows:

• IGreeter, which represents ITarget. This is the interface that we want to use.

Structural Patterns264

• ExternalGreeter, which represents Adaptee. This is the external component that already
contains all the logic that’s been programmed and tested. This could be located in an external
assembly, maybe even installed from NuGet.

• ExternalGreeterAdapter, which represents Adapter. This is where the adapter’s job is done:
ExternalGreeterAdapter.Greeting() calls ExternalGreeter.GreetByName("ExternalGreeter
Adapter"), which implements the greeting logic.

Now, we can call the IGreeter.Greeting() method and get the result of the ExternalGreeter.
GreetByName("ExternalGreeterAdapter") call. With this in place, we can reuse the existing logic.
We can test any IGreeter consumers by mocking the IGreeter interface, without caring about the
ExternalGreeterAdapter class.

I have to admit that the “complex logic” in this case is pretty simple, but we are here for the Adapter
pattern, not for imaginary business logic. Now, let’s take a look at the consumer:

var builder = WebApplication.CreateBuilder(args);
builder.Services.AddSingleton<ExternalGreeter>();
builder.Services.AddSingleton<IGreeter, ExternalGreeterAdapter>();

var app = builder.Build();
app.MapGet("/", (IGreeter greeter) => greeter.Greeting());
app.Run();

In the preceding code, we composed our application by specifying that the same instance of
ExternalGreeterAdapter should be provided every time we ask for an IGreeter interface (singleton).
We also told the container to provide a single instance of ExternalGreeter whenever it’s requested
(in this case, it’s injected into ExternalGreeterAdapter).

Then, the consumer (Client in the preceding class diagrams) is the app.MapGet("/", ...) delegate
(see the highlighted code of the preceding code block). IGreeter is injected as a parameter of the
delegate when an HTTP call is made to /. Then, the delegate calls the Greeting method on that
injected instance. Finally, it outputs the greeting to the response stream automatically.

The following diagram represents what’s happening in this system:

Figure 9.14: Greeter system sequence diagram

Chapter 9 265

And voilà! We’ve adapted the ExternalGreeterAdapter class to the IGreeter interface with little effort.

Conclusion
The Adapter pattern is another simple pattern that offers flexibility. With it, we can use older or non-
conforming components without rewriting them. Of course, depending on the ITarget and Adaptee
interfaces, you may need to put more or less effort into writing the code of the Adapter class.

Now, let’s learn how the Adapter pattern can help us follow the SOLID principles:

• S: The Adapter pattern has only one responsibility: make an interface work with another
interface.

• O: The Adapter pattern allows us to modify the Adaptee’s interface without the need to modify
its code.

• L: Inheritance is not much of a concern when it comes to the Adapter pattern, so once again,
this principle does not apply. If Adapter inherits from Adaptee, the goal is to change its interface,
not its behavior, which should conform to the LSP.

• I: Since we could see the Adapter class as a means to an end where ITarget is the end, the
Adapter pattern is directly depending on the design of ITarget and has no direct impact on it
(good or bad). Your only concern for this principle is to design ITarget well enough so that it
follows the ISP, which is not part of the pattern, but the reason to use the pattern.

• D: The Adapter pattern introduces only an implementation of the ITarget interface. Even if
the adapter depends on a concrete class, its goal is to break the direct dependency on that
external component by adapting it to the ITarget interface.

Next, we explore the last structural pattern of the chapter that teaches foundational concepts.

Implementing the Façade design pattern
The Façade pattern is another structural GoF pattern, similar to the Adapter pattern. It creates a wall
(a façade) between one or more subsystems. The big difference between the adapter and the façade is
that instead of adapting an interface to another, the façade simplifies the use of a subsystem, typically
by using multiple classes of that subsystem.

The Façade pattern is an extremely useful pattern that can be adapted to multiple situations.

Goal
The goal of the Façade pattern is to simplify the use of one or more subsystems by providing an interface
that is easier to use than the subsystems themselves, shielding the consumers from that complexity.

Note

The same idea can be applied to shielding one or more programs, but in this case, the
façade is called a gateway—more on that in Chapter 16, Introduction to Microservices Ar-
chitecture.

Structural Patterns266

Design
We could create multiple diagrams representing a multitude of subsystems, but let’s keep things simple
here. Remember that you can replace the single subsystem shown in the following diagram with as
many subsystems as you need to adapt:

Figure 9.15: A class diagram representing a Façade object that hides a complex subsystem

As we can see, Façade plays the intermediary between Client and the subsystem, simplifying its usage.
Let’s see this in action as a sequence diagram:

Figure 9.16: A sequence diagram representing a Façade object that interacts with a complex subsystem

Chapter 9 267

In the preceding diagram, Client calls Façade once, while Façade places multiple calls against different
classes.

There are multiple ways of implementing a façade:

• Opaque façades: In this form, the Façade class is inside the subsystem. All other classes of the
subsystem have an internal visibility modifier. This way, only the classes inside the subsystem
can interact with the other internal classes, forcing the consumers to use the Façade class.

• Transparent façades: In this form, the classes can have a public modifier, allowing the
consumers to use them directly or to use the Façade class. This way, we can create the Façade
class inside or outside the subsystem.

• Static façades: In this form, the Façade class is static. We can implement a static façade as
opaque or transparent. Use this approach only as a last resort because global (static) elements
tend to limit flexibility and testability.

Project – The façades
In this example, we will play with three C# projects:

• An ASP.NET Core application leveraging minimal APIs to expose four HTTP endpoints.
Two endpoints aim at OpaqueFacadeSubSystem, while the other two endpoints aim at
TransparentFacadeSubSystem. This is our consumer.

• The OpaqueFacadeSubSystem class library implements an opaque façade.
• The TransparentFacadeSubSystem class library implements a transparent façade.

Let’s start with the class libraries.

Opaque façade
In this assembly, only the façade is public; all the other classes are internal, which means they are
hidden from the external world. In most cases, this is not ideal; hiding everything makes the subsystem
less flexible and harder to extend.

However, in some scenarios, you may want to control access to your internal APIs. This may be because
they are not mature enough and you don’t want any third party to depend on them, or for any other
reasons you may deem appropriate for your specific use case.

Note

To follow the SOLID principles, adding some interfaces representing the elements of the
subsystem seemed appropriate. In subsequent chapters, we explore how to organize our
abstractions to be more reusable, but for now, both abstractions and implementations
are in the same assembly.

Structural Patterns268

Let’s start by taking a look at the following subsystem code:

// An added interface for flexibility
public interface IOpaqueFacade
{
 string ExecuteOperationA();
 string ExecuteOperationB();
}
// A hidden component
internal class ComponentA
{
 public string OperationA() => "Component A, Operation A";
 public string OperationB() => "Component A, Operation B";
}
// A hidden component
internal class ComponentB
{
 public string OperationC() => "Component B, Operation C";
 public string OperationD() => "Component B, Operation D";
}
// A hidden component
internal class ComponentC
{
 public string OperationE() => "Component C, Operation E";
 public string OperationF() => "Component C, Operation F";
}
// The opaque façade using the other hidden components
public class OpaqueFacade : IOpaqueFacade
{
 private readonly ComponentA _componentA;
 private readonly ComponentB _componentB;
 private readonly ComponentC _componentC;
 // Using constructor injection
 internal OpaqueFacade(ComponentA componentA, ComponentB componentB,
ComponentC componentC)
 {
 _componentA = componentA ?? throw new
ArgumentNullException(nameof(componentA));
 _componentB = componentB ?? throw new
ArgumentNullException(nameof(componentB));
 _componentC = componentC ?? throw new
ArgumentNullException(nameof(componentC));

Chapter 9 269

 }
 public string ExecuteOperationA()
 {
 return new StringBuilder()
 .AppendLine(_componentA.OperationA())
 .AppendLine(_componentA.OperationB())
 .AppendLine(_componentB.OperationD())
 .AppendLine(_componentC.OperationE())
 .ToString();
 }
 public string ExecuteOperationB()
 {
 return new StringBuilder()
 .AppendLine(_componentB.OperationC())
 .AppendLine(_componentB.OperationD())
 .AppendLine(_componentC.OperationF())
 .ToString();
 }
}

As you can see, the OpaqueFacade class is coupled with ComponentA, ComponentB, and ComponentC
directly. There was no point in extracting any internal interfaces since the subsystem is not extensible
anyway. We could have done this to offer some kind of internal flexibility, but in this case, there was
no advantage in doing so.

Besides this coupling, ComponentA, ComponentB, and ComponentC define two methods each, which
returns a string describing their source. With that code in place, we can observe what is happening
and how the final result was composed.

OpaqueFacade also exposes two methods, but each composes a different message by using the
underlying subsystem’s components. This is a classic use of a façade; the façade queries other objects
in a more or less complicated way and then does something with the results, taking away the caller’s
burden of knowing the subsystem.

Moreover, to register the OpaqueFacadeSubSystem façade against the IoC container, we needed some
“magic” to overcome the internal visibility modifiers. To solve this problem, I added the following
extension method that registers the dependencies, as we explored in Chapter 7, Deep Dive into Dependency
Injection. The extension method is accessible by the consumer application:

public static class StartupExtensions
{
 public static IServiceCollection AddOpaqueFacadeSubSystem(this
IServiceCollection services)
 {
 services.AddSingleton<IOpaqueFacade>(serviceProvider

Structural Patterns270

 => new OpaqueFacade(new ComponentA(), new ComponentB(), new
ComponentC()));
 return services;
 }
}

Next, to the transparent façade implementation.

Transparent façade
The transparent façade is the most flexible type of façade, extremely suitable for a system that leverages
dependency injection. The implementation is very similar to the opaque façade, but the public visibility
modifier changes how consumers can access the class library elements. For this system, it was worth
adding interfaces to allow the consumers of the subsystem to extend it when needed.

First, let’s take a look at the abstractions:

namespace TransparentFacadeSubSystem.Abstractions
{
 public interface ITransparentFacade
 {
 string ExecuteOperationA();
 string ExecuteOperationB();
 }
 public interface IComponentA
 {
 string OperationA();
 string OperationB();
 }
 public interface IComponentB
 {
 string OperationC();
 string OperationD();
 }
 public interface IComponentC
 {
 string OperationE();
 string OperationF();

}

The API of this subsystem is the same as the opaque façade. The only difference is how we can use
the subsystem and extend it (from a consumer standpoint). The implementations are mostly the same
as well, but the classes implement the interfaces and are public; the highlighted elements represent
the changes that have been made:

Chapter 9 271

namespace TransparentFacadeSubSystem
{
 public class ComponentA : IComponentA
 {
 public string OperationA() => "Component A, Operation A";
 public string OperationB() => "Component A, Operation B";
}
 public class ComponentB : IComponentB
 {
 public string OperationC() => "Component B, Operation C";
 public string OperationD() => "Component B, Operation D";
 }
 public class ComponentC : IComponentC
 {
 public string OperationE() => "Component C, Operation E";
 public string OperationF() => "Component C, Operation F";
 }
 public class TransparentFacade : ITransparentFacade
 {
 private readonly IComponentA _componentA;
 private readonly IComponentB _componentB;
 private readonly IComponentC _componentC;
 public TransparentFacade(IComponentA componentA, IComponentB
componentB, IComponentC componentC)
 {
 _componentA = componentA ?? throw new
ArgumentNullException(nameof(componentA));
 _componentB = componentB ?? throw new
ArgumentNullException(nameof(componentB));
 _componentC = componentC ?? throw new
ArgumentNullException(nameof(componentC));
 }
 public string ExecuteOperationA()
 {
 return new StringBuilder()
 .AppendLine(_componentA.OperationA())
 .AppendLine(_componentA.OperationB())
 .AppendLine(_componentB.OperationD())
 .AppendLine(_componentC.OperationE())
 .ToString();
 }

Structural Patterns272

 public string ExecuteOperationB()
 {
 return new StringBuilder()
 .AppendLine(_componentB.OperationC())
 .AppendLine(_componentB.OperationD())
 .AppendLine(_componentC.OperationF())
 .ToString();
 }
 }
}

Before going further, note that the following extension method was also created to simplify the use
of the subsystem. However, everything that’s defined there can be overridden (which is not the case
for the opaque façade):

public static class StartupExtensions
{
 public static IServiceCollection AddTransparentFacadeSubSystem(this
IServiceCollection services)
 {
 services.AddSingleton<ITransparentFacade, TransparentFacade>();
 services.AddSingleton<IComponentA, ComponentA>();
 services.AddSingleton<IComponentB, ComponentB>();
 services.AddSingleton<IComponentC, ComponentC>();
 return services;
 }
}

As you can see, all the new elements are gone and have been replaced by simple dependency registration
(singleton lifetimes, in this case). These little differences give you the tools to reimplement any part
of the subsystem if you want to; see the following subsection for an example.

Besides those differences, the transparent façade plays the same role as the opaque façade, outputting
the same result.

Note

In the transparent façade code, we can register bindings because classes and interfaces
are public. In the opaque façade, we had to define the constructor of the OpaqueFacade
class as internal because the type of its parameters (ComponentA, ComponentB, and
ComponentC) are internal. Changing the visibility modifier of the constructor from
internal to public yields a CS0051 Inconsistent accessibility error.

Chapter 9 273

The program
Now, let’s analyze the consumer that is a micro-ASP.NET Core application that forwards HTTP requests
to the façades.

The first step is to register the dependencies (in the composition root), like this:

var builder = WebApplication.CreateBuilder(args);
builder.Services
 .AddOpaqueFacadeSubSystem()
 .AddTransparentFacadeSubSystem()
;

Now that everything has been registered, the second thing we need to do is route those HTTP requests
to the façades. Let’s take a look at the code first:

var app = builder.Build();
app.MapGet("/opaque/a", (IOpaqueFacade opaqueFacade) => opaqueFacade.
ExecuteOperationA());
app.MapGet("/opaque/b", (IOpaqueFacade opaqueFacade) => opaqueFacade.
ExecuteOperationB());
app.MapGet("/transparent/a", (ITransparentFacade transparentFacade) =>
transparentFacade.ExecuteOperationA());
app.MapGet("/transparent/b", (ITransparentFacade transparentFacade) =>
transparentFacade.ExecuteOperationB());
app.Run();

In the preceding block (see highlighted code), we define four routes. Each route dispatches the request
to one of the façade’s methods. A façade is injected in each delegate, and thanks to the minimal API
feature, this code is indeed minimal and very clean.

If you run the program and navigate to https: //localhost:9004/transparent/a, the page should
display the following:

Figure 9.17: The result of executing the ExecuteOperationA method of the ITransparentFacade instance

Note

With these extension methods, the application root is so clean that it is hard to know that
we registered two subsystems against the IoC container. This is a good way of keeping your
code organized and clean, especially when you’re building class libraries.

Structural Patterns274

What happened is located inside the delegates. It uses the injected ITransparentFacade service and
calls its ExecuteOperationA() method, and then outputs the result variable to the response stream.

Now, let’s define how ITransparentFacade is composed:

• ITransparentFacade is an instance of TransparentFacade.
• We inject IComponentA, IComponentB, and IComponentC in the TransparentFacade class.
• These dependencies are instances of ComponentA, ComponentB, and ComponentC, respectively.

Visually, the following flow happens:

Figure 9.18: A representation of the call hierarchy that occurs when the consumer executes the
ExecuteOperationA method

In the preceding diagram, we can see the shielding that’s done by the façade and how it has made the
consumer’s life easier. Here, there’s one call instead of four.

Note

One of the hardest parts of using dependency injection is its abstractness. If you are not
sure how all those parts are assembled, add a breakpoint into Visual Studio (let’s say, on
the var result = transparentFacade.ExecuteOperationA() line) and run the ap-
plication in debug mode. From there, Step Into each method call. That should help you
figure out what is happening. Using the debugger to find the concrete types and their
states can help find details about a system or diagnose bugs.

To use Step Into, you can use the following button or hit F11:

Figure 9.19: The Visual Studio Step Into (F11) button

Chapter 9 275

Next, we update the result without changing the component’s code.

Flexibility in action
Now, let’s see the added flexibility of the transparent façade in action.

Context: We want to change the behavior of the TransparentFacade class. At the moment, the result
of the transparent/b endpoint looks like this:

Figure 9.20: The result of executing the ExecuteOperationB method of the ITransparentFacade instance

To demonstrate that we can extend and change the hidden sub-system (transparent façade), we want
to change the output to the following:

Figure 9.21: The expected result once the change has been made

We also want to achieve this result without modifying ComponentB. To do this, we execute the following
steps:

1. Create the following class:

public class UpdatedComponentB : IComponentB
{
 public string OperationC() => "Flexibility";
 public string OperationD() => "Design Pattern";
}

2. Tell the IoC container about it, like this:

services
 .AddRouting()
 .AddOpaqueFacadeSubSystem()
 .AddTransparentFacadeSubSystem()
 .AddSingleton<IComponentB, UpdatedComponentB>()
;

Structural Patterns276

3. From there, if you run the program, you should see the desired result!

That’s it! We updated the system without modifying it. This is what dependency injection can do for
you when you’re designing a program around it.

Alternative façade patterns
One alternative would be to create a hybrid between a transparent façade and an opaque façade by
exposing the abstractions using the public visibility modifier (all of the interfaces) while keeping
the implementations hidden under an internal visibility modifier. This hybrid design offers the right
balance between control and flexibility.

Another alternative would be to create a façade outside of the subsystem. In the previous examples, we
created the façades inside the class libraries, but this is not mandatory; the façade is just a class that
creates an accessible wall between your system and one or more subsystems. It should be located
wherever you see fit. Creating external façades like this would be especially useful when you do not
control the source code of the subsystem(s), such as if you only have access to the binaries. This could
also be used to create project-specific façades over the same subsystem, giving you extra flexibility
without cluttering your subsystems with multiple façades, shifting the maintenance cost from the
subsystems to the client applications that use them.

This one is more of a note than an alternative: you do not need to create an assembly per subsystem.
I did it because it helped me explain different concepts to you in the examples, but you could create
multiple subsystems in the same assembly. You could even create a single assembly that includes all
your subsystems, façades, and the client code (all in a single project).

Conclusion
The Façade pattern is handy for simplifying consumers’ lives as it allows you to hide subsystems’
implementation details behind a wall. There are multiple flavors to it; the two most prominent ones are:

• The transparent façade, which increases flexibility by exposing at least part of the subsystem(s)
• The opaque façade, which controls access by hiding most of the subsystem(s)

Note

Adding a dependency for a second time makes that dependency resolved by the
container, thus overriding the first one. However, both registrations remain present
in the services collection; for example, calling GetServices<IComponentB>()
on IServiceProvider would return two dependencies. Do not confuse the
GetServices() and GetService() methods (plural versus singular); one returns
a collection while the other returns a single instance. That single instance is always
the last that has been registered.

Chapter 9 277

Now, let’s see how the transparent façade pattern can help us follow the SOLID principles:

• S: A well-designed transparent façade serves this exact purpose by providing a cohesive set of
functionalities to its clients by hiding overly complex subsystems or internal implementation
details

• O: A well-designed transparent façade and its underlying subsystem’s components can be
extended without direct modification, as we saw in the Flexibility in action section

• L: N/A
• I: By exposing a façade that uses different smaller objects implementing small interfaces, we

could say that the segregation is done at both the façade and the component levels
• D: The Façade pattern does not specify anything about interfaces, so it is up to the developers

to enforce this principle by using other patterns, principles, and best practices

Finally, let’s see how the opaque façade pattern can help us follow the SOLID principles:

• S: A well-designed opaque façade serves this exact purpose by providing a cohesive set of
functionalities to its clients by hiding overly complex subsystems or internal implementation
details.

• O: By hiding the subsystem, the opaque façade limits our ability to extend it. However, we
could implement a hybrid façade to help with that.

• L: N/A
• I: The opaque façade does not help nor diminish our ability to apply the ISP.
• D: The Façade pattern does not specify anything about interfaces, so it is up to the developers

to enforce this principle by using other patterns, principles, and best practices.

Summary
In this chapter, we covered multiple fundamental GoF structural design patterns. They help us extend
our systems from the outside, without modifying the actual classes, leading to a higher degree of
cohesion by composing our object graph dynamically.

We started with the Decorator pattern, which extends other objects, at runtime, by using them internally.
Decorators can also be chained, allowing even greater flexibility (decorating other decorators). We
also used an open source tool named Scrutor that simplifies the decorator pattern usage by extending
the built-in ASP.NET Core dependency injection system.

Then, we covered the Composite pattern, which allows us to create complex and flexible data structures.
To make the life of its consumer easier, the composite delegates the navigation responsibility to each
component.

After that, we covered the Adapter pattern, which allows us to adapt an object to another interface.
This pattern is very helpful when we need to adapt the components of external systems that we have
no control over.

Structural Patterns278

Finally, we dug into the Façade pattern, which is similar to the Adapter pattern, but at the subsystem
level. It allows us to create a wall in front of one or more subsystems, simplifying its usage. It could
also be used to hide a subsystem from its consumers.

In the next chapter, we explore two GoF behavioral design patterns: the Template method and the
Chain of Responsibility design pattern.

Questions
Here are a few revision questions:

1. Can we decorate a decorator with another decorator?
2. Name one of the advantages of the Composite pattern.
3. Can we use the Adapter pattern to migrate an old API to a new system in order to adapt its

APIs before rewriting it?
4. Why should we use a façade?
5. What is the difference between the Adapter and the Façade patterns?

Further reading
• To learn more about Scrutor, please visit https://adpg.link/xvfS

Join our book’s Discord space
Join the book’s Discord workspace for Ask me Anything session with the authors:

https://packt.link/ASPdotNET6DesignPatterns

https://adpg.link/xvfS
https://packt.link/ASPdotNET6DesignPatterns

10
Behavioral Patterns

In this chapter, we explore two new design patterns from the well-known Gang of Four (GoF). They
are behavioral patterns, which means that they help simplify the management of system behaviors.

Often, you need to encapsulate some core algorithm while allowing other pieces of code to extend
that implementation. That is where the Template Method pattern comes into play.

Other times, you have a complex process with multiple algorithms that all apply to one or more
situations and you need to organize it in a testable and extensible fashion. This is where the Chain of
Responsibility pattern can help. For example, the ASP.NET Core middleware pipeline is a Chain of
Responsibility where all the middleware inspects the request and acts on it.

The following topics are covered in this chapter:

• Implementing the Template Method pattern
• Implementing the Chain of Responsibility pattern
• How to mix them

Implementing the Template Method pattern
The Template Method is a GoF behavioral pattern that uses inheritance to share code between the
base class and its subclasses. It is a very powerful, yet simple, design pattern.

Goal
The goal of the Template Method pattern is to encapsulate the outline of an algorithm in a base
class while leaving some parts of that algorithm open for modification by the subclasses, which adds
flexibility at a low cost.

Design
As mentioned earlier, the design is simple but extensible. First, we need to define a base class that
contains the TemplateMethod() method and then defines one or more sub-operations that need to be
implemented by its subclasses (abstract), or that can be overridden (virtual).

Behavioral Patterns280

Using UML, it looks like this:

Figure 10.1: Class diagram representing the Template Method pattern

How does this work?

• AbstractClass implements the shared code: the algorithm.
• ConcreteClass implements its specific part of the algorithm.
• Client calls TemplateMethod(), which calls the subclass implementation of one or more

specific algorithm elements.

Let’s now get into some code to see the Template Method pattern in action.

Project – Building a search machine
Let’s start with a simple, classic example to demonstrate how the Template Method pattern works.

Context: We want to use a different search algorithm depending on the collection to be searched. When
the collection is sorted, we want to use a binary search, but when it is not, we want to use a linear search.

Let’s start with the consumer, Program.cs:

var builder = WebApplication.CreateBuilder(args);
builder.Services
 .AddSingleton<SearchMachine>(x => new LinearSearchMachine(1, 10, 5, 2, 123,
333, 4))
 .AddSingleton<SearchMachine>(x => new BinarySearchMachine(1, 2, 3, 4, 5, 6,
7, 8, 9, 10))
;

Note

We could also extract an interface from AbstractClass to allow even more flex-
ibility, but that’s beyond the scope of the Template Method pattern.

Chapter 10 281

var app = builder.Build();
app.MapGet("/", (IEnumerable<SearchMachine> searchMachines) =>
{
 var sb = new StringBuilder();
 var elementsToFind = new int[] { 1, 10, 11 };
 foreach (var searchMachine in searchMachines)
 {
 var heading = $"Current search machine is {searchMachine.GetType().
Name}";
 sb.AppendLine("".PadRight(heading.Length, '='));
 sb.AppendLine(heading);
 foreach (var value in elementsToFind)
 {
 var index = searchMachine.IndexOf(value);
 var wasFound = index.HasValue;
 if (wasFound)
 {
 sb.AppendLine($"The element '{value}' was found at index
{index!.Value}.");
 }
 else
 {
 sb.AppendLine($"The element '{value}' was not found.");
 }
 }
 }
 return sb.ToString();
});
app.Run();

In the consumer code, we configure LinearSearchMachine and BinarySearchMachine as two
SearchMachine implementations. Each instance is initialized using a different sequence of numbers.

We then inject all registered SearchMachine services into the / delegate (highlighted in the code block).
That handler iterates all SearchMachine instances and tries to find all elements of the elementsToFind
array, before outputting the text/plain results.

Next, let’s explore the SearchMachine class:

namespace TemplateMethod;
public abstract class SearchMachine
{
 protected int[] Values { get; }
 protected SearchMachine(params int[] values)

Behavioral Patterns282

 {
 Values = values ?? throw new ArgumentNullException(nameof(values));
 }
 public int? IndexOf(int value)
 {
 if (Values.Length == 0) { return null; }
 var result = Find(value);
 return result;
 }
 protected abstract int? Find(int value);
}

The SearchMachine class represents AbstractClass. It exposes the IndexOf() template method, which
uses the required hook represented by the abstract Find() method (see highlighted code). The
hook is required because each subclass must implement that method, thereby making that method
a required extension point (or hook).

Next, we explore our first implementation of ConcreteClass, the LinearSearchMachine class:

namespace TemplateMethod;
public class LinearSearchMachine : SearchMachine
{
 public LinearSearchMachine(params int[] values)
 : base(values) { }

 protected override int? Find(int value)
 {
 var index = 0;
 foreach (var item in Values)
 {
 if (item == value) { return index; }
 index++;
 }
 return null;
 }
}

The LinearSearchMachine class is a ConcreteClass representing the linear search implementation
used by SearchMachine. It’s part of the algorithm implemented by the Find method.

Finally, we move on to the BinarySearchMachine class:

namespace TemplateMethod;
public class BinarySearchMachine : SearchMachine
{

Chapter 10 283

 public BinarySearchMachine(params int[] values)
 : base(values.OrderBy(v => v).ToArray()) { }

 protected override int? Find(int value)
 {
 var index = Array.BinarySearch(Values, value);
 return index == -1 ? null : index;
 }
}

The BinarySearchMachine class is a ConcreteClass representing the binary search implementation of
SearchMachine. As you may have noticed, we skipped the binary search algorithm’s implementation
by delegating it to the built-in Array.BinarySearch method. Thanks to the .NET team!

Now that we have defined the actors and explored the code, let’s see what is happening in client:

1. client uses the registered SearchMachine instances and searches for a set of values (1, 10,
and 11).

2. Once that is done, client displays to the user whether the numbers were found or not.

In this case, the template method and the Find method return null when a value is not found.

By running the program, we get the following output:

===
Current search machine is LinearSearchMachine
The element '1' was found at index 0.
The element '10' was found at index 1.
The element '11' was not found.
===
Current search machine is BinarySearchMachine
The element '1' was found at index 0.
The element '10' was found at index 9.
The element '11' was not found.

Important

For a binary search algorithm to work, the collection must be sorted, hence the sorting
that is done in the constructor when passing the values to the base class (OrderBy). That
may not be the most performant way of ensuring the array is sorted (precondition/guard),
but it is a very fast and readable way to write it. Moreover, in our case, performance should
not be an issue. Furthermore, to optimize such an algorithm, you need to test a large set
of data and leverage parallelism (multithreading).

Behavioral Patterns284

The preceding output shows the two algorithms at play. Both SearchMachine implementations did not
contain the value 11. They both contained the values 1 and 10 placed at a different position of their
respective arrays. Here is a reminder of the values:

new LinearSearchMachine(1, 10, 5, 2, 123, 333, 4)
new BinarySearchMachine(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

The consumer was iterating the SearchMachine registered with the IoC container. The base class
implements the IndexOf but delegates the search (Find) algorithm to the subclasses. The preceding
output shows that each SearchMachine was able to execute the expected task by implementing only
the Find piece of the algorithm.

And voilà! We have covered the Template Method pattern, as easy as that. Of course, our algorithm
was very simple, but the concept remains.

We could add virtual methods in the base class to create optional hooks. Those methods would become
optional extension points that subclasses can implement or not. That would allow a more complex
and more versatile scenario to be supported. We will not cover this here because it is not part of the
pattern itself, even if very similar. There are many examples in the .NET base class library (BCL), like
most methods of the ComponentBase class (in the Microsoft.AspNetCore.Components namespace). For
example, when we override the OnInitialized method in a Blazor component, we leverage such an
optional extension hook. The base method does nothing and is there only for extensibility purposes,
allowing us to run code as part of the component’s lifecycle. You can consult the ComponentBase class
code in the official .NET repo on GitHub: https://adpg.link/1WYq.

Conclusion
The Template Method is a powerful and easy-to-implement design pattern that allows subclasses
to reuse the algorithm’s skeleton while implementing (abstract) or overriding (virtual) some of
its subparts. Allowing implementation-specific classes to extend the core algorithm can reduce the
duplication of logic and improve maintainability while not cutting out any flexibility in the process.
There are many examples in the .NET BCL, and we leverage this pattern at the end of the chapter,
based on a real-world scenario.

Now, let’s see how the Template Method pattern can help us follow the SOLID principles:

• S: The Template Method pushes algorithm-specific portions of the code to subclasses
while keeping the core algorithm in the base class. By doing that, it helps follow the
single responsibility principle (SRP) by distributing responsibilities.

• O: By opening extension hooks, it opens the template for extensions (allowing subclasses
to extend it) and closes it from modifications (no need to modify the base class since the
subclasses can extend it).

• L: Since the subclasses are the implementations, there are no base behaviors to enforce in
subclasses, so following the Liskov substitution principle (LSP) should not be a problem when
implementing the Template Method pattern. That said, this principle is tricky, so it could be
possible to create a subclass (or a subclass of a subclass) that breaks the LSP, thereby altering
the program logic.

https://adpg.link/1WYq

Chapter 10 285

• I: As long as the base class implements the smallest cohesive surface possible, using the
Template Method pattern should not negatively impact the program.

• D: The Template Method pattern is based on an abstraction, so as long as consumers depend
on that abstraction, it should help to get in line with the dependency inversion principle (DIP).

Next, we move to the Chain of Responsibility design pattern before mixing the Template Method and
the Chain of Responsibility pattern to improve our code.

Implementing the Chain of Responsibility pattern
The Chain of Responsibility is a GoF behavioral pattern that chains classes to handle complex scenarios
efficiently, with limited effort. Once again, the goal is to take a complex problem and break it into
multiple smaller units.

Goal
The goal of the Chain of Responsibility pattern is to chain multiple handlers that each solve a limited
number of problems. If a handler cannot solve the specific problem, it passes the resolution to the
chain’s next handler. There could be a default handler executing some logic at the end of the chain,
such as throwing a custom exception (for example, OperationNotHandledException) or a handler that
makes sure of the opposite (in other words, that nothing happens, especially no exception).

Design
The most basic Chain of Responsibility starts by defining an interface that handles a request (IHandler).
Then we add classes that handle one or more scenarios (Handler1 and Handler2):

Figure 10.2: Class diagram representing the Chain of Responsibility pattern

Behavioral Patterns286

A big difference between the Chain of Responsibility pattern and many other patterns is that no central
dispatcher knows the handlers; all handlers are independent. The consumer receives a handler and
tells it to handle the request, no more complexity than this. Each handler is also simple, handling the
request or not, and then passing it, or not, to the next handler in the chain. This allows us to divide
complex logic into multiple pieces that handle a single responsibility, improving testability, reusability,
and extensibility in the process. Since there is no orchestrator, each chain element is independent,
leading to a cohesive and loosely coupled design.

Enough theory. Let’s look at some code.

Project – Message interpreter
Context: We need to create the receiving end of a messaging application where each message is unique,
making it impossible to create a single algorithm to handle them all.

After analyzing the problem, we decided to build a chain of responsibility where each handler can
manage a single message. The pattern seems more than perfect!

For our demo application, the messages are as simple as this:

namespace ChainOfResponsibility;
public record class Message(string Name, string? Payload);

The Name property is used as a discriminator to differentiate messages, and each handler’s responsibility
is to do something with the Payload property. We won’t do anything with the payload as it is irrelevant
to the pattern, but conceptually, that’s what should happen.

Tip

When creating the chain of responsibility, you can order the handlers so that the most
requested handlers are closer to the beginning of the chain and the least requested han-
dlers are closer to the end. This helps limit the number of “chain links” that are visited
for each request before reaching the right handler.

Background

This project is based on something that I built years ago. Physical (IoT) devices were
sending bytes (messages) due to limited bandwidth. Then, in a web application, we had
to associate those bytes with real values. Each message had a fixed header size, but a vari-
able body size. The headers were handled in a base handler (template method), and each
individual handler in the chain was managing a different message type. For the current
example, we keep it simpler than parsing bytes, but the concept is the same.

Chapter 10 287

The handlers are also very simple:

namespace ChainOfResponsibility;
public interface IMessageHandler
{
 void Handle(Message message);
}

The only thing a handler can do is handle a message. Our initial application can handle the following
messages:

• The AlarmTriggeredHandler class handles AlarmTriggered messages.
• The AlarmPausedHandler class handles AlarmPaused messages.
• The AlarmStoppedHandler class handles AlarmStopped messages.

The three handlers are very similar and share quite a bit of logic, but we fix that later. In the meantime,
we have the following:

public class AlarmTriggeredHandler : IMessageHandler
{
 private readonly IMessageHandler? _next;
 public AlarmTriggeredHandler(IMessageHandler? next = null)
 {
 _next = next;
 }
 public void Handle(Message message)
 {
 if (message.Name == "AlarmTriggered")
 {
 // Do something clever with the Payload
 }
 else if (_next != null)
 {
 _next.Handle(message);
 }
 }
}
public class AlarmPausedHandler : IMessageHandler
{
 private readonly IMessageHandler? _next;
 public AlarmPausedHandler(IMessageHandler? next = null)
 {

Behavioral Patterns288

 _next = next;
 }
 public void Handle(Message message)
 {
 if (message.Name == "AlarmPaused")
 {
 // Do something clever with the Payload
 }
 else if (_next != null)
 {
 _next.Handle(message);
 }
 }
}
public class AlarmStoppedHandler : IMessageHandler
{
 private readonly IMessageHandler? _next;
 public AlarmStoppedHandler(IMessageHandler? next = null)
 {
 _next = next;
 }
 public void Handle(Message message)
 {
 if (message.Name == "AlarmStopped")
 {
 // Do something clever with the Payload
 }
 else if (_next != null)
 {
 _next.Handle(message);
 }
 }
}

Each handler does two things:

• It allows an optional “next handler” to be injected into its constructor (highlighted in the code).
The handler classes use that _next member in the Handle method.

• It handles only the request that it knows about, delegating the others to the next handler in
the chain (the Handle method).

Chapter 10 289

In this case, if the next handler is null, nothing happens. In a real scenario, you may want to know
that a handler is missing or that the message was invalid. Let’s add a fourth handler that notifies us
of invalid requests:

public class DefaultHandler : IMessageHandler
{
 public void Handle(Message message)
 {
 throw new NotSupportedException($"Messages named '{message.Name}' are
not supported.");
 }
}

That new default handler throws an exception that notifies the consumer of the Chain of Responsibility
about the error.

Let’s use Program.cs as the consumer of the Chain of Responsibility (the client) and use HTTP requests
as the way to interface with our program and build the message.

Here is our program, using minimal APIs and top-level statements:

var builder = WebApplication.CreateBuilder(args);
// Create the chain of responsibility,
// ordered by the most called (or the ones to execute earlier)
// to the less called handler (or the ones that take more time to execute),
// followed by the DefaultHandler.
builder.Services.AddSingleton<IMessageHandler>(new AlarmTriggeredHandler(new
AlarmPausedHandler(new AlarmStoppedHandler(new DefaultHandler()))));

Note

We can create custom exceptions to make it easier to differentiate between system errors
and application errors. But sometimes, throwing a system exception is good enough. For
example, here are a few exceptions that are often thrown as is: NotSupportedException,
NotImplementedException, and ArgumentNullException.

Tip

Usually, the GET method is used to read data, while other methods, such as POST, PUT, and
PATCH, are used to create, replace, or update data. For testing purposes, it is easier to send
arbitrary data to our Chain of Responsibility by using GET (I recommend that you don’t do
that in your apps), so we are cheating on this one.

Behavioral Patterns290

In the preceding code, we manually create the Chain of Responsibility and register it as a singleton
of IMessageHandler. In that registration code, each handler is injected in the previous constructor
manually (created with the new keyword).

The next code represents a list of relative URLs that are displayed when calling /, for convenience
purposes:

var app = builder.Build();

// "Menu" endpoint
app.MapGet("/", () => new[] {
 "/handle/AlarmTriggered",
 "/handle/AlarmPaused",
 "/handle/AlarmStopped",
 "/handle/SomeUnhandledMessageName",
});

The following code is the consumer of the chain:

// Consumer (client) endpoint
app.MapGet("/handle/{name}", (string name, string? payload, IMessageHandler
messageHandler) =>
{
 var message = new Message(name, payload);
 try
 {
 // Send the message into the chain of responsibility
 messageHandler.Handle(message);
 return $"Message '{message.Name}' handled successfully.";
 }
 catch (NotSupportedException ex)
 {
 return ex.Message;
 }
});
app.Run();

The consumer is reachable through the /handle/{name} URL. The delegate expects the name, an
optional payload, and an IMessageHandler implementation to be injected. For every request, it does
the following:

1. Creates a Message based on the name and payload parameters.
2. Passes that message to the first handler of the chain of responsibility (injected into the /handle/

{name} delegate): messageHandler.Handle(message);.

Chapter 10 291

3. Writes an error message when a NotSupportedException has been thrown, or a success
message otherwise.

When running the application, we should expect the following “menu” when calling
https: //localhost:10001/:

Figure 10.3: The root endpoint JSON response that represents a menu

By specifying a valid name such as AlarmTriggered, we should obtain the following result:

URL: https: //localhost:10001/AlarmTriggered
Message 'AlarmTriggered' handled successfully.

By specifying an invalid name such as SomeUnhandledMessageName, we should obtain the following
result:

URL: https: //localhost:10001/SomeUnhandledMessageName
Messages named 'SomeUnhandledMessageName' are not supported.

And voilà. We have built a simple Chain of Responsibility that handles messages. Next, let’s use both the
Template Method and Chain of Responsibility patterns to encapsulate our handlers’ duplicated logic.

Project – Improved message interpreter
Now that we know both the Chain of Responsibility and the Template Method patterns, it is time to
DRY out our handlers by extracting the shared logic into an abstract base class using the Template
Method pattern and providing extension points to the subclasses.

OK, so what has been duplicated?

• The next handler injection code has been duplicated, and, as an important part of the pattern,
could be encapsulated into the base class.

• The logic testing whether the current handler can handle the message has been duplicated.

DRY

We covered the Don’t Repeat Yourself (DRY) principle in Chapter 3, Architectural Principles.

Behavioral Patterns292

The new base class looks like this:

namespace ImprovedChainOfResponsibility;
public abstract class MessageHandlerBase : IMessageHandler
{
 private readonly IMessageHandler? _next;
 public MessageHandlerBase(IMessageHandler? next = null)
 {
 _next = next;
 }
 public void Handle(Message message)
 {
 if (CanHandle(message))
 {
 Process(message);
 }
 else if (HasNext())
 {
 _next.Handle(message);
 }
 }
 [MemberNotNullWhen(true, nameof(_next))]
 private bool HasNext()
 {
 return _next != null;
 }
 protected virtual bool CanHandle(Message message)
 {
 return message.Name == HandledMessageName;
 }
 protected abstract string HandledMessageName { get; }
 protected abstract void Process(Message message);
}

Based on those few changes, what is the template method, and what are the extension points (hooks)?

The MessageHandlerBase class adds the Handle template method. That template method’s algorithm is
easier to read than it was before. Then, MessageHandlerBase exposes the following extension points:

• CanHandleMessage(Message message) tests whether HandledMessageName is equal to message.
Name. This could be overridden if a handler required more complex comparison logic.

• HandledMessageName must be implemented by all subclasses, driving the default logic of
CanHandleMessage.

Chapter 10 293

• Process(Message message) must be implemented by all subclasses, allowing them to run
logic against the message.

Let’s now take a look at the three simplified alarm handlers:

public class AlarmTriggeredHandler : MessageHandlerBase
{
 protected override string HandledMessageName => "AlarmTriggered";
 public AlarmTriggeredHandler(IMessageHandler? next = null)
 : base(next) { }
 protected override void Process(Message message)
 {
 // Do something clever with the Payload
 }
}
public class AlarmPausedHandler : MessageHandlerBase
{
 protected override string HandledMessageName => "AlarmPaused";
 public AlarmPausedHandler(IMessageHandler? next = null)
 : base(next) { }
 protected override void Process(Message message)
 {
 // Do something clever with the Payload
 }
}
public class AlarmStoppedHandler : MessageHandlerBase
{
 protected override string HandledMessageName => "AlarmStopped";
 public AlarmStoppedHandler(IMessageHandler? next = null)
 : base(next) { }
 protected override void Process(Message message)
 {
 // Do something clever with the Payload
 }
}

As we can see from the updated alarm handlers, they are now limited to a single responsibility:
processing the messages they can handle. In contrast, MessageHandlerBase now handles the chain
of responsibility’s plumbing. We left the DefaultHandler class unchanged since it is the end of the
chain and does not support having a next handler.

By mixing those two patterns, we created a complex messaging system that divides responsibilities
into handlers. There is one handler per message, and the chain logic is pushed into a base class.

Behavioral Patterns294

The beauty of such a system is that we don’t have to think about all the messages at once; we can focus
on just one message at a time. When dealing with a new type of message, we can concentrate on that
precise message, implement its handler, and forget about the N other types. The consumers can also
be super dumb, sending the request into the pipe without knowing about the Chain of Responsibility,
and like magic, the right handler shall prevail!

Project – A final, finer-grained design
In the last example, we were using HandledMessageName and CanHandleMessage to decide whether a
handler could handle a request. There is one problem with that code: if a subclass decides to override
CanHandleMessage, and then decides that it no longer requires HandledMessageName, we would end
up having a lingering, unused property in our system.

One way to fix this is to create a finer-grained class hierarchy, as follows:

Note

There are worse situations, but we are talking component design here, so why not push
that system a little further toward a better design?

Chapter 10 295

Figure 10.4: Class diagram representing the design of the finer-grained project that implements the
Chain of Responsibility and Template Method patterns

Behavioral Patterns296

That looks more complicated than it is, really. Before digging into what it actually does, let’s take a
look at the refactored code:

namespace FinalChainOfResponsibility;
public interface IMessageHandler
{
 void Handle(Message message);
}

public abstract class MessageHandlerBase : IMessageHandler
{
 private readonly IMessageHandler? _next;
 public MessageHandlerBase(IMessageHandler? next = null)
 {
 _next = next;
 }

 public void Handle(Message message)
 {
 if (CanHandle(message))
 {
 Process(message);
 }
 else if (HasNext())
 {
 _next.Handle(message);
 }
 }

 [MemberNotNullWhen(true, nameof(_next))]
 private bool HasNext()
 {
 return _next != null;
 }

 protected abstract bool CanHandle(Message message);
 protected abstract void Process(Message message);
}

public abstract class SingleMessageHandlerBase : MessageHandlerBase
{
 public SingleMessageHandlerBase(IMessageHandler? next = null)

Chapter 10 297

 : base(next) { }

 protected override bool CanHandle(Message message)
 {
 return message.Name == HandledMessageName;
 }
 protected abstract string HandledMessageName { get; }
}

public abstract class MultipleMessageHandlerBase : MessageHandlerBase
{
 public MultipleMessageHandlerBase(IMessageHandler? next = null)
 : base(next) { }

 protected override bool CanHandle(Message message)
 {
 return HandledMessagesName.Contains(message.Name);
 }
 protected abstract string[] HandledMessagesName { get; }
}

The omitted AlarmPausedHandler, AlarmStoppedHandler, and AlarmTriggeredHandler classes now
inherit from SingleMessageHandlerBase instead of MessageHandlerBase, but nothing else has changed.
DefaultHandler has not changed either. For demonstration purposes, I added the SomeMultiHandler
class to simulate a message handler that can handle "Foo", "Bar", and "Baz" messages. That looks
like the following:

namespace FinalChainOfResponsibility
{
 public class SomeMultiHandler : MultipleMessageHandlerBase
 {
 public SomeMultiHandler(IMessageHandler? next = null)
 : base(next) { }
 protected override string[] HandledMessagesName
 => new[] { "Foo", "Bar", "Baz" };
 protected override void Process(Message message)
 {
 // Do something clever with the Payload
 }
 }
}

Behavioral Patterns298

Now that we have seen the code and the UML representation of the class hierarchy, let’s analyze the
actors of the new structure:

• MessageHandlerBase manages the Chain of Responsibility by handling the next handler logic
and by exposing two hooks (the Template Method pattern) for subclasses to extend:

a. bool CanHandle(Message message)

b. void Process(Message message)

• SingleMessageHandlerBase inherits from MessageHandlerBase and implements (override)
the bool CanHandle(Message message) method. It implements the logic related to it and adds
the abstract string HandledMessageName { get; } property that subclasses must define
(override) for the CanHandle method to work (a required extension point).

• The subclasses of SingleMessageHandlerBase implement the HandledMessageName property,
which returns the message name that they can handle and implements the handling logic by
overriding the void Process(Message message) method.

• MultipleMessageHandlerBase does the same as SingleMessageHandlerBase, but it uses a
string array instead of a single string, supporting multiple handler names.

This may sound complicated, but what we did was to allow extensibility without the need to keep any
unnecessary code in the process, leaving each class with a single responsibility:

• MessageHandlerBase handles _next.
• SingleMessageHandlerBase handles the CanHandle method of handlers, supporting just a

single message.
• MultipleMessageHandlerBase handles the CanHandle method of handlers supporting multiple

messages.
• Other classes must implement their version of void Process(Message message) to handle

one or more messages.

And voilà! This is another example demonstrating the strength of the Template Method and Chain of
Responsibility patterns put together. That last example also emphasizes the importance of the SRP
by allowing greater flexibility while keeping the code reliable and maintainable.

Another strength of that design is the interface at the top. Anything that does not fit the class hierarchy
can be implemented directly from the interface instead of trying to adapt logic from inappropriate
structures—tricking code into doing your bidding often leads to half-baked solutions that become
hard to maintain. The DefaultHandler class is a good example of that.

Conclusion
The Chain of Responsibility pattern is another great GoF pattern. It divides a large problem into
smaller, cohesive units, each doing one job: handling its specific request(s). Mixed with the Template
Method pattern, it can become even simpler to handle the chain, moving each part closer toward
single responsibilities.

Chapter 10 299

Now, let’s see how the Chain of Responsibility pattern can help us follow the SOLID principles:

• S: The Chain of Responsibility pattern aims toward this exact principle, making it a perfect
SRP advocate: single units of logic per class!

• O: The Chain of Responsibility pattern allows the addition, removal, and reordering of handlers
without touching the code, but by altering the composition of the chain (in the composition root).

• L: N/A
• I: By creating a small interface with multiple handlers (implementations), the Chain of

Responsibility pattern should help with the ISP. The handler interface is not limited to a single
method; it can expose multiple methods as long as they aim toward the same responsibility.
Cohesion is key.

• D: By using the handler interface, no element of the chain, nor the consumers, depends on a
specific handler; they only depend on the interface, which helps with the DIP.

Summary
In this chapter, we covered two GoF behavioral patterns. These patterns can help us create a flexible, yet
easy-to-maintain system. As the name suggests, behavioral patterns aim at encapsulating application
behaviors into cohesive software pieces.

First, we looked at the Template Method pattern, which allows us to encapsulate an algorithm’s core
inside a base class. It then allows its subclasses to fill in the gaps and extend that algorithm at predefined
locations. These locations can be required (abstract) or optional (virtual).

Then, we explored the Chain of Responsibility pattern, which opens the possibility of chaining multiple
small handlers into a chain of processing, inputting the message to be processed at the beginning of
the chain, and waiting for one or more handlers to execute the actual logic related to that message
against it. That is an important nuance: you don’t have to stop the chain’s execution at the first handler.
In some cases, the Chain of Responsibility could become more like a pipeline than a clear association
of one message to one handler.

Lastly, using the Template Method pattern to encapsulate the Chain of Responsibility’s chaining logic
led us to a simpler implementation without any sacrifices.

In the next chapter, we are going to dig into the Operation Result design pattern to discover efficient
ways of managing return values.

Questions
Let’s take a look at a few practice questions:

1. Is it true that we can only add one abstract method when implementing the Template Method
design pattern?

2. Can we use the Strategy pattern in conjunction with the Template Method pattern?
3. Is it true that there is a limit of 32 handlers in a Chain of Responsibility?
4. In a Chain of Responsibility, can multiple handlers process the same message?
5. In what way can the Template Method help implement the Chain of Responsibility pattern?

11
Understanding the Operation
Result Design Pattern

This chapter explores the Operation Result pattern, starting simple and progressing to more complex
cases. An operation result aims at communicating the success or the failure of an operation to its caller.
It also allows that operation to return both a value and one or more messages to the caller.

Imagine any system in which you want to display user-friendly error messages, achieve some small
speed gain, or even handle failure easily and explicitly. The Operation Result design pattern can help
you achieve these goals. One way to use it is to handle the result of a remote operation, such as after
querying a remote web service.

This pattern builds upon foundational object-oriented programming concepts. Having a whole chapter
about it allows us to iterate and design different possibilities incrementally. Of course, the final design
should always be based on your needs, so learning multiple options should help you make the right
choices.

The following topics are covered in this chapter:

• The Operation Result design pattern basics
• The Operation Result design pattern returning a value
• The Operation Result design pattern returning error messages
• The Operation Result design pattern returning messages with severity levels
• Using sub-classes and static factory methods for better isolation of successes and failures

The Operation Result pattern
The Operation Result design pattern can be very simple to more complex. In this section, we explore
multiple ways to use that pattern. We start with its simplest form and build on that until we can return
messages, values, and add severity levels as the result of an operation.

Understanding the Operation Result Design Pattern302

Goal
The role of the Operation Result pattern is to give an operation (a method) the possibility to return a
complex result (an object), which allows the consumer to:

• [Mandatory] Access the success indicator of the operation (that is, whether the operation
succeeded or not).

• [Optional] Access the result of the operation if there is one (the return value of the method).
• [Optional] Access the cause of the failure if the operation was not successful (error messages).
• [Optional] Access other information that documents the operation’s result. This could be as

simple as a list of messages or as complex as multiple properties.

This can go even further, such as returning the severity of a failure or adding any other relevant
information for the specific use case. The success indicator could be binary (true or false), or there
could be more than two states, such as success, partial success, and failure. Your imagination (and
your needs) is your limit!

Design
It is easy to rely on throwing exceptions when an operation fails. However, the Operation Result
pattern is an alternative way of communicating success or failure between components when you don’t
want to use exceptions. One such reason could be that the messages are not errors or that treating an
erroneous result is part of the main flow, not part of a side catch flow.

To be used effectively, a method must return an object containing one or more elements presented
in the Goal section. As a rule of thumb, a method returning an operation result should not throw an
exception. This way, consumers don’t have to handle anything other than the operation result itself.
For special cases, you could allow exceptions to be thrown, but at that point, it would be a judgment
call based on clear specifications or facing a real problem.

Instead of walking you through all of the possible UML diagrams, let’s jump into the code and explore
multiple smaller examples after taking a look at the basic sequence diagram that describes the simplest
form of this pattern, applicable to all examples:

Tip

Focus on your needs first, then use your imagination to reach the best possible solution.
Software engineering is not only about applying techniques that others told you to. It’s an
art! The difference is that you are crafting software instead of painting or woodworking.
And that most people won’t see any of that art (code).

Chapter 11 303

Figure 11.1: Sequence diagram of the Operation Result design pattern

As we can see from the diagram, an operation returns a result (an object), and then the caller can
handle that result. What can be included in that result object is covered in the following examples.

Project – Implementing different Operation Result patterns
In this project, a consumer routes the HTTP requests to the right handler. We are visiting each of
those handlers one by one, which will help us implement simple to more complex operation results.
This should show you many ways to implement the Operation Result pattern to help you understand
it, make it your own, and implement it as required in your projects.

The consumer
The consumer of all examples is the Program.cs file. The / URL lists all the consumers. The following
code, from Program.cs, routes the HTTP requests toward a handler:

app.MapGet("/simplest-form", ...);
app.MapGet("/single-error", ...);
app.MapGet("/single-error-with-value", ...);
app.MapGet("/multiple-errors-with-value", ...);
app.MapGet("/multiple-errors-with-value-and-severity", ...);
app.MapGet("/static-factory-methods", ...);

Next, we cover each use case one by one.

Understanding the Operation Result Design Pattern304

The simplest form of the Operation Result pattern
The following diagram represents the simplest form of the Operation Result pattern:

Figure 11.2: Class diagram of the Operation Result design pattern

We can translate that class diagram into the following blocks of code:

app.MapGet("/simplest-form", (OperationResult.SimplestForm.Executor executor)
=>
{
 var result = executor.Operation();
 if (result.Succeeded)
 {
 // Handle the success
 return "Operation succeeded";
 }
 else
 {
 // Handle the failure
 return "Operation failed";
 }
});

The preceding code handles the /simplest-form HTTP requests. The highlighted code in the preceding
code snippet is the consumer of the following operation:

namespace OperationResult.SimplestForm;
public class Executor
{
 public OperationResult Operation()
 {
 // Randomize the success indicator
 // This should be real logic
 var randomNumber = new Random().Next(100);
 var success = randomNumber % 2 == 0;

Chapter 11 305

 // Return the operation result
 return new OperationResult(success);
 }
}
public record class OperationResult(bool Succeeded);

The Executor class contains the operation to execute represented by the Operation method. That
method returns an instance of the OperationResult class. The implementation is based on a random
number. Sometimes it succeeds, and sometimes it fails. You would usually code some application
logic in that method instead. Moreover, the method should hold a proper name that represents the
operation itself in an actual program.

The OperationResult record class represents the result of the operation. In this case, it is a simple
read-only Boolean value stored in the Succeeded property. I chose a record class because there is no
reason for the result to change. To know more about record classes, have a look at Appendix A.

In this form, the difference between the Operation method returning a bool and an instance of
OperationResult is small, but it exists nonetheless. By returning an OperationResult object, you can
extend the return value over time, adding properties and methods to it, which you cannot do with a
bool without updating all consumers.

Next, we add an error message to the result.

A single error message
Now that we know whether the operation succeeded or not, we want to know what went wrong. To
do that, we add an ErrorMessage property to the OperationResult record class.

With that in place, we no longer need to set whether the operation succeeded or not; we can compute
that using the ErrorMessage property instead. The logic behind this improvement goes as follows:

• When there is no error message, the operation succeeded.
• When there is an error message, the operation failed.

The OperationResult record class implementing this logic looks like the following:

namespace OperationResult.SingleError
public record class OperationResult
{
 public bool Succeeded => string.IsNullOrWhiteSpace(ErrorMessage);
 public string? ErrorMessage { get; init; }
}

In the preceding code, we have the following:

• The Succeeded property, which checks for an ErrorMessage.
• The ErrorMessage property, which contains an ErrorMessage, settable when instantiating

the object.

Understanding the Operation Result Design Pattern306

The executor of that operation looks similar but uses the new constructor, setting an error message
instead of directly setting the success indicator:

namespace OperationResult.SingleError
public class Executor
{
 public OperationResult Operation()
 {
 // Randomize the success indicator
 // This should be real logic
 var randomNumber = new Random().Next(100);
 var success = randomNumber % 2 == 0;

 // Return the operation result
 return success
 ? new()
 : new() { ErrorMessage = $"Something went wrong with the number
'{randomNumber}'." };
 }
}

The consuming code does the same as in the previous sample but writes the error message in the
response output instead of a generic failure string:

app.MapGet("/single-error", (OperationResult.SingleError.Executor executor) =>
{
 var result = executor.Operation();
 if (result.Succeeded)
 {
 // Handle the success
 return "Operation succeeded";
 }
 else
 {
 // Handle the failure
 return result.ErrorMessage;
 }
});

When looking at that example, we can begin to comprehend the Operation Result pattern’s usefulness.
It gets us further away from the simple success indicator that looked like an overcomplicated Boolean.
Furthermore, this is not the end of our exploration because many more forms can be designed and
used in more complex scenarios.

Chapter 11 307

Next, we add the possibility of setting a value when the operation succeeds.

Adding a return value
Now that we have a reason for failure, we may want the operation to return a value. To achieve this,
let’s build over the previous example and add a Value property to the OperationResult class:

namespace OperationResult.SingleErrorWithValue;
public record class OperationResult
{
 public bool Succeeded => string.IsNullOrWhiteSpace(ErrorMessage);
 public string? ErrorMessage { get; init; }
 public int? Value { get; init; }
}

By adding a second init-only property, we can set the Value property when the operation succeeds
and fails.

The operation is also very similar, but we are setting the Value property as well as using the object
initializer in both cases (highlighted lines):

namespace OperationResult.SingleErrorWithValue;
public class Executor
{
 public OperationResult Operation()
 {
 // Randomize the success indicator
 // This should be real logic
 var randomNumber = new Random().Next(100);
 var success = randomNumber % 2 == 0;

 // Return the operation result
 return success
 ? new() { Value = randomNumber }
 : new()
 {
 ErrorMessage = $"Something went wrong with the number
'{randomNumber}'.",
 Value = randomNumber,

Note

In a real-world scenario, that Value property could be null in the case of an error, hence
the nullable int property.

Understanding the Operation Result Design Pattern308

 };
 }
}

With that in place, the consumer can use the Value. In our case, the program displays it when the
operation succeeds:

app.MapGet("/single-error-with-value", (OperationResult.SingleErrorWithValue.
Executor executor) =>
{
 var result = executor.Operation();
 if (result.Succeeded)
 {
 // Handle the success
 return $"Operation succeeded with a value of '{result.Value}'.";
 }
 else
 {
 // Handle the failure
 return "Operation failed";
 }
});

As we can see from this sample, we can display a custom error message when the operation fails or
use the Value property when it succeeds (or even when it fails in this case). We could also leverage
the ErrorMessage property as we did in the preceding single-error sample. With this, the power of
the Operation Result pattern continues to emerge.

Rest assured, we are not done yet, so let’s jump into the next evolution.

Multiple error messages
Now we are at the point where we can transfer a Value and an ErrorMessage to the operation consumers,
but what about transferring multiple errors, such as validation errors? To achieve this, we can convert
our ErrorMessage property from a string to an IEnumerable<string> or another type of collection
that fits your needs better. Here I chose ImmutableList<string> so we know that external actors
can’t mutate the results:

namespace OperationResult.MultipleErrorsWithValue;
public record class OperationResult
{
 public OperationResult()
 {
 Errors = ImmutableList<string>.Empty;
 }

Chapter 11 309

 public OperationResult(params string[] errors)
 {
 Errors = errors.ToImmutableList();
 }

 public bool Succeeded => !HasErrors();
 public int? Value { get; init; }

 public ImmutableList<string> Errors { get; init; }
 public bool HasErrors()
 {
 return Errors?.Count > 0;
 }
}

Let’s look at the new pieces in the preceding code before continuing:

• The errors are now stored in ImmutableList<string>.
• The Succeeded property was updated to account for a collection instead of a single message

and follows the same logic.
• The HasErrors method was added for convenience.
• A default constructor (success) and one that takes error messages as parameters (failure) have

been added to populate the Errors property.

Now that the operation result is updated, the operation itself can stay the same. The consumer stays
almost the same (see the highlight in the code below), but we need to tell ASP.NET how to serialize
the result:

app.MapGet("/multiple-errors-with-value", (OperationResult.
MultipleErrorsWithValue.Executor executor) =>
{
 var result = executor.Operation();
 if (result.Succeeded)
 {
 // Handle the success
 return $"Operation succeeded with a value of '{result.Value}'.";
 }
 else
 {
 // Handle the failure
 return result.Errors as object;
 }
});

Understanding the Operation Result Design Pattern310

By converting result.Errors to an object (see the highlighted code), ASP.NET understands that the
return value of our delegate is an object. Without that, the return type could not be inferred, and the
code would not compile. That makes sense since the function is returning a string in one path and
an ImmutableList<string> in another.

During the executing, ASP.NET serializes the ImmutableList<string> Errors property to JSON before
outputting it to the client to help visualize the collection.

Our Operation Result pattern implementation is getting better and better but still lacks a few features.
One of those features is the possibility to propagate messages that are not errors, such as information
messages and warnings, which we implement next.

Adding message severity
Now that our operation result structure is materializing, let’s update our last iteration to support
message severity.

First, we need a severity indicator. An enum is a good candidate for this kind of work, but it could also
be something else. In our case, we leverage an enum that we name OperationResultSeverity.

Then we need a message class to encapsulate both the message and the severity level; let’s name that
class OperationResultMessage. The new code looks like this:

namespace OperationResult.WithSeverity;
public record class OperationResultMessage
{
 public OperationResultMessage(string message, OperationResultSeverity
severity)
 {
 Message = message ?? throw new ArgumentNullException(nameof(message));
 Severity = severity;
 }

 public string Message { get; }

Tip

Returning a plain/text string when the operation succeeds and an application/json
array when it fails is usually not a good idea. I suggest not doing something like this in a
real application. Either return JSON or plain text. Try not to mix content types in a single
endpoint. In most cases, mixing content types will only create avoidable complexity and
confusion. We could say that reading the content-type header and the status code would
be enough to know what has been returned by the server, and that’s the purpose of those
headers in the HTTP specifications. But, even if that is true, it is way easier for your fellow
developers to always be able to expect the same content type when consuming your APIs.

When designing system contracts, consistency and uniformity are usually better than
incoherency, ambiguity, and variance.

Chapter 11 311

 [JsonConverter(typeof(JsonStringEnumConverter))]
 public OperationResultSeverity Severity { get; }
}

public enum OperationResultSeverity
{
 Information = 0,
 Warning = 1,
 Error = 2
}

As you can see, we have a simple data structure to replace our string messages.

Then we need to update the OperationResult class to use that new OperationResultMessage class
instead. We then need to ensure that the operation result indicates a success only when there is no
OperationResultSeverity.Error, allowing it to transmit the OperationResultSeverity.Information
and OperationResultSeverity.Warnings messages (we could implement different logic here):

namespace OperationResult.WithSeverity;
public record class OperationResult
{
 public OperationResult()
 {
 Messages = ImmutableList<OperationResultMessage>.Empty;
 }
 public OperationResult(params OperationResultMessage[] messages)
 {
 Messages = messages.ToImmutableList();
 }

 public bool Succeeded => !HasErrors();
 public int? Value { get; init; }

 public ImmutableList<OperationResultMessage> Messages { get; init; }
 public bool HasErrors()
 {
 return FindErrors().Any();
 }

 private IEnumerable<OperationResultMessage> FindErrors()
 => Messages.Where(x => x.Severity == OperationResultSeverity.Error);
}

Understanding the Operation Result Design Pattern312

The highlighted lines represent the updated logic that sets the success state of the operation. The
operation is considered a success only when no error is present in the Messages list. The FindErrors
method returns messages that have an Error severity while the HasErrors method bases its decision
on that method’s output.

With that in place, the Executor class is also revamped. Let’s have a look at those changes:

namespace OperationResult.WithSeverity;
public class Executor
{
 public OperationResult Operation()
 {
 // Randomize the success indicator
 // This should be real logic
 var randomNumber = new Random().Next(100);
 var success = randomNumber % 2 == 0;

 // Some information message
 var information = new OperationResultMessage(
 "This should be very informative!",
 OperationResultSeverity.Information
);

 // Return the operation result
 if (success)
 {
 var warning = new OperationResultMessage(
 "Something went wrong, but we will try again later
automatically until it works!",
 OperationResultSeverity.Warning
);
 return new OperationResult(information, warning) { Value =
randomNumber };
 }
 else
 {
 var error = new OperationResultMessage(
 $"Something went wrong with the number '{randomNumber}'.",
 OperationResultSeverity.Error
);
 return new OperationResult(information, error) { Value =
randomNumber };
 }

Chapter 11 313

 }
}

As you may have noticed, we removed the tertiary operator and made use of all severity levels.

In that last code block, both successes and failures return two messages:

• When it is successful, the severity of those messages is information and a warning.
• When it is unsuccessful, the severity of those messages is information and an error.

From the consumer standpoint, nothing has changed from the previous example but once again could
be handled differently in a real application that needs to know about those messages:

app.MapGet("/multiple-errors-with-value-and-severity", (OperationResult.
WithSeverity.Executor executor) =>
{
 var result = executor.Operation();
 if (result.Succeeded)
 {
 // Handle the success
 }
 else
 {
 // Handle the failure
 }
 return result;
});

As you can see, it is still as easy to use, but now with more flexibility added to it. We could do something
with the different types of messages, such as displaying them to the user, retrying the operation, and
more.

For now, if you run the application and call that endpoint, successful calls should return a JSON string
that looks like the following:

{
 "succeeded": true,
 "value": 56,
 "messages": [
 {

Tip

You should always aim to write code that is easy to read. It is OK to use language features,
but nesting statements over statements on a single line has its limits and can quickly
become a mess.

Understanding the Operation Result Design Pattern314

 "message": "This should be very informative!",
 "severity": "Information"
 },
 {
 "message": "Something went wrong, but we will try again later
automatically until it works!",
 "severity": "Warning"
 }
]
}

Failures should return a JSON string that looks like this:

{
 "succeeded": false,
 "value": 19,
 "messages": [
 {
 "message": "This should be very informative!",
 "severity": "Information"
 },
 {
 "message": "Something went wrong with the number '19'.",
 "severity": "Error"
 }
]
}

One more idea to improve this design would be to add a Status property that returns a complex success
result based on each message’s severity level. To do that, we could create another enum:

public enum OperationStatus { Success, Failure, PartialSuccess }

Then we could access that value through a new property named Status, on the OperationResult class.
With this, a consumer could handle partial successes without digging into the messages themselves.
I will leave you to play with this one on your own; for example, the Status property could replace the
Succeeded property, or the Succeeded property could leverage the Status property similarly to what
we did with the errors. The most important part is to define what would be a success, a partial success,
and a failure. Think of a database transaction, for example; one failure could lead to the rollback of
the transaction, while in another case, one failure could be acceptable.

Now that we’ve expanded our simple example into this, what happens if we want the Value to be
optional? To do that, we could create multiple operation result classes that each hold more or less
information (properties); let’s try that next.

Chapter 11 315

Sub-classes and factories
In this iteration, we keep all the properties, but we instantiate the OperationResult objects using static
factories. Moreover, we hide certain properties away in the sub-classes, so each type of result only
contains the data it needs to be correct. The OperationResult class itself only exposes the Succeeded
property in this scenario.

A static factory method is nothing more than a static method responsible for creating objects. It can
be handy because it is easy to use as you are about to see. As always, I cannot stress this enough:
be careful when designing something static, or it could haunt you later; static members are not
extensible and can make their consumers harder to test.

The OperationResultMessage class and the OperationResultSeverity enum remain unchanged. In
the following code block, the severity is not considered when computing the operation’s success or
failure state. Instead, we create an abstract OperationResult class with two sub-classes:

• SuccessfulOperationResult, which represents successful operations.
• FailedOperationResult, which represents failed operations.

Then the next step is to force the use of the specifically designed classes by creating two static factory
methods:

• public static OperationResult Success(), which returns a SuccessfulOperationResult.
• public static OperationResult Failure(params OperationResultMessage[] errors),

which returns a FailedOperationResult.

Doing this moves the responsibility of deciding whether the operation is a success or not from the
OperationResult class itself to the Operation method that creates the result explicitly.

The following code block shows the new OperationResult implementation (the static factories are
highlighted):

namespace OperationResult.StaticFactoryMethod;
public abstract record class OperationResult
{
 private OperationResult() { }

 public abstract bool Succeeded { get; }

 public static OperationResult Success(int? value = null)
 {
 return new SuccessfulOperationResult { Value = value };
 }

 public static OperationResult Failure(params OperationResultMessage[]
errors)
 {

Understanding the Operation Result Design Pattern316

 return new FailedOperationResult(errors);
 }

 private record class SuccessfulOperationResult : OperationResult
 {
 public override bool Succeeded { get; } = true;
 public virtual int? Value { get; init; }
 }

 private record class FailedOperationResult : OperationResult
 {
 public FailedOperationResult(params OperationResultMessage[] errors)
 {
 Messages = errors.ToImmutableList();
 }

 public override bool Succeeded { get; } = false;
 public ImmutableList<OperationResultMessage> Messages { get; }
 }
}

After analyzing the code, there are a few closely related particularities:

• The OperationResult class has a private constructor.
• Both the SuccessfulOperationResult and FailedOperationResult classes are nested inside

OperationResult.
• They both inherit from the OperationResult class.
• Both classes are private.

