

Hands-On Web Scraping with
Python

Perform advanced scraping operations using various Python
libraries and tools such as Selenium, Regex, and others

Anish Chapagain

BIRMINGHAM - MUMBAI

Hands-On Web Scraping with Python
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Aniruddha Patil
Content Development Editor: Roshan Kumar
Senior Editor: Ayaan Hoda
Technical Editor: Sushmeeta Jena
Copy Editor: Safis Editing
Project Coordinator: Namrata Swetta
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Alishon Mendonsa

First published: June 2019

Production reference: 2120619

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-339-2

www.packtpub.com

http://www.packtpub.com

To my daughter, Aasira, and my family and friends. Special thanks to Ashish Chapagain,
Peter, and Prof. W.J. Teahan. This book is dedicated to you all.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Anish Chapagain is a software engineer with a passion for data science, its processes, and
Python programming, which began around 2007. He has been working with web scraping
and analysis-related tasks for more than 5 years, and is currently pursuing freelance
projects in the web scraping domain. Anish previously worked as a trainer, web/software
developer, and as a banker, where he was exposed to data and gained further insights into
topics including data analysis, visualization, data mining, information processing, and
knowledge discovery. He has an MSc in computer systems from Bangor University
(University of Wales), United Kingdom, and an Executive MBA from Himalayan
Whitehouse International College, Kathmandu, Nepal.

About the reviewers
Radhika Datar has more than 5 years' experience in software development and content
writing. She is well versed in frameworks such as Python, PHP, and Java, and regularly
provides training on them. She has been working with Educba and Eduonix as a training
consultant since June 2016, while also working as a freelance academic writer in data
science and data analytics. She obtained her master's degree from the Symbiosis Institute of
Computer Studies and Research and her bachelor's degree from K. J. Somaiya College of
Science and Commerce.

Rohit Negi completed his bachelor of technology in computer science from Uttarakhand
Technical University, Dehradun. His bachelor's curriculum included a specialization in
computer science and applied engineering. Currently, he is working as a senior test
consultant at Orbit Technologies and provides test automation solutions to LAM Research
(USA clients). He has extensive quality assurance proficiency working with the following
tools: Microsoft Azure VSTS, Selenium, Cucumber/BDD, MS SQL/MySQL, Java, and web
scraping using Selenium. Additionally, he has a good working knowledge of how to
automate workflows using Selenium, Protractor for AngularJS-based applications, Python
for exploratory data analysis, and machine learning.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Section 1: Introduction to Web Scraping
Chapter 1: Web Scraping Fundamentals 7

Introduction to web scraping 8
Understanding web development and technologies 8

HTTP 9
HTML 14

HTML elements and attributes 14
Global attributes 15

XML 17
JavaScript 18
JSON 19
CSS 21
AngularJS 22

Data finding techniques for the web 24
HTML page source 24

Case 1 25
Case 2 27

Developer tools 28
Sitemaps 34
The robots.txt file 36

Summary 37
Further reading 37

Section 2: Section 2: Beginning Web Scraping
Chapter 2: Python and the Web – Using urllib and Requests 40

Technical requirements 41
Accessing the web with Python 41

Setting things up 42
Loading URLs 45

URL handling and operations with urllib and requests 53
urllib 53
requests 62

Implementing HTTP methods 66
GET 66
POST 67

Summary 69

Table of Contents

[ii]

Further reading 70

Chapter 3: Using LXML, XPath, and CSS Selectors 71
Technical requirements 72
Introduction to XPath and CSS selector 72

XPath 73
CSS selectors 80

Element selectors 82
ID and class selectors 83
Attribute selectors 83
Pseudo selectors 84

Using web browser developer tools for accessing web content 86
HTML elements and DOM navigation 87
XPath and CSS selectors using DevTools 91

Scraping using lxml, a Python library 93
lxml by examples 94

Example 1 – reading XML from file and traversing through its elements 94
Example 2 – reading HTML documents using lxml.html 97
Example 3 – reading and parsing HTML for retrieving HTML form type element
attributes 101

Web scraping using lxml 102
Example 1 – extracting selected data from a single page using lxml.html.xpath 103
Example 2 – looping with XPath and scraping data from multiple pages 106
Example 3 – using lxml.cssselect to scrape content from a page 109

Summary 112
Further reading 113

Chapter 4: Scraping Using pyquery – a Python Library 114
Technical requirements 115
Introduction to pyquery 115
Exploring pyquery 116

Loading documents 118
Element traversing, attributes, and pseudo-classes 119
Iterating 123

Web scraping using pyquery 127
Example 1 – scraping data science announcements 127
Example 2 – scraping information from nested links 130
Example 3 – extracting AHL Playoff results 134
Example 4 – collecting URLs from sitemap.xml 138

Case 1 – using the HTML parser 139
Case 2 – using the XML parser 140

Summary 144
Further reading 144

Chapter 5: Web Scraping Using Scrapy and Beautiful Soup 145
Technical requirements 145
Web scraping using Beautiful Soup 146

Table of Contents

[iii]

Introduction to Beautiful Soup 146
Exploring Beautiful Soup 147

Searching, traversing, and iterating 151
Using children and parents 156
Using next and previous 159
Using CSS Selectors 165

Example 1 – listing elements with the data-id attribute 166
Example 2 – traversing through elements 167
Example 3 – searching elements based on attribute values 168
Building a web crawler 168

Web scraping using Scrapy 172
Introduction to Scrapy 172
Setting up a project 174

Generating a Spider 177
Creating an item 179
Extracting data 180

Using XPath 181
Using CSS Selectors 182
Data from multiple pages 183

Running and exporting 185
Deploying a web crawler 188
Summary 195
Further reading 195

Section 3: Section 3: Advanced Concepts
Chapter 6: Working with Secure Web 197

Technical requirements 198
Introduction to secure web 198

Form processing 198
Cookies and sessions 199

Cookies 199
Sessions 200

User authentication 200
HTML <form> processing 201
Handling user authentication 208
Working with cookies and sessions 212
Summary 218
Further reading 219

Chapter 7: Data Extraction Using Web-Based APIs 220
Technical requirements 220
Introduction to web APIs 221

REST and SOAP 221
REST 222
SOAP 222

Benefits of web APIs 223

Table of Contents

[iv]

Accessing web API and data formats 224
Making requests to the web API using a web browser 226

Case 1 – accessing a simple API (request and response) 226
Case 2 – demonstrating status codes and informative responses from the API 229
Case 3 – demonstrating RESTful API cache functionality 231

Web scraping using APIs 233
Example 1 – searching and collecting university names and URLs 233
Example 2 – scraping information from GitHub events 235

Summary 237
Further reading 237

Chapter 8: Using Selenium to Scrape the Web 238
Technical requirements 239
Introduction to Selenium 239

Selenium projects 240
Selenium WebDriver 241
Selenium RC 241
Selenium Grid 241
Selenium IDE 242

Setting things up 242
Exploring Selenium 245

Accessing browser properties 245
Locating web elements 250

Using Selenium for web scraping 255
Example 1 – scraping product information 255
Example 2 – scraping book information 258

Summary 261
Further reading 261

Chapter 9: Using Regex to Extract Data 262
Technical requirements 263
Overview of regular expressions 263

Regular expressions and Python 264
Using regular expressions to extract data 274

Example 1 – extracting HTML-based content 274
Example 2 – extracting dealer locations 278
Example 3 – extracting XML content 282

Summary 286
Further reading 287

Section 4: Section 4: Conclusion
Chapter 10: Next Steps 289

Technical requirements 290
Managing scraped data 290

Writing to files 292

Table of Contents

[v]

Analysis and visualization using pandas and matplotlib 295
Machine learning 303

ML and AI 303
Python and ML 304
Types of ML algorithms 306

Supervised learning 306
Classification 307
Regression 309

Unsupervised learning 310
Association 310
Clustering 311

Reinforcement learning 311
Data mining 311

Tasks of data mining 312
Predictive 313

Classification 313
Regression 313
Prediction 313

Descriptive 313
Clustering 314
Summarization 314
Association rules 314

What's next? 314
Summary 315
Further reading 316

Other Books You May Enjoy 317

Index 320

Preface
Web scraping is an essential technique used in many organizations to scrape valuable data
from web pages. Web scraping, or web harvesting, is done with a view to extracting and
collecting data from websites. Web scraping comes in handy with model development,
which requires data to be collected on the fly. It is also applicable for the data that is true
and relevant to the topic, in which the accuracy is desired over the short-term, as opposed
to implementing datasets. Data collected is stored in files including JSON, CSV, and XML,
is also written a the database for later use, and is also made available online as
datasets. This book will open the gates for you in terms of delving deep into web scraping
techniques and methodologies using Python libraries and other popular tools, such as
Selenium. By the end of this book, you will have learned how to efficiently scrape different
websites.

Who this book is for
This book is intended for Python programmers, data analysts, web scraping newbies, and
anyone who wants to learn how to perform web scraping from scratch. If you want to begin
your journey in applying web scraping techniques to a range of web pages, then this book
is what you need!

What this book covers
Chapter 1, Web Scraping Fundamentals, explores some core technologies and tools that are
relevant to WWW and that are required for web scraping.

Chapter 2, Python and the Web – Using URLlib and Requests, demonstrates some of the core
features available through the Python libraries such as requests and urllib, in addition
to exploring page contents in various formats and structures.

Chapter 3, Using LXML, XPath, and CSS Selectors, describes various examples using LXML,
implementing a variety of techniques and library features to deal with elements and
ElementTree.

Chapter 4, Scraping Using pyquery – a Python Library, goes into more detail regarding
web scraping techniques and a number of new Python libraries that deploy these
techniques.

Preface

[2]

Chapter 5, Web Scraping Using Scrapy and Beautiful Soup, examines various aspects of
traversing web documents using Beautiful Soup, while also exploring a framework that
was built for crawling activities using spiders, in other words, Scrapy.

Chapter 6, Working with Secure Web, covers a number of basic security-related measures
and techniques that are often encountered and that pose a challenge to web scraping.

Chapter 7, Data Extraction Using Web-Based APIs, covers the Python programming
language and how to interact with the web APIs with regard to data extraction.

Chapter 8, Using Selenium to Scrape the Web, covers Selenium and how to use it to scrape
data from the web.

Chapter 9, Using Regex to Extract Data, goes into more detail regarding web scraping
techniques using regular expressions.

Chapter 10, Next Steps, introduces and examines basic concepts regarding data
management using files, and analysis and visualization using pandas and matplotlib, while
also providing an introduction to machine learning and data mining and exploring a
number of related resources that can be helpful in terms of further learning and career
development.

To get the most out of this book
Readers should have some working knowledge of the Python programming language.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[3]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Hands- ​On- ​Web- ​Scraping- ​with- ​Python. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​9781789533392_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The <p> and <h1> HTML elements contain general text information (element
content) with them."

A block of code is set as follows:

import requests
link="http://localhost:8080/~cache"

queries= {'id':'123456','display':'yes'}

addedheaders={'user-agent':''}

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789533392_ColorImages.pdf

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import requests
link="http://localhost:8080/~cache"

queries= {'id':'123456','display':'yes'}

addedheaders={'user-agent':''}

Any command-line input or output is written as follows:

C:\> pip --version

pip 18.1 from c:\python37\lib\site-packages\pip (python 3.7)

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"If accessing Developer tools through the Chrome menu, click More tools | Developer
tools"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Introduction to Web

Scraping
In this section, you will be given an overview of web scraping (scraping requirements, the
importance of data), web contents (patterns and layouts), Python programming and
libraries (the basics and advanced), and data managing techniques (file handling and
databases).

This section consists of the following chapter:

Chapter 1, Web Scraping Fundamentals

1
Web Scraping Fundamentals

In this chapter, we will learn about and explore certain fundamental concepts related to
web scraping and web-based technologies, assuming that you have no prior experience of
web scraping.

So, to start with, let's begin by asking a number of questions:

Why is there a growing need or demand for data?
How are we going to manage and fulfill the requirement for data with resources
from the World Wide Web (WWW)?

Web scraping addresses both these questions, as it provides various tools and technologies
that can be deployed to extract data or assist with information retrieval. Whether its web-
based structured or unstructured data, we can use the web scraping process to extract data
and use it for research, analysis, personal collections, information extraction, knowledge
discovery, and many more purposes.

We will learn general techniques that are deployed to find data from the web and explore
those techniques in depth using the Python programming language in the chapters ahead.

In this chapter, we will cover the following topics:

Introduction to web scraping
Understanding web development and technologies
Data finding techniques

Web Scraping Fundamentals Chapter 1

[8]

Introduction to web scraping
Scraping is the process of extracting, copying, screening, or collecting data. Scraping or
extracting data from the web (commonly known as websites or web pages, or internet-
related resources) is normally termed web scraping.

Web scraping is a process of data extraction from the web that is suitable for certain
requirements. Data collection and analysis, and its involvement in information and decision
making, plus research-related activities, make the scraping process sensitive for all types of
industry.

The popularity of the internet and its resources is causing information domains to evolve
every day, which is also causing a growing demand for raw data. Data is the basic
requirement in the fields of science, technology, and management. Collected or organized
data is processed with varying degrees of logic to obtain information and gain further
insights.

Web scraping provides the tools and techniques used to collect data from websites as
appropriate for either personal or business-related needs, but with a number of legal
considerations.

There are a number of legal factors to consider before performing scraping tasks. Most
websites contain pages such as Privacy Policy, About Us, and Terms and Conditions, where
legal terms, prohibited content policies, and general information are available. It's a
developer's ethical duty to follow those policies before planning any crawling and scraping
activities from websites.

Scraping and crawling are both used quite interchangeably throughout
the chapters in this book. Crawling, also known as spidering, is a process
used to browse through the links on websites and is often used by search
engines for indexing purposes, whereas scraping is mostly related to
content extraction from websites.

Understanding web development and
technologies
A web page is not only a document container. Today's rapid developments in computing
and web technologies have transformed the web into a dynamic and real-time source of
information.

Web Scraping Fundamentals Chapter 1

[9]

At our end, we (the users) use web browsers (such as Google Chrome, Firefox Mozilla,
Internet Explorer, and Safari) to access information from the web. Web browsers provide
various document-based functionalities to users and contain application-level features that
are often useful to web developers.

Web pages that users view or explore through their browsers are not only single
documents. Various technologies exist that can be used to develop websites or web pages.
A web page is a document that contains blocks of HTML tags. Most of the time, it is built
with various sub-blocks linked as dependent or independent components from various
interlinked technologies, including JavaScript and CSS.

An understanding of the general concepts of web pages and the techniques of web
development, along with the technologies found inside web pages, will provide more
flexibility and control in the scraping process. A lot of the time, a developer can also
employ reverse engineering techniques.

Reverse engineering is an activity that involves breaking down and examining the concepts
that were required to build certain products. For more information on reverse engineering,
please refer to the GlobalSpec article, How Does Reverse Engineering Work?, available at
https:/​/​insights. ​globalspec. ​com/ ​article/ ​7367/ ​how- ​does- ​reverse- ​engineering- ​work.

Here, we will introduce and explore a few of the techniques that can help and guide us in
the process of data extraction.

HTTP
Hyper Text Transfer Protocol (HTTP) is an application protocol that transfers resources
such as HTML documents between a client and a web server. HTTP is a stateless protocol
that follows the client-server model. Clients (web browsers) and web servers communicate
or exchange information using HTTP Requests and HTTP Responses:

HTTP (client-server communication)

https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work

Web Scraping Fundamentals Chapter 1

[10]

With HTTP requests or HTTP methods, a client or browser submits requests to the server.
There are various methods (also known as HTTP request methods) for submitting requests,
such as GET, POST, and PUT:

GET: This is a common method for requesting information. It is considered a safe
method, as the resource state is not altered. Also, it is used to provide query
strings such as http://www.test-domain.com/, requesting information from
servers based on the id and display parameters sent with the request.
POST: This is used to make a secure request to a server. The requested resource
state can be altered. Data posted or sent to the requested URL is not visible in the
URL, but rather transferred with the request body. It's used to submit
information to the server in secure way, such as for login and user registration.

Using the browser developer tools shown in the following screenshot, the Request Method
can be revealed, along with other HTTP-related information:

General HTTP headers (accessed using the browser developer tools)

We will explore more about HTTP methods in Chapter 2,
Python and the Web – Using urllib and Requests, in the Implementing HTTP methods section.

Web Scraping Fundamentals Chapter 1

[11]

HTTP headers pass additional information to a client or server while performing a request
or response. Headers are generally name-value pairs of information transferred between a
client and a server during their communication, and are generally grouped into request and
response headers:

Request Headers: These are headers that is used for making requests.
Information such as language and encoding requests -*, that is referrers, cookies,
browser-related information, and so on, is provided to the server while making
the request. The following screenshot displays the Request Headers obtained
from browser developer tools while making a request to https:/ ​/ ​www.​python.
org:

Request headers (accessed using the browser developer tools)

Response Headers: These headers contain information about the server's
response. Information regarding the response (including size, type, and date) and
the server status is generally found in Response Headers. The following
screenshot displays the Response Headers obtained from the browser developer
tools after making a request to https:/ ​/​www. ​python. ​org:

Response headers (accessed using the browser developer tools)

https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org

Web Scraping Fundamentals Chapter 1

[12]

The information seen in the previous screenshots was captured during the request made to
https:/​/​www.​python. ​org.

HTTP Requests can also be provided with the required HTTP Headers while making
requests to the server. Information related to the request URL, request method, status code,
request headers, query string parameters, cookies, POST parameters, and server details can
generally be explored using HTTP Headers information.

With HTTP responses, the server processes the requests, and sometimes the specified
HTTP headers, that are sent to it. When requests are received and processed, it returns its
response to the browser.

A response contains status codes, the meaning of which can be revealed using developer
tools, as seen in the previous screenshots. The following list contains a few status codes
along with some brief information:

200 (OK, request succeeded)
404 (Not found; requested resource cannot be found)
500 (Internal server error)
204 (No content to be sent)
401 (Unauthorized request was made to the server)

For more information on HTTP, HTTP responses, and status codes, please
consult the official documentation at https:/ ​/​www. ​w3.​org/ ​Protocols/
 and https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/​HTTP/ ​Status.

HTTP cookies are data sent by server to the browser. Cookies are data that's generated and
stored by websites on your system or computer. Data in cookies helps to identify HTTP
requests from the user to the website. Cookies contain information regarding session
management, user preferences, and user behavior.

The server identifies and communicates with the browser based on the information stored
in the cookie. Data stored in cookies helps a website to access and transfer certain saved
values such as session ID, expiration date and time, and so on, providing quick interaction
between the web request and the response:

https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Web Scraping Fundamentals Chapter 1

[13]

Cookies set by a website (accessed using the browser developer tools)

For more information on cookies, please visit AboutCookies at http:/ ​/​www.
allaboutcookies. ​org/ ​, and allaboutcookies at http:/ ​/​www.
allaboutcookies. ​org/ ​.

With HTTP proxies, a proxy server acts as an intermediate server between a client and the
main web server. The web browser sends requests to the server that are actually passed
through the proxy, and the proxy returns the response from the server to the client.

Proxies are often used for monitoring/filtering, performance improvement, translation, and
security for internet-related resources. Proxies can also be bought as a service, which may
also be used to deal with cross-domain resources. There are also various forms of proxy
implementation, such as web proxies (which can be used to bypass IP blocking), CGI
proxies, and DNS proxies.

Cookie-based parameters that are passed in using GET requests, HTML form-related POST
requests, and modifying or adapting headers will be crucial in managing code (that is,
scripts) and accessing content during the web scraping process.

Details on HTTP, headers, cookies, and so on will be explored more in the
upcoming Data finding techniques for the web section. Please visit MDN web
docs-HTTP (https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​HTTP) for
more detailed information on HTTP.

http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP

Web Scraping Fundamentals Chapter 1

[14]

HTML
Websites are made up of pages or documents containing text, images, style sheets, and
scripts, among other things. They are often built with markup languages such as Hypertext
Markup Language (HTML) and Extensible Hypertext Markup Language (XHTML).

HTML is often termed as the standard markup language used for building a web page.
Since the early 1990s, HTML has been used independently, as well as in conjunction with
server-based scripting languages such as PHP, ASP, and JSP.

XHTML is an advanced and extended version of HTML, which is the primary markup
language for web documents. XHTML is also stricter than HTML, and from the coding
perspective, is an XML application.

HTML defines and contains the contents of a web page. Data that can be extracted, and any
information-revealing data sources can be found inside HTML pages within a predefined
instruction set or markup elements called tags. HTML tags are normally a named
placeholder carrying certain predefined attributes.

HTML elements and attributes
HTML elements (also referred to as document nodes) are the building block of web
documents. HTML elements are built with a start tag, <..>, and an end tag, </..>, with
certain contents inside them. An HTML element can also contain attributes, usually defined
as attribute-name = attribute-value, that provide additional information to the
element:

<p>normal paragraph tags</p>
<h1>heading tags there are also h2, h3, h4, h5, h6</h1>
Click here for Google.com

The preceding code can be broken down as follows:

The <p> and <h1> HTML elements contain general text information (element
content) with them.
<a> is defined with an href attribute that contains the actual link, which will be
processed when the text Click here for Google.com is clicked. The link
refers to https:/ ​/​www. ​google. ​com/ ​.

https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/
https://www.google.com/

Web Scraping Fundamentals Chapter 1

[15]

The image tag also contains a few attributes, such as src and alt,
along with their respective values. src holds the resource, that is, the image
address or image URL as an value, whereas alt holds value for alternative text
for .

 represents a line break in HTML, and has no attribute or text content. It
is used to insert a new line in the layout of the document.

HTML elements can also be nested in a tree-like structure with a parent-child hierarchy:

<div>
 <p id="mainContent" class="content">
 <i> Paragraph contents </i>

 ….
 </p>
 <p class="content" id="subContent">
 <i style="color:red"> Sub paragraph content </i>
 <h1 itemprop="subheading">Sub heading Content! </h1>
 ….
 </p>
</div>

As seen in the preceding code, two <p> child elements are found inside an HTML
<div> block. Both child elements carry certain attributes and various child elements as
their contents. Normally, HTML documents are built with this aforementioned structure.

Global attributes
HTML elements can contain some additional information, such as key/value pairs. These
are also known as HTML element attributes. Attributes holds values and provide
identification, or contain additional information that can be helpful in many aspects during
scraping activities such as identifying exact web elements and extracting values or text
from them, traversing through elements and more.

There are certain attributes that are common to HTML elements or can be applied to all
HTML elements as follows. These attributes are identified as global attributes (https:/ ​/
developer.​mozilla. ​org/ ​en- ​US/ ​docs/ ​Web/ ​HTML/ ​Global_ ​attributes):

id

class

style

lang

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes

Web Scraping Fundamentals Chapter 1

[16]

HTML elements attributes such as id and class are mostly used to identify or format
individual elements, or groups of elements. These attributes can also be managed by CSS
and other scripting languages.

id attribute values should be unique to the element they're applied to. class attribute
values are mostly used with CSS, providing equal state formatting options, and can be used
with multiple elements.

Attributes such as id and class are identified by placing # and . respectively in front of
the attribute name when used with CSS, traversing, and parsing techniques.

HTML element attributes can also be overwritten or implemented
dynamically using scripting languages.

As displayed in following examples, itemprop attributes are used to add properties to an
element, whereas data-* is used to store data that is native to the element itself:

<div itemscope itemtype ="http://schema.org/Place">
 <h1 itemprop="univeristy">University of Helsinki</h1>
 Subject:
 Artificial Intelligence

 Data Science
</div>

<img class="dept" src="logo.png" data-course-id="324" data-
title="Predictive Aanalysis" data-x="12345" data-y="54321" data-z="56743"
onclick="schedule.load()">

HTML tags and attributes are a major source of data when it comes to extraction.

Please visit https:/ ​/​www. ​w3. ​org/​html/ ​ and https:/ ​/​www. ​w3schools.
com/​html/ ​ for more information on HTML.

In the chapters ahead, we will explore these attributes using different tools. We will also
perform various logical operations and use them to extract content.

https://www.w3.org/html/
https://www.w3.org/html/
https://www.w3.org/html/
https://www.w3.org/html/
https://www.w3.org/html/
https://www.w3.org/html/
https://www.w3.org/html/
https://www.w3.org/html/
https://www.w3.org/html/
https://www.w3.org/html/
https://www.w3.org/html/
https://www.w3.org/html/
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://www.w3schools.com/html/

Web Scraping Fundamentals Chapter 1

[17]

XML
Extensible Markup Language (XML) is a markup language used for distributing data over
the internet, with a set of rules for encoding documents that are readable and easily
exchangeable between machines and documents.

XML can use textual data across various formats and systems. XML is designed to carry
portable data or data stored in tags that is not predefined with HTML tags. In XML
documents, tags are created by the document developer or an automated program to
describe the content they are carrying.

The following code displays some example XML content. The <employees> parent node
has three <employee> child nodes, which in turn contain the other child
nodes <firstName>, <lastName>, and <gender>:

<employees>
 <employee>
 <firstName>Rahul</firstName>
 <lastName>Reddy</lastName>
 <gender>Male</gender>
 </employee>
 <employee>
 <firstName>Aasira</firstName>
 <lastName>Chapagain</lastName>
 <gender>Female</gender>
 </employee>
 <employee>
 <firstName>Peter</firstName>
 <lastName>Lara</lastName>
 <gender>Male</gender>
 </employee>
</employees>

XML is an open standard, using the Unicode character set. XML is used for sharing data
across various platforms and has been adopted by various web applications. Many
websites use XML data, implementing its contents with the use of scripting languages and
presenting it in HTML or other document formats for the end user to view.

Extraction tasks from XML documents can also be performed to obtain the contents in the
desired format, or by filtering the requirement with respect to a specific need for data. Plus,
behind-the-scenes data may also be obtained from certain websites only.

Web Scraping Fundamentals Chapter 1

[18]

Please visit https:/ ​/​www. ​w3. ​org/​XML/ ​ and https:/ ​/​www. ​w3schools. ​com/
xml/​ for more information on XML.

JavaScript
JavaScript is a programming language that's used to program HTML and web applications
that run in the browser. JavaScript is mostly preferred for adding dynamic features and
providing user-based interaction inside web pages. JavaScript, HTML, and CSS are among
the most commonly used web technologies, and now they are also used with headless
browsers. The client-side availability of the JavaScript engine has also strengthened its
position in application testing and debugging.

JavaScript code can be added to HTML using <script> or embedded as a file. <script>
contains programming logic with JavaScript variables, operators, functions, arrays, loops,
conditions, and events, targeting the HTML Document Object Model (DOM):

<!DOCTYPE html>
<html>
<head>
 <script>
 function placeTitle() {
 document.getElementById("innerDiv").innerHTML = "Welcome to
WebScraping";
 }
 </script>
</head>
<body>
 <div>Press the button: <p id="innerDiv"></p></div>

 <button id="btnTitle" name="btnTitle" type="submit"
onclick="placeTitle()">
 Load Page Title!
 </button>
</body>
</html>

The HTML DOM is a standard for how to get, change, add, or delete
HTML elements. JavaScript HTML DOM, W3Schools can be referred to
the URL https:/ ​/ ​www. ​w3schools. ​com/ ​js/ ​js_​htmldom. ​asp.

https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp

Web Scraping Fundamentals Chapter 1

[19]

Dynamic manipulation of HTML contents, elements, attribute values, CSS, and HTML
events with accessible internal functions and programming features makes JavaScript very
popular in web development. There are many web-based technologies related to JavaScript,
including JSON, jQuery, AngularJS, and AJAX, among many more.

jQuery is a JavaScript library that addresses incompatibilities across browsers, providing
API features to handle the HTML DOM, events, and animations.

jQuery has been acclaimed globally for providing interactivity to the web and the way
JavaScript was used to code. jQuery is lightweight in comparison to JavaScript framework,
it is also easy to implement, with a short and readable coding approach.

For more information on jQuery, please visit https:/ ​/​www. ​w3schools.
com/​jquery/ ​ and http:/ ​/​jquery. ​com/ ​.

Asynchronous JavaScript and XML (AJAX) is a web development technique that uses a
group of web technologies on the client side to create asynchronous web applications.
JavaScript XMLHttpRequest (XHR) objects are used to execute AJAX on web pages and
load page content without refreshing or reloading the page. Please visit AJAX W3Schools
(https:/​/​www.​w3schools. ​com/ ​js/ ​js_ ​ajax_ ​intro. ​asp) for more information on AJAX.

From a scraping point of view, a basic overview of JavaScript functionality will be valuable
to understanding how a page is built or manipulated, as well as identifying the dynamic
components used.

Please visit https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/
JavaScript and https:/ ​/​www. ​javascript. ​com/ ​ for more information on
JavaScript.

JSON
JavaScript Object Notation (JSON) is a format used for storing and transporting data from
a server to a web page. It is language independent and is popular in web-based data-
interchange actions due to its size and readability.

https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/

Web Scraping Fundamentals Chapter 1

[20]

JSON data is normally a name/value pair that is evaluated as a JavaScript object and
follows JavaScript operations. JSON and XML are often compared, as they both carry and
exchange data between various web resources. JSON is also ranked higher than XML for its
structure, which is simple, readable, self-descriptive, understandable, and easy to process.
For web applications using JavaScript, AJAX, or RESTful services, JSON is preferred over
XML due to its fast and easy operation.

JSON and JavaScript objects are interchangeable. JSON is not a markup language and it
doesn't contain any tags or attributes. Instead, it is a text-only format that can be sent
to/accessed through a server, as well as being managed by any programming language.
JSON objects can also be expressed as arrays, dictionary, and lists as seen in the following
code:

{"mymembers":[
 { "firstName":"Aasira", "lastName":"Chapagain","cityName":"Kathmandu"},
 { "firstName":"Rakshya", "lastName":"Dhungel","cityName":"New Delhi"},
 { "firstName":"Shiba", "lastName":"Paudel","cityName":"Biratnagar"},
 { "firstName":"Rahul", "lastName":"Reddy","cityName":"New Delhi"},
 { "firstName":"Peter", "lastName":"Lara","cityName":"Trinidad"}
]}

JSON Lines: This is a JSON-like format where each line of a record is a valid JSON value. It
is also known as newline-delimited JSON, that is, individual JSON records separated by
newline (\n) characters. JSON Lines formatting can be very useful when dealing with a
large volume of data.

Data sources in the JSON or JSON Lines formats are preferred to XML because of the easy
data pattern and code readability, which can also be managed with minimum
programming effort:

 {"firstName":"Aasira", "lastName":"Chapagain","cityName":"Kathmandu"}
 {"firstName":"Rakshya", "lastName":"Dhungel","cityName":"New Delhi"}
 {"firstName":"Shiba", "lastName":"Paudel","cityName":"Biratnagar"}
 {"firstName":"Rahul", "lastName":"Reddy","cityName":"New Delhi"}
 {"firstName":"Peter", "lastName":"Lara","cityName":"Trinidad"}

From the perspective of data extraction, because of the lightweight and simple structure of
the JSON format, web pages use JSON content with their scripting technologies to add
dynamic features.

Please visit http:/ ​/​www. ​json. ​org/ ​, http:/ ​/​jsonlines. ​org/ ​, and https:/
/​www. ​w3schools. ​com/ ​js/ ​js_​json_ ​intro. ​asp for more information
regarding JSON and JSON Lines.

http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://www.json.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3schools.com/js/js_json_intro.asp

Web Scraping Fundamentals Chapter 1

[21]

CSS
The web-based technologies we have introduced so far deal with content, content binding,
content development, and processing. Cascading Style Sheets (CSS) describes the display
properties of HTML elements and the appearance of web pages. CSS is used for styling and
providing the desired appearance and presentation of HTML elements.

Developers/designers can control the layout and presentation of a web document using
CSS. CSS can be applied to a distinct element in a page, or it can be embedded through a
separate document. Styling details can be described using the <style> tag.

The <style> tag can contain details targeting repeated and various elements in a block. As
seen in the following code, multiple <a> elements exist and also possess the class and
id global attributes:

<html>
<head>
 <style>
 a{color:blue;}
 h1{color:black; text-decoration:underline;}
 #idOne{color:red;}
 .classOne{color:orange;}
 </style>
</head>
<body>
 <h1> Welcome to Web Scraping </h1>
 Links:
 Google
 Yahoo
 Wikipedia
</body>
</html>

Attributes that are provided with CSS properties or have been styled inside <style> tags
in the preceding code block will result in the output seen here:

HTML output (with the elements styled using CSS)

Web Scraping Fundamentals Chapter 1

[22]

CSS properties can also appear in in-line structure with each particular element. In-line CSS
properties override external CSS styles. The CSS color property has been applied in-line to
elements. This will override the color value defined inside <style>:

 <h1 style ='color:orange;'> Welcome to Web Scraping </h1>
 Links:
 Google
 Yahoo

Wikipedia

CSS can also be embedded in HTML using an external stylesheet file:

<link href="http://..../filename.css" rel="stylesheet" type="text/css">

Although CSS is used for the appearance of HTML elements, CSS selectors (patterns used
to select elements) often play a major role in the scraping process. We will be exploring CSS
selectors in detail in the chapters ahead.

Please visit https:/ ​/​www. ​w3. ​org/​Style/ ​CSS/​ and https:/ ​/​www.
w3schools.com/css/ for more detailed information on CSS.

AngularJS
We have introduced few selected web-related technologies so far in this chapter. Let's get
an overview of web frameworks by introducing AngularJS. Web frameworks deal with
numerous web-related tools and are used to develop web-related resources while adopting
the latest methodologies.

AngularJS (also styled as Angular.js or Angular) is mostly used to build client-side web
applications. This is a framework based on JavaScript. AngularJS is added to HTML using
the <script> tag, which extends HTML attributes as directives and binds data as
expressions. AngularJS expressions are used to bind data to HTML elements retrieved from
static or dynamic JSON resources. AngularJS directives are prefixed with ng-.

AngularJS is used with HTML for dynamic content development. It provides performance
improvement, a testing environment, manipulation of elements, and data-binding features,
and helps to build web applications in the model-view-controller (MVC) framework by
offering a more dynamic and flexible environment across documents, data, platforms, and
other tools.

https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/

Web Scraping Fundamentals Chapter 1

[23]

We can link external JavaScript files to our HTML document as follows:

<!doctype html>
<html ng-app>
 <head>
 <script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.7.5/angular.min.js">
 </script>
 </head>
 <body>
 <div>
 <label> Place: </label>
 <input type="text" ng-model="place" placeholder="Visited
place!">
 <label> Cost :</label>
 <input type="text" ng-model="price" placeholder="Ticket
Price!">

 Wow! {{place}} for only {{price}}
 </div>
 </body>
</html>

Also, we can include the script and element blocks together on a page, as seen here:

<script>
 var app = angular.module('myContact', []);
 app.controller('myDiv', function($scope) {
 $scope.firstName = "Aasira";
 $scope.lastName = "Chapagain";
 $scope.college= "London Business School";
 $scope.subject= "Masters in Analytics and Management";
 });
</script>
<div ng-app="myContact" ng-controller="myDiv">
 First Name: <input type="text" ng-model="firstName">

 Last Name: <input type="text" ng-model="lastName">

 College Name: <input type="text" ng-model="college">

 Subjects: <input type="text" ng-model="subject">

 Full Name: {{firstName + " " + lastName}}

 Enrolled on {{college + " with " + subject}}
</div>

Web Scraping Fundamentals Chapter 1

[24]

The general overview that we've provided here of AngularJS and its working methodology
allows more flexibility in tracing and traversing data.

Please visit AngularJS (https:/ ​/ ​angularjs. ​org/​ and https:/ ​/​angular.
io/​) for more detail information on AngularJS.

The technologies discussed previously are a few core components of the web; they are
linked, dependent on each other to produce the websites or web documents that end users
interact with. In the chapters ahead, we will identify scripts and further analyze the code
contained within.

In the following section, we will explore web content and look for the data that can be
found inside web pages, which we will be extracting in the chapters ahead using the
Python programming language.

Data finding techniques for the web
There are various technologies that can be used for developing a website. The content
presented to end users using web browsers can also exist in various other formats and
patterns.

As discussed earlier, dynamic generation or manipulation of the contents of web page are
also possible. Page content can also include static content rendered with HTML and
associated technologies, or presented and created on the fly. Content can also be retrieved
using third-party sources and presented to end users.

HTML page source
Web browsers are used for client-server based GUI interaction exploring web content. The
browser address bar is supplied with the web address or URL, and the requested URL is
communicated to the server (host) and response is received, that is, loaded by the browser.
This obtained response or page source can be further explored, and the desired content can
be searched in raw format.

Users are free to choose their web browser. We will be using Google Chrome for most of
the book, installed on the Windows operating system (OS).

https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angular.io/
https://angular.io/
https://angular.io/
https://angular.io/
https://angular.io/
https://angular.io/
https://angular.io/

Web Scraping Fundamentals Chapter 1

[25]

The HTML source for pages will be frequently opened and investigated
for required content and resources during scraping process. Right
click the web page. A menu will then appear where you can find the View
page source option. Alternatively, press Ctrl + U.

Case 1
Let's look at an example of web scraping by following these steps:

Go to https:/ ​/​www. ​google. ​com on in your chosen browser1.
Enter Web Scraping in the search box2.
Press Enter or click the Google search button on the page3.
You should see something similar to the following screenshot:4.

Search results for web scraping from Google

Google has provided us with the search information we have asked for. This
information is displayed in paragraphs and numerous links are also presented.
The information displayed is interactive, colorful, and presented in maintained
structure with the search contents adopted in the layout.

This is the frontend content we are viewing. This content is provided to us
dynamically based on our interaction with Google. Let's now view the raw
content that has been provided to us.

https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com

Web Scraping Fundamentals Chapter 1

[26]

Right-click the web page. A menu will then appear where you can find the View5.
page source option. Alternatively, press Ctrl + U. Here, a new tab will be opened
with the HTML source of the page. Check for view-source at the start of the
URL in the browser:

HTML page source: search results for web scraping from Google

We are now accessing the HTML source of the page displayed in the previous screenshot.
HTML tags and JavaScript codes can be easily seen, but are not presented in the proper
format. These are the core contents that the browser has rendered to us.

Search for some text, displayed on the normal page view, in the page
source. Identify how and where the text, links, and images are found in
the page source. You will be able to find the text in the page source within
HTML tags (but not always, as we shall see!)

Web development can be done using various technologies and tools, as we discussed in the
previous sections. Web page content displayed by browsers might not always be available
inside HTML tags when its source is explored. Content can also exist inside scripts or even
on third-party links. This is what makes web scraping often challenging, and thus demands
the latest tools and technologies that exist for web development.

Web Scraping Fundamentals Chapter 1

[27]

Case 2
Let's explore another case, with the browsing procedure that we applied in the Case
1 section:

Search for Top Hotels in USA for 2018 on Google and choose any hotel1.
name you like.
Search for the hotel name in Google directly (or you can ignore the preceding2.
step). For example, try The Peninsula Chicago.
Google will load the searched hotel's details' along with a map and booking and3.
reviews sections. The result of this will be similar to the following screenshot:

Google search result for The Peninsula Chicago

Web Scraping Fundamentals Chapter 1

[28]

On the left-hand side, you can find the link for Google reviews. After clicking4.
the link, a new page will pop up, as seen in the following screenshot:

Google reviews page from the search page

Right-click on the pop-up review page and select View page source, or press Ctrl5.
+ U for the page source.

Try to find the reviews and response texts by users from the page source.

Developer tools
Developer tools (or DevTools) are found embedded within most browsers on the market
today. Developers and end users alike can identify and locate resources and search for web
content that is used during client-server communication, or while engaged in an HTTP
request and response.

Web Scraping Fundamentals Chapter 1

[29]

DevTools allow a user to examine, create, edit, and debug HTML, CSS, and JavaScript.
They also allow us to handle performance problems. They facilitate the extraction of data
that is dynamically or securely presented by the browser.

DevTools will be used for most data extraction cases, and for cases similar to Case 2 from
the page source section previously mentioned. For more information on developer tools,
please explore these links:

Chrome DevTools (https:/ ​/​developers. ​google. ​com/​web/ ​tools/ ​chrome-
devtools/ ​)
Firefox DevTools (https:/ ​/​developer. ​mozilla. ​org/ ​son/ ​docs/ ​Tools/ ​)

In Google Chrome, we can load DevTools by following any of these instructions:

Simply press Ctrl + Shift + I
Another option is to right-click on the page and press the Inspect option
Alternatively, if accessing Developer tools through the Chrome menu, click
More tools | Developer tools:

Loading the Chrome DevTools for a reviews page

https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools

Web Scraping Fundamentals Chapter 1

[30]

The preceding screenshot displays the Developer Tools panels: Elements, Console,
Network, Sources, and so on. In our case, let's look for some text from the review page.
Following these steps will allow us to find it:

Open the Network panel inside Developer Tools.1.
Select the XHR filter option. (Multiple resources such as HTML files, images, and2.
JSON data will be found listed under the Name panel.)
We need to traverse through the resources under the Name pane looking for the3.
chosen text fragment we seek. (The Response tab displays the content of chosen
resources.)
A resource beginning with reviewDialog? is found, containing the searched-for4.
text.

The steps outlined here for searching review text form one of the most
commonly used techniques for locating exact content. These steps are
followed normally when the content is obtained dynamically and is not
found inside the page source.

There are various panels in Developer tools that are related to specific functions provided
to web resources or for analysis, including Sources, Memory, Performance,
and Networks. We will be exploring a few panels found in Chrome DevTools, as follows:

The specific names of panels found in browser-based DevTools might not
be the same across all browsers.

Elements: Displays the HTML content of the page viewed. This is used for
viewing and editing the DOM and CSS, and also for finding CSS selectors and
XPath.

HTML elements displayed or located from the Elements panel may not be
available in the page source.

Web Scraping Fundamentals Chapter 1

[31]

Console: Used to run and interact with JavaScript code, and view log messages:

The Console panel inside Chrome DevTools

Sources: Used to navigate pages, view available scripts and documents sources.
Script-based tools are available for tasks such as script execution (that is,
resuming, pausing), stepping over function calls, activating and deactivating
breakpoints, and also handling the exceptions such as pausing exceptions, if
encountered:

The Sources panel from Chrome DevTools

Web Scraping Fundamentals Chapter 1

[32]

Network: Provides us with HTTP request and response-related resources, and
shows the network resources used while loading a page. Resources found inside
Network feature options such as recording data to network logs, capturing
screenshots, filtering web resources (JavaScript, images, documents, and CSS),
searching web resources, and grouping web resources, and can be used for
debugging tasks too:

The Chrome DevTools Network panel

Requests can also be filtered by type:

All: Lists all requests related to the network, including document requests, image
requests, and font and CSS requests. Resources are placed in order of loading.
XHR: Lists XmlHttpRequest objects load AJAX content on the fly
JS: Lists requested scripts files
CSS: Lists requested style files
Img: Lists requested image files
Doc: Lists requested HTML or web documents
Other: Any unlisted type of request related resources

For filter options listed previously, there are tabs (Headers, Preview, Response, Timing,
Cookies) for selected resources in the Name panel:

Headers: Loads HTTP header data for a particular request. Information revealed
includes request URLs, request methods, status codes, request headers, query
string parameters, and POST parameters.
Preview: Loads a formatted preview of the response.

Web Scraping Fundamentals Chapter 1

[33]

Response: Loads the response to a particular request.
Timing: To view time breakdown information.
Cookies: Loads cookie information for the resources selected in the Name panel.

From the scraping point of view, the DevTools Network panel is useful for finding and
analyzing web resources. This information can be useful for retrieving data and choosing
methods to process these resources.

For more information on the Network panel, please visit https:/ ​/
developers. ​google. ​com/ ​web/ ​tools/ ​chrome- ​devtools/ ​network-
performance/ ​reference/ ​ and https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/
docs/ ​Tools/ ​Network_ ​Monitor/ ​.

There are various elements provided on the Network panel which are explained below:

Performance: The Screenshots page and Memory timeline can be recorded. The
visual information obtained is used to optimize website speed, improving load
times and analyzing runtime performance. In earlier Chrome versions,
information provided by the Performance panel used to exist inside a panel
named Timeline:

The Performance panel in Chrome DevTools

https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor

Web Scraping Fundamentals Chapter 1

[34]

Memory: This panel was also known as panel profiles in earlier Chrome
versions. Information obtained from this panel is used to fix memory problems
and track down memory leaks. The Performance and Memory panels are also
used by developers to analyze overall website performance.
Application: The end user can inspect and manage storage for all loaded
resources, including cookies, sessions, application cache, images, and databases.

After exploring the HTML page source and DevTools, we now have a general idea of
where data can be explored or searched for. Overall, scraping involves extracting data from
web pages, and we need to identify or locate the resource carrying the data we want to
extract. Before proceeding with data exploration and content identification, it will be
beneficial to plan and identify page's URLs or links that contain data.

Users can pick any URL for scraping purposes. Page links or URLs that point to a single
page might also contain pagination links or links that redirect the user to other resources.
Content distributed across multiple pages needs to be crawled individually by identifying
the page URL. There exist sitemaps and robots.txt files, made available by websites, that
contain links and directives for crawling-related activities.

Sitemaps
A sitemap.xml file is an XML file that holds the information related to page URLs.
Maintaining a sitemap is an easy way to inform search engines about the URLs the
website contains. Search-engine-based scripts crawl the links in sitemaps and use the links
found for indexing and various purposes such as search engine optimization (SEO).

URLs found inside a sitemap generally exist with additional information such as created
date, modified date, new URL, removed URL, and many more. These are normally found
wrapped in XML tags. In this case, we have <sitemap> with <loc>, as shown in the
following screenshot:

Web Scraping Fundamentals Chapter 1

[35]

Sitemap content from https://www.samsclub.com/

Sitemaps are accessed by adding sitemap.xml to the URL, for example, https:/ ​/​www.
samsclub.​com/​sitemap. ​xml.

There's no obligation for sitemap.xml to exist for all websites. Sitemaps might carry
individual URLs for pages, products, categories, and inner sitemap files that can be
processed easily for scraping purposes, instead of exploring web pages for links and
collecting all of them from each website, one by one.

https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml

Web Scraping Fundamentals Chapter 1

[36]

The robots.txt file
robots.txt, also known as the robots exclusion protocol, is a web-based standard used by
websites to exchange information with automated scripts. In general, robots.txt carries
instructions regarding URLs, pages, and directories on their site to web robots (also known
as web wanderers, crawlers, or spiders) using directives such as Allow, Disallow,
Sitemap, and Crawl-delay to direct their behavior:

The robots.txt file from https://www.samsclub.com/

For any provided website addresses or URLs, the robots.txt file can be accessed by
adding robots.txt to the URL,
for example, https://www.samsclub.com/robots.txt or
https://www.test-domainname.com/robots.txt.

As seen in the preceding screenshot (The robots.txt file from https://www.samsclub.com/), there
are Allow, Disallow, and Sitemap directives listed inside https:/ ​/​www. ​samsclub. ​com/
robots.​txt:

Allow permits web robots to access the link it carries
Disallow conveys restriction of access to a given resource
User-agent: * shows that the listed directives are to be followed by all agents

https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt

Web Scraping Fundamentals Chapter 1

[37]

For access violation caused by web crawlers and spammers, the following steps can be
taken by website admins:

Enhance security mechanisms to restrict any unauthorized access to the website
Impose a block on the traced IP address
Take necessary legal action

Web crawlers should obey the directives mentioned in the file, but for normal data
extraction purposes, there's no restriction imposed until and unless the crawling scripts
hamper website traffic, or if they access personal data from the web. Again, it's not
obligatory that a robots.txt file should be available on each website.

For more information on directives and robots.txt, please visit http:/ ​/
www.​robotstxt. ​org/ ​.

Summary
In this chapter, we have explored some core technologies and tools that are relevant to the
World Wide Web and that are required for web scraping.

Identifying and exploring content via an introduction to web development tools, and
seeking page URLs for target data, were the main focus of this chapter.

In the next chapter, we will be using the Python programming language to interact with the
web, and exploring major web-related Python libraries, which we'll use to examine web
contents.