Nested classes are the only way to inherit from the OperationResult class because, like other members
of the class, nested classes have access to their private members, including the constructor. Otherwise,
it is impossible to inherit from OperationResult. Moreover, as private classes, they can only be
accessed internally from the OperationResult class for the same reason and become inaccessible
from the outside.

Since the beginning of the book, I have repeated flexibility many times; but you don’t always want
flexibility. Sometimes you want control over what you expose and what you allow consumers to do,
whether to protect internal mechanisms (encapsulation) or for maintainability reasons. For example,
allowing consumers to change the internal state of an object can lead to unexpected behaviors. Another
example, when managing a library, the larger the public API, the more chances of introducing a breaking
change. Nonetheless, over-hiding elements can be a detrimental experience for the consumers; if you
need something somewhere, the chances are that someone else will too (eventually).

Chapter 11 317

In this case, we could have used a protected constructor instead or implemented a fancier way of
instancing success and failure instances. However, I decided to use this opportunity to show you
how to lock an implementation in place without needing the sealed modifier, making it impossible
to extend by inheritance from the outside. We could have built mechanisms in our classes to allow
controlled extensibility, but for this one, let’s keep it locked in tight!

From there, the only missing pieces are the operation itself and the consumer of the operation. Let’s
look at the operation first:

namespace OperationResult.StaticFactoryMethod;
public class Executor
{
 public OperationResult Operation()
 {
 // Randomize the success indicator
 // This should be real logic
 var randomNumber = new Random().Next(100);
 var success = randomNumber % 2 == 0;

 // Return the operation result
 if (success)
 {
 return OperationResult.Success(randomNumber);
 }
 else
 {
 var error = new OperationResultMessage(
 $"Something went wrong with the number '{randomNumber}'.",
 OperationResultSeverity.Error
);
 return OperationResult.Failure(error);
 }
 }
}

The two highlighted lines in the preceding code block show the elegance of this new improvement. I
find this code very easy to read, which was the objective. We now have two methods that clearly define
our intentions when using them: Success or Failure.

The consumer uses the same code that we saw before in other examples, so I’ll omit it here. However,
the output is different for a successful or a failed operation. Here is a successful output:

{
 "succeeded": true,

Understanding the Operation Result Design Pattern318

 "value": 80
}

Here is a failed output:

{
 "succeeded": false,
 "messages": [
 {
 "message": "Something went wrong with the number '37'.",
 "severity": "Error"
 }
]
}

As we can see from the two preceding JSON outputs, the properties of each object are different (that
was not a serialization trick). The only shared property of the two is Succeeded. Beware that this type
of class hierarchy is harder to consume since the interface (the OperationResult class) has a minimal
API surface (good in theory), and each sub-class adds different properties (hidden to the consumers);
it would be hard to use the Value property of a successful operation. When doing this, the additional
properties of each object should be optional information. For example, we could send the result to
another system over HTTP, return the result object directly (like we do now), or publish an event (see
Chapter 16, Introduction to Microservices Architecture, where we tackle event-driven architecture). It is
helpful to know how to manipulate classes using polymorphism techniques like what we explored
here for the day you need them.

Next, let’s peek at some advantages and disadvantages of the Operation Result pattern.

Advantages and disadvantages
Here are a few advantages and disadvantages that come with the Operation Result design pattern.

Advantages
It is more explicit than throwing an Exception since the operation result type is specified explicitly
as the method’s return type. That makes it more evident than knowing what type of exceptions the
operation and its dependencies can throw.

Another advantage is the execution speed; returning an object is faster than throwing an exception.
Not that much faster, but faster nonetheless.

Using operation results allows managing different message types like warnings and information,
compared to exceptions.

Disadvantages
Using operation results is more complex than throwing exceptions because we must manually propagate
it up the call stack (i.e. the result object is returned by the callee and handled by the caller).

Chapter 11 319

This is especially true if the operation result must go up multiple levels, which could be an indicator
not to use the pattern.

It is easy to expose members that are not used in all scenarios, creating a bigger API surface than
needed, where some parts are used only in some cases. But, between this and spending countless
hours designing the perfect system, sometimes exposing an int? Value { get; } property can be
a viable option. From there, you have lots of options to reduce that surface to a minimum. Use your
imagination and your design skills to overcome those challenges!

Summary
In this chapter, we visited multiple forms of the Operation Result pattern, from an augmented Boolean
to a complex data structure containing messages, values, and success indicators. We also explored
static factories and private constructors to control external access. Furthermore, after all of that
exploring, we can conclude that there are almost endless possibilities around the Operation Result
pattern. Each specific use case should dictate how to make it happen. From here, I am confident that
you have enough information about the pattern to explore the many more possibilities by yourself,
and I highly encourage you to.

The Operation Result pattern is perfect for crafting strongly typed return values that self-manage
multiple states (error and success) or support complex states (like partial success). It is also ideal
for transporting messages that are not necessarily errors, like information messages. Even in its
simplest form, we can leverage the Operation Result pattern as a base for extensibility since we can
add members to the result class over time, which would be impossible for a primitive type (or any
type that we don’t control).

At this point, we would usually explore how the Operation Result pattern can help us follow the SOLID
principles. However, it depends too much on the implementation, so here are a few key points instead:

• The OperationResult class encapsulates the result, extracting that responsibility from the
other system’s components (SRP).

• We violated the ISP with the Value property in multiple examples. This was minor and could
have been done differently, which could lead to a more complex design.

Note

The HttpResponseMessage class returned by the methods of the HttpClient class is an
excellent example of a concrete implementation of the Operation Result pattern. It con-
tains a single message exposed through the ReasonPhrase property. It exposes a complex
success state through the StatusCode property and a simple success indicator through
its IsSuccessStatusCode property. It also contains more information about the request
and response through other properties.

Understanding the Operation Result Design Pattern320

• We could compare an operation result to a view model or a DTO but returned by an operation
(method). From there, we could add an abstraction or stick with returning a concrete class,
which we could see as a violation of the DIP. Sometimes using concrete types makes the system
simpler and easier to maintain.

• When the advantages surpass the minor and limited impacts of those two violations, I don’t
mind letting them slide (principles are ideals not applicable in every scenario; not laws).

This chapter concludes the Designing at Component Scale section and leads to the Designing at Application
Scale section, in which we explore higher-level design patterns.

Questions
Let’s take a look at a few practice questions:

1. Is returning an operation result when doing an asynchronous call, such as an HTTP request,
a good idea?

2. What is the name of the pattern that we implemented using static methods?
3. Is it faster to return an operation result than throw an exception?

Further reading
Here are some links to build on what we learned in this chapter:

• An article on my blog about exceptions (title: A beginner guide to exceptions | The basics): https://
adpg.link/PpEm

• An article on my blog about Operation Result (title: Operation result | Design Pattern): https://
adpg.link/4o2q

Join our book’s Discord space
Join the book’s Discord workspace for Ask me Anything session with the authors:

https://packt.link/ASPdotNET6DesignPatterns

https://adpg.link/PpEm
https://adpg.link/PpEm
https://adpg.link/4o2q
https://adpg.link/4o2q

Section 4: Designing at
Application Scale
In this section, we enter the realm of application design. Instead of focusing on a smaller part of an
application, we look at how we want to design the application itself. We start by looking into layering,
which exposes the bases of application design, where we focus on the three most common layers used
in layered applications before moving toward the evolution of layering. We explore two ways of mod-
eling the domain model. We then explore a way to encapsulate and lower the burden of layering and
model copy before moving on to newer architectural styles, such as vertical slice and microservices.

Each of these chapters could make a book by themselves, so we explore them at a higher level, help-
ing you make more informed decisions when the time to choose an architectural style arrives. This
section is a starting point to further reading while still filled with helpful content, patterns, tips, and
technologies to use straight away in your everyday projects.

The goal is to cover as many application-level patterns as possible. The reason is that knowing a little
about many techniques helps choose the right method for the job at hand instead of picking the same
one every time. Getting better at something is easier when you know where to start but impossible if
you don’t know what options are available.

This section comprises the following chapters:

• Chapter 12, Understanding Layering
• Chapter 13, Getting Started with Object Mappers
• Chapter 14, Mediator and CQRS Design Patterns
• Chapter 15, Getting Started with Vertical Slice Architecture
• Chapter 16, Introduction to Microservices Architecture

12
Understanding Layering

In this chapter, we explore the inherent concepts behind layering. Layering is a popular way of
organizing computer systems by encapsulating major concerns into layers. Those concerns are related
to a computer vocation such as data access instead of a business concern such as inventory. It is
essential to understand the concepts behind layering as other concepts were born from layers, and
they are very common.

We start this chapter by exploring the initial ideas behind layering. Then, we explore alternatives that
can help us solve different problems. We use both anemic and rich models and expose both pros and
cons in action. Finally, we quickly explore Clean Architecture, which is what I call an evolution of
layering.

This chapter lays out the evolution of layering, starting with basic, restrictive, even flawed techniques,
then gradually moves toward more modern patterns. This journey should help you understand the
concepts and practices behind layering, giving you a stronger understanding than just learning one
way of doing things.

The following topics are covered in this chapter:

• Introducing layering
• Responsibilities of the common layers
• Abstract layers
• Shared model
• Clean Architecture

Let’s get started!

Introducing layering
Now that we’ve explored a few design patterns and played with ASP.NET Core a little, it is time to
jump into layering. In most computer systems, there are layers. Why? Because it is an efficient way
to partition and organize units of logic together. We could conceptually represent layers as horizontal
chunks of software, each encapsulating a concern.

Understanding Layering324

Classic layering model
Let’s start by examining a classic three-layer application design:

Figure 12.1: A classic three-layer application design

The presentation layer represents any user interface that a user can interact with to reach the domain.
In our case, it could be an ASP.NET Core web application. However, anything from WPF to WinForms
to Android could be a valid non-web presentation layer alternative.

The domain layer represents the core logic driven by the business rules; this is the solution to the
application’s problem. The domain layer is also called the business logic layer (BLL).

The data layer represents the bridge between the data and the application. The data could be stored
in a SQL Server database, hosted elsewhere, a NoSQL database hosted in the cloud, a mix of all of
those, or anything else that fits the business needs. The data layer is also called the data access layer
(DAL) and the persistence layer.

Let’s jump to an example. Given that a user has been authenticated and authorized, here is what
happens when they want to create a book in a bookstore application built using those three layers:

1. The user requests the page by sending a GET request to the server.
2. The server handles that GET request (presentation layer) and then returns the page to the user.
3. The user fills out the form and sends a POST request back to the server.
4. The server handles the POST request (presentation layer) and then sends it to the domain

layer for processing.
5. The domain layer executes the logic required to create a book, then tells the data layer to

persist that data.
6. After unrolling to the presentation layer, the server returns the appropriate response to the

user, most likely a page containing a list of books and a message telling them that the opera-
tion was successful.

Chapter 12 325

Following a classic layering architecture, a layer can only talk to the next layer in the stack—
presentation talks to domain, which talks to data, and so on. The important part is that each layer
must be independent and isolated to limit tight coupling.

In this classic layering model, each layer should own its model. For example, view models should
not be sent to the domain; only domain objects should be used there. The opposite is also true: since
the domain returns its own objects to the presentation layer, the presentation layer should not leak
them to the views, but organize the required information into view models instead.

Here is a visual example:

Figure 12.2: Diagram representing how the layers interact with one another

I’d like to point out that even if three is probably the most popular number of layers, we can create as
many as we need; we are not limited to three layers.

Let’s examine the advantages and disadvantages of classic layering, starting with the advantages:

• Knowing the purpose of a layer makes it easy to understand. For example, it is easy to guess
that the data layer components read or write some data somewhere.

• It creates a cohesive unit built around a single concern. For example, our data layer should
not render any user interface; it should stick to accessing data.

• It allows us to decouple the layer from the rest of the system (the other layers). You can isolate
and work with a layer without any knowledge of the others. For example, suppose you are
tasked with optimizing a query in a data access layer. In that case, you don’t need to know about
the user interface that eventually displays that data to a user. You only need to focus on that
element, optimize it, test it in isolation, and then ship the layer or redeploy the application.

Understanding Layering326

• Like any other isolated unit, it should be possible to reuse a layer. For example, we could
reuse our data access layer in another application that needs to query the same database for
a different purpose (a different domain layer).

OK, now, let’s look at the drawbacks:

• By splitting your software horizontally into layers, each feature crosses all of the layers. This
often leads to cascading changes between layers. For example, if we decide to add a field to
our bookstore database, we would need to update the database, the code that accesses it (data
layer), the business logic (domain layer), and the user interface (presentation layer). With
volatile specs or low-budget projects, this can become painful!

• It could be more challenging for newcomers to implement a full-stack feature because it
crosses all layers.

• Since a layer directly depends on the layer under it, dependency injection is impossible without
introducing an abstraction layer or referencing lower layers from the presentation layer. For
example, if the domain layer depends on the data layer, changing the data layer would require
rewriting all of that coupling from the domain to the data.

• Since each layer owns its entities, the more layers you add, the more copies there are of the
entities, leading to minor performance loss. For example, the presentation layer takes a view
model and copies it to a domain object. Then, the domain layer copies it to a data object. Finally,
the data layer translates it into SQL to persist it into a database (SQL Server, for example). The
opposite is also true when reading from the database.

We explore ways to combat some of those drawbacks later.

I strongly recommend that you don’t do what we just explored. It is an old, more basic way of doing
layering. We are looking at multiple improvements to this layering system during this chapter, so keep
reading before jumping to a conclusion. I decided to explore layering from the beginning in case you
have to work with that kind of application. Furthermore, studying its chronological evolution, fixing
some flaws, and adding options should help you understand the concepts instead of just knowing a
single way of doing things. Understanding the patterns is the key to software architecture, not just
learning how to apply them.

TIP

Some layers are theoretically easier to reuse than others, and reusability could
add more or less value, depending on the software you are building. I have never
seen a layer being integrally reused in practice, and I’ve rarely heard or read about
such a situation—each time rather ends in a not-so-reusable-after-all situation.

Based on my experience, I would strongly suggest not over-aiming at reusability
when it is not a precise specification that adds value to your application. By limiting
your overengineering endeavors, you and your employers could save a lot of time
and money. We must not forget that our job is to deliver value.

As a rule of thumb, do what needs to be done, not more, but do it well.

Chapter 12 327

Splitting the layers
Now that we’ve discussed layers and saw them as big horizontal slices of responsibilities, we can
organize our applications more granularly by splitting those big slices vertically, creating multiple
smaller layers. This can help us organize applications by features or by bounding context, and it
could also allow us to compose various user interfaces using the same building blocks, which would
be easier than reusing colossal-size layers.

Here is a conceptual representation of this idea:

Figure 12.3: Organizing multiple applications using smaller partially shared layers

We can split an application into multiple features (vertically) and divide each into layers (horizontally).
Based on the previous diagram, we named those features as follows:

• Inventory management
• Online shopping
• Others

So, we can bring in the online shopping domain and data layers to our Shopping web API without
bringing everything else with it. Moreover, we can bring the online shopping domain layer to the
mobile app and swap its data layer for another that talks to the web API.

We could also use our web API as a plain and simple data access application with different logic
attached to it while keeping the shopping data layer underneath.

We could end up with the following recomposed applications (this is just one possible outcome):

Figure 12.4: Organizing multiple applications using smaller partially shared layers

Understanding Layering328

These are just examples of what we can conceptually do with layers. However, the most important
thing to remember is not how the diagrams are laid out but the specifications of the applications you
are building. Only those specs and good analyses can help you create the best possible design for
that exact problem. Here, I used a hypothetical shopping example, but it could have been anything.

By splitting huge horizontal slices vertically, each piece becomes easier to reuse and share. This
improvement can yield interesting results, especially if you have multiple frontend apps or plan to
migrate away from a monolith in the future.

Layers versus tiers versus assemblies
So far in this chapter, we have been talking about layers without talking about making them into
code. Before we jump into that subject, I’d like to talk about tiers. You may have seen the term 3-tier
architecture somewhere before or heard people talking about tiers and layers, and possibly even
interchanging them in the same context as synonyms. However, they are not the same. Let’s take a look:

• Tiers are physical; each tier can be deployed on its own machine. For example, you could have
a database server, a server hosting your web API that contains the business logic (the domain),
and another server that serves an Angular application (presentation); these are three tiers
(three distinct machines), and each tier can scale independently.

• Layers are logical; each layer is only the logical organization of code, with concerns organized
and divided in a layered fashion. For example, you may create one or more projects in Visual
Studio and organize your code into three layers. For example, a Razor Pages application depends
on a business logic layer that depends on a data access layer. When you deploy that application,
all these layers, including the database, are deployed together on the same server. This would
be one tier and three layers. Of course, nowadays, chances are you have a cloud database
somewhere, which adds a second tier to that architecture: the application tier (which still has
three layers) and database tier.

Now that we’ve talked about tiers, let’s look at a layer versus an assembly.

What is an assembly?
Assemblies are commonly compiled into .dll or .exe files; you can compile and consume them directly.
For most cases, each project of a Visual Studio solution gets compiled into an assembly. You can also
deploy them as NuGet packages and consume them from nuget.org or a custom NuGet repository
of your choosing. But there is no one-to-one relationship between a layer and an assembly or a tier
and an assembly; assemblies are only a consumable unit of compiled code: a library or a program.

Note

A monolithic application (or monolith) is a program deployed as a single integrated piece
(one-tier; we explore tiers next), and that is not modular (no reuse and low interoperabili-
ty). A monolith can leverage layers or not. People often compare monolithic applications
to microservices applications because they are antipodes. We explore microservices in
Chapter 16, Introduction to Microservices Architecture.

http://nuget.org

Chapter 12 329

Moreover, you do not need to split your layers into different assemblies; you can have your three layers
residing in the same assembly. It can be easier to create undesirable coupling this way, with all of
the code being in the same project, but it is a viable option with some rigor, rules, and conventions.
Moving each layer to an assembly does not necessarily make the application better; the code inside
each of those layers (or assemblies) can become mixed up and coupled with other parts of the system.

Don’t get me wrong here: you can create an assembly per layer; I even encourage you to do so in most
cases, but doing so does not mean the layers are not tightly coupled. A layer is simply a logical unit of
organization, so each contributor’s responsibility is to make sure the layer’s code stays healthy.

Responsibilities of the common layers
In this section, we explore each of the most commonly used layers in more depth. We do not dig too
deep into each one, but that overview should help you understand the essential ideas behind layering.

Presentation
The presentation layer is probably the easiest layer to understand because it is the only one we can
see: the user interface. However, the presentation layer can also be the data contracts in case of a
REST, OData, GraphQL, or other types of web service. The presentation layer is what the user uses
to access your program. As another example, a CLI program can be a presentation layer. You write
commands in a terminal, and the CLI dispatches those commands to its domain layer, which executes
the required business logic.

The key of a maintainable presentation layer is to keep it as focused on displaying the user interface
as possible with as little business logic as possible.

Now, let’s take a look at the domain layer to see where these calls are going.

Domain
The domain layer is where the software’s value resides; it is also where most of the complexity lies.
The domain layer is the home of your business logic rules.

Unfortunately, it is easier to sell a user interface than a domain layer, since users connect to the domain
through the presentation. However, it is important to remember that the domain is responsible for
solving the problems and automating the solutions; the presentation layer only links users’ actions
to the domain.

There are two primary points of view about how to build the domain layer:

• Using a rich model.
• Using an anemic model.

No matter which one you choose, the domain layer is usually built around a domain model. You can
leverage Domain-Driven Design (DDD) to build that model and the program around it. DDD goes hand
in hand with rich models, and a well-crafted model should simplify the maintenance of the program.
Doing DDD is not mandatory, and you can achieve the required level of correctness without it.

Understanding Layering330

Another dilemma is whether to persist the domain model directly into the database or use an
intermediate data model. We talk about that in more detail in the Data section.

Next, we look at the two primary ways to think about the domain model, starting with the rich domain
model, before exploring the service layer.

Rich domain model
A rich domain model is more object-oriented, in the “purest” sense of the term, and encapsulates the
domain logic as part of the model inside methods. For example, the following class represents the
rich version of a minimal Product class that contains only a few properties:

public class Product
{
 public Product(string name, int quantityInStock, int? id = null)
 {
 Name = name ?? throw new ArgumentNullException(nameof(name));
 QuantityInStock = quantityInStock;
 Id = id;
 }

 public int? Id { get; init; }
 public string Name { get; init; }
 public int QuantityInStock { get; private set; }

 public void AddStock(int amount)
 {
 if (amount == 0) { return; }
 if (amount < 0) { throw new NegativeValueException(amount); }
 QuantityInStock += amount;
 }

 public void RemoveStock(int amount)
 {
 if (amount == 0) { return; }
 if (amount < 0) { throw new NegativeValueException(amount); }
 if (amount > QuantityInStock) { throw new
NotEnoughStockException(QuantityInStock, amount); }
 QuantityInStock -= amount;
 }
}

The AddStock and RemoveStock methods represent the domain logic of adding and removing stock
for the product inventory. Of course, we only increment and decrement a property’s value in this case,
but the concept would be the same in a more complex model.

Chapter 12 331

We could add a service layer in front of such a rich model, taking the input, mutating the domain
object, and updating the database. We explore the service layer after the models.

The biggest advantage of this approach is that most of the logic is built into the model, making this
very domain-centric with operations programmed on model entities as methods. Moreover, it reaches
the basic ideas behind object-oriented design, where behaviors should be part of the objects, making
them a virtual representation of their real-life counterparts.

The biggest drawback is the accumulation of responsibilities by a single class. Even if object-oriented
design tells us to put logic into the objects, this does not mean that it is always a good idea. If flexibility
is important for your system, hardcoding logic into the domain model may hinder your ability to evolve
business rules without changing the code itself (it can still be done). If the domain must be robust and
fixed, then a rich model might be a good choice for your project.

A relative drawback of this approach is that injecting dependencies into the domain model is harder
to do than into other objects, such as services, possibly reducing flexibility once again or increasing
the complexity of creating the models.

If you are building a stateful application where the domain model can live in memory longer than
the time of an HTTP request, a rich domain model could be of use to you. Other patterns, such as
Model-View-View-Model (MVVM) and Model-View-Update (MVU), also help you with that. We tackle
MVU in Chapter 18, A Brief Look into Blazor.

If you believe that your application would benefit from keeping the data and the logic together, then
a rich domain model is most likely a good idea for your project. If you are practicing DDD, I probably
don’t have to tell you that a rich model is the way to go. Without the notions of DDD it might be harder
to achieve a maintainable and flexible rich model.

A rich model could be a good option if your program is built around a complex domain model and
persists those classes directly to your database using an object-relational mapper (ORM). Using Cosmos
DB, Firebase, MongoDB, or any other document database could make it very easy to store complex
models as a single document instead of a collection of tables (this applies to anemic models too).

As you may have noticed, there is a lot of “ifs” in this section because I don’t think there is an absolute
answer to whether a rich model is better or not, and it is more a question of whether it is better for your
specific case than better overall. You also need to take your personal preferences and skills into account.

Experience is most likely your best ally here, so I’d recommend coding, coding, and coding more
applications to acquire that experience. Leverage your colleagues’ experiences as well.

Anemic domain model
An anemic domain model usually does not contain methods but only getters and setters. Such models
must not contain business logic rules. The Product class we had previously would look like this:

public class Product
{
 public int? Id { get; set; }
 public string Name { get; set; } = "";

Understanding Layering332

 public int QuantityInStock { get; set; }
}

As you can see, there is no method in the class anymore, only the three properties with public setters.
The logic should now be part of the service layer.

A service layer in front of such an anemic model would take the input, mutate the domain object, and
update the database. The difference is that the service owns the logic, while in the case of the rich
model, the model owns the logic.

With the anemic model, separating the operations from the data can help us add flexibility to a system.
However, it can be harder to enforce the model’s state at any given time since external actors (services)
are modifying the model instead of the model managing itself.

Encapsulating logic into smaller units makes it easier to manage each of them, and it is easier to
inject those dependencies into the service classes than injecting them into the entities themselves.
Having more smaller units of code can make a system more dreadful for a newcomer as it can be
more complex to understand since it has more moving parts. On the other hand, if the system is built
around well-defined abstractions, it can be easier to test each unit in isolation.

However, the tests can be quite different. In the case of our rich model, we can test the rules and the
persistence separately. We call this persistence ignorance, which allows us to test business rules in
isolation. Then we could create integration tests to cover the persistence aspect of the service layer
and more unit and integration tests on the data and domain levels. With an anemic model, we test
both the business rules and the persistence simultaneously with integration tests at the service layer
level or test only the business rules in unit tests that mock the persistence part away. Since the model
is just a data bag without logic, there is nothing to test there.

All in all, if the same rigorous domain analysis process is followed, the business rules of an anemic
model backed by a service layer should be as complex as a rich domain model. The biggest difference
should be in which classes the methods are located.

For stateless systems, such as RESTful APIs, an anemic model is a good option. Since you have to
recreate the model’s state for every request, an anemic model can offer you a way to recreate a smaller
portion of the model with smaller classes optimized for each use case independently. Stateless systems
require a more procedural type of thinking than a purely object-oriented approach, leaving the anemic
models as excellent candidates for that.

Note

I personally love anemic models behind a service layer, but some people would not agree
with me. I recommend choosing what you think is best for the system you are building
instead of doing something based on what someone else said about another system.

Another good tip is to let the refactoring flow top-down to the right location. For example,
if you feel that a method is bound to an entity, nothing stops you from moving that piece of
logic into that entity instead of a service class. If a service is more appropriate, then move
the logic to a service class. This approach is instrumental to the Vertical Slice architecture,
which we cover in Chapter 15, Getting Started with Vertical Slice Architecture.

Chapter 12 333

Next, let’s go back to the domain layer and explore a pattern that emerged over the years to shield the
domain model using a service layer, splitting the domain layer into two distinct pieces.

Service layer
The service layer shields the domain model and encapsulates domain logic. The service layer is usually
designed to be highly reusable, orchestrating the complex interactions with the model or external
resources such as databases. Multiple components can then use the service layer while having limited
knowledge of the model:

Figure 12.5: Service layer relationships with other layers

As shown in the preceding diagram, the presentation layer talks to the service layer, which manages
the domain model and implements the business logic.

The service layer contains services, which are classes that interact with other domain objects, such
as the domain model and the data layer.

We can divide services into two categories, domain services and application services:

• Domain services are those services we are talking about here. They contain domain logic and
allow consumers from the presentation layer to read or write data. They access and mutate
the domain model.

• Application services are services that are not related to the domain, such as [I]EmailService,
a class/interface that sends emails. These could live in the domain layer or not, depending on
their use. Since they are not tied to the domain (no domain logic), it can be wise to extract them
into a library to share them between the domain and other layers or with other applications
(why rewrite an email service for every project, right?).

As with other layers, your service layer could expose its own model, shielding its consumers from
domain model (internal) changes. In other words, the service layer should only expose its contracts
and interfaces (keyword: shield). A service layer is a form of façade�

Understanding Layering334

There are many ways to interpret this layer, and I’ll try to illustrate as many as possible in a condensed
manner (from simpler to more complex ones). Let’s get started:

• The classes and interfaces of the service layer could be part of the domain layer’s assembly,
created in a Services directory, for example. This is less reusable, but it paves the way to sharing
services in the future without managing multiple projects at first. It needs rigor to not to depend
on what you should not.

• The service layer could be an assembly containing interfaces and implementation. This is a
great compromise between reusability and maintenance time. Chances are you will never
need two implementations (see the next point) because the services are tied to the logic, which
makes the domain. You could even hide the implementation, as we did with the opaque façade
in Chapter 9, Structural Patterns.

• The service layer could be divided into two assemblies -- one containing abstractions (referenced
by consumers) and one containing implementations.

• The service layer could be an actual web service tier (such as a web API).

When writing services code, by convention, people usually suffix a service class with Service, such
as ProductService and InventoryService; the same goes for interfaces (IProductService and
IInventoryService).

No matter which technique you choose, keep in mind that the service layer contains the domain logic
and shields the domain model from direct access.

To conclude, the service layer is an amazing addition that shields and encapsulates the logic for
manipulating an anemic domain model. It can defeat the purpose of a rich domain model if it’s just a
pass-through but can be very useful to handle complex, non-atomic business rules that affect multiple
domain objects.

The primary decider of whether or not to add a service layer is tied to the complexity of your project’s
domain. The more complex, the more it makes sense, the more trivial, the less sense. Here are a few
tips:

• Add a service layer when using an anemic model.
• Add a service layer for very complex domains.
• Do not add a service layer for low-complexity domains or façade over database applications.

Now, let’s look at the data layer.

Data
The data layer is where the persistence code goes. In most programs, we need some kind of persistence
to store our application data, which is often a database. Several patterns come to mind when discussing
the data layer, including the Unit of Work and Repository patterns, which are very common. We cover
these two patterns very briefly at the end of this subsection.

We can persist our domain model as is or create a data model that is more suited to be stored. For
example, a many-to-many relationship is not a thing in the object-oriented world, while it is from a
relational database standpoint.

Chapter 12 335

You can view a data model like a view model or a DTO, but for data. The data model is the way the
data is stored in your data store; that is, how you modeled your data or what you have to live with.

In a classic layering project, you have no choice but to have a data model. However, you may find
better solutions as we continue to explore additional options.

Modern data layers usually leverage an ORM such as Entity Framework Core (EF Core), which does
a big part of our job, making our lives easier. In the case of EF Core, it allows us to choose between
multiple providers, from SQL Server to Cosmos DB, passing by the in-memory provider. The great
thing about EF Core is that it already implements the Unit of Work and the Repository patterns for
us, among other things. In the book, we use the in-memory provider to cut down setup time and run
integration tests.

I don’t want to go into too much detail about these patterns, but they are important enough to deserve
an overview. I’ve written a multi-part article series about the Repository pattern (see the Further reading
section). As I mentioned before, EF Core already implements these patterns, so we don’t have to deal
with them. Moreover, using such patterns is not always desirable, can be hard to implement right,
and can lead to bloated data access layers, but can also be very useful.

In the meantime, let’s at least study their goals to know what they are for, and if the situation arises
where you need to write such components, you know where to look.

Repository pattern
The goal of the Repository pattern is to allow consumers to query the database in an object-oriented
way. Usually, this implies caching objects and filtering data dynamically. EF Core represents this
concept with a DbSet<T> and provides dynamic filtering using LINQ and the IQueryable<T> interface.

People also use the term repository to represent the Table Data Gateway pattern, which is another
pattern that models a class that gives us access to a single table in a database and provides access to
operations such as creating, updating, deleting, and fetching entities from that database table. Both
patterns are from the Patterns of Enterprise Application Architecture.

Note

An ORM is a piece of software that translates objects into a database language such as SQL.
It allows mutating data, querying data, loading that data into objects, and more.

Note

If you’ve used EF6 before and dread Entity Framework, know that EF Core is lighter, faster,
and easier to test. Feel free to give it a second shot. EF Core’s performance is very high
now too. However, if you want complete control over your SQL code, look for Dapper (not
to be confused with Dapr).

Understanding Layering336

Homegrown custom implementations usually follow the Table Data Gateway pattern more than the
Repository one. They are based on an interface that looks like the following code and contains methods
to create, update, delete, and read entities. They can have a base entity or not, in this case, IEntity<TId>.
The Id property can also be generic or not:

public interface IRepository<T, TId>
 where T : class, IEntity<TId>
{
 Task<IEnumerable<T>> AllAsync(CancellationToken cancellationToken);
 Task<T?> GetByIdAsync(TId id, CancellationToken cancellationToken);
 Task<T> CreateAsync(T entity, CancellationToken cancellationToken);
 Task UpdateAsync(T entity, CancellationToken cancellationToken);
 Task DeleteAsync(TId id, CancellationToken cancellationToken);
}
public interface IEntity<TId>
{
 TId Id { get; }
}

One thing that often happens with those table data gateways is that people add a save method to the
interface. As long as you update a single entity, it should be fine, but that makes transactions that cross
multiple repositories harder to manage or dependent on the underlying implementation (breaking
abstraction). To commit or revert such transactions, we can leverage the Unit of Work pattern, moving
the save method from the table data gateway there.

For example, when using EF Core, we can use DbSet<Product> (the db.Products property) to add new
products to the database, like this:

db.Products.Add(new Data.Product
{
 Id = 1,
 Name = "Banana",
 QuantityInStock = 50
});

For the querying part, the easiest way to find a single product is to use it like this:

var product = _db.Products.Find(productId);

However, we could use LINQ instead:

_db.Products.Single(x => x.Id == productId);

These are some of the querying capabilities that a repository should provide. EF Core seamlessly
translates LINQ into the configured provider expectations like SQL, adding extended filtering
capabilities.

Chapter 12 337

Of course, with EF Core, we can query collections of items, fetching all products and projecting them
as domain objects like this (in case the model is not shared between both projects):

_db.Products.Select(p => new Domain.Product
{
 Id = p.Id,
 Name = p.Name,
 QuantityInStock = p.QuantityInStock
});

We can also filter further using LINQ here; for example, by querying all the products that are out of
stock:

var outOfStockProducts = _db.Products
 .Where(p => p.QuantityInStock == 0);

We could also allow a margin for error, like so:

var mostLikelyOutOfStockProducts = _db.Products
 .Where(p => p.QuantityInStock < 3);

With that, we have briefly explored how to use the EF Core implementation of the Repository pattern,
DbSet<T>. These few examples might seem trivial, but it would require considerable effort to implement
custom repositories on par with EF Core’s features.

EF Core’s unit of work, DbContext, contains the save methods to persist the modifications done to all
its DbSet<T> properties (the repositories). Homebrewed implementations often feature such methods
on the repository itself, making cross-repository transactions harder to handle and leading to bloated
repositories containing tons of operation-specific methods to handle such cases.

That’s enough for the Repository pattern. Now, let’s jump into an overview of the Unit of Work pattern
before going back to layering.

Unit of Work pattern
A unit of work keeps track of the object representation of a transaction. In other words, it manages
a registry of what objects should be created, updated, and deleted. It allows us to combine multiple
changes in a single transaction (one database call), which offers multiple advantages over calling the
database every time we make a change.

Assuming we are using a relational database, here are two advantages:

• First, it can speed up data access; calling a database is slow, so limiting the number of calls
and connections can improve performance.

• Second, running a transaction instead of individual operations allows us to roll back all
operations if one fails or commit the transaction as a whole if everything succeeds.

EF Core implements this pattern with the DbContext class and its underlying types, such as the
DatabaseFacade and ChangeTracker classes.

Understanding Layering338

We don’t need transactions in our small applications, but the concept remains the same. Here is an
example of what happens using EF Core:

var product = _db.Products.Find(productId);
product.QuantityInStock += amount;
_db.SaveChanges();

The preceding code does the following:

1. Queries the database for a single entity.
2. Changes the value of the QuantityInStock property.
3. Persists the changes back into the database.

In reality, what happened is closer to the following:

1. We ask EF Core for a single entity through the ProductContext (a unit of work), which exposes
the DbSet<Product> property (the product repository). Under the hood, EF Core does the
following:

a. Queries the database.
b. Caches the entity.
c. Tracks changes for that entity.
d. Returns it to us.

2. We changed the value of the QuantityInStock property; EF Core detects the change and marks
the object as dirty.

3. We tell the unit of work to persist the changes that it tracked, saving the dirty product back
to the database.

In a more complex scenario, we could have written the following code:

_db.Products.Add(newProduct);
_db.Products.Remove(productToDelete);
product.Name = "New product name";
_db.SaveChanges();

Here, the SaveChanges() method triggers saving the three operations instead of sending them one by
one. You can control database transactions using the Database property of DbContext (see the Further
reading section for more information).

Now that we’ve explored the unit of work, we could implement one by ourselves. Would that add
value to our application? Probably not. If you want to build a custom unit of work or a wrapper over
EF Core, there are plenty of existing resources to guide you. Unless you want to experiment or need a
custom unit of work and repository (which is possible), I recommend staying away from doing that.
Remember: do only what needs to be done for your program to be correct.

Chapter 12 339

Now that we explored a high-level view of the Repository and Unit of Work patterns, and what those
common layers are for, we can continue our journey of using layers in a robust, flexible, and efficient
way.

Abstract layers
This section looks at abstract layers with an abstract data layer implementation. This type of abstraction
can be very useful and is another step closer to Clean Architecture. Moreover, you can abstract pretty
much anything this way, which is nothing more than applying the Dependency Inversion Principle
(DIP).

Let’s start with the problem: the domain layer is where the logic lies, and the UI links the user and the
domain, exposing the features built into that domain. On the other hand, the data layer should be an
implementation detail that the domain blindly uses. The data layer contains the code that knows where
the data is stored, which should be irrelevant to the domain, but the domain directly depends on it.

The solution to break the tight coupling between the domain and the data persistence implementations
is to create an additional abstract layer, as shown in the following diagram:

Figure 12.6: Replacing the data (persistence) layer with a data abstraction layer

New rule: only interfaces and data model classes go into the data abstractions layer. This new layer
now defines our data access API and does nothing but expose a set of interfaces—the contract.

Tip

Don’t get me wrong when I say do only what needs to be done; wild engineering endeavors
and experimentations are a great way to explore, and I encourage you to do so. Howev-
er, I recommend doing so in parallel so that you can innovate, learn, and possibly even
migrate that knowledge to your application later instead of wasting time and breaking
things. If you are using Git, a good way of doing this would be to create an experimental
branch. You can then delete it when your experimentation does not work, or merge the
branch if it yields positive results.

Understanding Layering340

Then, we can create one or more data implementations based on that abstract layer contract, like using
EF Core. The link between the abstractions and implementations is done with dependency injection
bindings defined in the composition root, which explains the indirect link between the presentation
and the data implementation.

The new dependency tree looks like this:

Figure 12.7: The relationships between layers

As just mentioned, the presentation layer references a data implementation layer for the sole reason
of creating the DI bindings. We need those bindings to inject the correct implementation when creating
domain classes. Besides that, the presentation layer must not use the data layer’s abstractions nor
its implementation.

I created a sample project that showcases this, but to save you from reading pages of code, it is not
included in the book but is available on GitHub (https://adpg.link/rZdN). The most important piece
is the dependency flow between the layers, not the code itself.

In that project, the program injects an instance of the EF.ProductRepository class when a consumer
asks for an object that implements the IProductRepository interface. In that case, the consuming
class is ProductService and only depends on the IProductRepository interface. The ProductService
class is not aware of the implementation itself: it leverages only the interface. The same goes for the
program that loads a ProductService class but knows only about the IProductService interface. Here
is a visual representation of that dependency tree:

https://adpg.link/rZdN

Chapter 12 341

Figure 12.8: The dependency flow between layers, classes, and interfaces

In the preceding diagram, look at how dependencies converge on the Data.Abstract layer. The
dependency tree ends up on that abstract data layer.

With this applied piece of architectural theory, we are inverting the flow of dependencies on the
data layer by following the DIP. We also cut out the direct dependency on EF Core, allowing us to
implement a new data layer and swap it without impacting the rest of the application or update the
implementation without affecting the domain. As I mentioned previously, swapping layers should
not happen very often, if ever. Nonetheless, this is an important part of the evolution of layering, and
more importantly, we can apply this technique to any layer or project, not just the data layer, so it is
imperative to understand how to invert the dependency flow.

Understanding Layering342

Next, let’s explore how to share and persist a rich domain model.

Sharing the model
Now we have explored strict layering, but we still have multiple models. An alternative to copying
models from one layer to another is to share a model between multiple layers, generally as an assembly.
Visually, it looks like this:

Figure 12.9: Sharing a model between all three layers

There are pros and cons to everything, so no matter how much time this can save you at first, it will
come back to haunt you and become a pain point later as the project advances and becomes more
complex.

Suppose you feel that sharing a model is worth it for your application. In that case, I recommend
using view models or DTOs at the presentation level to control and keep the input and output of
your application loosely coupled from your model. This way of shielding your lower layers can be
represented as follows:

Figure 12.10: Sharing a model between the domain and data layers

Note

To test the APIs, you can use the Postman collection that comes with the book; visit
https://adpg.link/postman6 or GitHub (https://adpg.link/net6) for more info.

https://adpg.link/postman6
https://adpg.link/net6

Chapter 12 343

By doing that, you may save some time initially by sharing your model between your domain and
data layers. The good thing is that by hiding that shared model under the presentation layer, you
should dodge many problems in the long run, making this a good compromise between quality and
development time. Moreover, since your presentation layer shields your application from the outside
world, you can rework or rewrite your other layers without impacting your consumers.

View models and DTOs are key elements to successful programs and developers’ sanity; they should
save you many headaches for long-running projects. We revisit and explore the concepts of controlling
the input and output later in Chapter 14, Mediator and CQRS Design Patterns, where inputs become
commands and queries.

Meanwhile, let’s merge that concept with an abstraction layer. In the previous project, the data
abstraction layer owned the data model, and the domain layer owned the domain model.

In this architectural alternative, we are sharing the model between the two layers. The presentation
layer can indirectly use that shared model to dialog with the domain layer without exposing it externally.
The objective is to directly persist the domain model and skip the copy from the domain to the data
layer while having that data abstraction layer that breaks the tight coupling between the domain logic
and the persistence.

Here is a visual representation of that:

Figure 12.11: Diagram representing a shared rich model

It is well suited for rich models, but we can do this for anemic models too. With a rich domain model,
you delegate the job of reconstructing the model to the ORM and immediately start calling its methods.

Note

This is pretty much how Clean Architecture does it but represented differently. Using that,
the model is at the center of the application, and is manipulated and persisted. While the
layers have different names, the concept remains very similar. More on that later.

Understanding Layering344

The ORM also recreates the anemic model, but those classes just contain data, so you need to call
other pieces of the software that contain the logic to manipulates those objects.

In the code sample, the data abstraction layer now contains only the data access abstractions, such
as the repositories, and it references the new Model project that is now the persisted model.

Conceptually, it cleans up a few things:

• The data abstraction layer’s only responsibility is to contain data access abstractions.
• The domain layer’s only responsibility is to implement the domain services and domain logic

that is not part of that rich model.
• In the case of an anemic model, the domain layer’s responsibility would be to encapsulate all

the domain logic.
• The Model project contains the entities.

Once again, I skip publishing most of the code here as it is irrelevant to the overall concept. If
you think reading the code would help you, you can consult and explore the sample on GitHub
(https://adpg.link/VTgt). Using an IDE to browse the code should help you understand the flow,
and as with the abstract layer, the dependencies between the projects, classes, and interfaces are the
key to this.

Nevertheless, here is the StockService class that uses that shared model so you can peek at some
code that directly relates to the explanations:

namespace Domain.Services;

public class StockService : IStockService
{
 private readonly IProductRepository _repository;
 public StockService(IProductRepository repository)
 {
 _repository = repository ?? throw new
ArgumentNullException(nameof(repository));
 }

Above, we are injecting an implementation of the IProductRepository interface that we use in the
next two methods.

 public async Task<int> AddStockAsync(int productId, int amount,
CancellationToken cancellationToken)
 {
 var product = await _repository.FindByIdAsync(productId,
cancellationToken);
 if (product == null)
 {
 throw new ProductNotFoundException(productId);

https://adpg.link/VTgt

Chapter 12 345

 }
 product.AddStock(amount);
 await _repository.UpdateAsync(product, cancellationToken);

 return product.QuantityInStock;
 }

The fun starts in the preceding code, which does the following:

• The repository recreates the product (model) that contains the logic.
• It validates that the product exists.
• It uses that model and calls the AddStock method (encapsulated domain logic).
• It tells the repository to update the product.
• It returns the updated product’s QuantityInStock to the consumer of the service.

 public async Task<int> RemoveStockAsync(int productId, int amount,
CancellationToken cancellationToken)
 {
 var product = await _repository.FindByIdAsync(productId,
cancellationToken);
 if (product == null)
 {
 throw new ProductNotFoundException(productId);
 }
 product.RemoveStock(amount);
 await _repository.UpdateAsync(product, cancellationToken);

 return product.QuantityInStock;
 }
}

The same logic as the AddStock method was applied to RemoveStock, but it called the
Product.RemoveStock method instead. From the StockService class, we can see the service gating
the access to the domain model (the product), fetching and updating the model through the abstract
data layer, manipulating the model by calling its methods, and returning domain data (an int in this
case, but could be an object).

Note

This type of design can be either very helpful or undesirable. Too many projects depending
on and exposing a shared model can lead to leaking part of that model to consumers, for
example exposing properties that shouldn’t be, exposing the whole domain model as output,
or the very worst, exposing it as an input and opening exploitable holes and unexpected
bugs. Be careful not to expose your shared model to the presentation layer consumers.

Understanding Layering346

Pushing logic into the model is not always possible or desirable, which is why we are exploring multiple
types of domain models and ways to share them. Making a good design is often about options and
making the right decision about what option to use for each scenario. There are also tradeoffs to make
between flexibility and robustness.

The rest of the code is very similar to the abstract layer project, but the classes were moved around
slightly. Feel free to explore the source code (https://adpg.link/VTgt) and compare it with the
other projects. The best way to learn is to practice, so play with the samples, add features, update the
current features, remove stuff, or even build your own project. Understanding these concepts should
help you apply them to different scenarios, sometimes creating unexpected but efficient constructs.

Now, let’s look at the final evolution of layering: Clean Architecture.

Clean Architecture
Now that we’ve covered many layering approaches, it is time to combine them into Clean Architecture,
also known as Hexagonal Architecture, Onion Architecture, Ports and Adapters, and more. Clean
Architecture is an evolution of the layers, yet very similar to what we just built. Instead of presentation,
domain, and data (or persistence), Clean Architecture suggests UI, Core, and Infrastructure.

As we saw previously, we can design a layer so that it contains abstractions or implementations. Then,
when implementations depend only on abstractions, that inverts the flow of dependency. Clean
Architecture emphasizes such layers but with its own set of guidance about organizing them.

We also explored the theoretical concept of breaking layers into smaller ones (or multiple projects),
thus creating “fractured layers” that are easier to port and reuse. Clean Architecture leverages that
concept at the infrastructure layer level.

There are probably as many points of view and variants of this as there are names for it, so I’ll try to
be as general as possible while keeping the essence. By doing this, if you are interested in this type of
architecture, you’ll be able to pick a resource and dig deeper into it, following the style that you prefer.

https://adpg.link/VTgt

Chapter 12 347

Let’s take a look at a diagram that resembles what we can find online:

Figure 12.12: A diagram representing the most basic Clean Architecture layout

From a layering diagram-like standpoint, the preceding diagram could look like this:

Figure 12.13: A two-layer view of the previous Clean Architecture diagram

Understanding Layering348

From here, depending on what method you choose, you can split those layers into multiple other
sublayers. One thing that we often see is to divide the Core layer into Entities and Use cases, like this:

Figure 12.14: Widespread Clean Architecture layout diagram

Since people in the tech industry are creative, there are many names for many things, but the concepts
remain the same. From a layering diagram-like standpoint, that diagram could look like this:

Figure 12.15: A layer-like view of the previous Clean Architecture diagram

The infrastructure layer is conceptual and can represent multiple projects, such as an infrastructure
assembly containing EF Core implementations and a website project representing the web UI. We
could also add more projects to the infrastructure layer.

Chapter 12 349

The dependency rule of Clean Architecture states that dependencies can only point inward, from the
outer layers to the inner layers. This means that abstractions lie inside, and concretions lie outside.
Based on the preceding layer-like diagram, inside translates to downward. That means a layer can
use any direct or transitive dependencies, which means that infrastructure can depend on use cases
and entities.

Clean Architecture follows all the principles that we’ve been discussing since the beginning of this book,
such as decoupling our implementations using abstractions, dependency inversion, and separation
of concerns. These implementations are glued over abstractions using dependency injection (this is
not mandatory, but it should help).

I’ve always found those circle diagrams a bit confusing, so here is my take on an updated, more linear
diagram:

Figure 12.16: A two-layer view of Clean Architecture’s common elements

Now, let’s revisit our layered application using Clean Architecture, starting with the core layer. The
core project contains the domain model, the use cases (services), and the interfaces needed to fulfill
those use cases.

No external resource should be accessed here: no database calls, no disk access, and no HTTP requests.
This layer contains the interfaces that expose such interaction, but the implementations must live in
the infrastructure layer.

The presentation layer was renamed Web and lives in the outer layer with the EF Core implementation.
The Web project depends only on the Core project. Once again, since the composition root is in this
project, it must load the EF Core implementation project to configure the IoC container.

Understanding Layering350

Here is a diagram representing the relation between the shared model and the new Clean Architecture
project structure:

Figure 12.17: From shared project to the Clean Architecture project structure

In the preceding diagram, note that I took the center of the solution and merged the layers into a single
Core project. I also renamed the project, so linking them to Clean Architecture is easier, but you can
name your projects however you want.

Most of the code is not that relevant since the biggest point is the dependency flow and relationships
between projects (link to this project: https://adpg.link/QRrR). Nonetheless, here is a list of changes
that I made aside from moving the pieces to different projects:

• I removed the ProductService class and IProductService interface and used the
IProductRepository interface directly from the StockService class (Core project) and the
/products endpoint (Web project: Program.cs)

• I removed the IStockService interface and now both the add and remove stocks endpoints
(Web project: Program.cs) depend directly on the StockService class

Why use the IProductRepository interface directly, you might wonder? Since the Web project
(infrastructure layer) depends on the core layer, we can leverage the inward dependency flow. It
is acceptable to use a repository directly as long as the feature has no business logic. Programming
empty shells and pass-through services only adds useless complexity. However, as soon as business
logic is involved, create a service or any other domain entity you deem necessary for that scenario.
Don’t pack business logic into your controllers or minimal API delegates.

I removed the IStockService interface since the StockService class contains concrete business rules
that can be consumed as is from the infrastructure layer. I know we have emphasized using interfaces
since the beginning of the book, but I also often said that principles are not laws. All in all, there is
nothing to abstract away: if the business rules change, the old ones won’t be needed anymore. On the
other hand, you could keep the interface if you’d prefer to.

To wrap this up, Clean Architecture is a proven pattern for building applications that is fundamentally
an evolution of layering. Many variants can help you manage use cases, entities, and infrastructure;
however, we will not cover those here.

https://adpg.link/QRrR

Chapter 12 351

If you think this is a great fit for you, your team, your project, or your organization, feel free to dig
deeper and adopt this pattern. In subsequent chapters, we explore some patterns, such as CQRS,
Publish-Subscribe, and events, that can be used with Clean Architecture to add more flexibility and
robustness. These become particularly useful as your system grows in size or complexity.

Implementing layering in real life
Now that we have covered all of this, it is important to note that on the one hand there is theory,
and on the other there is life hitting you in the face. If you are working in a big enterprise, chances
are your employer can pour hundreds of thousands or even millions of dollars into a feature to run
experiments, spend months designing every little piece, and make sure everything is perfect. Even
then, is achieving perfection even possible? Probably not.

For companies that don’t have that type of capital, you must build entire products for a few thousand
dollars sometimes because they are not trying to resell them but just need that tool built. That is where
your architectural skills come in handy. How do you design the least-worst product in a maintainable
fashion while meeting stakeholders expectations? The most important part of the answer is to set
expectations correctly. Moreover, never forget that someone needs to maintain and make changes to
the software over time.

Let’s dig deeper into this and look at a few tricks to help you out. Even if you are working for a larger
enterprise, you should get something out of it.

To be or not to be a purist?
In your day-to-day work, you may not always need the rigidity of a domain layer creating a wall in
front of your data. Maybe you just don’t have the time or the money, or it’s just not worth doing.

Taking the data and presenting it can often work well enough, especially for simple data-driven
applications that are only a user interface over a database, as is the case for many internal tools.

The answer to the “To be or not to be a purist?” question is: it depends!

Here are a few examples of things that the answer depends on, to help you out:

• The project; for example:

• Domain-heavy or logic-intensive projects will benefit from a domain layer, helping
you centralize parts for an augmented level of reusability and maintainability.

• Data management projects tend to have less or no logic in them. We can often build
them without adding a domain layer as the domain is often only a tunnel from the
presentation to the data; a pass-through layer. We can often simplify those systems by
dividing them into two layers: data and presentation.

Tip

If you are in a position where you must evaluate the feasibility of products and features
in this context, setting expectations lower can be a good way to plan for the unplannable.
It is easier to overdeliver than justify why you underdelivered.

Understanding Layering352

• Your team; for example, a highly skilled team may tend to use advanced concepts and patterns
more efficiently, and the learning curve for newcomers should be easier due to the number of
seasoned engineers that can support them on the team. This does not mean that less skilled
teams should aim lower; on the contrary, it may just be harder or take longer to start. Analyze
each project individually and find the best patterns to drive them accordingly.

• Your boss; if the company you work for puts pressure on you and your team to deliver complex
applications in record time and nobody tells your boss that it is impossible, you may need
to cut corners a lot and enjoy many maintenance headaches with crashing systems, painful
deployments, and more. That being said, if it is inevitable, for these types of projects, I’d go
with a very simple design that does not aim at reusability—aim at low-to-average testability and
code stuff that just works. I also suggest you continue reading and explore using the techniques
from Chapter 15, Getting Started with Vertical Slice Architecture, to improve the design while
keeping the design overhead low.

• Your budget; once again, this often depends on the people selling the application and the
features. I often saw promises that were impossible to keep but were delivered anyway with
a lot of effort, extra hours, and corner-cutting. The thing to keep in mind when going down
that path is that at some point, there is no return from the amount of accumulated technical
debt, and it will just get worse (this applies to all budgets).

• The audience; the people who use the software can make a big difference to how you build it:
ask them. For example, if you are building a tool for your fellow developers, you can probably
cut many corners that you would not for other, less technically skilled users. On the other hand,
if you’re aiming your application at multiple clients (web, mobile, and so on), isolating your
application’s components and focusing on reusability could be a winning design.

• The expected quality; you should not tackle the problem in the same way for building a prototype
and a SaaS application. It is acceptable, even encouraged, for a prototype to have no tests and
not follow best practices, but I’d recommend the opposite for a production-quality application.

• Any other things that life throws at you; yes, life is unpredictable, and no one can cover every
possible scenario in a book, so just keep the following in mind when building your next piece
of software:

• Do not over-engineer your applications.
• Only implement features that you need, not more, as per the you aren’t gonna need

it (YAGNI) principle.

I hope that you find this guidance good enough and that it will be helpful at some point in your career.

Building a façade over a database
Data-driven programs are a type of software that I often see in smaller enterprises. Those companies
need to support their day-to-day operations with computers, not the other way around. Every company
needs internal tools, and many needed them yesterday.

Chapter 12 353

The reason is simple; every company is unique. Because it’s unique, due to its business model,
leadership, or employees, it also needs unique tools to help with its day-to-day operations. Often,
those small tools are simple user interfaces over a database, controlling access to that data. In these
cases, you don’t need over-engineered solutions, as long as everyone is informed that the tool will not
evolve beyond what it is: a small tool.

In real life, this one is tough to explain to non-programmers because they tend to see complex use
cases as easy to implement and simple use cases as hard to implement. It’s normal; they just don’t
know, and we all don’t know something. In these scenarios, a big part of our job is also to educate
people. Advising decision-makers about the differences in quality between a small tool and a large
business application should help. By educating and working with stakeholders, they become aware
of the situation and make decisions with you, leading to higher project quality that meets everyone’s
expectations. This can also reduce the “it’s not my fault” syndrome from both sides.

I’ve found that immersing customers and decision-makers in the decision process and having them
follow the development cycle helps them understand the reality behind the programs and helps both
sides stay happy and grow more satisfied. Stakeholders not getting what they want is no better than
you being super stressed over unreachable deadlines.

That said, our educational role does not end with decision-makers. Teaching new tools and techniques
to your peers is also a major way to improve your team, peers, and yourself. Explaining concepts is
not always as easy as it sounds.

Nevertheless, data-driven programs may be hard to avoid, especially if you are working for SMEs,
so try to get the best out of it. Another tip is to remember that someday, someone will have to do
maintenance on those small tools. Think of that person as being you, and think about how you’d like
to have some guidelines or documentation to help you out. I’m not saying to over-document projects
either, as documentation often gets out of sync with the code and becomes more of a problem than a
solution. However, a simple README.md file at the root of the project explaining how to build and run
the program and some general guidelines could be beneficial. Always think about documentation
as if you were the one reading it. Most people don’t like to spend hours reading documentation to
understand something simple, so keep it simple.

When building a façade over a database, you want to keep it simple. Also, you should make it clear that
it should not evolve past that role. One way to build this would be to use EF Core as your data layer and
scaffold an MVC application as your presentation layer, shielding your database. If you need access
control, you can use the built-in ASP.NET Core authentication and authorization mechanism. You can
then choose role-based or policy-based access control, or any other way that makes sense for your
tool and allows you to control access to the data the way you need to.

Keeping it simple should help you build more tools in less time, making everyone happy. Most likely,
improving your non-tech colleagues’ productivity, which should lead to more profit for the company,
could lead to prosperity, which should mean more work for you; it should be a win-win situation.

Understanding Layering354

From a layering standpoint, using my previous example, you will end up having two layers sharing
the data model:

Figure 12.18: A façade-like presentation layer over a database application’s design

Nothing stops you from creating a view model here and there for more complex views, but the key is to
keep the logic’s complexity to a minimum. Otherwise, you may discover the hard way that sometimes,
rewriting a program from scratch takes less time than trying to fix it. Moreover, nothing stops you
from using any other presentation tools and components available to you.

Using this data-driven architecture as a temporary application while the main application is in
development is also a good solution. It takes a fraction of the time to build, and the users have access
to it immediately. You can even get feedback from it, which allows you to fix any mistakes before they
are implemented in the real (future) application, working like a living prototype.

Not all projects are that simple, but still, many are; the key is to make the program good enough while
making sure you cut the right corners. The presentation layer in these types of applications could
leverage a low-code solution such as Power Apps, for example.

Summary
Layering is one of the most used architectural techniques when it comes to designing applications.
An application is often split into multiple different layers, each managing a single responsibility. The
three most popular layers are presentation, domain, and data. You are not limited to three layers, and
you can split each one into smaller layers (or smaller pieces inside the same conceptual layer). This
allows you to create composable, manageable, and maintainable applications.

Moreover, you can create abstraction layers to invert the flow of dependency and separate interfaces
from implementations, as we saw in the Abstract layers section. You can persist the domain entities
directly or create an independent model for the data layer. You can also use an anemic model (no
logic or method) or a rich model (packed with entity-related logic). You can share that model between
multiple layers or have each layer possess its own.

Out of layering was born Clean Architecture, which guides how you can organize your application
into concentric layers, often dividing the application into use cases.

Tip

A good database design in these sorts of applications can go a long way.

Chapter 12 355

Let’s see how this approach can help us move toward the SOLID principles at app scale:

• S: Layering leads us toward splitting responsibilities horizontally, with each layer oriented
around a single macro-concern. The main goal of layering is responsibility segregation.

• O: Abstract layers enable consumers to act differently (change behaviors) based on the provided
implementation (concrete layer).

• L: N/A
• I: Splitting layers based on features (or cohesive groups of features) is a way of segregating a

system into smaller blocks (interfaces).
• D: Abstraction layers lead directly to the dependency flow’s inversion, while classic layering

leads to the opposite direction.

In the next chapter, we learn how to centralize the logic of copying objects (models) using object
mappers and an open source tool to help us skip the implementation, also known as productive laziness.

Questions
Let’s take a look at a few practice questions:

1. Is it true that, when creating a layered application, we must have presentation, domain, and
data layers?

2. Is a rich domain model better than an anemic domain model?
3. Does EF Core implement the Repository and Unit of Work patterns?
4. Do we need to use an ORM in the data layer?
5. Can a layer in Clean Architecture access any inward layers?

Further reading
Here are a few links to help you build on what we learned in this chapter:

• ExceptionMapper is an ASP.NET Core middleware that reacts to Exception. You can map
certain exception types to HTTP status codes and more. It is one of the open source projects
that I created in 2020: https://adpg.link/i8jb.

• Dapper is a simple yet powerful ORM for .NET, made by the people of Stack Overflow. If you
like writing SQL, but don’t like mapping data to objects, this ORM might be for you: https://
adpg.link/pTYs.

• An article that I wrote in 2017, talking about the Repository pattern; that is, Design Patterns:
ASP.NET Core Web API, services, and repositories | Part 5: Repositories, the ClanRepository, and
integration testing: https://adpg.link/D53Z.

• Entity Framework Core – Using Transactions: https://adpg.link/gxwD.

https://adpg.link/i8jb
https://adpg.link/pTYs
https://adpg.link/pTYs
https://adpg.link/D53Z
https://adpg.link/gxwD

13
Getting Started with Object
Mappers

In this chapter, we explore object mapping. As we saw in the previous chapter, working with layers
often leads to copying models from one layer to another. Object mappers solve that problem. We
first look at manually implementing an object mapper. Then, we improve our design by regrouping
the mappers under a mapper service. Finally, we replace that with an open source tool that helps us
generate business value instead of writing mapping code.

The following topics are covered in this chapter:

• Overview of object mapping and object mappers
• Implementing a simple object mapper
• Exploring the too-many-dependencies code smell
• Exploring the Aggregate Services pattern
• Implementing a Mapping Façade by leveraging the Façade pattern
• Using the Service Locator pattern to create a flexible Mapping Service in front of our mappers
• Using AutoMapper to map an object to another, replacing our homebrewed code

Object mapper
What is object mapping? In a nutshell, it is the action of copying the value of an object’s properties into
the properties of another object. But sometimes, properties’ names do not match; an object hierarchy
may need to be flattened and transformed. As we saw in the previous chapter, each layer can own its
own model, which can be a good thing, but that comes at the price of copying objects from one layer
to another. We can also share models between layers, but even then we need some sort of mapping
at some point. Even if it’s just to map your models to Data Transfer Objects (DTOs) or view models, it
is almost inevitable unless you are building a tiny application, but even then, you may want or need
DTOs and view models.

Getting Started with Object Mappers358

In the previous projects, the mapping logic was done in the code, sometimes duplicating the mapping
logic and adding additional responsibilities to the class doing the mapping. In this chapter, we are
extracting the mapping logic into object mappers to fix that issue.

Goal
The object mapper’s goal is to copy the value of an object’s properties into the properties of another
object. It encapsulates the mapping logic away from where the mapping takes place. The mapper is also
responsible for transforming the values from the original format to the destination format when both
objects do not follow the same structure. We might want to flatten the object hierarchy, for example.

Design
We can design object mappers in many ways. Here is the most basic object mapper design:

Figure 13.1: Basic design of the object mapper

In the diagram, the Consumer uses the IMapper interface to map an object of Type1 to an object of
Type2. That’s not very reusable, but it illustrates the concept. By using the power of generics, we can
upgrade that simple design to this more reusable version:

Figure 13.2: Generic object mapper design

Note

Remember that DTOs define your API’s contract. Having independent contract classes
should help you maintain a system, making you choose when to modify them. If you
skip that part, each time you change your model it automatically updates your endpoint’s
contract, possibly breaking some clients. Moreover, if you input your model directly, a
malicious user could try to bind the values of properties that they should not, leading to
potential security issues (known as over-posting or over-posting attacks). Having good
data exchange contracts is one of the keys to designing robust systems.

Chapter 13 359

With this design, we can map any TSource to any TDestination by implementing the
 IMapper<TSource, TDestination> interface once per mapping rule. One class could also implement
multiple mapping rules. For example, we could implement the mapping of Type1 to Type2 and Type2
to Type1 in the same class (a bidirectional mapper).

We could also use the following design and create an IMapper interface with a single method that
handles all of the application’s mapping:

Figure 13.3: Object mapping using a single IMapper as the entry point

The biggest advantage of that last design is the ease of use. We always inject a single IMapper instead
of one IMapper<TSource, TDestination> per type of mapping, which should reduce the number of
dependencies and the complexity of consuming such a mapper.

You can implement object mapping in any way that your imagination allows, but the critical part to
remember is that the mapper is responsible for mapping an object to another. A mapper should not do
crazy stuff such as loading data from a database and whatnot. It should copy the values of one object
into another: that’s it. Think about the Single Responsibility Principle (SRP) here: the class must
have a single reason to change, and since it’s an object mapper, that reason should be object mapping.

Let’s jump into some code to explore the designs in more depth with each project.

Project – Mapper
This project is an updated version of the Clean Architecture code from the previous chapter. The
project aims to demonstrate the design’s versatility of encapsulating entity mapping logic into mapper
classes, moving that logic away from the consumers. Of course, the project is again focused on the
use case at hand, making learning the topics easier.

First, we need an interface that resides in the Core project so the other projects can implement the
mapping that they need. Let’s adopt the second design that we saw:

namespace Core.Mappers;
public interface IMapper<TSource, TDestination>
{
 TDestination Map(TSource entity);
}

Getting Started with Object Mappers360

With that interface, we can start by creating the data mappers. But first, let’s start by creating record
classes instead of anonymous types to name the DTOs returned by the endpoints. Here are all the
DTOs (from the Program.cs file):

// Input stock DTOs
public record class AddStocksCommand(int Amount);
public record class RemoveStocksCommand(int Amount);
// Output stock DTO
public record class StockLevel(int QuantityInStock);

// Output "read all products" DTO
public record class ProductDetails(int Id, string Name, int QuantityInStock);

// Output Exceptions DTO
public record class ProductNotFound(int ProductId, string Message);
public record class NotEnoughStock(int AmountToRemove, int QuantityInStock,
string Message);

Three of the four output DTOs need mapping:

• Product to ProductDetails
• ProductNotFoundException to ProductNotFound
• NotEnoughStockException to NotEnoughStock

Let’s start with the product mapper (from the Program.cs file):

public class ProductMapper : IMapper<Product, ProductDetails>
{
 public ProductDetails Map(Product entity)
 => new(entity.Id ?? default, entity.Name, entity.QuantityInStock);
}

The preceding code is very straightforward; the ProductMapper class implements the
 IMapper<Product, ProductDetails> interface. The Map method returns a ProductDetails instance
and makes sure the Id property’s value is not null (highlighted), which should not happen. That
workaround makes the static analyzer happy.

Note

Why not map the StockLevel DTO? In our case, the StockService returns an
int when we add or remove stocks, so converting a primitive value like an int
into a StockLevel object does not require an object mapper. Moreover, creating
such an object mapper adds no value and would just make the code more complex.
If the service had returned an object, creating a mapper that maps an object to
StockLevel would have made more sense.

Chapter 13 361

All in all, the Map method takes a Product as input and outputs a ProductDetails instance containing
the same values.

Then let’s continue with the exception mappers (from the Program.cs file):

public class ExceptionsMapper : IMapper<ProductNotFoundException,
ProductNotFound>, IMapper<NotEnoughStockException, NotEnoughStock>
{
 public ProductNotFound Map(ProductNotFoundException exception)
 => new(exception.ProductId, exception.Message);
 public NotEnoughStock Map(NotEnoughStockException exception)
 => new(exception.AmountToRemove, exception.QuantityInStock, exception.
Message);
}

Compared to the ProductMapper class, the ExceptionsMapper class implements the two remaining use
cases, depicted by implementing the IMapper<ProductNotFoundException, ProductNotFound> and
 IMapper<NotEnoughStockException, NotEnoughStock> interfaces. The two Map methods handle mapping
an exception to its DTO, leading to one class being responsible for mapping exceptions to the DTO.

Let’s look at the products endpoint (original value from the clean-architecture project of Chapter
12, Understanding Layering):

app.MapGet("/products", async (
 IProductRepository productRepository,
 CancellationToken cancellationToken) =>
{
 var products = await productRepository.AllAsync(cancellationToken);
 return products.Select(p => new
 {
 p.Id,
 p.Name,
 p.QuantityInStock
 });
});

Before analyzing the code, let’s look at the updated version (from the Program.cs file):

app.MapGet("/products", async (
 IProductRepository productRepository,
 IMapper<Product, ProductDetails> mapper,
 CancellationToken cancellationToken) =>
{
 var products = await productRepository.AllAsync(cancellationToken);
 return products.Select(p => mapper.Map(p));
}).Produces(200, typeof(ProductDetails[]));

Getting Started with Object Mappers362

In the preceding code, the request delegate uses the mapper to replace the copy logic (the highlighted
lines of the original code). That simplifies the handler, moving the mapping responsibility into mapper
objects instead (highlighted in the preceding code)—one more step toward the SRP (the “S” in SOLID).

Let’s skip the add stocks endpoint since it is very similar to the remove stocks endpoint but simpler,
and let’s focus on the remove stocks endpoint (original value from the clean-architecture project
of Chapter 12, Understanding Layering):

app.MapPost("/products/{productId:int}/remove-stocks", async (
 int productId,
 RemoveStocksCommand command,
 StockService stockService,
 CancellationToken cancellationToken) =>
{
 try
 {
 var quantityInStock = await stockService.RemoveStockAsync(productId,
command.Amount, cancellationToken);
 var stockLevel = new StockLevel(quantityInStock);
 return Results.Ok(stockLevel);
 }
 catch (NotEnoughStockException ex)
 {
 return Results.Conflict(new
 {
 ex.Message,
 ex.AmountToRemove,
 ex.QuantityInStock
 });
 }
 catch (ProductNotFoundException ex)
 {
 return Results.NotFound(new
 {
 ex.Message,
 productId,
 });
 }
});

Chapter 13 363

Once again, before analyzing the code, let’s look at the updated version (from the Program.cs file):

app.MapPost("/products/{productId:int}/remove-stocks", async (
 int productId,
 RemoveStocksCommand command,
 StockService stockService,
 IMapper<ProductNotFoundException, ProductNotFound> notFoundMapper,
 IMapper<NotEnoughStockException, NotEnoughStock> notEnoughStockMapper,
 CancellationToken cancellationToken) =>
{
 try
 {
 var quantityInStock = await stockService.RemoveStockAsync(productId,
command.Amount, cancellationToken);
 var stockLevel = new StockLevel(quantityInStock);
 return Results.Ok(stockLevel);
 }
 catch (NotEnoughStockException ex)
 {
 return Results.Conflict(notEnoughStockMapper.Map(ex));
 }
 catch (ProductNotFoundException ex)
 {
 return Results.NotFound(notFoundMapper.Map(ex));
 }
}).Produces(200, typeof(StockLevel))
 .Produces(404, typeof(ProductNotFound))
 .Produces(409, typeof(NotEnoughStock));

The same thing happened for this request delegate, but we injected two mappers instead of just one. The
mapping logic was moved from inline using an anonymous type to the mapper objects. Nevertheless,
a code smell is starting to emerge here; can you smell it? We investigate this after we are done with
this project; meanwhile, keep thinking about the number of injected dependencies.