Further reading
AngularJS: https:/ ​/​www. ​angularjs. ​org, https:/ ​/​www. ​angular. ​io

AJAX: http:/ ​/​api. ​jquery. ​com/ ​jquery. ​ajax/ ​, https:/ ​/​www. ​w3schools. ​com/ ​js/
js_​ajax_ ​intro. ​asp

Browser developer tools: https:/ ​/​developers. ​google. ​com/ ​web/​tools/ ​chrome-
devtools/ ​, https:/ ​/​developer. ​mozilla. ​org/ ​son/ ​docs/ ​Tools

CSS: https:/ ​/​www. ​w3schools. ​com/ ​css/​, https:/ ​/​www. ​w3.​org/ ​Style/ ​CSS/ ​

http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
https://www.angularjs.org
https://www.angularjs.org
https://www.angularjs.org
https://www.angularjs.org
https://www.angularjs.org
https://www.angularjs.org
https://www.angularjs.org
https://www.angularjs.org
https://www.angularjs.org
https://www.angular.io
https://www.angular.io
https://www.angular.io
https://www.angular.io
https://www.angular.io
https://www.angular.io
https://www.angular.io
https://www.angular.io
https://www.angular.io
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3schools.com/css/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/

Web Scraping Fundamentals Chapter 1

[38]

Cookies: https:/ ​/​www. ​aboutcookies. ​org/ ​, www.allaboutcookies.org
HTTP: https:/ ​/​www. ​w3. ​org/ ​Protocols/ ​, https:/ ​/​developer. ​mozilla. ​org/​en-
US/​docs/ ​Web/ ​HTTP

HTTP methods: https:/ ​/ ​restfulapi. ​net/ ​http- ​methods/ ​

Quick reference to HTTP headers: http:/ ​/​jkorpela. ​fi/ ​http. ​html

Web technology for developers: https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/
Web

Markup systems and the future of scholarly text processing: http:/ ​/​xml.
coverpages. ​org/ ​coombs. ​html

JSON Lines: http:/ ​/​jsonlines. ​org/ ​

jQuery: https:/ ​/ ​jquery. ​com/ ​, https:/ ​/ ​www.​w3schools. ​com/ ​jquery/ ​

JavaScript: https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/
JavaScript, https:/ ​/ ​www. ​javascript. ​com/ ​

Robots Exclusion Protocol: http:/​/ ​www.​robotstxt. ​org/ ​

Reverse engineering: https:/ ​/​insights. ​globalspec. ​com/ ​article/ ​7367/ ​how-
does-​reverse- ​engineering- ​work

Sitemaps: https:/ ​/ ​www. ​sitemaps. ​org/ ​

XML: https:/ ​/​www. ​w3schools. ​com/ ​xml/ ​, https:/ ​/​www. ​w3. ​org/​XML/ ​

https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
http://xml.coverpages.org/coombs.html
http://xml.coverpages.org/coombs.html
http://xml.coverpages.org/coombs.html
http://xml.coverpages.org/coombs.html
http://xml.coverpages.org/coombs.html
http://xml.coverpages.org/coombs.html
http://xml.coverpages.org/coombs.html
http://xml.coverpages.org/coombs.html
http://xml.coverpages.org/coombs.html
http://xml.coverpages.org/coombs.html
http://xml.coverpages.org/coombs.html
http://xml.coverpages.org/coombs.html
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
http://jsonlines.org/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://www.w3schools.com/jquery/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
https://www.javascript.com/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
http://www.robotstxt.org/
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://insights.globalspec.com/article/7367/how-does-reverse-engineering-work
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/

2
Section 2: Beginning Web

Scraping
In this section, you will learn how to plan, analyze, and process the required data from a
target website via the use of web scraping and Python programming. Information
regarding effective tools and various data collecting techniques will be explored.

This section consists of the following chapters:

Chapter 2, Python and the Web – Using urllib and Requests
Chapter 3, Using LXML, XPath, and CSS Selectors
Chapter 4, Scraping Using pyquery – a Python Library
Chapter 5, Web Scraping Using Scrapy and Beautiful Soup

2
Python and the Web – Using

urllib and Requests
From the previous chapter, we now have an idea about what web scraping is, what the core
development technologies that exist are, and where or how we can plan to find the
information we are looking for.

Web scraping requires tools and techniques to be implemented and deployed using scripts
or programs. The Python programming language consists of a huge set of libraries that are
fit for interacting with the web and for scraping purposes. In this chapter, we will
communicate with web resources using Python; we'll also explore and search for the
contents to be extracted from the web.

This chapter will also provide a detailed overview of using Python libraries such
as requests and urllib.

In particular, we will learn about the following topics:

Setting Python and its required libraries, requests and urllib, to load URLs
A detailed overview of requests and urllib
Implementing HTTP methods (GET/POST)

We assume that you have some prior basic experience of using the Python
programming language. If not, then please refer to Python tutorials from
W3schools (https:/ ​/ ​www. ​w3schools. ​com/​python/ ​default. ​asp), Python
course (https:/ ​/ ​python- ​course. ​eu/ ​), or search Google for learn Python
programming.

https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://python-course.eu/
https://python-course.eu/
https://python-course.eu/
https://python-course.eu/
https://python-course.eu/
https://python-course.eu/
https://python-course.eu/
https://python-course.eu/
https://python-course.eu/
https://python-course.eu/

Python and the Web – Using urllib and Requests Chapter 2

[41]

Technical requirements
We will be using Python 3.7.0, which has been installed on the Windows operating system.
There are plenty of choices for code editors; choose one that is convenient to use and deal
with the libraries that are used in this chapter's code examples. We will be using PyCharm
(Community Edition https:/ ​/ ​www. ​jetbrains. ​com/ ​pycharm/ ​download/ ​download- ​thanks.
html?​platform=​windows ​code= ​PCC) from JetBrains and Python IDLE (https:/ ​/​www. ​python.
org/​downloads/​) side by side.

To follow along with this chapter, you will need to install the following applications:

Python 3.7.* or the latest version that's appropriate for your OS: https:/ ​/​www.
python.​org/ ​downloads/ ​
The pip Python package management: https:/ ​/​packaging. ​python. ​org/
tutorials/ ​installing- ​packages/ ​

Either Google Chrome or Mozilla Firefox
JetBrains PyCharm or Visual Studio Code

The Python libraries that are required for this chapter are as follows:

requests

urllib

The code files for this chapter are available online on GitHub: https:/ ​/​github. ​com/
PacktPublishing/​Hands- ​On- ​Web- ​Scraping- ​with- ​Python/ ​tree/ ​master/ ​Chapter02.

Accessing the web with Python
Python is a programming language that's used to code various types of applications, from
simple scripts to AI algorithms and web frameworks. We will be writing scripts in Python
to access the URLs that we are interested in from a data extraction or scraping perspective.

A number of Python libraries exist for HTTP communication and web-related purposes
(including http, cookielib, urllib, requests, html, socket, json, xmlrpc, httplib2,
and urllib3). We will explore and use a few of them that have been praised by the
programmers' community for HTTP access or client-server communication. The urllib
and requests Python modules are the ones we are interested in using. These libraries
possess various functions that can be used to communicate with the web using Python and
deal with HTTP requests and responses.

https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=windows&code=PCC
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter02

Python and the Web – Using urllib and Requests Chapter 2

[42]

In order to start a few coding tasks and explore the Python-based modules straightaway,
let's verify that we have installed all the Python resources we want before moving on.

Setting things up
It is assumed that Python has been preinstalled. If not, please visit https:/ ​/​www. ​python.
org/​downloads/​ and https:/ ​/​www. ​python. ​org/ ​download/ ​other/ ​ for the latest Python
version for your operating system. Regarding the general setup and installation procedure,
please visit https:/ ​/ ​realpython. ​com/ ​installing- ​python/ ​ to find out how to install
Python on your chosen platform. We will be using the Windows operating system here.

To verify that we have all the required tools available, let's check that Python and pip are
installed and are up to date.

pip package management system is used to install and manage software
packages written in Python. More on installing Python packages and
pip can be found at https:/ ​/​packaging. ​python. ​org/ ​tutorials/
installing- ​packages/ ​.

We will be using Python 3.7 on the Windows operating system. Press Windows + R to open
the Run box and type cmd to get the command-line interface:

Opening the command-line interface on the Windows operating system

Now, move to your root directory and type the following command:

C:\> python –version
Python 3.7.0

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://www.python.org/download/other/
https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://realpython.com/installing-python/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/

Python and the Web – Using urllib and Requests Chapter 2

[43]

The preceding command will provide us with the Python version that we currently have on
our system. Let's get some information on the pip version that we are using. The following
command will display the current pip version, as well as its location:

C:\> pip --version

pip 18.1 from c:\python37\lib\site-packages\pip (python 3.7)

We are happy to proceed after seeing the preceding responses. If you encounter an error
stating Application not found or not recognized as an internal or external
command, then we need to reinstall Python or check for the proper drive that was used
during installation.

It's always advisable to check for the system and library version and keep
them updated unless a specific version is required.

To update pip to its latest release, use the following command:

C:\> python -m pip install --upgrade pip

You can verify the libraries we wish to use, that is, requests and urllib, either from the
command line or by importing the Python IDE and getting details on the package using
the help() method:

C:\> pip install requests

Requirement already satisfied: requests in c:\python37\lib\site-packages
(2.19.1)

As shown in the preceding code, we are trying to install requests, but the command
returns Requirement already satisfied. The pip command checks for an existing
installation on the system before installing a fresh library.

In the following code block, we will be using the Python IDE to import urllib. We'll view
its details using Python's built-in help() method.

The >>> symbol in code represents use of the Python IDE; it accepts the code or instructions
and displays the output on the next line:

>>> import urllib
>>> help(urllib) #display documentation available for urllib

Python and the Web – Using urllib and Requests Chapter 2

[44]

The following is the output:

Help on package urllib:
NAME
 urllib
PACKAGE CONTENTS
 error
 parse
 request
 response
 robotparser
FILE
 c:\python37\lib\urllib__init__.py

Similar to the previous code, lets import requests using the Python IDE:

>>> import requests
>>> requests.__version__ #display requests version

'2.21.0'

>>> help(requests) #display documentation available for requests

Help on package requests:
NAME
 requests
DESCRIPTION
 Requests HTTP Library
 ~~~~~~~~~~~~~~~~~~
 Requests is an HTTP library, written in Python, for human beings.

If we import urllib or requests and these libraries don't exist, the result will throw an
error:

ModuleNotFoundError: No module named 'requests'

For missing modules or in the previous case, install the module first; use pip as follows to
install or upgrade. You can install it from your command line, as follows:

C:\> pip install requests

You can also upgrade the module version using the --upgrade argument:

C:\> pip install requests -–upgrade



Python and the Web – Using urllib and Requests Chapter 2

[ 45 ]

Loading URLs
Now that we've confirmed the required libraries and system requirements, we will proceed
with loading the URLs. While looking for contents from a URL, it is also necessary to
confirm and verify the exact URL that has been chosen for the required content. Contents
can be found on single web pages or scattered across multiple pages, and it might not
always be the HTML sources we are looking for.

We will load some URLs and explore the content using a couple of tasks.

Before loading URLs using Python script, it's also advisable to verify the
URLs are working properly and contain the detail we are looking for,
using web browsers. Developer tools can also be used for similar
scenarios, as discussed in Chapter 1, Web Scraping Fundamentals, in
the Developer tools section.

Task 1: To view data related to the listings of the most popular websites from Wikipedia.
We will identify data from the Site, Domain, and Type columns in the page source.

We will follow the steps at the following link to achieve our task (a data extraction-related
activity will be done in Chapter 3, Using LXML, XPath and CSS Selectors): https:/ ​/ ​en.
wikipedia.​org/​wiki/ ​List_ ​of_ ​most_ ​popular_ ​websites. 

Search Wikipedia for the information we are looking for. The preceding link can be easily
viewed in a web browser. The content is in tabular format (as shown in the following
screenshot), and so the data can be collected by repeatedly using the select, copy, and paste
actions, or by collecting all the text inside the table.

However, such actions will not result in the content that we are interested in being in a
desirable format, or it will require extra editing and formatting tasks being performed on
the text to achieve the desired result. We are also not interested in the page source that's
obtained from the browser:

https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://en.wikipedia.org/wiki/List_of_most_popular_websites


Python and the Web – Using urllib and Requests Chapter 2

[ 46 ]

Page from Wikipedia, that is, https://en.wikipedia.org/wiki/List_of_most_popular_websites

After finalizing the link that contains the content we require, let's load the link using
Python. We are making a request to the link and willing to see the response returned by
both libraries, that is, urllib and requests:

Let's use urllib:1.

>>> import urllib.request as req #import module request from urllib
>>> link =
"https://en.wikipedia.org/wiki/List_of_most_popular_websites"
>>> response = req.urlopen(link)  #load the link using method
urlopen()

>>> print(type(response))   #print type of response object
    <class 'http.client.HTTPResponse'>

>>> print(response.read()) #read response content
b'<!DOCTYPE html>\n<html class="client-nojs" lang="en"
dir="ltr">\n<head>\n<meta charset="UTF-8"/>\n<title>List of most
popular websites -
Wikipedia</title>\n<script>…..,"wgCanonicalSpecialPageName":false,
"wgNamespaceNumber":0,"wgPageName":"List_of_most_popular_websites",
"wgTitle":"List of most popular websites",……



Python and the Web – Using urllib and Requests Chapter 2

[ 47 ]

The urlopen() function from urllib.request has been passed with the
selected URL or request that has been made to the URL and response is
received, that is, HTTPResponse. response that's received for the request made
can be read using the read() method.

2. Now, let's use requests:

>>> import requests
>>> link =
"https://en.wikipedia.org/wiki/List_of_most_popular_websites"
>>> response = requests.get(link)

>>> print(type(response))
    <class 'requests.models.Response'>

>>> content = response.content #response content received
>>> print(content[0:150])  #print(content) printing first 150
character from content

b'<!DOCTYPE html>\n<html class="client-nojs" lang="en"
dir="ltr">\n<head>\n<meta charset="UTF-8"/>\n<title>List of most
popular websites - Wikipedia</title>'

Here, we are using the requests module to load the page source, just like we did
using urllib. requests with the get() method, which accepts a URL as a
parameter. The response type for both examples has also been checked.

The output that's displayed in the preceding code blocks has been
shortened. You can find the code files for this at https:/ ​/​github. ​com/
PacktPublishing/ ​Hands- ​On-​Web- ​Scraping- ​with- ​Python.

In the preceding examples, the page content—or the response object—contains the details
we were looking for, that is, the Site, Domain, and Type columns.

We can choose any one library to deal with the HTTP request and response. Detailed
information on these two Python libraries with examples is provided in the next
section, URL handling and operations with urllib and requests.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python


Python and the Web – Using urllib and Requests Chapter 2

[ 48 ]

Let's have a look at the following screenshot:

Wikipedia.com page content, viewed using Python libraries

Further activities like processing and parsing can be applied to content like this in order to
extract the required data. More details about further processing tools/techniques and
parsing can be found in Chapter 3, Using LXML, XPath, and CSS Selectors, Chapter 4,
Scraping Using pyquery – a Python Library, and Chapter 5, Web Scraping Using Scrapy and
Beautiful Soup. 

Task 2: Load and save the page content from https:/ ​/​www. ​samsclub. ​com/ ​robots. ​txt
and https:/​/​www. ​samsclub. ​com/ ​sitemap. ​xml using urllib and requests.

Generally, websites provide files in their root path (for more information on these files,
please refer to Chapter 1, Web Scraping Fundamentals, the Data finding techniques for the
web section):

robots.txt: This contains information for the crawler, web agents, and so on

sitemap.xml: This contains links to recently modified files, published files, and
so on

https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml


Python and the Web – Using urllib and Requests Chapter 2

[ 49 ]

From Task 1, we were able to load the URL and retrieve its content. Saving the content to
local files using libraries methods and using file handling concepts will be implemented in
this task. Saving content to local files and working on content with tasks like parsing and
traversing can be really quick and even reduce network resources:

Load and save the content from https:/ ​/​www. ​samsclub. ​com/ ​robots. ​txt using1.
urllib:

>>> import urllib.request

>>>
urllib.request.urlretrieve('https://www.samsclub.com/robots.txt')
('C:\\Users\\*****\AppData\\Local\\Temp\\tmpjs_cktnc',
<http.client.HTTPMessage object at 0x04029110>)

>>> urllib.request.urlretrieve(link,"testrobots.txt")
#urlretrieve(url, filename=None)
('testrobots.txt', <http.client.HTTPMessage object at 0x04322DF0>)

The urlretrieve() function, that is, urlretrieve(url, filename=None,
reporthook=None, data=None), from urllib.request returns a tuple with
the filename and HTTP headers. You can find this file in
the C:\\Users..Temp directory if no path is given; otherwise, the file will be
generated in the current working directory with the name provided to the
urlretrieve() method as the second argument. This was testrobots.txt in
the preceding code:

>>> import urllib.request
>>> import os
>>> content =
urllib.request.urlopen('https://www.samsclub.com/robots.txt').read(
) #reads robots.txt content from provided URL

>>> file =
open(os.getcwd()+os.sep+"contents"+os.sep+"robots.txt","wb")
#Creating a file robots.txt inside directory 'contents' that exist
under current working directory (os.getcwd())

>>> file.write(content) #writing content to file robots.txt opened
in line above. If the file doesn't exist inside directory
'contents', Python will throw exception "File not Found"

>>> file.close() #closes the file handle

In the preceding code, we are reading the URL and writing the content found
using a file handling concept. 

https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt
https://www.samsclub.com/robots.txt


Python and the Web – Using urllib and Requests Chapter 2

[ 50 ]

Load and save the content from https:/ ​/​www. ​samsclub. ​com/ ​sitemap. ​xml using2.
requests:

>>> link="https://www.samsclub.com/sitemap.xml"
>>> import requests
>>> content = requests.get(link).content
>>> content

b'<?xml version="1.0" encoding="UTF-8"?>\n<sitemapindex
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">\n<sitemap><loc
>https://www.samsclub.com/sitemap_categories.xml</loc></sitemap>\n<
sitemap><loc>https://www.samsclub.com/sitemap_products_1.xml</loc><
/sitemap>\n<sitemap><loc>https://www.samsclub.com/sitemap_products_
2.xml</loc></sitemap>\n<sitemap><loc>https://www.samsclub.com/sitem
ap_locators.xml</loc></sitemap>\n</sitemapindex>'

>>> file =
open(os.getcwd()+os.sep+"contents"+os.sep+"sitemap.xml","wb")
#Creating a file robots.txt inside directory 'contents' that exist
under current working directory (os.getcwd())

>>> file.write(content) #writing content to file robots.txt opened
in line above. If the file doesn't exist inside directory
'contents', Python will throw exception "File not Found"

>>> file.close() #closes the file handle

In both cases, we were able to find the content from the respective URL and save it to 
individual files and locations. The contents from the preceding code was found as bytes
literals, for example, b'<!DOCTYPE … or b'<?xml. Page content can also be retrieved in a
text format, such as requests.get(link).text. 

We can use the decode() method to convert bytes into a string and the encode() method
to convert a string into bytes, as shown in the following code:

>>> link="https://www.samsclub.com/sitemap.xml"
>>> import requests
>>> content = requests.get(link).text  #using 'text'
>>> content

'<?xml version="1.0" encoding="UTF-8"?>\n<sitemapindex
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">\n<sitemap><loc>https:/
/www.samsclub.com/sitemap_categories.xml</loc></sitemap>\n<sitemap><loc>htt
ps://www.samsclub.com/sitemap_products_1.xml</loc></sitemap>\n<sitemap><loc
>https://www.samsclub.com/sitemap_products_2.xml</loc></sitemap>\n<sitemap>
<loc>https://www.samsclub.com/sitemap_locators.xml</loc></sitemap>\n</sitem
apindex>'

https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml
https://www.samsclub.com/sitemap.xml


Python and the Web – Using urllib and Requests Chapter 2

[ 51 ]

>>> content = requests.get(link).content
>>> content.decode() # decoding 'content' , decode('utf-8')

'<?xml version="1.0" encoding="UTF-8"?>\n<sitemapindex
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">\n<sitemap><loc>https:/
/www.samsclub.com/sitemap_categories.xml</loc></sitemap>\n<sitemap><loc>htt
ps://www.samsclub.com/sitemap_products_1.xml</loc></sitemap>\n<sitemap><loc
>https://www.samsclub.com/sitemap_products_2.xml</loc></sitemap>\n<sitemap>
<loc>https://www.samsclub.com/sitemap_locators.xml</loc></sitemap>\n</sitem
apindex>'

Identifying a proper character set or charset is important when dealing with various
domains and type of documents. To identify a proper charset encoding type, we can seek
help from the page source for the <meta> tag by using content-type or charset.

The <meta> tag with the charset attribute, that is, <meta charset="utf-8"/>, is
identified from the page source, as shown in the following screenshot (or <meta http-
equiv="content-type" content="text/html; charset=utf-8">:

Identifying charset from the document response or page source

Also, the content for <meta http-equiv="content-type" content="text/html;
charset=utf-8"> can be obtained from the response header, as highlighted in the
following screenshot:



Python and the Web – Using urllib and Requests Chapter 2

[ 52 ]

Identifying charset through the browser DevTools, Network panel, Headers tab, and response headers

Using Python code, we can find charset in the HTTP header:

>>> import urllib.request
>>> someRequest = urllib.request.urlopen(URL) #load/Open the URL
>>> urllib.request.getheaders() #Lists all HTTP headers.

>>> urllib.request.getheader("Content-Type") #return value of header
'Content-Type'

'text/html; charset=ISO-8859-1' or 'utf-8'

charset that was identified will be used to encode and decode
with requests.get(link).content.decode('utf-8').

Python 3.0 uses the concepts of text and (binary) data instead of Unicode
strings and 8-bit strings. All text is Unicode; however, encoded Unicode is
represented as binary data. The type that's used to hold text is str
(https:/ ​/​docs. ​python. ​org/ ​3/ ​library/ ​stdtypes. ​html#str), and the type
that's used to hold data is bytes (https:/ ​/​docs. ​python. ​org/ ​3/​library/
stdtypes. ​html#bytes). For more information on Python 3.0, please visit
https:/ ​/​docs. ​python. ​org/ ​3/ ​whatsnew/ ​3. ​0.​html.

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html


Python and the Web – Using urllib and Requests Chapter 2

[ 53 ]

In this section, we set up and verified our technical requirements, and also explored URL
loading and content viewing. In the next section, we will explore Python libraries to find
some useful functions and their attributes.

URL handling and operations with urllib and
requests
For our primary motive of extracting data from a web page, it's necessary to work with
URLs. In the examples we've seen so far, we have noticed some pretty simple URLs being
used with Python to communicate with their source or contents. The web scraping process
often requires the use of different URLs from various domains that do not exist in the same
format or pattern.

Developers might also face many cases where there will be a requirement for URL
manipulation (altering, cleaning) to access the resource quickly and conveniently. URL
handling and operations are used to set up, alter query parameters, or clean up
unnecessary parameters. It also passes the required request headers with the appropriate
values and identification of the proper HTTP method for making requests. There will be
many cases where you will find URL-related operations that are identified using browser
DevTools or the Network panel.

The urllib and requests Python libraries, which we will be using throughout this book,
deal with URL and network-based client-server communication. These libraries provide
various easy to use functions and attributes, and we will be exploring a few important ones.

urllib
The urllib library is a standard Python package that collects several modules to work
with HTTP-related communication models. Modules inside urllib are specially designed
and contain functions and classes that deal with various types of client-server
communication. 

Similarly named packages also exist, like urllib2, an extensible library,
and urllib3, a powerful HTTP client that addresses missing features
from Python standard libraries.



Python and the Web – Using urllib and Requests Chapter 2

[ 54 ]

Two of the most important urllib modules that deal with URL requests and responses are
as follows. We will be using these modules in this and upcoming chapters:

urllib.request: Used for opening and reading URLs and requesting or
accessing network resources (cookies, authentication, and so on)
urllib.response: This module is used to provide a response to the requests
that are generated

There are a number of functions and public attributes that exist to handle request
information and process response data that's relevant to HTTP requests, such as
urlopen(), urlretrieve(), getcode(), getheaders(), getheader(),
geturl(), read(), readline(), and many more. 

We can use Python's built-in dir() function to display a module's content, such as its
classes, functions, and attributes, as shown in the following code:

>>> import urllib.request
>>> dir(urllib.request) #list features available from urllib.request

['AbstractBasicAuthHandler', 'AbstractDigestAuthHandler',
'AbstractHTTPHandler', 'BaseHandler', 'CacheFTPHandler',
'ContentTooShortError', 'DataHandler', 'FTPHandler', 'FancyURLopener',
'FileHandler', 'HTTPBasicAuthHandler', 'HTTPCookieProcessor',....'Request',
'URLError', 'URLopener',......'pathname2url', 'posixpath', 'proxy_bypass',
'proxy_bypass_environment', 'proxy_bypass_registry', 'quote', 're',
'request_host', 'socket', 'splitattr', 'splithost', 'splitpasswd',
'splitport', 'splitquery', 'splittag', 'splittype', 'splituser',
'splitvalue', 'ssl', 'string', 'sys', 'tempfile', 'thishost', 'time',
'to_bytes', 'unquote', 'unquote_to_bytes', 'unwrap', 'url2pathname',
'urlcleanup', 'urljoin', 'urlopen', 'urlparse', 'urlretrieve', 'urlsplit',
'urlunparse', 'warnings']

The urlopen() function accepts a URL or an urllib.request.Request object, such
as requestObj, and returns a response through the urllib.response read() function,
as shown in the following code:

>>> import urllib.request
>>> link='https://www.google.com'

>>> linkRequest = urllib.request.urlopen(link) #open link
>>> print(type(linkRequest)) #object type
    <class 'http.client.HTTPResponse'>

>>> linkResponse = urllib.request.urlopen(link).read() #open link and read
content
>>> print(type(linkResponse))



Python and the Web – Using urllib and Requests Chapter 2

[ 55 ]

    <class 'bytes'>

>>> requestObj =
urllib.request.Request('https:/www.samsclub.com/robots.txt')
>>> print(type(requestObj)) #object type
    <class 'urllib.request.Request'>

>>> requestObjResponse = urllib.request.urlopen(requestObj).read()
>>> print(type(requestObjResponse))  #object type
    <class 'bytes'>

The object types that are returned are different in the case of linkRequest and
requestObj from the urlopen() function and class request, respectively.
The linkResponse and requestObjResponse objects were also created, which holds the
urllib.response information of the read() function. 

Generally, urlopen() is used to read a response from the URL, while
urllib.request.Request is used to send extra arguments like
data or headers, and even to specify the HTTP method and retrieve a
response. It can be used as follows:

urllib.request.Request(url, data=None, headers={},
origin_req_host=None, unverifiable=False, method=None)

urllib.response and its functions, such as read() and readline(), are used with
the urllib.request objects.

If the request that was made was successful and received a response from the proper URL,
we can check the HTTP status code, the HTTP method that was used, as well as the
returned URL to view a description:

getcode() returns a HTTP status code. The same result can also be achieved
using the code and status public attributes, as shown in the following code:

>>> linkRequest.getcode()  #can also be used as: linkRequest.code
or linkRequest.status

    200

geturl() returns current the URL. It is sometimes handy to verify whether any
redirection occurred. The url attribute can be used for a similar purpose:

>>> linkRequest.geturl()   # can also be used as: linkRequest.url

  'https://www.google.com'



Python and the Web – Using urllib and Requests Chapter 2

[ 56 ]

_method returns a HTTP method; GET is the default response:

>>> linkRequest._method
'GET'

getheaders() returns a list with tuples that contains HTTP headers. As we can
see from the following code, we can determine values regarding cookie, content
type, date, and so on from the output:

>>> linkRequest.getheaders()

[('Date','Sun, 30 Dec 2018 07:00:25 GMT'),('Expires',
'-1'),('Cache-Control','private, max-age=0'),('Content-
Type','text/html; charset=ISO-8859-1'),('P3P', 'CP="This is not a
P3P policy! See g.co/p3phelp for more info."'),('Server',
'gws'),('X-XSS-Protection', '1; mode=block'),('X-Frame-
Options','SAMEORIGIN'),('Set-Cookie', '1P_JAR=…..; expires=Tue,
29-Jan-2019 07:00:25 GMT; path=/; domain=.google.com'),('Set-Cookie
'NID=152=DANr9NtDzU_glKFRgVsOm2eJQpyLijpRav7OAAd97QXGX6WwYMC59dDPe.
; expires=Mon, 01-Jul-2019 07:00:25 GMT; path=/;
domain=.google.com; HttpOnly'),('Alt-Svc', 'quic=":443";
ma=2592000; v="44,43,39,35"'),('Accept-Ranges', 'none'),('Vary',
'Accept-Encoding'),('Connection', 'close')]

Individual request-based headers can also be retrieved when getheader() is
passed with desired header element, as shown in the following code. Here, we
can see we can obtain the value for the Content-Type header. The same result
can also be achieved using the info() function:

>>> linkRequest.getheader("Content-Type")

    'text/html; charset=ISO-8859-1'

>>> linkRequest.info()["content-type"]
    'text/html; charset=ISO-8859-1'

We have used code blocks and found the output that's relevant to our request and
response. Web browsers also allow us to trace request/response-related information using
browser DevTools (browser-based developer tools).



Python and the Web – Using urllib and Requests Chapter 2

[ 57 ]

The following screenshot displays the Network panel and the Doc tab, which includes the
Headers option. This contains various sections, such as General, Response Headers, and
Request Headers. Basic request and response-related information can be found inside the
Headers option:

Network panel and Document tab with General and Request header information

Note urllib.error deals with the exceptions raised by urllib.request. Exceptions like
URLError and HTTPError can be raised for a request.The following code demonstrates the
use of urllib.error:

Exception handling deals with error handling and management in
programming. Code that uses exception handling is also considered an
effective technique and is often prescribed to adapt.

>>> import urllib.request as request
>>> import urllib.error as error

>>> try:  #attempting an error case
        request.urlopen("https://www.python.ogr") #wrong URL is passed to
urlopen()



Python and the Web – Using urllib and Requests Chapter 2

[ 58 ]

    except error.URLError as e:
        print("Error Occurred: ",e.reason)
Error Occurred: [Errno 11001] getaddrinfo failed #output

urllib.parse is used to encode/decode request(data) or links, add/update headers, and
analyze, parse, and manipulate URLs. Parsed URL strings or objects are processed with
urllib.request.

Furthermore, urlencode(), urlparse(), urljoin(), urlsplit(), quote_plus() are a
few important functions that are available in urllib.parse, as shown in the following
code:

>>> import urllib.parse as urlparse
>>> print(dir(urlparse)) #listing features from urlparse

We get the following output:

['DefragResult', 'DefragResultBytes', 'MAX_CACHE_SIZE', 'ParseResult',
'ParseResultBytes', 'Quoter', 'ResultBase', 'SplitResult',
'SplitResultBytes', .........'clear_cache', 'collections', 'namedtuple',
'non_hierarchical', 'parse_qs', 'parse_qsl', 'quote', 'quote_from_bytes',
'quote_plus', 're', 'scheme_chars', 'splitattr', 'splithost', 'splitnport',
'splitpasswd', 'splitport', 'splitquery', 'splittag', 'splittype',
'splituser', 'splitvalue', 'sys', 'to_bytes', 'unquote', 'unquote_plus',
'unquote_to_bytes', 'unwrap', 'urldefrag', 'urlencode', 'urljoin',
'urlparse', 'urlsplit', 'urlunparse', 'urlunsplit', 'uses_fragment',
'uses_netloc', 'uses_params', 'uses_query', 'uses_relative']

The urlsplit() function from urllib.parse splits the URL that's passed into
the namedtuple object. Each name in tuple identifies parts of the URL. These parts can be
separated and retrieved in other variables and used as needed. The following code
implements urlsplit() for amazonUrl:

>>> amazonUrl
='https://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Dstripbooks-int
l-ship&field-keywords=Packt+Books'

>>> print(urlparse.urlsplit(amazonUrl)) #split amazonURL
SplitResult(scheme='https', netloc='www.amazon.com',
path='/s/ref=nb_sb_noss', query='url=search-alias%3Dstripbooks-intl-
ship&field-keywords=Packt+Books', fragment='')

>>> print(urlparse.urlsplit(amazonUrl).query) #query-string from amazonURL
'url=search-alias%3Dstripbooks-intl-ship&field-keywords=Packt+Books'

>>> print(urlparse.urlsplit(amazonUrl).scheme) #return URL scheme
'https'



Python and the Web – Using urllib and Requests Chapter 2

[ 59 ]

Using the urlparse() function from urllib.parse results in the ParseResult object. It
differs in terms of the parameters (params and path) that are retrieved in he URL
compared to urlsplit(). The following code prints the object from urlparse():

>>> print(urlparse.urlparse(amazonUrl)) #parsing components of amazonUrl

    ParseResult(scheme='https', netloc='www.amazon.com',
path='/s/ref=nb_sb_noss', params='', query='url=search-alias%3Dstripbooks-
intl-ship&field-keywords=Packt+Books', fragment='')

Let's confirm the differences between urlparse() and urlsplit(). The localUrl that's
created is parsed with both urlsplit() and urlparse(). params is only available with
urlparse():

import urllib.parse as urlparse
>>> localUrl=
'http://localhost/programming/books;2018?browse=yes&sort=ASC#footer'

>>> print(urlparse.urlsplit(localUrl))
SplitResult(scheme='http', netloc='localhost',
path='/programming/books;2018', query='browse=yes&sort=ASC',
fragment='footer')

>>> parseLink = urlparse.urlparse(localUrl)
ParseResult(scheme='http', netloc='localhost', path='/programming/books',
params='2018', query='browse=yes&sort=ASC', fragment='footer')

>>> print(parseLink.path) #path without domain information
    '/programming/books'

>>> print(parseLink.params) #parameters
    '2018'

>>> print(parseLink.fragment) #fragment information from URL
    'footer'

Basically, urllib.request.Request accepts data and headers-related information, and
headers can be assigned to an object using add_header(); for example,
object.add_header('host','hostname') or
object.add_header('referer','refererUrl').

In order to request data, Query Information, or URL arguments need to be used as key-
value pair of information that are appended to the desired URL. Such a URL is usually
processed with the HTTP GET method. Query information that's passed to the request
object should be encoded using urlencode(). 



Python and the Web – Using urllib and Requests Chapter 2

[ 60 ]

urlencode() ensures that arguments comply with the W3C standard and are accepted by
the server. parse_qs() parses percent-encoded query strings to the Python dictionary. The
following code demonstrates an example of using urlencode():

>>> import urllib.parse as urlparse
>>> data = {'param1': 'value1', 'param2': 'value2'}

>>> urlparse.urlencode(data)
 'param1=value1&param2=value2'

>>> urlparse.parse_qs(urlparse.urlencode(data))
 {'param1': ['value1'], 'param2': ['value2']}

>>> urlparse.urlencode(data).encode('utf-8')
    b'param1=value1&param2=value2'

You may also need to encode the special characters in a URL before processing the request
to the server:

Note that urllib.parse contains the quote(), quote_plus(), and unquote()
functions, which permit error-free server requests:

quote() is generally applied to the URL path (listed
with urlsplit() or urlparse()) or queried with reserved and special
characters (defined by RFC 3986) before it's passed to urlencode() to ensure
that the server's acceptable. Default encoding is done with UTF-8. 
quote_plus() also encodes special characters, spaces, and the URL separator,
/. 
unquote() and unquote_plus() are used to revert the encoding that's applied
by using quote() and quote_plus().

These functions are demonstrated in the following code:

>>> import urllib.parse as urlparse
>>> url="http://localhost:8080/~cache/data
file?id=1345322&display=yes&expiry=false"

>>> urlparse.quote(url)
'http%3A//localhost%3A8080/~cache/data%20file%3Fid%3D1345322%26display%3Dye
s%26expiry%3Dfalse'

>>> urlparse.unquote(url)
    'http://localhost:8080/~cache/data
file?id=1345322&display=yes&expiry=false'



Python and the Web – Using urllib and Requests Chapter 2

[ 61 ]

>>> urlparse.quote_plus(url)
'http%3A%2F%2Flocalhost%3A8080%2F~cache%2Fdata+file%3Fid%3D1345322%26displa
y%3Dyes%26expiry%3Dfalse'

>>> urlparse.unquote_plus(url)
   'http://localhost:8080/~cache/data
file?id=1345322&display=yes&expiry=false'

The urljoin() function from urllib.parse helps obtain the URL from the provided
arguments, as demonstrated in the following code:

>>> import urllib.parse as urlparse

>>> urlparse.urljoin('http://localhost:8080/~cache/','data file') #creating
URL
    'http://localhost:8080/~cache/data file'

>>> urlparse.urljoin('http://localhost:8080/~cache/data
file/','id=1345322&display=yes')
    'http://localhost:8080/~cache/data file/id=1345322&display=yes'

urllib.robotparser, as its name suggests, helps parse robots.txt and identifies agent-
based rules. Please refer to Chapter 1, Web Scraping Fundamentals, the Data finding
techniques for the web section, for more detailed information on robots.txt.

As we can see in the following code, par, which is an object of RobotFileParser, can be
used to set a URL via the set_url() function. It can also read contents with
the read() function. Functions such as can_fetch() can return a Boolean answer for the
evaluated condition:

>>> import urllib.robotparser as robot
>>> par = robot.RobotFileParser()
>>> par.set_url('https://www.samsclub.com/robots.txt') #setting robots URL
>>> par.read()  #reading URL content

>>> print(par)
User-agent: *
Allow: /sams/account/signin/createSession.jsp
Disallow: /cgi-bin/
Disallow: /sams/checkout/
Disallow: /sams/account/
Disallow: /sams/cart/
Disallow: /sams/eValues/clubInsiderOffers.jsp
Disallow: /friend
Allow: /sams/account/referal/

>>> par.can_fetch('*','https://www.samsclub.com/category') #verify if URL



Python and the Web – Using urllib and Requests Chapter 2

[ 62 ]

is 'Allow' to Crawlers
True

>>> par.can_fetch('*','https://www.samsclub.com/friend')
False

As we can see, https://www.samsclub.com/friend returns False when passed with
the can_fetch() function, thus satisfying the Disallow: /friend directives found in
robots.txt. Similarly, https://www.samsclub.com/category returns True as there
are no listed directives that restrict the category URL. 

However, there are some limitations to using urllib.request. Connection-based delays
can occur while using functions like urlopen() and urlretrieve(). These functions
return raw data and need to be converted into the required type for the parser before they
can be used in the scraping process.

Deploying threads, or threading, is considered an effective technique
when dealing with HTTP requests and responses.

requests
requests HTTP Python library released in 2011 and is one of the most renowned HTTP
libraries for developers in recent times.

Requests is an elegant and simple HTTP library for Python, built for human beings.
(source: https:/​/​2. ​python- ​requests. ​org/ ​en/​master/ ​).

More information on requests can be found at http:/ ​/ ​docs. ​python- ​requests. ​org/ ​en/
master/​.