Note

Have you noticed the Produces method calls, chained after MapGet and MapPost? These
allow us to add metadata to our endpoints, telling the ApiExplorer what return value
comes with each status code. We can leverage this feature now that we have concrete
DTOs, not just anonymous types. Those values add more details to the OpenAPI definition
file generated by Swagger and displayed by Swagger UI when running the project. It has
nothing to do with object mapping, yet is good to know.

Getting Started with Object Mappers364

Now that the delegates are depending on interfaces with object mappers encapsulating the mapping
responsibility, we have to configure the composition root and bind the mapper implementations to
the IMapper<TSource, TDestination> interface. The service bindings look like this:

.AddSingleton<IMapper<Product, ProductDetails>, ProductMapper>()

.AddSingleton<IMapper<ProductNotFoundException, ProductNotFound>,
ExceptionsMapper>()
.AddSingleton<IMapper<NotEnoughStockException, NotEnoughStock>,
ExceptionsMapper>()

Since ExceptionsMapper implements two interfaces, we bind both to that class. That is one of the
beauties of abstractions; the remove stocks delegate asks for two mappers but receives an instance of
ExceptionsMapper twice, without even knowing it.

We could also register the classes, so the same instance is injected twice, like this:

.AddSingleton<ExceptionsMapper>()

.AddSingleton<IMapper<ProductNotFoundException, ProductNotFound>,
ExceptionsMapper>(sp => sp.GetRequiredService<ExceptionsMapper>())
.AddSingleton<IMapper<NotEnoughStockException, NotEnoughStock>,
ExceptionsMapper>(sp => sp.GetRequiredService<ExceptionsMapper>())

In this case, we will stick with two instances of the same class.

Now that we’ve explored how to extract and use mappers, let’s look at that code smell that emerged
as we were using them.

Code smell – Too many dependencies
Using that kind of mapping could become tedious in the long run, and we would rapidly see scenarios
such as injecting three or more mappers into a single request delegate or controller (yes, the same
applies to MVC and web API controllers). The consumer would likely have other dependencies already,
leading to four or more dependencies.

That should raise the following flag:

• Does the class do too much and have too many responsibilities?

Note

Yes, I did that double registration of the same class on purpose. That proves that we can
compose an application as we want it without impacting the consumers. That is done by
depending on abstractions instead of implementations, as per the Dependency Inversion
Principle (DIP—the “D” in SOLID). Moreover, the division into small interfaces, as per
the Interface Segregation Principle (ISP—the “I” in SOLID), makes that kind of scenario
possible. Finally, all those pieces are put back together using the power of Dependency
Injection (DI).

Chapter 13 365

In this case, the fine-grained IMapper interface pollutes our request delegates with tons of dependencies
on mappers, which is not ideal and makes our code harder to read. The preferred solution would be
to move the exception handling responsibility away from the delegates or controllers themselves,
leveraging a middleware or an exception filter, for example. Anyhow, we explore more object mapping
concepts to help us with this problem.

As a rule of thumb, you want to limit the number of dependencies to three or less. Over that number,
ask yourself if there is a problem with that class; does it have too many responsibilities? Having more
than three dependencies is not inherently bad; it is just an indicator that you should reconsider some
part of the design. If nothing is wrong, keep it at 4 or 5 or 10; it does not matter.

If you don’t like to have that many dependencies, you could extract service aggregates that encapsulate
two or more of those dependencies and inject that aggregate instead. Beware that moving your
dependencies around does not fix anything; it just moves the problem elsewhere if there was a problem
in the first place. Using aggregates could increase the readability of the code, though.

Instead of blindly moving dependencies around, analyze the problem to see if you could create classes
with actual logic that could do something useful to reduce the number of dependencies.

Next, let’s have a quick look at aggregating services.

Pattern – Aggregate Services
Even if the Aggregate Services pattern is not a magic problem-solving pattern, it is a viable alternative
to injecting tons of dependencies into another class. Its goal is to aggregate many dependencies in a
class to reduce the number of injected services in other classes, grouping dependencies together. The
way to manage aggregates would be to group them by concern or responsibility. Putting a bunch of
services in another service just for the sake of it is rarely the way to go; aim for cohesion.

Here is an example of a hypothetical mapping aggregate to reduce the number of dependencies of an
imaginary Create-Read-Update-Delete (CRUD) controller that allows the creation, updating, deletion,
and reading of one, many, or all products. Here’s the aggregate service code and a usage example:

public interface IProductMappers
{
 IMapper<Product, ProductDetails> EntityToDto { get; }
 IMapper<InsertProduct, Product> InsertDtoToEntity { get; }
 IMapper<UpdateProduct, Product> UpdateDtoToEntity { get; }
}

Note

Creating one or more aggregation services that expose other services can be a way to
implement service discovery in a project. This may bring some issues to the table so don’t
put everything into an aggregate firsthand either; like always, analyze if the problem is
not elsewhere first. Loading a service that exposes other services can be handy.

Getting Started with Object Mappers366

public class ProductMappers : IProductMappers
{
 public ProductMappers(IMapper<Product, ProductDetails> entityToDto,
IMapper<InsertProduct, Product> insertDtoToEntity, IMapper<UpdateProduct,
Product> updateDtoToEntity)
 {
 EntityToDto = entityToDto ?? throw new
ArgumentNullException(nameof(entityToDto));
 InsertDtoToEntity = insertDtoToEntity ?? throw new
ArgumentNullException(nameof(insertDtoToEntity));
 UpdateDtoToEntity = updateDtoToEntity ?? throw new
ArgumentNullException(nameof(updateDtoToEntity));
 }
 public IMapper<Product, ProductDetails> EntityToDto { get; }
 public IMapper<InsertProduct, Product> InsertDtoToEntity { get; }
 public IMapper<UpdateProduct, Product> UpdateDtoToEntity { get; }
}
public class ProductsController : ControllerBase
{
 private readonly IProductMappers _mapper;
 // Constructor injection, other methods, routing attributes, ...
 public ProductDetails GetProductById(int id)
 {
 Product product = ...; // Fetch a product by id
 ProductDetails dto = _mapper.EntityToDto.Map(product);
 return dto;
 }
}

The IProductMappers aggregate could make sense from that example as it regroups all mappers used in
the ProductsController class. It has the single responsibility of mapping ProductsController-related
domain objects to DTOs and vice versa. You can create aggregates with anything, not just mappers.
That’s a fairly common pattern in DI-heavy applications, which can also point to some design flaws.

Note

As long as an aggregate service is not likely to change and implements no logic, we could
omit the interface and directly inject the concrete type. Since we are focusing heavily on
the SOLID principles here, I decided to include the interface (which is not a bad thing
in itself). One advantage of not having an interface is that using the concrete type could
reduce the complexity of mocking the aggregate in unit tests. And as long as you don’t try
to put logic in there, I see no drawback.

Chapter 13 367

Now that we’ve explored the Aggregate Services pattern, let’s explore how to make a mapping façade
instead.

Pattern – Mapping Façade
We studied façades already; here we explore one other way of organizing our many mappers by
leveraging that design pattern. Instead of what we just did, we could create a mapping façade instead
of an aggregate. The code consuming the façade is more elegant because it uses the Map methods
directly instead of passing by properties. The responsibility of the façade is the same as the aggregate,
but it implements the interfaces instead of exposing properties.

Here is an example:

public interface IProductMapperService : IMapper<Product, ProductDetails>,
IMapper<InsertProduct, Product>, IMapper<UpdateProduct, Product>
{
}
public class ProductMapperService : IProductMapperService
{
 private readonly IMapper<Product, ProductDetails> _entityToDto;
 private readonly IMapper<InsertProduct, Product> _insertDtoToEntity;
 private readonly IMapper<UpdateProduct, Product> _updateDtoToEntity;
 // Omitted constructor injection code
 public ProductDetails Map(Product entity)
 {
 return _entityToDto.Map(entity);
 }
 public Product Map(InsertProduct dto)
 {
 return _insertDtoToEntity.Map(dto);
 }
 public Product Map(UpdateProduct dto)
 {
 return _updateDtoToEntity.Map(dto);
 }
}

In the preceding code, the ProductMapperService class implements IMapper interfaces through the
IProductMapperService interface and delegates the mapping logic to each injected mapper: a façade
wrapping multiple individual mappers. Next, we look at the ProductsController that consumes the
façade:

public class ProductsController : ControllerBase
{
 private readonly IProductMapperService _mapper;

Getting Started with Object Mappers368

 // Omitted constructor injection, other methods, routing attributes, ...
 public ProductDetails GetProductById(int id)
 {
 Product product = ...; // Fetch a product by id
 ProductDetails dto = _mapper.Map(product);
 return dto;
 }
}

From the consumer standpoint (the ProductsController class), I find it cleaner to write
 _mapper.Map(…) instead of _mapper.SomeMapper.Map(…). The consumer does not want to know what
mapper is doing what mapping; it only wants to map what needs mapping. If we compare the Mapping
Façade with the Aggregate Services of the previous example, the façade takes the responsibility of
choosing the mapper and moves it away from the consumer. This design distributes the responsibilities
between the classes better.

This was a good occasion to revisit the Façade design pattern, but now that we’ve covered a few mapping
options and explored the too-many-dependencies code smell, it is time to continue our journey into
object mapping, with a “mapping façade on steroids.”

Project – Mapping service
The goal is to simplify the implementation of the Mapper façade with a universal interface. To achieve
that, we are implementing the diagram shown in Figure 13.3. Here’s a reminder:

Figure 13.4: Object mapping using a single IMapper interface

Instead of naming the interface IMapper, IMappingService is more suitable because it is not mapping
anything; it is a dispatcher servicing the mapping request to the right mapper. Let’s take a look:

namespace Core.Mappers;
public interface IMappingService
{
 TDestination Map<TSource, TDestination>(TSource entity);
}

Chapter 13 369

That interface is self-explanatory; it maps any TSource to any TDestination.

On the implementation side, we are leveraging the Service Locator pattern, so I called the class
ServiceLocatorMappingService:

namespace Core.Mappers;
public class ServiceLocatorMappingService : IMappingService
{
 private readonly IServiceProvider _serviceProvider;
 public ServiceLocatorMappingService(IServiceProvider serviceProvider)
 {
 _serviceProvider = serviceProvider ?? throw new
ArgumentNullException(nameof(serviceProvider));
 }

 public TDestination Map<TSource, TDestination>(TSource entity)
 {
 var mapper = _serviceProvider.GetService<IMapper<TSource,
TDestination>>();
 if (mapper == null)
 {
 throw new MapperNotFoundException(typeof(TSource),
typeof(TDestination));
 }
 return mapper.Map(entity);
 }
}

The logic is simple:

• Find the appropriate IMapper<TSource, TDestination> service, then map the entity with it
• If you don’t find any, throw a MapperNotFoundException

The key to that design is to register the mappers with the IoC container instead of with the service itself.
Then we use the mappers without knowing every single one of them, like in the previous example.
The ServiceLocatorMappingService class doesn’t know any mappers; it just dynamically asks for
one whenever needed.

Getting Started with Object Mappers370

Now, we can inject that service everywhere we need mapping and then use it directly. We already registered
the mappers, so we just need to bind the IMappingService to its ServiceLocatorMappingService
implementation and update the consumers.

If we look at the new implementation of the remove stocks endpoint, we can see the number of
dependencies was reduced to one:

app.MapPost("/products/{productId:int}/remove-stocks", async (
 int productId,
 RemoveStocksCommand command,
 StockService stockService,
 IMappingService mapper,
 CancellationToken cancellationToken) => {
 try
 {
 var quantityInStock = await stockService.RemoveStockAsync(productId,
command.Amount, cancellationToken);
 var stockLevel = new StockLevel(quantityInStock);
 return Results.Ok(stockLevel);
 }
 catch (NotEnoughStockException ex)
 {
 return Results.Conflict(mapper.Map<NotEnoughStockException,
NotEnoughStock>(ex));
 }
 catch (ProductNotFoundException ex)
 {

Tip

I do not like the Service Locator pattern much in the application’s code. The Service
Locator is a code smell, and sometimes even worse, an anti-pattern. However, sometimes
it can come in handy, as in this case. We are not trying to cheat DI here; on the contrary,
we are leveraging its power. Moreover, that service location needs to be done somewhere.
Usually, I prefer to let the framework do it for me, but in this case, we explicitly did it,
which was fine.

The use of a service locator is wrong when acquiring dependencies in a way that removes
the possibility of controlling the program’s composition from the composition root, which
breaks the IoC principle.

In this case, we load mappers dynamically from the IoC container, limiting the container’s
ability to control what to inject, but it is acceptable enough for this type of implementation
since it has little to no negative impact on the maintainability, flexibility, and reliability
of the program. Moreover, the mappers are registered and controlled by the container.

Chapter 13 371

 return Results.NotFound(mapper.Map<ProductNotFoundException,
ProductNotFound>(ex));
 }
}).Produces(200, typeof(StockLevel))
 .Produces(404, typeof(ProductNotFound))
 .Produces(409, typeof(NotEnoughStock));

That code is very similar to the previous sample, but we replaced the mappers with the new service
(the highlighted lines). The last piece is the DI binding:

.AddSingleton<IMappingService, ServiceLocatorMappingService>();

And that’s it; we now have a universal mapping service that delegates the mapping to any mapper that
we register with the IoC container.

The nicest part is that this is not the end of our object mapping exploration. We have one tool to explore,
AutoMapper, which does all the object mapping work for us. That said, we explored and revisited
quite a few patterns and a code smell in that journey to mapping objects. Even if you are not likely
to implement object mappers manually often, it was good to cover all of those topics, which should
help you craft better software.

Project – AutoMapper
We just covered different ways to implement object mapping, but here we leverage an open source
tool named AutoMapper that does it for us instead of us implementing our own.

Why bother learning all of that if there is a tool that already does it? There are a few reasons to do so:

• It is important to understand the concepts; you don’t always need a full-fledged tool like
AutoMapper.

• It gives us the chance to cover multiple patterns that we applied to the mappers that can also be
applied elsewhere to any components with different responsibilities. So, all in all, you should
have learned multiple new techniques during this object mapping progression.

• Lastly, we dug deeper into applying the SOLID principles to write better programs.

Note

I used the singleton lifetime because ServiceLocatorMappingService has no state;
it can be reused every time without impacting the mapping logic. Having no state is an
easy reason to promote the service to a singleton lifetime but such a service could also
define an application-wide shared state. In this case, the service could cache the mappers
to facilitate reuse or improve the service location speed.

The mappers from the other code samples of this chapter were also registered with a
singleton lifetime for the same reason.

Getting Started with Object Mappers372

The AutoMapper project is also a copy of the Clean Architecture sample. The biggest difference between
this project and the others is that we don’t need to define any interface because AutoMapper exposes
an IMapper interface with all the methods we need and more.

To install AutoMapper, you can install the AutoMapper NuGet package using the CLI
 (dotnet add package AutoMapper), Visual Studio’s NuGet package manager, or by updating your
.csproj manually.

The best way to define our mappers is by using AutoMapper’s profile mechanism. A profile is a simple
class that inherits from AutoMapper.Profile and contains maps from one object to another. We
can use profiles to create groups, but in our case, with only three maps, I decided to create a single
WebProfile class.

Finally, instead of manually registering our profiles, we can scan one or more assemblies to load all of
the profiles into AutoMapper by using the AutoMapper.Extensions.Microsoft.DependencyInjection
package.

There is more to AutoMapper than this, but it has enough resources online, including the official
documentation, to help you dig deeper into the tool. The goal of this project is to do basic object
mapping.

In the Web project, we need to map Product to ProductDetails, NotEnoughStockException to
NotEnoughStock, and ProductNotFoundException to ProductNotFound. To do that, we create the
following WebProfile class (from the Program.cs file):

using AutoMapper;
public class WebProfile : Profile
{
 public WebProfile()
 {
 CreateMap<Product, ProductDetails>();
 CreateMap<NotEnoughStockException, NotEnoughStock>();
 CreateMap<ProductNotFoundException, ProductNotFound>();
 }
}

A profile in AutoMapper is nothing more than a class where you create maps in the constructor. The
Profile class adds the required methods for you to do that, such as the CreateMap method. What
does that do?

Note

When installing the AutoMapper.Extensions.Microsoft.DependencyInjection pack-
age you don’t have to load the AutoMapper package.

Chapter 13 373

Invoking the method CreateMap<Product, ProductDetails>() tells AutoMapper to register a mapper
that maps Product to ProductDetails. The other two CreateMap calls are doing the same for the other
two maps. That’s all we need for now because AutoMapper maps properties using conventions, and
both our model and DTO classes have the same sets of properties with the same names.

Now that we have one profile, we need to register it with the IoC container but rest assured that we
don’t have to do this by hand. We can scan for profiles from the composition root by using one of the
AddAutoMapper extension methods to scan one or more assemblies:

builder.Services.AddAutoMapper(typeof(WebProfile).Assembly);

That method accepts a params Assembly[] assemblies argument, which means that we can pass
multiple Assembly instances to it.

Since we have only one profile in one assembly, we leverage that class to access the assembly by
passing the typeof(WebProfile).Assembly argument to the AddAutoMapper method. From there,
AutoMapper scans for profiles in that assembly and finds the WebProfile class. If there were more
than one, it would register all it finds.

The beauty of scanning for types like this is that once you register AutoMapper with the IoC container,
you can add profiles in any registered assemblies, and they get loaded automatically; there’s no need to
do anything else afterward but to write useful code. Scanning assemblies also encourages composition
by convention, making it easier to maintain in the long run. The downside of assembly scanning is
that it can be hard to debug when something is not registered.

Note

In the preceding examples, the mappers were defined in the Core layer. In this example,
we are taking a dependency on a library, so it is even more important to think about the
dependency flow. We are mapping objects only in the Web layer, so there is no need to put
the dependency on AutoMapper in the Core layer. Remember that all layers depend directly
or indirectly on Core, so having a dependency on AutoMapper from that layer means all
layers would also depend on it. Therefore, in this example, we created the WebProfile
class in the Web layer instead, limiting the dependency on AutoMapper to only that layer.
Having only the Web layer depend on AutoMapper allows all outer layers (if we were to add
more) to control how they are doing object mapping, giving more independence to each
layer. It is also a best practice to limit object mapping as much as possible. I’ve added a
link to AutoMapper Usage Guidelines in the Further reading section at the end of the chapter.

Note

That AddAutoMapper extension method comes from the AutoMapper.Extensions.
Microsoft.DependencyInjection package.

Getting Started with Object Mappers374

Now that we’ve created the profiles and registered them with the IoC container, it is time to use
AutoMapper. Let’s look at the three endpoints we created initially (the Produces method calls are
omitted to save space):

app.MapGet("/products", async (
 IProductRepository productRepository,
 IMapper mapper,
 CancellationToken cancellationToken) =>
{
 var products = await productRepository.AllAsync(cancellationToken);
 return products.Select(p => mapper.Map<Product, ProductDetails>(p));
});

app.MapPost("/products/{productId:int}/add-stocks", async (
 int productId,
 AddStocksCommand command,
 StockService stockService,
 IMapper mapper,
 CancellationToken cancellationToken) =>
{
 try
 {
 var quantityInStock = await stockService.AddStockAsync(productId,
command.Amount, cancellationToken);
 var stockLevel = new StockLevel(quantityInStock);
 return Results.Ok(stockLevel);
 }
 catch (ProductNotFoundException ex)
 {
 return Results.NotFound(mapper.Map<ProductNotFound>(ex));
 }
});

app.MapPost("/products/{productId:int}/remove-stocks", async (
 int productId,
 RemoveStocksCommand command,
 StockService stockService,
 IMapper mapper,
 CancellationToken cancellationToken) =>
{
 try
 {
 var quantityInStock = await stockService.RemoveStockAsync(productId,
command.Amount, cancellationToken);

Chapter 13 375

 var stockLevel = new StockLevel(quantityInStock);
 return Results.Ok(stockLevel);
 }
 catch (NotEnoughStockException ex)
 {
 return Results.Conflict(mapper.Map<NotEnoughStock>(ex));
 }
 catch (ProductNotFoundException ex)
 {
 return Results.NotFound(mapper.Map<ProductNotFound>(ex));
 }
});

The preceding code shows how similar it is to use AutoMapper to the other options. We inject an
IMapper, then use it to map the entities. Instead of explicitly specifying both TSource and TDestination
like in the previous example, when using AutoMapper we specify only TDestination, which reduces
the complexity of the code from mapper.Map<ProductNotFoundException, ProductNotFound>(ex)
to mapper.Map<ProductNotFound>(ex).

The last detail I’d like to add is that we can assert whether our mapper configurations are valid when
the application starts. That will not point to missing mappers, but it validates that the registered ones
are configured correctly. The recommended way of doing this is in a unit test. To make this happen, I
made the autogenerated Program class public by adding the following line at the end:

public partial class Program { }

Then I created a test project named Web.Tests that contains the following code:

namespace Web;
public class StartupTest
{

Note

If you are using AutoMapper on an IQueryable collection, you should use the
ProjectTo<TDestination>(source) method to limit the number of queried fields when
you don’t need all of them in the destination class. In our case, that changes nothing
because we need the whole entity. Here is an example that fetches all products from
 EF Core (_db.Products) and projects them to ProductDto instances:

public IEnumerable<ProductDto> GetAllProducts()
{
 return _mapper.ProjectTo<ProductDto>(_db.Products);
}

Performance-wise, this is the recommended way to use AutoMapper with EF Core.

Getting Started with Object Mappers376

 [Fact]
 public async Task AutoMapper_configuration_is_valid()
 {
 // Arrange
 await using var application = new AutoMapperAppWebApplication();
 var mapper = application.Services.GetRequiredService<IMapper>();
 mapper.ConfigurationProvider.AssertConfigurationIsValid();
 }
}
internal class AutoMapperAppWebApplication : WebApplicationFactory<Program>{}

In the preceding code, we validate that all the AutoMapper maps are valid. To make the test fail, you
can uncomment the following line of the WebProfile class:

CreateMap<NotEnoughStockException, Product>();

The AutoMapperAppWebApplication class is there to centralize the initialization of the test cases when
there is more than one.

In the test project, I created a second test case that ensures the products endpoint is reachable. For
both tests to work together we must change the database name to avoid seeding conflicts so each test
runs on its own database. This has to do with how we seed the database in the Program.cs file, which
is not something we usually do except for development or proofs of concept. Nonetheless, testing
against multiple databases is something that can come in handy to isolate tests.

Here’s that second test case and updated AutoMapperAppWebApplication class to give you an idea:

public class StartupTest
{
 [Fact]
 public async Task The_products_endpoint_should_be_reachable()
 {
 await using var application = new AutoMapperAppWebApplication();
 using var client = application.CreateClient();
 using var response = await client.GetAsync("/products");
 response.EnsureSuccessStatusCode();
 }
 // Avoided AutoMapper_configuration_is_valid method
}
internal class AutoMapperAppWebApplication : WebApplicationFactory<Program>
{
 private readonly string _databaseName;
 public AutoMapperAppWebApplication([CallerMemberName]string? databaseName =
default)

Chapter 13 377

 {
 _databaseName = databaseName ?? nameof(AutoMapperAppWebApplication);
 }
 protected override IHost CreateHost(IHostBuilder builder)
 {
 builder.ConfigureServices(services =>
 {
 services.AddScoped(sp =>
 {
 return new DbContextOptionsBuilder<ProductContext>()
 .UseInMemoryDatabase(_databaseName)
 .UseApplicationServiceProvider(sp)
 .Options;
 });
 });
 return base.CreateHost(builder);
 }
}

And this closes the AutoMapper project. At this point, you should begin to be familiar with object
mapping. I’d recommend you evaluate whether AutoMapper is the right tool for the job whenever
a project needs object mapping. You can always load another tool or implement your own mapping
logic if AutoMapper does not suit your needs. If too much mapping is done at too many levels, maybe
another application architecture pattern would be better, or some rethinking is in order.

Note

The CallerMemberNameAttribute used in the preceding code is part of the
 System.Runtime.CompilerServices namespace and allows its decorated member to
access the name of the method that called it. In this case, the databaseName parameter
receives the test method name.

Final note

AutoMapper is convention-based and does a lot on its own without any configuration from
us, the developers. It is also configuration-based, caching the conversions to improve
performance. We can also create type converters, value resolvers, value converters, and
more. AutoMapper keeps us away from writing that boring mapping code, and I have yet
to find a better tool when object mapping is concerned.

Getting Started with Object Mappers378

Conclusion
Let’s see how object mapping can help us follow the SOLID principles:

• S: It helps extract the mapping responsibility away from the other classes, encapsulating
mapping logic into mapper objects or AutoMapper profiles.

• O: By injecting mappers, we can change the mapping logic without changing the code of their
consumers.

• L: N/A
• I: We saw different ways of dividing mappers into smaller interfaces. AutoMapper is no different;

it exposes the IMapper interface and uses other interfaces and implementations under the
hood to add flexibility to how the mapping is done.

• D: All the code depends only on interfaces, moving the implementation’s binding to the
composition root. Moreover, the mapping service was literally looking up its mappers from
the service provider through the Service Locator pattern.

That’s it for object mapping; let’s summarize what we learned before moving to the Mediator and
CQRS design patterns.

Summary
Object mapping is an unavoidable reality in many cases. However, as we saw in this chapter, there
are several ways of implementing object mapping, taking that responsibility away from the other
components of our applications.

At the same time, we took the opportunity to explore the Aggregate Services pattern, which gives us
a way to centralize multiple dependencies into one, lowering the number of dependencies needed in
other classes. That pattern can help with the too-many-dependencies code smell, which, as a rule of
thumb, states that we should investigate objects with more than three dependencies for design flaws.
Like with any dependency, moving many dependencies into an aggregate may just be that: moving
dependencies around. When doing so, make sure there is another reason or a certain cohesion within
that aggregate or you risk adding unwanted complexity to your program.

We also explored how to leverage the Façade pattern to implement a mapping façade, which led to a
more readable and elegant mapper, before implementing a mapper service that did the same thing,
a bit less elegantly, but was way more flexible.

The last way we explored is AutoMapper, an open source tool that does object mapping for us, offering
us many options to configure the mapping of our objects. As we explored, just using the default
convention allowed us to eliminate all of our mapping code.

Hopefully, as we are putting more and more pieces together, you are starting to see what I had in mind
at the beginning of this book when stating this was an architectural journey.

Now that we are done with object mapping, we explore the Mediator and CQRS patterns in the next
chapter. Then we combine our knowledge to learn about a new style of application-level architecture
named Vertical Slice Architecture.

Chapter 13 379

Questions
Let’s take a look at a few practice questions:

1. Is it true that injecting an Aggregation Service instead of multiple services makes our system
better?

2. Is it true that using mappers helps us extract responsibilities from consumers to mapper classes?
3. Is it true that you should always use AutoMapper?
4. When using AutoMapper, should you encapsulate your mapping code into profiles?
5. How many dependencies should start to raise a flag telling you that you are injecting too many

dependencies into a single class?

Further reading
Here are some links to build upon what we learned in the chapter:

• If you want more information on object mapping, I wrote an article about that in 2017, titled
Design Patterns: ASP.NET Core Web API, Services, and Repositories | Part 9: the NinjaMappingService
and the Façade Pattern: https://adpg.link/hxYf

• AutoMapper official website: https://adpg.link/5AUZ
• AutoMapper Usage Guidelines is an excellent do/don’t list to help you do the right thing with

AutoMapper, written by the library’s author: https://adpg.link/tTKg

Join our book’s Discord space
Join the book’s Discord workspace for Ask me Anything session with the authors:

https://packt.link/ASPdotNET6DesignPatterns

https://adpg.link/hxYf
https://adpg.link/5AUZ
https://adpg.link/tTKg

14
Mediator and CQRS Design
Patterns

This chapter covers the building blocks of the next chapter, which is about Vertical Slice Architecture.
We begin with a quick overview of Vertical Slice Architecture to give you an idea of the end goal.
Then, we explore the Mediator design pattern, which plays the role of the middleman between the
components of our application. That leads us to the Command Query Responsibility Segregation
(CQRS) pattern, which describes how to divide our logic into commands and queries. Finally, to piece
all of that together, we explore MediatR, an open source implementation of the Mediator design pattern.

The following topics are covered in this chapter:

• A high-level overview of Vertical Slice Architecture
• Implementing the Mediator pattern
• Implementing the CQRS pattern
• Using MediatR as a mediator

Let’s begin with the end goal.

A high-level overview of Vertical Slice Architecture
Before starting, let’s look at the end goal of this chapter and the next. This way, it should be easier to
follow the progress toward that goal throughout the chapter.

Mediator and CQRS Design Patterns382

As we covered in Chapter 12, Understanding Layering, a layer groups classes together based on
shared responsibilities. So, classes containing data access code are part of the data access layer (or
infrastructure). In diagrams, layers are usually represented using horizontal slices, like this:

Figure 14.1: Diagram representing layers as horizontal slices

The “vertical slice” in “Vertical Slice Architecture” comes from that; a vertical slice represents the
part of each layer that creates a specific feature. So, instead of dividing the application into layers, we
divide it by feature. A feature manages its data access code, its domain logic, and possibly even its
presentation code. We are decoupling the features from one another by doing this but keeping each
feature’s components close together. When we add, update, or remove a feature using layering, we
change one or more layers. Unfortunately, “one or more layers” too often translates to “all layers.”

On the other hand, with vertical slices, keeping features in isolation allows us to design them
independently instead. From a layering perspective, it’s like flipping your way of thinking about
software to a 90° angle:

Figure 14.2: Diagram representing a vertical slice crossing all layers

Vertical Slice Architecture does not dictate the use of CQRS, the Mediator pattern, or MediatR, but
these tools and patterns flow very well together, as we see in the next chapter. Nonetheless, these are
just tools and patterns that you can use or change in your implementation using different techniques;
it does not matter and does not change the concept.

The goal is to encapsulate features together, use CQRS to divide the application into requests (commands
and queries), and use MediatR as the mediator of that CQRS pipeline, decoupling the pieces from one
another.

Chapter 14 383

You now know the plan—we will explore Vertical Slice Architecture later; meanwhile, let’s start with
the Mediator design pattern.

Implementing the Mediator pattern
The Mediator pattern is another GoF design pattern that controls how objects interact with one another
(making it a behavioral pattern).

Goal
The mediator’s role is to manage the communication between objects (colleagues). Those colleagues
should not communicate together directly but use the mediator instead. The mediator helps break
tight coupling between these colleagues.

A mediator is a middleman who relays messages between colleagues.

Design
Let’s start with some UML diagrams. From a very high level, the Mediator pattern is composed of a
mediator and colleagues:

Figure 14.3: Class diagram representing the Mediator pattern

When an object in the system wants to send a message to one or more colleagues, it uses the mediator.
Here is an example of how it works:

Figure 14.4: Sequence diagram of a mediator relaying messages to colleagues

Mediator and CQRS Design Patterns384

That is also valid for colleagues; if they need to talk to each other, a colleague must also use the mediator.
We could update the diagram as follows:

Figure 14.5: Class diagram representing the Mediator pattern including colleagues’ collaboration

In that diagram, ConcreteColleague1 is a colleague but also the consumer of the mediator. For example,
that colleague could send a message to another colleague using the mediator, like this:

Figure 14.6: Sequence diagram representing colleague1 communicating with colleague2 through
the mediator

From a mediator standpoint, its implementation will most likely contain a collection of colleagues to
communicate with, like this:

Chapter 14 385

Figure 14.7: Class diagram representing a simple hypothetical concrete mediator implementation

All of those UML diagrams are useful, but enough of that; it is now time to look at some code.

Project – Mediator (IMediator)
The Mediator project consists of a simplified chat system using the Mediator pattern. Let’s start with
the interfaces:

namespace Mediator;

public interface IMediator
{
 void Send(Message message);
}
public interface IColleague
{
 string Name { get; }
 void ReceiveMessage(Message message);
}
public class Message
{
 public Message(IColleague from, string content)
 {
 Sender = from ?? throw new ArgumentNullException(nameof(from));
 Content = content ?? throw new ArgumentNullException(nameof(content));

Mediator and CQRS Design Patterns386

 }

 public IColleague Sender { get; }
 public string Content { get; }
}

The system is composed of the following:

• IMediator, which sends messages.
• IColleague, which receives messages and has a Name property (to output something).
• The Message class, which represents a message sent by an IColleague implementation.

Now to the implementation of the IMediator interface. ConcreteMediator broadcasts the messages
to all IColleague instances without discrimination:

public class ConcreteMediator : IMediator
{
 private readonly List<IColleague> _colleagues;
 public ConcreteMediator(params IColleague[] colleagues)
 {
 ArgumentNullException.ThrowIfNull(colleagues);
 _colleagues = new List<IColleague>(colleagues);
 }

 public void Send(Message message)
 {
 foreach (var colleague in _colleagues)
 {
 colleague.ReceiveMessage(message);
 }
 }
}

That mediator is simple; it forwards all the messages it receives to every colleague it knows. The last part
of the pattern is ConcreteColleague, which delegates the messages to an IMessageWriter<TMessage>
interface:

public class ConcreteColleague : IColleague
{
 private readonly IMessageWriter<Message> _messageWriter;
 public ConcreteColleague(string name, IMessageWriter<Message>
messageWriter)
 {
 Name = name ?? throw new ArgumentNullException(nameof(name));

Chapter 14 387

 _messageWriter = messageWriter ?? throw new
ArgumentNullException(nameof(messageWriter));
 }
 public string Name { get; }
 public void ReceiveMessage(Message message)
 {
 _messageWriter.Write(message);
 }
}

That class could hardly be simpler: it takes a name and an IMessageWriter<TMessage> implementation
when created, then it stores a reference for future use.

The IMessageWriter<TMessage> interface serves as a presenter to control how the messages are
displayed and has nothing to do with the Mediator pattern. Nevertheless, it is an excellent way to
manage how a ConcreteColleague object handles messages. Here is the code:

namespace Mediator;
public interface IMessageWriter<Tmessage>
{
 void Write(Tmessage message);
}

Let’s use that chat system now. The consumer of the system is the integration test defined in the
MediatorTest class:

public class MediatorTest
{
 [Fact]
 public void Send_a_message_to_all_colleagues()
 {
 // Arrange
 var (millerWriter, miller) = CreateConcreteColleague("Miller");
 var (orazioWriter, orazio) = CreateConcreteColleague("Orazio");
 var (fletcherWriter, fletcher) = CreateConcreteColleague("Fletcher");

The test starts by defining three colleagues with their own TestMessageWriter implementation (names
were randomly generated).

 var mediator = new ConcreteMediator(miller, orazio, fletcher);
 var expectedOutput = @"[Miller]: Hey everyone!
[Orazio]: What's up Miller?
[Fletcher]: Hey Miller!
";

Mediator and CQRS Design Patterns388

In the second part of the preceding Arrange block, we create the subject under test (mediator) and
register the three colleagues. At the end of that Arrange block, we also define the expected output of
our test. It is important to note that we control the output from the TestMessageWriter implementation
(defined at the end of the MediatorTest class).

 // Act
 mediator.Send(new Message(
 from: miller,
 content: "Hey everyone!"
));
 mediator.Send(new Message(
 from: orazio,
 content: "What's up Miller?"
));
 mediator.Send(new Message(
 from: fletcher,
 content: "Hey Miller!"
));

In the preceding Act block, we send three messages through mediator, in the expected order.

 // Assert
 Assert.Equal(expectedOutput, millerWriter.Output.ToString());
 Assert.Equal(expectedOutput, orazioWriter.Output.ToString());
 Assert.Equal(expectedOutput, fletcherWriter.Output.ToString());
 }

In the Assert block, we ensure that all colleagues received the messages.

 private (TestMessageWriter, ConcreteColleague)
CreateConcreteColleague(string name)
 {
 var messageWriter = new TestMessageWriter();
 var concreateColleague = new ConcreteColleague(name, messageWriter);
 return (messageWriter, concreateColleague);
 }

The CreateConcreteColleague method is a helper method that encapsulates the creation of the
colleagues, enabling us to write the one-liner declaration used in the Arrange section of the test.

 private class TestMessageWriter : IMessageWriter<Message>
 {
 public StringBuilder Output { get; } = new StringBuilder();
 public void Write(Message message)
 {

Chapter 14 389

 Output.AppendLine($"[{message.Sender.Name}]: {message.Content}");
 }
 }
}// Closing the MediatorTest class

Finally, the TestMessageWriter class writes the messages into StringBuilder, making it easy
to assert the output. If we were to build a GUI for that, we could write an implementation of
IMessageWriter<Message> that writes to that GUI; in the case of a web UI, it could be using SignalR,
for example.

To summarize the sample: the consumer (the unit test) sent messages to the colleagues through the
mediator. Those messages were written in the StringBuilder instance of each TestMessageWriter.
Finally, we asserted that all colleagues received the expected messages. That illustrates that using
the Mediator pattern allowed us to break the direct coupling between the colleagues; the messages
reached them without them knowing about each others’.

In theory, colleagues should communicate through the mediator, so the Mediator pattern would not
be complete without that. Let’s implement a chatroom to tackle that concept.

Project – Mediator (IChatRoom)
In the last code sample, the classes were named after the Mediator pattern actors, as shown in the
diagram of Figure 14.7. While this example is very similar, it uses domain-specific names instead and
implements a few more methods to manage the system showing a more tangible implementation.
Let’s start with the abstractions:

namespace Mediator;
public interface IChatRoom
{
 void Join(IParticipant participant);
 void Send(ChatMessage message);
}

The IChatRoom interface is the mediator and it defines two methods instead of one:

• Join, which allows IParticipant to join IChatRoom.
• Send, which sends a message to the others.

public interface IParticipant
{
 string Name { get; }
 void Send(string message);
 void ReceiveMessage(ChatMessage message);
 void ChatRoomJoined(IChatRoom chatRoom);
}

Mediator and CQRS Design Patterns390

The IParticipant interface also has a few more methods:

• Send, to send messages.
• ReceiveMessage, to receive messages from the other IParticipant objects.
• ChatRoomJoined, to confirm that the IParticipant object has successfully joined a chatroom.

public class ChatMessage
{
 public ChatMessage(IParticipant from, string content)
 {
 Sender = from ?? throw new ArgumentNullException(nameof(from));
 Content = content ?? throw new
ArgumentNullException(nameof(content));
 }
 public IParticipant Sender { get; }
 public string Content { get; }
}

ChatMessage is the same as the previous Message class, but it references IParticipant instead of
IColleague.

Let’s now look at the IParticipant implementation:

public class User : IParticipant
{
 private IChatRoom? _chatRoom;
 private readonly IMessageWriter<ChatMessage> _messageWriter;
 public User(IMessageWriter<ChatMessage> messageWriter, string name)
 {
 _messageWriter = messageWriter ?? throw new
ArgumentNullException(nameof(messageWriter));
 Name = name ?? throw new ArgumentNullException(nameof(name));
 }
 public string Name { get; }
 public void ChatRoomJoined(IChatRoom chatRoom)
 {
 _chatRoom = chatRoom;
 }
 public void ReceiveMessage(ChatMessage message)
 {
 _messageWriter.Write(message);
 }
 public void Send(string message)
 {
 if (_chatRoom == null)

Chapter 14 391

 {
 throw new ChatRoomNotJoinedException();
 }
 _chatRoom.Send(new ChatMessage(this, message));
 }
}
public class ChatRoomNotJoinedException : Exception
{
 public ChatRoomNotJoinedException()
 : base("You must join a chat room before sending a message.") { }
}

The User class represents our default IParticipant. A User instance can chat in only one IChatRoom;
that is set when calling the ChatRoomJoined method. When it receives a message, it delegates it to its
IMessageWriter<ChatMessage>. Finally, a User instance can send a message by delegating it to the
mediator (IChatRoom). The Send method throws a ChatRoomNotJoinedException to enforce that the
User has joined a chat room before sending messages (code-wise: the _chatRoom field is nullable).

We could create a Moderator, Administrator, SystemAlerts, or any other IParticipant implementation
as we see fit, but not in this sample. I am leaving that to you to experiment with the Mediator pattern.

Now to the IChatRoom implementation:

public class ChatRoom : IChatRoom
{
 private readonly List<IParticipant> _participants = new
List<IParticipant>();
 public void Join(IParticipant participant)
 {
 _participants.Add(participant);
 participant.ChatRoomJoined(this);
 Send(new ChatMessage(participant, "Has joined the channel"));
 }
 public void Send(ChatMessage message)
 {
 _participants.ForEach(participant => participant.
ReceiveMessage(message));
 }
}

ChatRoom is even slimmer than User; it allows IParticipant to join in and sends ChatMessage to all
registered participants. When joining a ChatRoom, it keeps a reference on that IParticipant, tells that
IParticipant that it has successfully joined, then sends a ChatMessage to all participants announcing
the newcomer.

Mediator and CQRS Design Patterns392

That’s it; we have a classic Mediator implementation. Before moving to the next section, let’s take a
look at the Consumer instance of IChatRoom, which is another integration test:

public class ChatRoomTest
{
 [Fact]
 public void ChatRoom_participants_should_send_and_receive_messages()
 {
 // Arrange
 var (kingChat, king) = CreateTestUser("King");
 var (kelleyChat, kelley) = CreateTestUser("Kelley");
 var (daveenChat, daveen) = CreateTestUser("Daveen");
 var (rutterChat, _) = CreateTestUser("Rutter");
 var chatroom = new ChatRoom();

We created four users with their respective TestMessageWriter instances in the Arrange section, as
we did before (names were also randomly generated).

 // Act
 chatroom.Join(king);
 chatroom.Join(kelley);
 king.Send("Hey!");
 kelley.Send("What's up King?");
 chatroom.Join(daveen);
 king.Send("Everything is great, I joined the CrazyChatRoom!");
 daveen.Send("Hey King!");
 king.Send("Hey Daveen");

In the Act block, our test users join the chatroom instance and send messages into it.

 // Assert
 Assert.Empty(rutterChat.Output.ToString());

Since Rutter did not join the chatroom, we expect no message.

 Assert.Equal(@"[King]: Has joined the channel
[Kelley]: Has joined the channel
[King]: Hey!
[Kelley]: What's up King?
[Daveen]: Has joined the channel
[King]: Everything is great, I joined the CrazyChatRoom!
[Daveen]: Hey King!
[King]: Hey Daveen
", kingChat.Output.ToString());

Chapter 14 393

Since King is the first to join the channel, he is expected to have received all messages.

 Assert.Equal(@"[Kelley]: Has joined the channel
[King]: Hey!
[Kelley]: What's up King?
[Daveen]: Has joined the channel
[King]: Everything is great, I joined the CrazyChatRoom!
[Daveen]: Hey King!
[King]: Hey Daveen
", kelleyChat.Output.ToString());

Kelley was the second user to join the chatroom, so the output contains almost all messages, except
the line saying [King]: Has joined the channel.

 Assert.Equal(@"[Daveen]: Has joined the channel
[King]: Everything is great, I joined the CrazyChatRoom!
[Daveen]: Hey King!
[King]: Hey Daveen
", daveenChat.Output.ToString());
 }

Daveen joined after King and Kelley exchanged a few words, so the conversation is expected to start later.

 private (TestMessageWriter, User) CreateTestUser(string name)
 {
 var writer = new TestMessageWriter();
 var user = new User(writer, name);
 return (writer, user);
 }

The CreateTestUser method helps simplify the Arrange section of the test case, similar to before.

 private class TestMessageWriter : IMessageWriter<ChatMessage>
 {
 public StringBuilder Output { get; } = new StringBuilder();
 public void Write(ChatMessage message)
 {
 Output.AppendLine($"[{message.Sender.Name}]: {message.Content}");
 }
 }
} // Close the ChatRoomTest class

// As a reference, the IMessageWriter interface
// is the same as the previous project.
public interface IMessageWriter<TMessage>

Mediator and CQRS Design Patterns394

{
 void Write(TMessage message);
}

The TestMessageWriter implementation is the same as the previous example, accumulating messages
in a StringBuilder instance.

To summarize the test case, we had four users; three of them joined the same chatroom at a different
time and chatted a little. The output is different for everyone since the time you join now matters. All
participants are loosely coupled, thanks to the Mediator pattern, allowing us to extend the system
without impacting the existing pieces. Leveraging the Mediator pattern can help us create more
maintainable systems; many small pieces are easier to manage and to test than a large component
handling all the logic itself.

Conclusion
As we explored in the two preceding projects, a mediator allows us to decouple the components of
our system. The mediator is the middleman between colleagues, and it served us well in the small
chatroom samples where each colleague can talk to the others without knowing how and without any
need of even knowing them.

Now let’s see how the Mediator pattern can help us follow the SOLID principles:

• S: The mediator extracts the communication responsibility from colleagues.
• O: With a mediator relaying the messages, we can create new colleagues and change the

existing colleagues’ behaviors without impacting the others. If we need a new colleague, we
can register one with the mediator, and voilà! Moreover, if we need new mediation behavior,
we can implement a new mediator and reuse the existing colleagues’ implementations.

• L: N/A
• I: The system is divided into multiple small interfaces (IMediator and IColleague).
• D: All actors of the Mediator pattern solely depend on other interfaces.

Next, we explore CQRS, which allows us to separate commands and queries, leading to a more
maintainable application. After all, all operations are queries or commands, no matter how we call
them.

Implementing the CQRS pattern
CQRS stands for Command Query Responsibility Segregation. We can apply CQRS in two ways:

• Dividing requests into commands and queries.
• Applying the CQRS concept to a higher level, leading to a distributed system.

Chapter 14 395

We stick with the first one here and tackle the second definition in Chapter 16, Introduction to
Microservices Architecture.

Goal
The goal is to divide all requests into two categories: commands and queries.

• A command mutates the state of an application� For example, creating, updating, and deleting
an entity are commands. In theory, commands do not return a value. In practice, they often do.

• A query reads the state of the application but never changes it� For example, reading an order,
reading your order history, and retrieving your user profile are all queries.

Dividing operations into mutator requests (write/command) and accessor requests (read/query) creates
a clear separation of concerns, leading us toward the SRP.

Design
There is no definite design for this, but for us, the flow of a command should look like the following:

Figure 14.8: Sequence diagram representing the abstract flow of a command

The consumer creates a command object and sends it to a command handler, applying mutation to
the application. In this case, I called it Entities, but it could have sent a SQL UPDATE command to a
database or a web API call over HTTP; the implementation details do not matter.

Mediator and CQRS Design Patterns396

The concept is the same for a query, but it returns a value instead. Very importantly, the query must
not change the state of the application but query for data instead, like this:

Figure 14.9: Sequence diagram representing the abstract flow of a query

Like the command, the consumer creates a query object and sends it to a handler, which then executes
some logic to retrieve and return the requested data. You can replace Entities with anything that
your handler needs to query the data.

Enough talk—let’s look at the CQRS project.

Project – CQRS
Context: We need to build an improved version of our chat system. The old system worked so well that
we now need to scale it up. The mediator was of help to us, so we kept that part, and we picked CQRS
to help us with this new, improved design. A participant was limited to a single chatroom in the past,
but now a participant should be able to chat in multiple rooms simultaneously.

The new system is composed of three commands and two queries:

• A participant must be able to join a chatroom.
• A participant must be able to leave a chatroom.
• A participant must be able to send a message into a chatroom.
• A participant must be able to obtain the list of participants that joined a chatroom.
• A participant must be able to retrieve the existing messages from a chatroom.

The first three are commands, and the last two are queries. The system is backed by a mediator that
makes heavy use of C# generics as follows:

public interface IMediator
{
 TReturn Send<TQuery, TReturn>(TQuery query)

Chapter 14 397

 where TQuery : IQuery<TReturn>;
 void Send<TCommand>(TCommand command)
 where TCommand : ICommand;

 void Register<TCommand>(ICommandHandler<TCommand> commandHandler)
 where TCommand : ICommand;
 void Register<TQuery, TReturn>(IQueryHandler<TQuery, TReturn>
commandHandler)
 where TQuery : IQuery<TReturn>;
}
public interface ICommand { }
public interface ICommandHandler<TCommand>
where TCommand : ICommand
{
 void Handle(TCommand command);
}
public interface IQuery<TReturn> { }
public interface IQueryHandler<TQuery, TReturn>
where TQuery : IQuery<TReturn>
{
 TReturn Handle(TQuery query);
}

If you are not familiar with generics, this might look daunting, but that code is way simpler than it
looks. First, we have two empty interfaces: ICommand and IQuery<TReturn>. We could omit them, but
they help identify the commands and the queries; they help describe our intent.

Then we have two interfaces that handle commands or queries. Let’s start with the interface to
implement for each type of command that we want to handle:

public interface ICommandHandler<TCommand>
where TCommand : ICommand
{
 void Handle(TCommand command);
}

That interface defines a Handle method that takes the command as a parameter. The generic parameter
TCommand represents the type of command handled by the class implementing the interface. The query
handler interface is the same, but it specifies a return value as well:

public interface IQueryHandler<TQuery, TReturn>
where TQuery : IQuery<TReturn>
{
 TReturn Handle(TQuery query);
}

Mediator and CQRS Design Patterns398

The mediator abstraction allows registering command and query handlers using the generic interfaces
that we just explored. It also supports sending commands and queries. Then we have the ChatMessage
class, which is similar to the last two samples (with an added creation date):

public class ChatMessage
{
 public ChatMessage(IParticipant sender, string message)
 {
 Sender = sender ?? throw new ArgumentNullException(nameof(sender));
 Message = message ?? throw new ArgumentNullException(nameof(message));
 Date = DateTime.UtcNow;
 }

 public DateTime Date { get; }
 public IParticipant Sender { get; }
 public string Message { get; }
}

Next is the updated IParticipant interface:

public interface IParticipant
{
 string Name { get; }
 void Join(IChatRoom chatRoom);
 void Leave(IChatRoom chatRoom);
 void SendMessageTo(IChatRoom chatRoom, string message);
 void NewMessageReceivedFrom(IChatRoom chatRoom, ChatMessage message);
 IEnumerable<IParticipant> ListParticipantsOf(IChatRoom chatRoom);
 IEnumerable<ChatMessage> ListMessagesOf(IChatRoom chatRoom);
}

All methods of the IParticipant interface accept an IChatRoom parameter to support multiple
chatrooms. Then, the updated IChatRoom interface has a name and a few basic operations to meet
the requirement of a chatroom, like adding and removing participants:

public interface IChatRoom
{
 string Name { get; }
 void Add(IParticipant participant);
 void Remove(IParticipant participant);
 IEnumerable<IParticipant> ListParticipants();
 void Add(ChatMessage message);
 IEnumerable<ChatMessage> ListMessages();
}

Chapter 14 399

Before going into commands and the chat itself, let’s take a peek at the Mediator class:

public class Mediator : IMediator
{
 private readonly HandlerDictionary _handlers = new
 HandlerDictionary();
 public void Register<TCommand>(ICommandHandler<TCommand> commandHandler)
 where TCommand : ICommand
 {
 _handlers.AddHandler(commandHandler);
 }
 public void Register<TQuery, TReturn> (IQueryHandler<TQuery, TReturn>
commandHandler)
 where TQuery : IQuery<TReturn>
 {
 _handlers.AddHandler(commandHandler);
 }
 public TReturn Send<TQuery, TReturn>(TQuery query)
 where TQuery : IQuery<TReturn>
 {
 var handler = _handlers.Find<TQuery, TReturn>();
 return handler.Handle(query);
 }
 public void Send<TCommand>(TCommand command)
 where TCommand : ICommand
 {
 var handlers = _handlers.FindAll<TCommand>();
 foreach (var handler in handlers)
 {
 handler.Handle(command);
 }
 }
}

The Mediator class supports registering commands and queries as well as sending a query to a handler
or sending a command to zero or more handlers.

Note

I omitted the implementation of HandlerDictionary because it does not add anything,
and it is just an implementation detail. It is available on GitHub (https://adpg.link/
CWCe).

https://adpg.link/CWCe
https://adpg.link/CWCe

Mediator and CQRS Design Patterns400

Now to the commands. I grouped the commands and the handlers together to keep it organized and
readable, but you could use another way to organize yours. Moreover, since this is a small project, all
the commands are in the same file, which would not be viable for something bigger. Remember we are
playing LEGO® blocks, this chapter covers the CQRS pieces, but you can always use them with bigger
pieces like Clean Architecture or other types of architecture. Let’s start with the JoinChatRoom class:

public class JoinChatRoom
{
 public class Command : ICommand
 {
 public Command(IChatRoom chatRoom, IParticipant requester)
 {
 ChatRoom = chatRoom ?? throw new
ArgumentNullException(nameof(chatRoom));
 Requester = requester ?? throw new
ArgumentNullException(nameof(requester));
 }
 public IChatRoom ChatRoom { get; }
 public IParticipant Requester { get; }
 }
 public class Handler : ICommandHandler<Command>
 {
 public void Handle(Command command)
 {
 command.ChatRoom.Add(command.Requester);
 }
 }
}

The JoinChatRoom.Command class represents the command itself, a data structure that carries the
command data. The JoinChatRoom.Handler class handles that type of command. When executed,
it adds the specified IParticipant to the specified IChatRoom, from the ChatRoom and Requester
properties (highlighted line). Next command:

public class LeaveChatRoom
{
 public class Command : ICommand
 {
 public Command(IChatRoom chatRoom, IParticipant requester)
 {
 ChatRoom = chatRoom ?? throw new
ArgumentNullException(nameof(chatRoom));
 Requester = requester ?? throw new

Chapter 14 401

ArgumentNullException(nameof(requester));
 }
 public IChatRoom ChatRoom { get; }
 public IParticipant Requester { get; }
 }
 public class Handler : ICommandHandler<Command>
 {
 public void Handle(Command command)
 {
 command.ChatRoom.Remove(command.Requester);
 }
 }
}

That code represents the exact opposite of the JoinChatRoom command, the LeaveChatRoom handler
removes an IParticipant from the specified IChatRoom (highlighted line). To the next command:

public class SendChatMessage
{
 public class Command : ICommand
 {
 public Command(IChatRoom chatRoom, ChatMessage message)
 {
 ChatRoom = chatRoom ?? throw new
ArgumentNullException(nameof(chatRoom));
 Message = message ?? throw new
ArgumentNullException(nameof(message));
 }
 public IChatRoom ChatRoom { get; }
 public ChatMessage Message { get; }
 }
 public class Handler : ICommandHandler<Command>
 {
 public void Handle(Command command)
 {
 command.ChatRoom.Add(command.Message);
 foreach (var participant in command.ChatRoom.ListParticipants())
 {
 participant.NewMessageReceivedFrom(
 command.ChatRoom,
 command.Message
);

Mediator and CQRS Design Patterns402

 }
 }
 }
}

The SendChatMessage command, on the other hand, handles two things (highlighted lines):

• It adds the specified Message to IChatRoom (which is now only a data structure that keeps track
of users and past messages).

• It also sends the specified Message to all IParticipant instances that joined that IChatRoom.

We are starting to see many smaller pieces interacting with each other to create a more developed
system. But we are not done; let’s look at the two queries, then the chat implementation:

public class ListParticipants
{
 public class Query : IQuery<IEnumerable<IParticipant>>
 {
 public Query(IChatRoom chatRoom, IParticipant requester)
 {
 Requester = requester ?? throw new
ArgumentNullException(nameof(requester));
 ChatRoom = chatRoom ?? throw new
ArgumentNullException(nameof(chatRoom));
 }
 public IParticipant Requester { get; }
 public IChatRoom ChatRoom { get; }
 }
 public class Handler : IQueryHandler<Query, IEnumerable<IParticipant>>
 {
 public IEnumerable<IParticipant> Handle(Query query)
 {
 return query.ChatRoom.ListParticipants();
 }
 }
}

The ListParticipants query’s handler uses the specified IChatRoom and returns its participants
(highlighted line). Now, to the last query:

public class ListMessages
{
 public class Query : IQuery<IEnumerable<ChatMessage>>
 {
 public Query(IChatRoom chatRoom, IParticipant requester)

Chapter 14 403

 {
 Requester = requester ?? throw new
ArgumentNullException(nameof(requester));
 ChatRoom = chatRoom ?? throw new
ArgumentNullException(nameof(chatRoom));
 }
 public IParticipant Requester { get; }
 public IChatRoom ChatRoom { get; }
 }
 public class Handler : IQueryHandler<Query, IEnumerable<ChatMessage>>
 {
 public IEnumerable<ChatMessage> Handle(Query query)
 {
 return query.ChatRoom.ListMessages();
 }
 }
}

The ListMessages query’s handler uses the specified IChatRoom instance and returns its messages.

Next, let’s take a look at the ChatRoom class, which is a simple data structure that holds the state of a
chatroom:

public class ChatRoom : IChatRoom
{
 private readonly List<IParticipant> _participants = new
List<IParticipant>();
 private readonly List<ChatMessage> _chatMessages = new List<ChatMessage>();
 public ChatRoom(string name)
 {
 Name = name ?? throw new ArgumentNullException(nameof(name));
 }
 public string Name { get; }
 public void Add(IParticipant participant)
 {
 _participants.Add(participant);
 }

Note

All of the commands and queries reference IParticipant so we could enforce rules such
as “IParticipant must join a channel before sending messages,” for example. I decided to
omit these details to keep the code simple, but feel free to add those features if you want to.

Mediator and CQRS Design Patterns404

 public void Add(ChatMessage message)
 {
 _chatMessages.Add(message);
 }
 public IEnumerable<ChatMessage> ListMessages()
 {
 return _chatMessages.AsReadOnly();
 }
 public IEnumerable<IParticipant> ListParticipants()
 {
 return _participants.AsReadOnly();
 }
 public void Remove(IParticipant participant)
 {
 _participants.Remove(participant);
 }
}

If we take a second look at the ChatRoom class, it has a Name property, and it contains a list of IParticipant
instances and a list of ChatMessage instances. Both ListMessages() and ListParticipants() return
the list AsReadOnly() so a clever programmer cannot mutate the state of ChatRoom from the outside.
That’s it, the new ChatRoom class is a façade over its underlying dependencies.

Finally, the Participant class is probably the most exciting part of this system because it is the one
that makes heavy use of our Mediator and CQRS implementations:

public class Participant : IParticipant
{
 private readonly IMediator _mediator;
 private readonly IMessageWriter _messageWriter;
 public Participant(IMediator mediator, string name, IMessageWriter
messageWriter)
 {
 _mediator = mediator ?? throw new
ArgumentNullException(nameof(mediator));
 Name = name ?? throw new ArgumentNullException(nameof(name));
 _messageWriter = messageWriter ?? throw new
ArgumentNullException(nameof(messageWriter));
 }
 public string Name { get; }
 public void Join(IChatRoom chatRoom)
 {
 _mediator.Send(new JoinChatRoom.Command(chatRoom, this));

Chapter 14 405

 }
 public void Leave(IChatRoom chatRoom)
 {
 _mediator.Send(new LeaveChatRoom.Command(chatRoom, this));
 }
 public IEnumerable<ChatMessage> ListMessagesOf(IChatRoom chatRoom)
 {
 return _mediator.Send<ListMessages.Query, IEnumerable<ChatMessage>>(new
ListMessages.Query(chatRoom, this));
 }
 public IEnumerable<IParticipant> ListParticipantsOf(IChatRoom chatRoom)
 {
 return _mediator.Send<ListParticipants.Query,
IEnumerable<IParticipant>>(new ListParticipants.Query(chatRoom, this));
 }
 public void NewMessageReceivedFrom(IChatRoom chatRoom, ChatMessage message)
 {
 _messageWriter.Write(chatRoom, message);
 }
 public void SendMessageTo(IChatRoom chatRoom, string message)
 {
 _mediator.Send(new SendChatMessage.Command (chatRoom, new
ChatMessage(this, message)));
 }
}

Every method of the Participant class, apart from NewMessageReceivedFrom, sends a command
or a query through IMediator, breaking the tight coupling between Participant and the system’s
operations (that is, the commands and queries). If we think about it, the Participant class is also a
simple façade over its underlying dependencies, delegating most of the work to the mediator.

Now, let’s look at how it works when everything is put together. I grouped several test cases that share
the following setup code:

public class ChatRoomTest
{
 private readonly IMediator _mediator = new Mediator();
 private readonly TestMessageWriter _reagenMessageWriter = new();
 private readonly TestMessageWriter _garnerMessageWriter = new();
 private readonly TestMessageWriter _corneliaMessageWriter = new();

 private readonly IChatRoom _room1 = new ChatRoom("Room 1");
 private readonly IChatRoom _room2 = new ChatRoom("Room 2");

Mediator and CQRS Design Patterns406

 private readonly IParticipant _reagen;
 private readonly IParticipant _garner;
 private readonly IParticipant _cornelia;

 public ChatRoomTest()
 {
 _mediator.Register(new JoinChatRoom.Handler());
 _mediator.Register(new LeaveChatRoom.Handler());
 _mediator.Register(new SendChatMessage.Handler());
 _mediator.Register(new ListParticipants.Handler());
 _mediator.Register(new ListMessages.Handler());

 _reagen = new Participant(_mediator, "Reagen", _reagenMessageWriter);
 _garner = new Participant(_mediator, "Garner", _garnerMessageWriter);
 _cornelia = new Participant(_mediator, "Cornelia", _
corneliaMessageWriter);
 }
 // Omited test cases and helpers
}

The test program setup is composed of the following:

• One IMediator, which enables all colleagues to interact with each other.
• Two IChatRoom instances.
• Three IParticipant instances and their TestMessageWriter.

In the constructor, all handlers are registered with the Mediator instance, so it knows how to handle
commands and queries. The names of the participants are randomly generated. The TestMessageWriter
implementation accumulates the data in a list of tuples (List<(IChatRoom, ChatMessage)>) to assess
what is sent to what participant:

private class TestMessageWriter : IMessageWriter
{
 public List<(IChatRoom chatRoom, ChatMessage message)> Output { get; } =
new();

 public void Write(IChatRoom chatRoom, ChatMessage message)
 {
 Output.Add((chatRoom, message));
 }
}

Chapter 14 407

Here is the first test case:

[Fact]
public void A_participant_should_be_able_to_list_the_participants_that_
joined_a_chatroom()
{
 _reagen.Join(_room1);
 _reagen.Join(_room2);
 _garner.Join(_room1);
 _cornelia.Join(_room2);
 var room1Participants = _reagen.ListParticipantsOf(_room1);
 Assert.Collection(room1Participants,
 p => Assert.Same(_reagen, p),
 p => Assert.Same(_garner, p)
);
}

In that test case, Reagen and Garner join Room 1, and Reagen and Cornelia join Room 2. Then Reagen
requests the list of participants from Room 1, which outputs Reagen and Garner. The code is easy to
understand and use. Under the hood, it uses commands and queries through a mediator, breaking
tight coupling between the colleagues. Here is a sequence diagram representing what is happening
when a participant joins a chatroom:

Figure 14.10: Sequence diagram representing the flow of a participant (p) joining a chatroom (c)

1. The participant (p) creates a JoinChatRoom command (joinCmd).
2. p sends joinCmd through the mediator (m).

Mediator and CQRS Design Patterns408

3. m finds and dispatches joinCmd to its handler (handler).
4. handler executes the logic (adds p to the chatroom).
5. joinCmd ceases to exist afterward; commands are ephemeral.

That means Participant never interacts directly with ChatRoom or other participants.

Then a similar workflow happens when a participant requests the list of participants of a chatroom:

Figure 14.11: Sequence diagram representing the flow of a participant (p) requesting the list of
participants of a chatroom (c)

1. Participant (p) creates a ListParticipants query (listQuery).
2. p sends listQuery through the mediator (m).
3. m finds and dispatches the query to its handler (handler).
4. handler executes the logic (lists the participants of the chatroom).
5. listQuery ceases to exist afterward; queries are also ephemeral.

Once again, Participant does not interact directly with ChatRoom.

Here is another test case where Participant sends a message to a chatroom, and another Participant
receives it:

[Fact]
public void A_participant_should_receive_new_messages()
{
 _reagen.Join(_room1);
 _garner.Join(_room1);
 _garner.Join(_room2);

Chapter 14 409

 _reagen.SendMessageTo(_room1, "Hello!");
 Assert.Collection(_garnerMessageWriter.Output,
 line =>
 {
 Assert.Equal(_room1, line.chatRoom);
 Assert.Equal(_reagen, line.message.Sender);
 Assert.Equal("Hello!", line.message.Message);
 }
);
}

In that test case, Reagen joins Room 1 while Garner joins Rooms 1 and 2. Then Reagen sends a message
to Room 1, and we verify that Garner received it once. The SendMessageTo workflow is very similar to
the other one that we saw, but with a more complex command handler:

Figure 14.12: Sequence diagram representing the flow of a participant (p) sending a message (msg)
to a chatroom (c)

Mediator and CQRS Design Patterns410

From that diagram, we can observe that the logic was pushed to the ChatMessage.Handler class. All
of the other actors work together with limited knowledge of each other (or even no knowledge of
each other).

This demonstrates how CQRS works with a mediator:

1. A consumer (the participant in this case) creates a command (or a query).
2. The consumer sends that command through the mediator.
3. The mediator sends that command to one or more handlers, each executing their piece of

logic for that command.

You can explore the other test cases to familiarize yourself with the program and the concepts.

I also created a ChatModerator instance that sends a message in a “moderator chatroom” when a
message contains a word from the badWords collection. That test case executes multiple handlers for
each SendChatMessage.Command. I’ll leave you to explore these other test cases yourself, so we don’t
wander astray from our goal.

Before concluding CQRS, let’s peek at marker interfaces.

Code smell – Marker Interfaces
We used the empty ICommand and IQuery<TReturn> interfaces in the code samples to make the code
more explicit and self-descriptive. Empty interfaces are a sign that something may be wrong: a code
smell. We call those marker interfaces.

In our case, they help identify commands and queries but are empty and add nothing. We could discard
them without any impact on our system. On the other hand, we are not performing any kind of magic
tricks or violating any principles, so it is OK to have them; they help define the intent. Moreover, we
could leverage them to make the code more dynamic, like leveraging dependency injection to register
handlers. Furthermore, I designed those interfaces this way as a bridge to the next project you are
about to see.

Back to the marker interfaces, here are two types of marker interfaces that are code smells in C#:

• Metadata
• Dependency identifier

Metadata
Markers can be used to define metadata. A class “implements” the empty interface, and some consumer
does something with it later. It could be an assembly scanning for specific types, a choice of strategy,
or something else.

Note

You can debug the tests in Visual Studio; use breakpoints combined with Step Into (F11)
and Step Over (F10) to explore the sample.

Chapter 14 411

Instead of creating marker interfaces to add metadata, try to use custom attributes. The idea behind
attributes is to add metadata to classes or members. On the other hand, interfaces exist to create a
contract, and they should define at least one member; empty contracts are like a blank sheet.

In a real-world scenario, you may want to consider the cost of one versus the other. Markers are very
cheap to implement but can violate the SOLID principles. Attributes could be as cheap to implement
if the mechanism is already implemented or supported by the framework but could cost a lot more
than a marker interface to implement if you need to program everything by hand. Before deciding,
you must evaluate money, time, and the skills required as crucial factors.

Dependency identifier
If you need markers to inject some specific dependency in a particular class, you are most likely
cheating the inversion of control. Instead, you should find a way to achieve the same goal using
dependency injection, such as by contextually injecting your dependencies.

Let’s start with the following interface:

public interface IStrategy
{
 string Execute();
}

In our program, we have two implementations and two markers, one for each implementation:

public interface IStrategyA : IStrategy { }
public interface IStrategyB : IStrategy { }
public class StrategyA : IStrategyA
{
 public string Execute() => "StrategyA";
}
public class StrategyB : IStrategyB
{
 public string Execute() => "StrategyB";
}

The code is barebones, but all the building blocks are there:

• StrategyA implements IStrategyA, which inherits from IStrategy.
• StrategyB implements IStrategyB, which inherits from IStrategy.
• Both IStrategyA and IStrategyB are empty marker interfaces.