Compared to other HTTP libraries in Python, requests is rated highly in terms of its
functioning capability with HTTP. A few of its capabilities are as follows:

Short, simple, and readable functions and attributes
Access to various HTTP methods (GET, POST, and PUT, to name a few) 

https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/


Python and the Web – Using urllib and Requests Chapter 2

[ 63 ]

Gets rid of manual actions, like encoding form values
Processes query strings
Custom headers 
Session and cookie processing
Deals with JSON requests and content
Proxy settings
Deploys encoding and compliance
API-based link headers
Raw socket response
Timeouts and more... 

We will be using the requests library and accessing some of its properties. The get()
function from requests is used to send a GET HTTP request to the URL provided. The
object that's returned is of the requests.model.Response type, as shown in the following
code:

>>> import requests
>>> link="http://www.python-requests.org"
>>> r = requests.get(link)

>>> dir(r)
['__attrs__', '__bool__', '__class__'......'_content', '_content_consumed',
'_next', 'apparent_encoding', 'close', 'connection', 'content', 'cookies',
'elapsed', 'encoding', 'headers', 'history', 'is_permanent_redirect',
'is_redirect', 'iter_content', 'iter_lines', 'json', 'links', 'next', 'ok',
'raise_for_status', 'raw', 'reason', 'request', 'status_code', 'text',
'url']

>>> print(type(r))
<class 'requests.models.Response'>

The requests library also supports HTTP requests such as PUT, POST, DELETE, HEAD,
and OPTIONS using the put(), post(), delete(), head(), and options() methods,
respectively.



Python and the Web – Using urllib and Requests Chapter 2

[ 64 ]

The following are some requests attributes, along with a short explanation of each:

url outputs the current URL
The HTTP status code is found using status_code
history is used to track redirection:

>>> r.url #URL of response object`
 'http://www.python-requests.org/en/master/'

>>> r.status_code #status code
 200

>>> r.history #status code of history event
 [<Response [302]>]

We can also obtain some details that are found when we use developer tools, such as HTTP
Header, Encoding, and so on:

headers returns response-related HTTP headers
requests.header returns request-related HTTP headers 
encoding displays the charset that's obtained from the content:

>>> r.headers #response headers with information about server,
date..
{'Transfer-Encoding': 'chunked', 'Content-Type': 'text/html',
'Content-Encoding': 'gzip', 'Last-Modified': '....'Vary': 'Accept-
Encoding', 'Server': 'nginx/1.14.0 (Ubuntu)', 'X-Cname-TryFiles':
'True', 'X-Served': 'Nginx', 'X-Deity': 'web02', 'Date': 'Tue, 01
Jan 2019 12:07:28 GMT'}

>>> r.headers['Content-Type'] #specific header Content-Type
 'text/html'

>>> r.request.headers  #Request headers
{'User-Agent': 'python-requests/2.21.0', 'Accept-Encoding': 'gzip,
deflate', 'Accept': '*/*', 'Connection': 'keep-alive'}

>>> r.encoding  #response encoding
 'ISO-8859-1'



Python and the Web – Using urllib and Requests Chapter 2

[ 65 ]

Page or response content can be retrieved using the content in bytes, whereas
text returns a str string:

>>> r.content[0:400]  #400 bytes characters

b'\n<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"\n
....... <meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>\n <title>Requests: HTTP for Humans\xe2\x84\xa2 — Requests 2.21.0
documentation'

>>> r.text[0:400]  #sub string that is 400 string character from response

'\n<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"\n......\n
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />\n
<title>Requests: HTTP for Humansâ\x84¢ — Requests 2.21.0 documentation'

Furthermore, requests also returns a raw socket response from the server by using the
stream argument in a get() request. We can read a raw response using the raw.read()
function:

>>> r = requests.get(link,stream=True) #raw response

>>> print(type(r.raw))   #type of raw response obtained
    <class 'urllib3.response.HTTPResponse'>

>>> r.raw.read(100)  #read first 100 character from raw response
b"\x1f\x8b\x08\x00\x00\x00\x00\x00\x00\x03\xed}[o\xdcH\x96\xe6{\xfe\x8a\xa8
\xd4\xb4%O\x8bL2/JI\x96\xb2Z\x96e[U\xbe\xa8-
\xb9\xaa\x1b\x85^!\x92\x8c\xcc\xa4\xc5$Y\xbc(\x95\xae)\xa0\x1e\x06\x18\xcc\
xf3\xce\xcb\x00\xbbX`\x16\xd8\xc7\xc5>\xed\xeb\x02\xfb3f_\x16\xf5\x0b\xf6'\
xec9'\x82\x97\xbc\xc9\xb2+#g"

A raw response that's received using the raw attribute is raw bytes of
characters that haven't been transformed or automatically decoded.

requests handles JSON data very effectively with its built-in decoder. As we can see,
URLs with JSON content can be parsed with requests and used as required:

>>> import requests
>>> link = "https://feeds.citibikenyc.com/stations/stations.json"
>>> response = requests.get(link).json()

>>> for i in range(10): #read 10 stationName from JSON response.
        print('Station ',response['stationBeanList'][i]['stationName'])



Python and the Web – Using urllib and Requests Chapter 2

[ 66 ]

Station W 52 St & 11 Ave
Station Franklin St & W Broadway
Station St James Pl & Pearl St
........
Station Clinton St & Joralemon St
Station Nassau St & Navy St
Station Hudson St & Reade St

Note that, requests uses urllib3 for session and for raw socket response. At the time of
writing, requests version 2.21.0 was available.

Crawling the script might use any of the mentioned or available HTTP libraries to make
web-based communications. Most of the time, functions and attributes from multiple
libraries will make this task easy. In the next section, we will be using the requests library
to implement the HTTP (GET/POST) methods.

Implementing HTTP methods
Generally, web-based interaction or communication between the web page and the user or
reader is achieved as follows:

The user or reader can access the web page to read or navigate through
information that's presented to them
The user or reader can also submit certain information to the web page using the
HTML form, such as by searching, logging in, user registration, password
recovery, and so on

In this section, we will be using the requests Python library to implement common HTTP
methods (GET and POST) that execute the HTTP-based communication scenario we listed
previously.

GET
A command way to request information is to use safe methods since the resource state is
not altered. The GET parameters, also known as query strings, are visible in the URL. They
are appended to the URL using ? and are available as key=value pairs.



Python and the Web – Using urllib and Requests Chapter 2

[ 67 ]

Generally, a processed URLs without any specified HTTP methods are normally GET
requests. A request that's made using GET can be cached and bookmarked. There are
also length restrictions while making a GET request. Some examples URLs are as follows:

http:/​/​www. ​test- ​domain. ​com

http://www.test-domain.com/indexes/

http://www.test-domain.com/data file?id=1345322&display=yes

In the preceding sections, requests were made to normal URLs such
as robots.txt and sitemap.xml, both of which use the HTTP GET method.
The get() function from requests accepts URLs, parameters, and headers:

import requests
link="http://localhost:8080/~cache"

queries= {'id':'123456','display':'yes'}

addedheaders={'user-agent':''}

#request made with parameters and headers
r = requests.get(link, params=queries, headers=addedheaders)
print(r.url)

This is the output of the preceding code:

http://localhst:8080/~cache?id=123456+display=yes

POST
These are known as secure requests that are made to a source. The requested resource state
can be altered. Data that's posted or sent to the requested URL is not visible in the URL;
instead, it's transferred to the request body. A request that's made using POST isn't cached
or bookmarked and has no restrictions in terms of length.

In the following example, a simple HTTP request and response service (source: http:/ ​/
httpbin.​org/​) has been used to make a POST request.

pageUrl accepts data to be posted, as defined in params to postUrl. Custom headers are
assigned as headers. The post() function from the requests library accepts URLs, data,
and headers, and returns a response in JSON format:

import requests
pageUrl="http://httpbin.org/forms/post"
postUrl="http://httpbin.org/post"

http://www.test-domain.com
http://www.test-domain.com
http://www.test-domain.com
http://www.test-domain.com
http://www.test-domain.com
http://www.test-domain.com
http://www.test-domain.com
http://www.test-domain.com
http://www.test-domain.com
http://www.test-domain.com
http://www.test-domain.com
http://www.test-domain.com/indexes/
http://www.test-domain.com/indexes/
http://www.test-domain.com/indexes/
http://www.test-domain.com/data%20file?id=1345322&display=yes
http://www.test-domain.com/data%20file?id=1345322&display=yes
http://www.test-domain.com/data%20file?id=1345322&display=yes
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/


Python and the Web – Using urllib and Requests Chapter 2

[ 68 ]

params = {'custname':'Mr.
ABC','custtel':'','custemail':'abc@somedomain.com','size':'small',
'topping':['cheese','mushroom'],'delivery':'13:00','comments':'None'}

headers={
'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,
image/apng,*/*;q=0.8','Content-Type':'application/x-www-form-urlencoded',
'Referer':pageUrl
}

#making POST request to postUrl with params and request headers, response
will be read as JSON
response = requests.post(postUrl,data=params,headers=headers).json()
print(response)

The previous code will result in the following output:

{
'args': {},
'data': '',
'files': {},
'form': {
'comments': 'None',
'custemail': 'abc@somedomain.com',
'custname': 'Mr. ABC',
'custtel': '',
'delivery': '13:00',
'size': 'small',
'topping': ['cheese', 'mushroom']
},
'headers': {
'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,
image/apng,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate',
'Connection': 'close',
'Content-Length': '130',
'Content-Type': 'application/x-www-form-urlencoded',
'Host': 'httpbin.org',
'Referer': 'http://httpbin.org/forms/post',
'User-Agent': 'python-requests/2.21.0'
},
'json': None, 'origin': '202.51.76.90',
'url': 'http://httpbin.org/post'
}



Python and the Web – Using urllib and Requests Chapter 2

[ 69 ]

For the POST request we attempted, we can find detailed information regarding Request
Headers, Response Headers, HTTP Status, and POST data (params) using the DevTools
Network panel, as shown in the following screenshot:

POST data submitted and found as form data in the DevTools Network panel

It's always beneficial to learn and detect the request and response
sequences that are made with URLs through the browser and the available
DevTools.

Summary
In this chapter, we learned about using Python libraries to make a request to a web resource
and collect the response that was returned. This chapter's main objective was to
demonstrate core features that are available through the urllib and requests Python
libraries, plus exploring page contents that are found in various formats.

In the next chapter, we will learn and use a few techniques to identify and extract data from
web contents.



Python and the Web – Using urllib and Requests Chapter 2

[ 70 ]

Further reading
urllib: https:/ ​/​docs. ​python. ​org/​3/ ​library/ ​urllib. ​html 
Requests: https:/ ​/​2. ​python- ​requests. ​org/​en/ ​master/ ​

urllib3 https:/ ​/​urllib3. ​readthedocs. ​io/ ​en/​latest/ ​index. ​html

HTTP methods (GET/POST): https:/ ​/​www. ​w3schools. ​com/​tags/ ​ref_
httpmethods. ​asp

Installing Python packages: https:/ ​/​packaging. ​python. ​org/ ​tutorials/
installing- ​packages/ ​

What are DevTools? https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Learn/
Common_​questions/ ​What_ ​are_ ​browser_ ​developer_ ​tools

HTTP request and response service: http:/ ​/​httpbin. ​org/ ​

https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://docs.python.org/3/library/urllib.html
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://urllib3.readthedocs.io/en/latest/index.html
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_are_browser_developer_tools
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/


3
Using LXML, XPath, and CSS

Selectors
So far, we have learned about web-development technologies, data-finding techniques, and
accessing web content using the Python programming language.

Web-based content exists in parts or elements using some predefined document
expressions. Analyzing these parts for patterns is a major task for processing convenient
scraping. Elements can be searched and identified with XPath and CSS selectors that are
processed with scraping logic for required content. lxml will be used to process elements
inside markup documents. We will be using browser-based development tools for content
reading and element identification.

In this chapter, we will learn the following:

Introduction to XPath and CSS selectors
Using browser developer tools
Learning and scraping using the Python lxml library



Using LXML, XPath, and CSS Selectors Chapter 3

[ 72 ]

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) is required and we will be using the
following Python libraries:

lxml
Requests

If the preceding libraries do not exist with the current Python setup, for setting up or
installation, refer to the Setting things up section in the last chapter.

Code files are available online on GitHub: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Hands-
On-​Web-​Scraping- ​with- ​Python/ ​tree/ ​master/ ​Chapter03.

Introduction to XPath and CSS selector
In the Understanding web development and technologies section in Chapter 1, Web Scraping
Fundamentals, we introduced XML as a document that contains data that is exchangeable
and distributable across various technologies related to the web and documents. XML
carries user-defined tags, also known as nodes, which hold data in a tree-like structure.

A tree-type structure (also known as an element-tree) is a base model for most markup 
languages and is often referred to as the Document Object Model (DOM). With the help of
the DOM and its defined conventions, we can access, traverse, and manipulate elements.

Elements are structured inside some parent elements, which are inside their own parent
and so on; this describes a parent-child relationship that is the most significant feature of
markup language. Many applications that support XML or markup language supports the
DOM and even contain a parser to use.

For extraction, it is necessary to identify the exact location of information. Information can
be found nested inside a tree structure and could possess some additional attributes to
represent the content. XPath and CSS selectors are both used to navigate along the DOM
and search for desired elements or nodes found in the document.

In the following sections, we will introduce both XPath and CSS selectors, and use them for
a web-scraping purpose with a supportive Python library.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter03


Using LXML, XPath, and CSS Selectors Chapter 3

[ 73 ]

XPath
The XML Path (XPath) language is a part of XML-based technologies (XML, XSLT, and
XQuery), which deal with navigating through DOM elements or locating nodes in XML (or
HTML) documents using expressions also known as XPath expressions. XPath is normally
a path that identifies nodes in documents. XPath is also a W3C (short for World Wide Web
Consortium) recommendation (https:/ ​/​www.​w3. ​org/ ​TR/​xpath/ ​all/ ​).

XPath or XPath expressions are also identified as absolute and relative:

The absolute path is an expression that represents a complete path from the root
element to the desired element. It begins with /html and looks like
/html/body/div[1]/div/div[1]/div/div[1]/div[2]/div[2]/div/span/

b[1]. Individual elements are identified with their position and represented by
an index number.
The relative path represents an expression chosen from certain selected elements
to the desired element. Relative paths are shorter and readable in comparison to
absolute paths and look like
//*[@id="answer"]/div/span/b[@class="text"]. A relative path is often
preferred over an absolute path as element indexes, attributes, logical
expressions, and so on can be combined and articulated in a single expression.

With XPath expressions, we can navigate hierarchically through elements and reach the
targeted one. XPath is also implemented by various programming languages, such as
JavaScript, Java, PHP, Python, and C++. Web applications and browsers also have built-in
support to XPath.

Expressions can be built using a number of built-in functions available for various data
types. Operations related to general math (+, -, *, /), comparison (<, >, =, !=, >=, <=), and
combination operators (and, or, and mod) can also be used to build expression. XPath is
also a core block for XML technologies such as XQuery and eXtensible Stylesheet
Language Transformations (XSLT).

XML Query (XQuery) is a query language that uses XPath expressions to
extract data from XML document. 
XSLT is used to render XML in a more readable format.

https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/xpath/all/


Using LXML, XPath, and CSS Selectors Chapter 3

[ 74 ]

Let's explore a few XPath expressions from the XML content as seen in the following from
the food.xml file:

XML content

In the following example, we will be using XPath-Tester from Code Beautify (https:/ ​/
codebeautify.​org/ ​Xpath- ​Tester). Use the XML source URL provided earlier to fetch the 
XML content and use it with the Code Beautify XPath-Tester.

https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester


Using LXML, XPath, and CSS Selectors Chapter 3

[ 75 ]

You can use https:/ ​/ ​codebeautify. ​org/ ​Xpath- ​Tester, https:/ ​/ ​www.
freeformatter. ​com/ ​xpath- ​tester. ​htm, or any other XPath tester tools
that are available free on the web.

Everything is a node in an XML document, for example, menus, food, and price. An XML
node can be an element itself (elements are types or entities that have start and end tags).

The preceding XML document can also be read as inherited element blocks. Parent node
menus contain multiple child nodes food, which distinguishes child elements for
appropriate values and proper data types. The XPath expression, //food, as shown in the
following screenshot, displays the result for the selected node food. Node selection also
retrieves the child nodes within the parents, as seen in the following screenshot:

Result for XPath //food (using https://codebeautify.org/Xpath-Tester)

https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html
https://www.freeformatter.com/xpath-tester.html


Using LXML, XPath, and CSS Selectors Chapter 3

[ 76 ]

The XPath expression in the following screenshot selects the child node, price, found
inside all parent nodes food. There are six child food nodes available, each of them
containing price, name, description, feedback, and rating:

Result for XPath //food/price (using https://codebeautify.org/Xpath-Tester)

As we can see from the two preceding XPaths tested, expressions are created almost like a
filesystem (command line or Terminal path), which we use in various OS. XPath
expressions contain code patterns, functions, and conditional statements and support the
use of predicates.

Predicates are used to identify a specific node or element. Predicate expressions are written
using square brackets that are similar to Python lists or array expressions.

A brief explanation of the XPath expression given in the preceding XML is listed in the
following table:

XPath expression Description

//
Selects nodes in the document, no
matter where they are located

//* Selects all elements in the document
//food Selects the element food



Using LXML, XPath, and CSS Selectors Chapter 3

[ 77 ]

* Selects all elements

//food/name | //food/price

Selects the name and price elements
found in the food node:
<name>Butter Milk with
Vanilla</name>
 <name>Fish and Chips</name>
 <price>$5.50</price>
 <price>$2.99</price>

//food/name

Selects all the name elements inside
food:
<name>Butter Milk with
Vanilla</name>
 <name>Eggs and Bacon</name>
 <name>Orange Juice</name>

//food/name/text()

Selects the text only for all
food/name elements:
Butter Milk with Vanilla Orange
Juice

//food/name | //rating

Selects all name elements from food
and rating found in document:
<name>Butter Milk with
Vanilla</name>
 <name>Fish and
Chips</name><rating>4.5</rating>
 <rating>4.9</rating>

//food[1]/name

Selects the name element for the first
food node:
<name>Butter Milk with
Vanilla</name>

//food[feedback<9]

Select the food node and all of its
elements where the predicate
condition, feedback<9, is true:
<food>
 <name>Butter Milk with
Vanilla</name>
 <name>Egg Roll</name>
 <name>Eggs and Bacon</name>
 </food>

//food[feedback<9]/name

Selects the food node and the name
element that matches the condition:
<name>Butter Milk with
Vanilla</name>
 <name>Egg Roll</name>
 <name>Eggs and Bacon</name>

//food[last()]/name
Selects the name element from the
last food node:
<name>Orange Juice</name>



Using LXML, XPath, and CSS Selectors Chapter 3

[ 78 ]

//food[last()]/name/text()
Selects text for the name element
from the last food node:
Orange Juice

sum(//food/feedback)
Provides the sum of feedback found
in all food:nodes:
47.0

//food[rating>3 and rating<5]/name

Selects the name of food that fulfills
the predicate condition:
<name>Egg Roll</name>
<name>Eggs and Bacon</name>
<name>Orange Juice</name>

//food/name[contains(.,"Juice")]
Selects the name of food that
contains the Juice string:
<name>Orange Juice</name>

//food/description[starts-with(.,"Fresh")]/text()

Selects the node description that
starts with Fresh:
Fresh egg rolls filled with
ground chicken, ... cabbage
Fresh Orange juice served

//food/description[starts-with(.,"Fresh")]

Selects text
from description node that starts
with Fresh:
<description>Fresh egg rolls
filled with..
cabbage</description>
 <description>Fresh Orange juice
served</description>

//food[position()<3]

Selects the first and second food
according to its position:
<food>
 <name>Butter Milk with
Vanilla</name>
 <price>$3.99</price>
 ...
 <rating>5.0</rating>
 <feedback>10</feedback>
 </food>

XPath predicates can contain a numeric index that starts from 1 (not 0)
and conditional statements, for example, //food[1] or
//food[last()]/price.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 79 ]

Now that we have tested the preceding XML with various XPath expressions, let's consider
a simple XML with some attributes. Attributes are extra properties that identify certain
parameters for a given node or element. A single element can contain a unique attributes
set. Attributes found in XML nodes or HTML elements help to identify the unique element
with the value it contains. As we can see in the code in the following XML, attributes are
found as a key=value pair of information, for example id="1491946008":

<?xml version="1.0" encoding="UTF-8"?>
<books>
     <book id="1491946008" price='47.49'>
        <author>Luciano Ramalho</author>
         <title>
            Fluent Python: Clear, Concise, and Effective Programming
        </title>
     </book>
     <book id="1491939362" price='29.83'>
         <author>Allen B. Downey</author>
         <title>
 Think Python: How to Think Like a Computer Scientist
        </title>
     </book>
</books>

XPath expression accepts key attributes by adding the @ character in front of the key name.
Listed in the following table are a few examples of XPath using attributes with a brief
description.

XPath expression Description
//book/@price Selects the price attribute for a book:

price="47.49"
price="29.83"

//book Selects the book field and its elements:
<book id="1491946008" price="47.49">

<author>Luciano Ramalho</author>
 <title>Fluent Python: Clear, Concise, and Effective
Programming
 Think Python: How to Think Like a Computer
Scientist
 </title></book>

//book[@price>30] Selects all elements in book the price attribute of which is
greater than 30:
<book id="1491946008" price="47.49">
 <author>Luciano Ramalho</author>
 <title>Fluent Python: Clear, Concise, and Effective
Programming </title> </book>



Using LXML, XPath, and CSS Selectors Chapter 3

[ 80 ]

//book[@price<30]/title Selects title from books where the price attribute is less
than 30:
<title>Think Python: How to Think Like a Computer
Scientist</title>

//book/@id Selects the id attribute and its value. The //@id expression
also results in the same output:
id="1491946008"
 id="1491939362"

//book[@id=1491939362]/author Selects author from book where id=1491939362:
<author>Allen B. Downey</author>

We have tried to explore and learn a few basic features about XPath and writing
expressions to retrieve the desired content. In the Scraping using lxml - a Python library
section, we will use Python programming libraries to further explore deploying code using
XPath to scrape provided documents (XML or HTML) and learn to generate or create XPath
expressions using browser tools. For more information on XPaths please refer to the links in
the Further reading section.

CSS selectors
In Chapter 1, Web Scraping Fundamentals, under the Understanding web development and
technologies section, we learned about CSS and its use to style HTML elements plus we
learned about using global attributes. CSS is normally used to style HTML and there are
various ways to apply CSS to the HTML.

CSS selectors (also referred to as CSS query or CSS selector query) are defined patterns
used by CSS to select HTML elements, using the element name or global attributes (ID,
and Class). CSS selectors, as the name suggests, select or provide the option to select
HTML elements in various ways.

In the following example code, we can visualize a few elements found in <body>:

<h1> is an element and a selector.
The <p> element or selector has the class attribute with the header style type.
When it comes to selecting, <p> we can use either the element name, the attribute
name, or just the type name.
Multiple <a> are found inside <div>, but they differ with their class attribute,
id, and value for the href property:

<html>
<head>
    <title>CSS Selectors: Testing</title>



Using LXML, XPath, and CSS Selectors Chapter 3

[ 81 ]

    <style>
        h1{color:black;}
        .header,.links{color: blue;}
        .plan{color: black;}
        #link{color: blue;}
    </style>
</head>
<body>
    <h1>Main Title</h1>
    <p class=”header”>Page Header</p>
    <div class="links">
         <a class="plan" href="*.pdf">Document Places</a>
         <a id="link" href="mailto:xyz@domain.com">Email Link1!</a>
         <a href="mailto:abc@domain.com">Email Link2!</a>
    </div>
</body>
</html>

The distinguishable patterns we have identified in the preceding code can be used to select
those particular elements individually or in groups. Numbers of DOM parsers are available
online, which provide a CSS query-related facility. One of them, as shown in the following
screenshot, is https:/ ​/​try. ​jsoup. ​org/ ​:

Evaluating CSS query from https://try.jsoup.org/

https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/


Using LXML, XPath, and CSS Selectors Chapter 3

[ 82 ]

The DOM parser converts provided XML or HTML into a DOM object or
tree type of structure, which facilitates accessing and manipulating
element or tree nodes. For more detail information on the DOM, please
visit https:/ ​/​dom. ​spec. ​whatwg. ​org/ ​.

In a CSS query, various symbols, as listed in the following code text, represent certain
characteristics and can be used inside a CSS query:

The global id attribute and class are represented by # and ., respectively, as
seen in this query:

a#link: <a id="link"
href="mailto:xyz@domain.com">Email Link1!</a>

a.plan: <a class="plan" href="*.pdf">Document
Places</a>

Combinators (showing the relationship between elements) are also used, such as
+, >, ~, and the space character, as seen in the query here:

h1 + p: <p class=”header”>Page Header</p>
div.links a.plan: <a class="plan"
href="*.pdf">Document Places</a>

Operators, such as ^, *, $ are used for positioning and selecting, as seen in this
query:

a[href$="pdf"]: <a class="plan" href="*.pdf">Document
Places</a>

a[href^="mailto"]: <a id="link"
href="mailto:xyz@domain.com">Email Link1!</a><a
href="mailto:abc@domain.com">Email Link2!</a>

These symbols are used and explained side-by-side, referring to the preceding HTML code
with various types of selectors, in the following sections.

Element selectors
Element selectors are basic selectors that choose elements from HTML. Most often, these
elements are the basic tags of HTML. The following table lists some of the selectors and
their usage for this category:

CSS query Description
h1 Selects <h1> elements
a Selects all of the <a> elements

https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/


Using LXML, XPath, and CSS Selectors Chapter 3

[ 83 ]

* Selects all elements in the HTML code
body * Selects all <h1>, <p>, <div>, and <a> elements inside <body>
div a Selects all <a> inside <div> (using space character in between)
h1 + p Selects immediate <p> elements after <h1>
h1 ~ p Selects every <p> elements preceded by <h1>
h1,p Selects all <h1> and <p> elements
div > a Selects all <a> elements that are a direct child of <div>

ID and class selectors
ID and class selectors are additional features available with element selectors. We can find
HTML tags with the class and id attributes. These are also known as global attributes.
These attributes are mostly preferred over other attributes as they define the tags for
structure and with identification.

For more details on global attributes, please refer to Chapter 1, Web Scraping Fundamentals,
the Global attributes section. The following table lists the usage of this category of selectors:

CSS query Description
.header Selects an element with class=header
.plan Selects <a> with class=plan
div.links Selects <div> with class=plan
#link Selects an element with id=link
a#link Selects <a> elements with id=link
a.plan Selects <a> elements with class=plan

Attribute selectors
Attribute selectors are used to define selectors with the available attributes. HTML tags
contain an attribute that helps to identify a particular element with the attribute and the
value that it carries.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 84 ]

The following table lists a few ways to show the usage of attribute selectors:

CSS query Description
a[href*="domain"] Selects <a> elements that contain the domain substring in its

href:
<a id="link" href="mailto:xyz@domain.com">Email
Link1!</a>
<a href="mailto:abc@domain.com">Email Link2!</a>

a[href^="mailto"] Selects <a> elements that start with the mailto substring of
the href attributes:
<a id="link" href="mailto:xyz@domain.com">Email
Link1!</a>
<a href="mailto:abc@domain.com">Email Link2!</a>

a[href$="pdf"] Selects <a> elements that have a pdf substring at the end of its
href attribute:
<a class="plan" href="*.pdf"> Document Places </a>

[href~=do] Selects all elements with the href attribute and matches do in
values. The two <a> elements listed in the following both contain
do inside of their href value:
<a id="link" href="mailto:xyz@domain.com">Email
Link1!</a>
<a href="mailto:abc@domain.com">Email Link2!</a>

[class] Selects all elements or <p>, <div>, and <a> with the class
attribute:
<p class='header'>Page Header</p>
<div class="links">
<a class="plan" href="*.pdf"> Document Places </a>

[class=plan] Selects <a> with class=plan:
<a class="plan" href="*.pdf"> Document Places </a>

Pseudo selectors
Pseudo selectors are a set of handy choices when it comes to identifying or selecting the
elements based on their position.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 85 ]

The following table lists some of the ways these types of selectors might be used, with a
brief description:

CSS query Description
a:gt(0) Selects all <a> elements except those indexed at a 0 position:

<a id="link" href="mailto:xyz@domain.com">Email
Link1!</a>
<a href="mailto:abc@domain.com">Email Link2!</a>

a:eq(2) Selects <a> element which are indexed at 2:
<a href="mailto:abc@domain.com">

a:first-child Selects every <a> element that is the first child of its parent:
<a class="plan" href="*.pdf">Document Places</a>

a:last-child Selects every <a> element that is the last child of its parent:
<a href="mailto:abc@domain.com">Email Link2!</a>

a:last-of-type Selects the last element <a> of its parent:
<a href="mailto:abc@domain.com">Email Link2!</a>

:not(p) Selects all elements except <p>.
a:nth-child(1) Selects every <a> from the first child of its parent:

<a class="plan" href="*.pdf">Document Places</a>

a:nth-last-child(3) Selects every third <a> from the last child of its parent:
<a class="plan" href="*.pdf">Document Places</a>

a:nth-of-type(3) Selects every third <a> element of its parent:
<a href="mailto:abc@domain.com">Email Link2!</a>

a:nth-last-of-type(3) Selects every <a> element, at the third position from last, of its
parent:
<a class="plan" href="*.pdf">Document Places</a>

CSS selectors are used as a convenient alternative to XPath expressions for selecting
elements, as they are shorter in length compared to absolute XPath and use simple patterns
in expressions that are easy to read and manage. CSS selectors can be converted into XPath
expressions, but not vice versa.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 86 ]

There are also a number of tools available online, which allow the conversion of a CSS
selector query into an XPath expression; one of these is https:/ ​/​css- ​selector- ​to-​xpath.
appspot.​com/​, as seen in the following screenshot; we shouldn't always trust the tools
available and results should be tested before applying them in code:

CSS selector to XPath converter

As described in the preceding screenshot, CSS selectors are used to select elements from a
data extraction perspective and can be used in Scraper codes or even while applying
styles to selected elements from a styling perspective.

In this section, we learned about the most popular web-related pattern-finding techniques
of XPath and CSS selectors. In the next section, we will explore browser-based developer
tools (DevTools) and learn to use the features inside DevTools. DevTools can be used to
search, analyze, identify, and select elements and obtain XPath expressions and CSS
selectors.

Using web browser developer tools for
accessing web content
In Chapter 1, Web Scraping Fundamentals, under the Data finding techniques (seeking data from
the web) section and inside Developer tools (DevTools), we introduced browser-based
DevTools to locate content and explore the various panels found. DevTools offers various
functional panels, which provide us with supportive tools to manage related resources.

https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/
https://css-selector-to-xpath.appspot.com/


Using LXML, XPath, and CSS Selectors Chapter 3

[ 87 ]

In this particular section, our motive will be specific to identifying the particular elements
that hold the content we are looking for. This identification-based information, such as
XPath expression, CSS query, or even DOM-based navigation flow will be beneficial while
coding Scraper.

We will explore web pages using Google Chrome. Chrome has a built-in developer tool
with plenty of features (available for element identification, selection, DOM navigation, and
so on). In the following sections, we will explore and use these features.

HTML elements and DOM navigation
We will be using http:/ ​/ ​books. ​toscrape. ​com/ ​ from http:/ ​/ ​toscrape. ​com/ ​. toscrape
provides resources related to web scraping for beginners and developers to learn and
implement Scraper.

Let's open the http:/ ​/ ​books. ​toscrape. ​com URL using the web browser, Google Chrome,
as shown here:

Inspect view of books.toscrape.com

http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://books.toscrape.com
http://books.toscrape.com
http://books.toscrape.com
http://books.toscrape.com
http://books.toscrape.com
http://books.toscrape.com
http://books.toscrape.com
http://books.toscrape.com
http://books.toscrape.com


Using LXML, XPath, and CSS Selectors Chapter 3

[ 88 ]

As the page content is successfully loaded, we can load DevTools with a right-click on the
page and press the option Inspect or by pressing Ctrl + Shift + I. If accessing through the 
Chrome menu, click More Tools and Developer Tools. The browser should look similar to
the content in the preceding screenshot.

As you can see in the preceding screenshot, in inspect mode, the following is loaded:

Panel elements are default on the left-hand side.
CSS styles-based content is on the right-hand side.
We notice the DOM navigation or elements path in the bottom left-hand corner,
for example, html.no-js body .... div.page_inner div.row.

We have covered a basic overview of such panels in Chapter 1, Web Scraping Fundamentals,
in the Developer Tools section. As developer tools get loaded, we can find a pointer-icon
listed, at first, from the left; this is used for selecting elements from the page, as shown in
the following screenshot; this element selector (inspector) can be turned ON/OFF using Ctrl
+ Shift + C:

Element selector (inspector) on inspect bar

We can move the mouse on the page loaded after turning ON the element selector.
Basically, we are searching for the exact HTML element that we are pointing to using the
mouse:



Using LXML, XPath, and CSS Selectors Chapter 3

[ 89 ]

Using element selector on the book image

As seen in the preceding screenshot, the element has been selected and, as we move the
mouse over the first book picture available, this action results in the following:

The div.image_container element is displayed and selected in the page itself.
Inside the elements panel source, we can find the particular HTML code, <div
class="image_container">, being highlighted too. This information (where
the book picture is located) can also be found using right-click + page source or
Ctrl + U and searching for the specific content.

The same action can be repeated for various sections of HTML content that we wish to
scrape, as in the following examples:

The price for a listed book is found inside the div.product_price element.
The star-rating is found inside p.star-rating.
The book title is found inside <h3>, found before div.product_price or after
p.star-rating.
The book detail link is found inside <a>, which exists inside <h3>.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 90 ]

From the following screenshot, it's also clear that the previously listed elements
are all found inside article.product_prod. Also, at the bottom of the
following screenshot, we can identify the DOM path as
article.product_prod:

Element selection under inspect mode

DOM navigation, as found in the preceding screenshots, can be beneficial while dealing
with XPath expressions, and can verify the content using the page source, if the path or
element displayed by the element inspector actually exists (inside the obtained page
source).

DOM elements, navigation paths, and elements found using the elements
inspector or selectors should be cross-verified for their existence in page
sources or inside resources that are found in Network panels, to be sure.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 91 ]

XPath and CSS selectors using DevTools
In this section, we will be collecting XPath expressions and CSS queries for the required
element. In a similar way to how we explored the Page Inspector and Elements panel in
the preceding section, let's proceed with the following steps to obtain an XPath expression
and CSS query for the selected element:

Choose the Element Selector and obtain the element code1.
Right-click the mouse on the element code obtained2.
Choose the Copy option from the menu3.
From the sub-menu options, choose Copy XPath for XPath expression for chosen4.
element
Or choose Copy selector for the CSS selector (query)5.

As seen in the following screenshot, we select various sections of a single book item and
obtain respective CSS selectors or XPath expressions, accessing the menu options:

Copying XPath and CSS selector using page inspect



Using LXML, XPath, and CSS Selectors Chapter 3

[ 92 ]

The following are some XPath and CSS selectors collected using DevTools for items
available with products such as book title and price.

XPath selectors using DevTools:

Book title:
//*[@id="default"]/div/div/div/div/section/div[2]/ol/li[1]/arti
cle/h3/a

Price:
//*[@id="default"]/div/div/div/div/section/div[2]/ol/li[1]/arti
cle/div[2]

Image:
//*[@id="default"]/div/div/div/div/section/div[2]/ol/li[1]/arti
cle/div[1]

Stock information:
//*[@id="default"]/div/div/div/div/section/div[2]/ol/li[1]/arti
cle/div[2]/p[2]

Star rating:
//*[@id="default"]/div/div/div/div/section/div[2]/ol/li[1]/arti
cle/p

CSS query selectors using DevTools:

Book title: #default > div > div > div > div > section > div:nth-
child(2) > ol > li:nth-child(1) > article > h3 > a

Price: #default > div > div > div > div > section > div:nth-
child(2) > ol > li:nth-child(1) > article > div.product_price

Image: #default > div > div > div > div > section > div:nth-
child(2) > ol > li:nth-child(1) > article > div.image_container

Stock info: #default > div > div > div > div > section > div:nth-
child(2) > ol > li:nth-child(1) > article > div.product_price >
p.instock.availability

Star rating: #default > div > div > div > div > section > div:nth-
child(2) > ol > li:nth-child(1) > article > p.star-rating

Similarly other essential XPath or CSS selectors will also be collected as required. After
collection and verification or cleaning (shortening) of these expressions and queries,
scraping logic is applied using Python programming to automate the data collection.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 93 ]

Again, there's no particular way out of following the steps as discussed in the previous
section. The XPath or CSS selector can also be determined or formed revealing the HTML
source or page source; there are also lots of browser-based extensions that support similar
tasks. It's the developer's choice to be comfortable with any way out that we have discussed
to deal with the XPath and CSS selectors.

One of the recently listed browser-based extensions to generate XPath and
CSS selectors for Google Chrome is ChroPath (https:/ ​/​autonomiq. ​io/
chropath/ ​). Writing customized expressions and queries is advised for
self-practice and knowledge. Extensions and other similar applications
should be used while processing a large information source.

In this section, we inspected and explored the Elements panel for element identification
and DOM navigation: modifying, removing elements, altering scripts, and so on. Related
options also exist in the Elements panel. In the following section, we will be using the
Python library, lxml, to code Scraper and collect data from the chosen website using
XPath and CSS selector.

Scraping using lxml, a Python library
lxml is a XML toolkit, with a rich library set to process XML and HTML. lxml is preferred
over other XML-based libraries in Python for its high speed and effective memory
management. It also contains various other features to handle both small or large XML files.
Python programmers use lxml to process XML and HTML documents. For more detailed
information on lxml and its library support, please visit https:/ ​/​lxml. ​de/​. ​

lxml provides native support to XPath and XSLT and is built on powerful C
libraries: libxml2 and libxslt. Its library set is used normally with XML or HTML to
access XPath, parsing, validating, serializing, transforming, and extending features from
ElementTree (http:/ ​/ ​effbot. ​org/ ​zone/ ​element- ​index. ​htm#documentation). Parsing,
traversing ElementTree, XPath, and CSS selector-like features from lxml makes it handy
enough for a task such as web scraping. lxml is also used as a parser engine in Python
Beautiful Soup (https:/ ​/​www. ​crummy. ​com/ ​software/ ​BeautifulSoup/ ​bs4/ ​doc/ ​) and
pandas (https:/​/​pandas. ​pydata. ​org/ ​).

https://autonomiq.io/chropath/
https://autonomiq.io/chropath/
https://autonomiq.io/chropath/
https://autonomiq.io/chropath/
https://autonomiq.io/chropath/
https://autonomiq.io/chropath/
https://autonomiq.io/chropath/
https://autonomiq.io/chropath/
https://autonomiq.io/chropath/
https://autonomiq.io/chropath/
https://lxml.de/
https://lxml.de/
https://lxml.de/
https://lxml.de/
https://lxml.de/
https://lxml.de/
https://lxml.de/
https://lxml.de/
https://lxml.de/
https://lxml.de/
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/


Using LXML, XPath, and CSS Selectors Chapter 3

[ 94 ]

Elements of a markup language such as XML and HTML have start and
close tags; tags can also have attributes and contain other elements.
ElementTree is a wrapper that loads XML files as trees of elements. The
Python built-in library, ElementTree (etree), is used to search, parse
elements, and build a document tree. Element objects also exhibit various
accessible properties related to Python lists and dictionaries.

XSLT is a language to transform an XML document into HTML, XHML,
text, and so on. XSLT uses XPath to navigate in XML documents. XSLT is
a template type of structure that is used to transform XML document into
new documents.

The lxml library contains important modules, as listed here:

lxml.etree (https:/ ​/ ​lxml. ​de/​api/ ​lxml. ​etree- ​module. ​html): Parsing and 
implementing ElementTree; supports XPath, iterations, and more
lxml.html (https:/ ​/ ​lxml. ​de/ ​api/​lxml. ​html- ​module. ​html): Parses HTML, 
supports XPath, CSSSelect, HTML form, and form submission
lxml.cssselect (https:/ ​/ ​lxml. ​de/​api/ ​lxml. ​cssselect- ​module. ​html):
Converts CSS selectors into XPath expressions; accepts a CSS selector or CSS
Query as an expression

lxml by examples
lxml has a large module set, and, in this section, we will learn to explore lxml using most of
its features with examples before moving into scraping tasks. The examples are geared
toward extraction activity rather than development.

Example 1 – reading XML from file and traversing
through its elements
In this example, we will be reading the XML content available from the food.xml file. We
will use XML content:

from lxml import etree
xml = open("food.xml","rb").read() #open and read XML file

https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.html-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html
https://lxml.de/api/lxml.cssselect-module.html


Using LXML, XPath, and CSS Selectors Chapter 3

[ 95 ]

The XML response obtained from the preceding code needs to be parsed and traversed
using lxml.etree.XML(). The XML() function parses the XML document and returns
the menus root node, in this case. Please refer to https:/ ​/​lxml. ​de/​api/ ​lxml. ​etree-
module.​html for more detailed information on lxml.etree:

tree = etree.XML(xml)
#tree = etree.fromstring(xml)
#tree = etree.parse(xml)

The functions fromstring() and parse() functions, found in the preceding code, also
provide content to a default or chosen parser used by lxml.etree.

A number of parsers are provided by lxml (XMLParser and HTMLParser)
and the default one used in code can be found using >>>
etree.get_default_parser(). In the preceding case, it results in
<lxml.etree.XMLParser>.

Let's verify tree received after parsing:

print(tree)
print(type(tree))

<Element menus at 0x3aa1548>
<class 'lxml.etree._Element'>

The preceding two statements confirm that tree is an XML root element of the
lxml.etree._Element type. For traversing through all elements inside a tree, tree
iteration can be used, which results in elements in their found order.

Tree iteration is performed using the iter() function. The elements' tag name can be
accessed using the element property, tag; similarly, elements' text can be accessed by
the text property, as shown in the following:

for element in tree.iter():
    print("%s - %s" % (element.tag, element.text))

The preceding tree iteration will result in the following output:

menus -
food -

name - Butter Milk with Vanilla
price - $3.99
description - Rich tangy buttermilk with vanilla essence
rating - 5.0
feedback - 6

https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html
https://lxml.de/api/lxml.etree-module.html


Using LXML, XPath, and CSS Selectors Chapter 3

[ 96 ]

.............
food -

name - Orange Juice
price - $2.99
description - Fresh Orange juice served
rating - 4.9
feedback - 10

We, too, can pass child elements as an argument to the tree iterator (price and name) to
obtain selected element-based responses. After passing the child element to tree.iter(),
we can obtain Tag and Text or Content child elements using element.tag and
element.text, respectively, as shown in the following code:

#iter through selected elements found in Tree
for element in tree.iter('price','name'):
 print("%s - %s" % (element.tag, element.text))

name - Butter Milk with Vanilla
price - $3.99
name - Fish and Chips
price - $4.99
...........
name - Eggs and Bacon
price - $5.50
name - Orange Juice
price - $2.99

Also to be noted is that the food.xml file has been opened in rb mode and not in r mode.
While dealing with local file-based content and files having encoding declarations, such as
<?xml version="1.0" encoding="UTF-8"?>, there's a possibility of encountering the
error as ValueError: Unicode strings with encoding declaration are not
supported. Please use bytes input or XML fragments without declaration.
Encoding/decoding the content might solve the issue mentioned, which is also based on the
file mode.

To deal with the preceding condition or reading the content from file, HTTP URL, or FTP,
parse() is a really effective approach. It uses the default parser unless specified; one is
supplied to it as an extra argument. The following code demonstrates the use of the
parse() function, which is being iterated for the element name to obtain its text:

from lxml import etree

#read and parse the file
tree = etree.parse("food.xml")



Using LXML, XPath, and CSS Selectors Chapter 3

[ 97 ]

#iterate through 'name' and print text content
for element in tree.iter('name'):
    print(element.text)

The preceding code results in the following output: Butter Milk with Vanilla, Fish
and Chips, and so on, which are obtained from the name element and from the food.xml
file:

Butter Milk with Vanilla
Fish and Chips
Egg Roll
Pineapple Cake
Eggs and Bacon
Orange Juice

A multiple-tree element can also be iterated, as seen here:

for element in tree.iter('name','rating','feedback'):
    print("{} - {}".format(element.tag, element.text))

name - Butter Milk with Vanilla
rating - 5.0
feedback - 6
name - Fish and Chips
rating - 5.0
...........
feedback - 4
name - Orange Juice
rating - 4.9
feedback - 10

Example 2 – reading HTML documents using lxml.html
In this example, we will be using the lxml.html module to traverse through the elements
from http:/​/​httpbin. ​org/ ​forms/ ​post:

from lxml import html
from urllib.request import urlopen

root = html.parse(urlopen('http://httpbin.org/forms/post')).getroot()
tree = html.parse(urlopen('http://httpbin.org/forms/post'))

print(type(root)) #<class 'lxml.html.HtmlElement'>
print(type(tree)) #<class 'lxml.etree._ElementTree'>

http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post


Using LXML, XPath, and CSS Selectors Chapter 3

[ 98 ]

We are using parse() from lxml.html to load the given URL content. parse() acts
similarly to lxml.etree but, in this case, root obtained is of the HTML type. The
getroot() method returns the document root. The object type can be compared for root
and tree, as shown in the preceding code. We are interested in root or HTMLElement for
this example. The content parsed as root is shown in the following screenshot:

Page source: http://httpbin.org/forms/post

HTMLElement root has various properties, as listed here:

print(dir(root))

[...'addnext', 'addprevious', 'append', 'attrib', 'base', 'base_url',
'body', 'clear', 'cssselect', 'drop_tag', 'drop_tree', 'extend', 'find',
'find_class', 'find_rel_links', 'findall', 'findtext', 'forms', 'get',
'get_element_by_id', 'getchildren', 'getiterator', 'getnext', 'getparent',
'getprevious', 'getroottree', 'head', 'index', 'insert', 'items', 'iter',
'iterancestors', 'iterchildren', 'iterdescendants', 'iterfind',
'iterlinks', 'itersiblings', 'itertext', 'keys', 'label',
'make_links_absolute', 'makeelement', 'nsmap', 'prefix', 'remove',
'replace', 'resolve_base_href', 'rewrite_links', 'set', 'sourceline',
'tag', 'tail', 'text', 'text_content', 'values', 'xpath']



Using LXML, XPath, and CSS Selectors Chapter 3

[ 99 ]

Let's find <p> from root; find() can be used to locate the first element by the path. Text
can be retrieved using the text_content() function. The findtext() function can also
be used for similar cases, as shown here:

p = root.find('.//p') #find first <p> from root

print(p.text_content())  # Customer name:
print(root.findtext('.//p/label')) #Customer name:

As we can see in the following code, findall() is used to find and iterate through all of
the elements in root:

elemP = root.findall('.//p') #find all <p> element from root
for p in elemP :
    print(p.text_content())

The preceding code lists the text from finding all p tags, as seen here:

Customer name:
Telephone:
E-mail address:
 Small
 Medium
 Large
 Bacon
 Extra Cheese
 Onion
 Mushroom
Preferred delivery time:
Delivery instructions:
Submit order

The HTMLElement root also supports XPath and CSSSelect:

print(root.xpath('//p/label/input/@value'))
print(root.xpath('//legend/text()'))

This will result in the output seen here:

['small','medium','large','bacon','cheese','onion','mushroom']
['Pizza Size', 'Pizza Toppings']

CSSSelect translates CSS selectors into XPath expressions and is used with a related object:

#print text_content() for label inside <p>
for e in root.cssselect('p label'):
    print(e.text_content())



Using LXML, XPath, and CSS Selectors Chapter 3

[ 100 ]

Customer name:
Telephone:
E-mail address:
 Small
 ......
 Mushroom
Preferred delivery time:
Delivery instructions:

#print text_content for element <p> inside <form>
for e in root.cssselect('form > p'):
    print(e.text_content())

Customer name:
Telephone:
E-mail address:
Preferred delivery time:
Delivery instructions:
Submit order

The following code demonstrates the HTML <form> element being explored for its
attributes and properties. We are targeting the <form> element first, which is found
in root, that is, <form method="post" action="/post">:

print(root.forms[0].action)  #http://httpbin.org/post
print(root.forms[0].keys())  #['method', 'action']
print(root.forms[0].items()) #[('method', 'post'), ('action', '/post')]
print(root.forms[0].method) # POST

As we can see from the preceding code, outputs are displayed as in-line comments:

action returns the URL value for the key attribute, action. The URL obtained
is actually a link that will process the information submitted or options chosen.
items() returns the list of tuples containing the element's key and value.
keys() returns the list of element keys.
method returns the value for the attribute method, that is, HTTP request or
HTTP methods. For more information on HTTP methods, please refer to Chapter
1, Web Scraping Fundamentals, the Understanding web development and technologies
section.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 101 ]

Example 3 – reading and parsing HTML for retrieving
HTML form type element attributes
In this example, we will be reading HTML from the http:/ ​/ ​httpbin. ​org/ ​forms/ ​post URL,
which contains HTML-based form elements. Form elements have various predefined
attributes such as type, value, and name and can exist with manual attributes. In the
preceding examples, we tried to implement various functions—XPath and CSSSelect—to
retrieve content from the desired element.

Here, we will try to collect the attributes and their values found in HTML-form elements:

from lxml import html
import requests
response = requests.get('http://httpbin.org/forms/post')

# build the DOM Tree
tree = html.fromstring(response.text)

for element in tree.iter('input'):
     print("Element: %s \n\tvalues(): %s \n\tattrib: %s \n\titems(): %s
\n\tkeys(): %s"%
     (element.tag,
element.values(),element.attrib,element.items(),element.keys()))
     print("\n")

In the preceding code, the response.text and a str type object is obtained for the given
URL. The fromstring() function parses the provided string object and returns the root
node or the HTMLElement tree type.

In this example, we are iterating the input element or <input...> and are looking to
identify the attributes each input possesses.

The preceding code results in the output shown here:

Element: input
     values(): ['custname']
     attrib: {'name': 'custname'}
     items(): [('name', 'custname')]
     keys(): ['name']
Element: input
     values(): ['tel', 'custtel']
     attrib: {'name': 'custtel', 'type': 'tel'}
     items(): [('type', 'tel'), ('name', 'custtel')]
     keys(): ['type', 'name']
.......
.......

http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post
http://httpbin.org/forms/post


Using LXML, XPath, and CSS Selectors Chapter 3

[ 102 ]

Element: input
     values(): ['checkbox', 'topping', 'mushroom']
     attrib: {'name': 'topping', 'type': 'checkbox', 'value': 'mushroom'}
     items(): [('type', 'checkbox'), ('name', 'topping'), ('value',
'mushroom')]
     keys(): ['type', 'name', 'value']
Element: input
     values(): ['time', '11:00', '21:00', '900', 'delivery']
     attrib: {'max': '21:00', 'type': 'time', 'step': '900', 'min':
'11:00', 'name': 'delivery'}
     items(): [('type', 'time'), ('min', '11:00'), ('max', '21:00'),
('step', '900'), ('name',     'delivery')]
     keys(): ['type', 'min', 'max', 'step', 'name']

There are a number of functions and properties used with the <input> element in the code
resulting from the output. Listed in the following in some of the code used in the example
with an explanation:

element.tag: This r
eturns the element tag name (for example, input).
element.values(): The attributes of HTML form element exist
as a key:value pair. The value attribute holds the exact data for
the particular element. values() returns the value attribute for
the chosen element in the List object.
element.attrib: attrib returns a Dict type object (dictionary)
with a key:value pair.
element.items(): items() returns a List object with a tuple
possessing a key and value.
element.keys(): Similar to

items(), keys() returns the attributes key in the List object.

With a general overview on lxml and its features explained through the preceding
examples, we will now perform a few web scraping tasks.

Web scraping using lxml
In this section, we will utilize most of the techniques and concepts learned throughout the
chapters so far and implement some scraping tasks.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 103 ]

For the task ahead, we will first select the URLs required. In this case, it will be http:/ ​/
books.​toscrape.​com/ ​, but by targeting a music category, which is http:/ ​/​books.
toscrape.​com/​catalogue/ ​category/ ​books/ ​music_ ​14/ ​index. ​html. With the chosen target
URL, its time now to explore the web page and identify the content that we are willing to
extract.

We are willing to collect certain information such as the title, price, availability, imageUrl,
and rating found for each individual item (that is, the Article element) listed in the page.
We will attempt different techniques using lxml and XPath to scrape data from single and
multiple pages, plus the use of CSS selectors.

Regarding element identification, XPath, CSS selectors and using
DevTools, please refer to the Using web browser developer tools for accessing
web content section.

Example 1 – extracting selected data from a single page
using lxml.html.xpath
In this example, we will use XPath to collect information from the provided URL and use
lxml features.

In the following code, a musicUrl string object contains a link to the page. musicUrl is
parsed using the parse() function, which results in the doc and
lxml.etree.ElementTree objects:

import lxml.html
musicUrl=
"http://books.toscrape.com/catalogue/category/books/music_14/index.html"
doc = lxml.html.parse(musicUrl)

We now have an ElementTree doc available; we will be collecting the XPath expressions for
the chosen fields such as title and price, found on the musicUrl page. For generating XPath
expressions, please refer to the XPath and CSS selectors using DevTools section:

#base element
articles =
doc.xpath("//*[@id='default']/div/div/div/div/section/div[2]/ol/li[1]/artic
le")[0]

#individual element inside base
title = articles.xpath("//h3/a/text()")
price = articles.xpath("//div[2]/p[contains(@class,'price_color')]/text()")

http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html
http://books.toscrape.com/catalogue/category/books/music_14/index.html


Using LXML, XPath, and CSS Selectors Chapter 3

[ 104 ]

availability =
articles.xpath("//div[2]/p[2][contains(@class,'availability')]/text()[norma
lize-space()]")
imageUrl =
articles.xpath("//div[1][contains(@class,'image_container')]/a/img/@src")
starRating = articles.xpath("//p[contains(@class,'star-rating')]/@class")

The XPath for the preceding articles posseses all of the fields that are available
inside  <article>, such as title, price, availability, imageUrl, and starRating.
The articles field is an expression of a type of parent element with child elements. Also,
individual XPath expressions for child elements are also declared, such as the title field,
that is, title = articles.xpath("//h3/a/text()"). We can notice the use of
articles in the expression.

It is also to be noticed in child expressions that element attributes or key names such as
class or src can also be used as @class and @src, respectively.

Now that the individual expressions have been set up, we can print the items that collect all
of the found information for available expressions and return those in the Python list. The
cleaning and formatting for data received has also been done with the map(), replace(),
and strip() Python functions and Lambda operator, as seen in the following code:

#cleaning and formatting
stock = list(map(lambda stock:stock.strip(),availability))
images = list(map(lambda