Now, the consumer needs to use both strategies, so instead of controlling dependencies from the
composition root, the consumer requests the markers:

public class Consumer
{

Mediator and CQRS Design Patterns412

 public IStrategyA StrategyA { get; }
 public IStrategyB StrategyB { get; }
 public Consumer(IStrategyA strategyA, IStrategyB strategyB)
 {
 StrategyA = strategyA ?? throw new
ArgumentNullException(nameof(strategyA));
 StrategyB = strategyB ?? throw new
ArgumentNullException(nameof(strategyB));
 }
}

The Consumer class exposes the strategies through properties to assert its composition later. Let’s test
that out by building a dependency tree, simulating the composition root, and then asserting the value
of the consumer properties:

[Fact]
public void ConsumerTest()
{
 // Arrange
 var serviceProvider = new ServiceCollection()
 .AddSingleton<IStrategyA, StrategyA>()
 .AddSingleton<IStrategyB, StrategyB>()
 .AddSingleton<Consumer>()
 .BuildServiceProvider();
 // Act
 var consumer = serviceProvider.GetRequiredService<Consumer>();
 // Assert
 Assert.IsType<StrategyA>(consumer.StrategyA);
 Assert.IsType<StrategyB>(consumer.StrategyB);
}

Both properties are of the expected type, but that is not the problem. The Consumer class controls what
dependencies to use and when to use them by injecting markers A and B instead of two IStrategy
instances. Due to that, we cannot control the dependency tree from the composition root. For example,
we cannot change IStrategyA to IStrategyB and IStrategyB to IStrategyA, nor inject two IStrategyB
instances or two IStrategyA instances, nor even create an IStrategyC instance to replace IStrategyA
or IStrategyB.

How do we fix this? Let’s start by deleting our markers and injecting two IStrategy instances instead
(the changes are highlighted). After doing that, we end up with the following object structure:

public class StrategyA : IStrategy
{
 public string Execute() => "StrategyA";

Chapter 14 413

}
public class StrategyB : IStrategy
{
 public string Execute() => "StrategyB";
}
public class Consumer
{
 public IStrategy StrategyA { get; }
 public IStrategy StrategyB { get; }
 public Consumer(IStrategy strategyA, IStrategy strategyB)
 {
 StrategyA = strategyA ?? throw new
ArgumentNullException(nameof(strategyA));
 StrategyB = strategyB ?? throw new
ArgumentNullException(nameof(strategyB));
 }
}

The Consumer class no longer controls the narrative with the new implementation, and the composition
responsibility falls back to the composition root. Unfortunately, there is no way to do contextual
injections using the default dependency injection container, and I don’t want to get into a third-party
framework for this. But all is not lost yet; we can use a factory to help ASP.NET Core build the Consumer
instance, like this:

// Arrange
var serviceProvider = new ServiceCollection()
 .AddSingleton<StrategyA>()
 .AddSingleton<StrategyB>()
 .AddSingleton(serviceProvider =>
 {
 var strategyA = serviceProvider.GetRequiredService<StrategyA>();
 var strategyB = serviceProvider.GetRequiredService<StrategyB>();
 return new Consumer(strategyA, strategyB);
 })
 .BuildServiceProvider();
// Act
var consumer = serviceProvider.GetRequiredService<Consumer>();
// Assert
Assert.IsType<StrategyA>(consumer.StrategyA);
Assert.IsType<StrategyB>(consumer.StrategyB);

From that point forward, we control the program’s composition, and we can swap A with B or do
anything else that we want to, as long as the implementation respects the IStrategy contract.

Mediator and CQRS Design Patterns414

To conclude, using markers instead of doing contextual injection breaks the inversion of control
principle, making the consumer control its dependencies. That’s very close to using the new keyword
to instantiate objects. Inverting the dependency control back is easy, even using the default container.

Conclusion
CQRS suggests dividing the operations of a program into commands and queries. A command mutates
data, and a query returns data. We can apply the Mediator pattern to break the tight coupling between
the pieces of the CQRS program, like sending the commands and queries.

Dividing the program helps separate the different pieces and focus on the commands and queries
that travel from a consumer through the mediator to one or more handlers. The data contract of
commands and queries becomes the program’s backbone, trimming down the coupling between
objects and tying them to those thin data structures instead, leaving the central piece (the mediator)
to manage the links between them.

On the other hand, you may find the codebase more intimidating when using CQRS due to the multiple
classes. However, keep in mind that each of those classes does less (having a single responsibility),
making them easier to test than a more sizable class with many responsibilities. The way you organize
the classes should also greatly help. We organize the pieces a certain way in the book, but you could
organize them differently in a different context.

Now let’s see how CQRS can help us follow the SOLID principles:

• S: Dividing an application into commands, queries, and handlers takes us toward encapsulating
single responsibilities into different classes.

• O: CQRS helps extend the software without modifying the existing code, such as adding handlers
and creating new commands.

• L: N/A
• I: CQRS makes it easier to create multiple small interfaces with a clear distinction between

commands, queries, and their respective handlers.
• D: N/A

Now that we have explored CQRS and the Mediator pattern, it is time to get lazy and look at a tool that
will save us some hassle.

Note

If you need to inject dependencies contextually, I started an open source project in 2020
that does that. Multiple other third-party libraries add features or replace the default IoC
container altogether if needed. See the Further reading section.

Chapter 14 415

Using MediatR as a mediator
In this section, we are exploring MediatR, an open source mediator implementation.

What is MediatR? Let’s start with its maker’s description from its GitHub repository, which brands it
as this:

MediatR is a simple but very powerful tool doing in-process communication through messaging. It
supports a request/response flow through commands, queries, notifications, and events, synchronously
and asynchronously.

You can install the NuGet package using the .NET CLI: dotnet add package MediatR.

Now that I have quickly introduced the tool, we are going to explore the migration of our Clean
Architecture sample but instead use MediatR to dispatch the StocksController requests to the core
use cases.

Why migrate our Clean Architecture sample? The primary reason we are building the same project
using different models is for ease of comparison. It is much easier to compare the changes of the same
features than if we were building completely different projects.

What are the advantages of using MediatR in this case? It allows us to organize the code around use
cases (vertically) instead of services (horizontally), leading to more cohesive features. We remove the
service layer (the StockService class) and replace it with multiple use cases instead (the AddStocks
and RemoveStock classes). MediatR also enables an MVC-like pipeline, which we can extend by
programming pipeline behaviors. Those extensibility points allow us to manage cross-cutting concerns,
such as requests validation, centrally without impacting the consumers and use cases. We explore
request validation in Chapter 15, Getting Started with Vertical Slice Architecture.

Let’s jump into the code now to see how it works.

Project – Clean Architecture with MediatR
Context: We want to break some more of the coupling in the Clean Architecture project that we built in
Chapter 12, Understanding Layering, by leveraging the Mediator pattern and a CQRS-inspired approach.

The clean architecture solution was already solid, but MediatR will pave the way to more good things
later. The only “major” change is the replacement of the StockService with two feature objects,
AddStocks and RemoveStocks, that we explore soon.

First, we must install the MediatR.Extensions.Microsoft.DependencyInjection NuGet package
in the web project. That package adds a helper method to scan one or more assemblies for MediatR
handlers, preprocessors, and postprocessors. It adds those to the IoC container with a transient lifetime.

With that package in hand, in the Program.cs file, we can do this:

builder.Services.AddMediatR(typeof(NotEnoughStockException).Assembly);

“Simple, unambitious mediator implementation in .NET”

Mediator and CQRS Design Patterns416

Note that the NotEnoughStockException class is part of the core project. We can also specify more than
one assembly here; as of version 9.0.0 of MediatR, there are six overloads to that method. Moreover, I
picked the NotEnoughStockException class, but I could have chosen any class from the Core assembly.

MediatR exposes two types of messages, request/response and notifications. The first model
executes a single handler, while the second allows multiple handlers to handle each message. The
 request/response model is perfect for both commands and queries, while notifications are more suited
to an event-based model applying the Publish-Subscribe pattern. We cover the Publish-Subscribe
pattern in Chapter 16, Introduction to Microservices Architecture.

Now that everything is “magically” registered, we can look at the use cases that replace the StockService.
Let’s have a look at the updated AddStocks code first:

namespace Core.UseCases;
public class AddStocks
{
 public class Command : IRequest<int>
 {
 public int ProductId { get; set; }
 public int Amount { get; set; }
 }

 public class Handler : IRequestHandler<Command, int>
 {
 private readonly IProductRepository _productRepository;
 public Handler(IProductRepository productRepository)
 {
 _productRepository = productRepository ?? throw new
ArgumentNullException(nameof(productRepository));
 }

 public async Task<int> Handle(Command request, CancellationToken
cancellationToken)
 {
 var product = await _productRepository.FindByIdAsync(request.
ProductId, cancellationToken);
 if (product == null)
 {
 throw new ProductNotFoundException(request.ProductId);
 }
 product.AddStock(request.Amount);
 await _productRepository.UpdateAsync(product, cancellationToken);
 return product.QuantityInStock;
 }

Chapter 14 417

 }
}

Since we covered both use cases in the previous chapters and the changes are very similar, we will
analyze both together, after the RemoveStocks use case:

namespace Core.UseCases;
public class RemoveStocks
{
 public class Command : IRequest<int>
 {
 public int ProductId { get; set; }
 public int Amount { get; set; }
 }

 public class Handler : IRequestHandler<Command, int>
 {
 private readonly IProductRepository _productRepository;
 public Handler(IProductRepository productRepository)
 {
 _productRepository = productRepository ?? throw new
ArgumentNullException(nameof(productRepository));
 }

 public async Task<int> Handle(Command request, CancellationToken
cancellationToken)
 {
 var product = await _productRepository.FindByIdAsync(request.
ProductId, cancellationToken);
 if (product == null)
 {
 throw new ProductNotFoundException(request.ProductId);
 }
 product.RemoveStock(request.Amount);
 await _productRepository.UpdateAsync(product, cancellationToken);
 return product.QuantityInStock;
 }
 }
}

As you may have noticed in the code, I chose the same pattern to build the commands as I did with
the CQRS sample, so we have a class per use case containing two nested classes: Command and Handler.
I find this structure makes for very clean code when you have a 1-on-1 relationship between the
command class and its handler.

Mediator and CQRS Design Patterns418

By using the MediatR request/response model, the command (or query) becomes a request
and must implement the IRequest<TResponse> interface. The handlers must implement the
IRequestHandler<TRequest, TResponse> interface. Instead, we can also implement the IRequest
and IRequestHandler<TRequest> interfaces for a command that returns nothing (void).

Let’s analyze the anatomy of the AddStocks use case. Here is the old code as a reference:

namespace Core.Services;
public class StockService
{
 private readonly IProductRepository _repository;
 // Omitted constructor
 public async Task<int> AddStockAsync(int productId, int amount,
CancellationToken cancellationToken)
 {
 var product = await _repository.FindByIdAsync(productId,
cancellationToken);
 if (product == null)
 {
 throw new ProductNotFoundException(productId);
 }
 product.AddStock(amount);
 await _repository.UpdateAsync(product, cancellationToken);
 return product.QuantityInStock;
 }
 // Omitted RemoveStockAsync method
}

The first difference is that we moved the loose parameters (highlighted) into the Command class, which
encapsulates the whole request:

public class Command : IRequest<int>
{
 public int ProductId { get; set; }
 public int Amount { get; set; }
}

Note

There are more options that are part of MediatR, and the documentation is complete
enough for you to dig deeper by yourself. Not that I want to, but I must limit the subjects
that I talk about or risk writing an encyclopedia.

Chapter 14 419

Then the Command class specifies the handler’s expected return value by implementing the
IRequest<TResponse> interface, where TResponse is an int. That gives us a typed response when
sending the request through MediatR. This is not “pure CQRS” because the command handler returns
an integer representing the updated QuantityInStock. However, we could call that optimization since
executing one command and one query would be overkill for this scenario (possibly leading to two
database calls instead of one). Moreover, we are exploring MediatR using a CQRS-like approach, which
is more than fine for in-process communication.

I’ll skip the RemoveStocks use case to avoid repeating myself as it follows the same pattern. Instead,
let’s look at the consumption of those use cases. I omitted the exception handling to keep the code
streamlined and because try/catch blocks would only add noise to the code in this case and hinder
our study of the pattern:

app.MapPost("/products/{productId:int}/add-stocks", async (
 int productId,
 AddStocks.Command command,
 IMediator mediator,
 CancellationToken cancellationToken) =>
{
 command.ProductId = productId;
 var quantityInStock = await mediator.Send(command, cancellationToken);
 var stockLevel = new StockLevel(quantityInStock);
 return Results.Ok(stockLevel);
});
app.MapPost("/products/{productId:int}/remove-stocks", async (
 int productId,
 RemoveStocks.Command command,
 IMediator mediator,
 CancellationToken cancellationToken) =>
{
 command.ProductId = productId;
 var quantityInStock = await mediator.Send(command, cancellationToken);
 var stockLevel = new StockLevel(quantityInStock);
 return Results.Ok(stockLevel);
});
// Omitted code
public record class StockLevel(int QuantityInStock);

In both delegates, we inject an IMediator and a command object (highlighted). We also let ASP.NET
Core inject a CancellationToken, which we pass to MediatR. The model binder loads the data from
the HTTP request into the objects that we send using the Send method of the IMediator interface
(highlighted). Then we map the result into the StockLevel DTO before returning its value and an HTTP
status code of 200 OK. The StockLevel record class is the same as before.

Mediator and CQRS Design Patterns420

Note

The default model binder cannot load data from multiple sources. Because of that, we
must inject productId and assign its value to the command.ProductId property manually.
Even if both values could be taken from the body, the resource identifier of that endpoint
would become less exhaustive (no productId in the URI).

With MVC, we could create a custom model binder.

With minimal APIs, we could create a static BindAsync method to manually do the model
binding, which is not very extensible and would tightly couple the Core assembly with the
HttpContext. I suppose we will need to wait for .NET 7+ to get improvements into that field.

Meanwhile, Damian Edwards, Principal Program Manager Architect for the .NET platform,
has an experimental project underway that allows us to create binders like this:

public class AddStocksCommandBinder : IParameterBinder<AddStocks.
Command>
{
 public async ValueTask<AddStocks.Command?> BindAsync(HttpContext
context, ParameterInfo parameter)
 {
 if (!context.Request.HasJsonContentType())
 {
 throw new BadHttpRequestException(
 "The content-type must be JSON.",
 StatusCodes.Status415UnsupportedMediaType
);
 }

 var command = await context.Request
 .ReadFromJsonAsync<AddStocks.Command>(context.
RequestAborted);
 if (command is null)
 {
 throw new BadHttpRequestException(
 "The request body must contain an AddStocks
Command."
);
 }
 command.ProductId = int.Parse(context.
GetRouteValue("roductid")?.ToString() ?? "");
 return command;
 }
}

Chapter 14 421

All in all, it is almost the same code as before, but we use MediatR, the Mediator pattern, and a CQRS-
inspired style instead.

Conclusion
With MediatR, we packed the power of a CQRS-inspired pipeline with the Mediator pattern into a Clean
Architecture application. We were able to break the coupling between the request delegates and the
use case handler (previously a service). A simple DTO such as a command object makes delegates
(or controllers in the case of MVC) unaware of the handlers, leaving MediatR to be the middleman
between the commands and their handlers. Due to that, the handlers could change along the way
without having any impact on the controller.

Moreover, we could configure more interaction between the command and the handler with
IRequestPreProcessor, IRequestPostProcessor, and IRequestExceptionHandler. These allow us
to extend the MediatR request pipeline with crosscutting concerns like validation.

MediatR helps us follow the SOLID principles the same way as the Mediator and CQRS patterns
combined. The only drawback (if it is one) is that the use cases now also control the API’s input
contracts. The command objects are now the input DTOs. If this is something that you must avoid in
a project, you can input a DTO in the action method instead, create the command object, then send
it to MediatR.

Summary
In this chapter, we looked at the Mediator pattern. That pattern allows us to cut the ties between
collaborators, mediating the communication between them. Then we attacked the CQRS pattern,
which advises the division of software behaviors into commands and queries. Those two patterns are
tools that cut tight coupling between components.

Then we updated a Clean Architecture project to use MediatR, an open source generic Mediator
implementation that is CQRS-oriented. There are many more possible uses than what we explored,
but this is still a great start. This concludes another chapter where we explored techniques to break
tight coupling and divide systems into smaller parts.

All of those building blocks are leading us to the next chapter, where we will be piecing all of those
patterns and tools together to explore the Vertical Slice Architecture.

Then we need to register it with the container:

builder.Services
 .AddParameterBinder<AddStocksCommandBinder, AddStocks.Command>()

Such an approach allows breaking tight coupling between the class we need custom bind-
ing for and the code that contains the model binding logic. For example, we could have
multiple components that reuse the same input model but leverage a different model
binder to translate the data, like XML, JSON, or gRPC, to name a few. I’ve left the link in
the further reading section at the end of the chapter.

Mediator and CQRS Design Patterns422

Questions
Let’s take a look at a few practice questions:

1. Can we use a mediator inside a colleague to call another colleague?
2. In CQRS, can a command return a value?
3. How much does MediatR cost?
4. Imagine a design has a marker interface to add metadata to some classes. Do you think you

should review that design?

Further reading
Here are a few links to build on what we have learned in the chapter:

• MediatR: https://adpg.link/ZQap
• To get rid of setting ProductId manually in the Clean Architecture with MediatR project, you

can use the open source project HybridModelBinding or read the official documentation about
custom model binding and implement your own:

a. Custom Model Binding in ASP.NET Core: https://adpg.link/65pb
b. HybridModelBinding (open source project on GitHub): https://adpg.link/EyKK
c. Damian Edward’s MinimalApis.Extensions project on GitHub: https://adpg.link/M6zS

• ForEvolve.DependencyInjection is an open source project of mine that adds support for
contextual dependency injection and more: https://adpg.link/myW8

https://adpg.link/ZQap
https://adpg.link/65pb
https://adpg.link/EyKK
https://adpg.link/M6zS
https://adpg.link/myW8

15
Getting Started with Vertical Slice
Architecture

In this chapter, we explore Vertical Slice Architecture, which moves elements from multiple layers to a
centralized feature. It is almost the opposite of layering, but not totally. Vertical Slice Architecture also
gives us a clean separation between requests, leading to an implicit Command Query Responsibility
Segregation (CQRS) design. We piece all of that together using MediatR, which we explored in the
previous chapter. Of course, you don’t have to use those tools to apply the architectural style; you can
replace any library with one of your choosing or even code part of the stack yourself.

The following topics are covered in this chapter:

• Vertical Slice Architecture
• A small project using Vertical Slice Architecture
• Continuing your journey: A few tips and tricks

Vertical Slice Architecture
As said at the beginning of the previous chapter, instead of separating an application horizontally, a
vertical slice groups all horizontal concerns together to encapsulate a feature. Here is a diagram that
illustrates that:

Figure 15.1: Diagram representing a vertical slice crossing all layers

Getting Started with Vertical Slice Architecture424

Jimmy Bogard, who is a pioneer of this type of architecture and who promotes it frequently, says the
following:

What does that mean? Let’s split that sentence into two distinct points:

• “minimize coupling between slices” (improved maintainability, loose coupling)
• “maximize coupling within a slice” (cohesion)

We could see the former as one vertical slice should not depend on another. With that in mind, when
you modify a vertical slice, you don’t have to worry about the impact on the other slices because the
coupling is minimal.

We could see the latter as: instead of spreading code around multiple layers, with potentially superfluous
abstractions along the way, let’s regroup that code. That helps keep the tight coupling inside a vertical
slice to create a cohesive unit of code that serves a single purpose: handling the feature’s logic.

Then we could wrap that to create software around the business problem that we are trying to solve
instead of around the developer’s concerns, which your client has no interest in (such as data access).

Now, what is a slice in more generic terms? I see slices as composites, or as a hierarchy if you prefer.
For example, a shipping manager program has a multistep creation flow, a list, and a details page.
Each step of the creation flow would be a slice responsible for handling its respective logic. When put
together, they compose the create slice, which is responsible for creating a shipment (a bigger slice).
The list and details pages are two other slices. Then, all of those slices become another bigger slice,
leading to something like this:

Figure 15.2: A diagram displaying a top-down coupling structure where smaller parts (top) depend
on bigger parts (middle) of complex features (bottom) based on their cohesion with one another

(vertically)

[The goal is to] minimize coupling between slices and maximize coupling within a slice.

Chapter 15 425

There is strong coupling inside Step 1, with limited coupling between the other steps; they share
some creation code as part of the Create slice. Create, List, and Details also share some code, but in
a limited way; they are all part of the Shipments slice and access or manipulate the same entity: one
or more shipments. Finally, the Shipments slice shares no code (or very little) with Other features.

OK, this was my definition of a slice and how I see them; maybe other people have other points of view
on that, which is fine. By following the pattern that I just described, I end up with limited coupling and
maximum cohesion. The downside is that you need to continuously design the app, which requires
stronger design skills than using a layered approach. We revisit this example in the Continuing your
journey section near the end of the chapter.

Let’s consider some further advantages and disadvantages in the next section.

What are the advantages and disadvantages?
On the upside, we have the following:

• We reduce coupling between features, making working on such a project more manageable.
We only need to think about a single vertical slice, not N layers, improving maintainability by
centralizing the code around a shared concern.

• We can choose how each vertical slice interacts with the external resources they require without
thinking about the other slices. That adds flexibility since one slice can use T-SQL while another
uses EF Core, for example.

• We can start small with a few lines of code (described as Transaction Scripts in Patterns of
Enterprise Application Architecture, by Martin Fowler) without extravagant design or over-
engineering. Then we can refactor our way to a better design when the need arises, and patterns
emerge, leading to a faster time to market.

• Each vertical slice should contain precisely the right amount of code needed to be correct — not
more, not less. That leads to a more robust codebase (less code means less extraneous code).

• It is easier for newcomers to find their way around an existing system since each feature is
independent, grouped code, leading to a faster onboarding time.

• All that you already know from previous chapters still applies.

Now some downsides:

• It may take time to wrap your head around it if you’re used to layering, leading to an adaptation
period to learn a new way to think about your software.

• It is a “newer” type of architecture, and people don’t like change.

Tip

From my experience, features tend to start small and grow over time. While using
software, the users often find out what they really need, updating the workflow they
thought they initially required, which leads to changes in the software. I wish many
projects I worked on were built using Vertical Slice Architecture instead of layering.

Getting Started with Vertical Slice Architecture426

The following points are downsides that can become upsides:

• If you are used to working in silos, it may be harder to assign tasks by concerns (such as the
data guys doing the data stuff). But in the end, it should be an advantage; everyone in your team
(or teams) should work more closely together, leading to more learning and collaboration and
possibly a new cross-functional team(s)—which is an excellent thing.

• Refactoring: strong refactoring skills will go a long way. Over time, most systems need some
refactoring, which is even more true for Vertical Slice Architecture. That can be caused by
changes in the requirements or due to technical debt. No matter the reason, if you don’t, you
may very well end up with a Big Ball of Mud. First, writing isolated code and then refactoring
to patterns is a crucial part of Vertical Slice Architecture. That’s one of the best ways to keep
cohesion high inside a slice and coupling as low as possible between slices. This tip applies
to all types of architecture.

Note

Another thing that I learned the hard way is to embrace change. I don’t think that I’ve
seen one project end as it was supposed to. Everyone figures out the missing pieces of the
business processes while using the software. That leads to the following advice: release
the software as fast as you can and have your customer use the software as soon as possi-
ble. That advice can be easier to achieve with Vertical Slice Architecture because you are
building value for your customers instead of more or less useful abstractions and layers.

At the beginning of my career, I was frustrated when specifications changed, and I thought
that better planning would have fixed that. Sometimes better planning would have helped,
but sometimes, the client just did not know how to express their business processes or
needs and had to try the application to figure it out. My advice here is don’t be frustrated
when the specs change, even if that means rewriting a part of the software that took you
days or more to code in the first place; that will happen all the time. Learn to accept that
instead, and find ways to reduce the number of times it happens by helping your clients
figure out their needs.

Tip

A way to start refactoring that business logic would be to push the logic into the
domain model, creating a rich domain model. You can also use other design pat-
terns and techniques to fine-tune the code and make it more maintainable, such
as creating services or layers. A layer does not have to cross all vertical slices; it
can cross only a subset of them. Compared to other application-level patterns,
such as layering, there are fewer Vertical Slice Architecture rules, leading to more
choices on your end. You can use all design patterns, principles, and best practices
inside a vertical slice without exporting those choices application-wide.

Chapter 15 427

How do you organize a project into Vertical Slice Architecture? Unfortunately, there is no definitive
answer to that, and it depends on the engineers working on the project. We explore one way in the
next project, but you can organize your project as you see fit. Then we dig deeper into refactoring and
organization. Before that, let’s have a quick look at the Big Ball of Mud anti-pattern.

Anti-pattern – Big Ball of Mud
Big Ball of Mud describes a system that ended badly or was never properly designed. Sometimes a
system starts great but evolves into a Big Ball of Mud due to pressure, volatile requirements, impossible
deadlines, bad practices, or any other reasons. A Big Ball of Mud is often referred to as spaghetti code,
which means pretty much the same thing.

This anti-pattern means a very hard-to-maintain codebase, code that is badly written, code that is
difficult to read, lots of unwanted tight coupling, low cohesion, or worse: all that in the same codebase.

Applying the techniques covered in this book should help you avoid this anti-pattern. Aim at small,
well-designed components that are testable. Enforce that using automated testing. Refactor and
improve your codebase every time you can, iteratively (continuous improvement). Apply the SOLID
principles. Define your application pattern before starting. Think of the best way to implement each
component and feature; do research, make one or more proof of concept or experiments if unsure
of the best approach to take. Make sure you understand the business requirements of the program
you are building (this is probably the best advice of all). Those tips should help you avoid creating a
Big Ball of Mud.

Next, let’s jump into the Vertical Slice Architecture project.

Project – Vertical Slice Architecture
Context: We are getting tired of layering, and we got asked to rebuild our small demo shop using
Vertical Slice Architecture.

Here is an updated diagram that shows how the project is conceptually organized:

Figure 15.3: Diagram representing the organization of the project

Getting Started with Vertical Slice Architecture428

Each vertical box is a use case (or slice), while each horizontal box is a cross-cutting concern or some
shared components. This is a small project, so the data access code (DbContext) and the Product
model are shared between the three use cases. That sharing has nothing to do with Vertical Slice
Architecture, but it is hard to split it more in a small project such as this one. I’ll go into more detail
at the end of the section.

In this project, I decided to go with web API controllers instead of minimal APIs and an anemic
product model instead of a rich one. We could have used minimal APIs as well, a rich model, or any
combination. I chose this so you have a glimpse of using controllers, as this is something you might
very well end up using.

Here are the actors:

• ProductsController is the web API entry point to manage products.
• StocksController is the web API entry point to manage inventory (add or remove stocks).
• AddStocks, RemoveStocks, and ListAllProducts are the same use cases we have copied in

our project since Chapter 12, Understanding Layering.
• The persistence “layer” consists of an EF Core DbContext that persists the Product model.

We could add other crosscutting concerns on top of our vertical slices, such as authorization, error
management, and logging, to name a few. In this case, we explore only validation.

Next, let’s look at how the project is organized.

Project organization
Here is how we organized the project:

• The Data directory contains EF Core-related classes.
• The Features directory contains the features. Each subfolder contains its underlying use

cases (vertical slices), including controllers, exceptions, and other support classes required
to implement the feature.

• Each use case is self-contained and exposes the following classes:

1. Command represents the MediatR request.
2. Result is the return value of that request.
3. MapperProfile instructs AutoMapper how to map the use case-related objects (if any).
4. Validator contains the validation rules to validate the Command objects (if any).
5. Handler contains the use case logic: how to handle the request.

• The Models directory contains the domain model.

Chapter 15 429

Figure 15.4: Solution Explorer view of the file organization

In this project, we support request validation using FluentValidation, a third-party NuGet package;
see the Further reading section. You could also use System.ComponentModel.DataAnnotations or
any other validation system that you want. What is great about FluentValidation is that it is easy to
keep the validation within our vertical slice but outside of the class to be validated (compared to
DataAnnotations, for example). Moreover, it is easy to test and extend.

Like other tools, FluentValidation can scan assemblies for validators with the following highlighted
line (Program.cs):

var currentAssembly = typeof(Program).Assembly;
var builder = WebApplication.CreateBuilder(args);
builder.Services
 // Plumbing/Dependencies

Getting Started with Vertical Slice Architecture430

 .AddAutoMapper(currentAssembly)
 .AddMediatR(currentAssembly)
 .AddSingleton(typeof(IPipelineBehavior<,>),
typeof(ThrowFluentValidationExceptionBehavior<,>))

 // Data
 .AddDbContext<ProductContext>(options => options
 .UseInMemoryDatabase("ProductContextMemoryDB")
 .ConfigureWarnings(builder => builder.Ignore(InMemoryEventId.
TransactionIgnoredWarning))
)

 // Web/MVC
 .AddControllers(options => options.Filters
 .Add<FluentValidationExceptionFilter>())
 .AddFluentValidation(config => config
 .RegisterValidatorsFromAssembly(currentAssembly,
 lifetime: ServiceLifetime.Singleton)
;
var app = builder.Build();
app.MapControllers();
using (var seedScope = app.Services.CreateScope())
{
 var db = seedScope.ServiceProvider.GetRequiredService<ProductContext>();
 await ProductSeeder.SeedAsync(db);
}
app.Run();

The preceding code adds the bindings we already explored in previous chapters, FluentValidation,
and other validation pieces required to connect the dots. We explore the validation pieces under the
Request validation subsection of the project. Meanwhile, the highlighted line registers FluentValidation
and scans the currentAssembly for validator classes. The validators themselves are part of each
vertical slice. The lifetime named parameter tells FluentValidation to register those validators with
a singleton lifetime so they can be injected into our custom MediatR behavior. FluentValidation binds
validators as scoped services by default, and we can’t inject a scoped service into a singleton service.
Before digging too much into request validation, let’s look at features.

Exploring a feature
In this subsection, we explore the RemoveStocks feature with the same logic as in previous samples
but organized differently (which is pretty much the difference between one architectural style and
another). Since we are using an anemic product model, the add and remove stocks logic has been
moved from the Product to the Handler classes. Let’s look at the code next. I describe each nested
class along the way.

Chapter 15 431

The sample starts with the RemoveStocks class that contains the nested classes. That helps organize
the feature and saves us some headaches about naming collision. We could use namespaces instead,
but tools like Visual Studio will always recommend adding a using statement and removing the inline
namespace, which I find annoying. Here is the RemoveStocks class breakdown:

namespace VerticalApp.Features.Stocks;

public class RemoveStocks
{
 public class Command : IRequest<Result>
 {
 public int ProductId { get; set; }
 public int Amount { get; set; }
 }

The Command class is the input of the use case: the request. The request contains everything needed
to execute the operation; remove stocks from the inventory. The IRequest<TResult> interface tells
MediatR that the Command class is a request and should be routed to its handler. The Result class (which
follows here) is the return value of that handler:

 public class Result
 {
 public int QuantityInStock { get; set; }
 }

The Result class represents the output of the use case. That’s what the handler will return:

 public class MapperProfile : Profile
 {
 public MapperProfile()
 {
 CreateMap<Product, Result>();
 }
 }

The mapper profile is optional and allows encapsulating AutoMapper maps that are related to the use
case. The preceding MapperProfile class registers the mapping from a Product instance to a Result
instance:

 public class Validator : AbstractValidator<Command>
 {
 public Validator()
 {
 RuleFor(x => x.Amount).GreaterThan(0);
 }
 }

Getting Started with Vertical Slice Architecture432

The validator is also optional and allows validating the input (Command) before it hits the handler.

Next is the Handler class, which implements the use case logic:

 public class Handler : IRequestHandler<Command, Result>
 {
 private readonly ProductContext _db;
 private readonly IMapper _mapper;

 public Handler(ProductContext db, IMapper mapper)
 {
 _db = db ?? throw new ArgumentNullException(nameof(db));
 _mapper = mapper ?? throw new ArgumentNullException(nameof(mapper));
 }

 public async Task<Result> Handle(Command request, CancellationToken
cancellationToken)
 {
 var product = await _db.Products.FindAsync(new object[] { request.
ProductId }, cancellationToken);
 if (product == null)
 {
 throw new ProductNotFoundException(request.ProductId);
 }
 if (request.Amount > product.QuantityInStock)
 {
 throw new NotEnoughStockException(product.QuantityInStock,
request.Amount);
 }

 product.QuantityInStock -= request.Amount;
 await _db.SaveChangesAsync(cancellationToken);

 return _mapper.Map<Result>(product);
 }
 }
} // RemoveStocks class

Note

To make validation work, we need to implement an IPipelineBehavior<TRequest,
TResponse> interface and add it to the MediatR pipeline. We cover that after we are done
exploring the RemoveStock feature.

Chapter 15 433

The Handler class implements the IRequestHandler<Command, Result> interface, which links it to
the Command and Result classes. It implements the same logic as the previous implementations, from
Chapter 12, Understanding Layering, onward.

To summarize, the RemoveStocks class contains all the required sub-classes for that specific use case.
As a reminder, now that we read the code, the pieces of each use case are the following:

• Command is the input DTO.
• Result is the output DTO.
• MapperProfile is the AutoMapper profile that maps feature-specific classes to non-feature-

specific classes and vice versa.
• Validator validates the input before an instance hits the Handler class (the Command class).
• Handler encapsulates the use case logic.

Let’s now look at the StocksController class, which translates the HTTP requests to the MediatR
pipeline:

namespace VerticalApp.Features.Stocks;

[ApiController]
[Route("products/{productId}/")]
public class StocksController : ControllerBase
{
 private readonly IMediator _mediator;
 public StocksController(IMediator mediator)
 {
 _mediator = mediator ?? throw new
ArgumentNullException(nameof(mediator));
 }
 // Omitted action methods
}

We inject an IMediator implementation in the controller since we are using it in all of the actions that
follow. Next, we look at the add stocks action method, part of StocksController:

[HttpPost("add-stocks")]
public async Task<ActionResult<AddStocks.Result>> AddAsync(
 int productId,
 [FromBody] AddStocks.Command command
)
{
 try
 {
 command.ProductId = productId;

Getting Started with Vertical Slice Architecture434

 var result = await _mediator.Send(command);
 return Ok(result);
 }
 catch (ProductNotFoundException ex)
 {
 return NotFound(new
 {
 ex.Message,
 productId,
 });
 }
}

In the preceding code, we read the content of an AddStocks.Command instance from the body, and
then we set ProductId to finally send the command object into the MediatR pipeline, for the reasons
discussed in the note near the end of Chapter 14, Mediator and CQRS Design Patterns. From there,
MediatR routes the request to the handler we explored previously before returning the result of that
operation with an HTTP 200 OK status code. Next, we look at the RemoveStocks action method, part
of StocksController:

[HttpPost("remove-stocks")]
public async Task<ActionResult<RemoveStocks.Result>> RemoveAsync(
 int productId,
 [FromBody] RemoveStocks.Command command
)
{
 try
 {
 command.ProductId = productId;
 var result = await _mediator.Send(command);
 return Ok(result);
 }
 catch (NotEnoughStockException ex)
 {
 return Conflict(new
 {
 ex.Message,
 ex.AmountToRemove,
 ex.QuantityInStock
 });
 }
 catch (ProductNotFoundException ex)

Chapter 15 435

 {
 return NotFound(new
 {
 ex.Message,
 productId,
 });
 }
}

The remove-stocks action has the same logic as the add-stocks one, with the added catch block like
the previous implementations of this code.

One of the differences between the preceding code and previous implementations is that we moved
the DTOs to the vertical slice itself. Each vertical slice defines the input, the logic, and the output of
that feature, as follows:

Figure 15.5: Diagram representing the three primary pieces of a vertical slice

When we add input validation, we have the following:

Figure 15.6: Diagram representing the three primary pieces of a vertical slice, with added validation

Note

I did not map exceptions to typed DTOs for the only reason that it would be more optimal
to handle those in an exception filter instead of in each action. The filter would allow
centralizing exception handling and return a standardized error object. As an example, we
implement a FluentValidationExceptionFilter that translates ValidationException
to BadRequestObjectResult in this chapter.

Getting Started with Vertical Slice Architecture436

All in all, the code of the controller is thin, creating a tiny layer between HTTP and our domain, mapping
the HTTP requests to the MediatR pipeline and the responses back to HTTP. That thin piece represents
the presentation of the API and allows access to the domain logic, the feature. When controllers grow,
it is often a sign that part of the feature logic is in the wrong place, most likely leading to code that is
harder to test because the HTTP and other logic become intertwined.

In the code, we still have the extra line for the productId and that try/catch block, but we could get
rid of these using custom model binders and exception filters; see the end of the chapter for some
additional resources.

It is now straightforward to add new features to the project with that in place. Visually, we end up with
the following vertical slices (bold), possible vertical expansions (normal), and shared classes (italics):

Figure 15.7: Diagram representing the project and possible extensions related to product management

The diagram shows the grouping of the two main areas, products and stocks. On the products side,
when including the expansions, we have a CRUD-like feature bundle. In our tiny application, it is
very hard to divide the data access part into more than one DbContext, so ProductContext is used
by all slices to create a shared data access layer. In other cases, you should create multiple smaller
DbContext instead of a big one that deserves the whole application (this has nothing to do with Vertical
Slice Architecture but is just a best practice overall). Think about grouping features together, as long
as they are cohesive and fit together, under the same domain area.

Next, we add the missing parts to use those IValidator implementations.

Chapter 15 437

Request validation
We now have most of the code to run our little project. However, we still have no validation in our
MediatR pipeline, only validators.

Fortunately, MediatR has an IPipelineBehavior<in TRequest, TResponse> interface we can use to
extend the request pipeline. It works like an MVC filter. Speaking of which, we also need an MVC filter to
control the HTTP response when a validation error occurs. That will allow us to encapsulate validation
logic in two small classes. Those two classes will intercept and handle all validation exceptions thrown
by any feature.

Let’s start with a high-level view:

• The HTTP request passes through the ASP.NET Core MVC pipeline up to the controller.
• The controller sends a command that passes through the MediatR pipeline:

Figure 15.8: High-level flow of a successful HTTP request

What we want to do is the following:

1. Add an IExceptionFilter that catches ValidationException (from FluentValidation) in the
MVC pipeline (in the Filters section of the diagram).

Getting Started with Vertical Slice Architecture438

2. Add a MediatR IPipelineBehavior that validates requests and throws a ValidationException
when the request validation fails (in the Behaviors section of the diagram).

After adding those two pieces, our request flow will become something like this:

Figure 15.9: Request flow including request validation details

1. The user sends an HTTP request.
2. The controller sends a command through the mediator.
3. The mediator runs the request through its pipeline.
4. The IPipelineBehavior implementation validates the request.
5. If the request is valid, the following occurs:

a. The request continues through the MediatR pipeline until it reaches the handler.
b. The Handler is executed.
c. The Handler returns a Result instance.
d. The controller transfers that Result object into an OkObjectResult object.

6. If the validation of the request fails, the following occurs:

a. The IPipelineBehavior implementation throws a ValidationException.
b. The IExceptionFilter implementation catches and handles the exception.
c. The filter sets the action result to a BadRequestObjectResult.

7. MVC transforms the resulting IActionResult into a 200 OK (success) or a 400 BadRequest
(validation failure) response and serializes the resulting object into the response body.

Now that we understand the changes’ theoretical aspects, let’s start by coding the IPipelineBehavior
implementation.

Chapter 15 439

I named it ThrowFluentValidationExceptionBehavior because it throws a ValidationException
(from FluentValidation) and is a MediatR behavior.

We start by implementing the IPipelineBehavior<TRequest, TResponse> interface. Our class
forwards both generic parameters to the IPipelineBehavior interface to serve all types of requests,
as long as the request implements IRequest<TResponse>. Then the magic happens by injecting a list
of IValidator<TRequest> instances, which gives access to the validators of the current request to
the pipeline behavior. This works for any type of TRequest object. I’ll let you look at the code and then
explain the Handle method:

namespace VerticalApp;

public class ThrowFluentValidationExceptionBehavior<TRequest, TResponse> :
IPipelineBehavior<TRequest, TResponse>
 where TRequest : IRequest<TResponse>
{
 private readonly IEnumerable<IValidator<TRequest>> _validators;
 public
ThrowFluentValidationExceptionBehavior(IEnumerable<IValidator<TRequest>>
validators)
 {
 _validators = validators ?? throw new
ArgumentNullException(nameof(validators));
 }

 public Task<TResponse> Handle(TRequest request, CancellationToken
cancellationToken, RequestHandlerDelegate<TResponse> next)
 {
 var failures = _validators
 .Select(v => v.Validate(request))
 .SelectMany(r => r.Errors);
 if (failures.Any())
 {
 throw new ValidationException(failures);
 }
 return next();
 }
}

Finally, in the Handle method, we run all validators (see the highlighted code) and project the errors
into the failures variable. If there are any failures, it throws a ValidationException that contains
all the failures. If the validation succeeds, it invokes the next element of the pipeline and returns its
result. This concept is similar to the Chain of Responsibility pattern, which we explored in Chapter
10, Behavioral Patterns.

Getting Started with Vertical Slice Architecture440

Next, we must register it in the composition root to make it work. Since we don’t want to register it
for every feature in our project, we are going to register it as an unbound generic like this (in the
Program.cs file):

.AddSingleton(
 typeof(IPipelineBehavior<,>),
 typeof(ThrowFluentValidationExceptionBehavior<,>)
);

This code means: “add an instance of ThrowFluentValidationExceptionBehavior in the pipeline for
all types of requests.” That way, our behavior runs every time, no matter the type of request.

If we run the code, we get the following error, which is not elegant:

Figure 15.10: The result of ThrowFluentValidationExceptionBehavior without the MVC filter

To manage how our application outputs those exceptions, we can add an IExceptionFilter to the
MVC pipeline. I decided to call it FluentValidationExceptionFilter because it is an exception filter
that handles exceptions of type FluentValidation.ValidationException. That class looks like the
following:

namespace VerticalApp;
public class FluentValidationExceptionFilter : IExceptionFilter
{
 public void OnException(ExceptionContext context)
 {
 if (context.Exception is ValidationException ex)
 {
 context.Result = new BadRequestObjectResult(new
 {
 ex.Message,
 ex.Errors,
 });
 context.ExceptionHandled = true;
 }
 }
}

Chapter 15 441

The preceding code validates whether the value of the Exception property (the current
exception) is a ValidationException. If it is, it sets the Result property’s value to an instance of
BadRequestObjectResult. It creates an anonymous object with two properties directly taken from
the ValidationException object: Message and Errors. The Message property is the error message,
while the Errors property references a collection of ValidationFailure objects.

Afterward, it sets the ExceptionHandled property to true, so MVC knows the exception was handled and
stops caring about it like it never happened. Those few lines of code are the equivalent of returning a
BadRequest(new {...}) instance from a controller action but applied globally for all controller actions.

One last step: we must register it with the MVC pipeline, so the code gets executed. In the Program.cs
file, we can add the filter as part of the .AddControllers() method call, like the following (highlighted):

.AddControllers(options => options
 .Filters.Add<FluentValidationExceptionFilter>())

That adds a filter to the MVC pipeline, in this case, the FluentValidationExceptionFilter class we
just created. From now on, whenever an unhandled exception occurs, the filter is executed.

Now, if we run a request that should not pass validation (such as add 0 new stock), we get the following
result:

Figure 15.11: The result of ThrowFluentValidationExceptionBehavior handled by
FluentValidationExceptionFilter

Getting Started with Vertical Slice Architecture442

That is more elegant and can be handled by clients more efficiently. You can also customize the
exception you throw in your implementation of the IPipelineBehavior interface and the object you
serialize in your implementation of IExceptionFilter. Since it is MVC, you can also leverage a custom
implementation of the IExceptionFilter interface in non-MediatR-based projects. There are other
types of filters too. Filters are really good at handling crosscutting concerns in MVC.

If you are not using MVC, you can achieve a similar result by creating middleware instead. Middlewares
are run before MVC filters and could be applied to minimal APIs.

Next, we explore a bit of testing. I won’t test the whole application, but I’ll get into a few advantages
of testing Vertical Slice Architecture versus other architecture types.

Testing
For this project, I wrote one integration test per use case outcome, which lowers the number of unit
tests required while increasing the level of confidence in the system at the same time. Why? Because
we are testing the features themselves instead of many abstracted parts independently. We could
also add as many unit tests as we want. I’m not telling you to stop writing unit tests; on the contrary,
I think this approach helps you to write fewer but better feature-oriented tests, diminishing the need
for mock-heavy unit tests.

Let’s look at the StocksTest class first:

namespace VerticalApp.Features.Stocks;
public class StocksTest
{
 private static async Task SeederDelegate(ProductContext db)
 {
 db.Products.RemoveRange(db.Products.ToArray());
 await db.Products.AddAsync(new Product(
 id: 4,
 name: "Ghost Pepper",
 quantityInStock: 10
));
 await db.Products.AddAsync(new Product(
 id: 5,
 name: "Carolina Reaper",
 quantityInStock: 10
));
 await db.SaveChangesAsync();
 }
 public class AddStocksTest : StocksTest
 {
 // omitted test methods
 }

Chapter 15 443

 public class RemoveStocksTest : StocksTest
 {
 // omitted test methods
 }
 public class StocksControllerTest : StocksTest
 {
 // omitted test methods
 }
}

The SeedAsync method removes all products and inserts two new ones in the in-memory test database
so the test methods can run using a predictable set of data. The AddStocksTest and RemoveStocksTest
classes contain the test methods for their respective use case. StocksControllerTest tests the MVC
part. Let’s explore the happy path of the AddStocksTest class:

[Fact]
public async Task Should_increment_QuantityInStock_by_the_specified_amount()
{
 // Arrange
 await using var application = new VerticalAppApplication();
 await application.SeedAsync(SeederDelegate);
 using var requestScope = application.Services.CreateScope();
 var mediator = requestScope.ServiceProvider.
GetRequiredService<IMediator>();

 // Act
 var result = await mediator.Send(new AddStocks.Command
 {
 ProductId = 4,
 Amount = 10
 });

 // Assert
 using var assertScope = application.Services.CreateScope();
 var db = assertScope.ServiceProvider.GetRequiredService<ProductContext>();
 var peppers = await db.Products.FindAsync(4);
 Assert.NotNull(peppers);
 Assert.Equal(20, peppers!.QuantityInStock);
}

In the Arrange section of the preceding test case, we create an instance of the application, create a
scope to simulate an HTTP request, access the EF Core DbContext, and then get an IMediator instance
to act on.

Getting Started with Vertical Slice Architecture444

In the Act block, we send a valid AddStocks.Command through the MediatR pipeline.

We create a new scope in the Assert block then and get a ProductContext out of the container. With
that DbContext, we find the product, make sure it’s not null, and validate the quantity in stock is what
we are expecting. Using a new ProductContext ensures we are not dealing with any cached items
from the previous one, and the transaction has been saved as expected.

With that test case, we know that if a valid command is issued to the mediator, that handler gets
executed and successfully does what it should: increment the stock property by the specified amount.

Then we can test the MVC part to make sure the controller is configured correctly. In the
StocksControllerTest class, the AddAsync class contains the following test method:

public class AddAsync : StocksControllerTest
{
 [Fact]
 public async Task Should_send_a_valid_AddStocks_Command_to_the_mediator()
 {
 // Arrange
 var mediatorMock = new Mock<IMediator>();
 AddStocks.Command? addStocksCommand = default;
 mediatorMock
 .Setup(x => x.Send(It.IsAny<AddStocks.Command>(),
It.IsAny<CancellationToken>()))
 .Callback((IRequest<AddStocks.Result> request, CancellationToken
cancellationToken) => addStocksCommand = request as AddStocks.Command)
 ;
 await using var application = new VerticalAppApplication(
 afterConfigureServices: services => services
 .AddSingleton(mediatorMock.Object)
);
 var client = application.CreateClient();
 var httpContent = JsonContent.Create(
 new { amount = 1 },
 options: new JsonSerializerOptions(JsonSerializerDefaults.Web)
);

Note

The VerticalAppApplication class inherits from WebApplicationFactory<TEntryP
oint>, creates a new DbContextOptionsBuilder<ProductContext> instance that has
a configurable database name, implements a SeedAsync method that allows seeding the
database, and allows altering the application services. I omitted the code for brevity rea-
sons, but you can consult the complete source code in the GitHub repository (https://
adpg.link/QzwS).

https://adpg.link/QzwS
https://adpg.link/QzwS

Chapter 15 445

 // Act
 var response = await client.PostAsync("/products/5/add-stocks",
httpContent);

 // Assert
 Assert.NotNull(response);
 Assert.NotNull(addStocksCommand);
 response.EnsureSuccessStatusCode();
 mediatorMock.Verify(
 x => x.Send(It.IsAny<AddStocks.Command>(),
It.IsAny<CancellationToken>()),
 Times.Once()
);
 Assert.Equal(5, addStocksCommand!.ProductId);
 Assert.Equal(1, addStocksCommand!.Amount);
 }
}

The highlighted code of the preceding test case Arrange section is new. That code mocks the IMediator
and saves what is passed to the Send method in the addStocksCommand variable. We are using that
value in the Assert section. When creating the VerticalAppApplication instance, we register that
mock with the container to use it instead of the MediatR one. We then create an HttpClient that is
connected to our in-process application.

Finally, we craft a valid HTTP request to add stocks that we post in the Act section.

The code of the Assert block makes sure the request was successful, verifies the mock method was hit
once, and makes sure AddStocks.Command was configured correctly.

From the first test, we know the MediatR piece works. With this second test in place, we know the
HTTP piece works. We are now almost certain that a valid add stocks request will hit the database
with those two tests.

In the test project, I added more tests that cover exceptions, remove stocks, and list all products’
features, and AutoMapper configuration correctness. Feel free to browse the code. I omitted them
here as they become redundant. The objective here was to explore testing a feature almost end to end
with very few tests (two for the happy path, to be precise in this case), and I think we covered that.

Note

I say “almost certain” because our first test runs using an in-memory database, which is
different from a real database engine (for example, it has no relational integrity and the
like). In case of more complex database operations that affect more than one table, or
just to ensure the correctness of the feature, you can run the tests against a real database.

Getting Started with Vertical Slice Architecture446

The vertical slice version of the project shows how we were able to remove abstractions while keeping
the objects loosely coupled. We also organized the project into features (verticals) instead of layers
(horizontals). We leveraged CQRS, Mediator, and MVC patterns. Conceptually, the layers are still
there; for example, the controllers are part of the presentation layer, but they are not organized
that way, making them part of the feature. The sole dependency that crosses all our features is the
ProductContext class, making sense since our model is composed of a single class (Product). We could,
for example, add a new feature that leverages minimal APIs instead of a controller, which would be
okay because each slice is independent.

We can significantly reduce the number of mocks required by testing each vertical slice with integration
tests. That could also lower the number of unit tests significantly, testing features instead of mocked
units of code. Our focus should be on producing features, not on the details behind querying the
infrastructure or the code itself (OK, that’s important too).

Next, we look at a few tricks and processes to get started with a bigger application. These are ways
that I found work for me and will hopefully work for you too. Take what works for you and leave the
rest; we are all different and work differently.

Continuing your journey
The previous project was tiny. It had a shared model that served as the data layer because it was
composed of a single class. When building bigger applications, you have more than one class, so I’ll try
to give you a good starting point to tackle bigger apps. The idea is to create slices as small as possible,
limit interactions with other slices as much as possible, and refactor that code into better code. We
cannot remove coupling, so we need to organize it instead.

Depending on your workplace, chances are you only have one role to play, and others cover the rest.
If that is not the case (for any reason), here is a workflow that we could call “start small and refactor”
to help you out (this approach might work given either of the two previous cases):

1. Write the contracts that cover your feature (input and output).
2. Write one or more integration tests covering your feature, using those contracts; the Query or

Command class (IRequest) as input and the Result class as output.
3. Implement your Handler, Validator, MapperProfile, and any other bit that needs to be coded.

At this point, the code could be a giant Handler; it does not matter.
4. Once your integration tests pass, refactor that code by breaking down your giant Handler.

Handle method as needed.
5. Make sure your tests still pass.

Note

It is important to note that you can still write as many unit tests as you need; nothing
from Vertical Slice Architecture stops you from doing that. That’s one of the advantages:
you can leverage all you know in the slice you are working on without the need to export
it globally to other slices.

Chapter 15 447

During step 2, you may also test the validation rules with unit tests. It is way easier and faster to test
multiple combinations and scenarios from unit tests, and you don’t need to access a database for
that. The same also applies to any other parts of your system that are not tied to an external resource.

During step 4, you may find duplicated logic between features. If that’s the case, it is time to encapsulate
that logic elsewhere, in a shared place. That could be to create a method in the model, create a service
class, or any other pattern and technique that you know might solve your logic duplication problem.
Working from isolated features and extracting shared logic will help you design the application. You
want to push that shared logic outside of a handler, not the other way around (well, once you have that
shared logic, you can use it wherever needed). Here, I want to emphasize shared logic, which means
a business rule. When a business rule changes, all consumers of that business rule must also change
their behavior. Avoid sharing similar code but do share business rules.

What is very important when designing software is to focus on the functional needs, not the technical
ones. Your clients and users don’t care about the technical stuff; they want results, new features, bug
fixes, and improvements. Simultaneously, beware of the technical debt and don’t skip that refactoring
step, or your project may end up in trouble. That advice also applies to all types of architecture.

Another piece of advice is to keep all the code that makes a vertical slice as close as possible. You don’t
have to keep all use case classes in a single file, but I feel that often helps. Partial classes are a way to
split classes into multiple files.

You can also create a folder hierarchy where the deeper levels share the previous levels. For example,
I recently implemented a workflow in an MVC application related to shipments. The creation process
was in multiple steps. So I ended up with a hierarchy that looked like the following (the directories
are in bold):

Figure 15.12: The organizational hierarchy of directories and elements

Getting Started with Vertical Slice Architecture448

Initially, I coded all the handlers one by one, then I saw patterns emerge, so I took that shared logic
and encapsulated it into shared classes. Then I reused some upper-level exceptions, so I moved those
up from the Features/Shipments/Create folder (and namespace) to the Features/Shipments folder
(and namespace). I also extracted a service class to manage shared logic between multiple use cases
and more (I’ll skip all the details as they are irrelevant). In the end, I have only the code that I need,
no duplicated logic, and the collaborators (classes, interfaces) are close to each other. I registered only
three interfaces with the IoC container for that workflow, and two of them are related to PDF generation.
The coupling between features is minimal, while parts of the system work in synergy (cohesion).
Moreover, there is very little to no coupling with other parts of the system. If we compare that result
to another type of architecture such as layering, I would most likely have needed more abstractions
such as repositories, services, and whatnot; the result with Vertical Slice Architecture was simpler.

The key point here is to code your handlers independently, organize them the best you can, keep an
eye open for shared logic and emerging patterns, extract and encapsulate that logic, and try to limit
interactions between use cases and slices.

Conclusion
Overall, we explored a modern way to design an application that aligns well with Agile, which helps
generate value for your customers.

Before moving to the summary, let’s see how Vertical Slice Architecture can help us follow the SOLID
principles:

• S: Each vertical slice (feature) becomes a cohesive unit that changes as a whole, leading to the
segregation of responsibilities per feature. Based on a CQRS-inspired approach, each feature
splits the application’s complexity into commands and queries, leading to multiple small pieces.
Each piece handles a part of the process. For example, we can define an input, a validator, a
mapper profile, a handler, a result, an HTTP bridge (controller), and as many more pieces as
we need to craft the slice.

• O: We can enhance the system globally by extending the ASP.NET Core, MVC, or MediatR
pipelines. The features themselves can be designed as one sees fit, having a limited direct
impact on the OCP.

• L: N/A
• I: By organizing features by units of domain-centric use cases, we create many client-specific

components instead of general-purpose elements, like layers.
• D: The slice pieces depend on interfaces and are tied together using dependency injection.

Furthermore, by cutting the less useful abstractions out of the system, we simplify it, making
it more maintainable and concise. By having so many pieces of a feature living close to each
other, the system becomes easier to maintain with improved discoverability.

Summary
This chapter overviewed Vertical Slice Architecture, which flips layers by 90°. Vertical Slice Architecture
is about writing minimal code to generate maximum value by getting superfluous abstractions and
rules out of the equation by relying on the developers’ skills and judgment instead.

Chapter 15 449

Refactoring is a critical factor in a Vertical Slice Architecture project; success or failure will most
likely depend on it. We can use all patterns with Vertical Slice Architecture. It has lots of advantages
over layering with only a few disadvantages. Teams who work in silos (horizontal teams) may need
to rethink switching to Vertical Slice Architecture and first create or aim at creating multi-functional
teams instead (vertical teams).

We replaced the low-value abstraction with commands and queries (CQRS-inspired). Those are then
routed to their respective Handler using the Mediator pattern (helped by MediatR). That allows
encapsulating the business logic and decoupling it from its callers (the controllers in the sample).
Those commands and queries ensure that each bit of domain logic is centralized in a single location.

Depending on where we want that concern handled, we can encapsulate crosscutting concerns using a
classic MVC filter, an ASP.NET middleware, or a MediatR IPipelineBehavior. We can also implement
a composite solution using many options, as we did with the validation.

Of course, if you start with a strong analysis of your problem, you will most likely have a head start,
like with any project. Nothing stops you from building a strong domain model and then using it in
your slices. The more requirements you have, the easier the initial project organization will be. To
reiterate, engineering practices that you know still apply.

The next chapter explores another architectural style and talks about microservices.

Questions
Let’s take a look at a few practice questions:

1. What design patterns can we use in a vertical slice?
2. Is it true that when using Vertical Slice Architecture, you must pick a single ORM and stick

with it, such as a data layer?
3. What will likely happen if you don’t refactor your code and pay the technical debt in the long

run?
4. Can we handle crosscutting concerns using behaviors and MVC filters in other types of

applications or are they enabled by Vertical Slice Architecture?
5. What does cohesion mean?
6. What does tight coupling mean?

Further reading
Here are a few links to build upon what we learned in the chapter:

• For UI implementations, you can look at how Jimmy Bogard upgraded ContosoUniversity:

a. ContosoUniversity on ASP.NET Core with .NET Core: https://adpg.link/UXnr
b. ContosoUniversity on ASP.NET Core with .NET Core and Razor Pages: https://adpg.

link/6Lbo

• FluentValidation: https://adpg.link/xXgp

https://adpg.link/UXnr
https://adpg.link/6Lbo
https://adpg.link/6Lbo
https://adpg.link/xXgp

Getting Started with Vertical Slice Architecture450

• ExceptionMapper is an open source project of mine, which is an ASP.NET Core middleware that
reacts to exceptions. You can map certain exception types to HTTP status codes, automatically
serialize them as JSON ProblemDetails, and so on: https://adpg.link/i8jb

• AutoMapper: https://adpg.link/5AUZ
• MediatR: https://adpg.link/ZQap
• To avoid setting ProductId manually in the Vertical Slice project, you can use the open source

HybridModelBinding project or read the official documentation about custom model binding
and implement your own:

a. Custom Model Binding in ASP.NET Core: https://adpg.link/65pb
b. HybridModelBinding: https://adpg.link/EyKK

Join our book’s Discord space
Join the book’s Discord workspace for Ask me Anything session with the authors:

https://packt.link/ASPdotNET6DesignPatterns

https://adpg.link/i8jb
https://adpg.link/5AUZ
https://adpg.link/ZQap
https://adpg.link/65pb
https://adpg.link/EyKK

16
Introduction to Microservices
Architecture

This chapter is the last chapter that talks about application design before we move on to a few user
interface chapters. The chapter covers some essential microservices architecture concepts. It is designed
to get you started with those principles and give you a good idea of the microservices architecture.

This chapter aims to give you an overview of the concepts surrounding microservices, which should
help you make informed decisions about whether you should go for a microservices architecture or not.

Since microservices architecture is larger in scale than the previous application-scale pattern we visited
and usually involves advanced components, there is no C# code in the chapter. Instead, I explain the
concepts and list open source or commercial offerings that you can leverage to apply these patterns
to your applications. Moreover, you should not aim to implement many of the pieces discussed in the
chapter because it can be a lot of work to get them right, and they don’t add business value, so you
are better off just using an existing implementation instead and extending it if needed. There is more
context about this throughout the chapter.

That said, monolithic architecture patterns, such as Vertical Slice and Clean Architecture, are still
good to know, as you can apply those to individual microservices. Don’t worry—all of the knowledge
you have acquired since the beginning of this book is not forfeit and is still worthwhile.

The following topics are covered in this chapter:

• What are microservices?
• An introduction to event-driven architecture
• Getting started with message queues
• Implementing the Publish-Subscribe pattern
• Introducing Gateway patterns
• Revisiting the CQRS pattern
• The Microservices Adapter pattern

Introduction to Microservices Architecture452

Let’s get started!

What are microservices?
Besides being a buzzword, microservices represent an application that is divided into multiple smaller
applications. Each application, or microservice, interacts with the others to create a scalable system.
Usually, microservices are deployed to the cloud as containerized or serverless applications.

Before getting into too many details, here are a few principles to keep in mind when building
microservices:

• Each microservice should be a cohesive unit of business.
• Each microservice should own its data.
• Each microservice should be independent of the others.

Furthermore, everything we have studied so far—that is, the other principles of designing software—
applies to microservices but on another scale. For example, you don’t want tight coupling between
microservices (solved by microservices independence), but the coupling is inevitable (as with any
code). There are numerous ways to solve this problem, such as the Publish-Subscribe pattern.

There are no hard rules about how to design microservices, how to divide them, how big they should
be, and what to put where. That being said, I’ll lay down a few foundations to help you get started and
orient your journey into microservices.

Cohesive unit of business
A microservice should have a single business responsibility. Always design the system with the
domain in mind, which should help you divide the application into multiple pieces. If you know
Domain-Driven Design (DDD), a microservice will most likely represent a Bounded Context, which in
turn is what I call a cohesive unit of business. Basically, a cohesive unit of business (or bounded context)
is a self-contained part of the domain that has limited interactions with other parts of the domain.

Even if a microservice has micro in its name, it is more important to group logical operations under
it than to aim at a micro-size. Don’t get me wrong here; if your unit is tiny, that’s even better. However,
suppose you split a unit of business into multiple smaller parts instead of keeping it together (breaking
cohesion).

In that case, you are likely to introduce useless chattiness within your system (coupling between
microservices). This could lead to performance degradation and to a system that is harder to debug,
test, maintain, monitor, and deploy.

Moreover, it is easier to split a big microservice into smaller pieces than assemble multiple microservices
back together.

Try to apply the SRP to your microservices: a microservice should have only one reason to change
unless you have a good reason to do otherwise.

Chapter 16 453

Ownership of data
Each microservice is the source of truth of its cohesive unit of business. A microservice should share
its data through an API (a web API/HTTP, for example) or another mechanism (integration events, for
example). It should own that data and not share it with other microservices directly at the database level.

For instance, two different microservices should never access the same relational database table. If a
second microservice needs some of the same data, it can create its own cache, duplicate the data, or
query the owner of that data but not access the database directly; never.

This data-ownership concept is probably the most critical part of the microservices architecture and
leads to microservices independence. Failing at this will most likely lead to a tremendous number of
problems. For example, if multiple microservices can read or write data in the same database table,
each time something changes in that table, all of them must be updated to reflect the changes. If
different teams manage the microservices, that means cross-team coordination. If that happens, each
microservice is not independent anymore, which opens the floor to our next topic.

Microservice independence
At this point, we have microservices that are cohesive units of business and own their data. That
defines independence.

This independence offers the systems the ability to scale while having minimal to no impact on the
other microservices. Each microservice can also scale independently, without the need for the whole
system to be scaled. Additionally, when the business requirements grow, each part of that domain
can evolve independently.

Furthermore, you could update one microservice without impacting the others or even have a
microservice go offline without the whole system stopping.

Of course, microservices have to interact with one another, but the way they do should define how
well your system runs. A little like Vertical Slice architecture, you are not limited to using one set of
architectural patterns; you can independently make specific decisions for each microservice. For
example, you could choose a different way for how two microservices communicate with each other
versus two others. You could even use different programming languages for each microservice.

Tip

I recommend sticking to one or a few programming languages for smaller businesses and
organizations as you most likely have fewer developers, and each has more to do. Based
on my experience, you want to ensure business continuity when people leave and make
sure you can replace them and not sink the ship due to some obscure technologies used
here and there (or too many technologies).

Introduction to Microservices Architecture454

Now that we’ve defined the basics, let’s jump into the different ways microservices can communicate
using event-driven architecture. We first explore ways to mediate communication between microservices
using message queues and the Publish-Subscribe pattern. We then learn ways to shield and hide the
complexity of the microservices cluster using Gateway patterns. After that, we dig into more detail
about the CQRS pattern and provide a conceptual serverless example.

An introduction to event-driven architecture
Event-driven architecture (EDA) is a paradigm that revolves around consuming streams of events, or
data in motion, instead of consuming static states.

What I define by a static state is the data stored in a relational database table or other types of data
stores, like a NoSQL documents store. That data is dormant in a central location and waiting for actors
to consume and mutate it. It is stale between every mutation and the data (a record, for example)
represents a finite state.

On the other hand, data in motion is the opposite: you consume the ordered events and determine
the change in state that each event brings.

What is an event? People often interchange the words event, message, and command. Let’s try to
clarify this:

• A message is a piece of data that represents something.
• A message can be an object, a JSON string, bytes, or anything else your system can interpret.
• An event is a message that represents something that happened in the past.
• A command is a message sent to tell one or more recipients to do something.
• A command is sent (past tense), so we can also consider it an event.

A message usually has a payload (or body), headers (metadata), and a way to identify it (this can be
through the body or headers).

We can use events to divide a complex system into smaller pieces or have multiple systems talk to each
other without creating tight couplings. Those systems could be subsystems or external applications,
such as microservices.

Like Data Transfer Objects (DTO) of web APIs, events become the data contracts that tie the multiple
systems together (coupling). It is essential to think about that carefully when designing events. Of
course, we cannot foresee the future, so we can only do so much to get it perfect the first time. There
are ways to version events, but this is out of the scope of this chapter.

EDA is a fantastic way of breaking tight coupling between microservices but requires rewiring your
brain to learn this newer paradigm. Tooling is less mature, and expertise is scarcer than more linear
ways of thinking (like using point-to-point communication and relational databases), but this is slowly
changing and well worth learning (in my opinion).

Before moving further, we can categorize events into the following overlapping buckets:

• Domain events

Chapter 16 455

• Integration events
• Application events
• Enterprise events

As we explore next, all types of events play a similar role with different intents and scopes.

Domain events
A domain event is a term based on DDD representing an event in the domain. This event could then
trigger other pieces of logic to be executed subsequently. It allows a complex process to be divided
into multiple smaller processes. Domain events work well with domain-centric designs, like Clean
Architecture, as we can use them to split complex domain objects into multiple smaller pieces.
Domain events are usually application events. We can use MediatR to publish domain events inside
an application.

To summarize, domain events integrate pieces of domain logic together while keeping the domain
logic segregated, leading to loosely coupled components that hold one domain responsibility each
(single responsibility principle).

Integration events
Integration events are like domain events but are used to propagate messages to external systems, to
integrate multiple systems together while keeping them independent. For example, a microservice
could send the new user registered event message that other microservices react to, like saving the
user id to enable additional capabilities or sending a greeting email to that new user.

We use a message broker or message queue to publish such events. We cover those next, after covering
application and enterprise events.

To summarize, integration events integrate multiple systems together while keeping them independent.

Application events
An application event is an event that is internal to an application; it is just a matter of scope. If the
event is internal to a single process, that event is also a domain event (most likely). If the event crosses
microservices boundaries that your team owns (the same application), it is also an integration event.
The event itself won’t be different; it is the reason why it exists and its scope that describes it as an
application event or not.

To summarize, application events are internal to an application.

Enterprise events
An enterprise event describes an event that crosses internal enterprise boundaries. These are tightly
coupled with your organizational structure. For example, a microservice sends an event that other
teams, part of other divisions or departments, consume.

The governance model around those events should be different from application events that only
your team consumes.

Introduction to Microservices Architecture456

Someone must think about who can consume that data, under what circumstances, the impact of
changing the event schema (data contract), schema ownership, naming conventions, data-structure
conventions, and more, or risk building an unstable data highway.

To summarize, enterprise events are integration events that cross organizational boundaries.

Conclusion
We defined events, messages, and commands in this quick overview of event-driven architecture.
An event is a snapshot of the past, a message is data, and a command is an event that suggests other
systems to take action. Since all messages are from the past, calling them events is accurate. We then
organized events into a few overlapping buckets to help identify the intents. We can send events for
different objectives, but whether it is about designing independent components or reaching out to
different parts of the business, an event remains a payload that respects a certain format (schema).
That schema is the data contract (coupling) between the consumers of those events. That data contract
is probably the most important piece of it all; break the contract, break the system.

Now, let’s see how event-driven architecture can help us follow the SOLID principles at cloud-scale:

• S: Systems are independent of each other by raising and responding to events. The events
themselves are the glue that ties those systems together. Each piece has a single responsibility.

• O: We can modify the system’s behaviors by adding new consumers to a particular event without
impacting the other applications. We can also raise new events to start building a new process
without affecting existing applications.

• L: N/A
• I: Instead of building a single process, EDA allows us to create multiple smaller systems

that integrate through data contracts (events) where those contracts become the messaging
interfaces of the system.

• D: EDA enables systems to break tight coupling by depending on the events (interfaces/
abstractions) instead of communicating directly with one another, inverting the dependency
flow.

EDA does not only come with advantages; it also has a few drawbacks that we explore in subsequent
sections of the chapter.

Note

I like to see EDA as a central data highway in the middle of applications, systems, inte-
grations, and organizational boundaries, where the events (data) flow between systems
in a loosely coupled manner.

It’s like a highway where cars flow between cities (without traffic jams). The cities are not
controlling what car goes where but are open to visitors.

Chapter 16 457

Next, we explore message queues followed by the Publish-Subscribe pattern, two ways of interacting
with events.