img:img.replace('../../../..','http://books.toscrape.com'),imageUrl))
rating = list(map(lambda rating:rating.replace('star-rating
',''),starRating))

print(title)
print(price)
print(stock)
print(images)
print(rating)

Collected or extracted data might require the additional task of cleaning,
that is, removing unwanted characters, white spaces, and so on. It might
also require formatting or transforming data into the desired format such
as converting string date and time into numerical values, and so on. These
two actions help to maintain some predefined or same-structured data.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 105 ]

The final output for the preceding code is shown in the following screenshot:

Python lists with various data from the selected page

As we can see from the preceding screenshot, there is an individual collection of targeted
data. Data collected in such a way can be merged into a single Python object as shown in
the following code or can be written into external files such as CSV or JSON for further
processing:

#Merging all
dataSet = zip(title,price,stock,images,rating)
print(list(dataSet))

[('Rip it Up and ...', '£35.02', 'In stock',
'http://books.toscrape.com/media/cache/81/c4/81c4a973364e17d01f217e1188253d
5e.jpg', 'Five'),
('Our Band Could Be ...', '£57.25', 'In stock',
'http://books.toscrape.com/media/cache/54/60/54607fe8945897cdcced0044103b10
b6.jpg', 'Three'),
.........
.........
('Old Records Never Die: ...', '£55.66', 'In stock',
'http://books.toscrape.com/media/cache/7e/94/7e947f3dd04f178175b85123829467



Using LXML, XPath, and CSS Selectors Chapter 3

[ 106 ]

a9.jpg', 'Two'),
('Forever Rockers (The Rocker ...', '£28.80', 'In stock',
'http://books.toscrape.com/media/cache/7f/b0/7fb03a053c270000667a50dd8d5948
43.jpg', 'Three')]

dataSet in the preceding code is generated using the zip() Python function. zip()
collects individual indexes from all provided list objects and appends them as a tuple. The
final output from dataSet has particular values for each <article>, as shown in the
previous code.

Example 2 – looping with XPath and scraping data from
multiple pages
In example 1, we tried the simple XPath-based technique for a URL with a limited number
of results on a single page. In this case, we will be targeting a food and drink category, that is,
http:/​/​books.​toscrape. ​com/ ​catalogue/ ​category/ ​books/ ​food- ​and- ​drink_ ​33/ ​index.
html, which has its content across pages. An XPath-based looping operation will be used in
this example, which supports a more effective collection of data.

As we will be dealing with multiple pages, it's good practice to check for a few individual
page URLs that can be found in the browser while moving through the listed pages. Most
of the time, it might contain some patterns that can solve the puzzle easily, as used in the
following code:

import lxml.html
from lxml.etree import XPath

baseUrl = "http://books.toscrape.com/"

#Main URL
bookUrl =
"http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index
.html"

#Page URL Pattern obtained (eg: page-1.html, page-2.html...)
pageUrl =
"http://books.toscrape.com/catalogue/category/books/food-and-drink_33/page-
"

bookUrl is the main URL we are interested in; it also contains the page link for the next
page, which contains a pattern, as found in pageUrl, for example, page-2.html:

dataSet = []
page=1

http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html
http://books.toscrape.com/catalogue/category/books/food-and-drink_33/index.html


Using LXML, XPath, and CSS Selectors Chapter 3

[ 107 ]

totalPages=1
while(page<=totalPages):
    print("Rows in Dataset: "+str(len(dataSet)))
    if(page==1):
        doc = lxml.html.parse(pageUrl+str(page)+".html").getroot()
        perPageArticles =
doc.xpath("//*[@id=\"default\"]//form/strong[3]/text()")
        totalArticles =
doc.xpath("//*[@id=\"default\"]//form/strong[1]/text()")
        totalPages = round(int(totalArticles[0])/int(perPageArticles[0]))
        print(str(totalArticles[0])+" Results, showing
"+str(perPageArticles[0])+" Articles per page")
    else:
        doc = lxml.html.parse(pageUrl+str(page)+".html").getroot()

    #used to find page URL pattern
    nextPage =
doc.xpath("//*[@id=\"default\"]//ul[contains(@class,'pager')]/li[2]/a/@href
")
    if len(nextPage)>0:
        print("Scraping Page "+str(page)+" of "+str(totalPages)+". NextPage
> "+str(nextPage[0]))
    else:
        print("Scraping Page "+str(page)+" of "+str(totalPages))

An empty dataSet list is defined to hold data found from each article across pages.

An individual page URL is obtained by concatenating pageUrl with a page number, and
.html. totalPages is found after calculating totalArticles and perPageArticles as
traced from the page itself. totalPages obtained will give an exact loop count and is more
manageable to apply in the loop (the while loop is found in the code):

articles = XPath("//*[@id='default']//ol/li[position()>0]")

titlePath = XPath(".//article[contains(@class,'product_pod')]/h3/a/text()")
pricePath =
XPath(".//article/div[2]/p[contains(@class,'price_color')]/text()")
stockPath =
XPath(".//article/div[2]/p[2][contains(@class,'availability')]/text()[norma
lize-space()]")
imagePath =
XPath(".//article/div[1][contains(@class,'image_container')]/a/img/@src")
starRating = XPath(".//article/p[contains(@class,'star-rating')]/@class")



Using LXML, XPath, and CSS Selectors Chapter 3

[ 108 ]

As we can see in the previous code, articles is the major XPath expression used to loop
for finding individual elements inside the <article> field. The expression should contain
a certain condition that can be fulfilled to preform a loop; in this case, we identified that the
<article> field exists inside of the <ol><li> element.

So, we can perform a loop with li[position()>0] that identifies each <article> field
found inside <li> until it exists in <ol> with its traced position, that is, articles =
XPath("//*[@id='default']//ol/li[position()>0]"):

#looping through 'articles' found in 'doc' i.e each <li><article> found in
Page Source
for row in articles(doc):
     title = titlePath(row)[0]
     price = pricePath(row)[0]
     availability = stockPath(row)[0].strip()
     image = imagePath(row)[0]
     rating = starRating(row)[0]
     #cleaning and formatting applied to image and rating
dataSet.append([title,price,availability,image.replace('../../../..',baseUr
l),rating.replace('star-rating','')])

page+=1 #updating Page Count for While loop

#Final Dataset with data from all pages.
print(dataSet)

Individual elements of the XPath expression are defined as the titlePath element, the
imagePath element, and so on, targeting particular elements whose data is to be obtained.
Finally, the expression set for articles is looped into the HTMLElement obtained for each
page, that is, the doc element and collects the first occurrence of each title and image
element and the other elements found. These collected data are appended to the dataSet
field as a list with the cleaning and formatting done, which results in the output shown in
the following screenshot:



Using LXML, XPath, and CSS Selectors Chapter 3

[ 109 ]

Output with paging information and dataSet contents

Example 3 – using lxml.cssselect to scrape content
from a page
CSS selectors have a broad range of query options as described in the Introduction to XPath
and CSS selector section, and is often used as an easy alternative to XPath. In the two
preceding examples, we explored the XPath to collect the desired information. In this
example, we will be using cssselect from lxml to collect relevant data from a single page
available on https:/ ​/​developer. ​ibm. ​com/ ​announcements/ ​category/ ​data- ​science/ ​?​fa=
date%3ADESC​fb=​.

https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date%3ADESC&fb=


Using LXML, XPath, and CSS Selectors Chapter 3

[ 110 ]

To identify a CSS query, we can browse through the page source or use the DevTools. For
more detail on using DevTools, refer to the XPath and CSS selectors using DevTools section.
In this case, we are identifying and collecting CSS Query using DevTools, as shown in the
following screenshot:

Using DevTools and selecting selector from https://developer.ibm.com/announcements

From the preceding screenshot, we can see that the individual announcements are a block
identified by a.ibm--card__block_link found inside div.ibm--card, which possesses
HTML elements with classes, such as ibm--card__body, and ibm--card__type. The CSS
selector is copied using the described process and will result in the following list for
a.ibm--card__block_link and div.ibm--card__body, respectively:

#content > div > div.code_main > div > div.cpt-content > div >
div.bx--grid.no-pad.cpt--item__row > div:nth-child(1) >
div:nth-child(1) > div > a

#content > div > div.code_main > div > div.cpt-content > div >
div.bx--grid.no-pad.cpt--item__row > div:nth-child(1) >
div:nth-child(1) > div > a > div.ibm--card__body



Using LXML, XPath, and CSS Selectors Chapter 3

[ 111 ]

Let's deploy the preceding concept using Python code, as shown in the following snippet:

from lxml import html
import requests
from lxml.cssselect import CSSSelector
url =
'https://developer.ibm.com/announcements/category/data-science/?fa=date%3AD
ESC&fb='
url_get = requests.get(url)
tree = html.document_fromstring(url_get.content)

The required Python library and URLs are declared and the page content url_get is
parsed with lxml.html. With lxml.html.HTMLElement obtained, we can now select and
navigate to the desired element in the tree with the XPath or CSS selector:

announcements=[]
articles = tree.cssselect('.ibm--card > a.ibm--card__block_link')

for article in articles:
    link = article.get('href')
    atype = article.cssselect('div.ibm--card__body > h5')[0].text.strip()
    adate = article.cssselect('div.ibm--card__body > h5 > .ibm--
card__date')[0].text
    title = article.cssselect('div.ibm--card__body > h3.ibm--
card__title')[0].text_content()
    excerpt= article.cssselect(' div.ibm--card__body > p.ibm--
card__excerpt')[0].text
    category= article.cssselect('div.ibm--card__bottom > p.cpt-
byline__categories span')
    #only two available on block: except '+'
#announcements.append([link,atype,adate,title,excerpt,[category[0].text,cat
egory[1].text]])
    announcements.append([link,atype,adate,title,excerpt,[span.text for
span in category if     span.text!='+']])

print(announcements)

articles is a defined main CSS query and is looped for all available articles found in
the page as article. Each article has different elements for type, date, title, category, and
so on. Element data or attributes are collected using text, text_content(), and get().
cssselect returns the Python list objects, hence, indexing, such as [0], is used to collect
particular element content.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 112 ]

category in the preceding code doesn't have any indexing, as it contains a multiple
<span> element whose value is being extracted using a list comprehension technique,
while appending or using indexing as shown in the comments. Output obtained for the
code is shown in the following screenshot. Minor cleaning of data has been attempted, but
the final list still contains the obtained raw data:

Output from list announcements obtained using lxml.cssselect

It's also to be noted that CSS selector queries copied or obtained using
DevTools and used in the example code seem to be different in expression
and length. DevTools-provided queries contain details and linked
expressions from the parent element found for all chosen elements. In
code, we have used the CSS query for only the particular elements
identified.

Summary
Element identification, DOM-based navigation, using browser-based developer tools,
deploying data-extraction techniques, and an overview on XPath and CSS selectors, plus
the use of lxml in a Python library, were the main topics explored in this chapter.

We have also explored various examples using lxml, implementing different techniques
plus library features to deal with the element and ElementTree. Finally, web Scraping
techniques were explored through examples focusing on different situations that might
arise in real cases.

In the next chapter, we will learn more about web scraping techniques and some new
Python libraries deploying these techniques.



Using LXML, XPath, and CSS Selectors Chapter 3

[ 113 ]

Further reading
The DOM: https:/ ​/ ​dom. ​spec. ​whatwg. ​org/​

XPath: https:/ ​/ ​www. ​w3. ​org/ ​TR/ ​xpath/ ​, https:/ ​/​www. ​w3. ​org/ ​TR/​2017/ ​REC-
xpath-​31- ​20170321/ ​

XML DOM: https:/ ​/​www. ​w3schools. ​com/ ​xml/ ​dom_ ​intro. ​asp

XPath introduction: https:/ ​/​www. ​w3schools. ​com/ ​xml/​xpath_ ​intro. ​asp

XPath tester: https:/ ​/​freeformatter. ​com/​xpath- ​tester. ​html, http:/ ​/​www.
xpathtester. ​com/ ​xslt, https:/ ​/​codebeautify. ​org/ ​Xpath- ​Tester

XPath tutorial: https:/ ​/​doc. ​scrapy. ​org/ ​en/​xpath- ​tutorial/ ​topics/ ​xpath-
tutorial. ​html

CSS Selector reference: https:/ ​/​www. ​w3schools. ​com/ ​cssref/ ​css_ ​selectors. ​asp

CSS pseudo class and elements: https:/ ​/​www. ​w3schools. ​com/ ​css/ ​css_ ​pseudo_
elements. ​asp

CSS information: http:/ ​/ ​www. ​css3. ​info/ ​, https:/ ​/​developer. ​mozilla. ​org/ ​en-
US/​docs/ ​Web/ ​CSS

CSS query parser: https:/ ​/​try. ​jsoup. ​org/ ​

CSS Selector to XPath: https:/ ​/ ​css-​selector- ​to- ​xpath. ​appspot. ​com

ElementTree overview: http:/ ​/​effbot. ​org/ ​zone/ ​element- ​index. ​htm

https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/dom_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
https://freeformatter.com/xpath-tester.html
http://www.xpathtester.com/xslt
http://www.xpathtester.com/xslt
http://www.xpathtester.com/xslt
http://www.xpathtester.com/xslt
http://www.xpathtester.com/xslt
http://www.xpathtester.com/xslt
http://www.xpathtester.com/xslt
http://www.xpathtester.com/xslt
http://www.xpathtester.com/xslt
http://www.xpathtester.com/xslt
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://codebeautify.org/Xpath-Tester
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://try.jsoup.org/
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
https://css-selector-to-xpath.appspot.com
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm


4
Scraping Using pyquery – a

Python Library
Starting from this chapter, we will be exploring scraping-related tools and techniques, as
we will also be deploying some scraping code. Features related to web exploration, Python
libraries, element identification, and traversing are the major concepts we have learned
about so far.

Web scraping is often a challenging and long process that requires an understanding of
how the website is performing. A basic ability to understand and identify the backends or
tools that are used to build a website will assist in any scraping task. This is also related to a
process known as reverse engineering. For more information on such tools, please refer to
Chapter 3, Using LXML, XPath, and CSS Selectors, and the using web browser developer tools
for accessing web content section. In addition to this, identifying the tools for traversing and
manipulating elements such as HTML tags is also required, and pyquery is one of them.

In the previous chapters, we explored XPath, CSS Selectors, and LXML. In this chapter, we
will look into using pyquery, which has a jQuery-like ability that seems to be more efficient
and, hence, easier to deal with when it comes to web scraping procedures.

In this chapter, you will learn about the following topics:

Introduction to pyquery
Exploring pyquery (major methods and attributes)
Using pyquery for web scraping



Scraping Using pyquery – a Python Library Chapter 4

[ 115 ]

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) is required for this chapter. We will be
using the following Python libraries:

pyquery

urllib

requests

If these libraries don't exist in your current Python setup, refer to Chapter 2, Python and the
Web – Using urllib and Requests, and the Setting things up section, for installation and setup
help.

The code files for this chapter are available in this book's GitHub repository: https:/ ​/
github.​com/​PacktPublishing/ ​Hands- ​On- ​Web-​Scraping- ​with- ​Python/ ​tree/ ​master/
Chapter04.

Introduction to pyquery
pyquery is a jQuery-like library for Python that uses the lxml library. This provides an 
easy and interactive environment for dealing with markup elements in terms of
manipulation and traversal purposes.

pyquery expressions are also similar to jquery, and users with jquery
knowledge will find it more convenient to use in Python.

The pyquery Python library, as its name suggests, enhances query writing procedures
related to elements found in XML and HTML. pyquery shortens element processing and
provides a more insightful scripting approach that is fit for scraping and DOM-based
traversal and manipulation tasks.

pyquery expressions use CSS selectors to perform queries, alongside additional features
that it implements. For example, the following expression is used by pyquery:

page.find('a').attr('href')    -- (pyquery expression)

The following expression is used by cssselect:

cssselect('a').get('href')      -- (cssselect expression)

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter04


Scraping Using pyquery – a Python Library Chapter 4

[ 116 ]

jQuery (write less, do more) is one of the most admired JavaScript
libraries and is small, quick, and has lots of features that support
DOM/HTML/CSS, and more. Web document-based traversing,
manipulation, event handling, animation, AJAX, and more are some of its
main features. Please visit https:/ ​/ ​jquery. ​com/ ​ for more information.

For more information on pyquery and its documentation, please visit
https:/ ​/​pythonhosted. ​org/​pyquery/ ​ or https:/ ​/​github. ​com/ ​gawel/
pyquery/ ​.

Exploring pyquery
Before we move on and explore pyquery and its features, let's start by installing it by using
pip:

C:\> pip install pyquery

For more information on using pip and library installation, please refer to
the Setting things up section in Chapter 2, Python and the Web – Using urllib
and Requests.

The following libraries are installed on a successful installation of pyquery using pip:

cssselect-1.0.3

lxml-4.3.1

pyquery-1.4.0

>>> in the code represents the use of the Python IDE; it accepts the code or
instructions and displays the output on the next line.

Once the installation is completed and successful, we can use pyquery, as shown in the
following code, to confirm the setup. We can explore the properties it contains by using the
dir() function:

>>> from pyquery import PyQuery as pq

>>> print(dir(pq))

https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://jquery.com/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://github.com/gawel/pyquery/
https://github.com/gawel/pyquery/
https://github.com/gawel/pyquery/
https://github.com/gawel/pyquery/
https://github.com/gawel/pyquery/
https://github.com/gawel/pyquery/
https://github.com/gawel/pyquery/
https://github.com/gawel/pyquery/
https://github.com/gawel/pyquery/
https://github.com/gawel/pyquery/
https://github.com/gawel/pyquery/


Scraping Using pyquery – a Python Library Chapter 4

[ 117 ]

['Fn', '__add__', '__call__', '__class__', '__contains__', '__delattr__',
'__delitem__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__',
'__ge__', '__getattribute__', '__getitem__', '__gt__',  '_filter_only',
'_get_root', '_next_all', '_prev_all', '_translator_class',
'_traverse','addClass', 'add_class', 'after', 'append', 'appendTo',
'append_to','attr','base_url','before','children', 'clear', 'clone',
'closest', 'contents', 'copy', 'count', 'css','each','empty',
'encoding','end','eq', 'extend', 'filter',
'find','fn','hasClass','has_class','height','hide', 'html',
'index','insert','insertAfter', 'insertBefore',
'insert_after','insert_before', 'is_', 'items',
'length','make_links_absolute',
'map','next','nextAll','next_all','not_','outerHtml','outer_html','parent',
'parents', 'pop', 'prepend', 'prependTo', 'prepend_to','prev', 'prevAll',
'prev_all', 'remove', 'removeAttr', 'removeClass', 'remove_attr',
'remove_class','remove_namespaces', 'replaceAll', 'replaceWith',
'replace_all', 'replace_with', 'reverse', 'root','show',
siblings','size','sort','text', 'toggleClass', 'toggle_class', 'val',
'width', 'wrap', 'wrapAll','wrap_all','xhtml_to_html']

Now we will explore certain features from pyquery that are relevant to scraping concepts.
For this purpose, we will be using a page source available from https:/ ​/​www. ​python. ​org
that has been saved locally as test.html to provide real-world usability:

Page source obtained from https://www.python.org

In Google Chrome, you can right-click on the web page and choose the
View page source menu option or press Ctrl + U to obtain the page
source.

Obtaining the page source or HTML code only is not enough, though, as we need to load
this content into the library to gain more tools to explore with. We'll be doing this in the
upcoming section.

https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org


Scraping Using pyquery – a Python Library Chapter 4

[ 118 ]

While testing or following the code, you might find or require changes to
be done on the pyquery code expressions in order to obtain the real
output. Page sources that are obtained now might be updated or changed.
You are suggested to obtain the latest page source from the source URL
(https:/ ​/​www. ​python. ​org).

Loading documents
In most cases, a document's content is obtained by using requests or urllib and is
provided to pyquery as follows:

>>> from pyquery import PyQuery as pq
>>> import requests
>>> response = requests.get('http://www.example.com').text #content

>>> from urllib.request import urlopen
>>> response = urlopen('http://www.example.com').read()
>>> docTree = pq(response)

pyquery can also load URLs using the Python library, urllib (default), or requests. It also
supports requests-based parameters:

>>> pq("https://www.python.org")
[<html.no-js>]

>>> site=pq("https://www.python.org")
>>> print(type(site))
<class 'pyquery.pyquery.PyQuery'>

>>> pq("https://www.samsclub.com")
[<html>]

The pq object we obtained from the preceding code is being parsed using the XML parser
(default) that's available from lxml, which can also be updated with the extra parser
argument being passed to it:

>>> doc = pq('http://www.exaple.com', parser = 'xml')  #using parser xml

>>> doc = pq('http://www.exaple.com', parser = 'html') #using parser html

Normally, HTML code from a page source or other sources, such as files, is provided as a
string to pyquery for further processing, as shown in the following code:

>>> doc = pq('<div><p>Testing block</p><p>Second block</p></div>')
>>> print(type(doc))

https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org


Scraping Using pyquery – a Python Library Chapter 4

[ 119 ]

<class 'pyquery.pyquery.PyQuery'>

>>> pagesource = open('test.html','r').read() #reading locally saved HTML
>>> print(type(pagesource))
<class 'str'>

>>> page = pq(pagesource)
>>> print(type(page))
<class 'pyquery.pyquery.PyQuery'>

With the PyQuery object or pq that was received from the document or URL that was
loaded, we can proceed and explore the features that are available from pyquery.

Element traversing, attributes, and pseudo-
classes
pyquery has a large set of attributes and methods that can be deployed to obtain the 
desired content. In the following examples, we'll identify the implementation from the code
that's found in this section:

>>> page('title') #find element <title>
[<title>]

>>> page.find('title').text() #find element <title> and return text content
'Welcome to Python.org'

>>> page.find('meta[name="description"]').attr('content')
'The official home of the Python Programming Language'

>>> page.find('meta[name="keywords"]').attr('content')
'Python programming language object oriented web free open source software
license documentation download community'

>>> buttons = page('a.button').html() #return HTML content for element <a>
with class='button'
>>> buttons
'>_\n <span class="message">Launch Interactive Shell</span>\n '

The following are a few of their functions, along with a description, that can be seen in the
preceding code:

find(): Searches the provided element or evaluates the query expression build
using CSS selectors
text(): Returns the element content as a string



Scraping Using pyquery – a Python Library Chapter 4

[ 120 ]

attr(): Identifies the attribute and returns its content
html(): Returns the HTML content of the evaluated expression

The class and id CSS attributes are represented with . and #,
respectively, and are prefixed to the attribute's value. For example, <a
class="main" id="mainLink"> will be identified as a.main and
a#mainLink.

In the following code, we are listing all the identified <ul> elements with the class
attribute and the menu value:

>>> page('ul.menu') #<ul> element with attribute class='menu'
[<ul.menu>, <ul.navigation.menu>, <ul.subnav.menu>, <ul.navigation.menu>,
<ul.subnav.menu>, <ul.navigation.menu>,..............,<ul.subnav.menu>,
<ul.footer-links.navigation.menu.do-not-print>]

The expression was passed to a PyQuery object, which generated a list of evaluated
elements. These elements are iterated for their exact values or their content.

PyQuery also contains pseudo classes or :pseudo element, and are used for indexing and
obtaining predefined expression results. :pseudo element can also be appended to an
existing selector query. The following code implements some of the pseudo elements that
are common while traversing:

>>> page('nav:first') #first <nav> element
[<nav.meta-navigation.container>]

>>> page('a:first') #first <a> element
[<a>]

>>> page('ul:first') #first <ul> element
[<ul.menu>]

>>> page('ul:last') #last <ul> element
[<ul.footer-links.navigation.menu.do-not-print>]

Let's go over the pseudo elements that were used in the preceding code:

:first: Returns the first occurrence of an element from the content provided
:last: Returns the last occurrence of an element from the content provided



Scraping Using pyquery – a Python Library Chapter 4

[ 121 ]

Let's look at a general implementation of a few more :pseudo element to list the HTML
elements:

>>> page(':header') #header elements found
[<h1.site-headline>, <h1>, <h1>, <h1>, <h1>, <h1>, <h2.widget-title>,
<h2.widget-title>..........,<h2.widget-title>, <h2.widget-title>,
<h2.widget-title>]

>>> page(':input') #input elements found
[<input#id-search-field.search-field>, <button#submit.search-button>]

>>> page(':empty') #empty elements found
[<meta>, <meta>, <link>, <meta>, <meta>, <meta>, <meta>,<script>, <link>,
<link>,........,<img.python-logo>, <span.icon-search>,<span.icon-facebook>,
<span.icon-twitter>, <span.icon-freenode>, ...........,<span.icon-feed>,
<div.python-logo>, <span#python-status-indicator.python
-status-indicator-default>, <script>, <script>, <script>]

>>> page(':empty:odd') #empty elements, only Odd ones are listed
[<meta>, <meta>, <meta>, <meta>, <meta>, <meta>, <script>, <link>, <link>,
<link>, <link>, <meta>, .......,<img.python-logo>, <span.icon-google-plus>,
<span.icon-twitter>, <span.breaker>, <span.icon-download>, <span.icon-
jobs>, <span.icon-calendar>, <span.icon-python>, <div.python-logo>,
<script>,<script>]

The following are the :pseudo element that we used in the preceding code:

:header: Returns the header elements (h1, h2,..., h5, h6) found in the page.

:input: Returns all the input elements. Large numbers of HTML <form>-based
pseudo elements exist. Please refer to https:/ ​/​pythonhosted. ​org/ ​pyquery/ ​ for
more information.

:empty: Returns all the elements that don't have any child element.

:odd: Returns elements indexed as odd numbers. They can be used with other
:pseudo element as :empty:odd.

:even: Similar to :odd, but returns evenly indexed elements.

https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/


Scraping Using pyquery – a Python Library Chapter 4

[ 122 ]

The following code demonstrates an expression for traversing, :pseudo element, and 
element attributes together:

>>> page.find('ul:first').attr('class') #class name of first <ul> element
'menu'

>>> page.find('a:first').attr('href') #href value of first <a> element
'#content'

>>> page.find('a:last').attr('href') #href value of last <a> element
'/psf/sponsorship/sponsors/'

>>> page.find('a:eq(0)').attr('href') #href value of first <a> element
using Index!
'#content'

>>> page.find('a:eq(0)').text() #text from first <a> element
'Skip to content'

The following are a few more :pseudo element. We can use these to address the index of
the elements:

:eq: Selects the particular index number; evaluates to equals to.
:lt: Evaluates to less than for the provided index number. For
example, page('a:lt(2)').
:gt: Evaluates to greater than for the provided index numbers. For
example, page('a:gt(0)').

Apart from the general features that are used to identify the index and find elements,
:pseudo element can also be used to search the element with the provided text, as shown
in the following code:

>>> page('p:contains("Python")') #return elements <p> with text 'Python"
[<p>, <p>, <p>, <p>, <p>, <p>, <p>, <p>, <p>, <p>, <p>, <p>, <p>, <p>]

>>> page('p:contains("python.org")') #return elements <p> with text
"python.org"
[<p>, <p>]

#return text from second <p> element containing text "python.org"
>>> page('p:contains("python.org")').eq(1).text()
'jobs.python.org'



Scraping Using pyquery – a Python Library Chapter 4

[ 123 ]

The following list describe simple definitions of :contains and eq(), as used in the
previous code:

:contains: Matches all elements that contain the provided text.
eq(): Returns the element that was found for a particular index number.
Evaluates as equals to and is similar to :eq.

pyquery has a few functions that return a Boolean answer, which is quite effective in
circumstances where you need to search for an element with attributes and also confirm the
attribute's value:

#check if class is 'python-logo'
>>> page('h1.site-headline:first a img').is_('.python-logo')
True

#check if <img> has class 'python-logo'
>>> page('h1.site-headline:first a img').has_class('python-logo')
True

The following are the functions that were used in the previous code, along with their
definitions:

is_(): Accepts a selector as an argument and returns True if the selector
matches elements, otherwise, it returns False.
has_class(): Returns True if the selector matches the class that's provided. It is
useful for identifying elements with the class attribute.

We have used a few important functions and tools with pyquery that enhance element
identification and traversal-related properties. In the next section, we will learn about and
demonstrate iteration.

Iterating
In this section, we will be demonstrating the iterating (perform repeatedly) facility that's
available with pyquery. It's effective and easy to process in many situations.



Scraping Using pyquery – a Python Library Chapter 4

[ 124 ]

In the following code, we are searching for the name and property attributes that are