Getting started with message queues
A message queue is nothing more than a queue that we leverage to send ordered messages. A queue
works on a First In, First Out (FIFO) basis. If our application runs in a single process, we could use
one or more Queue<T> instances to send messages between our components or a ConcurrentQueue<T>
instance to send messages between threads. Moreover, queues can be managed by an independent
program to send messages in a distributed fashion (between applications or microservices).

A distributed message queue can add more or fewer features to the mix, which is especially true for
cloud programs that have to handle failures at more levels than a single server does. One of those
features is the dead letter queue, which stores messages that failed some criteria in another queue.
For example, if the target queue is full, a message could be sent to the dead letter queue instead.
One could requeue such messages by putting the message back at the end of the queue (beware, this
changes the initial order in which messages were sent).

Many messaging queue protocols exist; some are proprietary, while others are open source. Some
messaging queues are cloud-based and used as a service, such as Azure Service Bus and Amazon
Simple Queue Service. Others are open source and can be deployed to the cloud or on-premises, such
as Apache ActiveMQ.

If you need to process messages in order and want each message to be delivered to a single recipient
at a time, a message queue seems like the right choice. Otherwise, the Publish-Subscribe pattern
could be a better fit for you.

Here is a basic example that illustrates what we just discussed:

Figure 16.1: A publisher that enqueues a message with a subscriber that dequeues it

For a more concrete example, in a distributed user registration process, when a user registers, we
could want to do the following:

• Send a confirmation email.
• Process their picture and save one or more thumbnails.
• Send an onboarding message to their in-app mailbox.

Introduction to Microservices Architecture458

To sequentially achieve this, one operation after the other, we could do the following:

Figure 16.2: A process flow that sequentially executes three operations that happen after a user
creates an account

In this case, if the process crashes during the Process Thumbnail operation, the user would not receive
the Onboarding Message. Another drawback would be that to insert a new operation between the Process
Thumbnail and Send an onboarding message steps, we’d have to modify the Send an onboarding message
operation (tight coupling).

If the order does not matter, we could queue all the messages from the Auth Server instead, right after
the user’s creation, like this:

Figure 16.3: The Auth Server is queuing the operations sequentially while different processes execute
them in parallel

This process is better, but the Auth Server is now controlling what should be happening once a new user
has been created. The Auth Server was queuing an event in the previous workflow that told the system
that a new user was registered. However, now, it has to be aware of the post-processing workflow to
queue each operation sequentially. Doing this is not wrong in itself and is easier to follow when you
dig into the code, but it creates tighter coupling between the services where the Auth Server is aware
of the external processes.

Chapter 16 459

According to the SRP, I don’t see how an authentication/authorization server should be responsible
for anything other than authentication, authorization, and managing that data.

If we continue from there and want to add a new operation between two existing steps, we would only
have to modify the Auth Server, which is less error-prone than the preceding workflow.

If we want the best of both worlds, we could use the Publish-Subscribe pattern instead, which we
cover next. We revisit this example there.

Conclusion
If you need messages to be delivered sequentially, a queue might well be the right tool to use. The
example that we explored was “doomed to failure” from the beginning, but it allowed us to explore
the thinking process behind designing the system. Sometimes, the first idea is not the best and can
be improved by exploring new ways of doing things or learning new skills. Being open-minded to the
ideas of others can also lead to better solutions.

Message queues are amazing at buffering messages for high-demand scenarios where an application
may not be able to handle spikes of traffic. In that case, the messages are enqueued so the application
can catch up at its own speed, reading them sequentially.

Implementing distributed message queues requires a lot of knowledge and effort and is not worth
it for almost all scenarios. The big cloud providers like AWS and Azure offer fully managed message
queue systems as a service. You can also look at ActiveMQ, RabbitMQ, or any Advanced Message
Queuing Protocol (AMQP) broker.

One essential aspect of choosing the right queue system is whether you are ready and have the skills to
manage your own distributed message queue. If you want to speed up development and have enough
money on hand, you should use a fully managed offering for at least your production environment,
especially if you are expecting a large volume of messages. On the other hand, using a local or on-
premise instance for development or smaller scale usage may save you a considerable sum of money.
Choosing an open source system with fully managed cloud offerings is a good way to achieve both:
low local development cost with an always available high-performance cloud production offering that
the service provider maintains for you.

Another aspect is to base your choice on needs. Have clear requirements and ensure the system you
choose does what you need. Some offerings can also cover multiple use cases like queues and pub-
sub (which we are exploring next), leading to learning or requiring fewer skills that enable more
possibilities.

Before moving to the next pattern, let’s see how message queues can help us follow the SOLID principles
at the app scale:

• S: Helps centralize and divide responsibilities between applications or components without
them directly knowing each other, breaking tight coupling.

• O: Allows us to change the message producer’s or subscriber’s behaviors without the other
knowing about it.

• L: N/A

Introduction to Microservices Architecture460

• I: Each message and handler can be as small as needed, while each microservice indirectly
interacts with the others to solve the bigger problem.

• D: By not knowing the other dependencies (breaking tight coupling between microservices),
each microservice depends only on the messages (abstractions) instead of concretions (the
other microservices API).

One drawback is the delay between enqueuing a message and processing a message. We talk about
delay and latency in more detail in subsequent sections.

Implementing the Publish-Subscribe pattern
The Publish-Subscribe pattern (Pub-Sub) is very similar to what we did using MediatR and what we
explored in the Getting started with message queues section. However, instead of sending one message to
one handler (or enqueuing a message), we publish (send) a message (event) to zero or more subscribers
(handlers). Moreover, the publisher is unaware of the subscribers; it only sends messages out, hoping
for the best (also known as fire and forget).

We can use Publish-Subscribe in-process or in a distributed system through a message broker. The
message broker is responsible for delivering the messages to the subscribers. That is the way to go for
microservices and other distributed systems since they are not running in a single process.

This pattern has many advantages over other ways of communication. For example, we could recreate
the state of a database by replaying the events that happened in the system, leading to the event
sourcing pattern. More on that later.

The design depends on the technology that’s used to deliver the messages and the configuration of
that system. For example, you could use MQTT to deliver messages to Internet of Things (IoT) devices
and configure them to retain the last message sent on each topic. That way, when a device connects
to a topic, it receives the latest message. You could also configure a Kafka broker that keeps a long
history of messages and asks for all of them when a new system connects to it. All of that depends on
your needs and requirements.

Note

Using a message queue does not mean you are limited to only one recipient.

MQTT and Apache Kafka

If you were wondering what MQTT is, here is a quote from their website
https://adpg.link/mqtt:

“MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). It is designed
as an extremely lightweight publish/subscribe messaging transport […]”

Here is a quote from Apache Kafka’s website https://adpg.link/kafka:

“Apache Kafka is an open-source distributed event streaming platform […]”

https://adpg.link/mqtt
https://adpg.link/kafka

Chapter 16 461

We cannot cover every single scenario of every single system that follows every single protocol.
Therefore, I’ll highlight some shared concepts behind the Pub-Sub design pattern so that you know
how to get started. Then, you can dig into the specific technology that you want (or need) to use.

A topic is a way to organize events, a channel, a place to read or write specific events so consumers know
where to find them. As you can probably imagine, sending all events to the same place is like creating
a relational database with a single table: it would be suboptimal, hard to manage, use, and evolve.

To receive messages, subscribers must subscribe to topics (or the equivalent of a topic):

Figure 16.4: A subscriber subscribes to a pub-sub topic

The second part of the Pub-Sub pattern is to publish messages, like this:

Figure 16.5: A publisher is sending a message to the message broker. The broker then forwards that
message to N subscribers, where N can be zero or more

Many abstracted details here depend on the broker and the protocol. However, the following are the
two primary concepts behind the Publish-Subscribe pattern:

• Publishers publish messages to topics.
• Subscribers subscribe to topics to receive messages when they are published.

Note

For example, one crucial implementation detail that is not illustrated here is se-
curity. Security is mandatory in most systems, and not every subsystem or device
should have access to all topics.

Introduction to Microservices Architecture462

Publishers and subscribers could be any part of any system. For example, many Microsoft Azure
services are publishers (for example, Blob storage). You can then have other Azure services (for example,
Azure Functions) subscribe to those events and react to them.

You can also use the Publish-Subscribe pattern inside your applications—there’s no need to use cloud
resources for that; this can even be done inside the same process.

The most significant advantage of the Publish-Subscribe pattern is breaking tight coupling between
systems. One system publishes events while others consume them without the systems knowing each
other.

That loose coupling leads to scalability, where each system can scale independently and where
messages can be processed in parallel using the resources it requires. It is easier to add new processes
to a workflow as well since the systems are unaware of the others. To add a new process that reacts
to an event, you only have to create a new microservice, deploy it, then start to listen to one or more
events and process them.

On the downside, the message broker can become the application’s single point of failure and must
be configured appropriately. It is also essential to consider the best message delivery policies for each
message type. An example of a policy could be to ensure the delivery of crucial messages while delaying
less time-sensitive messages and dropping unimportant messages during load surges.

If we revisit our previous example using Publish-Subscribe, we end up with the following simplified
workflow:

Figure 16.6: The Auth Server is publishing an event representing the creation of a new user. The
broker then forwards that message to the three subscribers that then execute their tasks in parallel

Based on this workflow, we decoupled the Auth Server from the post-registration process. The Auth
Server is not aware of the workflow, and the individual services are unaware of each other. Moreover,
if we want to add a new task, we only have to create or update a microservice that subscribes to the
right topic (in this case, the “new user registered” topic).

The current system does not support synchronization and does not handle process failures or retries,
but it is a good start since we combine the pros of the message queue examples and leave the cons
behind.

Chapter 16 463

Now that we have explored the Publish-Subscribe pattern, we look at message brokers, then dig deeper
into EDA and leverage the Publish-Subscribe pattern to create a persistent database of events that can
be replayed: the Event Sourcing pattern.

Message brokers
A message broker is a program that allows us to send (publish) and receive (subscribe) messages. It
plays the mediator role at scale, allowing multiple applications to talk to each other without knowing
each other (loose coupling). The message broker is usually the central piece of any event-based
distributed system that’s implementing the publish-subscribe pattern.

An application (publisher) publishes messages to topics, while other applications (subscribers) receive
messages from those topics. The notion of topics may differ from one protocol or system to another,
but all systems I know have a topic-like concept to route messages to the right place. For example, you
can publish to the Devices topic using Kafka, but to devices/abc-123/do-something using MQTT.

How you name your topics depends significantly on the system you are using and the scale of your
installation. For example, MQTT is a lightweight event broker that recommends using a path-like
naming convention. On the other hand, Apache Kafka is a full-featured event broker and event
streaming platform that is not opinionated about topic names, leaving you in charge of that. Depending
on the scale of your implementation, you can use the entity name as the topic name or may need
prefixes to identify who in the enterprise can interact with what part of the system. Due to the small
scale of the examples of the chapter, we stick with simple topic names, which also makes the examples
easier to understand.

The message broker is responsible for forwarding the messages to the registered recipients. The
lifetime of those messages can vary by broker or even per individual message or topic.

There are multiple message brokers out there using different protocols. Some brokers are cloud-based,
such as Azure Event Grid. Other brokers are lightweight and more suited for IoT, such as Eclipse
Mosquitto/MQTT. In contrast to MQTT, others are more robust and allow for high-velocity streaming
of data, such as Apache Kafka.

What message broker to use should be based on the requirements of the software that you are building.
Moreover, you are not limited to one broker. Nothing stops you from picking a message broker that
handles the dialogs between your microservices and uses another to handle the dialogs with external
IoT devices. If you are building a system in Azure, want to go serverless, or prefer paying for SaaS
components that scale without investing maintenance time, you can leverage Azure services such
as Event Grid, Service Bus, and Queue Storage. If you prefer open source software, you can choose
Apache Kafka and even run a fully managed cloud instance as a service using Confluent Cloud if you
don’t want to manage your own cluster.

The event sourcing pattern
Now that we have explored the Publish-Subscribe pattern, learned what an event is, and talked about
event brokers, it is time to explore how to replay the state of an application. To achieve this, we can
follow the event sourcing pattern.

Introduction to Microservices Architecture464

The idea behind event sourcing is to store a chronological list of events instead of a single entity,
where that collection of events becomes the source of truth. That way, every single operation is saved
in the right order, helping with concurrency. Moreover, we could replay all of these events to generate
an object’s current state in a new application, allowing us to deploy new microservices more easily.

Instead of just storing the data, if the system propagates it using an event broker, other systems can
cache some of the data as one or more materialized views.

One of the drawbacks of event sourcing is data consistency. There is an unavoidable delay between
when a service adds an event to the store and when all the other services update their materialized
views. This is named eventual consistency.

Another drawback is the complexity of creating such a system compared to a single application that
queries a single database. Like the microservices architecture, event sourcing is not just rainbows
and unicorns. It comes at a price: operational complexity.

Materialized views

A materialized view is a model that’s created and stored to serve a specific purpose. The
data can come from one or more sources, leading to improved performance when querying
that data. For example, the application returns the materialized view instead of querying
multiple other systems to acquire the data. You can view the materialized view as a cached
entity that a microservice stores in its own database.

Eventual consistency

Eventual consistency means that the data will be consistent at some point in the future,
but not outright. The delay can be from a few milliseconds to a lot longer, but the goal is
usually to keep that delay as small as possible.

Operational complexity

In a microservices architecture, each piece is smaller, but gluing them together has a
cost. For example, the infrastructure to support microservices is more complex than a
monolith (one app and one database). The same goes for event sourcing; all applications
must subscribe to one or more events, cache data (materialized view), publish events,
and more. This operational complexity represents the shift of complexity from the ap-
plication code to the operational infrastructure. In other words, it requires more work to
deploy and maintain multiple microservices and databases, as well as to fight the possible
instability of network communication between those external systems than it does for a
single application containing all of the code. Monoliths are simpler: they work or don’t;
they rarely partially work.

Chapter 16 465

A crucial aspect of event sourcing is appending new events to the store and never changing existing
events (append-only). In a nutshell, microservices communicating using the Pub-Sub pattern publish
events, subscribe to topics, and generate materialized views to serve their clients.

Example
Let’s explore an example of what could happen if we mix what we just studied together. Context: We
need to build a program that manages IoT devices. We begin by creating two microservices:

• The DeviceTwin microservice, which handles an IoT device’s twin’s data (that is, a digital
representation of the device).

• The Networking microservice, which manages the networking-related information of IoT
devices (that is, how to reach a device).

As a visual reference, the final system could look as follows (we cover the DeviceLocation microservice
later):

Figure 16.7: Three microservices communicating using the Publish-Subscribe pattern

Introduction to Microservices Architecture466

Here are the user interactions and the published events:

1. A user creates a twin in the system named Device 1. The DeviceTwin microservice saves the
data and publishes the DeviceTwinCreated event with the following payload:

{
 "id": "some id",
 "name": "Device 1",
 "other": "properties go here..."
}

In parallel, the Networking microservice needs to know when a device is created, so it subscribed
to the DeviceTwinCreated event. When a new device is created, the Networking microservice
creates default networking information for that device in its database; the default is unknown.
This way, the Networking microservice knows what devices exist or not:

Figure 16.8: A workflow representing the creation of a device twin and its default networking
information

Chapter 16 467

2. A user then updates the networking information of that device and sets it to MQTT. The
Networking microservice saves the data and publishes the NetworkingInfoUpdated event
with the following payload:

{
 "deviceId": "some id",
 "type": "MQTT",
 "other": "networking properties..."
}

This is demonstrated by the following diagram:

Figure 16.9: A workflow representing updating the networking type of a device

3. A user changes the device’s display name to Kitchen Thermostat, which is more relevant. The
DeviceTwin microservice saves the data and publishes the DeviceTwinUpdated event with the
following payload. The payload uses JSON patch to publish only the differences instead of the
whole object (see the Further reading section for more information):

{
 "id": "some id",
 "patches": [
 { "op": "replace", "path": "/name", "value": "Kitchen Thermostat"
},
]
}

Introduction to Microservices Architecture468

This is demonstrated by the following diagram:

Figure 16.10: A workflow representing a user updating the name of the device to Kitchen
Thermostat

From there, let’s say another team designed and built a new microservice that organizes the devices
at physical locations. This new DeviceLocation microservice allows users to visualize their devices’
location on a map, such as a map of their house.

The DeviceLocation microservice subscribes to all three events to manage its materialized view, like
this:

• When receiving a DeviceTwinCreated event, it saves its unique identifier and display name.
• When receiving a NetworkingInfoUpdated event, it saves the communication type.
• When receiving a DeviceTwinUpdated event, it updates the device’s display name.

When the service is deployed for the first time, it replays all events from the beginning (event sourcing);
here is what happens:

1. DeviceLocation receives the DeviceTwinCreated event and creates the following model for
that object:

{
 "device": {
 "id": "some id",
 "name": "Device 1"
 },
 "networking": {},
 "location": {...}
}

Chapter 16 469

This is demonstrated by the following diagram:

Figure 16.11: The DeviceLocation microservice replaying the DeviceTwinCreated event to
create its materialized view of the device twin

2. The DeviceLocation microservice receives the NetworkingInfoUpdated event, which updates
the networking type to MQTT, leading to the following:

{
 "device": {
 "id": "some id",
 "name": "Device 1"
 },
 "networking": {
 "type": "MQTT"
 },
 "location": {...}
}

This is demonstrated by the following diagram:

Figure 16.12: The DeviceLocation microservice replaying the NetworkingInfoUpdated event
to update its materialized view of the device twin

Introduction to Microservices Architecture470

3. The DeviceLocation microservice receives the DeviceTwinUpdated event, updating the device’s
name. The final model looks like this:

{
 "device": {
 "id": "some id",
 "name": "Kitchen Thermostat"
 },
 "networking": {
 "type": "MQTT"
 },
 "location": {...}
}

This is demonstrated by the following diagram:

Figure 16.13: The DeviceLocation microservice replaying the DeviceTwinUpdated event to
update its materialized view of the device twin

From there, the DeviceLocation microservice is initialized and ready. A user could set the kitchen
thermostat’s location on the map or continue to play with the other parts of the system. When a user
queries the DeviceLocation microservice for information about Kitchen Thermostat, it displays the
materialized view, which contains all the required information without sending external requests.

With that in mind, we could spawn new instances of the DeviceLocation microservice or other
microservices, and they could generate their materialized views from past events—all of that with very
limited to no knowledge of other microservices. In this type of architecture, a microservice can only
know about events, not the other microservices. How a microservice handles events should be relevant
only to that microservice, never to the others. The same applies to both publishers and subscribers.

Chapter 16 471

This example illustrates the event sourcing pattern, integration events, the materialized view, the use
of a message broker, and the Publish-Subscribe pattern.

In contrast, using direct communication (HTTP, gRPC, and so on) would look like this:

Figure 16.14: Three microservices communicating directly with one another

If we compare both approaches, by looking at the first diagram (Figure 16.7), we can see that the
message broker plays the role of a mediator and breaks the direct coupling between the microservices.
By looking at the preceding diagram (Figure 16.14), we can see the tight coupling between the
microservices, where the DeviceLocation microservice would need to interact with the DeviceTwin
and Networking microservices directly to build the equivalent of its materialized view. Furthermore, the
DeviceLocation microservice translates one interaction into three since the Networking microservice
also talks to the DeviceTwin microservice, leading to indirect tight coupling between microservices,
which can negatively impact performance.

Suppose eventual consistency is not an option, or the Publish-Subscribe pattern cannot be applied or
could be too hard to apply to your scenario. In this case, microservices can directly call each other. They
can achieve this using HTTP, gRPC, or any other means that best suit that particular system’s needs.

Introduction to Microservices Architecture472

I won’t be covering this topic in this book, but one thing to be careful of when calling microservices
directly is the indirect call chain that could bubble up fast. You don’t want your microservices to create
a super deep call chain, or your system will most likely become very slow, very fast. Here is an abstract
example of what could happen to illustrate what I mean. A diagram is often better than words:

Figure 16.15: A user calling microservice A, which then triggers a chain reaction of subsequent calls,
leading to disastrous performance

In terms of the preceding diagram, let’s think about failures (for one). If microservice C goes offline,
the whole request ends with an error. No matter the measures we put in place to mitigate the risks,
if microservice C cannot recover, the system will remain down; goodbye to microservices’ promise
of independence. Another issue is latency: ten calls are made for a single operation; that takes time.

Such chatty systems have most likely emerged from an incorrect domain modeling phase, leading to
multiple microservices working together to handle trivial tasks. Now think of Figure 16.15 but with
500 microservices instead of 6. That could be catastrophic!

This type of interdependent microservices system is known as the Death Star anti-pattern. Personally,
I see the Death Star anti-pattern as a distributed big ball of mud. One way to avoid such pitfalls is to
ensure the bounded contexts are well segregated and that responsibilities are well distributed.

A good domain model should allow you to avoid building a Death Star and create the “most correct”
system possible instead. No matter the type of architecture you choose, if you are not building the
right thing, you may well end up with a big ball of mud or a Death Star. Of course, the Pub-Sub pattern
can help us break the tight coupling between microservices to avoid such issues.

Chapter 16 473

Conclusion
The Publish-Subscribe pattern uses events to break tight coupling between parts of an application. In a
microservices architecture, we can use a message broker and integration events to allow microservices
to talk to each other indirectly. The different pieces are now coupled with the data contract representing
the event (its schema) instead of each other, leading to a potential gain in flexibility. One risk of this
type of architecture is breaking events’ consumers by publishing breaking changes in the event’s format
without letting consumers know or without having events versioning in place so consumers can self-
manage themselves. Therefore, it is critical to think about event schema evolutions thoroughly. Most
systems evolve, as will events, but since schemas are the glue between systems in a Publish-Subscribe
model, it is essential to treat them as such. Some brokers, like Apache Kafka, offer a schema store and
other mechanisms to help with these; some don’t.

Then, we can leverage the event sourcing pattern to persist those events, allowing new microservices
to populate their databases by replaying past events. The event store then becomes the source of truth
of those systems. Event sourcing can also become very handy for tracing and auditing purposes since
the whole history is persisted. We can also replay messages to recreate the system’s state at any given
point in time, making it very powerful for debugging purposes. The storage size requirement for the
event store is something to consider before going down the event sourcing path. The event store could
grow quite large because we keep all messages since the beginning of time and could grow fast based
on the quantity of events sent. You could compact the history to reduce the data size but lose part of
the history. Once again, you must decide based on the requirements and ask yourself the appropriate
questions. For example, is it acceptable to lose part of the history? How long should we keep the data?
Do we want to keep the original data in cheaper storage if we need it later? Do we even need replaying
capabilities? Can we afford to keep all the data forever? Craft your list of questions based on the specific
business problem you want to solve. This advice applies to all aspects of software engineering: clearly
define the business problem first, then find how to fix it.

Such patterns can be compelling but can also take time to learn and implement. Like with message
queues, cloud providers offer fully managed brokers as a service. Those can be faster to get started
with than building and maintaining your own infrastructure. If building servers is your thing, you
can use open source software to “economically” build your stack or just pay for managed instances
of such software to save yourself the trouble. The same tips as with message queues apply here; for
example, you can leverage a managed service for your production environment and a local version
on the developer’s machine.

Apache Kafka is one of the most popular event brokers that enables advanced functionalities like event
streaming. Kafka has partially and fully managed cloud offerings like Confluent Cloud. Redis Pub/Sub
is another open source project that has fully managed cloud offerings. Redis is also a key-value store
trendy for distributed caching scenarios. Other offerings are (but are not limited to) Solace PubSub+,
RabbitMQ, and ActiveMQ. Once again, I suggest comparing the offerings with your requirements to
make the best choice for your scenarios.

Introduction to Microservices Architecture474

Now, let’s see how the Publish-Subscribe pattern can help us follow the SOLID principles at cloud-scale:

• S: Helps centralize and divide responsibilities between applications or components without
them directly knowing each other, breaking tight coupling.

• O: Allows us to change how publishers and subscribers behave without directly impacting the
other microservices (breaking tight coupling between them).

• L: N/A
• I: Each event can be as small as needed, leading to multiple smaller communication interfaces

(data contracts).
• D: The microservices depend on events (abstractions) instead of concretions (the other

microservices), breaking tight coupling between them and inverting the dependency flow.

As you may have noticed, pub-sub is very similar to message queues. The main difference is the way
messages are read and dispatched:

• Queues: messages are pulled one at a time, consumed by one service, then disappear.
• Pub-Sub: messages are also read in order and are sent to all consumers instead of to only one,

like with queues.

Next, we explore some patterns that directly call other microservices by visiting a new kind of Façade:
the Gateway.

Introducing Gateway patterns
When building a microservices-oriented system, the number of services grows with the number of
features; the bigger the system, the more microservices you have.

Observer design pattern

I intentionally kept the Observer pattern out of this book since we rarely need it in
.NET. C# offers multicast events, which are well versed in replacing the Observer
pattern (in most cases). If you don’t know the Observer pattern, don’t worry–
chances are, you will never need it anyway. Nevertheless, if you already know
the Observer pattern, here are the differences between it and the Pub-Sub pattern.

In the Observer pattern, the subject keeps a list of its observers, creating direct
knowledge of their existence. Concrete observers also often know about the subject,
which leads to even more knowledge of other entities, leading to more coupling.

In the Pub-Sub pattern, the publisher is not aware of the subscribers; it is only
aware of the message broker. The subscribers are not aware of the publishers
either, only of the message broker. The publishers and subscribers are linked only
through the data contract of the messages they are either publishing or receiving.

We could view the Pub-Sub pattern as the distributed evolution of the Observer
pattern or more precisely, like adding a mediator to the Observer pattern.

Chapter 16 475

When you think about a user interface that has to interact with such a system, this can become tedious,
complex, and inefficient (dev-wise and speed-wise). Gateways can help us achieve the following:

• Hide complexity by routing requests to the appropriate services.
• Hide complexity by aggregating responses, translating one external request into many internal

ones.
• Hide complexity by exposing only the subset of features that a client needs.
• Translate an external request into another protocol that’s used internally.

A gateway can also centralize different processes, such as logging and caching requests, authenticating
and authorizing users and clients, enforcing request rate limits, and other similar policies.

You can see gateways as façades, but instead of being a class in a program, it is a program of its own,
shielding other programs. There are multiple variants of the Gateway pattern, and we explore many
of them here.

Regardless of the type of gateway you need, you can code it yourself or leverage existing tools to speed
up the development process.

An open source project that could help you out is Ocelot (https://adpg.link/UwiY). It is an application
gateway written in .NET Core that supports many things that we expect from a gateway. You can route
requests using configuration or write custom code to create advanced routing rules. Since it is open
source, you can contribute to it, fork it, and explore the source code if you need to.

A gateway is a reverse proxy that fetches the information that’s been requested by a client. That
information can come from one or more resources, possibly located on one or more servers. Microsoft
is working on a reverse proxy named YARP, which is also open source (https://adpg.link/YARP).
Microsoft claims they are building it for their internal teams, so it will most likely evolve and be
maintained over time (my guess).

Now, let’s explore a few types of gateways.

Gateway Routing pattern
We can use this pattern to hide the complexity of our system by having the gateway route requests to
the appropriate services.

For example, let’s say that we have two microservices: one that holds our device data and another that
manages device locations. We want to show the latest known location of a specific device (id=102)
and display its name and model.

Tip

Beware that there is a strong chance that your homemade gateway version 1.0 has more
flaws than a proven solution. This tip is not only applicable to gateways but to most complex
systems. That being said, sometimes, there is no proven solution that does exactly what
we want, and we have to code it ourselves, which is where the real fun begins!

https://adpg.link/UwiY
https://adpg.link/YARP

Introduction to Microservices Architecture476

To achieve that, a user requests the web page, and then the web page calls two services (see the
following diagram). The DeviceTwin microservice is accessible from service1.domain.com, and the
Location microservice is accessible from service2.domain.com. From there, the web application has
to keep track of what services use what domain name. The UI has to handle more complexity as we
add more microservices. Moreover, if at some point we decide to change service1 to device-twins
and service2 to location, we’d need to update the web application as well. If there is only a UI, it is
still not so bad, but if you have multiple user interfaces, that means each of them has to handle that
complexity.

Furthermore, if we want to hide the microservices inside a private network, it would be impossible
unless all the user interfaces are also part of that private network (which exposes it):

Figure 16.16: A web application and a mobile app that are calling two microservices directly

To fix some of these issues, we can implement a gateway that does the routing for us. That way, instead
of knowing what services are accessible through what sub-domain, the UI only has to know the gateway:

Chapter 16 477

Figure 16.17: A web application and a mobile app that are calling two microservices through a
gateway application

Of course, this brings some possible issues to the table as the gateway becomes a single point of
failure. You could consider using a load balancer to ensure that you have strong enough availability
and fast enough performance. Since all requests pass through the gateway, you may need to scale it
up at some point.

You should also ensure the gateway supports failure by implementing different resiliency patterns,
such as Retry and Circuit Breaker. The chances that an error will occur on the other side of the
gateway increase with the number of microservices you deploy and the number of requests sent to
those microservices.

You can also use a routing gateway to reroute the URI to create easier-to-use URI patterns. You can
also reroute ports; add, update, or remove HTTP headers; and more. Let’s explore the same example
but using different URIs. Let’s assume the following:

Microservice URI

API 1 (get a device) internal.domain.com:8001/{id}

API 2 (get a device location) internal.domain.com:8002/{id}

Introduction to Microservices Architecture478

UI developers would have a harder time remembering what port is leading to what microservice and
what is doing what (and who could blame them?). Moreover, we could not transfer the requests as we
did earlier (only routing the domain). We could use the gateway as a way to create memorable URI
patterns for developers to consume, like these:

Gateway URI Microservice URI
gateway.domain.com/devices/{id} internal.domain.com:8001/{id}
gateway.domain.com/devices/{id}/location internal.domain.com:8002/{id}

As you can see, we took the ports out of the equation to create usable, meaningful, and easy-to-
remember URIs.

However, we are still making two requests to the gateway to display one piece of information (the
location of a device and its name/model), which leads us to our next Gateway pattern.

Gateway Aggregation pattern
Another role that we can give to a gateway is to aggregate requests to hide complexity from its consumers.
Aggregating multiple requests into one makes it easier for consumers of a microservices system to
interact with it; clients need to know about one endpoint instead of multiple. Moreover, it moves the
chattiness from the client to the gateway, which is closer to the microservices, lowering the many
calls’ latency, thus making the request-response cycle faster.

Continuing with our previous example, we have two UI applications that contain a feature to show a
device’s location on a map before identifying it using its name/model. To achieve this, they must call
the device twin endpoint to obtain the device’s name and model, as well as the location endpoint to
get its last known location. So, two requests to display a small box, times two UIs, means four requests
to maintain for a simple feature. If we extrapolate, we could end up managing a near-endless number
of HTTP requests for a handful of features.

Here is a diagram showing our feature in its current state:

Chapter 16 479

Figure 16.18: A web application and a mobile app that are calling two microservices through a
gateway application

To remedy this problem, we can apply the Gateway Aggregation pattern to simplify our UIs and offload
the responsibility of managing those details to the gateway.

By applying the Gateway Aggregation pattern, we end up with the following simplified flow:

Figure 16.19: A gateway that aggregates the response of two requests to serve a single request from
both a web application and a mobile app

Introduction to Microservices Architecture480

In the previous flow, the Web App calls the Gateway that calls the two APIs, then crafts a response
combining the two responses it got from the APIs. The Gateway then returns that response to the
Web App. With that in place, the Web App is loosely coupled with the two APIs, with the Gateway
playing the middleman. With only one HTTP request, the Web App has all the information it needs,
aggregated by the Gateway.

Next, let’s explore the steps that occurred. In the following diagram, we can see the Web App makes
a single request (1), while the gateway makes two calls (2 and 4). In the diagram, the requests are sent
in series, but we could have sent them in parallel to speed things up:

Figure 16.20: The order in which the requests take place

Like the routing gateway, an aggregation gateway can become the bottleneck of your application and
a single point of failure, so beware of that.

Another important point to note is the latency between the gateway and the internal APIs. If the latency
is too high, your clients are going to wait for every response. So, deploying the gateway close to the
microservices it interacts with could become crucial for system performance. The gateway can also
implement caching to improve performance so that subsequent requests are faster.

Next, we explore another type of gateway that creates specialized gateways instead of generic ones.

Backends for Frontends pattern
The Backends for Frontends pattern is yet another variation of the Gateway pattern. With Backends
for Frontends, instead of building a general-purpose gateway, we build a gateway per user interface
(or for an application that interacts with your system), lowering complexity. Moreover, it allows for
fine-grained control of what endpoints are exposed. It removes the chances of app B breaking when
changes are made to app A. Many optimizations can come out of this pattern, such as sending only
the data that’s required for each call instead of sending data that only a few applications are using,
saving some bandwidth along the way.

Let’s say that our Web App needs to display more data about a device. To achieve that, we would need
to change the endpoint and send that extra information to the mobile app as well.

Chapter 16 481

However, the mobile app doesn’t need that information since it doesn’t have room on its screen to
display it. Here is an updated diagram that replaces the single gateway with two gateways, one per
frontend.

Figure 16.21: Two backends for frontends gateways; one for the Web App and one for the Mobile App

By doing this, we can now develop specific features for each frontend without impacting the other. Each
gateway is now shielding its particular frontend from the rest of the system and the other frontend.
This is the most important benefit this pattern brings to the table: independence between clients.

Once again, the Backends for Frontends pattern is a gateway. And like other variations of the Gateway
pattern, it can become the bottleneck of its frontend and its single point of failure. The good news is
that the outage of one backend for frontend gateway limits the impact to a single frontend, shielding
the other frontends from that downtime.

Mixing and matching gateways
Now that we’ve explored three variations of the Gateway pattern, it is important to note that we can
mix and match them, either at the codebase level or as multiple microservices.

For example, a gateway can be built for a single client (backend for frontend), perform simple routing,
and aggregate results.

We can also mix them as different applications, for example, by putting multiple backend for frontend
gateways in front of a more generic gateway to simplify the development and maintenance of those
backends for frontends.

Beware that each hop has a cost. The more pieces you add between your clients and your microservices,
the more time it will take for those clients to receive the response (latency). Of course, you can put
mechanisms in place to lower that overhead, such as caching or non-HTTP protocols such as gRPC,
but you still must consider it. That goes for everything, not just gateways.

Introduction to Microservices Architecture482

Here is an example illustrating this:

Figure 16.22: A mix of the Gateway patterns

As you’ve possibly guessed, the Generic Gateway is the single point of failure of all applications, while
at the same time, each backend for frontend gateway is a point of failure for its specific client.

Conclusion
A gateway is a façade or reverse proxy that shields or simplifies access to one or more other services.
In this section, we explored the following:

• Routing: This forwards a request from point A to point B.
• Aggregation: This combines the result of multiple sub-requests into a single response.
• Backends for Frontends: This is used in a one-to-one relationship with a frontend.

We can use any microservices pattern, including gateways, and like any other pattern, we can mix
and match them. Just consider the advantages, but also the drawbacks, that they bring to the table. If
you can live with them, well, you’ve got your solution.

Service mesh

A service mesh is an alternative to help microservices communicate with one another.
It is a layer, outside of the application, that proxies communications between services.
Those proxies are injected on top of each service and are referred to as sidecars. The
service mesh can also help with distributed tracing, instrumentation, and system resil-
iency. If your system needs service-to-service communication, a service mesh would be
an excellent place to look.

Chapter 16 483

Gateways often end up being the single point of failure, so that is a point to consider. On the other hand,
a gateway can have multiple instances running simultaneously behind a load-balancer (see Appendix
B for more information about scaling). Moreover, we must also consider the delay that’s added by
calling a service that calls another service since that slows down the response time.

All in all, a gateway is a great tool to simplify consuming microservices. They also allow hiding the
microservices topology behind them, possibly even isolated in a private network. They can also handle
cross-cutting concerns such as security.

I strongly recommend against rolling out your own gateway and suggest leveraging existing offerings
instead. This is why I chose not to add C# code in this section. There are many open source and cloud
gateways that you can use in your application. Using existing components leaves you more time to
implement the business rules that solve the issues your program is trying to tackle.

Of course, cloud-based offerings exist, like Azure Application Gateway and Amazon API Gateway.
Both are extendable with cloud offerings like load-balancers and web application firewalls (WAF).
For example, Azure Application Gateway also supports autoscaling, zone redundancy, and can serve
as Azure Kubernetes Service (AKS) Ingress Controller (in a nutshell, it controls the traffic to your
microservices cluster). For more information about Kubernetes and containers, see Appendix B.

If you want more control over your gateways or to deploy them with your application, you can leverage
one of the options that are out there. For simplicity, I picked two to talk to you about: Ocelot and Envoy.

Ocelot is an an open source production-ready API Gateway programmed in .NET. Ocelot supports
routing, request aggregation, load-balancing, authentication, authorization, rate limiting, and more.
It also integrates well with Identity Server, an OpenID Connect (OIDC) and OAuth 2.0 implementation,
written in .NET. The biggest advantage of Ocelot, in my eyes, is the fact that you create the .NET project
yourself, install a NuGet package, configure your gateway, then deploy it like you would any other
ASP.NET Core application. Since Ocelot is written in .NET, it is easier to extend it if needed or contribute
to the project or its ecosystem by sharing your improvements.

Envoy is an “open source edge and service proxy, designed for cloud-native applications,” to quote their
website. Envoy is a Cloud Native Computing Foundation (CNCF) graduated project, originally created
by Lyft. Envoy was designed to run as a separate process from your application, allowing it to work
with any programming language. Envoy can serve as a gateway and has an extendable design through
TCP/UDP and HTTP filters, supports HTTP/2 and HTTP/3, gRPC, and more.

Note

It is imperative to use gateways as a requests passthrough and avoid coding business
logic into them; gateways are just reverse proxies. Think single responsibility principle:
a gateway is a façade in front of your microservices cluster. Of course, you can unload
specific tasks into your gateways like authorization, resiliency (retry policies, for example),
and similar cross-cutting concerns, but the business logic must remain in the backend
microservices.

Introduction to Microservices Architecture484

Which offering to choose? If you are looking for a fully managed service, look at the cloud provider’s
offering of your choice. Consider Ocelot if you are looking for a configurable HTTP gateway that
supports the patterns covered in this chapter. If you have complex use cases that Ocelot does not
support, you can look into Envoy, a proven offering with many advanced capabilities. Please keep
in mind that these are just a few possibilities that can play the role of a gateway in a microservices
architecture system and are not intended to be a complete list.

Now, let’s see how gateways can help us follow the SOLID principles at cloud-scale:

• S: A gateway can handle routing, aggregation, and other similar logic that would otherwise be
implemented in different components or applications.

• O: I see many ways to attack this one, but here are two takes on this:

a. Externally, a gateway could reroute its sub-requests to new URIs without its consumers
knowing about it, as long as its contract does not change.

b. Internally, a gateway could load its rules from configurations, allowing it to change
without updating its code (this one would be an implementation detail).

• L: We could see the previous point (b) as not changing the correctness of the application.
• I: Since a backend for frontend gateway serves a single frontend system, that means one

contract (interface) per frontend system, leading to multiple smaller interfaces instead of one
big general-purpose gateway.

• D: We could see a gateway as an abstraction, hiding the real microservices (implementations)
and inverting the dependency flow.

Next, we revisit CQRS on a distributed scale.

Revisiting the CQRS pattern
Command Query Responsibility Segregation (CQRS), explored in Chapter 14, Mediator and CQRS
Design Patterns, applies the Command Query Separation (CQS) principle. Compared to what we saw
in Chapter 14, Mediator and CQRS Design Patterns, we can push CQRS further using microservices or
serverless computing. Instead of simply creating a clear separation between commands and queries,
we can divide them even more by using multiple microservices and data sources.

CQS is a principle stating that a method should either return data or mutate data, but not both. On
the other hand, CQRS suggests using one model to read the data and one model to mutate the data.

Serverless computing is a cloud execution model where the cloud provider manages the servers and
allocates the resources on-demand, based on usage. Serverless resources fall into the platform as a
service (PaaS) offering.

Let’s use IoT again as an example; we queried the last known location of a device in the previous
examples, but what about the device updating that location? This can mean pushing many updates
every minute. To solve this issue, we are going to use CQRS and focus on two operations:

• Updating the device location.
• Reading the last known location of a device.

Chapter 16 485

Simply put, we have a Read Location microservice, a Write Location microservice, and two databases.
Remember that each microservice should own its data. That way, a user can access the last known
device location through the read microservice (query model), while a device can punctually send its
current position to the write microservice (command model). By doing that, we split the load from
reading and writing the data as both occur at different frequencies:

Figure 16.23: Microservices that apply CQRS to divide the reads and writes of a device’s location

In the preceding schema that illustrates the concept, the reads are queries, and the writes are commands.
How to update the Read DB once a new value is added to the Write DB depends on the technology at
play. One essential thing in this type of architecture is that, per the CQRS pattern, a command should
not return a value, enabling a “fire and forget” scenario. With that rule in place, consumers don’t have
to wait for the command to complete before doing something else.

Conceptually, we can implement this example by leveraging serverless cloud infrastructures, such as
Azure Functions and Table Storage. Let’s revisit this example using those components:

Figure 16.24: Using Azure services to manage a CQRS implementation

Note

Fire and forget does not apply to every scenario; sometimes, we need synchronization.
Implementing the Saga pattern is one way to solve coordination issues.

Introduction to Microservices Architecture486

The previous diagram illustrates the following:

1. The device sends its location at a regular interval by posting it to Azure Function 1.
2. Azure Function 1 then publishes the LocationAdded event to the event broker, which is also

an event store (the Write DB).
3. All subscribers to the LocationAdded event can now handle the event appropriately; in this

case, Azure Function 2.
4. Azure Function 2 updates the last known location of the device in the Read DB.
5. Any subsequent queries should result in getting the new location.

The message broker is also the event store in the preceding diagram, but we could store events
elsewhere, such as in an Azure Storage Table, in a time-series database, or in an Apache Kafka cluster.
Azure-wise, the datastore could also be CosmosDB. Moreover, I abstracted this component for multiple
reasons, including the fact that there are multiple “as-a-service” offerings to publish events in Azure,
and there are multiple ways of using third-party components as well (both open source and proprietary).

Furthermore, the example demonstrates eventual consistency well. All the last known location reads
between steps 1 and 4 get the old value while the system processes the new location updates (commands).
If the command processing slows down for some reason, a longer delay could occur before the next
read database updates. The commands could also be processed in batches, leading to another kind of
delay. No matter what happens with the command processing, the read database would be available
all that time whether it has the latest data or not and whether the write system is overloaded or not.
This is the beauty of this type of design, but it is more complex to implement and maintain.

Once again, we used the Publish-Subscribe pattern to get another scenario going. Assuming that
events are persisted forever, the previous example could also support event sourcing. Furthermore,
new services could subscribe to the LocationAdded event without impacting the code that has already
been deployed. For example, we could create a SignalR microservice that pushes the updates to its
clients. It is not CQRS-related, but it flows well with everything that we’ve explored so far, so here is
an updated conceptual diagram:

Time-series databases

Time-series databases are optimized for temporally querying and storing data, where you
always append new records without updating old ones. This kind of NoSQL database can
be useful for temporal-intensive usage.

Chapter 16 487

Figure 16.25: Adding a SignalR service as a new subscriber without impacting the other part of the
system

The SignalR microservice could be custom code or an Azure SignalR Service (backed by another Azure
Function); it doesn’t matter. Here I wanted to illustrate that it is easier to drop new services into the
mix when using a Pub-Sub model than with point-to-point communication.

As you can see, a microservices system adds more and more small pieces that indirectly interconnect
with each other over one or more message brokers. Maintaining, diagnosing, and debugging such
systems is harder than with a single application; that’s the operational complexity we talked about
earlier. However, containers can help deploy and maintain such systems; see Appendix B for more
information about containers.

Starting in ASP.NET Core 3.0, the ASP.NET Core team invested much effort into distributed tracing.
Distributed tracing is necessary to find failures and bottlenecks related to an event that flows from
one program to another (such as microservices). If something bugs out, it is important to trace what
the user did to isolate the error, reproduce it, and then fix it. The more independent pieces there are,
the harder it can become to make that trace possible. This is outside the scope of this book, but it is
something to consider before jumping into the microservices adventure.

Conclusion
CQRS helps divide queries and commands and helps encapsulate and isolate each block of logic
independently. Mixing that concept with serverless computing or microservices architecture allows
us to scale reads and writes independently. We can also use different databases, empowering us with
the tools we need for the transfer rate required by each part of that system (for example, frequent
writes and occasional reads or vice versa).

Introduction to Microservices Architecture488

Major cloud providers like Azure and AWS provide serverless offerings to help support such scenarios.
Each cloud provider’s documentation should help you get started. Meanwhile, for Azure, we have Azure
Functions, Event Grid, Event Hubs, Service Bus, Cosmos DB, and more. Azure also offers bindings
between the different services that are triggered or react to events for you, removing a part of the
complexity.

Now, let’s see how CQRS can help us follow the SOLID principles at the cloud scale:

• S: Dividing an application into smaller reads and writes applications (or functions) leans toward
encapsulating single responsibilities into different programs.

• O: CQRS, mixed with serverless computing or microservices, helps extend the software without
the need for us to modify the existing code by adding, removing, or replacing applications.

• L: N/A
• I: CQRS set us up to create multiple small interfaces (or programs) with a clear distinction

between commands and queries.
• D: N/A

Exploring the Microservice Adapter pattern
The Microservice Adapter pattern allows adding missing features, adapting one system to another, or
migrating an existing application to an event-driven architecture model, to name a few possibilities.
The Microservice Adapter pattern is similar to the Adapter pattern we cover in Chapter 9, Structural
Patterns but applied to a microservices system that uses event-driven architecture instead of creating
a class to adapt an object to another signature.

In the scenarios we cover in this section, the microservices system represented by the following
diagram can be replaced by a standalone application as well; this pattern applies to all sorts of programs,
not just microservices, which is why I abstracted away the details:

Figure 16.26: Microservice system representation used in the subsequent examples

Chapter 16 489

Here are the examples we are covering next and possible usages of this pattern:

• Adapting an existing system to another.
• Decommissioning a legacy application.
• Adapting an event broker to another.

Let’s start by connecting a standalone system to an event-driven one.

Adapting an existing system to another
In this scenario, we have an existing system of which we don’t control the source code or don’t want
to change, and we have a microservices system built around an event-driven architecture model. We
don’t have to control the source code of the microservices system either as long as we have access to
the event broker.

Here is a diagram that represents this scenario:

Figure 16.27: A microservices system that interacts with an event broker and an existing system that
is disconnected from the microservices

As we can see from the preceding diagram, the existing system is disconnected from the microservices
and the broker. To adapt the existing system to the microservices system, we must subscribe or publish
certain events. In this case, let’s see how to read data from the microservices (subscribe to the broker)
then update that data into the existing system.

Introduction to Microservices Architecture490

In a scenario where we control the existing system’s code, we could open the source code, subscribe
to one or more topics, and change the behaviors from there. In our case, we don’t want to do that or
can’t, so we can’t directly subscribe to topics, as demonstrated by the following diagram:

Figure 16.28: Missing capabilities to connect an existing system to an event-driven one

This is where the microservice adapter comes into play and allows us to fill the capability gap of our
existing system. To add the missing link, we create a microservice that subscribes to the appropriate
events, then apply the changes in the existing system, like this:

Figure 16.29: An adapter microservice adding missing capabilities to an existing system

As we can see in the preceding diagram, the Adapter microservice gets the events (subscribes to one
or more topics) then uses that data from the microservices system to execute some business logic on
the existing system.

Chapter 16 491

In this design, the new Adapter microservice allowed us to add missing capabilities to a system we
had no control over with little to no disruption to users’ day-to-day activities.

The example assumes the existing system had some form of extensibility mechanism like an API. If
the system does not, we would have to be more creative to interface with it.

For example, the microservices system could be an e-commerce website and the existing system a
legacy inventory management system. The adapter could update the legacy system with new orders data.

The existing system could also be an old customer relationship management (CRM) system that you
want to update when users of the microservices application execute some actions, like changing their
phone number or address.

The possibilities are almost endless; you create a link between an event-driven system and an existing
system you don’t control or don’t want to change. In this case, the microservice adapter allows us to
follow the Open-Closed principle by extending the system without changing the existing pieces. The
primary drawback is that we are deploying another microservice that has direct coupling with the
existing system, which may be best for temporary solutions. On that same line of thought, next, we
replace a legacy application with a new one with limited to no downtime.

Decommissioning a legacy application
In this scenario, we have a legacy application that we want to decommission and a microservices
system we want to connect some existing capabilities to. To achieve this, we can create one or more
adapters to migrate all features and dependencies to the new model.

Here is a representation of the current state of our system:

Figure 16.30: The original legacy application and its dependencies

Introduction to Microservices Architecture492

The preceding diagram shows the two distinct systems, including the legacy application we want to
decommission. Two other applications, dependency A and B, directly depend on the legacy application.
The exact migration flow is strongly dependent on your use case. In the case you want to keep the
dependencies, we want to migrate them first. To do that, we can create an event-driven Adapter
microservice that breaks the tight coupling between the dependencies and the legacy application,
like this:

Figure 16.31: Adding a microservice adapter that implements the event-driven flow required to break
tight coupling between the dependencies and the legacy application

The preceding diagram shows an Adapter microservice and the rest of a microservices system that
communicates using an event broker. As we explored in the previous example, the adapter was placed
there to connect the legacy application to the microservices. The focus of our scenario is to remove
the legacy application and migrate its two dependencies. Here, we carved out the required capabilities
using the adapter, allowing us to migrate the dependencies to an event-driven model and break tight-
coupling with the legacy application. Such migration could be done in multiple steps, migrating
each dependency one by one, and we could even create one adapter per dependency. For the sake
of simplicity, I chose to draw only one adapter. If your dependencies are large or complex, you may
want to revisit this choice.

Chapter 16 493

Once we are done migrating the dependencies, our systems look like the following:

Figure 16.32: The dependencies are now using an event-driven architecture, and the adapter
microservice is bridging the gap between the events and the legacy system

In the preceding diagram, the Adapter microservice executes the operations against the legacy
application API that the two dependencies were doing before. The dependencies are now publishing
events instead of using the API. For example, when an operation happens in DependencyB, it publishes
an event to the broker. The Adapter microservice picks up that event and executes the original operation
against the API. Doing this creates more complexity and is a temporary state.

With this new architecture in place, we can start migrating existing features away from the legacy
application into the new application without impacting the dependencies; we broke tight coupling.

Note

From this point forward, we are applying the Strangler Fig Application pattern to migrate
the legacy system piece by piece to the new architecture of our choosing. For the sake
of simplicity, think of the Strangler Fig Application pattern as migrating features from
one application to another, one by one. In this case, we replaced one application with
another, but we could use the same patterns to split an application into multiple smaller
applications as well (like microservices).

I left a few links in the further reading section in case migrating legacy systems is some-
thing you do or simply if you want to know more about that pattern.

Introduction to Microservices Architecture494

The following diagram is a visual representation that adds the modern application we are building to
replace the legacy application. That new modern application could also be a purchased product you
are putting in place instead; the concepts we are exploring apply to both use cases, but the exact steps
are directly related to the technology at play.

Figure 16.33: The modern application to replace the legacy application is starting to emerge by
migrating capabilities to that new application

In the preceding diagram, we see the new modern application has appeared. Each time we deploy a
new feature to the new application, we can remove it from the adapter, leading to a graceful transition
between the two models. At the same time, we are keeping the legacy application in place to continue
to provide the capabilities that are not yet migrated.

Once all features we want to keep are migrated, we can remove the adapter and decommission the
legacy application, leading to the following system:

Chapter 16 495

Figure 16.34: The new system topology after the retirement of the legacy application, showing the
new modern application and its two loosely coupled dependencies

The preceding diagram shows the new system topology encompassing a new modern application and
the two original dependencies that are now loosely coupled through event-driven architecture. Of
course, the bigger the migration, the more complex it will be and the longer it will take, but the Adapter
Microservice pattern is one way to help do a partial or complete migration from one system to another.

Like the preceding example, the main advantage is adding or removing capabilities without impacting
the other systems, which allows us to migrate and break the tight coupling between the different
dependencies. The downside is once again the added complexity of this temporary solution. Moreover,
during the migration step, you will most likely need to deploy both the modern application and the
adapter in the correct sequence to ensure both systems are not handling the same events twice, leading
to duplicate changes. For example, updating the phone number to the same value twice should be all
right because it leads to the same final data set. However, creating two records instead of one should
be more important to mitigate as it may lead to integrity errors in the data set. For example, creating
an online order twice instead of once could create some customer dissatisfaction or internal issues.

Introduction to Microservices Architecture496

And voilà, we decommissioned a system using the Microservice Adapter pattern without breaking its
dependencies. Next, we look at an Internet of Things (IoT) example.

Adapting an event broker to another
In this scenario, we are adapting an event broker to another. In the following diagram, we look at
two use cases, one that translates events from broker B to broker A (left) and the other that translates
events from broker A to broker B (right). Afterwards, we explore a more concrete example:

Figure 16.35: An adapter microservice that translates events from broker B to broker A (left) and from
broker A to broker B (right)

We can see the two possible flows in the preceding diagram. The first flow, on the left, allows the adapter
to read events from broker B and publish them to broker A. The second flow, on the right, enables the
adapter to read events from broker A and publish them to broker B. Those flows allow us to translate
or copy events from one broker to another by leveraging the Microservice Adapter pattern once more.

Note

In Figure 16.35, there is one adapter per flow. I did that to make the two flows as indepen-
dent as possible, but the adapters could be a single microservice.

Chapter 16 497

This can be very useful for an IoT system where your microservices leverage Apache Kafka internally
for its full-featured suite of event-streaming capabilities but MQTT is used to communicate with the
low-powered IoT devices that connect to the system. An adapter can solve this problem by translating
the messages from one protocol to the other. Here is a diagram that represents the complete flows,
including a device and the microservices:

Figure 16.36: Complete protocol adapter flows, including a device and microservices

Before we explore what the events could be, let’s explore both flows, step by step. The left flow allows
getting events inside the system, from the devices, through the following sequence:

1. A device publishes an event to the MQTT broker.
2. The adapter reads that event.

Introduction to Microservices Architecture498

3. The adapter publishes a similar or different event to the Kafka broker.
4. Zero or more microservices subscribed to the event act on it.

On the other hand, the right flow allows getting events out of the system to the devices through the
following sequence:

1. A microservice publishes an event to the Kafka broker.
2. The adapter reads the event.
3. The adapter publishes a similar or different event to the MQTT broker.
4. Zero or more devices subscribed to the event act on it.

You don’t have to implement both flows; the adapter could be bidirectional (supporting both flows),
we could have two unidirectional adapters that support one of the flows or allow the communication
to flow only one way (in or out but not both). The choice relates to your specific use cases.

Concrete examples of sending a message from a device to a microservice (left flow) could be to send
its GPS position, send a status update (the light is now on), or a message indicating a sensor failure.

Concrete examples of sending a message to a device (right flow) could be to remotely control a speaker’s
volume, flip a light on, or send a confirmation that a message has been acknowledged.

In this case, the adapter is not a temporary solution but a permanent capability. We could leverage
such adapters to create additional capabilities with minimal impact on the rest of the system. The
primary downside is deploying one or more other microservices, but your system and processes are
probably robust enough to handle that added complexity when leveraging such capabilities.

This third scenario that leverages the Microservice Adapter is our last. Hopefully, I sparked your
imagination enough to leverage this simple yet powerful design pattern.

Conclusion
We explored the Microservice Adapter pattern that allows us to connect two elements of a system by
adapting one to the other. We explored how to push information from an event broker into an existing
system that does not support such capabilities. We also explored how we can leverage an adapter to
break tight coupling, migrate features into a newer system, and decommission a legacy application
seamlessly. We finally connected two event brokers through an adapter microservice, allowing a low-
powered IoT device to communicate with a microservices system without draining their battery and
without the complexity it would incur to use a more complex communication protocol.

This pattern is very powerful and can be implemented in many ways, but it all depends on your
exact use cases, which is why I did not write code into the chapter. You can write an adapter using a
serverless offering like an Azure function, no-code/low-code offerings like Power Automate, or C#.
Of course, these are just a few examples. The key to designing the correct system is to nail down the
problem statement because once you know what you are trying to fix, the solution becomes clearer.

Now, let’s see how the Microservice Adapter pattern can help us follow the SOLID principles at cloud-
scale:

Chapter 16 499

• S: the microservice adapter can help you correct the responsibilities segregation by helping to
migrate legacy systems to a better design. An adapter can play a single role in a system, like
bridging the communication between IoT devices and internal microservices.

• O: You can leverage microservice adapters to dynamically add or remove features without
impacting or with limited impact on the rest of the system. For example, in the IoT scenario,
we could add support for a new protocol like AMQP without changing the rest of the system.

• L: N/A
• I: Adding smaller adapters can make changes easier and less risky than updating large legacy

applications. As we saw in the legacy system decommissioning scenario, we could also leverage
temporary adapters to split large applications into smaller pieces.

• D: A microservice adapter inverts the dependency flow between the system it adapts. For
example, in the legacy system decommissioning scenario, the adapter reversed the flow from
the two dependencies to the legacy system by leveraging an event broker.

Summary
The microservices architecture is something different from everything else that we’ve covered in this
book and how we build monoliths. Instead of one big application, we split it into multiple smaller
ones that we call microservices. Microservices must be independent of one another; otherwise, we
will face the same problems associated with tightly coupled classes, but at the cloud scale.

We can leverage the Publish-Subscribe design pattern to decouple microservices while keeping them
connected through events. Message brokers are programs that dispatch those messages. We can
use event sourcing to recreate the application’s state at any point in time, including when spawning
new containers. We can use application gateways to shield clients from the microservices cluster’s
complexity and publicly expose only a subset of services.

We also took a look at how we can build upon the CQRS design pattern to decouple reads and writes
of the same entities, allowing us to scale queries and commands independently. We also looked at
using serverless resources to create that kind of system.

Finally, we explored the Microservice Adapter pattern that allowed us to adapt two systems together,
decommission a legacy application, and connect two event brokers. This pattern is simple but powerful
at inverting the dependency flow between two dependencies in a loosely coupled manner. The use
of the pattern can be temporary like we saw in the legacy application decommissioning scenario, or
permanent, as we saw in the IoT scenario.

On the other hand, microservices come at a cost and are not intended to replace all that exists.
Building a monolith is still a good idea for many projects. Starting with a monolith and migrating it
to microservices when scaling is another solution. This allows us to develop the application faster
(monolith). It is also easier to add new features to a monolith than it can be to add them to a microservice
application. Most of the time, mistakes cost less in a monolith than in a microservices application. You
can also plan your future migration toward microservices, which leads to the best of both worlds while
keeping operational complexity low. For example, you could leverage the Publish-Subscribe pattern
through MediatR notifications in your monolith and migrate the events dispatching responsibility to a
message broker later when migrating your system to microservices architecture (if the need ever arises).

Introduction to Microservices Architecture500

I don’t want you to discard the microservices architecture, but I just want to make sure that you weigh
up the pros and cons of such a system before blindly jumping in. Your team’s skill level and ability to
learn new technologies may also impact the cost of jumping into the microservices boat.

DevOps (development [Dev] and IT operations [Ops]) or DevSecOps (adding security [Sec] to the
DevOps mix), which we do not cover in the book, is essential when building microservices. It brings
deployment automation, automated quality checks, auto-composition, and more. Your microservices
cluster will be very hard to deploy and maintain without that.

Microservices are great when you need scaling, want to go serverless, or split responsibilities between
multiple teams, but keep the operational costs in mind.

This chapter concludes the application-scale section of this book at a cloud-scale level. Next, we explore
user interface options provided by ASP.NET Core, including Blazor and the Model-View-Update pattern.

Questions
Let’s take a look at a few practice questions:

1. What is the most significant difference between a message queue and a pub-sub model?
2. What is event sourcing?
3. Can an application gateway be both a routing gateway and an aggregation gateway?
4. Is it true that real CQRS requires the use of a serverless cloud infrastructure?

Further reading
Here are a few links that will help you build on what you learned in this chapter:

• Event Sourcing pattern by Martin Fowler: https://adpg.link/oY5H
• Event Sourcing pattern by Microsoft: https://adpg.link/ofG2
• Publisher-Subscriber pattern by Microsoft: https://adpg.link/amcZ
• Event-driven architecture by Microsoft: https://adpg.link/rnck
• Microservices architecture and patterns on microservices.io: https://adpg.link/41vP
• Microservices architecture and patterns by Martin Fowler: https://adpg.link/Mw97
• Microservices architecture and patterns by Microsoft: https://adpg.link/s2Uq
• RFC 6902 (JSON Patch): https://adpg.link/bGGn
• JSON Patch in ASP.NET Core web API: https://adpg.link/u6dw

Strangler Fig Application pattern:

• Martin Fowler: https://adpg.link/Zi9G
• Microsoft: https://adpg.link/erg2

https://adpg.link/oY5H
https://adpg.link/ofG2
https://adpg.link/amcZ
https://adpg.link/rnck
https://adpg.link/41vP
https://adpg.link/Mw97
https://adpg.link/s2Uq
https://adpg.link/bGGn
https://adpg.link/u6dw
https://adpg.link/Zi9G
https://adpg.link/erg2

Section 5: Designing the
Client Side
In this section, we explore the options given by ASP.NET Core to build user interfaces, the client-side
aspect of our programs. We dig into the possibilities provided by ASP.NET Core Razor Pages and mul-
tiple ways to divide our UIs into smaller, easier-to-reuse components. Finally, we cover a type-oriented
way to build complex UIs. Most content applies to both Razor Pages and MVC.

Afterward, we move on to Blazor, enabling us to build full-stack .NET programs. We quickly explore
Blazor Server and dig into Blazor WebAssembly, a .NET SPA framework. We explore different ways to
create Razor components, and we explore the Model-View-Update (MVU) pattern. We complete the
section with a medley of Blazor features that I cannot cover in more detail in the book, but I give you
an outline and many pointers to help you start your Blazor journey.

This section comprises the following chapters:

• Chapter 17, ASP.NET Core User Interfaces
• Chapter 18, A Brief Look into Blazor

17
ASP.NET Core User Interfaces

This chapter explores different ways to create user interfaces using ASP.NET Core and its extensive
offerings. As macro-models, we have MVC, Razor Pages, and Blazor (Chapter 18, A Brief Look into
Blazor). Then to micro-manage our UIs, we have partial views, view components, Tag Helpers, display
templates, editor templates, and Razor components.

Furthermore, the .NET ecosystem includes other non-web technologies to build UIs, such as WinForms,
WPF, UWP, and Xamarin. This chapter aims to give you a good understanding of the numerous
ASP.NET Core options by exploring the tools you have at your disposal when programming web user
interfaces to make your life easier.

The following topics are covered in this chapter:

• Getting familiar with Razor Pages
• Organizing the user interface
• Display and Editor Templates

Getting familiar with Razor Pages
As its name implies, Razor Pages is a server-side way of rendering web content organized into pages.
That applies very well to the web, as people visit pages, not controllers. Razor Pages shares many
components with MVC under the hood.

If you want to know if using MVC or Razor Pages is best for your project, ask yourself if organizing your
project into pages would be more suitable for your scenario. If yes, go with Razor Pages; otherwise,
pick something else, such as MVC or a single-page application (SPA).

Tip

Knowing many options is often better than being an expert in only one area because you
can pick the right tool at the right time instead of systematically doing the same thing
every time.

ASP.NET Core User Interfaces504

If the solution is still unclear, we can also use both Razor Pages and MVC in the same application, so
there is no need to choose only one. You can, for example, create Razor Pages for some part of your
system, use MVC for CRUD modules (Create-Read-Update-Delete), and even add some APIs consumed
by your client-side code. This is one of the powerful features of the ASP.NET Core opt-in offering: you
enable what you need.

To create a Razor Pages project, we can use the webapp project template using the CLI, like this:

dotnet new webapp

Using Razor Pages is very similar to MVC. In the Program.cs file, instead of builder.Services.
AddControllersWithViews() or builder.Services.AddControllers(), we can call the builder.
Services.AddRazorPages() extension method.

The same applies to the Startup.Configure method where we must map Razor Pages routes using
the endpoints.MapRazorPages(); method.

The use of the other middlewares is the same. Here is an example of Program.cs:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddRazorPages();

var app = builder.Build();
// Configure the HTTP request pipeline.
if (!app.Environment.IsDevelopment())
{
 app.UseExceptionHandler("/Error");
 // The default HSTS value is 30 days. You may want to change this for
production scenarios, see https://aka.ms/aspnetcore-hsts.
 app.UseHsts();
}

app.UseHttpsRedirection();
app.UseStaticFiles();
app.UseRouting();
app.UseAuthorization();
app.MapRazorPages();
app.Run();

ASP.NET handles the routing and the model binding for us with the two highlighted lines, as with MVC.

Chapter 17 505

Design
Each page can handle one or more GET or POST methods. The idea is that each page is self-sufficient
(following the SRP). To get started, a page consists of two parts: a view and a model. The model must
inherit from PageModel. The view must use the @model directive to link to its page model, and the @
page directive tells ASP.NET that it is a Razor page, not just an MVC view.

Here is a visual representation of that relationship:

Figure 17.1: Diagram representing a Razor page

Here is an example that I scaffolded using Visual Studio. The @page and @model directives are highlighted
in the following snippet, taken from the Pages\Employees\Create.cshtml file:

@page
@model PageController.Pages.Employees.CreateModel
@{
 ViewData["Title"] = "Create";
}
<h1>Create</h1>
<h4>Employee</h4>
<hr />
<div class="row">
 div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Employee.FirstName" class="control-label"></
label>
 <input asp-for="Employee.FirstName" class="form-control" />

ASP.NET Core User Interfaces506

 <span asp-validation-for="Employee.FirstName" class="text-
danger">
 </div>
 <div class="form-group">
 <label asp-for="Employee.LastName" class="control-label"></
label>
 <input asp-for="Employee.LastName" class="form-control" />
 <span asp-validation-for="Employee.LastName" class="text-
danger">
 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>
<div>
 <a asp-page="Index">Back to List
</div>
@section Scripts {
 @{await Html.RenderPartialAsync ("_ValidationScriptsPartial");}
}

Next is PageModel, taken from the Pages\Employees\Create.cshtml.cs file, which we discuss here:

namespace PageController.Pages.Employees
{
 public class CreateModel : PageModel
 {
 private readonly EmployeeDbContext _context;
 public CreateModel(EmployeeDbContext context)
 {
 _context = context;
 }
 public IActionResult OnGet()
 {
 return Page();
 }
 [BindProperty]
 public Employee Employee { get; set; }
 public async Task<IActionResult> OnPostAsync()
 {

Chapter 17 507

 if (!ModelState.IsValid)
 {
 return Page();
 }
 _context.Employees.Add(Employee);
 await _context.SaveChangesAsync();
 return RedirectToPage("./Index");
 }
 }
}

From that code, we can see both parts: the view and the model. In the PageModel code, the
[BindProperty] attribute is what tells ASP.NET to bind the form post to the Employee property. That’s
the equivalent of an MVC action that looks like this:

[HttpPost]
public Task<IActionResult> MyAction([FromForm] Employee employee) {…}

Visually, a user requesting a page would look like this:

Figure 17.2: User requesting a page

ASP.NET Core User Interfaces508

By default, pages live under the Pages directory instead of the Views directory. The layout mechanism
of MVC is also available with Razor Pages. The default layout is in the Pages/Shared/_Layout.cshtml
file; the Pages/_ViewStart.cshtml and Pages/_ViewImports.cshtml files play the same role as their
MVC equivalent, but for Razor Pages.

Routing
In MVC, we can control the routing by creating global route patterns or with attributes. In Razor Pages,
we can also control those routes. By default, the routing system automatically creates routes based
on the filesystem, making it faster to get started. We must include the @page directive at the top of the
page to use automatic routing, and ASP.NET Core does the magic for us.

The routing system used by Razor Pages is simple yet powerful. The default pattern is the page’s location
without the Pages folder and the .cshtml extension with the Index.cshtml pages being optional (like
the Index view of MVC). Instead of endless explanations, let’s look at some examples:

Razor page file location URL/Route

/Pages/Index.cshtml / or /index

/Pages/Contact.cshtml /contact

/Pages/Employees/Index.cshtml /employees or /employees/index

/Pages/Employees/Details.cshtml /employees/details

In Razor Pages, the routing system chooses the page to be displayed based on the URL.

We can also replace those defaults with custom routes. The way to replace the default route of a page
is by providing a route template after the @page directive, such as @page "/some-route". That page
now handles the /some-route URL instead of the default one. The template supports the same MVC
routes patterns, including parameters and constraints.

Covering every aspect of Razor Pages is out of the scope of the current book, but I encourage you
to dig deeper into that way of building websites and web applications. It is enjoyable, powerful, and
sometimes simpler than MVC.

However, Razor Pages might not be for you if you need other HTTP methods than GET and POST.

Conclusion
Razor Pages is an excellent alternative to organize your website or web application by pages
instead of controllers. Many features from MVC are supported, such as validation (ModelState and
ValidationSummary), the routing system, model binding, Tag Helpers, and more.

Now let’s see how Razor Pages can help us follow the SOLID principles:

• S: Each PageModel is responsible for a single page, an essential point of Razor Pages.
• O: N/A
• L: N/A

Chapter 17 509

• I: N/A
• D: N/A

Now that we know about Razor Pages and MVC, it is time to explore the options that ASP.NET Core
offers to us to organize our UIs.

Organizing the user interface
In this section, we will explore three options:

• Partial views to encapsulate reusable UI parts.
• Tag Helpers, which enable us to write HTML-like Razor code instead of a C#-like syntax.
• View components, which allow encapsulating logic with one or more views to create reusable

components.

Keep in mind that we can use these options in both MVC and Razor Pages.

Partial views
A partial view is a part of a view created in a cshtml file, a Razor file. The content (markup) of
the partial view is rendered at the location it was included by the <partial> Tag Helper or the
@ Html.PartialAsync() method. ASP.NET introduced the concept in MVC, hence the view. For Razor
Pages, you could see partial views as partial pages.

The single-responsibility principle

One could see the “single responsibility” of a Razor page as multiple responsibilities. It
handles both reads and writes, the page model, HTTP requests, and could play with the
HTTP response.

Keep in mind that the goal of a Razor page is to manage a page, which is a single
responsibility, which does not have to translate into a single operation. That said, if you
think there is too much code in one of your Razor pages, there are ways to help diminish
that burden by extracting and delegating part of those responsibilities to other components,
leaving the PageModel with fewer responsibilities and less code. For example, you could
leverage Vertical Slice Architecture, Clean Architecture, or any other architectural style
that fits your needs.

Want to know more?

Pattern-wise, we could see a Razor page as a simplified Page Controller. That pattern is
covered in Martin Fowler’s 2002 book Patterns of Enterprise Application Architecture
(PoEAA) and is partially available online (see the Further reading section for more
information). Why simplified? Because ASP.NET does most of the Page Controller work
for us, leaving us only the model (domain logic) and the view to implement. Knowing
about the Page Controller pattern is not necessary to work with Razor Pages.

ASP.NET Core User Interfaces510

We can place partial view files almost anywhere in our projects, but I’d suggest keeping them close to
the views that use them (in the same folder, for example). You can also keep them in the Shared folder.
As a rule of thumb, the filename of a partial view begins with _, like _CreateOrEditForm.cshtml.

Partial views are good at simplifying complex views and reusing part of the UI in multiple other views.
Here is an example that helps simplify the _Layout.cshtml file:

<div class="container">
 @ Html.PartialAsync("_CookieConsentPartial")
 <partial name="_CookieConsentPartial" />
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
</div>

The two highlighted lines are doing the same thing, so only one is needed. They are the two
code styles to load partial views; pick the one you prefer. This example inserts the content of the
 Pages/Shared/_CookieConsentPartial.cshtml file at that location in the page. Partial views are very
similar to the good old includes from ASP and PHP, but they don’t have direct access to the caller’s
scope (a very good thing).

By default, the current value of the Model property is sent to the partial view, but it is possible to send
a different model, like this:

@{
 var myModel = "My Model";
}
@ Html.PartialAsync("_SomePartialView", myModel)
<partial name="_SomePartialView" model="myModel" />

In this case, myModel is a string, but it could also be an object of any type.

Partial views are more robust than the includes were, with added flexibility. Let’s now dig into some
code.

Project – Shared form
One of the possibilities of partial views is to share presentation code. The create and edit forms are
often very similar in a CRUD project, so we can leverage partial views to simplify such duplication
maintenance. This is similar to the project implemented in Chapter 4, The MVC Pattern Using Razor,
but using Razor Pages instead of MVC.

The initial Razor code for this project has been scaffolded by Visual Studio, based on the Employee
class below:

namespace PageController.Data.Models
{

Chapter 17 511

 public class Employee
 {
 public int Id { get; set; }
 [Required]
 [StringLength(50)]
 public string? FirstName { get; set; }
 [Required]
 [StringLength(50)]
 public string? LastName { get; set; }
 }
}

Next, we explore a way to centralize the form shared by both pages to enhance our module’s
maintainability. First, we must extract the shared portion of CreateModel and EditModel so the
form can use it. The ICreateOrEditModel interface contains that shared contract, taken from the
 Pages/Employees/ICreateOrEditModel.cs file:

public interface ICreateOrEditModel
{
 Employee Employee { get; set; }
}

Then both CreateModel and EditModel must implement it:

// From Pages/Employees/Create.cshtml.cs
public class CreateModel : PageModel, ICreateOrEditModel
{
 ...
 [BindProperty]
 public Employee Employee { get; set; }
 ...
}
// From Pages/Employees/Edit.cshtml.cs
public class EditModel : PageModel, ICreateOrEditModel
{
 ...
 [BindProperty]
 public Employee Employee { get; set; }
 ...
}

ASP.NET Core User Interfaces512

Then we can isolate the shared portion of the forms and move that to the _Form.cshtml partial view
(you can name it as you want):

Pages/Employees/_Form�cshtml

@model ICreateOrEditModel
<div class="form-group">
 <label asp-for="Employee.FirstName" class="control-label"></label>
 <input asp-for="Employee.FirstName" class="form-control" />

</div>
<div class="form-group">
 <label asp-for="Employee.LastName" class="control-label"></label>
 <input asp-for="Employee.LastName" class="form-control" />

</div>

In the preceding code, we are using the ICreateOrEditModel interface as the @model to access the
Employee property of both the create and edit page models. Then we can include that partial view in
both of our create and edit pages:

Pages/Employees/Create�cshtml

@page
@model PageController.Pages.Employees.CreateModel
...
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <partial name="_Form" />
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

Pages/Employees/Edit�cshtml

@page
@model PageController.Pages.Employees.EditModel
...
<div class="row">
 <div class="col-md-4">

Chapter 17 513

 <form method="post">
 <input type="hidden" asp-for="Employee.Id" />
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <partial name="_Form" />
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

With that in place, we have one form to maintain and two pages that do different things. In this case,
the form is trivial, but that could save us a lot of time for more substantial entities.

Beware that complex logic within a partial view can become more problematic than the time saved by
having it. If you see the amount of conditional code grow in a partial view, I’d recommend investigating
whether another technique/pattern would be better. Getting rid of the partial view or creating multiple
partial views used in fewer places could also be solutions. Sometimes we think that sharing is a good
idea, but it turns out it is not. When that happens, admit your failure, then fix the problem.

Conclusion
Partial views are a great way to reuse parts of a UI or divide a complex page into smaller, more
manageable elements. Partial views are the most basic way of encapsulating chunks of UI. Use them
when the display logic is limited; we explore other options in the following subsections for more
advanced use cases.

Now let’s see how partial views can help us follow the SOLID principles:

• S: Extracting manageable parts of the UI into partial views can lead to the encapsulation of
component-like views with each managing a single display responsibility.

• O: N/A
• L: N/A
• I: N/A
• D: N/A

Next, we explore other ways to divide our complex views into smaller pieces by digging into the built-
in tag helpers and how to create custom ones.

Tag Helpers
Tag Helpers are server-side helpers allowing developers to write more HTML-like code in Razor views,
reducing the amount of C#-like code mixed into the view. We used Tag Helpers in the last example,
maybe without knowing it.

ASP.NET Core User Interfaces514

Let’s start by having a second look at the Pages/Employees/_Form.cshtml file:

@model ICreateOrEditModel
<div class="form-group">
 <label asp-for="Employee.FirstName" class="control-label"></label>
 <input asp-for="Employee.FirstName" class="form-control" />

</div>
<div class="form-group">
 <label asp-for="Employee.LastName" class="control-label"></label>
 <input asp-for="Employee.LastName" class="form-control" />

</div>

In that partial view, we used built-in ASP.NET Tag Helpers to enhance the HTML label, input, and
span tags. When rendered to HTML, the Tag Helpers’ properties add additional HTML capabilities,
like HTML attributes and validation support. The asp-* attributes are used to set the values of certain
built-in Tag Helpers’ properties.

For example, the Label Tag Helper generates the value of the HTML for attribute automatically, based
on its asp-for attribute. Moreover, it generates the text of the label based on the property name or its
[Display(Name = "Custom name")] attribute if the model property was decorated by one.

The Anchor Tag Helper (<a>) is incredibly convenient to set the class attribute without an anonymous
object, and an escape character (if you’ve used HTML helpers before, you’ll know what I mean).

To get the same output using HTML helpers, let’s look at the partial view Pages/Employees/_Form-
HtmlHelpers.cshtml:

@model ICreateOrEditModel
<div class="form-group">
 @Html.LabelFor(x => x.Employee.FirstName, new { @class = "control-label" })
 @Html.TextBoxFor(x => x.Employee.FirstName, new { @class = "form-control"
})
 @Html.ValidationMessageFor(x => x.Employee.FirstName, null, new { @class =
"text-danger" })
</div>
<div class="form-group">
 @Html.LabelFor(x => x.Employee.LastName, new { @class = "control-label" })
 @Html.TextBoxFor(x => x.Employee.LastName, new { @class = "form-control" })
 @Html.ValidationMessageFor(x => x.Employee.LastName, null, new { @class =
"text-danger" })
</div>

Chapter 17 515

In both cases, the FirstName form-group is rendered as the following HTML:

<div class="form-group">
 <label class="control-label" for="Employee_FirstName">FirstName</label>
 <input class="form-control valid" type="text" data-val="true" data-val-
length="The field FirstName must be a string with a maximum length of 50."
data-val-length-max="50" data-val-required="The FirstName field is required."
id="Employee_FirstName" maxlength="50" name="Employee.FirstName" value="Bob"
aria-describedby="Employee_FirstName-error" aria-invalid="false">
 <span class="text-danger field-validation-valid" data-valmsg-for="Employee.
FirstName" data-valmsg-replace="true">
</div>

I find the use of Tag Helpers more elegant than the old HTML helpers (C#), but that’s my personal
preference. Nevertheless, we can choose and mix both options.

Built-in Tag Helpers
There are many built-in Tag Helpers in ASP.NET Core. Some can help load different elements depending
on the environment (production or development); others help build the href attribute of the <a> tag;
and more.

Let’s have a quick overview of the options available. If you want to learn more afterward, the official
documentation is getting better and better since Microsoft open-sourced it. I’ve added a few links in
the Further reading section at the end of the chapter. Afterward, we will explore how to create custom
Tag Helpers.

The Anchor Tag Helper
The Anchor Tag Helper enhances the <a> tag to generate the href attribute based on a controller
action or a Razor page.

Here are a few examples for Razor Pages:

Tag href value
<a asp-page="/Index">... /
<a asp-page="/Employees/Index">... /Employees
<a asp-page="/Employees/Create">... /Employees/Create
<a asp-page="./Edit" asp-route-id="@item.Id">... /Employees/Edit/{item.Id}

It is similar for MVC controllers:

Tag href value
<a asp-controller="Home" asp-action="Index">... /
<a asp-controller="Employees" asp-action="Index">... /Employees
<a asp-controller="Employees" asp-action="Create">... /Employees/Create

ASP.NET Core User Interfaces516

<a asp-controller="Employees" asp-action="Edit" asp-
route-id="@item.Id">...

/Employees/Edit/{item.Id}

The Anchor Tag Helper is very useful in creating links that look like HTML in Razor. The
 asp-route-id attribute is a little different than the others. The asp-route-* attributes allow specifying
the value for a parameter, such as id. So if the GET action looks like this:

[HttpGet]
public IActionResult Details(int something){ ... }

You would need a link that specifies the something parameter, which could be declared like this:

<a asp-controller="Employees" asp-action="Details" asp-route-
something="123">...

There are many more options behind this Tag Helper that we are not covering here, but with what
we did, you know that you can leverage ASP.NET to generate links based on pages and controllers.

The Link Tag Helper
The Link Tag Helper allows you to define a fallback CSS href in case the primary one does not load
(that is, if the CDN is down). Here is an example:

<link rel="stylesheet" href="https: //cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/4.1.3/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only"
 asp-fallback-test-property="position"
 asp-fallback-test-value="absolute"
 crossorigin="anonymous"
 integrity="sha256-eSi1q2PG6J7g7ib17yAaWMcrr5GrtohYChqibrV7PBE=" />

ASP.NET renders the required HTML and JavaScript to test if the CSS was loaded, based on the
specified asp-fallback-test-* attributes. If it was not, it swaps it for the one specified in the
 asp-fallback-href attribute.

The Script Tag Helper
The Script Tag Helper allows you to define a fallback JavaScript file in case the primary one does not
load (that is, if the CDN is down). Here is an example:

<script src="https: //cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/4.1.3/js/
bootstrap.bundle.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.
fn.modal"
 crossorigin="anonymous"
 integrity="sha256-E/V4cWE4qvAeO5MOhjtGtqDzPndRO1LBk8lJ/PR7CA4=">
</script>

Chapter 17 517

ASP.NET renders the required HTML and JavaScript to test if the script was loaded based on the
specified asp-fallback-test attribute. If the script does not load, the browser swaps the source for
the one specified in the asp-fallback-href attribute. This is the equivalent of the <link> tag but for
<script> tags.

The Environment Tag Helper
The Environment Tag Helper allows rendering certain parts of the UI only for specific environments.
For example, you could render some debugging information only when in Development.

The Environment Tag Helper is also a good complement to the <link> and <script> Tag Helpers,
allowing us to load local non-minified scripts when developing and CDN-hosted minified files in
production.

We can define what environment to target by including or excluding environments using the include
and exclude attributes, respectively. The value of those attributes can be a single environment name
or a comma-separated list. Here are some examples:

<environment include="Development">
 <div>Development Content.</div>
</environment>

The preceding snippet displays the <div> only when the environment is Development.

<environment exclude="Development">
 <div>Content not to display in Development.</div>
</environment>

The preceding snippet displays the <div> for all environments but Development.

<environment include="Staging,Production">
 <div>Staging and Production content.</div>
</environment>

The preceding snippet displays the <div> only for the Staging and Production environments.

<environment exclude="Staging,Production">
 <div>Content not to display in Staging nor Production.</div>
</environment>

The preceding snippet displays the <div> for all environments but Staging and Production.

The Caching Tag Helpers
ASP.NET Core also provides the following caching-related Tag Helpers:

• The Cache Tag Helper
• The Distributed Cache Tag Helper
• The Image Tag Helper

ASP.NET Core User Interfaces518

The Cache Tag Helper allows caching part of a view for 20 minutes, by default, and leverages the
 ASP.NET Core cache provider mechanism. A basic example could be caching a random number like this:

<cache>@(new Random().Next())</cache>

Multiple attributes can also be set to control how the cache is invalidated and what it targets. We could
want to cache the greeting to a user, for example, but if we write the following, all users would see the
greeting of the first user to trigger the cache:

<cache>Hello @this.User.Identity.Name!</cache>

To fix that issue, we can set the vary-by-user attribute to true:

<cache vary-by-user="true">
 Hello @ this.User.Identity.Name!
</cache>

Multiple other vary-by-* attributes can be used in other cases, such as vary-by-header,
vary-by-query, vary-by-route, and vary-by-cookie.

To control how the cache is invalidated, we can set the expires-on attribute to a DateTime object or
the expires-after or expires-sliding attributes to a TimeSpan object.

If that is not enough, ASP.NET Core also provides a Distributed Cache Tag Helper that leverages
the IDistributedCache implementation that you register. You must configure the distributed cache
provider in the Startup class, or the Tag Helper will use the in-memory provider. You must also specify
a unique key for each element by setting the name attribute. The other attributes are the same as the
Cache Tag Helper.

The last cache-related Tag Helper is the Image Tag Helper. That Tag Helper allows invalidating images
when they change. To do that, ASP.NET appends a version to its enhanced tags that get invalidated
when the file changes.

Since the Image Tag Helper enhances the tag, there is no new tag here. To use this functionality,
you must set an asp-append-version attribute to true on an tag that has an src attribute like this:

Note

One caching mechanism of web clients (like a browser) is to cache resources (like images),
so they don’t download them from the server with every request, leading to a faster web
browsing experience. The Image Tag Helper generates a string based on the image itself
and appends it as a query string. When the image changes, ASP.NET Core sends a new string
representing the latest version of the image to the client, forcing the client to redownload
it. The client uses the cached image as long as the image does not change and the cache is
not expired. This technique is a good way to force invalidating cached resources.

Chapter 17 519

Here is an example of the generated HTML, where the string TKD5TTR1kXQlmE53RcZCqbCQ34tLDrRwe
cFcA3mkrAQ is the version number generated by the Image Tag Helper:

<img src="/images/NetCoreLogo.
png?v=TKD5TTR1kXQlmE53RcZCqbCQ34tLDrRwecFcA3mkrAQ">

While using one or more of those three Tag Helpers, it is easier than ever to cache part of your views,
but caching is a subject of its own that I prefer not to dig too deeply into here.

The Form Tag Helpers
ASP.NET Core provides multiple Tag Helpers when the time comes to create forms. Since forms are
the way to gather user inputs, they are quite essential. Here, we cover the Form Tag Helper first, which
extends the <form> HTML tag.

Its first advantage is the automatic rendering of an input[name="__RequestVerificationToken"]
element to prevent cross-site request forgery (CSRF or XSRF). Razor Pages does the verification
automatically, but MVC does not. To enable XSRF/CSRF protection when using MVC, we need to
decorate the action or the controller with the [ValidateAntiForgeryToken] attribute.

The second advantage is to help with routing. The Form Tag Helper exposes the same attributes as
the Anchor Tag Helper when routing time comes, like the asp-controller, asp-action, asp-page,
and asp-route-* attributes.

To submit the form, you can proceed like any normal HTML <form> tag: with a button[type="submit"]
or an input[type="submit"]. We can also set different actions on different buttons by using the same
routing attributes.

Next, let’s explore the Input Tag Helper that we saw earlier. The key attribute of the Input Tag Helper
is asp-for. When setting it to a property of the view’s model, ASP.NET automatically generates the
name of the <input> tag, its value, the validation information, the id, and the type of that input. For
example, a bool is rendered as input[type=checkbox] while a string is rendered as input[type=text].
We can decorate our view models with data annotations to control the type of input to be generated,
like [EmailAddress], [Url], or [DataType(DataType.*)].

Tip

When you have a property on your model representing a collection, you should use a for
loop (not a foreach) to generate your form. Otherwise, in many cases, ASP.NET Core will
not render the elements correctly, and you will receive a null value for those fields on
the server after posting the form. Here is an example that works:

@for (var i = 0; i < Model.Destinations.Count; i++)
{
 <input type="text" asp-for="@destinations[i].Name"
class="control-label"></label>
 <input type="text" asp-for="@destinations[i].Name"
class="form-control" />
}

ASP.NET Core User Interfaces520

Another advantage of Tag Helpers that enhance HTML tags is that all standard HTML attributes are
usable. So when you want to create an input[type=hidden] for the Id property of the model being
edited, you can set the type attribute directly and override the defaults, like this:

<input type="hidden" asp-for="Employee.Id" />

We then have the Textarea Tag Helper, which generates a <textarea> tag like this:

<textarea asp-for="Employee.Description"></textarea>

Then comes the Label Tag Helper, which helps render <label> tags, like this:

<label asp-for="Employee.Description"></label>

Finally, the Select Tag Helper helps render <select> tags using the values specified in its asp-items
attribute. The items must be an IEnumerable<SelectListItem> collection. The asp-for attribute
serves the same purpose as the other Tag Helpers. Here is an example of a manually generated list of
items bound to the SomeProperty property of the Model:

@{
 var items = new[]
 {
 new SelectListItem("Make a selection", ""),
 new SelectListItem("Choice 1", "1"),
 new SelectListItem("Choice 2", "2"),
 new SelectListItem("Choice 3", "3"),
 };
}
<select asp-items="items" asp-for="SomeProperty"></select>

Tip: ENUM

You can use the Html.GetEnumSelectList<TEnum>() method to generate the list from
an enum, where TEnum is the type of your enum. The generated <option> tags will have
a numerical value equal to the value of the enum element and its text set to the textual
representation of the enum element, like <option value="2">SecondOption</option>.

To customize the text of each option, you can decorate your enum members with attributes,
like the [Display(Name = "Second option")] attribute, which would render <option
value="2">Second option</option> instead, improving readability. Here’s an example:

public enum MyEnum {
 [Display(Name = "Second option")]
 SecondOption = 2
}

Chapter 17 521

To conclude this subsection, we have two more form-related Tag Helpers to cover, the Validation
Message Tag Helper and the Validation Summary Tag Helper. They exist to help validate form inputs
on the client side.

The Validation Summary Tag Helper is used to display the list of error messages of the ModelState
property (ModelStateDictionary). That property is accessible in most MVC and Razor Pages-related
base classes, such as PageModel, PageBase, ControllerBase, and ActionContext (accessible from
RazorPageBase.ViewContext in an MVC view). The following code creates a validation summary:

<div asp-validation-summary="ModelOnly" class="text-danger"></div>

The value of the asp-validation-summary attribute can be None, ModelOnly, or All:

• None means that no summary will be displayed.
• ModelOnly means that only errors not related to the model’s properties will be displayed in

the validation summary (the name is counter-intuitive if you ask me).
• All means that all errors, including property errors, will be displayed in the validation summary.

If you are using the Validation Message Tag Helper for your properties, I’d recommend setting that
value to ModelOnly, which will allow sending custom validation messages from your page or action
without duplicating the messages of the model’s properties on the page.

The Validation Message Tag Helpers allow us to display the error message of a single property. Usually,
these are displayed close to the element they represent, but they don’t have to be. Here is an example:

The asp-validation-for attribute acts as the asp-for attribute but tells the element that it is for
validation purposes instead of creating a form input. If the property (in this case, Employee.FirstName)
is not valid, the error message is displayed; otherwise, it is not.

class="text-danger" is a Bootstrap class that sets the text to a red color.

If we take a look again at the previous section’s example, we will see that the following Razor code
(first block) is rendered to the following HTML code (second block), with the Razor code highlights
being translated to the HTML code highlights:

<div class="form-group">
 <label asp-for="Employee.FirstName" class="control-label"></label>
 <input asp-for="Employee.FirstName" class="form-control" />

</div>
<div class="form-group">
 <label class="control-label" for="Employee_FirstName">FirstName</label>
 <input class="form-control" type="text" data-val="true" data-val-
length="The field FirstName must be a string with a maximum length of 50."
data-val-length-max="50" data-val-required="The FirstName field is required."
id="Employee_FirstName" maxlength="50" name="Employee.FirstName" value="">

ASP.NET Core User Interfaces522

 <span class="text-danger field-validation-valid" data-valmsg-for="Employee.
FirstName" data-valmsg-replace="true">
</div>

The validation attributes (data-val-length, data-val-length-max, data-val-required, and
maxlength) and the type attribute come from the Employee.FirstName property, which is defined
as follows:

[Required]
[StringLength(50)]
public string FirstName { get; set; }

To conclude, the Form Tag Helpers provided by ASP.NET Core are very handy at crafting readable
forms, fast, and packed with functionalities.

The Partial Tag Helper
We already used the Partial Tag Helper in the previous subsection about partial views, but here are
a few more use cases. The most trivial one involves setting only the name attribute as we did before:

<partial name="_Form" />

We can also specify a path instead of a name, like this:

<partial name="Employees/_PieceOfUI" />

That would load the _PieceOfUI.cshtml partial view from one of the following three files: /Pages/
Employees/_PieceOfUI.cshtml, /Pages/Shared/Employees/_PieceOfUI.cshtml, or /Views/Shared/
Employees/_PieceOfUI.cshtml.

We can also pass a custom model to a partial view using the model attribute. Let’s start with the model
defined in the Pages/Employees/PieceOfUIViewModel.cs file:

public record PieceOfUIViewModel(bool GenerateRandomNumber);

The PieceOfUIViewModel record class is a view model that we pass to the PieceOfUI partial
view as follows. Records are a new C# 9 feature (see Appendix A for more info). For now, think of
PieceOfUIViewModel as a class with a read-only property named GenerateRandomNumber.

Here is the partial view that renders that model, taken from the Pages/Employees/_PieceOfUI.cshtml
file:

@model PieceOfUIViewModel
Piece of UI
@if (Model.GenerateRandomNumber) {
 <text>| </text>
 @(new Random().Next())
}

Chapter 17 523

We render the preceding partial view in the next block, taken from the Pages/Shared/_Layout.cshtml
file:

@using PageController.Pages.Employees
…
<partial name="Employees/_PieceOfUI" model="new PieceOfUIViewModel(true)" />
…

In that example, we pass an instance of PieceOfUIViewModel to the partial view, which in turn renders a
random number or not (true or false), depending on the value of the GenerateRandomNumber property.

The for attribute of the Partial Tag Helper allows similar behavior but through the model of the current
view itself. If we go back to our shared form but create a new partial view without the need to implement
any interface, we could end up with the following code instead, taken from the _FormFor.cshtml file:

@using PageController.Data.Models
@model Employee
<div class="form-group">
 <label asp-for="FirstName" class="control-label"></label>
 <input asp-for="FirstName" class="form-control" />

</div>
<div class="form-group">
 <label asp-for="LastName" class="control-label"></label>
 <input asp-for="LastName" class="form-control" />

</div>

In the preceding code, the highlighted lines represent the generation of the HTML markup based on
that partial view model. That enables us to leverage the Partial Tag Helper for the attribute’s capabilities.
Here is the code that both the Create and Edit views should use to load the partial view and leverage
this feature:

…
<partial name="_FormFor" for="Employee" />
…

Even if the partial view (_FormFor.cshtml) is unaware of the Employee property on the original Model,
it still renders the same form because the for attribute preserved that context for us. Next is the
generated first name field, with the validation data omitted to improve readability where we can see
from the highlighted lines that Razor knew about the Employee property of the model even if the
partial view did not:

<input class="form-control" type="text" id="Employee_FirstName" maxlength="50"
name="Employee.FirstName" value="">

ASP.NET Core User Interfaces524

One last attribute is view-data, allowing us to pass a ViewDataDictionary instance to the partial view.
I recommend sticking with fully typed objects instead of playing with dictionaries and magic strings,
but if you need it one day for some obscure cases, well, you know that the attribute exists.

The Component Tag Helper
The Component Tag Helper is used to render Razor components into an MVC or Razor Pages
application. We explore Razor components in Chapter 18, A Brief Look into Blazor, and briefly explore
this Tag Helper as well.

Creating a custom Tag Helper
Now that we’ve sprinted through the built-in Tag Helpers, we can also create our own quite easily. We
have two options; we can extend an existing tag or create a new tag.

In this example, we are creating the <pluralize> tag. The objective behind it is to replace code like this:

<p class="card-text">
 @Model.Count
 @(Model.Count > 1 ? "Employees" : "Employee")
</p>

With code like this:

<p class="card-text">
 <pluralize count="Model.Count" singular="{0} Employee" plural="{0}
Employees" />
</p>

There is less context-switching with that code than with the first block as the whole block looks like
HTML now.

For that component, we need to create a PluralizeTagHelper class that we save into the TagHelpers
directory. A Tag Helper must implement the ITagHelper interface but can also inherit from the
TagHelper class. We are opting for the TagHelper class, which exposes a synchronous Process method
that we can use.

Side effect

It would also be easier to localize a UI built using the <pluralize> Tag Helper than a UI
filled with tertiary operators. As a quick change, we could inject IStringLocalizer<T>
into our PluralizeTagHelper class to localize the content of the Singular or Plural
property before formatting it using string.Format().

Don’t get me wrong here: I’m not telling you to stop writing C# into your views; I’m just
pointing out another possible advantage of this versus using plain C#.

Chapter 17 525

The PluralizeTagHelper class that we are programming looks like this:

namespace PageController.TagHelpers
{
[HtmlTargetElement("pluralize", TagStructure = TagStructure.WithoutEndTag)]

This attribute tells Razor that we’re extending the <pluralize> tag and that we can omit the end tag
and write it like <pluralize /> instead of <pluralize></pluralize>.

public class PluralizeTagHelper : TagHelper
{
 public int Count { get; set; }
 public string? Singular { get; set; }
 public string? Plural { get; set; }

The name of the properties directly translate to attributes in kebab-case format. So Singular
translates to singular, while a property named ComplexAttributeName would translate to
complex-attribute-name.

 public override void Process(TagHelperContext context, TagHelperOutput
output)
 {
 var text = Count > 1 ? Plural : Singular;
 if (text is not null)
 {
 text = string.Format(text, Count);
 }

The preceding code is the logic that chooses whether we display the singular or the plural version of
the text.

 output.TagName = null;

Setting the TagName property to null ensures that Razor does not render the content inside a <pluralize>
tag; we only want to generate text.

 output.Content.SetContent(text);
 }
 }
}

Note

The TagHelper class does nothing more than add the Process method to override and a
default empty implementation of the ITagHelper interface.

ASP.NET Core User Interfaces526

Finally, we set the value of what we want to output with the SetContent method of the TagHelperContent
class. The TagHelperContent class exposes multiple other methods to append and set the content of
the Tag Helper.

Like any other Tag Helper, we need to register it. We will register all Tag Helpers of the project, in a
few pages, in Project – Reusable employee count.

When loading a page that displays the Pluralize Tag Helper, we end up with the following outputs:

When count = 0
0 Employee
When count = 1
1 Employee
When count = 2
2 Employees

That’s it for this one. Of course, we could create more complex Tag Helpers, but I’ll leave that to you
and your projects.

Next, we explore how to modify the <head> of the page by adding an RSS feed <link> tag without
changing the HTML markup itself.

Creating an RSS feed TagHelperComponent
Context: We want to dynamically add a <link> tag into the <head> of every page without changing
the _Layout.cshtml file. The expected output looks like the following:

<link href="/feed.xml" type="application/atom+xml" rel="alternate"
title="Chapter 17 Code Samples App">

We can do that by implementing the ITagHelperComponent interface or by inheriting from the
TagHelperComponent class. We do the latter because the TagHelperComponent class already defines the
members and adds a synchronous Process method. Inheriting that class allows us to simply override
the method or property that we need. Like we are about to see, we only need the Process method.

Let’s first look at the RssFeedTagHelperComponent class and its options:

namespace PageController.TagHelpers
{
 public class RssFeedTagHelperComponentOptions
 {
 public string Href { get; set; } = "/feed.xml";
 public string Type { get; set; } = "application/atom+xml";

Tip

You can also download existing Tag Helpers from NuGet.org and publish your Tag Helpers
on NuGet.org (or the third-party service of your choice) as NuGet packages.

http://NuGet.org
http://NuGet.org

Chapter 17 527

 public string Rel { get; set; } = "alternate";
 public string Title { get; set; } = "";
 }

The RssFeedTagHelperComponentOptions class contains some properties with default values about
what to write into the <link> tag, for convenience.

Next, RssFeedTagHelperComponent looks like this:

 public class RssFeedTagHelperComponent : TagHelperComponent
 {
 private readonly RssFeedTagHelperComponentOptions _options;
 public RssFeedTagHelperComponent(RssFeedTagHelperComponentOptions
options)
 {
 _options = options ?? throw new
ArgumentNullException(nameof(options));
 }
 public override void Process(TagHelperContext context, TagHelperOutput
output)

The Process method is where the magic happens. That can also be in the ITagHelperComponent.
ProcessAsync method if you have asynchronous code to run.

 {
 if (context.TagName == "head")

Two sections can be extended by a Tag Helper component: the <head> and the <body>. We want to
append content to the <head>, so we are looking for that.

 {
 output.PostContent.AppendHtml(
 $@"<link href=""{_options.Href}"" type=""{_options.Type}""
rel=""{_options.Rel}"" title=""{_options.Title}"">"
);
 }
 }
 }
}

Finally, we append the <link> tag itself to the <head>, using our options object.

That code does nothing on its own; for it to run, we need to tell ASP.NET about it. To do that, we have
multiple options, but as a big fan of Dependency Injection, that’s the way that I chose here.

ASP.NET Core User Interfaces528

In the Program.cs file, we must register the RssFeedTagHelperComponentOptions and the
RssFeedTagHelperComponent classes. Let’s start with the options, which is a design choice and has
nothing to do with the ITagHelperComponent itself:

builder.Services
 .Configure<RssFeedTagHelperComponentOptions>(
 builder.Configuration.GetSection("RssFeed")
)
 .AddSingleton(sp => sp.GetRequiredService<
 IOptionsMonitor<RssFeedTagHelperComponentOptions>
 >().CurrentValue)
;

Here, I decided to leverage the Options pattern, which allows overriding our default values from any
configuration source like the appsettings.json file. Then I needed a raw RssFeedTagHelperCompo
nentOptions instance, so I registered it as is (see Chapter 8, Options and Logging Patterns, for more
information about this workaround).

Now that our options are registered, we can register RssFeedTagHelperComponent as an
ITagHelperComponent. Since the component is stateless, we can register it as a singleton, like this:

services.AddSingleton<ITagHelperComponent, RssFeedTagHelperComponent>();

That’s it. When loading any page, the <link> tag is added to the <head> with the options that we defined!
That’s ASP.NET Core extensibility magic!

When we think about it, the options are endless; we could have components self-registering their CSS
files or even minifying the <head> or the <body> or both. Here is an example of a minifier:

namespace PageController.TagHelpers;
public class MinifierTagHelperComponent : TagHelperComponent
{
 public override int Order => int.MaxValue;

 public async override Task ProcessAsync(TagHelperContext context,
TagHelperOutput output)
 {
 var childContent = await output.GetChildContentAsync();
 var content = childContent.GetContent();
 var result = Minify(content);
 output.Content.SetHtmlContent(result);

Chapter 17 529

 }

 private static string Minify(string input) { ... }
}

That is probably not the optimal way of doing minification (I did not benchmark it), but I built it
because it crossed my mind and as a quick second example to trigger your imagination. All of the
code is available in Git (https://adpg.link/EcSc).

Conclusion
Tag Helpers are a great way to create new HTML-like tags or expand existing ones to lower the friction
from switching context between C# and HTML in Razor code. ASP.NET Core is packed with existing
Tag Helpers, and you may have used some without even knowing it.

Now let’s see how creating Tag Helpers can help us follow the SOLID principles:

• S: Tag Helpers can help us encapsulate tag-related logic into reusable pieces of code.
• O: N/A
• L: N/A
• I: N/A
• D: N/A

Next, we explore view components, which opens new ways to divide our user interface into smaller,
more manageable pieces.

View components
Now to a new concept: view components. A view component is a mix between a partial view and a
controller action in the sense that you render it using one or more Razor views and you program its
logic in a class, returning the partial-like view using a similar concept that controller actions do.

View components are composed of two parts:

• A class that inherits from ViewComponent or is decorated with a [ViewComponent] attribute.
This class contains the logic.

• One or more cshtml views. These are the views that know how to render the component.

More Info

The ITagHelper interface inherits from ITagHelperComponent, so you can technically
create a Tag Helper that adds resources to the <head> or <body> of the page by combining
both methods into one class.

https://adpg.link/EcSc

ASP.NET Core User Interfaces530

There are multiple ways to organize the files that compose a view component. Since I prefer it when
the files related to a feature are close together, I like to see all of the classes live in the same directory
as the view itself (let’s call that vertical slice-inspired), like this:

Figure 17.3: A way to organize view components keeping all files together

Project – Reusable employee count
Context: We want to create a view component in the same Razor Pages project. That component should
display the number of employees in the database and should always be visible.

The widget is a Bootstrap card that looks like this:

Figure 17.4: The result, rendered in a browser, of the employee count view component

I decided to make my life easier by inheriting from ViewComponent to leverage the helper methods,
such as View(), making it trivial to implement the feature. One advantage of view components is the
ability to code C# logic in a class instead of a Razor file.

I decided to leverage record classes (see Appendix A) to implement the EmployeeCountViewModel class
that we use as the view component’s view model. The view model exposes a Count property (taken
from the Pages/Components/EmployeeCount/EmployeeCountViewModel.cs file):

public record EmployeeCountViewModel(int Count);

Chapter 17 531

The EmployeeCountViewModel class is virtually the same as a class with a public int Count { get; }
property. Next, we look at the view taken from the Pages/Components/EmployeeCount/Default.cshtml
file:

@model PageController.Pages.Components.EmployeeCount.EmployeeCountViewModel
<div class="card">
 <div class="card-body">
 <h5 class="card-title">Employee Count</h5>
 <p class="card-text">
 @Model.Count
 @(Model.Count > 1 ? "Employees" : "Employee")
 </p>
 <a asp-page="Employees/Index" class="card-link">Employees list
 </div>
</div>

As we saw in the View Model design pattern section of Chapter 4, The MVC Pattern Using Razor, we inject
a model specifically crafted for this view, which is the default view of our view component, then we
render the component using it. Now, to the view component, taken from the Pages/Components/
EmployeeCount/EmployeeCountViewComponent.cs file:

public class EmployeeCountViewComponent : ViewComponent
{
 private readonly EmployeeDbContext _context;
 public EmployeeCountViewComponent(EmployeeDbContext context)
 {
 _context = context ?? throw new ArgumentNullException(nameof(context));
 }

Here, we inject EmployeeDbContext so we can count the employees in the InvokeAsync method down
below:

 public async Task<IViewComponentResult> InvokeAsync()
 {
 var count = await _context.Employees.CountAsync();
 return View(new EmployeeCountViewModel(count));
 }
}

A view component’s logic must be placed inside an InvokeAsync method that returns a
Task<IViewComponentResult> value or an Invoke method that returns an IViewComponentResult
value. In our case, we access a database, so we better go async to ensure we don’t block a thread while
waiting for the database. Then, similar to a controller action, we use the View<TModel>(TModel model)
method of the ViewComponent base class to return a ViewViewComponentResult value that contains
an EmployeeCountViewModel instance.

ASP.NET Core User Interfaces532

To render a view component, we can use the Component.InvokeAsync() extension method, like this:

@await Component.InvokeAsync("EmployeeCount")

The name of the view component must exclude the ViewComponent suffix.

For a more refactor-friendly method, we can also pass the type instead of its name:

@await Component.InvokeAsync(typeof(PageController.Pages.Components.
EmployeeCount.EmployeeCountViewComponent))

We can also use Tag Helpers to invoke our view components. To do so, we can register all view
components as Tag Helpers by adding the following line to the _ViewImports.cshtml file:

@addTagHelper *, PageController

PageController is the name of the assembly to scan for view components (the name of the project).

Then we can use the <vc:[view-component-name]></vc:[view-component-name]> Tag Helper instead,
like this:

<vc:employee-count></vc:employee-count>

We can achieve many things with view components, including passing arguments to the InvokeAsync
method. Moreover, with view components and the power of dependency injection, we can create
powerful UI pieces that are reusable and encapsulate complex logic, leading to a more maintainable
application. We can also register components independently, without the need to register them all
at once.

Conclusion
View components are a mix between a partial view and a controller action, with the possibility of
having a Tag Helper-like syntax. They support dependency injection for extensibility and optional
parameters when using both the Tag Helper syntax and the Component.InvokeAsync() methods. The
default places where we can save the views are limited but could be extended if we want to.

In a nutshell, if you want a controller-like piece of UI that has logic or that needs to access external
resources, a view component could be the right choice for you. On the other hand, if you want to
create composable pieces of UI, Razor components might be a better fit (we cover those in the Getting
familiar with Razor components section of Chapter 18, A Brief Look into Blazor).

Now let’s see how creating view components can help us follow the SOLID principles:

• S: A view component helps us extract pieces of UI logic into independent components.
• O: N/A
• L: N/A
• I: N/A
• D: N/A

Next, we explore two other ways to divide complex user interfaces into smaller pieces, but those
pieces are built for types this time.

Chapter 17 533

Display and editor templates
This section uses display and editor templates to divide our UIs into model-oriented partial views.
These have been available since MVC on the .NET Framework and are not new to ASP.NET Core.
Unfortunately, they are often forgotten or overlooked at the expense of brand-new things that come out.

Display templates are Razor views that override the default rendering template of a given type. Editor
templates are the same but override the editor’s view of a given type.

Each type can have a display template and an editor template. They are also stored hierarchically
so that each type can have globally shared templates and specific ones per area, controller, section,
or page. In a complex application, this could be very handy to override an individual template for a
particular section of the app.

A display template must be created in a DisplayTemplates directory, and an editor template must be
created in an EditorTemplates directory. These directories can be placed at different levels. Moreover,
the directory structure depends on whether you’re using MVC or Razor Pages.

ASP.NET loads them in order of priority, from the more specific to the more general. That allows
us to create a shared template between all pages or all controllers, then override it for a particular
controller or page.

For MVC, the order in which they are loaded is as follows:

1. Views/[some controller]/DisplayTemplates

2. Views/Shared/DisplayTemplates

For Razor pages, the order in which they are loaded is as follows:

1. Pages/[some directory]/DisplayTemplates

2. Pages/Shared/DisplayTemplates

Both display and editor templates are .cshtml files with an @model directive that points to the type they
are for. For example, Views/Shared/DisplayTemplates/SomeModel.cshtml should have an @model
SomeModel directive at the top. The same goes for Views/Shared/EditorTemplates/SomeModel.cshtml.

Let’s start with display templates.

Display templates
Let’s use a CRUD UI to manage the employees that we scaffolded again for this section. See the
TransformTemplateView project.

Note

The same logic applies to areas; MVC searches for display and editor templates like any
other view.

ASP.NET Core User Interfaces534

Context: We want to encapsulate the way employees are displayed in both the Details and Delete
pages. Instead of creating a partial view, we have decided to use a display template.

We don’t want that template to be used elsewhere, so we create it specifically in the Pages/Employees
directory. Let’s start with the display template, taken from the Pages/Employees/DisplayTemplates/
Employee.cshtml file:

@model Data.Models.Employee
<dl class="row">
 <dt class="col-sm-2">
 @ Html.DisplayNameFor(model => model.FirstName)
 </dt>
 <dd class="col-sm-10">
 @ Html.DisplayFor(model => model.FirstName)
 </dd>
 <dt class="col-sm-2">
 @ Html.DisplayNameFor(model => model.LastName)
 </dt>
 <dd class="col-sm-10">
 @ Html.DisplayFor(model => model.LastName)
 </dd>
</dl>

That file is a copy of the scaffolded files that we had. To render a display template, we must call one
of the @ Html.DisplayFor() extension methods. In the details and delete views, we can replace the
old code with @ Html.DisplayFor(x => x.Employee). From there, the rendering engine of ASP.NET
Core will find the template and render it (as easy as that).

Next, we look at the two pages that consume that display template. First we explore the Pages/
Employees/Details.cshtml file:

@page
@model TransformTemplateView.Pages.Employees.DetailsModel
@{
 ViewData["Title"] = "Details";
}
<h1>Details</h1>
<div>
 <h4>Employee</h4>
 <hr />
 @ Html.DisplayFor(x => x.Employee)
</div>
<div>
 <a asp-page="./Edit" asp-route-id="@ Model.Employee.Id">Edit |

Chapter 17 535

 <a asp-page="./Index">Back to List
</div>

Next, we explore the Pages/Employees/Delete.cshtml file:

@page
@model TransformTemplateView.Pages.Employees.DeleteModel
@{
 ViewData["Title"] = "Delete";
}
<h1>Delete</h1>
<h3>Are you sure you want to delete this?</h3>
<div>
 <h4>Employee</h4>
 <hr />
 @ Html.DisplayFor(x => x.Employee)
 <form method="post">
 <input type="hidden" asp-for="Employee.Id" />
 <input type="submit" value="Delete" class="btn btn-danger" /> |
 <a asp-page="./Index">Back to List
 </form>
</div>

Just like that, we centralized the display of an employee to one cshtml file, located and loaded
automatically by its type, not by a string like partial views. But that’s not it—display templates are
more powerful than that, as we are about to see after our overview of editor templates.

Editor templates
Editor templates work the same way as display templates, so let’s rebuild the same thing that we did
with a partial view, but with an editor template.

Reminder: We want to encapsulate the Employee form and reuse it in both Create and Edit views.

Once again, we don’t want that template to be used elsewhere, so we create it at the same level, under
Pages/Employees. Let’s take a look at the code in the Pages/Employees/EditorTemplates/Employee.
cshtml file:

@model Data.Models.Employee
<div class="form-group">
 <label asp-for="FirstName" class="control-label"></label>
 <input asp-for="FirstName" class="form-control" />

</div>
<div class="form-group">
 <label asp-for="LastName" class="control-label"></label>

ASP.NET Core User Interfaces536

 <input asp-for="LastName" class="form-control" />

</div>

That’s the same view as the partial view that we created in a previous sample. It is important to
remember that the display and editor templates are designed around a type, the Employee class.

To tell ASP.NET Core to create an editor for a model, we can use one of the @ Html.EditorFor() extension
method overloads. In both the Create and Edit views, we are replacing the form with a call to @ Html.
EditorFor(m => m.Employee). Let’s start with the Pages/Employees/Create.cshtml file:

@model TransformTemplateView.Pages.Employees.CreateModel
@{
 ViewData["Title"] = "Create";
}
<h1>Create</h1>
<h4>Employee</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 @ Html.EditorFor(m => m.Employee)
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

Next, let’s look at the Pages/Employees/Edit.cshtml file:

@page
@model TransformTemplateView.Pages.Employees.EditModel
@{
 ViewData["Title"] = "Edit";
}
<h1>Edit</h1>
<h4>Employee</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>

Chapter 17 537

 <input type="hidden" asp-for="Employee.Id" />
 @ Html.EditorFor(m => m.Employee)
 <div class="form-group">
 <input type="submit" value="Save" class="btn btn-primary" />
 </div>
 </form>
 </div>
</div>

And like the display templates, that’s the only thing that we need to do. When running the project, both
the create and edit pages use the same form, explicitly crafted for the Employee class.

We are about to explore the power of display templates in the next example. Keep in mind that you
can achieve the same with editor templates.

Project – Composite BookStore revisited
Context: We want to revisit how we display the composite bookstore’s UI that we built earlier, in Chapter
3, Architectural Principles, and Chapter 9, Structural Patterns. The goal is to get the display logic out of
the classes, decoupling them from their HTML output.

What could be better than display templates to encapsulate those small blocks of UI?

Let’s first inspect the steps to take:

1. Update the model classes.
2. Create the views and transfer the rendering logic there (the HTML).

Let’s start by updating the model classes, taken from the Models/*.cs files:

namespace TransformTemplateView.Models;
public interface IComponent
{
 void Add(IComponent bookComponent);
 void Remove(IComponent bookComponent);
 int Count();
}

First, we removed the Display method and the Type property from IComponent. Both are used to
display the IComponent instance.

public class Book : IComponent
{
 public Book(string title)
 {
 Title = title ?? throw new ArgumentNullException(nameof(title));

ASP.NET Core User Interfaces538

 }

 public string Title { get; set; }

 public int Count() => 1;

 public void Add(IComponent bookComponent)
 => throw new NotSupportedException();
 public void Remove(IComponent bookComponent)
 => throw new NotSupportedException();
}

Then we did the same for the Book class (both members were part of the IComponent interface).

public abstract class BookComposite : IComponent
{
 protected readonly List<IComponent> children;
 public BookComposite(string name)
 {
 Name = name ?? throw new ArgumentNullException(nameof(name));
 children = new List<IComponent>();
 }

 public string Name { get; }
 public virtual ReadOnlyCollection<IComponent> Components => new
ReadOnlyCollection<IComponent>(children);

 public virtual string Type => GetType().Name;
 public virtual void Add(IComponent bookComponent) => children.
Add(bookComponent);
 public virtual int Count() => children.Sum(child => child.Count());
 public virtual void Remove(IComponent bookComponent) => children.
Remove(bookComponent);
 public virtual void AddRange(IComponent[] components) => children.
AddRange(components);
}

Then, we stripped all the display code from BookComposite, added a property named Components
that exposes its children to the display template, and the AddRange method to make it easier to add
multiple IComponent instances.

Chapter 17 539

The Corporation, Section, and Store classes that follow are only organizational types since we are
keeping the bookstore logic to a minimum to explore patterns and features, not the business model
of a fake store:

public class Corporation : BookComposite
{
 public Corporation(string name) : base(name) { }
}
public class Section : BookComposite
{
 public Section(string name) : base(name) { }
}
public class Store : BookComposite
{
 public Store(string name) : base(name) { }
}

The Set class is a little different. It is an organizational type, but it requires some books (see the books
parameter of its constructor here):

public class Set : BookComposite
{
 public Set(string name, params IComponent[] books)
 : base(name)
 {
 AddRange(books);
 }
}

That code represents our first step and is conceptually very similar to what we had in the original
code, without the display logic.

Now, to create the new, updated display code, we create the following three Razor files:

1. The Razor Page itself, displayed when a client requests it, in the Pages/BookStore/Index.
cshtml file.

2. The View Template to render the books, in the Pages/BookStore/DisplayTemplates/Book.
cshtml file.

3. The View Template to render all of the other BookComposite objects, in the Pages/BookStore/
DisplayTemplates/BookComposite.cshtml file.

ASP.NET Core User Interfaces540

Let’s look at how the files are organized, then at the code:

Figure 17.5: Solution Explorer’s view of the revised BookStore display templates and Index page

Let’s start with the page model in Pages/BookStore/Index.cshtml.cs:

using Microsoft.AspNetCore.Mvc.RazorPages;
using System;
using System.Collections.ObjectModel;
using TransformTemplateView.Models;
using TransformTemplateView.Services;
namespace TransformTemplateView.Pages.BookStore
{
 public class IndexModel : PageModel
 {
 private readonly ICorporationFactory _corporationFactory;
 public IndexModel(ICorporationFactory corporationFactory)
 {
 _corporationFactory = corporationFactory ?? throw new
ArgumentNullException(nameof(corporationFactory));
 }

First, we use constructor injection to gain access to ICorporationFactory.

 public ReadOnlyCollection<IComponent> Components { get; private set; }
= new(Array.Empty<IComponent>());

Then we expose a collection of IComponent instances that the view needs to render the page.

 public void OnGet()
 {
 var corporation = _corporationFactory.Create();
 Components = new ReadOnlyCollection<IComponent>(new IComponent[] {
corporation });
 }

Chapter 17 541

 }
}

Finally, when someone sends a GET request to that page, it builds the ReadOnlyCollection<IComponent>
instance by calling the _corporationFactory.Create() method.

Next, the page’s view, from Pages/BookStore/Index.cshtml:

@page
@model TransformTemplateView.Pages.BookStore.IndexModel
@{
 ViewData["Title"] = "My BookStore";
}
<section class="card">
 <h1 class="card-header">@ViewData["Title"]</h1>
 <ul class="list-group list-group-flush">
 @ Html.DisplayFor(x => x.Components)

</section>

That markup creates a Bootstrap 4 .card to hold our bookstore data. The key to that view is the
DisplayFor() call (highlighted).

Since the Components property of our PageModel is a ReadOnlyCollection<T> that implements
IEnumerable<T>, which inherits from IEnumerable, ASP.NET Core loops and renders all elements
of the Components collection. In our case, that’s only one Corporation object, but it could be more.

For each of those elements, ASP.NET Core tries to find the right display template for that type. Since
we don’t have a Corporation template, it goes up the inheritance chain to find the BookComposite
template and renders the element. Let’s look at those templates now, starting with BookComposite
from Pages/BookStore/DisplayTemplates/BookComposite.cshtml:

@ model BookComposite
<li class="list-group-item">
 <section class="card">
 <h5 class="card-header">
 @ Model.Name
 @Model.Count()</

Note

If you are creating a new project, it should include Bootstrap 5 instead, which may change
the HTML markup slightly, so you may see a few differences when browsing the appli-
cations. Bootstrap is not the focus of the book, only a way to make the page a bit better
looking, so I’ll leave you to apply the required updates or use plain HTML/CSS if you prefer.

ASP.NET Core User Interfaces542

span>
 </h5>
 <ul class="list-group list-group-flush">
 @ Html.DisplayFor(x => x.Components)

 <div class="card-footer text-muted">
 <small class="text-muted text-right">@Model.Type</small>
 </div>
 </section>

The @model BookComposite directive instructs the framework about the type it knows how to render.

The template renders a Bootstrap 4 .card inside a .list-group-item. Since the page renders the
Components inside <ul class="list-group list-group-flush">, those elements will make a
nice-looking UI.

The template does the same as the page and calls @ Html.DisplayFor(x => x.Components), which
allows rendering any type that implements the IComponent interface.

In more detail, what happens is the following:

1. ReadOnlyCollection<T> implements IEnumerable<T>, so ASP.NET Core loops and renders all
its content. In our case, that’s a collection containing two Store instances.

2. For each element, ASP.NET tries to find the right display template for that type. Since we don’t
have a Store template, it goes up the inheritance chain to find the BookComposite template
and renders the elements.

3. Then, for each Store, it renders its children; in our case, instances of Section and Set, using
the BookComposite template (we don’t have Set or Section templates).

4. From those Section and Set objects, the Book objects are rendered using the Book tem-
plate (which we are about to look at), while other, non-book objects are rendered using the
BookComposite template.

Let’s start with the Razor code to render Book instances, in Pages/BookStore/DisplayTemplates/
Book.cshtml:

@ model Book
<li class="list-group-item">
 @ Model.Title
 <small class="text-muted">(Book)</small>

Highlights

That’s the power of the display templates right there; with them, we can craft a complex
model-based recursive UI with little effort.

Chapter 17 543

The Book template is a leaf of the tree and displays the details of a Book, nothing more (instructed by
the @model Book directive).

If we compare that code with the initial model that we had, it is very similar. The BookComposite
template is also very similar to what we were building in the BookComposite.Display() method.

The most significant difference is the level of difficulty that was required to write the presentation code.
It is feasible to render a small element using a StringBuilder, but generating a complex web page
would be tedious. Display templates allowed us to write that same code very easily with IntelliSense
and tooling support.

If we take a subset of our BookStore, what happens in the background is the following:

Figure 17.6: A subset of the rendering flow done by ASP.NET, based on our display templates

This completes our example. With those few lines of code, we were able to render a complex UI that
supports a non-linear composite data structure. We could extend that UI by rendering each class
differently, such as including a logo for Corporation objects or cover images for BookSet objects.

Conclusion
In this chapter, we discovered many ways to render components and parts of a page, but display and
editor templates are convenient ones that are often overlooked. We can render complex polymorphic
UIs with little effort.

Now let’s see how this approach can help us follow the SOLID principles:

• S: By extracting the rendering of objects from the models, we divided both responsibilities
into two different pieces.

Important Note

Display templates and editor templates are excellent ways to create a type-oriented UI
design (model-oriented).

ASP.NET Core User Interfaces544

• O: By managing independent, type-related pieces of the UI, we can change how a type is
rendered without impacting it directly or its consumers.

• L: N/A
• I: N/A
• D: N/A

Summary
This chapter explored Razor Pages, which allowed us to organize our web applications by page instead
of controller. Razor Pages leverages the same tools as MVC, and both technologies can be combined
and used together, allowing you to build parts of your application using Razor Pages and other parts
using MVC.

Then we tackled partial views, allowing reusing parts of a UI and breaking down complex UI into
smaller pieces. When we have complex logic, we can move from partial views to view components,
a controller action-like view. We also tackled Tag Helpers to create reusable UI parts, extend existing
HTML elements, or just consume the built-in ones.

Finally, we explored another way to divide UIs into smaller pieces, oriented around the model classes
themselves. Display and editor templates give us the power to dynamically build a model-based UI
for both display and modification purposes.

With all of that, we’ve almost dipped into everything that ASP.NET Core has to offer in terms of web
UIs, but we are not done yet; we still have Blazor to explore in the next chapter to complete our full-
stack journey into modern .NET.

Questions
Let’s take a look at a few practice questions:

1. What are Razor Pages good for?
2. When using Razor Pages, do we have access to model binding, model validation, and routing

of MVC?
3. Can we use a partial view to query a database?
4. Can we extend existing tags with Tag Helpers?
5. Can we use view components to query a database?
6. How many display templates can a class have?
7. To what do we link (or associate) a display or an editor template?

Note

We could see the display and editor templates as Transformers from the Transform
View pattern and see Razor as an implementation of the Template View pattern.
Martin Fowler introduced those patterns in his book, PoEAA, in 2002. See the
Further reading section for more information.

Chapter 17 545

Further reading
Here are a few links to build upon what we learned in the chapter:

• Partial views in ASP.NET Core: https://adpg.link/p1oW
• View components in ASP.NET Core: https://adpg.link/DNsE
• Tag Helpers in ASP.NET Core: https://adpg.link/JaZQ
• Page Controller (Martin Fowler, PoEAA): https://adpg.link/LLQg
• Template View (Martin Fowler, PoEAA): https://adpg.link/TFM9
• Transform View (Martin Fowler, PoEAA): https://adpg.link/4Gom

Join our book’s Discord space
Join the book’s Discord workspace for Ask me Anything session with the authors:

https://packt.link/ASPdotNET6DesignPatterns

https://adpg.link/p1oW
https://adpg.link/DNsE
https://adpg.link/JaZQ
https://adpg.link/LLQg
https://adpg.link/TFM9
https://adpg.link/4Gom

18
A Brief Look into Blazor

In this chapter, we look at Blazor. Blazor is the new kid on the block, enabling full stack .NET. Blazor is a
great piece of technology. It is still relatively new, but it improved remarkably between its experimental
stage, first official release, and current state. In only a few years, it went from being an idea for the
distant future to reality. Daniel Roth, a Principal Program Manager at Microsoft on the ASP.NET team,
was most likely the most fervent believer who preached Blazor over that period. For a time, Blazor
was the only thing I heard about (or maybe that was the internet spying on me).

Blazor is two things:

• A client-side single-page application (SPA) framework compiling .NET to WebAssembly (Wasm).
WebAssembly is a low-level language that runs in the browser at near-native speed. C# compiles
to WebAssembly, and then the resulting Wasm code is sent to the browser. This is known as
the Blazor WebAssembly hosting model.

• A client-server link over SignalR that acts as a modern UpdatePanel with superpowers. SignalR
enables real-time web features, like server code calling client code over WebSocket. This is
known as the Blazor Server hosting model.

Fun fact

Back in the day, we could use server-side JavaScript with classic ASP, making classic ASP
the first full stack technology (that I know of).

A bit of history

If you don’t know what an UpdatePanel is, you haven’t missed much. It was an
ASP.NET Web Forms control released with .NET Framework 3.5 that helped run
AJAX calls “automagically.”

A Brief Look into Blazor548

Blazor also comes bundled with Razor components (why not Blazor components? I don’t know). It has
some experimental projects revolving around it, a growing ecosystem of libraries accessible through
NuGet, and a BlazorWebView control in .NET Multi-platform App UI (MAUI).

Now that I have laid that out, the following topics are covered in this chapter:

• Overview of Blazor Server
• Overview of Blazor WebAssembly
• Getting familiar with Razor components
• The Model-View-Update pattern
• A medley of Blazor features

Overview of Blazor Server
Blazor Server is an ASP.NET Core web application that initially sends a page to the browser. Then, the
browser updates part of the UI over a SignalR connection. The application becomes an automated
AJAX client-server app on steroids. It is a mix of classic web apps and a SPA model, where the client
loads the UI pieces to update from the server. So, less processing for the client and more processing
for the server. There can also be a short delay (latency) since you must wait for a server response
(steps 2 to 4); for example:

1. You click a button in the browser.
2. The action is dispatched to the server through SignalR.
3. The server processes the action.
4. The server returns the HTML diff to the browser.
5. The browser updates the UI using that diff.

To make that diff (step 4), the server keeps a graph of the application state. It constructs that graph
using components, which translates into Document Object Model (DOM) nodes.

Blazor Server makes stateful applications that must keep track of the current state of all visitors. It
may be hard to scale up or would cost a lot of money in cloud hosting. I don’t want you to discard the
option just yet; the model may fit your application’s needs. Moreover, paying more for hosting can
save development costs, depending on many factors.

On the other hand, a Blazor Server application is smaller than a Blazor WebAssembly one because
the server only sends the requested page to the browser instead of the whole source code compiled
to Wasm binary code. Blazor Server can be used with clients that do not support Wasm since the code
is executed on the server, like a classic ASP.NET Core application. Razor components can be used in
both Blazor Server and Blazor WebAssembly; we explore them after the Blazor WebAssembly overview.

Blazor Server can also be used to prerender a Blazor WebAssembly app and speed up the initial load
time.

Chapter 18 549

To create a Blazor Server project, you can run the dotnet new blazorserver command. That’s it for
Blazor Server.

Next, we look into Blazor WebAssembly, which is way more promising (once again, my opinion).

Overview of Blazor WebAssembly
Before getting into Blazor WebAssembly, let’s look at WebAssembly itself. WebAssembly allows
browsers to run code that is not JavaScript (such as C# and C++). Wasm is an open standard, so it is not
a Microsoft-only thing. Wasm runs in a sandboxed environment close to native speed (that’s the goal)
on the client machine, enforcing browser security policies. Wasm binaries can interact with JavaScript.

As you may have “foreseen” from that last paragraph, Blazor WebAssembly is all about running .NET in
the browser! And the coolest part is that it follows standards. It’s not like running VBScript in Internet
Explorer (oh, I don’t miss that time). I think Microsoft’s new vision to embrace open standards, open
source, and the rest of the world is very beneficial for us developers.

But how does that work? Like Blazor Server and other SPAs out there, we compose the application
using components. A component is a piece of UI that can be as small as a button or as big as a page.
Then, when a client requests our application, the following happens:

1. The server sends a more or less empty shell (HTML).
2. The browser downloads external resources (Wasm binaries, JS, CSS, and images).
3. The browser displays the application.

It is the same experience as any other web page so far. The difference is that when a user carries out
an action, such as clicking a button, the action is executed by the client. Of course, the client can call
a remote resource, as you would using JavaScript in React, Angular, or Vue. However, the important
part here is that you don’t have to. You can control your user interface on the client using C# and .NET.

A significant advantage of Blazor Wasm is hosting: the compiled Blazor Wasm artifacts are only static
resources, so you can host your web application in the cloud almost for free (provisioning Azure Blob
storage and a Content Delivery Network (CDN), for example).

That leads to another advantage: scaling. Since each client runs the frontend, you don’t need to scale
that part—only the delivery of static assets.

Disclaimer

I have not deployed nor participated in building any Blazor Server applications yet. None-
theless, it looks like an improved remake of Web Forms. That might just be me, but a

“magic” SignalR connection, latency, and everything processed in a stateful server sound
like going back to the past. I might be wrong. I recommend you do your experiments and
research and judge for yourself. I may even change my mind in the future; the technology
is still young.

A Brief Look into Blazor550

On the other hand, you can also use a server-side ASP.NET application to prerender your Blazor Wasm
app if you prefer. That leads to a faster initial load time for the clients at an increased hosting cost.

Nevertheless, there is one significant disadvantage: it runs on .NET. But why would I have a problem
with that? That’s blasphemy, right? Well, the browser must download the Wasm version of the .NET
runtime, which is massive. Fortunately, the people at Microsoft worked on a way to trim unused parts,
so browsers only download the required bits. Blazor also supports lazy-loading Wasm assemblies, so
a client doesn’t need to download everything at once. That said, all in all, the minimum download
size is still around 2 MB. With high-speed internet, 2 MB is small and fast to download, but it can take
a bit longer for people living in a remote area. So, think about your audience before making a choice.

We can also leverage ahead-of-time (AOT) compilation to optimize performance-intensive applications
while making the binaries bigger. So far, every version has improved the performance, size, and
capabilities, which makes me hopeful to see Blazor shine in the future (at least for .NET developers).

To create a Blazor Wasm project, you can run the dotnet new blazorwasm command.

Next, we explore Razor components and look at what Blazor has to offer.

Getting familiar with Razor components
Everything is a Razor component in Blazor Wasm, including the application itself, which is defined
as a root component. In the Program.cs file, that root component is registered as follows:

builder.RootComponents.Add<App>("#app");

The App type is from the App.razor component (we cover how components work later), and the string
"#app" is a CSS selector. The wwwroot/index.html file contains a <div id="app">Loading...</div>
element that is replaced by the Blazor App component once the application is initialized. #app is the
CSS selector identifying an element that has an id="app" attribute. The wwwroot/index.html static
file is the default page served to clients; it is your Blazor app starting point. It contains the basic HTML
structure of the page, including scripts and CSS. And that’s how a Blazor application is loaded.

The App.razor file defines a Router component that routes the requests to the right page. When the
page exists, the Router component renders the Found child component. It displays the NotFound child
component when the page does not exist. Here is the default content of the App.razor file:

<Router AppAssembly="@ typeof(Program).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)"
/>
 <FocusOnNavigate RouteData="@routeData" Selector="h1" />
 </Found>
 <NotFound>
 <PageTitle>Not found</PageTitle>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>

Chapter 18 551

 </LayoutView>
 </NotFound>
</Router>

Pages are Razor components, with a @page "/some-uri" directive at the top, similar to Razor Pages.
You can use most, if not all, of the same things as you can with Razor Pages to compose those routes.

A Razor component is a C# class that implements the IComponent interface. You can also inherit from
ComponentBase, which implements the following interfaces for you: IComponent, IHandleEvent, and
IHandleAfterRender. All of these live in the Microsoft.AspNetCore.Components namespace.

Next, we take a look at how to create Razor components.

Creating Razor components
You can create your components anywhere in your project, unlike Razor Pages and view components.
I like to create my pages under the Pages directory, so it is easier to find pages. Then you can create
the non-page components wherever you see fit.

There are three ways to create a component:

• Using only C#
• Using only Razor
• Using a mix of C# (code-behind) and Razor

You don’t have to pick only one way for the whole application; you can choose one per component.
All three approaches end up compiled into a single C# class. Let’s take a look at those three ways of
organizing components.

C#-only components
C#-only components are as simple as creating a class. In the following example, our component
inherits from ComponentBase, but we could implement only the interfaces we need.

Here is the first component (CSharpOnlyComponent.cs):

namespace WASM
{
 public class CSharpOnlyComponent : ComponentBase
 {
 [Parameter]
 public string? Text { get; set; }

The Parameter attribute allows setting the value of the Text property when consuming the component.
Officially, it becomes a component parameter. We see this in action once we are done with this class.

The BuildRenderTree method, next, is responsible for rendering our component:

 protected override void BuildRenderTree(RenderTreeBuilder builder)
 {

A Brief Look into Blazor552

 builder.OpenElement(0, "h1");
 builder.AddAttribute(1, "class", "hello-world");
 builder.AddContent(2, Text);
 builder.CloseElement();
 }
 }
}

By overriding this method, we control the render tree. Those changes are eventually translated into
DOM changes. Here, we are creating an H1 element with a hello-world class. In it is a text node that
contains the value of the Text property.

Now, in the Pages/Index.razor page, we can use that component like this:

@page "/"
<CSharpOnlyComponent Text="Hello World from C#" />

The name of the class becomes the name of its tag. That’s automatic; we have nothing to do to make
it happen. We can set the value of the properties identified with the Parameter attribute as HTML
attributes. In this case, we set the value of the Text property to Hello World from C#. We could mark
more than one property with that attribute and use them as we would any normal HTML attribute.

When rendering the page, our component is rendered to the following HTML:

<h1 class="hello-world">Hello World from C#</h1>

With those few lines of code, we created our first Razor component. Next, we will create a similar
component using the Razor-only syntax.

Razor-only components
Razor-only components are created in .razor files. They are compiled into a C# class. The default
namespace of that class depends on the directory structure where it is created. For example, a
component created in the ./Dir/Dir2/MyComponent.razor file generates the MyComponent class in
the [Root Namespace].Dir.Dir2 namespace. Let’s look at some code (RazorOnlyComponent.razor):

<h2 class="hello-world">@Text</h2>
@code{
 [Parameter]

Sequence numbers

The sequence numbers (0, 1, and 2 in the BuildRenderTree method) are used internally
to generate the diff tree that .NET uses to update the DOM. It is recommended to write
those manually to avoid performance degradation in more complex code such as con-
ditional logic blocks. See the ASP.NET Core Blazor advanced scenarios link in the Further
reading section for more info.

Chapter 18 553

 public string? Text { get; set; }
}

If you like Razor, you probably prefer this one already. That listing is straightforward and allows us
to code the same component as the previous section but more concisely and with less code. In the
@code{} block, we can add properties, fields, methods, and pretty much anything we would in a regular
class, including other classes. We can also override ComponentBase methods there if we need to. We
can use this component the same way we did in the previous example; the same goes for parameters.

Next is the page consuming the RazorOnlyComponent (Pages/Index.razor):

@page "/"
<CSharpOnlyComponent Text="Hello World from C#" />
<RazorOnlyComponent Text="Hello World from Razor" />

The rendering is also very similar, but we went for an H2 instead of an H1:

<h2 class="hello-world">Hello World from Razor</h2>

And with those few lines of code, we created our second component. Next, we create a hybrid of the
two styles.

Razor and C# hybrid components
This third model can separate the C# code (known as code-behind) from the Razor code. This hybrid
counterpart leverages partial classes to achieve the same as the other models and generates a C# class.

For this, we need two files:

• [component name].razor

• [component name].razor.cs

Let’s remake our previous component for the third time but render an H3 this time. Let’s begin with
the Razor code (CodeBehindComponent.razor):

<h3 class="hello-world">@Text</h3>

This code could barely be leaner; we have an H3 tag with the Text property as its content. The .razor
file in this model replaces the BuildRenderTree method. The compiler translates the Razor code into
C#, generating the BuildRenderTree method’s content for us.

The Text parameter is defined in the following code-behind file (CodeBehindComponent.razor.cs):

public partial class CodeBehindComponent
{
 [Parameter]
 public string? Text { get; set; }
}

A Brief Look into Blazor554

It’s the same code as the previous two samples—we just divided it into two files. The key is the partial
class. It allows compiling a single class from multiple files. In this case, there is our partial class and
the autogenerated one from the CodeBehindComponent.razor file. We can use the CodeBehindComponent
in the same way as the other two.

Next is the page that consumes the CodeBehindComponent (Pages/Index.razor):

@page "/"
<CSharpOnlyComponent Text="Hello World from C#" />
<RazorOnlyComponent Text="Hello World from Razor" />
<CodeBehindComponent Text="Hello World from Code-Behind" />

That renders the same way as the others, but as an H3 with different content:

<h3 class="hello-world">Hello World from Code-Behind</h3>

Using code-behind can be very useful for two things:

• Keeping your .razor file clean of C# code
• Getting better tooling support

The tooling for .razor files tends to explode on us from time to time, includes weird bugs, or provides
half-support. It seems that handling HTML, C#, and Razor in a single file is not as easy as it sounds.
On a more positive note, it is getting better, so I can only see more stable tooling in the future. I could
see myself writing all the code of a component in a single .razor file if the tooling was on par with
the C# tooling (in many scenarios). That would lead to fewer files and closer proximity of all parts of
the component (leading to better maintainability).

Next, we take a look at skinning our components with CSS, but with a twist…

CSS isolation
Like other SPAs, Blazor allows us to create CSS styles scoped to a component. That means that we don’t
have to worry about naming conflicts.

Unfortunately, this does not seem to work with C#-only components, so we will skin only two of the
three components. Each of them has the same CSS class (hello-world). We are about to change the
text color by defining simple .hello-world CSS selectors for both.

To achieve that, we must create a .razor.css file named after our component. The following code
represents the content of the RazorOnlyComponent.razor.css file (RazorOnlyComponent):

.hello-world {
 color: red;
}

The following code represents the content of the CodeBehindComponent.razor.css file
(CodeBehindComponent):

.hello-world {

Chapter 18 555

 color: aqua;
}

As you can see from those two files, they define the same .hello-world selector with a different color.

In the wwwroot/index.html file, the dotnet new blazorwasm template added the following line:

<link href="[name of the project].styles.css" rel="stylesheet" />

That line links the bundled component-specific styles into the page. Yes, you did read bundled. The
Blazor CSS isolation feature also bundles all those styles into a single .css file, so the browser only
loads one file.

If we load the page, we see this (without the layout):

Figure 18.1: Output after loading the page

So it worked! But how? Blazor autogenerated random attributes on each HTML element and used
those in the generated CSS. Let’s first look at the HTML output:

<h1 class="hello-world">Hello World from C#</h1>
<h2 class="hello-world" b-cjkj1dpci4>Hello World from Razor</h2>
<h3 class="hello-world" b-0gygcymdih>Hello World from Code-Behind</h3>

Those two highlighted attributes are the “magic” links. Now, with the following CSS code, you should
understand their usage and why they have been generated:

/* /CodeBehindComponent.razor.rz.scp.css */
.hello-world[b-0gygcymdih] {
 color: aqua;
}
/* /RazorOnlyComponent.razor.rz.scp.css */
.hello-world[b-cjkj1dpci4] {
 color: red;
}

If you are not too familiar with CSS, [...] is an attribute selector. It allows you to do all kinds of things,
including selecting an element with the specified attribute (as in this case). That’s what we need here.

A Brief Look into Blazor556

The first selector means that all elements with the hello-world class and an attribute named
b-0gygcymdih should have their color updated to aqua. The second selector is the same, but for elements
with an attribute named b-cjkj1dpci4 instead.

With that pattern in place, we can define component-scoped styles with a high level of confidence
that they won’t conflict with other components’ styles.

Next, let’s explore the life cycle of those components.

Component life cycle
The components, including the root components, must be rendered as DOM elements for the browser
to display them. The same goes for any changes that subsequently occur. Two distinct phases compose
the components’ life cycle:

• Initial rendering, when a component is rendered for the first time.
• Re-rendering, when a component needs to be rendered because it changed.

During the first rendering, if we get rid of the duplicated sync/async methods, the life cycle of a Razor
component looks like this:

Figure 18.2: Life cycle of a Razor component

1. An instance of the component is created.
2. The SetParametersAsync method is called.
3. The OnInitialized method is called.
4. The OnInitializedAsync method is called.

Chapter 18 557

5. The OnParametersSet method is called.
6. The OnParametersSetAsync method is called.
7. The BuildRenderTree method is called (the component is rendered).
8. The OnAfterRender(firstRender: true) method is called.
9. The OnAfterRenderAsync(firstRender: true) method is called.

During re-rendering, if we get rid of the duplicated sync/async methods, the life cycle of a Razor
component is leaner and looks like this:

Figure 18.3: Re-rendered version of a Razor component life cycle

1. The ShouldRender method is called. If it returns false, the process stops here. If it is true,
the cycle continues.

2. The BuildRenderTree method is called (the component is re-rendered).
3. The OnAfterRender(firstRender: false) method is called.
4. The OnAfterRenderAsync(firstRender: false) method is called.

Note

Don’t worry if you have worked with Web Forms before and dread the Blazor life
cycle’s complexity. It is leaner and doesn’t contain any postback. They are two
different technologies. Microsoft is trying to push Blazor as the next logical step
to migrate from Web Forms (which makes sense based on the current state of

.NET), but the only significant similarity that I see is that the component model
of Blazor is close to the control model of Web Forms. So if you moved away from
Web Forms, don’t be afraid to look into Blazor; they are not the same — Blazor is
all that Web Forms is not, with one similarity: they are both component-oriented.

A Brief Look into Blazor558

I created a component named LifeCycleObserver in the WASM project (see https://adpg.link/
ntqD). That component outputs its life cycle information to the console, leading to the following trick:
Console.WriteLine writes in the browser console, like this:

Figure 18.4: The browser debug console displaying the life cycle of the LifeCycleObserver component

Here is an example (highlighted) from the LifeCycleObserver class:

public class LifeCycleObserver : ComponentBase
{
 public override Task SetParametersAsync(ParameterView parameters)
 {
 Console.WriteLine("LifeCycleObserver.SetParametersAsync");
 return base.SetParametersAsync(parameters);
 }
 // Omitted members
}

Next, we look at event handling and how to interact with our components.

Event handling
So far, we’ve displayed the same component built using three different techniques. Now it is time
to interact with a component and see how it works. There are multiple events in HTML that can be
handled using JavaScript. In Blazor, we can handle most of them using C# instead.

https://adpg.link/ntqD
https://adpg.link/ntqD

Chapter 18 559

I slightly modified the FetchData.razor page component that comes with the generated project to
show you two different event handler patterns:

• Without passing an argument
• With an argument

Both ways call async methods, but the same can be done with synchronous methods as well. Let’s
now explore that code. I’ll skip some irrelevant markup, such as H1 and P tags, to focus only on the
real code, which starts with this:

@page "/fetchdata"
@inject HttpClient Http

At the top of the file, I left the injection of the HttpClient and the @page directive. These allow us to
reach the page when navigating to the /fetchdata URL and query resources over HTTP. The HttpClient
is configured in the Program.cs file (the composition root). Then, I added a few buttons to interact
with. Here is the first:

<button class="btn btn-primary mb-4" @onclick="RefreshAsync">Refresh</button>

All buttons of this code example have an @onclick attribute. That attribute is used to react to click
events, like the HTML onclick attribute and the JavaScript "click" EventListener. That button
delegates the click event to the RefreshAsync method:

private Task RefreshAsync() => LoadWeatherAsync();
private async Task LoadWeatherAsync()
{
 forecasts = await Http
 .GetFromJsonAsync<WeatherForecast[]>(_uriList.Next());
}

The refresh method then calls the LoadWeatherAsync() method, which in turn queries a resource
returning an array of WeatherForecast. The forecasts are three static JSON files located in the
wwwroot/sample-data directory. _uriList is an instance of the Cycle class that cycles through a series
of strings. Its code is simple but helps simplify the rest of the page in an OOP manner:

private class Cycle
{
 private int _currentIndex = -1;
 private string[] _uris;
 public Cycle(params string[] uris) => _uris = uris;
 public string Next() => _uris[++_currentIndex % _uris.Length];
}

When the forecasts change (when we click on the Refresh button), the component is reloaded
automatically, leading to an updated weather forecast table.

A Brief Look into Blazor560

We can also access the event argument like we would in JavaScript. In the case of a click, we have
access to the MouseEventArgs instance associated with the event. Here is a quick sample displaying
possible usage:

<button class="btn btn-primary mb-4" @onclick="DisplayXY">Display (X, Y)</
button>
@code {
 public void DisplayXY(MouseEventArgs e)
 {
 Console.WriteLine($"DOM(x, y): ({e.ClientX}, {e.ClientY}) | Button(x,
y): ({e.OffsetX}, {e.OffsetY}) | Screen(x, y): ({e.ScreenX}, {e.ScreenY})");
 }
}

In that code, the @onclick attribute is used the same way as before, but the DisplayXY method expects
MouseEventArgs as a parameter. The MouseEventArgs argument is provided automatically by Blazor.
Then, the method will output the mouse position in the browser’s DevTools console (F12 on Chromium-
based browsers), which looks like this:

DOM(x, y): (921, 175) | Button(x, y): (119, 4) | Screen(x, y): (-999, 246)
DOM(x, y): (809, 197) | Button(x, y): (7, 26) | Screen(x, y): (-1111, 268)

To generate those coordinates, I clicked the top-right corner of the button, then the bottom-left corner.
As we can deduce from the negative screen x position, my browser was on my left monitor.

Another possibility is to use lambda expressions as inline event handlers. Those lambda expressions
can also call a method. Here is an example:

<button class="btn btn-primary mb-4" @onclick="@(e => Console.
WriteLine($"DOM(x, y): ({e.ClientX}, {e.ClientY})"))">Lamdba (X, Y)</button>

That button outputs only the client (x, y) coordinate to improve readability.

That’s it for our overview of event handling. Next, we look into another way to manage the component’s
state other than each component doing its own thing.

The Model-View-Update pattern
Unless you’ve never heard of React, you’ve most likely heard of Redux. Redux is a library that follows
the Model-View-Update (MVU) pattern. MVU comes from The Elm Architecture. If you don’t know
Elm, here is a quote from their documentation:

Next, let’s see what the goal behind MVU is.

Elm is a functional language that compiles to JavaScript.

Chapter 18 561

Goal
The goal of MVU is to simplify the state management of applications. If you’ve built a stateful UI in
the past, you probably know it can become hard to manage an application’s state. MVU takes the
two-way binding complexity out of the equation and replaces it with a linear one-way flow. It also
removes mutations from the picture by replacing them with immutable states, where state updates
are moved to pure functions.

Design
The MVU pattern is a unidirectional data flow that routes an action to an update function. An update
function must be pure. A pure function is deterministic and has no side effects. A model is a state,
which must be immutable. A state must have an initial state. A view is the code that knows how to
display a state.

Depending on the technology, there are many synonyms. Let’s get into more details. It may sound
confusing at first, but don’t worry, it’s not that bad.

An action is called a command or a request in MediatR. It is called an action in Redux, and a message in
Elm. I will use action. An action is the equivalent of the commands that we used in our CQRS examples
in Chapter 14, Mediator and CQRS Design Patterns. There is no notion of a query in MVU because a view
always renders the current state.

Terminology MediatR Redux Elm

Action Command

Request

Action Message

An update function is called a handler in MediatR. It is called a reducer in Redux and an update in
Elm. I will use reducer. The reducer is a pure function that always returns the same output for any
given input (it’s deterministic). The pure function must have no impact on external actors (having no
side effects). So, no mutation of external variables, no mutation of the input value: no side effects. One
significant advantage of a pure function is testing. It is easy to assert the value of its output based on
a given input since it is deterministic.

Terminology MediatR Redux Elm

Reducer Handler Reducer Update

A view is a component in React and Blazor and is a view function in Elm. I will mostly use view because
component can be ambiguous and easily confused with Razor components, view components, or the
plain notion of a UI component.

Terminology MediatR Redux Elm

View Component Component View function

A Brief Look into Blazor562

A model or state cannot be altered and must be immutable. Every time a state changes, an altered
copy of the state is created. The current state then becomes that copy. Elm calls the state a model; it
is a state in Redux. We are using the term state as I find it defines the intent better.

Terminology Redux Elm

State State Model

Here is a diagram that represents this unidirectional data flow:

Figure 18.5: Unidirectional data flow chart

1. When the application starts, the state is initialized. That initial state becomes the current state.
2. The current state change triggers the UI to render.
3. When an interaction occurs, such as the user clicking a button, then an action is dispatched

to a reducer.
4. The reducer creates an instance of the updated state.
5. That new state replaces the current state.
6. Go back to step 3 of the current list.

It may be hard to wrap your head around this at first. Like all new things, we must take the time to
create new paths in our brains to get something fully. Don’t worry; we are about to see that in action.

All in all, it is straightforward; the flow goes only one way. Whenever the state changes, the component
is re-rendered. Since states are immutable, we cannot alter them directly, so we must pass by reducers.

Project – Counter
For this project, we will use an open source library that I created in 2020 while experimenting with
C# 9 record classes. Since a record is immutable, it is a perfect candidate to represent an MVU state.

Chapter 18 563

Moreover, it allows our example to be streamlined in a limited amount of space.

Context: We are building a counter page to increment and decrement a value.

I know it does not sound very exciting, but since many MVU libraries showcase one, as well as Blazor
itself, I believe this is a good way to compare Blazor with others.

First, we need to install the library by loading the StateR.Blazor NuGet package. In this case, we are
using a prerelease version.

Next, let’s code the Counter feature (Features/Counter.cs):

using StateR;
using StateR.Reducers;
namespace WASM.Features
{
 public class Counter
 {
 public record State(int Count) : StateBase;

The State record is our state. It exposes one init-only property. It inherits from StateBase, which
is an empty record class. StateBase serves as a generic constraint to make sure the state class is a
record class so we can leverage the with expression. States in StateR must be records; it is mandatory.

 public class InitialState : IInitialState<State>
 {
 public State Value => new(0);
 }

The InitialState class, by implementing the IInitialState<State> interface, represents the initial
state of the State record.

 public record Increment : IAction;
 public record Decrement : IAction;

Note

There are multiple similar libraries, but they were all created before C# 9, so there’s no
direct record support.

Redux DevTools

I also installed the StateR.Blazor.Experiments NuGet package in the project. That
project has a few experimental features, including a Redux DevTools connector. Redux
DevTools is a browser extension that allows the tracking of states and actions. It also
allows time travel between states.

A Brief Look into Blazor564

Here, we declare two actions. They are records, but they could have been classes instead. Being a
record is not a requirement but a shortcut to writing less code. In StateR, an action must implement
the IAction interface.

 public class Reducers : IReducer<Increment, State>, IReducer<Decrement,
State>

The Reducers class implements the pure functions that handle the actions. In StateR, a reducer must
implement the IReducer<TAction, TState> interface. TAction must be an IAction, and TState must
be a StateBase. The interface defines only a Reduce method that inputs a TAction and TState and
that outputs the updated TState.

 {
 public State Reduce(Increment action, State state)
 => state with { Count = state.Count + 1 };

The Increment reducer returns a copy of State with its Count incremented by 1.

 public State Reduce(Decrement action, State state)
 => state with { Count = state.Count - 1 };
 }
 }
}

Finally, the Decrement reducer returns a copy of State with its Count decremented by 1.

Using a with expression like that makes very clean code, especially if the State record has more than
one property. Moreover, the record classes help enforce the immutability of the states, which is in
line with the MVU pattern.

That is all that we need to cover the model (state) and the update (actions/reducers). Now to the view
(component) portion. The view is the following Razor component (Features/CounterView.razor):

@page "/mvu-counter"
@inherits StatorComponent
@inject IState<Counter.State> State
<h1>MVU Counter</h1>
<p>Current count: @State.Current.Count</p>
<button class="btn btn-primary" @onclick="() => DispatchAsync(new Counter.
Increment())">+</button>
<button class="btn btn-primary" @onclick="() => DispatchAsync(new Counter.
Decrement())">-</button>

There are only a few lines, but quite a lot of things to discuss here. First, the Razor component is
accessible at the /mvu-counter URL.

Then, it inherits from StatorComponent. This is not required, but it is convenient. The StatorComponent
class implements a few things for us, including managing the component’s re-rendering when an
IState<TState> property changes.

Chapter 18 565

That leads to the next line, the injection of an IState<Counter.State> interface implementation
accessible through the State property. That interface wraps the TState instance and gives access to
the current state through its Current property. The @inject directive enables property injection in
Razor components.

Next, we display the page. @State.Current.Count represents the current count. Following that are two
buttons. Both have an @onclick attribute that calls a lambda expression that represents the action to
be executed when a user clicks the button. The DispatchAsync method comes from StatorComponent.
As its name implies, it dispatches actions through the StateR pipeline. It is similar to the MediatR Send
and Publish methods.

Each button dispatches a different action; one is Counter.Increment and the other is
Counter.Decrement. StateR knows the reducers and sends the action to the appropriate reducers.

That code creates a centralized state and uses the MVU pattern to manage it. If we need
Counter.State elsewhere, we only need to inject it, as we did here, and the same state would be shared
between multiple components or classes. In this example, we injected the state in a Razor component,
but we could also use the same pattern in any code.

One more thing: we need to initialize StateR. To do that, in the Program.cs file, we need to register
it like this:

using StateR;
using StateR.Blazor.ReduxDevTools; // Optional
// ...
builder.Services
 .AddStateR(typeof(Program).Assembly)
 .AddReduxDevTools() // Optional
 .Apply()
;

The builder.Services property is an IServiceCollection. The AddStateR method creates an
IStatorBuilder and registers StateR’s static dependencies.

Then, the optional AddReduxDevTools method call links StateR to the Redux DevTools browser plugin that
I mentioned previously. That helps to debug applications from the browser. Other optional mechanisms
can be added here. A developer could also code their own extensions to add missing or project-specific
features. StateR is DI-based.

Finally, the Apply method initializes StateR by scanning the specified assemblies for every type that
it can handle. In this case, we are scanning only the Wasm application assembly (highlighted). The
initialization is a two-stage process, completed by the Apply method call.

With that in place, we can run the application and play with our counter. I hope that you liked this
little piece of Redux/MVU with StateR. If you did, feel free to use it. If you find missing features, bugs,
or performance issues, or want to share your ideas, feel free to open an issue on GitHub (https://
adpg.link/Z7Ej).

https://adpg.link/Z7Ej
https://adpg.link/Z7Ej

A Brief Look into Blazor566

Conclusion
The MVU pattern uses a model to represent the current state of the application. The view renders
that model. To update the model, an action is dispatched to a pure function (a reducer) that returns
the new state. That change triggers the view to re-render.

The unidirectional flow of MVU reduces state management’s complexity. Having all state changes
flowing in the same direction makes it easier to monitor, trace, and debug data flow errors.

Now let’s see how the MVU pattern can help us follow the SOLID principles:

• S: Each part of the pattern (states, views, and reducers) has its own responsibility.
• O: We can add new elements without impacting existing ones. For example, adding a new

action does not impact existing reducers.
• L: N/A
• I: By segregating responsibilities, each part of the pattern implicitly has a smaller surface

(interface).
• D: This depends on how you implement it. Based on what we did using StateR, we depended

only on interfaces and DTOs (state and actions).

Next, we take a quick peek at other Blazor information to give you an idea of what is available if you
want to get started.

A medley of Blazor features
Your Blazor journey has just begun, and there are so many more features to Blazor than what we
covered. Here are a few more possibilities to give you a glimpse of the options.

You can integrate Razor components with MVC and Razor Pages using the Component Tag Helper. When
doing so, you can also prerender your applications (the App component) by setting the render-mode
attribute to Static, leading to a faster initial render time. Prerendering can also be used to improve
search engine optimization (SEO) and the initial load time of the page. The “drawback” is the need
for an ASP.NET Core server to execute the prerendering logic.

Another lovely thing about full-stack C# is sharing code between the client and the server. Say we have
a web API and a Blazor Wasm application; we could create a third project, a class library, and share
the DTOs (API contracts) between the two.

In our component, we can also allow arbitrary HTML between the opening and closing tags by adding
a RenderFragment parameter named ChildContent to that component. We can also catch arbitrary
parameters and splat them on an HTML element of the component. Attribute splatting in Blazor means
accepting multiple parameters in a single Dictionary<string, object> property and splitting them
into multiple HTML properties during rendering. In the following code, we capture any non-specified
attributes (CaptureUnmatchedValues = true) and render them as HTML attributes. Here is an example
combining those two features (Card.razor):

<div class="@($"card {Class}")" @attributes="Attributes">
 <div class="card-body">

Chapter 18 567

 @ChildContent
 </div>
</div>
@code{
 [Parameter]
 public RenderFragment? ChildContent { get; set; }
 [Parameter(CaptureUnmatchedValues = true)]
 public Dictionary<string, object> Attributes { get; set; } = new()
 [Parameter]
 public string? Class { get; set; }
}

The Card component renders a Bootstrap card and allows consumers to set any attributes they want
on it. The content between the <Card> and </Card> tags can be anything. That content is rendered
inside the div.card-body. The highlighted lines represent that child content.

The Class parameter is a workaround to allow consumers to add CSS classes while enforcing the card
class’s presence. The Attributes parameter becomes a catch-all by setting the CaptureUnmatchedValues
property of the Parameter attribute to true.

Next is an example that consumes the Card component (Pages/Index.razor):

<Card style="width: 25%;" class="mt-4">
 <h5 class="card-title">Card title</h5>
 <h6 class="card-subtitle mb-2 text-muted">Card subtitle</h6>
 <p class="card-text">Some quick example text to build on the card title and
make up the bulk of the card's content.</p>
 Card link
 Another link
</Card>

We can see that the Card component (the highlighted lines) is filled with arbitrary HTML (from the
official Bootstrap documentation). There are two attributes specified as well, a style and a class.

Here is the rendered result:

<div class="card mt-4" style="width: 25%;">
 <div class="card-body">
 <h5 class="card-title">Card title</h5>
 <h6 class="card-subtitle mb-2 text-muted">Card subtitle</h6>
 <p class="card-text">Some quick example text to build on the card title
and make up the bulk of the card's content.</p>
 Card link
 Another link
 </div>
</div>

A Brief Look into Blazor568

The highlighted lines represent the Card component. Everything else is the ChildContent. We can
also notice how the attribute splatting added the style attribute. The Class attribute appended the
mt-4 class to card. Here is what it looks like in a browser:

Figure 18.6: The Card component rendered in a browser

The Virtualize component allows the number of rendered items to be reduced to just those visible
on the screen. You can also control the number of offscreen elements that are rendered to reduce the
frequency at which elements are rendered while scrolling. I’ve left a link to the ASP.NET Core Blazor
component virtualization documentation page in the Further reading section, at the end of the chapter.

As we saw in the counter project, Blazor has full support for dependency injection. For me, that’s a
requirement. That’s also why I learned Angular 2 when it came out and not React or Vue. Blazor’s DI
support is way better than all of the JavaScript IoC containers that I have seen so far, so this is a major
benefit.

There are many other built-in features in Blazor, including an EditForm component, validation support,
and a ValidationSummary component, as you’d expect in any MVC or Razor Pages application, but
client-side.

As mentioned earlier in this chapter, .NET code can interact with JavaScript and vice versa. To execute
JavaScript code from C#, inject and use the IJSRuntime interface. To execute C# code from JavaScript,
use the DotNet.invokeMethod or DotNet.invokeMethodAsync functions. The C# method must be
public static and decorated with the JSInvokable attribute. There are multiple other ways in
which C# and JavaScript can interact, including non-static methods. By supporting this, developers
can build wrappers around JavaScript libraries or use JavaScript libraries as is. It also means that we
can implement features that Blazor does not support in JavaScript or even write browser-optimized
code in JavaScript if Blazor is slower in one area or another. This also allows tapping into browsers’
APIs, like the Fetch API, Storage API, and Canvas API.

You can even write 2D and 3D games using a JavaScript wrapper around a canvas (such as BlazorCanvas)
or a full-fledged game engine such as WaveEngine.

Quick tip

Should you ever need to force the rendering of a component, you can call the
StateHasChanged method from ComponentBase.

Chapter 18 569

The last bit of additional information that I can think of is an experimental project named Blazor Mobile
Bindings. That project is a Microsoft experiment that allows Blazor to run in a phone app. It allows
native performance by wrapping Xamarin.Forms controls with Razor components. It also supports
loading Blazor Wasm in a WebView control, allowing for better reusability between mobile and web
apps, but at a performance cost.

I’ve left a long list of links in the Further reading section to complement this chapter’s information.

Summary
Blazor is a great new piece of technology that could bring C# and .NET to a whole new level. In
its present state, it is good enough to develop apps with. There are two main models; Server and
WebAssembly.

Blazor Server links the client with the server over a SignalR connection, allowing the server to
push updates to the client whenever needed (such as when a user carries out an action). Blazor
WebAssembly is a .NET SPA framework that compiles C# to WebAssembly using AOT compilation or
sends the Intermediate Language (IL) code to the browser where a .NET interpreter implemented in
WebAssembly interprets that code. That allows .NET code to run in the browser. We can interact with
JavaScript using IJSRuntime and vice versa.

Blazor is component-based, meaning that every piece of UI in Blazor is a component, including pages.
We explored three ways to create components: C#-only, Razor-only, and a hybrid that combines C#
and Razor in two different files. A component can also have its own isolated CSS without the need to
worry about conflicts.

We explored the life cycle of a Razor component, which is very simple yet powerful. We also took a
look at handling events and how to react to them.

We then dug into the MVU pattern, which is very well suited for stateful user interfaces like Blazor.
We used an open source library and leveraged C# 9.0 record classes to implement a basic example.

Finally, we took a look at the other possibilities that Blazor has to offer.

I will close this chapter with a personal opinion. I would like to see a Blazor-like model become the
unified way to build user interfaces in .NET. I appreciate writing Razor way more than writing XAML,
to name only one other way of writing UI code.

Questions
Let’s take a look at a few practice questions:

1. Is it true that Blazor Wasm is compiled to JavaScript?
2. Out of the three methods explored to create a Razor component, which one is the best?
3. What are the three parts of the MVU pattern?
4. In the MVU pattern, is it true that it is recommended to use two-way binding?
5. Can Blazor interact with JavaScript?

A Brief Look into Blazor570

Further reading
Here are a few links to build upon what we have learned in the chapter:

• WebAssembly:

a. WebAssembly.org: https://adpg.link/kod8
b. Mozilla Developer Network (MDN): https://adpg.link/PDh5

• Stator (StateR) is a simple, dependency injection-oriented, Redux-inspired, or MVU experiment
using C# 9.0+: https://adpg.link/Z7Ej

• ASP.NET Core Blazor hosting models: https://adpg.link/N8Do
• Component Tag Helper in ASP.NET Core: https://adpg.link/mjqL
• Create and use ASP.NET Core Razor components: https://adpg.link/iDVh
• ASP.NET Core Blazor WebAssembly performance best practices: https://adpg.link/HrLJ
• ASP.NET Core Blazor advanced scenarios: https://adpg.link/nBRc
• ASP.NET Core Blazor component virtualization: https://adpg.link/6DTq
• Prerendering a Client-side Blazor Application (by Chris Sainty): https://adpg.link/Lwhj
• Blazor Mobile Bindings:

a. Documentation: https://adpg.link/yj6T
b. Source code (GitHub): https://adpg.link/shFz

• Call JavaScript functions from .NET methods in ASP.NET Core Blazor: https://adpg.link/Wk9z
• Call .NET methods from JavaScript functions in ASP.NET Core Blazor: https://adpg.link/93CZ
• MudBlazor is an amazing UI kit containing many customizable components and inspired by

material design: https://adpg.link/Csfi

The last time I did 2D/3D development was back when XNA was a thing. I also used Ogre3D in C++ for
a school project. That said, I hinted about 2D and 3D games in the chapter, so here are a few resources
that I found for those of you who are interested:

• Here are the resources that I found about using HTML5 Canvas in C#:

a. David Guida (GitHub): https://adpg.link/3ksk
b. Stefan Lörwald (GitHub): https://adpg.link/zJep
c. Blazor Extensions (GitHub): https://adpg.link/XRAe

• For games, Evergine supports 2D, 3D, VR, and AR. It is totally free, multiplatform, and has
paid enterprise options: https://adpg.link/fQZj.

https://adpg.link/kod8
https://adpg.link/PDh5
https://adpg.link/Z7Ej
https://adpg.link/N8Do
https://adpg.link/mjqL
https://adpg.link/iDVh
https://adpg.link/HrLJ
https://adpg.link/nBRc
https://adpg.link/6DTq
https://adpg.link/Lwhj
https://adpg.link/yj6T
https://adpg.link/shFz
https://adpg.link/Wk9z
https://adpg.link/93CZ
https://adpg.link/Csfi
https://adpg.link/3ksk
https://adpg.link/zJep
https://adpg.link/XRAe
https://adpg.link/fQZj

Chapter 18 571

An end is simply a new beginning
This may be the end of the book, but it is also the beginning of your journey into software architecture
and design. No matter who you are, I hope you found this to be a refreshing view of design patterns
and how to design SOLID web apps.

Depending on your goal and current situation, you may want to explore one or more application-scale
design patterns in more depth, start your next personal project, start a business, apply for a new job,
or all of those at the same time. No matter your goal, keep in mind that designing software is technical
but also an art. There is rarely one right way of implementing a feature, but multiple acceptable ways
of doing so. Experience is your best friend, so keep programming, learn from your mistakes, and
move forward. Remember that we are all born knowing next to nothing, so not knowing something
is expected; we need to learn. Please ask your teammates questions, learn from them, and share your
knowledge with others.

Now that this book is complete, I’ll get back to writing blog posts, so you can always learn new things
there (https://adpg.link/blog). Feel free to hit me up on social media, such as Twitter @CarlHugoM
(https://adpg.link/twit). I hope you found the book educational and approachable and that you
learned many things. I wish you success in your career.

https://adpg.link/blog
https://adpg.link/twit

Appendices

Appendix A

This appendix describes different C# features that we use or are related to topics we use in the book.
I cannot cover all C# features in an appendix, but I did my best to pick the most relevant ones.

We are covering the following:

• Older C# features covering C# 1 to 8
• What’s new in �NET 5 and C# 9? covering features from C# 9
• What’s new in �NET 6 and C# 10? covering features from C# 10

Older C# features
This section covers a list of C# features that are useful, less known, or I want to make sure you are
aware of since we are leveraging or mentioning them in the book.

The null-coalescing operator (C# 2.0)
The null-coalescing (??) operator is a binary operator written using the following syntax:
result = left ?? right. It expresses to use the right value when the left value is null. Otherwise,
the left value is used.

Here is a console application using the null-coalescing operator:

Console.WriteLine(ValueOrDefault(default, "Default value"));
Console.WriteLine(ValueOrDefault("Some value", "Default value"));

static string ValueOrDefault(string? value, string defaultValue)
{
 return value ?? defaultValue;
}

The ValueOrDefault method returns defaultValue when value is null; otherwise, it returns value.
Executing that program outputs the following:

Default value
Some value

The null-coalescing (??) operator is very convenient as it saves us from writing code like the following
equivalent method:

static string ValueOrDefaultPlain(string? value, string defaultValue)
{
 if (value == null)

Appendix A576

 {
 return defaultValue;
 }
 return value;
}

Expression-bodied member (C# 6-7)
Expression-bodied members allow us to write an expression (a line of code) after the arrow operator (=>)
instead of the body of that member (delimited by {}). We can write methods, properties, constructors,
finalizers, and indexers this way.

Here is a small program that leverages this capability:

Console.WriteLine(new Restaurant("The Cool Place"));
Console.WriteLine(new Restaurant("The Even Cooler Place"));

public class Restaurant
{
 public readonly string _name;
 public Restaurant(string name)
 => _name = name;

 public string Name => _name; // read-only property

 public override string ToString()
 => $"Restaurant: {Name}";
}

Executing the program yields:

Restaurant: The Cool Place
Restaurant: The Even Cooler Place

The equivalent with bodies would be the following code:

public class RestaurantWithBody
{
 public readonly string _name;
 public RestaurantWithBody(string name)

Interesting Fact

C# 2.0 is also the version they added generics, which were a very welcome addition. Try
to imagine C# without generics.

Appendix A 577

 {
 _name = name;
 }

 public string Name
 {
 get
 {
 return _name;
 }
 }

 public override string ToString()
 {
 return $"Restaurant: {Name}";
 }
}

As we can see from the preceding example, expression-bodied members allow us to make the code
denser with less noise (less {}).

Throw expressions (C# 7.0)
This feature allows us to use the throw statement as an expression, giving us the possibility to throw
exceptions on the right side of the null-coalescing operator (??).

The good old-fashioned way of writing a guard clause, before throw expressions, was as follows:

public HomeController(IHomeService homeService)
{
 if (homeService == null)
 {
 throw new ArgumentNullException(nameof(homeService));
 }
 _homeService = homeService;
}

In the preceding code, we first check for null, and if homeService is null, we throw an

Note

I find that expression-bodied members reduce readability when the right-hand expression
is complex. I rarely use expression-bodied constructors and finalizers as I find they make
the code harder to read. However, read-only properties and methods can benefit from
this construct as long as the right-hand expression is simple.

Appendix A578

ArgumentNullException; otherwise, we assign the value to the field _homeService.

Now, with throw expressions, we can write the preceding code as a one-liner instead:

public HomeController(IHomeService homeService)
{
 _homeService = homeService ?? throw new
ArgumentNullException(nameof(homeService));
}

Before C# 7.0, we could not throw an exception from the right side (it was a statement), but now we
can (it is an expression).

Tuples (C# 7.0+)
A tuple is a type that allows returning multiple values from a method or stores multiple values in a
variable without declaring a type and without using the dynamic type. Since C# 7.0, tuple support has
greatly improved.

The C# language adds syntactic sugar regarding tuples that makes the code clearer and easier to read.
Microsoft calls that lightweight syntax.

If you’ve used the Tuple classes before, you know that Tuple members are accessed through Item1,

Note

From C# 10 onward, we can now write guards using the static ThrowIfNull method of
the ArgumentNullException class, like this:

public HomeController(IHomeService homeService)
{
 ArgumentNullException.ThrowIfNull(homeService);
 _homeService = homeService;
}

This makes the intent a little more explicit but does not assign the value to the field, which
is less than ideal for a constructor guard. If the objective is only to validate for nulls, like
in a method, this new method can be handy.

Note

Using dynamic objects is OK in some cases, but beware that it could reduce performance
and increase the number of runtime exceptions thrown due to the lack of strong types.
Moreover, dynamic objects bring limited tooling support, making it harder to discover what
an object can do; it is more error-prone than a strong type, there is no type checking, no
auto-completion, and no compiler validation. Compile-time errors can be fixed right away,
without the need to wait for them to arise during runtime, or worse, be reported by a user.

Appendix A 579

Item2, and ItemN properties. The ValueTuple struct also exposes similar fields. This newer syntax is
built on top of the ValueTuple struct and allows us to eliminate those generic names from our codebase
and replace them with meaningful user-defined ones. From now on, when referring to tuples, I refer
to C# tuples, or more precisely an instance of ValueTuple. If you’ve never heard of tuples, we explore
them right away.

Let’s jump right into a few samples, coded as xUnit tests. The first shows how we can create an unnamed
tuple and access its fields using Item1, Item2, and ItemN, which we talked about earlier:

[Fact]
public void Unnamed()
{
 var unnamed = ("some", "value", 322);
 Assert.Equal("some", unnamed.Item1);
 Assert.Equal("value", unnamed.Item2);
 Assert.Equal(322, unnamed.Item3);
}

Then, we can create a named tuple—very useful if you don’t like those 1, 2, 3 fields:

[Fact]
public void Named()
{
 var named = (name: "Foo", age: 23);
 Assert.Equal("Foo", named.name);
 Assert.Equal(23, named.age);
}

Since the compiler does most of the naming, and even if IntelliSense is not showing it to you, we can
still access those 1, 2, 3 fields:

[Fact]
public void Named_equals_Unnamed()
{
 var named = (name: "Foo", age: 23);
 Assert.Equal(named.name, named.Item1);
 Assert.Equal(named.age, named.Item2);
}

Note

If you loaded the whole Git repository, a Visual Studio analyzer should tell you not to do
this by underlining those members with red error-like squiggly lines because of the con-
figuration I’ve made in the .editorconfig file, which instructs Visual Studio how to react
to coding styles. In a default context, you should see a suggestion instead.

Appendix A580

Moreover, we can create a named tuple using variables where names follow “magically”:

[Fact]
public void ProjectionInitializers()
{
 var name = "Foo";
 var age = 23;
 var projected = (name, age);
 Assert.Equal("Foo", projected.name);
 Assert.Equal(23, projected.age);
}

Since the values are stored in those 1, 2, 3 fields, and the programmer-friendly names are compiler-
generated, equality is based on field order, not field name. Partly due to that, comparing whether two
tuples are equal is pretty straightforward:

[Fact]
public void TuplesEquality()
{
 var named1 = (name: "Foo", age: 23);
 var named2 = (name: "Foo", age: 23);
 var namedDifferently = (Whatever: "Foo", bar: 23);
 var unnamed1 = ("Foo", 23);
 var unnamed2 = ("Foo", 23);

 Assert.Equal(named1, unnamed1);
 Assert.Equal(named1, named2);
 Assert.Equal(unnamed1, unnamed2);
 Assert.Equal(named1, namedDifferently);
}

If you don’t like to access the tuple’s members using the dot (.) notation, we can also deconstruct
them into variables:

[Fact]
public void Deconstruction()
{
 var tuple = (name: "Foo", age: 23);
 var (name, age) = tuple;
 Assert.Equal("Foo", name);
 Assert.Equal(23, age);
}

Appendix A 581

Methods can also return tuples and can be used the same way that we saw in previous examples:

[Fact]
public void MethodReturnValue()
{
 var tuple1 = CreateTuple1();
 var tuple2 = CreateTuple2();
 Assert.Equal(tuple1, tuple2);

 static (string name, int age) CreateTuple1()
 {
 return (name: "Foo", age: 23);
 }

 static (string name, int age) CreateTuple2()
 => (name: "Foo", age: 23);
}

To conclude on tuples, I suggest avoiding them on public APIs that are exported (a shared library, for
example). However, I find they come in handy internally to code helpers without creating a class that
holds only data and is used once or a few times.

I think that tuples are a great addition to .NET, but I prefer fully defined types on public APIs for many
reasons. The first reason is encapsulation; tuple members are fields, which breaks encapsulation. Then,
accurately naming classes that are part of an API (contract/interface) is essential.

An excellent alternative to tuples for public APIs is record classes, keeping additional code minimal.

Note

The methods are local functions, but the same applies to normal methods as well.

Tip

When you can’t find an exhaustive name for a type, the chances are that some business
requirements are blurry, what is under development is not exactly what is needed, or the
domain language is not clear. When that happens, try to word a clear statement about
what you are trying to accomplish and if you still can’t find a name, try to rethink that API.

For example, “I want to calculate the sales tax rate of the specified product”
could yield a CalculateSalesTaxRate(...) method in a Product class or a
CalculateSalesTaxRate(Product product, ...) in another class.

Appendix A582

Default literal expressions (C# 7.1)
Default literal expressions were introduced in C# 7.1 and allow us to reduce the amount of code
required to use default value expressions.

Previously, we needed to write this:

string input = default(string);

Or this:

var input = default(string);

Now, we can write this:

string input = default;

It can be very useful for optional parameters, like this:

public void SomeMethod(string input1, string input2 = default)
{
 // …
}

In the method defined in the preceding code block, we can pass one or two arguments to the method.
When we omit the input2 parameter, it is instantiated to default(string), which is null.

We can use default literal expressions instead, which allow us to do the following:

• Initialize a variable to its default value.
• Set the default value of an optional method parameter.
• Provide a default argument value to a method call.
• Return a default value in a return statement or an expression-bodied member (the arrow =>

operator introduced in C# 6 and 7).

Here is an example covering those use cases:

public class DefaultLiteralExpression<T>
{
 public void Execute()
 {
 // Initialize a variable to its default value
 T? myVariable = default;

 var defaultResult1 = SomeMethod();

 // Provide a default argument value to a method call
 var defaultResult2 = SomeOtherMethod(myVariable, default);
 }

Appendix A 583

 // Set the default value of an optional method parameter
 public object? SomeMethod(T? input = default)
 {
 // Return a default value in a return statement
 return default;
 }

 // Return a default value in an expression-bodied member
 public object? SomeOtherMethod(T? input, int i) => default;
}

We used the generic T type parameter in the examples, but that could be any type. The default literal
expressions become handy with complex generic types such as Func<T>, Func<T1, T2>, or tuples.

Here is a good example of how simple it is to return a tuple and return the default values of its three
components using a default literal expression:

public (object, string, bool) MethodThatReturnATuple()
{
 return default;
}

It is important to note that the default value of reference types (classes) is null, but the default of
value types (struct) is an instance of that struct with all its fields initialized to their respective default
value. C# 10 introduces the ability to define a default parameterless constructor to value types, which
initializes that struct’s default instance when using the default keyword, overriding the preceding
assertion about default fields. Moreover, many built-in types have custom default values; for example,
the default for numeric types and enum is 0 while a bool is false.

Switch expressions (C# 8)
This feature was introduced in C# 8 and is named switch expressions. Previously, we had to write this
(code taken from the Strategy pattern code sample from Chapter 6, Understanding the Strategy, Abstract
Factory, and Singleton Design Patterns):

string output = default;
switch (input)
{
 case "1":
 output = PrintCollection();
 break;
 case "2":
 output = SortData();
 break;

Appendix A584

 case "3":
 output = SetSortAsc();
 break;
 case "4":
 output = SetSortDesc();
 break;
 case "0":
 output = "Exiting";
 break;
 default:
 output = "Invalid input!";
 break;
}

Now, we can write this:

var output = input switch
{
 "1" => PrintCollection(),
 "2" => SortData(),
 "3" => SetSortAsc(),
 "4" => SetSortDesc(),
 "0" => "Exiting",
 _ => "Invalid input!"
};

That makes the code shorter and simpler. Once you get used to it, I find this new way even easier to
read. You can think about a switch expression as a switch that returns a value.

Discards (C# 7)
Discards were introduced in C# 7. In the following example (code taken from the GitHub repo associated
with the Strategy pattern code sample from Chapter 6, Understanding the Strategy, Abstract Factory, and
Singleton Design Patterns), the discard became the default case of the switch (see the highlighted line):

var output = input switch
{
 "1" => PrintCollection(),

Note

Switch expressions also support pattern matching introduced in C# 7. C# received more
pattern matching features in subsequent versions. We are not covering pattern matching
here.

Appendix A 585

 "2" => SortData(),
 "3" => SetSortAsc(),
 "4" => SetSortDesc(),
 "0" => "Exiting",
 _ => "Invalid input!"
};

Discards (_) are also useable in other scenarios. It is a special variable that cannot be used, a placeholder,
like a variable that does not exist. Using discards doesn’t allocate memory for that variable, which
helps optimize your application.

It is useful when deconstructing a tuple and to use only some of its members. In the following code,
we keep the reference on the name field but discard age during the deconstruction:

var tuple = (name: "Foo", age: 23);
var (name, _) = tuple;
Console.WriteLine(name);

It is also very convenient when calling a method with an out parameter that you don’t want to use,
for example:

if (bool.TryParse("true", out _))
{
 Console.WriteLine("true was parsable!");
}

In that last code block, we only want to do something if the input is a Boolean, but we do not use the
Boolean value itself, which is a great scenario for a discard variable.

Async main (C# 7.1)
From C# 7.1 onward, a console application can have an async Main method, which is very convenient
as more and more code is becoming asynchronous. This new feature allows the use of await directly
in the Main() method, without any quirks.

Previously, the signature of the Main method had to fit one of the following:

public static void Main() { }
public static int Main() { }
public static void Main(string[] args) { }
public static int Main(string[] args) { }

Since C# 7.1, we can also use their async counterpart:

public static async Task Main() { }
public static async Task<int> Main() { }
public static async Task Main(string[] args) { }
public static async Task<int> Main(string[] args) { }

Appendix A586

Now, we can create a console application that looks like this:

class Program
{
 static async Task Main(string[] args)
 {
 Console.WriteLine("Entering Main");
 var myService = new MyService();
 await myService.ExecuteAsync();
 Console.WriteLine("Exiting Main");
 }
}
public class MyService
{
 public Task ExecuteAsync()
 {
 Console.WriteLine("Inside MyService.ExecuteAsync()");
 return Task.CompletedTask;
 }
}

When executing the program, the result is as follows:

Entering Main
Inside MyService.ExecuteAsync()
Exiting Main

Nothing fancy, but it allows us to take advantage of the await/async language feature directly from
the Main method.

User-defined conversion operators (C# 1)
User-defined conversion operators are user-defined functions crafted to convert one type to another
implicitly or explicitly. Many built-in types offer such conversions, such as converting an int to a long
without any cast or method call:

int var1 = 5;

Note

From .NET Core 1.0 to .NET 5, all types of applications start with a Main method (usually
Program.Main), including ASP.NET Core web applications. This addition is very useful
and well needed. The minimal hosting model for ASP.NET Core introduced in .NET 6 is
built on top of top-level statements, introduced in .NET 5, and they make this construct
implicit since the compiler generates the Program class and the Main method for us. It
is still there, good to know, but chances are you won’t need to write that code manually.

Appendix A 587

long var2 = var1; // This is possible due to a class conversion operator

Next is an example of custom conversion. We convert a string to an instance of the
SomeGenericClass<string> class without a cast:

using Xunit;
namespace ConversionOperator;

public class SomeGenericClass<T>
{
 public T? Value { get; set; }

 public static implicit operator SomeGenericClass<T>(T value)
 {
 return new SomeGenericClass<T>
 {
 Value = value
 };
 }
}

The SomeGenericClass<T> class defines a generic property named Value that can be set to any type.
The highlighted code block is the conversion operator method, allowing conversion from the type T
to SomeGenericClass<T> without a cast. Let’s look at the result next:

[Fact]
public void Value_should_be_set_implicitly()
{
 var value = "Test";
 SomeGenericClass<string> result = value;
 Assert.Equal("Test", result.Value);
}

That first test method uses the conversion operator we just examined to convert a string to an instance
of the SomeGenericClass<string> class. We can also leverage that to cast a value (a float in this case)
to a SomeGenericClass<float> class, like this:

[Fact]
public void Value_should_be_castable()
{
 var value = 0.5F;
 var result = (SomeGenericClass<float>)value;
 Assert.Equal(0.5F, result.Value);
 Assert.IsType<SomeGenericClass<float>>(result);
}

Appendix A588

Conversion operators also work with methods, as the next test method will show you:

[Fact]
public void Value_should_be_set_implicitly_using_local_function()
{
 var result1 = GetValue("Test");
 Assert.IsType<SomeGenericClass<string>>(result1);
 Assert.Equal("Test", result1.Value);

 var result2 = GetValue(123);
 Assert.Equal(123, result2.Value);
 Assert.IsType<SomeGenericClass<int>>(result2);

 static SomeGenericClass<T> GetValue<T>(T value)
 {
 return value;
 }
}

The preceding code implicitly converts a string into a SomeGenericClass<string> object and an int
into a SomeGenericClass<int> object. The highlighted line returns the value of type T as an instance
of the SomeGenericClass<T> class directly; the conversion is implicit.

This is not the most important topic of the book, but if you were curious, this is how .NET does this
kind of implicit conversion (like returning an instance of T instead of an ActionResult<T> in MVC
controllers). Now you know that you can implement custom conversion operators in your classes too
when you want that kind of behavior.

Local functions (C# 7) and a static local function (C# 8)
In the previous example, we used a static local function, new to C# 8, to demonstrate the class
conversion operator.

Local functions are definable inside methods, constructors, property accessors, event accessors,
anonymous methods, lambda expressions, finalizers, and other local functions. Those functions are
private to their containing members. They are very useful for making the code more explicit and self-
explanatory without polluting the class itself, keeping them in the consuming member’s scope. Local
functions can access the declaring member’s variables and parameters, like this:

[Fact]
public void With_no_parameter_accessing_outer_scope()
{
 var x = 1;
 var y = 2;
 var z = Add();

Appendix A 589

 Assert.Equal(3, z);

 x = 2;
 y = 3;
 var n = Add();
 Assert.Equal(5, n);

 int Add()
 {
 return x + y;
 }
}

That is not the most robust function because the inner scope (inline function) depends on the outer
scope (method variables x and y). Nonetheless, the code shows how a local function can access its
parent scope’s members, which is necessary in some cases.

The following code block shows a mix of inline function scope (the y parameter) and outer scope (the
x variable):

[Fact]
public void With_one_parameter_accessing_outer_scope()
{
 var x = 1;
 var z = Add(2);
 Assert.Equal(3, z);

 x = 2;
 var n = Add(3);
 Assert.Equal(5, n);

 int Add(int y)
 {
 return x + y;
 }
}

That block shows how to pass an argument and how the local function can still use its outer scope’s
variables to alter its result. Now, if we want an independent function, decoupled from its outer scope,
we could code the following instead:

[Fact]
public void With_two_parameters_not_accessing_outer_scope()
{

Appendix A590

 var a = Add(1, 2);
 Assert.Equal(3, a);

 var b = Add(2, 3);
 Assert.Equal(5, b);

 int Add(int x, int y)
 {
 return x + y;
 }
}

This code is less error-prone than the other alternatives; the logic is contained in a smaller scope (the
function scope), leading to an independent inline function. But it still allows someone to alter it later
and to use the outer scope since there is nothing to tell the intent of limiting access to the outer scope,
like this (some unwanted outer scope access):

[Fact]
public void With_two_parameters_accessing_outer_scope()
{
 var z = 5;
 var a = Add(1, 2);
 Assert.Equal(8, a);

 var b = Add(2, 3);
 Assert.Equal(10, b);

 int Add(int x, int y)
 {
 return x + y + z;
 }
}

To clarify that intent, we can leverage static local functions. They remove the option to access the
enclosing scope variables and clearly state that intent with the static keyword. The following is the
static equivalent of a previous function:

[Fact]
public void With_two_parameters()
{
 var a = Add(1, 2);
 Assert.Equal(3, a);

Appendix A 591

 var b = Add(2, 3);
 Assert.Equal(5, b);

 static int Add(int x, int y)
 {
 return x + y;
 }
}

Then, with that clear definition, the updated version could become the following instead, keeping
the local function independent:

[Fact]
public void With_three_parameters()
{
 var c = 5;
 var a = Add(1, 2, c);
 Assert.Equal(8, a);

 var b = Add(2, 3, c);
 Assert.Equal(10, b);

 static int Add(int x, int y, int z)
 {
 return x + y + z;
 }
}

Nothing can stop someone from removing the static modifier, maybe a good code review, but at least
no one can say that the intent was not clear enough since the following would not compile:

[Fact]
public void With_two_parameters_accessing_outer_scope()
{
 var z = 5;
 var a = Add(1, 2);
 Assert.Equal(8, a);

 var b = Add(2, 3);
 Assert.Equal(10, b);

 static int Add(int x, int y)
 {

Appendix A592

 return x + y + z;
 }
}

Using the enclosing scope can be useful sometimes, but I prefer to avoid that whenever possible, for
the same reason that I do my best to avoid global stuff: the code can become messier, faster.

To recap, we can create a local function by declaring it inside another supported member without
specifying any access modifier (public, private, and so on). That function can access its declaring
scope, expose parameters, and do almost everything a method can do, including being async and
unsafe. Then comes C# 8, which adds the option to define a local function as static, blocking the access
to its outer scope and clearly stating the intent of an independent, standalone, private local function.

What’s new in .NET 5 and C# 9?
In this section, we explore the following C# 9 features:

• Top-level statements
• Target-typed new expressions
• Init-only properties
• Record classes

We use top-level statements to simplify code samples, leading to one code file with less boilerplate
code. Moreover, top-level statements are the building blocks of the .NET 6 minimal hosting model and
minimal APIs. We dig into the new expressions, which allow creating new instances with less typing.
The init-only properties are the backbone of the record classes used in multiple chapters and are
foundational to the MVU example presented in Chapter 18, A Brief Look into Blazor.

Top-level statements
Starting from C# 9, it is possible to write statements before declaring namespaces and other members.
Those statements are compiled to an emitted Program.Main method.

With top-level statements, a minimal .NET “Hello World” program now looks like this:

using System;
Console.WriteLine("Hello world!");

Unfortunately, we also need a project to run, so we have to create a .csproj file with the following
content:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>net5.0</TargetFramework>
 <OutputType>Exe</OutputType>
 </PropertyGroup>
</Project>

Appendix A 593

From there, we can use the .NET CLI to dotnet run the application.

We can also declare other members, like classes, and use them as in any other application. Classes
must be declared after the top-level code. Be aware that the top-level statement code is not part of any
namespace, and it is recommended to create classes in a namespace, so you should limit the number
of declarations done in the Program.cs file to what is internal to its inner workings.

Top-level statements are a great feature for getting started with C# and writing code samples by cutting
out boilerplate code.

Target-typed new expressions
Target-typed new expressions are a new way of initializing types. C# 3 introduced the var keyword
back in the day, which became very handy to work with generic types, LINQ return values, and more
(I remember embracing that new construct with joy).

This new C# feature does the opposite of the var keyword by letting us call the constructor of a known
type, like this:

List<string> list1 = new();
List<string> list2 = new(10);
List<string> list3 = new(capacity: 10);
var obj = new MyClass(new());
AnotherClass anotherObj = new() { Name = "My Name" };

public class MyClass {
 public MyClass(AnotherClass property)
 => Property = property;
 public AnotherClass Property { get; }
}
public class AnotherClass {
 public string? Name { get; init; }
}

The first highlight shows the ability to create new objects when the type is known using the new()
keyword and omitting the type name. The second list is created the same way, but we passed the
argument 10 to its constructor. The third list uses the same approach but explicitly specifies the
parameter name, as we could with any standard constructor. Using a named parameter makes the
code easier to understand.

The instance of MyClass assigned to the obj variable is created explicitly, but new() is used to create
an instance of AnotherClass, which is inferred because the parameter type is known.

Note

I left the TargetFramework as net5.0 because this is related to .NET 5. We revisit top-level
statements in the What’s new in .NET 6 and C# 10? section.

Appendix A594

The final example demos the use of class initializers. As you may have noticed, the AnotherClass class
has an init-only property, which is our next subject.

I can see the target-typed new expressions simplify many codebases. I started using them, and they
are a great addition to C# 9.0. Please be careful not to make your code harder to read by abusing
target-typed new expressions; only use them when the type is clear, like MyType variable = new().

Init-only properties
Init-only properties are read-only properties that can be initialized using class initializers. Previously,
read-only properties could only be initialized in the constructor or with property initializers (such as
public int SomeProp { get; } = 2;).

For example, let’s take a class that holds the state of a counter. A read-only property would look like
Count:

public class Counter
{
 public int Count { get; }
}

Without a constructor, it is impossible to initialize the Count property, so we can’t initialize an instance
like this:

var counter = new Counter { Count = 2 };

That’s the use case that init-only properties enable. We can rewrite the Counter class to make use of
that by using the init keyword, like this:

public class Counter
{
 public int Count { get; init; }
}

With that in place we can now use it like this:

var counter = new Counter { Count = 2 };
Console.WriteLine($"Hello, Counter: {counter.Count}!");

Init-only properties enable developers to create immutable properties that are settable using a class
initializer. They are also a building block of record classes.

Record classes
A record class uses init-only properties and allows making reference types (classes) immutable. The
only way to change a record is to create a new one. Let’s convert the Counter class into a record:

public record Counter
{
 public int Count { get; init; }

Appendix A 595

}

Yes, it is as simple as replacing the class keyword with the record keyword. Since .NET 6, we can
keep the class keyword as well to differentiate (and make consistent) the new record struct, like this:

public record class Counter
{
 public int Count { get; init; }
}

But that’s not all:

• We can simplify record creation.
• We can also use the with keyword to simplify “mutating” a record (creating a mutated copy

without changing the source).
• Records support deconstruction, like the tuple types.
• .NET auto-implements the Equals and GetHashCode methods. Those two methods compare the

value of the properties instead of the reference to the object. That means that two different
instances with equal values would be equal.

• .NET auto-overrides the ToString method that outputs a better format, including property
values.

All in all, that means we end up with an immutable reference type (class) that behaves like a value
type (struct) without the copy allocation cost.

Simplifying the record creation
If we don’t want to use a class initializer when creating instances, we can simplify the code of our
records to the following:

public record class Counter(int Count);

Then, we can create a new instance like with any other class:

var counter = new Counter(2);
Console.WriteLine($"Count: {counter.Count}");

Running that code would output Count: 2 in the console. We can also add methods to the record class:

public record class Counter(int Count)
{
 public bool CanCount() => true;
}

Note

That syntax reminds me of TypeScript, where you can define fields in the constructor,
and they get implemented automatically without the need to write any plumbing code.

Appendix A596

You can do everything with a record that you would do with a class and more. The record class is a
class like any other.

The with keyword
The with keyword allows us to create a copy of a record and change only the value of certain properties
without altering the others. Let’s take a look at the following code:

var initialDate = DateTime.UtcNow.AddMinutes(-1);
var initialForecast = new Forecast(initialDate, 20, "Sunny");
var currentForecast = initialForecast with { Date = DateTime.UtcNow };

Console.WriteLine(initialForecast);
Console.WriteLine(currentForecast);

public record class Forecast(DateTime Date, int TemperatureC, string Summary)
{
 public int TemperatureF => 32 + (int)(TemperatureC /
 0.5556);
}

When we execute that code, we end up with a result similar to this:

Forecast { Date = 9/22/2020 12:04:20 AM, TemperatureC = 20, Summary = Sunny,
TemperatureF = 67 }
Forecast { Date = 9/22/2020 12:05:20 AM, TemperatureC = 20, Summary = Sunny,
TemperatureF = 67 }

The power of the with keyword allows us to create a copy of the initialForecast record and only
change the Date property’s value.

The with keyword is a very compelling addition to the language.

Deconstruction
We can deconstruct record classes like a tuple:

var current = new Forecast(DateTime.UtcNow, 20, "Sunny");
var (date, temperatureC, summary) = current;

Console.WriteLine($"date: {date}");
Console.WriteLine($"temperatureC: {temperatureC}");
Console.WriteLine($"summary: {summary}");

Note

The formatted output is provided by the overloaded ToString method that comes by
default with record classes. We have nothing to do to make this happen.

Appendix A 597

public record class Forecast(DateTime Date, int TemperatureC, string Summary)
{
 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);
}

By default, all positional members (defined in the constructor) are deconstructable. In that example,
we cannot access the TemperatureF property by using deconstruction because it is not a positional
member.

We can create a custom deconstructor by implementing one or more Deconstruct methods that
expose out parameters of the properties that we want to be deconstructable, like this:

using System;
var current = new Forecast(DateTime.UtcNow, 20, "Sunny");
var (date, temperatureC, summary, temperatureF) = current;

Console.WriteLine($"date: {date}");
Console.WriteLine($"temperatureC: {temperatureC}");
Console.WriteLine($"summary: {summary}");
Console.WriteLine($"temperatureF: {temperatureF}");

public record Forecast(DateTime Date, int TemperatureC, string Summary)
{
 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);
 public void Deconstruct(out DateTime date, out int temperatureC, out string
summary, out int temperatureF)
 => (date, temperatureC, summary, temperatureF) = (Date, TemperatureC,
Summary, TemperatureF);
}

With that updated sample, we can also access the TemperatureF property’s value when deconstructing
the record.

Lastly, by adding Deconstruct methods, we can control the way our record classes get deconstructed.

Equality comparison
As mentioned previously, the default comparison between two records is made by their values and
not their memory addresses, so two different instances with the same values are equal. The following
code proves this:

var employee1 = new Employee("Johnny", "Mnemonic");
var employee2 = new Employee("Clark", "Kent");
var employee3 = new Employee("Johnny", "Mnemonic");
Console.WriteLine($"Does '{employee1}' equals '{employee2}'? {employee1 ==

Appendix A598

employee2}");
Console.WriteLine($"Does '{employee1}' equals '{employee3}'? {employee1 ==
employee3}");
Console.WriteLine($"Does '{employee2}' equals '{employee3}'? {employee2 ==
employee3}");

public record Employee(string FirstName, string LastName);

When running that code, the output is as follows:

Does 'Employee { FirstName = Johnny, LastName = Mnemonic }' equals 'Employee {
FirstName = Clark, LastName = Kent }'? False
Does 'Employee { FirstName = Johnny, LastName = Mnemonic }' equals 'Employee {
FirstName = Johnny, LastName = Mnemonic }'? True
Does 'Employee { FirstName = Clark, LastName = Kent }' equals 'Employee {
FirstName = Johnny, LastName = Mnemonic }'? False

In that example, even if employee1 and employee3 are two different objects, the result is true when
we compare them using employee1 == employee3, proving that values were compared, not instances.

Once again, we leveraged the ToString() method of record classes, which is returning a developer-
friendly representation of its data. The ToString() method of an object is called implicitly when using
string interpolation, like in the preceding code block, hence the complete output.

On the other hand, if you want to know if they are the same instance, you can use the
object.ReferenceEquals() method like this:

Console.WriteLine($"Is 'employee1' the same as 'employee3'? {object.
ReferenceEquals(employee1, employee3)}");

This will output the following:

Is 'employee1' the same as 'employee3'? False

Conclusion
Record classes are a great new addition that creates immutable types in a few keystrokes. Furthermore,
they support deconstruction and implement equality comparison that compares the value of properties,
not whether the instances are the same, simplifying our lives in many cases.

Init-only properties can also benefit regular classes if one prefers class initializers to constructors.

What’s new in .NET 6 and C# 10?
.NET 6 and C# 10 have brought many new features. We cannot visit them all but we explore a selection
of those features that are leveraged in the book or that I thought were worth mentioning.

Appendix A 599

In this section, we explore the following C# 10 features:

• File-scoped namespaces
• Global using directives
• Implicit using directives
• Constant interpolated strings
• Record struct
• Minimal hosting model
• Minimal APIs
• Nullable reference types (added in C# 8 and enabled by default in .NET 6 templates)

File-scoped namespaces
Declaring a file-scoped namespace reduces the horizontal indentation of our code files by removing
the need to declare a block ({}).

We previously wrote:

namespace Vehicles
{
 public interface IVehicleFactory
 {
 // Omitted members
 }
}

We now can write:

namespace Vehicles;
public interface IVehicleFactory
{
 // Omitted members
}

Saving four spaces at the beginning of each line may sound insignificant, but I feel it helps reduce the
cognitive load by removing some indentation, and it gives us more screen space for meaningful code.

Global using directives
Before .NET 6, there was always a long list of using directives at the top of each file. Global using
directives allow us to define some using directives globally, so those namespaces are automatically
imported into every file of the project.

Appendix A600

You can add global using directives in any project file, but I recommend centralizing them, so they
are not spread around the whole project. There are two places I feel they would fit:

• In the Program.cs file because that’s the entry point of the program.
• In a specific file, named meaningfully, like GlobalUsings.cs.

Here is an example that is comprised of three files:

// GlobalUsings.cs
global using GlobalUsingDirectives.SomeCoolNamespace;

// SomeClass.cs
namespace GlobalUsingDirectives.SomeCoolNamespace;
public class SomeClass { }

// Program.cs
Console.WriteLine(typeof(SomeClass).FullName);

When executing the program, we obtain the following output:

GlobalUsingDirectives.SomeCoolNamespace.SomeClass

Since there is no using directive in the Program.cs file, that proves the global using declared in the
GlobalUsings.cs was used, and the whole thing worked as expected.

Implicit using directives
To continue in the way of global using directives, the .NET team gave us a treat: implicit using
directives. It is an opt-in feature that is enabled by default in .NET 6 templates by the following property
(placed in a PropertyGroup) of your .csproj file:

<ImplicitUsings>enable</ImplicitUsings>

The imported namespaces are stored in an auto-generated [project name].GlobalUsings.g.cs file
saved under the obj/Debug/[version] folder. The content varies depending on the project type. As
of the time of writing, for console applications, the file contains the following code:

// <auto-generated/>
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Threading;
global using global::System.Threading.Tasks;

Appendix A 601

With this enabled, we don’t have to bother with those redundant using directives. We can now write a
Hello World program as a one-liner (OK, plus an eight-line csproj file). We can also register our own
global using directives in our own files to complement this.

If you don’t like this, you can opt out by deleting the ImplicitUsings property from your project file
or by setting its value to disable.

Constant interpolated strings
We do not use this feature in the book, but I felt it was worth mentioning. It happened a few times in
my career that I needed this feature.

Before .NET 6, we could not initialize a constant through interpolation. Now we can as long as all the
interpolated values are also string constants. Here is an example:

const string DotNetVersion = "6";
const string BookTitle = $"An Atypical ASP.NET Core {DotNetVersion} Design
Patterns Guide";

Console.WriteLine(BookTitle);

That code outputs the following:

An Atypical ASP.NET Core 6 Design Patterns Guide

That code has the same performance as the following:

Console.WriteLine("An Atypical ASP.NET Core 6 Design Patterns Guide");

That’s it, a little more that we can do using C#.

Record struct
This is another feature we do not use in the book but is worth mentioning. These are very similar to
record classes but for structure types. As you can see from the following program, the syntax is very
similar:

var client1 = new MutableClient("John", "Doe");
client1.Firstname = "Jane";
Console.WriteLine(client1);

var client2 = new ImmutableClient("John", "Doe");

Note

As a workaround, I used static properties instead, but constants are replaced at build
time and are equivalent to hardcoding their value with a lower maintenance overhead
(1 constant instead of hardcoded values in multiple places). Using constants is more
performant than accessing a property.

Appendix A602

Console.WriteLine(client2);

public record struct MutableClient(string Firstname, string Lastname);
public readonly record struct ImmutableClient(string Firstname, string
Lastname);

What is strange compared to record classes is that the positional properties of a record struct are
mutable. To make positional properties immutable we must use the readonly record struct keywords
instead of record struct.

Executing the code outputs the following result:

MutableClient { Firstname = Jane, Lastname = Doe }
ImmutableClient { Firstname = John, Lastname = Doe }

You should apply the same decision process to record struct versus record class that you’d do to
struct versus class. As a rule of thumb, when you are not sure if you should create a struct or a
class create a class (the same for record).

Minimal hosting model
With the appearance of top-level statements in .NET 5, ASP.NET Core 6 brings a minimal hosting
model, which removes the need to create a Program and a Startup class. You can still use the old
model, but you don’t need to anymore; you have two options. ASP.NET Core 6 templates leverage this
new hosting model by default now.

Concretely, the minimal hosting model is an auto-generated Program class that leverages top-level
statements to remove as much plumbing as possible. Here is an example (Program.cs):

var builder = WebApplication.CreateBuilder(args);
// Configure builder.Services here
var app = builder.Build();
// Configure app here
app.Run();

Those three lines of code replace two classes, three methods, the constructor injection of the
configuration, and so on. I personally find this more elegant. If your application is larger than a
small code sample or you want to test pieces of the registration, nothing stops you from creating
extension methods to Add[Feature name] and Use[Feature name] instead of hardcoding everything
in the Program.cs file.

Note

Remember that structure types are passed by copy instead of by reference, so a copy
occurs every time the struct “moves.”

Appendix A 603

As a side note, the auto-generated Program class has an internal visibility modifier, requiring some
workaround to test. We explore workarounds in Chapter 2, Automated Testing.

Minimal APIs
With that new hosting model, a few APIs moved to the top of the line, like registering HTTP endpoints.
We leverage minimal APIs throughout the book, but the idea is to get rid of as much plumbing as
possible and write only what is needed. When building web APIs, we want to create endpoints. Those
endpoints don’t always fit well in controllers, and sometimes, even if they do, that seems overkill to do so.

Minimal APIs have a smaller overhead than MVC (fewer features) but offer model binding and
dependency injection in a route-to-delegate model. Here is an example (Program.cs) from the GitHub
repo associated with Chapter 8, Options and Logging Patterns:

using CommonScenarios;

var builder = WebApplication.CreateBuilder(args);
builder.Services.Configure<MyOptions>("Options1", builder.Configuration.
GetSection("options1"));
builder.Services.Configure<MyOptions>("Options2", builder.Configuration.
GetSection("options2"));
builder.Services.Configure<MyDoubleNameOptions>(builder.Configuration.
GetSection("myDoubleNameOptions"));
builder.Services.AddTransient<MyNameServiceUsingDoubleNameOptions>();
builder.Services.AddTransient<MyNameServiceUsingNamedOptionsFactory>();
builder.Services.AddTransient<MyNameServiceUsingNamedOptionsMonitor>();
builder.Services.AddTransient<MyNameServiceUsingNamedOptionsSnapshot>();

var app = builder.Build();
app.MapGet("/", (HttpContext context) => new[] {
 new { expecting = "Options 1", uri = $"https://{context.Request.Host}/
options/true" },
 new { expecting = "Options 2", uri = $"https://{context.Request.Host}/
options/false" },
 new { expecting = "Options 1", uri = $"https://{context.Request.Host}/
factory/true" },
 new { expecting = "Options 2", uri = $"https://{context.Request.Host}/
factory/false" },
 new { expecting = "Options 1", uri = $"https://{context.Request.Host}/
monitor/true" },
 new { expecting = "Options 2", uri = $"https://{context.Request.Host}/
monitor/false" },
 new { expecting = "Options 1", uri = $"https://{context.Request.Host}/
snapshot/true" },

Appendix A604

 new { expecting = "Options 2", uri = $"https://{context.Request.Host}/
snapshot/false" },
});
app.MapGet("/options/{someCondition}", (bool someCondition,
MyNameServiceUsingDoubleNameOptions service)
 => new { name = service.GetName(someCondition) });
app.MapGet("/factory/{someCondition}", (bool someCondition,
MyNameServiceUsingNamedOptionsFactory service)
 => new { name = service.GetName(someCondition) });
app.MapGet("/monitor/{someCondition}", (bool someCondition,
MyNameServiceUsingNamedOptionsMonitor service)
 => new { name = service.GetName(someCondition) });
app.MapGet("/snapshot/{someCondition}", (bool someCondition,
MyNameServiceUsingNamedOptionsSnapshot service)
 => new { name = service.GetName(someCondition) });
app.Run();

Hopefully, it is easy enough to read in the book; essentially, the preceding code leverages the minimal
hosting model, registers dependencies with the IoC container, creates the app, then registers five GET
endpoints.

The first endpoint creates a JSON menu so you can navigate the project more easily when executing
the code. In this endpoint’s delegate, the IoC container injects an HttpContext that is associated with
the current request. We can use the context parameter to handle HTTP requests manually. In this
case, the code uses the context.Request.Host, but we could use the context.Response.WriteAsync
method if we wanted to write to the response stream manually. Here, we return an array of anonymous
objects to keep it simple. With minimal APIs, returning an object makes ASP.NET Core serialize it and
return it to the client with a 200 OK status code.

The four other endpoints do the same thing but with a different service parameter type. Compared
to the first endpoint, these have two parameters:

• A bool that comes from the route pattern.
• A service that comes from the IoC container.

Those endpoints leverage the same feature as the first endpoint and return an object that gets serialized
automatically and returns it to the client with a 200 OK status code.

Now, if we want to control the output a little more than hoping the framework will do what we want,
we can return an implementation of the IResult interface (part of the Microsoft.AspNetCore.Http
namespace). Fortunately for us, we do not need to create those implementations and can leverage the
static methods of the Results class (same namespace), like this (from the Wishlist example of Chapter
7, Deep Dive into Dependency Injection):

app.MapPost("/", async (IWishList wishList, CreateItem? newItem) =>
{

Appendix A 605

 if (newItem?.Name == null)
 {
 return Results.BadRequest();
 }
 var item = await wishList.AddOrRefreshAsync(newItem.Name);
 return Results.Created("/", item);
}).Produces(201, typeof(WishListItem));

If you want to define OpenAPI specs, you can also leverage extension methods that are part of the
same namespace to describe the endpoints, as we did with the Produces method; explicitly defining
this endpoint returns a status code of 201 with a body containing a serialized WishListItem instance.

This new model is a great addition to ASP.NET Core and can be very useful to remove plumbing while
remaining optional. If MVC is better for your project, you can call the AddControllers() method and
go back to what is best for your project. You can even mix both in the same project.

Nullable reference types
.NET 6 enables nullable reference type checking by default in templates. If you are migrating an existing
project, you can enable this feature by adding the following property to your csproj file:

<Nullable>enable</Nullable>

That tells Visual Studio and the .NET compiler to run static code analyzers to detect possible null
references. For example, the following code yields a few warnings (highlighted):

var obj = Create(true);
Console.WriteLine($"Hello, {obj.Name}!");

static MyClass? Create(bool shouldYieldANullResult)
{
 return shouldYieldANullResult
 ? default
 : new()
 ;
}

public class MyClass
{
 public string Name { get; set; }
}

The first warning is:

CS8602 Dereference of a possibly null reference.

Appendix A606

Which informs us the return value of the Create method can be null (MyClass?). We could fix this by
testing if obj is null or with the null-conditional operator (?.), like this:

Console.WriteLine($"Hello, {obj?.Name}!");

The second warning is:

CS8618 Non-nullable property 'Name' must contain a non-null value when exiting
constructor. Consider declaring the property as nullable.

This message informs us that the Name property of the MyClass class can be null but was defined as not
nullable (string). We can fix this one by marking the property as a nullable string instead, like this:

public class MyClass
{
 public string? Name { get; set; }
}

There are also many attributes available in the System.Diagnostics.CodeAnalysis namespace to deal
with null references like NotNull, NotNullWhen, MemberNotNull, and MemberNotNullWhen.

Here is a good resource from Microsoft to help you get started with this, titled Learn techniques to resolve
nullable warnings (https://adpg.link/Ljo8).

The .NET team started to update the framework for a few versions before .NET 6, and the default is still
just enabled in the template, so if you have a large codebase, you may want to address this iteratively.

Moreover, this feature relies on static analyzers, and the generated IL code is the same as before, so
if external consumers call your code or if you call external consumers, runtime errors can still occur.
In those cases, it is very important not to put blind confidence in this feature. It is a very good step
forward and should help .NET developers write better code, but that’s it.

For example, writing a guard clause to make sure injected values are not null is still useful if the IoC
container is not used (or maybe used by someone other than you) or another third-party container
is set up in the project. If you rely solely on the .NET IoC container and the analyzers (null-state
analysis), no external consumer exists, and you believe that’s safe enough for your project, you can
avoid writing guard clauses. If you are writing libraries that consumers could use and have disabled
null checks, I suggest writing some. Moreover, guards are pretty cheap to write, so they should not
negatively impact the cost of the product you are working on. On the contrary, catching precise errors
early can save you time and money.

https://adpg.link/Ljo8

Appendix B

This appendix covers a few additional notions that relate to microservices architecture and the
technology that supports that type of architecture. As a reminder, the biggest downside of microservices
architecture is the complexity of the infrastructure required to host such applications (known as
operational complexity).

We are covering the following:

• An overview of containers
• Docker and Docker Compose
• Orchestration with Project Tye and Kubernetes
• Scaling

An overview of containers
Containers are an evolution of virtualization. With containers, we virtualize applications instead of
machines. To share resources, we can leverage virtual or physical machines. A container contains
everything that is required for the containerized app to run, including an OS.

Containers can help us set up environments, ensure the correctness of applications when moving
them between environments (local, staging, and production), and more. By packaging everything into
a single container image, our application becomes more portable than ever before; no more “it was
working on my machine.” Another perk of containers is the possibility to configure the networking
and relationships between containers. Moreover, containers are lightweight, allowing us to create a
new one in a matter of seconds, leading to on-demand provisioning of resources that can scale up
with traffic spikes, then scale back down when the demand decreases.

Containers can be very abstract and seem very complicated at first glance. However, nowadays, the
tools have matured and improved, making it easier than ever to understand and debug containers,
but it can still be a steep learning curve. The upside is that once you grasp it, it is hard to go back to
non-containerized applications.

In this section, we explore the following topics related to containers:

• Docker, which is a container engine.
• Docker Compose, which allows us to compose complex Docker applications.
• Orchestration, which is the concept of managing complex containerized applications.
• Scaling, which is a key point of using containers and microservices, where each microservice

can scale independently.

Let’s get started with Docker.

Appendix B608

Docker
Docker is by far the most popular container engine out there. Getting started is now easy, but mastering
it is another story. You can use Docker on Linux or Windows. You can even use Docker on Linux on
Windows by leveraging Windows Subsystem for Linux (WSL) or WSL 2. The Getting Started page (see
Further reading) describes how to install Docker and what Docker Hub is.

The following are a few key concepts behind Docker:

• Docker Desktop is the runtime environment that allows you to run containers locally (you
must install it first). It also comes bundled with the docker and docker-compose CLIs.

• Docker Hub is a web-based repository to publish, share, and download Docker images.
• A Docker image is the plan to build a Docker container. It’s similar to a Virtual Machine (VM)

image but to spawn containers instead of VMs.
• A Docker container is a running Docker image; basically, the running application. You can

run multiple instances (containers) of an image.
• A Dockerfile is a text file that describes the building process of a Docker image.
• A .dockerignore file works similarly to a .gitignore file and allows you to exclude certain

files from being copied to the image by the ADD and COPY instructions (continue reading for
more info on them).

• Docker Compose is a utility that allows you to build a complex topology that could include
multiple Docker images, public and private networks, volumes, and more. Docker Compose
uses YAML files as configuration (the default is docker-compose.yml) and is run using the
docker-compose CLI or the docker compose command.

Regarding these concepts, both Visual Studio and Visual Studio Code have very useful tools that help
with Docker. Moreover, the newer Docker Desktop user interface is very convenient and includes a
dashboard, settings, and more.

Here is the basic idea around getting started:

1. Install Docker and other prerequisites (you only need to do this once).
2. Create a Dockerfile per application.
3. Create a docker-compose.yml file to manage multiple applications as a whole (optional).
4. Deploy your images to an image repository (locally, Docker Hub, or any cloud provider).
5. Run your images as containers (using Docker, container as a service, Kubernetes, or something

else).

Note

The docker compose command, Compose V2, comes with Docker Desktop 3.4.0+,
and should work similarly to docker-compose. Just replace the dash (-) with a
space if you need to.

Appendix B 609

To create a Dockerfile, from Visual Studio, do the following:

1. Right-click the project that you want to dockerize.
2. In the contextual menu, select Add > Docker Support.
3. Choose Linux or Windows.

The generated Dockerfile of a web project named WebApp (Linux) looks as follows:

FROM mcr.microsoft.com/dotnet/aspnet:6.0 AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443

FROM mcr.microsoft.com/dotnet/sdk:6.0 AS build
WORKDIR /src
COPY ["WebApp.csproj", "."]
RUN dotnet restore "./WebApp.csproj"
COPY . .
WORKDIR "/src/."
RUN dotnet build "WebApp.csproj" -c Release -o /app/build

FROM build AS publish
RUN dotnet publish "WebApp.csproj" -c Release -o /app/publish

FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "WebApp.dll"]

Microsoft’s engineers, working on Docker tools, leveraged a Docker feature named multistage build to
generate optimized layers (highlighted lines), making sure the final image is as small as possible while
still having access to the .NET SDK during the build process. You can spot the base, build, publish,
and final stages using the highlighted lines.

Note

I tend to run all my .NET code on Linux nowadays to gain performance, save
hosting costs, and skip wrestling against IIS (or any other Windows features you
feel fit this category).

Visual Studio tip

When using Visual Studio tools to run and debug Docker containers, Visual Studio only
uses the first stage, so if you have logic that must run during startup or any other depen-
dencies such as fonts that need to be installed in the micro-Linux distro, you have to put
that logic into the base layer.

Appendix B610

An essential part of the Dockerfile is the FROM [base image] AS [alias] instruction. FROM loads an
existing Docker image as its base image. It’s similar to inheriting from a class; we inherit from the
whole base image. Then, we can add more content to that image, creating a new image of our own.
Furthermore, each FROM defines a new stage of a multi-stage build.

The WORKDIR instruction specifies the execution context’s directory from which other instructions are
executed, such as RUN, COPY, EXPOSE, and ENTRYPOINT:

• RUN executes the specified command inside the container’s OS. It could be a simple dotnet
build command, a more complex one, or a series of commands that download and install
the .NET SDK, for example.

• COPY does what you think it does; it copies files from your machine to the image.
• EXPOSE tells Docker what ports the application is listening to. These ports must also be opened

using the -p (one port) or -P (all exposed ports) flags. Don’t forget that your application must
listen to the ports that you expose; otherwise, nothing will happen when you query your
container. We can also open and map ports inside the docker-compose.yml file.

• ENTRYPOINT represents the executable that runs when you start a container. In this case, it is
dotnet WebApp.dll, which runs the web application by using the .NET CLI.

Docker comes with a CLI, which could take a whole book to describe, but here are a few useful
commands. I think these snippets will help you get started with Docker.

docker build allows you to create an image. The --rm flag removes intermediate containers, the -f
flag points to the Dockerfile, and the -t flag allows you to specify a tag (which is useful for identifying
and running the image). Here is an example (the. at the end is important and represents the current
directory):

docker build --rm -f "WebApp/Dockerfile" -t webapp:latest .

�NET SDK versus runtime images

In the preceding Dockerfile, the first stage contains the .NET runtime (mcr.microsoft.
com/dotnet/aspnet:6.0), while the second contains the SDK (mcr.microsoft.com/
dotnet/sdk:6.0). This opens up the possibility of building the application inside
Docker using the SDK and publishing the app inside an image (stage) that only contains
the runtime. The runtime is much lighter than the full SDK. The smaller the resulting
image, the faster it will be to download and start a new container from it.

More information

For more information about the way Microsoft builds Dockerfiles, take a look at
https://adpg.link/L2PD.

For more information about the Dockerfiles syntax, take a look at https://adpg.
link/j1Kv.

https://adpg.link/L2PD
https://adpg.link/j1Kv
https://adpg.link/j1Kv

Appendix B 611

docker run allows you to start a container based on an image. If you don’t want the shell to be attached,
you can run a container in the background (detached mode) using the -d flag. The --rm flag removes
the container when it exits, which is very useful when developing. Here is an example:

docker run --rm -d -p 443:8443/tcp -p 80:8080/tcp webapp:latest

Specifying tcp is optional and is the default value when mapping ports. It can also be replaced by
another value, such as udp. The --name flag can be handy for accessing the container later, by name;
for example:

docker run --rm -d -p 8080:80 --name MyWebApp webapp:latest

docker image ls lists all Docker images, while docker ps lists all running images (containers). docker
stop stops a running container, while docker rm removes a stopped container. For example, we could
start, stop, and then remove a container using the following commands:

docker run -d -p 8080:80 --name MyWebApp webapp:latest
docker stop MyWebApp
docker rm MyWebApp

For an unnamed container, we’d need to use its ID (run docker ps to find the ID of a running container).
We can stop and remove a container by ID like so:

docker stop 0d5bffe4071f
docker rm 0d5bffe4071f

You can label your containers with both the docker CLI and docker-compose. You can then use those
labels for many useful things, such as filtering. We can use the -l option when executing docker
build to label a container. We can also use the --filter "label=[label to filter here]" option
when executing a docker ps command to filter running containers that share a label; for example:

docker run -d -p 8080:80 --name MyWebApp -l webapp webapp:latest
docker ps --filter "label=webapp"

Here, we have two more options of the docker ps command. The first is the -a flag, which can come
in handy for listing stopped containers (such as when they crash or did not start properly). The second
is the -q flag, which only outputs IDs (which can be useful for chaining commands). For example, if
you want to stop all containers that are labeled webapp, you could run the following command (in
both Bash and PowerShell):

docker stop $(docker ps --filter "label=webapp" -a -q)

That’s enough Docker CLI commands for now; let’s peek at docker-compose.

Docker Compose
Docker Compose allows you to create a complex system and link multiple applications together by
creating one or more YAML files. Both Visual Studio and Visual Studio Code offer tools that can help
you create and edit docker-compose files, which can be very useful when you’re just starting out.

Appendix B612

Visual Studio creates two complementary files: the default docker-compose.yml file and one for local
overrides called docker-compose.override.yml. You can use any number of files that you want when
using the docker-compose CLI so that you can define overrides for staging, production, and whatnot.
Here is a slightly modified version of that docker-compose.yml file:

version: '3.4'
services:
 webapp:
 image: ${DOCKER_REGISTRY-}webapp
 build:
 context: .
 dockerfile: WebApp/Dockerfile
 container_name: MyWebApp
 ports:
 - '8080:80'
 labels:
 - webapp

This file does the same as the previous command that we executed to run the container; it maps the
ports, adds the webapp label, names the container MyWebApp, and uses WebApp/Dockerfile.

To build the images, we can use the docker-compose build command. The --no-cache flag is
convenient in making sure that we are rebuilding the images; caches can sometimes be a pain. The
--force-rm flag acts like the docker build --rm flag and removes intermediate containers. The
following command builds the images using the docker-compose.yml file combined with the docker-
compose.override.yml file (if one exists):

docker-compose build --no-cache --force-rm

To specify certain files and the order in which they are applied, we can use the -f option, like this:

docker-compose -f docker-compose.yml build --no-cache --force-rm

It is important to note that -f options must be located before build, not after, like the other options.
It is also possible to specify multiple files, like this:

docker-compose -f docker-compose.yml -f another-docker-compose-file.yml build
--no-cache --force-rm

To run (start) the system, we can use docker-compose up. Like the build command, we can specify
one or more files, using the -f option before the up command. You can also use the -d flag to run
containers in detached mode and the --build flag to build the images before you start them. Here
is an example:

docker-compose -f docker-compose.yml up --build -d

Appendix B 613

Finally, to take down the system, we can use the docker-compose down command, which also supports
the -f option, like this:

docker-compose -f docker-compose.yml down

Now that we’ve explored all of those commands, let’s add a SQL Server instance to the
docker-compose.yml file and make our WebApp depend on it. Achieving this is as easy as adding a
service to the docker-compose.yml file and, optionally, specifying that our WebApp depends_on it:

version: '3.4'
services:
 webapp:
 image: webapp:latest
 build:
 context: .
 dockerfile: WebApp/Dockerfile
 container_name: MyWebApp
 ports:
 - '8080:80'
 labels:
 - webapp
 depends_on:
 - sql-server
 sql-server:
 image: 'mcr.microsoft.com/mssql/server'
 ports:
 - '1433:1433'
 environment:
 SA_PASSWORD: Some_Super_Strong_Password_123
 ACCEPT_EULA: 'Y'
 labels:
 - db

The WebApp could use the following connection string:

Server=sql-server;Database=[database name here];User=sa;Password=Some_Super_
Strong_Password_123;

The server name in the connection string (highlighted) matches the service name (highlighted) from
the docker-compose.yml file. This is because Docker Compose automatically creates a DNS entry based
on the service name. These DNS entries are accessible from the other containers.

Now that we’ve created a connection string, we don’t want the password in the docker-compose.yml
file so that we don’t accidentally commit that value into Git. We could do this in many ways, such as
passing environment variables to the docker/docker-compose commands, but we are going to create
a .env file instead.

Appendix B614

At the same level of the docker-compose.yml file, if we add a .env file, we can reuse the environment
variables that we define in there, like this:

.env:
Don't commit this file in Git
SQL_SERVER_SA_PASSWORD=Some_Super_Strong_Password_123
SQL_SERVER_CONNECTION_STRING=Server=sql-server;Database=webapp;User=sa;Password
=Some_Super_Strong_Password_123;

docker-compose.yml:
version: '3.4'
services:
 webapp:
 image: webapp:latest
 build:
 context: .
 dockerfile: WebApp/Dockerfile
 container_name: MyWebApp
 ports:
 - '8080:80'
 environment:
 - ConnectionString=${SQL_SERVER_CONNECTION_STRING}
 labels:
 - webapp
 depends_on:
 - sql-server
 sql-server:
 image: 'mcr.microsoft.com/mssql/server'
 ports:
 - '1433:1433'
 environment:
 SA_PASSWORD: ${SQL_SERVER_SA_PASSWORD}
 ACCEPT_EULA: 'Y'
 labels:
 - db

Tip

When using Git, add your .env file to your .gitignore file so that you don’t commit it
to your repository. Moreover, don’t forget to document the values that should go there,
without the secret values, so your colleagues (or yourself at a later time) can create and
update their personal .env file. For example, you could create a .env.template file that
contains the keys but not the sensitive values, and check that file into Git.

Appendix B 615

With these two files, when we run docker-compose up, two containers start up: a SQL server and an
ASP.NET Core web application that connects to that SQL server. Moreover, we opened and mapped
port 1433 to itself, allowing us to connect to that container using SQL Management Studio or the tool
of your choosing.

From a .NET perspective (inside the web application), we have access to the connection string like we
have access to any other setting (_configuration is of the IConfiguration injected into the Startup
class or accessed in the Program.cs file):

var connectionString = _configuration
 .GetValue<string>("ConnectionString");

And we could load an Entity Framework Core context from there as well, like this:

services.AddDbContext<MyDbContext>(options => options.
UseSqlServer(connectionString))

Now that we’ve explored Docker in more detail, let’s look at tools to manage a production environment.

Orchestration
Once we have a containerized microservices application, we need to deploy it. The challenges pass
from the number of features in a single application (monolith) to the number of applications to deploy,
maintain, and orchestrate.

Each cloud provider has its own offering, which can be serverless, such as Azure Container Instances
(ACI) and Azure Kubernetes Service (AKS). You can also maintain your own VMs in the cloud or on-
premises.

There are many tools to help with orchestrating and deploying containers, and we can’t cover them
all here. That is also why I’ve kept this section as lean as possible; I don’t want to overwhelm you with
information about tools that may become irrelevant or that you may never use. Instead, I think it is
important to lay out some foundations to help you get started. Let’s start with Project Tye, before we
explore Kubernetes jargon.

Tip

Port 1433 is the default SQL Server port. Don’t leave port 1433 open in production, except
to the containers. The fewer attack vectors that you leave open, the harder it will be for
intruders to breach your system. This tip works for everything that should be hidden inside
your container cluster, not just SQL Server.

Note

The ConnectionString can come from any settings supported by ASP.NET Core. In this
case, it is an environment variable defined in the preceding docker-compose.yml file.

Appendix B616

Project Tye
Project Tye (https://adpg.link/tye) is an open source experiment started by Microsoft employees
David Fowler, Glenn von Breadmeister, Justin Kotalik, and Ryan Nowak. The .NET Foundation now
sponsors the project. Here is their README description:

If you did not watch Build 2020, many praised the tool, so I figured that I would include a short
introduction in this book.

In a nutshell, Tye is another YAML-based tool that allows you to compose multiple programs for a
distributed application (that was my initial thought). Now, I see Tye as a tool for simplifying distributed

.NET application development, the initial cost of setup, and deployment. It is important to remember
that it is an experiment, as pointed out by the following quote from the project:

Tye offers many features, including the following:

• A dashboard that shows your application and services
• The ability to load Docker images
• A proxy server that allows you to easily configure an ingress, which does the job of a routing

gateway
• Distributed tracing
• Service discovery
• The ability to connect to log aggregation systems, such as Elastic Stack and Seq
• The ability to deploy to Kubernetes
• The ability to deploy to cloud providers, such as AKS

I only played slightly with Tye, but it sounds very promising. For example, I started an existing solution
by only executing the dotnet tye command without any additional configuration (tye is a global tool
installed via NuGet). That solution contains about 15 docker-compose files, 15 Dockerfiles, and most
of the containers started.

Enough with the Tye experiments; let’s look at Kubernetes next.

“Tye is a developer tool that makes developing, testing, and deploying microservices
and distributed applications easier. Project Tye includes a local orchestrator to make
developing microservices easier and the ability to deploy microservices to Kubernetes
with minimal configuration.”

“[They] are using [Tye] to try radical ideas to improve microservices developer produc-
tivity and see what works. [...] consider every part of the tye experience to be volatile.”

https://adpg.link/tye

Appendix B 617

Kubernetes
Kubernetes is the most popular container orchestrator out there. It allows you to deploy, manage, and
scale containers. Kubernetes can help you manage multiple VMs, add load balancing, monitor your
containers, auto-scale based on demands, and more.

A tool that can help you get started with K8s, when using Docker Compose, is Kompose (https://
adpg.link/NKqu). It is an open source project that converts docker-compose YAML files into K8s
YAML files. This process can also be automated in a continuous integration (CI) pipeline by running
the following command:

kompose convert -f docker-compose.yaml

This section exposes you to foundational concepts related to Kubernetes, so you gain a good base to help
you learn more about K8s. When deploying a microservices application, containers are foundational.
So are orchestrators, which is why we are covering K8s here.

A cluster is a group of nodes. A node is a machine (physical or virtual) that contains pods. Containers
run inside pods. Pods are volatile; to quote the official documentation:

Services come to the rescue by identifying a set of pods that serve a resource – say, the DeviceLocation
microservice. Services are the conceptual identifiers of the applications running inside Kubernetes, so
external clients don’t have to know about the pods getting spawned and destroyed all the time.

Ingress exposes services outside the cluster. Volumes are directories where you store files. They outlive
containers but die with their associated pod. Persistent Volumes (PVs) are dedicated resources used
to store files in the cluster. PVs can be provisioned on a Network File System (NFS), iSCSI, or cloud
storage system. Beware that the lifetimes of the files saved inside a container are tied to the life of
that container.

K8s

Kubernetes is also called K8s, short for “K”, 8 other letters, and then “s”. K8s is pronounced
K-eights.

“[Pods] are born and when they die, they are not resurrected.”

Tip

A container can be destroyed at any time, so don’t store important files inside a contain-
er; otherwise, you will lose them. Each container has its own filesystem, so files are not
shared between them, even if two containers come from the same image. Use volumes
or PVs instead, depending on your needs.

https://adpg.link/NKqu
https://adpg.link/NKqu

Appendix B618

I understand this sub-section contains many concepts and, at the same time, not that much information.
However, I think this high-level overview of Kubernetes is sufficient to save you hours of reading and
deciphering information from diverse sources. You can always come back to this chapter later and
use it as a reference.

Scaling
Everyone is talking about scaling; all the cloud providers are selling auto-scaling and near-unlimited
scaling capabilities, but what does that mean, microservices-wise?

Let’s go back to our IoT example from Chapter 16, Introduction to Microservices Architecture. Let’s say
that there are so many devices sending real-time information about their location that the server
needs more power to run the Location microservice. What we can do here is put more power into the
server (CPU and RAM), which is called vertical scaling. Then, at some point, when a single server
is not enough, we can add more servers, which is called horizontal scaling. However, more servers
means multiple instances of the application running on all of those servers. Using containers and an
orchestrator such as Kubernetes makes it possible to create containers when the demand gets high
enough, then remove them when it goes back to normal. Moreover, we can run a minimum number
of instances so that if one crashes, there is always one or more others running to serve the requests
while the one that crashed gets restarted (more precisely, it gets removed while a new one starts).

When multiple instances of the same application are running simultaneously, the requests need to
be routed to the right node (server). For that to be possible, all nodes hosting that app must have a
common entry point. None of the consumers can be in charge of reaching the instance they want, or
it would create chaos (and be unmanageable). To overcome that, we can use a load balancer to balance
the load between the different applications running on different servers (or nodes).

A load balancer is a sort of routing gateway; it takes a request and routes it to the right server while
managing the load between servers. We will not go into the implementation details of all of this, but
here is a contextual diagram that represents this:

Figure 1: A device that sends its location to a Kubernetes cluster. Then, a load balancer dispatches
the request to the right instance of the DeviceLocation microservice

Appendix B 619

That is a little simplified, but it shows the idea behind load balancing:

1. A request enters the cluster and reaches the load balancer.
2. The load balancer dispatches the request to the appropriate instance of the DeviceLocation

microservice.

Some load balancers can also serve the same server to the same client after subsequent calls, allowing
stateful applications to be more dependable.

Summary
Containers are very helpful for creating portable applications. Docker Compose and orchestrators
such as K8s come in handy to compose and deploy complex applications. All of this leads to scaling
individual parts of the system more easily than ever before.

Containers also come in handy to automate end-to-end testing since you can spawn the whole cluster,
run tests against it, then tear it down.

Further reading
Here are a few links that will help you build on what you learned in this appendix:

• Docker Getting Started: https://adpg.link/1zfM
• Learn Kubernetes Basics: https://adpg.link/oS2G

https://adpg.link/1zfM
https://adpg.link/oS2G

Assessment Answers
The answers to the practice questions for each chapter are as follows:

Chapter 1
1. No. However, sending a body with a GET request is not forbidden by the HTTP specifications,

but such a request semantic is not defined either. It is preferable to avoid sending GET requests
with a body.

2. Long methods are indicators that a method handles too many responsibilities and should be
split into multiple methods or have some of the responsibilities extracted to other classes.

3. No. Target .NET Standard 2.0 when you want to support most runtime versions, like .NET
Framework and .NET 6+. Target .NET Standard 2.1 to share code between Mono and Xamarin.
Otherwise, target .NET 6+ directly.

4. A code smell represents a potential design flaw that could benefit from being rewritten.

Chapter 2
1. Yes, it is true.
2. To test a unit of code, such as the logical code path of a method.
3. As small as possible. A unit test aims at testing the smallest possible unit of functionality in

isolation.
4. Integration tests are usually used for that kind of task.
5. No, there are multiple ways of writing code, TDD being only one of them.

Chapter 3
1. Five: S.O.L.I.D. (SRP, OCP, LSP, ISP, and DIP).
2. No, the idea is the opposite: create smaller components that interact with each other in a

loosely coupled manner.
3. No, you want to encapsulate similar logic, not similar-looking blocks of code.
4. Yes, it is easier to reuse smaller pieces than adapt enormous ones.
5. It is the SRP, but the separation of concerns principle states that too.

Chapter 4
1. The controller manipulates the model and chooses what view to render.
2. The @model directive.
3. A view model should have a one-to-one relationship with a view.
4. Yes.
5. Yes.

Assessment Answers622

Chapter 5
1. 201 CREATED.
2. The [FromBody] attribute.
3. The GET method.
4. Yes, those are precisely the objectives of a DTO: loosely coupling the ins and outs from the model.
5. Yes.

Chapter 6
1. It helps manage behaviors at runtime, such as changing an algorithm in the middle of a running

program.
2. The creational patterns are responsible for creating objects.
3. v1 and v2 are two different instances. The code next to the arrow operator is executed every

time you call the property’s getter.
4. Yes, it is true. That’s the primary goal of the pattern, as we demonstrated in the

MiddleEndVehicleFactory code sample.
5. The Singleton pattern violates the SOLID principles and encourages the use of global (static)

variables when it can be avoided.

Chapter 7
1. Transient, Scoped, Singleton.
2. The composition root holds the code that describes how to compose the program’s object

graph—the types bindings.
3. Yes, it is true. Volatile dependencies should be injected instead of instantiated.
4. The Strategy pattern.
5. The Service Locator pattern is all three. It is a design pattern used by DI libraries, internally,

but becomes a code smell in application code. If misused, it is an anti-pattern that has the
same drawbacks as using the new keyword directly.

Chapter 8
1. Singleton.
2. Scoped.
3. Transient.
4. Yes, you can configure as many providers as you want. One could be for the console, and

another could be used to append entries to a file.
5. No, you should not log trace-level entries in production. You should only log debug-level entries

when debugging an issue.

Assessment Answers 623

Chapter 9
1. Yes, we can decorate decorators by depending only on interfaces because they are just another

implementation of the interface, nothing more.
2. The Composite pattern adds simplicity when it comes to managing complexity.
3. Yes, we could use an adapter for this.
4. We usually use façades to simplify the use of one or more subsystems, creating a wall in front

of them.
5. The Adapter and Façade design patterns are almost the same but are applied to different

scenarios. The Adapter pattern adapts an API to another API, while the Façade pattern exposes
a unified or simplified API, hiding one or more complex subsystems.

Chapter 10
1. False; you can create as many abstract (required) or virtual (optional) extension points as

you need, as long as the class stays cohesive and does not break architectural principles. For
example, ensure the class has a single responsibility.

2. Yes, there is no reason not to.
3. No, there is no greater limit than with any other code.
4. Yes, you can have one handler per message or multiple handlers per message. It is up to you

and your requirements.
5. It helps divide responsibilities between classes by encapsulating the shared logic into one or

more base classes.

Chapter 11
1. Yes. Actually, the HttpResponseMessage instance returned by the HttpMessageInvoker.Send

method is an operation result. HttpClient inherits from HttpMessageInvoker and exposes
other methods that also return an instance of HttpResponseMessage.

2. We implemented two static factory methods.
3. Yes, returning an object is faster than throwing an exception leading to a marginal performance

gain which is a situational optimization technique. In most cases, you should not solely use
the Operation Result pattern for that speed gain.

Chapter 12
1. No, you can have as many layers as you need, and you can name and organize them as you want.
2. No, both have their place, their pros, and their cons.
3. Yes. A DbContext is an implementation of the Unit of Work pattern. DbSet<T> is an

implementation of the Repository pattern.
4. No, you can query any system, any way you want. For example, you could use ADO.NET to query

a relational database, manually create the objects using a DataReader, track changes using a
DataSet, or do anything else that fits your needs. Nonetheless, ORMs can be very convenient.

Assessment Answers624

5. Yes. A layer can never access outward layers, only inward ones.

Chapter 13
1. Yes, it can, but not necessarily. Moving dependencies around does not fix design flaws; it just

moves those flaws elsewhere.
2. Yes, mappers should help us follow the SRP.
3. No, it may not be suitable for every scenario. For example, when the mapping logic becomes

complex, think about not using AutoMapper.
4. Yes, use profiles to organize your mapping rules cohesively.
5. Four or more. Once again, this is just a guideline; injecting four services into a class could be

acceptable.

Chapter 14
1. Yes, you can. That’s the goal of the Mediator pattern: to mediate communication between

colleagues.
2. In the original sense of CQRS: no, a command can’t return a value. The idea is that a query

reads data while commands mutate data. In a looser sense of CQRS, yes, a command could
return a value. For example, nothing stops a create command from returning the created entity
partially or totally. You can always trade a bit of modularity for a bit of performance.

3. MediatR is a free, open source project licensed under Apache License 2.0.
4. Yes, you should; using Marker Interfaces to add metadata is generally wrong. Nevertheless,

you should analyze each use case individually, considering the pros and cons before jumping
to a conclusion.

Chapter 15
1. Any pattern and technique that you know that can help you implement your solution. That’s

the beauty of it: you are not limited; only by yourself.
2. No, you can pick the best tool for the job inside each vertical slice; you don’t even need layers.
3. The application will most likely become a Big Ball of Mud and be very hard to maintain, which

is not good for your stress level, the product quality, time to market of changes, and so on.
4. We can create MVC filters in any ASP.NET Core MVC application. We can augment the MediatR

pipeline using behavior in any application that uses MediatR. We can also implement ASP.
NET Core middlewares in non-MVC applications or to execute code before getting into the
MVC pipeline.

5. Cohesion means elements that should work together as a united whole.
6. Tight coupling describes elements that cannot change independently; that directly depend

on one another.

Assessment Answers 625

Chapter 16
1. The message queue gets a message and has a single subscriber dequeue it. If nothing dequeues

a message, it stays in the queue indefinitely (FIFO model). The Pub-Sub model gets a message
and sends it to zero or more subscribers.

2. Event sourcing is the process of chronologically accumulating events that happened in a system
instead of persisting the current state of an entity. It allows you to recreate the state of the
application by replaying those events.

3. Yes, you can mix Gateway patterns (or sub-patterns).
4. No, you can deploy micro-applications (microservices) on-premises if you want to. Moreover,

in Chapter 14, Mediator and CQRS Design Patterns, we saw that we can use CQRS even inside a
single application.

Chapter 17
1. Razor Pages is best at creating web page-oriented applications.
2. Yes, we have access to mostly the same things as with MVC.
3. Technically, yes, you could, but you should use partial views only to render part of the UI and

presentation logic, not domain logic and database queries.
4. Yes, you can. You can also create new tags.
5. Yes, you can. View components are like component-based, single-action controllers rendering

one or more views.
6. A class can have as many display templates as there are levels in the views/pages hierarchy.
7. Display and editor templates are directly related to a type.

Chapter 18
1. No, it is compiled to WebAssembly (AOT compilation) or leverages the .NET Wasm runtime

(JIT compilation) and runs the .NET binaries in the browser.
2. None. All three are acceptable options—it depends on what you are building and with whom.
3. Model (State), View (Component), Update (Reducer).
4. No. The MVU pattern is all about a unidirectional flow of data to simplify state management.
5. Yes. Blazor can interact with JavaScript and vice versa.

Assessment Answers626

Join our book’s Discord space
Join the book’s Discord workspace for Ask me Anything session with the authors:

https://packt.link/ASPdotNET6DesignPatterns

Acronyms Lexicon

Here is the list of all the acronyms used throughout the book:

• ACI: Azure Container Instances
• AKS: Azure Kubernetes Service
• AOP: Aspect-Oriented Programming
• API: Application Programming Interface
• ATDD: Acceptance Test-Driven Development
• BDD: Behavior-Driven Development
• BLL: Business Logic Layer
• CDN: Content Delivery Network
• CI: Continuous Integration
• CLI: Command-Line Interface
• CQS: Command Query Separation
• CQRS: Command Query Responsibility Segregation
• CRUD: Create, Read, Update Delete
• CSRF (or XSRF): Cross-site Request Forgery
• DAL: Data Access Layer
• DDD: Domain-Driven Design
• DI: Dependency Injection
• DIP: Dependency Inversion Principle
• DOM: Document Object Model
• DRY: Don’t Repeat Yourself
• DTO: Data Transfer Object
• EF Core: Entity Framework Core
• FIFO: First in, First Out
• GoF: Gang of Four
• Grpc: gRPC Remote Procedure Calls
• GUI: Graphical User Interface
• IOC: Inversion of Control
• IoT: Internet of Things
• ISP: Interface Segregation Principle
• K8s: Kubernetes
• LSP: Liskov Substitution Principle
• MQTT: MQ Telemetry Transport

Acronyms Lexicon628

• MVC: Model View Controller
• MVU: Model -View-Update
• MVVM: Model-View-ViewModel
• NFS: Network File System
• OCP: Open/Closed principle
• OOP: Object-Oriented Programming
• ORM: Object-Relational-Mapper
• PoEAA: Patterns of Enterprise Application Architecture
• PV: Persistent Volume
• E2E: End-to-End
• REST: Representational State Transfer
• RPC: Remote Procedure Call
• SEO: Search Engine Optimization
• SME: Small-to-Medium-sized-Enterprise
• SOLID: SRP, OCP, LSP, ISP, DIP
• SPA: Single-Page Application
• SQL: Structured Query Language
• SRP: Single Responsibility Principle
• TDD: Test-Driven Development
• TLD: Top-Level Domain
• UML: Unified Modeling Language
• URI: Uniform Resource Identifier
• URL: Uniform Resource Locator
• VM: Virtual machine
• Wasm: WebAssembly
• Yagni: You aren’t gonna need it

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as in-
dustry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals
• Improve your learning with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

C# 10 and �NET 6 – Modern Cross-Platform Development, Sixth Edition

Mark J Price

ISBN: 9781801077361

• Build rich web experiences using Blazor, Razor Pages, the Model-View-Controller (MVC) pattern,
and other features of ASP.NET Core

• Build your own types with object-oriented programming
• Write, test, and debug functions
• Query and manipulate data using LINQ

https://www.packtpub.com/product/c-10-and-net-6-modern-cross-platform-development-sixth-edition/9781801077361

Other Books You May Enjoy632

• Integrate and update databases in your apps using Entity Framework Core, Microsoft SQL
Server, and SQLite

• Build and consume powerful services using the latest technologies, including gRPC and Graph-
QL

• Build cross-platform apps using .NET MAUI and XAML

Other Books You May Enjoy 633

Software Architecture with C# 10 and �NET 6, Third Edition

Gabriel Baptista

Francesco Abbruzzese

ISBN: 9781803235257

• Use proven techniques to overcome real-world architectural challenges
• Apply architectural approaches such as layered architecture
• Leverage tools such as containers to manage microservices effectively
• Get up to speed with Azure features for delivering global solutions
• Program and maintain Azure Functions using C# 10
• Understand when it is best to use test-driven development (TDD)
• Implement microservices with ASP.NET Core in modern architectures
• Enrich your application with Artificial Intelligence
• Get the best of DevOps principles to enable CI/CD environments

https://www.packtpub.com/product/software-architecture-with-c-10-and-net-6-third-edition/9781803235257

Other Books You May Enjoy634

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished An Atypical ASP.NET Core 6 Design Patterns Guide, Second Edition, we’d love to
hear your thoughts! If you purchased the book from Amazon, please click here to go straight
to the Amazon review page for this book and share your feedback or leave a review on the site that
you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803249846
https://packt.link/r/1803249846

Index

Symbols
.NET 9

.NET 5, versus .NET Standard 10

.NET applications, testing 21

.NET base class library (BCL) 284

.NET program structure 35

.NET runtime 9

.NET SDK, versus runtime 9

A
Abstract Factory design pattern 141

design 141-143
goal 141
project 143-147
SOLID principles 147, 148

abstraction 41
abstract layers 339-341
acceptance test-driven development (ATDD) 19
ActiveMQ 459
Adapter design pattern

Adapter interface 262
design 262, 263
goal 261
Greeter project 263, 264
implementing 261

Advanced Message Queuing
Protocol (AMQP) 459

ahead-of-time (AOT) compilation 550
Ambient Context pattern 148, 152-154
Anchor Tag Helper 514-516
anemic domain model 331, 332

anti-patterns 3
Apache Kafka broker 460

reference link 460
API contracts

defining 128-131
application event 455
applications 10
architectural principles

Don't repeat yourself (DRY) 88
keep it simple, stupid (KISS) 89
separation of concerns 87
SOLID principles 41

Arrange, Act, Assert (AAA) 31
arrow operator 151
aspect-oriented programming (AOP) 87
ASP.NET Core

integration tests, implementing 35
ASP.NET Core MVC anatomy 95, 96

controller 97, 98
default routing 100
directory structure 96, 97
model 98
SOLID principles 101
view 99

ASP.NET Core web APIs anatomy 113
attribute routing 117-119
controller 114
directory structure 114
entry point 113
returning values 115-117

assemblies 328
versus layers 328, 329

assertions 23, 24

Index636

async main (C# 7.1) 585, 586
attribute selector 555
automated testing

overview 15
Azure Container Instances (ACI) 615
Azure Kubernetes Service (AKS) 615

B
Backends for Frontends pattern 480, 481
Base Class Library (BCL) 9
behavior-driven development (BDD) 19
Big Ball of Mud anti-pattern 427
Blazor 547, 548

Blazor Server 548
Blazor Server hosting model 547
Blazor WebAssembly 547-550
features 566-568

BookStore project, SRP implementation
code, fixing 42-52

Bounded Context 452
built-in Tag Helpers 515

Anchor Tag Helper 515, 516
Caching Tag Helpers 517, 518
Component Tag Helper 524
Environment Tag Helper 517
Form Tag Helpers 519-522
Link Tag Helper 516
Partial Tag Helper 522-524
Script Tag Helper 516, 517

business logic layer (BLL) 324

C
C#

async main (C# 7.1) 585, 586
default literal expressions (C# 7.1) 582, 583
discards (C# 7) 584, 585
expression-bodied member (C# 6-7) 576, 577

features 575
local functions (C# 7) 588-592
null-coalescing operator (C# 2.0) 575, 576
static local function (C# 8) 588-592
switch expressions (C# 8) 583, 584
throw expressions (C# 7.0) 577
tuples (C# 7.0+) 578-581
user-defined conversion

operators (C# 1) 586-588
C# 9, features

exploring 592
init-only properties 594
record classes 594, 595
target-typed new expressions 593, 594
top-level statements 592, 593

C# 10, features
constant interpolated strings 601
exploring 599
file-scoped namespace 599
global using directives 599, 600
implicit using directives 600
minimal APIs 603, 604
minimal hosting model 602, 603
nullable reference type 605, 606
record struct 601, 602

Caching Tag Helpers
Cache Tag Helper 518
Distributed Cache Tag Helper 518
Image Tag Helper 518

central data highway 456
Chain of Responsibility pattern

design 285, 286
finer-grained design project 294-298
goal 285
implementing 285
improved message interpreter project 291-293
message interpreter project 286-290
SOLID principles 298

Circuit pattern 477

Index 637

classic ASP.NET Core application 35, 36
classic layering model 324

advantages 325, 326
data layer 324
disadvantages 326
domain layer 324
presentation layer 324
visual example 325

Clean Architecture 346, 350
core layer 349, 350
dependency rule 349
diagrammatic representation 347, 348
infrastructure layer 348
Web layer 349
with MediatR 415-421

cluster 617
code smells 3, 4

long methods 4
command 454
Command Query Responsibility Segregation

(CQRS) pattern 394, 484-487
CQRS project 396-410
design 395, 396
goal 395
implementing 394
marker interfaces 410
SOLID principles 414
SOLID principles, at cloud scale 488

Command Query Separation (CQS)
principle 484

commands 414
Common Language Runtime (CLR) 9
CommonScenarios project 198-201

named options 201-203
settings, using 204-206

ComponentBase class code
reference link 284

component parameter 551

Component Tag Helper 524
composite bookstore

display template, implementing 537-543
Composite design pattern

bookstore project 250-260
design 249
goal 249
implementing 249

composition 59
integrating, with dependency injection 61

composition over inheritance principle 166
C#-only components 551, 552
constructor injection 166, 540
containers

overview 607
continuous deployment (CD) 19
continuous integration (CI) 19
continuous integration (CI) pipeline 10, 617
contravariance 62, 63
Control Freak anti-pattern 4, 161, 163
cookies 7
covariance 62
Create-Read-Update-Delete (CRUD)

controller 365
customer relationship management (CRM) 491
custom Tag Helper

creating 524-526

D
data access layer (DAL) 324
data-driven test cases

with theories 25-29
data layer 334, 335

Repository pattern 335-337
Unit of Work pattern 337, 338

data model 335
data-ownership 453

Index638

Data Transfer Object (DTO) design pattern 119
design 120
goal 119
project 120-127

Data Transfer Objects (DTOs) 357
dead letter queue 457
Death Star anti-pattern 472
deconstruct record classes 596, 597
decorator class 240
Decorator design pattern

behaviors, adding 243, 244
class diagram 241
DecoratorA 244
DecoratorB 245, 246
design 240
goal 239
implementing 239
Scrutor, using 246-248
sequence diagram 242, 243

default literal expressions (C# 7.1) 582, 583
default value expressions 582
Dependency Injection (DI) 86, 157, 158, 364

code smell 163, 164
composition root 159
features, registering 159-161
object lifetime 161-163

Dependency Inversion
Principle (DIP) 81, 285, 339, 341, 364

dependency inversion project 83-86
dependency inversion project goals 84
direct dependency 81
inverted dependency 81
SOLID principles 86
subsystems, inverting with 82, 83

design patterns 2
discards (C# 7) 584, 585
display template 533

implementing, in composite
bookstore 537-543

SOLID principles 543
using 533-535

Distributed Cache Tag Helper 518
distributed tracing 487
Docker 608

creating 609
docker build command 610
Docker Compose 608, 611-615
Docker container 608
Docker Desktop 608
Dockerfile 608
Docker Hub 608
Docker image 608
docker image ls command 611
docker ps command 611
docker rm command 611
docker run command 611
docker stop command 611

Domain-Driven Design (DDD) 329, 452
domain event 455
domain layer 329

anemic domain model, using 331, 332
rich domain model, using 330, 331
service layer 333, 334

dotnet command-line interface (CLI) 10
double-checked locking 151
DRY principle 88

E
editor template 533

SOLID principles 543
using 535-537

encapsulation 41
end-to-end tests 17
enterprise event 455
Entity Framework Core (EF Core) 335
Environment Tag Helper 517
event-driven architecture (EDA) 454

Index 639

SOLID principles 456
events 454-456

application event 455
domain event 455
enterprise events 455
integration events 455

event sourcing pattern 460, 463, 465
eventual consistency 464, 486
expression-bodied member (C# 6-7) 576, 577
expression-bodied methods 136
ExternalGreeter 264
ExternalGreeterAdapter 264
external IoC containers

using 164, 165

F
Façade design pattern

alternative façade patterns 276
design 266
façades project 267
flexibility, working with 275, 276
goal 265
implementing 265, 267
opaque façade 267-269
program 273, 274
transparent façade 270-272

Factory pattern 189
factory project 189-192

facts 21, 23
fire and forget 460, 485

First In, First Out (FIFO) 457
fixtures 30
FluentValidation 429
Form Tag Helpers 519, 522

Input Tag Helper 519
Label Tag Helper 520
Select Tag Helper 520

Textarea Tag Helper 520
Validation Message Tag Helper 521
Validation Summary Tag Helper 521

G
Gang of Four (GoF) 133, 239, 279
Gateway Aggregation pattern 478-480
Gateway patterns 474, 475
Gateway Routing pattern 475-478
gateways 482, 483

aggregation 482
Backends for Frontends 482
mixing and matching 481
routing 482
SOLID principles, at cloud-scale 484

generics 358
GET request 6
given-when-then template 19
God class 3, 4
guard clause

adding 171

H
HallOfFame class

implementation 65-67
HallOfFame project 65

hall of heroes, adding 68-71
LSP, conforming 72, 73
LSP, violating 71, 72

handler 561
horizontal scaling 618
Hypertext Transfer Protocol (HTTP) 8

HTTP/1 8
HTTP/2 8
HTTP/3 8
HTTP headers 6, 109, 110
HTTP methods 108

Index640

HTTP request 5
HTTP status codes 108, 109

I
IAttacker interface

implementation 53-61
idempotent request 6
IGreeter interface 263
Image Tag Helper 518
Ingress 617
inheritance 41
init-only properties 594
Input Tag Helper 519
integration events 455
integration tests 16

implementing, with ASP.NET Core 35
organizing 34

interfaces 52
Interface Segregation Principle (ISP) 73, 364

Bookstore project update 77-80
ninja, versus pirate 74-76
SOLID principles 80

Intermediate Language (IL) 9
Internet of Things (IoT) 460, 496
Internet Protocol (IP) layer 8
Inversion of Control (IoC) principle 157
IoC container 157, 158
ITarget interface 262

J
JSON patch 467

K
kebab-case format 525
keep it simple, stupid (KISS) principle 89

Kompose
URL 617

Kubernetes 616

L
Label Tag Helper 514, 520
Language Integrated Query (LINQ) 136
layering 323

classic layering model 324
Clean Architecture 346
common layers 329
implementing 351
real life use cases 351-354

layers
abstract layers 339-341
data layer 334, 335
domain layer 329
model, sharing 342-346
presentation layer 329
splitting 327
versus assemblies 328, 329
versus tiers 328

libraries 10
lightweight syntax 578
Link Tag Helper 516
Liskov Substitution Principle (LSP) 62, 164

HallOfFame project 64
SOLID principles 73

load balancer 618, 619
local functions (C# 7) 588-592
logging 221
logging abstractions, .NET 221

logging, configuring 229-232
logging providers 229
log levels 227, 228
logs, writing 222-226
structured logging 233, 234

Index 641

long methods code smell 4
Long-Term Support (LTS) releases 9
loose coupling 463

M
marker interfaces 410

dependency identifier 411-413
metadata 410

materialized view 464, 470
mediator 394
Mediator pattern

design 383-385
goal 383
implementing 383
Mediator (IChatRoom) project 389-394
Mediator (IMediator) project 385-389
SOLID principles 394

MediatR 460
Clean Architecture 415-421
SOLID principles 421
using, as mediator 415

message 454, 561
message broker 460, 463
MessageHandlerBase 298
message queues 457-459

SOLID principles 459
versus Publish-Subscribe pattern 474
working with 457-459

method injection 167
Microservice Adapter pattern 488, 498

event broker, adapting to another 496, 497
existing system, adapting to another 489, 490
legacy application, decommissioning 491-495
SOLID principles 498

microservices, principles
cohesive unit of business 452
independence 453
ownership of data 453

Microsoft Intermediate Language (MSIL) 9
minimal APIs 188
minimal hosting 37, 38
Model View Controller (MVC)

design pattern 93, 111
ASP.NET Core MVC anatomy 95, 96
ASP.NET Core web APIs anatomy 113
controller 112
design 94, 112
goal 94, 112
model 112
view 112
workflow 94, 95

Model-View-Update (MVU) pattern 331, 560
Counter project 562-565
design 561, 562
goal 561
SOLID principles 566

Model-View-View-Model (MVVM) 331
Mono 9
monolithic application 328
MQTT 460

reference link 460
Multi-platform App UI (MAUI) 548
MultipleMessageHandlerBase 298
multistage build 609
MVC pattern, web API 107

N
Network File System (NFS) 617
node 617
null-coalescing operator (C# 2.0) 575, 576

O
object mapper 357

Aggregate Services pattern 365, 366
AutoMapper project 371-377

Index642

design 358, 359
goal 358
Mapper project 359-364
Mapping Façade pattern 367, 368
Mapping service project 368-371
SOLID principles, following 378
too-many-dependencies code smell 364, 365

object mapping 357
object-oriented programming (OOP) 87
object-relational mapper (ORM) 331, 335
Observer design pattern 474
Ocelot 475

reference link 475
opaque façade 267, 269
Open/Closed Principle (OCP) 53, 133, 188, 491

IAttacker project 53
OpenID Connect (OIDC) 483
operational complexity 464, 487
Operation Result design pattern 301

advantages 318
consumer 303
design 302
disadvantages 318, 319
goal 302
message severity, adding 310-314
multiple error messages 308-310
return value, adding 307, 308
simplest form 304, 305
single error message, adding to result 305, 306
static factories 315-318
sub-classes 315-318
ways, for implementing 303

OptionsConfiguration project 206, 207
configuration possibilities, exploring 210, 211
configurator object, implementing 208
multiple configurator objects, using 209

Options pattern 195, 196, 528
CommonScenarios project 198-201

OptionsConfiguration project 206, 207
options, injecting directly 218-220
OptionsValidationFluentValidation

project 216, 217
OptionsValidation project 211

OptionsValidationFluentValidation
project 216-218

OptionsValidation project 211
data annotations 212, 213
eager validation 211
validation types, implementing 213-215

orchestration 615
over-posting attacks 358

P
packet 8
pages 551
partial classes 553
Partial Tag Helper 522, 523
partial view 509

shared form project 510-513
SOLID principles 513

pattern matching 584
persistence layer 324
Persistent Volumes (PVs) 617
pods 617
polymorphism 41
Postman collection

URL 184
presentation layer 329

private readonly fields
benefits 169

program
building 12
running 12

project templates
overview 11

Index 643

Project Tye 616
features 616
URL 616

property injection 166
Publish-Subscribe pattern 457-460, 473

event sourcing pattern 463-465
example 465-472
implementing 460-463
message broker 463
SOLID principles 474
versus message queues 474

pure function 561

Q
queries 414

R
RabbitMQ 459
Razor 93, 99
Razor components 548-551

C# hybrid components, working with 553, 554
creating 551
CSS isolation 554, 555
event handling 558-560
life cycle 556, 558
Razor-only components 552, 553

Razor Pages 503, 551
design 505-508
routing 508
SOLID principles 508, 509
using 504

record classes 530, 594, 595, 598
deconstruct record classes 596
equality comparison 597
record creation, simplifying 595
with keyword 596

Red-Green-Refactor technique 19
reducer function 561

refactoring 20
RemoveStocks feature

exploring 430
Repository pattern 334-337
Representational State Transfer (REST)

HTTP headers 109, 110
HTTP methods 108
HTTP status codes 108, 109
overview 107, 108
versioning strategy 110

request 5, 561
resource 8
response 7, 8
Retry pattern 477
return on investment (ROI) 16
reusable employee count view component

creating 530-532
reverse proxy 475
rich domain model 330

advantage 331
drawbacks 331
service layer 331
sharing 342-346

root component 550
RSS feed TagHelperComponent

creating 526-529
runtime

versus .NET SDK 9

S
scaling 618

horizontal scaling 618
vertical scaling 618

scoped lifetime 197
Script Tag Helper 516, 517
Scrutor 239

using, in Decorator 246-248

Index644

search machine project
building 280-284

Select Tag Helper 520
separation of concerns principle 87, 88
sequence numbers 552
serverless computing 484
server push 8
service layer 333, 334

application services 333
domain services 333

Service Locator pattern 184, 370
constructor injection, implementing 187, 188
implementing 185
method injection, implementing 187
minimal API, implementing 188
ServiceLocator project 184-186

service mesh 482
services 617
shared form

centralizing 511
isolating 512
partial view 510
partial view, implementing 512

sidecars 482
SingleMessageHandlerBase 298
Single Responsibility

Principle (SRP) 148, 284, 359
BookStore project 42
interfaces 52
reviewing 42

Singleton design pattern 148, 173
application state project 173-178
alternate way 151
design 149, 150
goal 148
SOLID principles 154
wishlist project 178-184

singleton lifetime 197

SOLID principles 41
CQRS 488
dependency inversion principle (DIP) 81
event-driven architecture (EDA) 456
gateways 484
interface segregation principle (ISP) 73
Liskov substitution principle (LSP) 62
message queues 459
Microservice Adapter pattern 498
open/closed principle (OCP) 53
Publish-Subscribe pattern 474
single responsibility principle (SRP) 42

stable dependencies 164
state 561, 562
static factory method 315
static local function (C# 8) 588-592
Strangler Fig Application 493
Strategy design pattern 133, 166

constructor injection 166
design 134, 135
goal 134
guard clause, adding 171, 172
method injection 167
project 135-140
property injection 166
SOLID principles 140
using 168, 169
View Model, adding 170, 171

subtype correctness 63
subtypes 64
supertype 64
switch expressions (C# 8) 583, 584

T
Tag Helpers 513

built-in Tag Helpers 515
custom Tag Helper, creating 524-526
Label Tag Helper 514

Index 645

RSS feed TagHelperComponent,
creating 526-529

SOLID principles 529
using 514, 515

Target Framework Moniker (TFM) 10
target-typed new expressions 593, 594
technical debt 20
Template Method pattern

design 279
goal 279
implementing 279, 280
search machine, building 280-284
SOLID principles 284

test-driven development (TDD) 19
tests 15

approaches 19
principles 39, 40
organizing 31, 32
test pyramid 16
test style, selecting 18
types 17

Textarea Tag Helper 520
theories 25

data-driven test cases 25-29
third-party logging providers 229
throw expressions (C# 7.0) 577
tiers 328

versus layers 328
time-series databases 486
transient lifetime 197
Transmission Control Protocol (TCP) 8
transparent façade

implementing 270-272
tuples (C# 7.0+) 578-581
Tye. See Project Tye

U
UI tests 17
Unit of Work pattern 334-338
unit tests 16

organizing 32-34
update function 561
use cases, layering 351-354

façade, building over database 352-354
user-defined conversion

operators (C# 1) 586-588
user interface

display template 533
editor template 533
organizing 509
partial view 509, 510
Tag Helpers 513-515
view components 529

V
Validation Message Tag Helper 521
Validation Summary Tag Helper 521
verbs 108
versioning strategy 110, 111

default versioning strategy 110
vertical scaling 618
Vertical Slice Architecture 423, 425

advantages 425
Big Ball of Mud anti-pattern 427
diagrammatic representation 424
disadvantages 425-427
high-level overview 381, 382
SOLID principles 448

Vertical Slice Architecture project
diagrammatic representation 427
organizing 428-430

Index646

RemoveStocks feature, exploring 430-436
request validation 437-442
testing 442-446
tricks 446-448

view 561
view components 529

files, organizing 530
reusable employee count view

component 530-532
SOLID principles 532

view function 561
view model 334
View Model design pattern 101

design 102
goal 101, 102
SOLID principles 105
students list project 103-105

Visual Studio 11
tips 609

Visual Studio Code 11
volatile dependencies 164
volumes 617

W
web 5
web API 107

examples 112
MVC flow 112, 113
MVC pattern 107

WebAssembly (Wasm) 547-549
Windows Subsystem for Linux (WSL) 608
with keyword 596
WORKDIR instruction

COPY 610
ENTRYPOINT 610
EXPOSE 610
RUN 610

X
xUnit 21

assertions 23, 24
facts 21, 23
fixtures 30
OOP concepts 30
theories 25-29

xUnit test project
creating 21

Y
YARP 475

reference link 475

	Preface
	Section 1: Principles and Methodologies
	Chapter 1: Introduction
	What is a design pattern?
	Anti-patterns and code smells
	Anti-patterns
	Anti-pattern – God Class

	Code smells
	Code smell – Control Freak
	Code smell – Long Methods

	Understanding the web – request/response
	Getting started with .NET
	.NET SDK versus runtime
	.NET 5+ versus .NET Standard
	Visual Studio Code versus Visual Studio versus the command-line interface
	An overview of project templates
	Running and building your program

	Technical requirements

	Summary
	Questions
	Further reading

	Chapter 2: Automated Testing
	An overview of automated testing
	Unit testing
	Integration testing
	End-to-end testing
	Other types of tests
	Picking the right test style
	Testing approaches
	Refactoring
	Technical debt

	Testing .NET applications
	Creating an xUnit test project
	Getting started with xUnit
	Facts
	Assertions
	Theories
	Closing words

	Arrange, Act, Assert
	Organizing your tests
	Unit tests
	Integration tests

	ASP.NET Core integration testing
	Classic web application
	Minimal hosting

	Important testing principles
	Summary
	Questions
	Further reading

	Chapter 3: Architectural Principles
	The SOLID principles
	Single responsibility principle (SRP)
	Project – BookStore
	What is an interface?

	Open/Closed principle (OCP)
	Project – IAttacker

	Liskov substitution principle (LSP)
	Project – HallOfFame
	Conclusion

	Interface segregation principle (ISP)
	Project – Ninja versus Pirate
	Project – Bookstore update
	Conclusion

	Dependency inversion principle (DIP)
	Direct dependency
	Inverted dependency
	Inverting subsystems using DIP
	Project – Dependency inversion
	Conclusion
	What’s next?

	Other important principles
	Separation of concerns
	Don’t repeat yourself (DRY)
	Keep it simple, stupid (KISS)

	Summary
	Questions
	Further reading

	Section 2: Designing for ASP.NET Core
	Chapter 4: The MVC Pattern Using Razor
	The Model View Controller design pattern
	Goal
	Design
	Anatomy of ASP.NET Core MVC
	Directory structure
	Controller
	Model
	View
	Default routing

	Conclusion

	The View Model design pattern
	Goal
	Design
	Project – View models (a list of students)
	Conclusion

	Summary
	Questions
	Further reading

	Chapter 5: The MVC Pattern for Web APIs
	An overview of REST
	HTTP methods
	Status code
	HTTP headers
	Versioning
	Default versioning strategy
	Versioning strategy

	Wrapping up

	The Model View Controller design pattern
	Goal
	Design
	Anatomy of ASP.NET Core web APIs
	The entry point
	Directory structure
	Controller
	Returning values
	Attribute routing

	Conclusion

	The Data Transfer Object design pattern
	Goal
	Design
	Project – DTO
	Conclusion

	API contracts
	Summary
	Questions
	Further reading

	Chapter 6: Understanding the Strategy, Abstract Factory, and Singleton Design Patterns
	The Strategy design pattern
	Goal
	Design
	Project – Strategy
	Conclusion

	The Abstract Factory design pattern
	Goal
	Design
	Project – AbstractVehicleFactory
	Conclusion

	The Singleton design pattern
	Goal
	Design
	An alternate (better) way
	Code smell – Ambient Context
	Conclusion

	Summary
	Questions

	Chapter 7: Deep Dive into Dependency Injection
	What is dependency injection?
	The composition root
	Registering your features elegantly
	Object lifetime
	Code smell – Control Freak

	Using external IoC containers
	Revisiting the Strategy pattern
	Constructor injection
	Property injection
	Method injection
	Project – Strategy
	Adding the View Model
	Adding a guard clause

	Conclusion

	Revisiting the Singleton pattern
	Project – Application state
	Project – Wishlist
	Conclusion

	Understanding the Service Locator pattern
	Project – ServiceLocator
	Implementing method injection
	Implementing constructor injection
	Implementing a minimal API

	Conclusion

	Revisiting the Factory pattern
	Project – Factory
	Conclusion

	Summary
	Questions
	Further reading

	Chapter 8: Options and Logging Patterns
	The Options pattern
	Getting started
	IOptionsMonitor<TOptions>
	IOptionsFactory<TOptions>
	IOptionsSnapshot<TOptions>
	IOptions<TOptions>

	Project – CommonScenarios
	Named options
	Using settings

	Project – OptionsConfiguration
	Implementing a configurator object
	Using multiple configurator objects
	Exploring other configuration possibilities

	Project – OptionsValidation
	Eager validation
	Data annotations
	Validation types

	Project – OptionsValidationFluentValidation
	Workaround – Injecting options directly
	Conclusion

	Becoming familiar with .NET logging abstractions
	About logging
	Writing logs
	Log levels
	Logging providers
	Configuring logging
	Structured logging
	Conclusion

	Summary
	Questions
	Further reading

	Section 3: Designing at Component Scale
	Chapter 9: Structural Patterns
	Implementing the Decorator design pattern
	Goal
	Design
	Project – Adding behaviors
	DecoratorA
	DecoratorB

	Project – Decorator using Scrutor
	Conclusion

	Implementing the Composite design pattern
	Goal
	Design
	Project – BookStore
	Conclusion

	Implementing the Adapter design pattern
	Goal
	Design
	Project – Greeter
	Conclusion

	Implementing the Façade design pattern
	Goal
	Design
	Project – The façades
	Opaque façade
	Transparent façade
	The program
	Flexibility in action
	Alternative façade patterns

	Conclusion

	Summary
	Questions
	Further reading

	Chapter 10: Behavioral Patterns
	Implementing the Template Method pattern
	Goal
	Design
	Project – Building a search machine
	Conclusion

	Implementing the Chain of Responsibility pattern
	Goal
	Design
	Project – Message interpreter
	Project – Improved message interpreter
	Project – A final, finer-grained design
	Conclusion

	Summary
	Questions

	Chapter 11: Understanding the Operation Result Design Pattern
	The Operation Result pattern
	Goal
	Design
	Project – Implementing different Operation Result patterns
	The consumer
	The simplest form of the Operation Result pattern
	A single error message
	Adding a return value
	Multiple error messages
	Adding message severity
	Sub-classes and factories

	Advantages and disadvantages
	Advantages
	Disadvantages

	Summary
	Questions
	Further reading

	Section 4: Designing at Application Scale
	Chapter 12: Understanding Layering
	Introducing layering
	Classic layering model
	Splitting the layers
	Layers versus tiers versus assemblies
	What is an assembly?

	Responsibilities of the common layers
	Presentation
	Domain
	Rich domain model
	Anemic domain model
	Service layer

	Data
	Repository pattern
	Unit of Work pattern

	Abstract layers
	Sharing the model
	Clean Architecture
	Implementing layering in real life
	To be or not to be a purist?
	Building a façade over a database

	Summary
	Questions
	Further reading

	Chapter 13: Getting Started with Object Mappers
	Object mapper
	Goal
	Design
	Project – Mapper
	Code smell – Too many dependencies
	Pattern – Aggregate Services
	Pattern – Mapping Façade
	Project – Mapping service
	Project – AutoMapper
	Conclusion

	Summary
	Questions
	Further reading

	Chapter 14: Mediator and CQRS Design Patterns
	A high-level overview of Vertical Slice Architecture
	Implementing the Mediator pattern
	Goal
	Design
	Project – Mediator (IMediator)
	Project – Mediator (IChatRoom)
	Conclusion

	Implementing the CQRS pattern
	Goal
	Design
	Project – CQRS
	Code smell – Marker Interfaces
	Metadata
	Dependency identifier

	Conclusion

	Using MediatR as a mediator
	Project – Clean Architecture with MediatR
	Conclusion

	Summary
	Questions
	Further reading

	Chapter 15: Getting Started with Vertical Slice Architecture
	Vertical Slice Architecture
	What are the advantages and disadvantages?
	Anti-pattern – Big Ball of Mud
	Project – Vertical Slice Architecture
	Project organization
	Exploring a feature
	Request validation
	Testing

	Continuing your journey
	Conclusion

	Summary
	Questions
	Further reading

	Chapter 16: Introduction to Microservices Architecture
	What are microservices?
	Cohesive unit of business
	Ownership of data
	Microservice independence

	An introduction to event-driven architecture
	Domain events
	Integration events
	Application events
	Enterprise events
	Conclusion

	Getting started with message queues
	Conclusion

	Implementing the Publish-Subscribe pattern
	Message brokers
	The event sourcing pattern
	Example
	Conclusion

	Introducing Gateway patterns
	Gateway Routing pattern
	Gateway Aggregation pattern
	Backends for Frontends pattern
	Mixing and matching gateways
	Conclusion

	Revisiting the CQRS pattern
	Conclusion

	Exploring the Microservice Adapter pattern
	Adapting an existing system to another
	Decommissioning a legacy application
	Adapting an event broker to another
	Conclusion

	Summary
	Questions
	Further reading

	Section 5: Designing the Client Side
	Chapter 17: ASP.NET Core User Interfaces
	Getting familiar with Razor Pages
	Design
	Routing
	Conclusion

	Organizing the user interface
	Partial views
	Project – Shared form
	Conclusion

	Tag Helpers
	Built-in Tag Helpers
	Creating a custom Tag Helper
	Creating an RSS feed TagHelperComponent
	Conclusion

	View components
	Project – Reusable employee count
	Conclusion

	Display and editor templates
	Display templates
	Editor templates
	Project – Composite BookStore revisited
	Conclusion

	Summary
	Questions
	Further reading

	Chapter 18: A Brief Look into Blazor
	Overview of Blazor Server
	Overview of Blazor WebAssembly
	Getting familiar with Razor components
	Creating Razor components
	C#-only components
	Razor-only components
	Razor and C# hybrid components

	CSS isolation
	Component life cycle
	Event handling

	The Model-View-Update pattern
	Goal
	Design
	Project – Counter
	Conclusion

	A medley of Blazor features
	Summary
	Questions
	Further reading
	An end is simply a new beginning

	Appendices
	Appendix A
	Older C# features
	The null-coalescing operator (C# 2.0)
	Expression-bodied member (C# 6-7)
	Throw expressions (C# 7.0)
	Tuples (C# 7.0+)
	Default literal expressions (C# 7.1)
	Switch expressions (C# 8)
	Discards (C# 7)
	Async main (C# 7.1)
	User-defined conversion operators (C# 1)
	Local functions (C# 7) and a static local function (C# 8)

	What’s new in .NET 5 and C# 9?
	Top-level statements
	Target-typed new expressions
	Init-only properties
	Record classes
	Simplifying the record creation
	The with keyword
	Deconstruction
	Equality comparison
	Conclusion

	What’s new in .NET 6 and C# 10?
	File-scoped namespaces
	Global using directives
	Implicit using directives
	Constant interpolated strings
	Record struct
	Minimal hosting model
	Minimal APIs
	Nullable reference types

	Appendix B
	An overview of containers
	Docker
	Docker Compose

	Orchestration
	Project Tye
	Kubernetes

	Scaling
	Summary
	Further reading

	Assessment Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18

	Acronyms Lexicon
	Other Books You May Enjoy

	PacktPage
	Other Books You May Enjoy
	Index