found in the <meta> tags that contain the word Python.org. We are also using Python's
List Comprehension technique to demonstrate the one-line coding feature:

#Find <meta> with attribute 'content' containing '..Python.org..'
#and list the attribute 'name' that satisfies the find()

>>> meta=page.find('meta[content*="Python.org"]')
>>> [item.attr('name') for item in meta.items() if item.attr('name') is not
None]
['application-name', 'apple-mobile-web-app-title']

#Continuing from code above list value for attribute 'property'

>>> [item.attr('property') for item in meta.items() if
item.attr('property') is not None]
['og:site_name', 'og:title']

As we can see in the preceding code, we are using the items() function in a loop with the
element meta to iterate for the provided option. An expression resulting in iterable objects
can be explored using items(). Results that return None are excluded from the list:

>>> social = page.find('a:contains("Socialize") + ul.subnav li a')
>>> [item.text() for item in social.items() if item.text() is not None]
['Google+', 'Facebook', 'Twitter', 'Chat on IRC']

>>> [item.attr('href') for item in social.items() if item.attr('href') is
not None]
['https://plus.google.com/+Python',
'https://www.facebook.com/pythonlang?fref=ts',
'https://twitter.com/ThePSF', '/community/irc/']

>>> webdevs = page.find('div.applications-widget:first ul.menu
li:contains("Web Development") a')
>>> [item.text() for item in webdevs.items() if item.text() is not None]
['Django', 'Pyramid', 'Bottle', 'Tornado', 'Flask', 'web2py']



Scraping Using pyquery – a Python Library Chapter 4

[ 125 ]

In the preceding code, the pyquery object collects the names and links that are available
from the social and web development section. These can be found under Use Python for...
in the following screenshot. The object is iterated using the Python list comprehension
technique:

Upcoming events to be extracted using pyquery

In the following code, we will be exploring a few more details that were retrieved from the
upcomingevents iteration:

>>> eventsList = []
>>> upcomingevents = page.find('div.event-widget ul.menu li')
>>> for event in upcomingevents.items():
 ...     time = event.find('time').text()
 ...     url = event.find('a[href*="events/python"]').attr('href')
 ...     title = event.find('a[href*="events/python"]').text()
 ...     eventsList.append([time,title,url])
 ...
>>> eventsList



Scraping Using pyquery – a Python Library Chapter 4

[ 126 ]

eventsList contains extracted details from Upcoming Events, as shown in the preceding
screenshot. The output from eventsList is provided here:

[['2019-02-19', 'PyCon Namibia 2019', '/events/python-events/790/'],
['2019-02-23', 'PyCascades 2019', '/events/python-events/757/'],
['2019-02-23', 'PyCon APAC 2019', '/events/python-events/807/'],
['2019-02-23', 'Berlin Python Pizza', '/events/python-events/798/'],
['2019-03-15', 'Django Girls Rivers 2019 Workshop', '/events/python-user-
group/816/']]

DevTools can be used to identify a CSS selector for the particular section
and can be further processed with the looping facility. For more
information regarding the CSS Selector, please refer to Chapter 3, Using
LXML, XPath, and CSS Selectors, and the XPath and CSS selectors using
DevTools section.

The following code illustrates a few more examples of the pyquery iterating process via the
use of find() and items():

>>> buttons = page.find('a.button')
>>> for item in buttons.items():
...     print(item.text(),' :: ',item.attr('href'))
...

>_ Launch Interactive Shell  ::  /shell/
Become a Member  ::  /users/membership/
Donate to the PSF  ::  /psf/donations/

>>> buttons = page.find('a.button:odd')
>>> for item in buttons.items():
...     print(item.text(),' :: ',item.attr('href'))
...

Become a Member  ::  /users/membership/

>>> buttons = page.find('a.button:even')
>>> for item in buttons.items():
...     print(item.text(),' :: ',item.attr('href'))
...

>_ Launch Interactive Shell  ::  /shell/
Donate to the PSF  ::  /psf/donations/

For more information on features, attributes, and methods from pyquery, please refer to
the https:/​/​pythonhosted. ​org/ ​pyquery/ ​index. ​html.

https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html
https://pythonhosted.org/pyquery/index.html


Scraping Using pyquery – a Python Library Chapter 4

[ 127 ]

Web scraping using pyquery
In the previous section, we learned about using some important features that are available
from pyquery and traversing or identifying elements using those features. In this section,
we will be using most of these features from pyquery and we will be using them to scrape
data from the web by providing examples with various use cases.

Example 1 – scraping data science
announcements
In this example, we will be scraping announcements-related details that are found within
the data science category from
https://developer.ibm.com/announcements/category/data-science/.

The same URL from https:/ ​/​developer. ​ibm. ​com/ ​ has also been used to
collect data using lxml.cssselect under Example 3, in the Web scraping
using LXML section from Chapter 3, Using LXML, XPath, and CSS
Selectors. It is suggested that you explore both examples and compare the
features that were used.

To begin with, let's import pyquery and requests:

from pyquery import PyQuery as pq
import requests
dataSet = list()

Create dataSet so that you have an empty list to collect data that we will find from various
pages, along with the libraries to be used. We have declared read_url(), which will be
used to read the provided URL and return a PyQuery object. In this example, we will be
using sourceUrl, that is, https:/ ​/ ​developer. ​ibm. ​com/ ​announcements/ ​:

sourceUrl='https://developer.ibm.com/announcements/'

def read_url(url):
 """Read given Url , Returns pyquery object for page content"""
 pageSource = requests.get(url).content
 return pq(pageSource)

The information to be collected can be retrieved from https:/ ​/​developer. ​ibm. ​com/
announcements/​category/ ​data- ​science/ ​?​fa=​date:DESC ​fb= ​ or obtained using
sourceUrl+"category/data-science/?fa=date:DESC&fb=". Here, we will be looping
through pageUrls.

https://developer.ibm.com/announcements/category/data-science/
https://developer.ibm.com/announcements/category/data-science/
https://developer.ibm.com/
https://developer.ibm.com/
https://developer.ibm.com/
https://developer.ibm.com/
https://developer.ibm.com/
https://developer.ibm.com/
https://developer.ibm.com/
https://developer.ibm.com/
https://developer.ibm.com/
https://developer.ibm.com/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/?fa=date:DESC&fb=


Scraping Using pyquery – a Python Library Chapter 4

[ 128 ]

pageUrls results in the following page URLs. These were obtained by using list
comprehension and range():

https://developer.ibm.com/announcements/category/data-science/page/1?f
a=date:DESC&fb=

https:/​/ ​developer. ​ibm. ​com/ ​announcements/ ​category/ ​data- ​science/ ​page/ ​2?
fa=​date:DESC ​fb= ​

As shown in the following code, pageUrls generates a list of page-based URLs that can be
processed further via the use of the get_details() function. This is used to retrieve
articles:

if __name__ == '__main__':
    mainUrl = sourceUrl+"category/data-science/?fa=date:DESC&fb="
    pageUrls = [sourceUrl+"category/data-
science/page/%(page)s?fa=date:DESC&fb=" % {'page': page} for page in
range(1, 3)]

    for pages in pageUrls:
        get_details(pages)

    print("\nTotal articles collected: ", len(dataSet))
    print(dataSet)

As we can see from the preceding code, the following URLs were listed:

https:/​/ ​developer. ​ibm. ​com/ ​announcements/ ​category/ ​data- ​science/ ​page/ ​1?
fa=​date:DESC ​fb= ​

https:/​/ ​developer. ​ibm. ​com/ ​announcements/ ​category/ ​data- ​science/ ​page/ ​2?
fa=​date:DESC ​fb= ​

The URLs from pageUrls are iterated and passed to get_details() for further
processing, as shown in the following code:

def get_details(page):
    """read 'page' url and append list of queried items to dataSet"""
    response = read_url(page)

    articles = response.find('.ibm--card > a.ibm--card__block_link')
    print("\nTotal articles found :", articles.__len__(), ' in Page: ',
page)

    for article in articles.items():
        link = article.attr('href')
        articlebody = article.find('div.ibm--card__body')

https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/1?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=
https://developer.ibm.com/announcements/category/data-science/page/2?fa=date:DESC&fb=


Scraping Using pyquery – a Python Library Chapter 4

[ 129 ]

        adate = articlebody.find('h5 > .ibm--card__date').text()
        articlebody.find('h5 > .ibm--card__date').remove()
        atype = articlebody.find('h5').text().strip()
        title = articlebody.find('h3.ibm--
card__title').text().encode('utf-8')
        excerpt = articlebody.find('p.ibm--
card__excerpt').text().encode('utf-8')
        category = article.find('div.ibm--card__bottom > p.cpt-
byline__categories span')

        if link:
            link = str(link).replace('/announcements/', mainUrl)
            categories = [span.text for span in category if span.text !=
'+']
            dataSet.append([link, atype, adate, title,
excerpt,",".join(categories)])

The page URL that's passed to get_details() is read by read_url() and response
from a PyQuery object is obtained. Information that contains blocks are identified as
articles using CSS selectors. Since there's more than one articles iteration available, we
use items(). Individual data elements are then processed with the help of cleaning,
replacing, and merging activities before they are appended to the main dataset, which in
this case is dataSet. PyQuery expressions can also be shortened via the use of
articlebody.

Also, the remove() PyQuery (manipulation) method is used to remove .ibm--
card__date, which is found inside <h5>, in order to obtain atype. The atype content
would also contain additional .ibm--card__date details if used without removing with
the following code:

articlebody.find('h5 > .ibm--card__date').remove())

The final output that's obtained from the preceding code is as follows:

Total articles found : 8 in Page:
https://developer.ibm.com/announcements/category/data-science/page/1?fa=dat
e:DESC&fb=

Total articles found : 2 in Page:
https://developer.ibm.com/announcements/category/data-science/page/2?fa=dat
e:DESC&fb=

Total articles collected: 10

[['https://developer.ibm.com/announcements/model-mgmt-on-watson-studio-loca
l/', 'Announcement', 'Nov 05, 2018', b'Perform feature engineering and



Scraping Using pyquery – a Python Library Chapter 4

[ 130 ]

model scoring', b'This code pattern demonstrates how data scientists can
leverage IBM Watson Studio Local to automate the building and training
of\xe2\x80\xa6', 'Analytics,Apache Spark'], ...........................,
['https://developer.ibm.com/announcements/algorithm-that-gives-you-answer-t
o-any-particular-question-based-on-mining-documents/', 'Announcement', 'Sep
17, 2018', b'Query a knowledge base to get insights about data', b'Learn a
strategy to query a knowledge graph with a question and find the right
answer.', 'Artificial Intelligence,Data Science'],
['https://developer.ibm.com/announcements/build-a-domain-specific-knowledge
-graph-from-given-set-of-documents/', 'Announcement', 'Sep 14, 2018',
b'Walk through the process of building a knowledge base by mining
information stored in the documents', b'Take a look at all of the aspects
of building a domain-specific knowledge graph.', 'Artificial
Intelligence,Data Science']]

Example 2 – scraping information from nested
links
In this example, we will be scraping details for quotes found in books from http:/ ​/
quotes.​toscrape. ​com/ ​tag/ ​books/ ​. Each individual quote contains certain information,
plus a link to the author's detail page, which will also be processed so that we can obtain
information regarding the author:

Main page from http://quotes.toscrape.com/tag/books/

http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/
http://quotes.toscrape.com/tag/books/


Scraping Using pyquery – a Python Library Chapter 4

[ 131 ]

In the following code, the elements in keys will be used as keys for output and will contain
the Python dictionary. Basically, we will be collecting data for elements in keys:

from pyquery import PyQuery as pq
sourceUrl = 'http://quotes.toscrape.com/tag/books/'
dataSet = list()
keys =
['quote_tags','author_url','author_name','born_date','born_location','quote
_title']

def read_url(url):
    """Read given Url , Returns pyquery object for page content"""
    pageSource = pq(url)
    return pq(pageSource)

read_url() from the preceding code is also updated and is different in comparison to the
libraries we used in the Example 1 – scraping data science announcements section. In this
example, it returns the PyQuery object for the provided URL:

if __name__ == '__main__':
    get_details(sourceUrl)

    print("\nTotal Quotes collected: ", len(dataSet))
    print(dataSet)

    for info in dataSet:
        print(info['author_name'],' born on ',info['born_date'], ' in
',info['born_location'])

There is an additional iteration being done with dataSet for certain values from the info
dictionary, which is found inside dataSet.

As shown in the following code, get_details() uses a while loop for pagination
purposes, and is controlled by the nextPage value:

def get_details(page):
    """read 'page' url and append list of queried items to dataSet"""
    nextPage = True
    pageNo = 1
    while (nextPage):
        response = read_url(page + 'page/' + str(pageNo))
        if response.find("ul.pager:has('li.next')"):
            nextPage = True
        else:
            nextPage = False

        quotes = response.find('.quote')



Scraping Using pyquery – a Python Library Chapter 4

[ 132 ]

        print("\nTotal Quotes found :", quotes.__len__(), ' in Page: ',
pageNo)
        for quote in quotes.items():
            title = quote.find('[itemprop="text"]:first').text()
            author = quote.find('[itemprop="author"]:first').text()
            authorLink =
quote.find('a[href*="/author/"]:first').attr('href')
            tags = quote.find('.tags
[itemprop="keywords"]').attr('content')

            if authorLink:
                authorLink = 'http://quotes.toscrape.com' + authorLink
                linkDetail = read_url(authorLink)
                born_date = linkDetail.find('.author-born-date').text()
                born_location = linkDetail.find('.author-born-
location').text()
                if born_location.startswith('in'):
                    born_location = born_location.replace('in ','')
dataSet.append(dict(zip(keys,[tags,authorLink,author,born_date,born_locatio
n,title[0:50]])))
        pageNo += 1

:has() returns the element that matches the selector that's passed to it. In this example, we
are confirming whether the pager class has an <li> element with the next class, that is,
ul.pager:has('li.next'). If the expression is true, then a page link exists for another
page, and else terminates the loop.

quotes that are obtained are iterated using items() to obtain title, author, tags, and
authorLink. The authorLink URL is further processed using the read_url() function in
order to obtain author-related, specific information from the .author-born-date and
.author-born-location classes for born_date and born_location, respectively.



Scraping Using pyquery – a Python Library Chapter 4

[ 133 ]

The elements classes we used in the preceding code can be found in Page Source, as shown
in the following screenshot:

Inner page with author details

The zip() Python function is used with keys and quotes fields, which is appended to
dataSet as a Python Dictionary.

The output for the preceding code is as follows:

Total Quotes found : 10 in Page: 1
Total Quotes found : 1 in Page: 2
Total Quotes collected: 11

[{'author_name': 'Jane Austen', 'born_location': 'Steventon Rectory,
Hampshire, The United Kingdom', 'quote_tags':
'aliteracy,books,classic,humor', 'author_url':
'http://quotes.toscrape.com/author/Jane-Austen', 'quote_title':
'“............................... ', 'born_date': 'December 16, 1775'},
{'author_name': 'Mark Twain', 'born_location': 'Florida, Missouri, The
United States', 'quote_tags': 'books,contentment,friends,friendship,life',
'author_url': 'http://quotes.toscrape.com/author/Mark-Twain',
'quote_title': '“.........................................', 'born_date':
'November 30, 1835'}
,..........................................................................



Scraping Using pyquery – a Python Library Chapter 4

[ 134 ]

.........................,
{'author_name': 'George R.R. Martin', 'born_location': 'Bayonne, New
Jersey, The United States', 'quote_tags': 'books,mind', 'author_url':
'http://quotes.toscrape.com/author/George-R-R-Martin', 'quote_title': '“...
...................................', 'born_date': 'September 20, 1948'}]

An additional loop was run for the obtained dataSet, which results in a string, as shown
here:

Jane Austen born on December 16, 1775 in Steventon Rectory, Hampshire, The
United Kingdom
Mark Twain born on November 30, 1835 in Florida, Missouri, The United
States
............................
............................
George R.R. Martin born on September 20, 1948 in Bayonne, New Jersey, The
United States

Example 3 – extracting AHL Playoff results
In this example, we will be extracting data from American Hockey League (AHL) Playoff
results, which are available from http:/ ​/ ​www. ​flyershistory. ​com/ ​cgi- ​bin/ ​ml-​poffs. ​cgi:

 AHL Playoff results

http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi
http://www.flyershistory.com/cgi-bin/ml-poffs.cgi


Scraping Using pyquery – a Python Library Chapter 4

[ 135 ]

The preceding URL contains the Playoff results for the AHL. This page presents
information about the results in tabular format. The portion of the page source that shows
relevant information is shown in the following screenshot:

Page source from http://www.flyershistory.com/cgi-bin/ml-poffs.cgi

The preceding screenshot contains the top and bottom part of the tabular
information from the source URL and presents two different formats of
<tr> that are available in the page source. The number of <td> that are
available in <tr> have different, extra information.

With the source format analyzed, it's also necessary to point out that <td> containing the
desired values has no attributes that can be used to identify particular table cells. In this
case, we can target the position of <td> or cell with data by using CSS selectors, that is,
pseudo selectors such as td:eq(0) or td:eq(1).

For more information on CSS selectors, please visit Chapter 3, Using
LXML, XPath, and CSS Selectors, the Introduction to XPath and CSS selector
section, in the CSS Selectors and Pseudo Selectors sub-section.

Since we will be using pyquery for this example, we will use the eq() method, which
accepts the index and returns the element. For example, we could use
tr.find('td').eq(1).text() for the chosen PyQuery object, tr, search for the element
td, that is, <td>, with the index equal to 1, and return the text of the element.



Scraping Using pyquery – a Python Library Chapter 4

[ 136 ]

Here, we are interested in collecting data for the columns that are listed in keys:

keys = ['year','month','day','game_date','team1', 'team1_score', 'team2',
'team2_score', 'game_status']

Now, let's import the code with pyquery and re. Regex will be used to separate the date
that was obtained from the page source:

from pyquery import PyQuery as pq
import re

sourceUrl = 'http://www.flyershistory.com/cgi-bin/ml-poffs.cgi'
dataSet = list()
keys = ['year','month','day','game_date','team1', 'team1_score', 'team2',
'team2_score', 'game_status']

def read_url(url):
    """Read given Url , Returns pyquery object for page content"""
    pageSource = pq(url)
    return pq(pageSource)

if __name__ == '__main__':
    page = read_url(sourceUrl)

Here, read_url() accepts one argument, that is, the link to the page, and returns the
PyQuery object of the page source or pageSource. PyQuery automatically returns the page
source for the provided URL. The page source can also be obtained by using other libraries,
such as urllib, urllib3, requests, and LXML, and passed to create a PyQuery object:

tableRows = page.find("h1:contains('AHL Playoff Results') + table tr")
print("\nTotal rows found :", tableRows.__len__())

tableRows is a PyQuery object that will be used to traverse <tr> that exists inside
<table>, which is located after <h1>. It contains the AHL Playoff Results text, which is
obtained by using the find() function. As we can see in the following output, a total of
463 <tr> elements exist, but the actual number of records that were obtained might be
lower, in terms of the number of available <td> with the actual data:

Total rows found : 463



Scraping Using pyquery – a Python Library Chapter 4

[ 137 ]

Let's do some more processing. Each <tr> or tr element is an item of tableRows and is
traversed with the help of the items() method to find the exact <td> or td by using their
index and retrieving the data it contains:

for tr in tableRows.items():
    #few <tr> contains single <td> and is omitted using the condition
    team1 = tr.find('td').eq(1).text()

    if team1 != '':
        game_date = tr.find('td').eq(0).text()
        dates = re.search(r'(.*)-(.*)-(.*)',game_date)
        team1_score = tr.find('td').eq(2).text()
        team2 = tr.find('td').eq(4).text()
        team2_score = tr.find('td').eq(5).text()

        #check Game Status should be either 'W' or 'L'
        game_status = tr.find('td').eq(6).text()
        if not re.match(r'[WL]',game_status):
            game_status = tr.find('td').eq(7).text()

        #breaking down date in year,month and day
        year = dates.group(3)
        month = dates.group(2)
        day = dates.group(1)

        #preparing exact year value
        if len(year)==2 and int(year)>=68:
            year = '19'+year
        elif len(year)==2 and int(year) <68:
            year = '20'+year
        else:
            pass

So far, the desired data from the targeted <td> has been collected and also formatted in the
case of year. Regex has also been applied in the code and used with dates and
game_status. Finally, the collected objects are appended as a list to dataSet:

#appending individual data list to the dataSet
dataSet.append([year,month,day,game_date,team1,team1_score,team2,team2_scor
e,game_status])

print("\nTotal Game Status, found :", len(dataSet))
print(dataSet)



Scraping Using pyquery – a Python Library Chapter 4

[ 138 ]

The output regarding the total record count and dataSet is as follows:

Total Game Status, found : 341

[['1968', 'Apr', '3', '3-Apr-68', 'Buff', '2', 'Que', '4', 'W'],
['1968', 'Apr', '5', '5-Apr-68', 'Buff', '1', 'Que', '3', 'W'],
['1968', 'Apr', '9', '9-Apr-68', 'Que', '7', 'Buff', '10', 'L'],
['1968', 'Apr', '10', '10-Apr-68', 'Que', '4', 'Buff', '7', 'L'],
['1968', 'Apr', '12', '12-Apr-68', 'Buff', '1', 'Que', '3', 'W'],
.................
['2008', 'May', '9', '9-May-2008', 'Phantoms', '3', 'Wilkes-Barre', '1',
'L'],
['2009', 'Apr', '16', '16-Apr-09', 'Phantoms', '2', 'Hershey', '4', 'L'],
['2009', 'Apr', '18', '18-Apr-09', 'Phantoms', '2', 'Hershey', '6', 'L'],
['2009', 'Apr', '22', '22-Apr-09', 'Hershey', '2', 'Phantoms', '3', 'L'],
['2009', 'Apr', '24', '24-Apr-09', 'Hershey', '0', 'Phantoms', '1', 'L']]

Example 4 – collecting URLs from sitemap.xml
In this example, we will be extracting URLs that have been found for blogs in the
sitemap.xml file from https:/ ​/​webscraping. ​com/ ​sitemap. ​xml.

In the preceding examples, we used HTML content, but PyQuery can also be used to
traverse XML file content. By default, pyquery uses an LXML-based xml parser, which can
be provided while creating a PyQuery object. We will be using both lxml.html and xml in
the file's content.

For more information on pyquery and parser, please visit the Exploring
pyquery section of this chapter. For information regarding the site map,
please visit Chapter 1, Web Scraping Fundamentals, the Data finding
techniques (seeking data from the web) section, in the Sitemaps subsection.

https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml


Scraping Using pyquery – a Python Library Chapter 4

[ 139 ]

The following screenshot shows the content that's available in the sitemap.xml file:

 sitemap.xml file from https://webscraping.com

To begin with, let's import pyquery and read the file's content as xmlFile:

from pyquery import PyQuery as pq

if __name__ == '__main__':
    # reading file
    xmlFile = open('sitemap.xml', 'r').read()

Case 1 – using the HTML parser
Here, we will be using the lxml.html parser to parse xmlFile by passing an argument
parser, parser='html', to PyQuery:

# creating PyQuery object using parser 'html'
 urlHTML = pq(xmlFile, parser='html')

print("Children Length: ",urlHTML.children().__len__())
print("First Children: ",urlHTML.children().eq(0))
print("Inner Child/First Children: ",urlHTML.children().children().eq(0))



Scraping Using pyquery – a Python Library Chapter 4

[ 140 ]

Using PyQuery's urlHTML object allows us to check the count and the child elements that
were obtained from the data, as shown in the following output:

Children Length: 137

First Children:
<url>
<loc>https://webscraping.com</loc>
</url>

Inner Child/First Children: <loc>https://webscraping.com</loc>

As we can see, urlHTML.children() contains the required elements to look for the URL.
We can process this data with the items() method, which traverses through each element
that's obtained. Let's create dataSet (Python list()) that will be appended with the URLs
that are extracted.

Element-based iteration can be performed with
urlHTML.children().find('loc:contains("blog")').items() by using a selector
that contains the blog string:

dataSet=list()
for url in urlHTML.children().find('loc:contains("blog")').items():
    dataSet.append(url.text())

print("Length of dataSet: ", len(dataSet))
print(dataSet)

Finally, we will receive the following output:

Length of dataSet: 131

['https://webscraping.com/blog', 'https://webscraping.com/blog/10/',
'https://webscraping.com/blog/11/', 'https://webscraping.com/blog/12/',
'https://webscraping.com/blog/13/', 'https://webscraping.com/blog/2/'
,..........................................................................
.......,
'https://webscraping.com/blog/Reverse-Geocode/',
'https://webscraping.com/blog/Scraping-Flash-based-websites/',
'https://webscraping.com/blog/Scraping-JavaScript-based-web-pages-with-Chic
kenfoot/', 'https://webscraping.com/blog/category/web2py',
'https://webscraping.com/blog/category/webkit',
'https://webscraping.com/blog/category/website/',
'https://webscraping.com/blog/category/xpath']



Scraping Using pyquery – a Python Library Chapter 4

[ 141 ]

Case 2 – using the XML parser
In this case, we will be processing XML content with the PyQuery urlXML object, which
uses parser='xml':

#creating PyQuery object using parser 'xml'
urlXML = pq(xmlFile, parser='xml')

print("Children Length: ",urlXML.children().__len__())

The preceding code returns the length of the children's count, that is, 137 total URLs:

Children Length: 137

As shown in the following code, the first and inner children elements return the required
URL content we are willing to extract:

print("First Children: ", urlXML.children().eq(0))
print("Inner Child/First Children: ", urlXML.children().children().eq(0))

First Children:
<url xmlns="https://www.sitemaps.org/schemas/sitemap/0.9">
<loc>https://webscraping.com</loc>
</url>

Inner Child/First Children:
<loc
xmlns="https://www.sitemaps.org/schemas/sitemap/0.9">https://webscraping.co
m</loc>

Let's proceed with the child elements by using a selector similar to the one we used in the
Case 1 – using the HTML parser section:

dataSet=list()
for url in urlXML.children().find('loc:contains("blog")').items():
    dataSet.append(url.text())

print("Length of dataSet: ", len(dataSet))
print(dataSet)

Here, we have received no output in dataSet, and it looks like the selector isn't working
like it did in Case 1 – using the HTML parser:

Length of dataSet: 0
[]



Scraping Using pyquery – a Python Library Chapter 4

[ 142 ]

Let's verify this case by using the following code:

for url in urlXML.children().children().items():
    print(url)
    break

<loc
xmlns="https://www.sitemaps.org/schemas/sitemap/0.9">https://webscraping.co
m</loc>

The node that we received belongs to https:/ ​/​www. ​sitemaps. ​org/ ​schemas/ ​sitemap/ ​0.​9.
Without removing the namespace selectors, it will not work.

The remove_namespace() function can be used on a PyQuery object and processed for its
final output, as shown in the following code:

for url in
urlXML.remove_namespaces().children().find('loc:contains("blog")').items():
    dataSet.append(url.text())

print("Length of dataSet: ", len(dataSet))
print(dataSet)

We receive the following output:

Length of dataSet: 131

['https://webscraping.com/blog', 'https://webscraping.com/blog/10/',
'https://webscraping.com/blog/11/', 'https://webscraping.com/blog/12/',
'https://webscraping.com/blog/13/', 'https://webscraping.com/blog/2/',
'https://webscraping.com/blog/3/', 'https://webscraping.com/blog/4/',
'https://webscraping.com/blog/5/', 'https://webscraping.com/blog/6/',
'https://webscraping.com/blog/7/', 'https://webscraping.com/blog/8/',
.................................................................
'https://webscraping.com/blog/category/screenshot',
'https://webscraping.com/blog/category/sitescraper',
'https://webscraping.com/blog/category/sqlite',
'https://webscraping.com/blog/category/user-agent',
'https://webscraping.com/blog/category/web2py',
'https://webscraping.com/blog/category/webkit',
'https://webscraping.com/blog/category/website/',
'https://webscraping.com/blog/category/xpath']

https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9
https://www.sitemaps.org/schemas/sitemap/0.9


Scraping Using pyquery – a Python Library Chapter 4

[ 143 ]

The PyQuery remove_namespace() and xhtml_to_html() methods
remove the namespaces from XML and XHTML, respectively. Use of
these two methods allows us to work with elements that use HTML-
related properties.

We can also process the same content with a different approach; that is, by using a regular
expression and obtaining the output as required. Let's proceed with the following code:

print("URLs using Children: ",urlXML.children().text())
#print("URLs using Children: ",urlXML.children().children().text())
#print("URLs using Children: ",urlXML.text())

The PyQuery children() object method returns all the child nodes, and text() will
extract the text content, as shown here:

URLs using Children: https://webscraping.com https://webscraping.com/about
https://webscraping.com/blog
.............https://webscraping.com/blog/Converting-UK-Easting-Northing-co
ordinates/ https://webscraping.com/blog/Crawling-with-threads/
https://webscraping.com/blog/Discount-coupons-for-data-store/
https://webscraping.com/blog/Extracting-article-summaries/
https://webscraping.com/blog/10/ https://webscraping.com/feedback..........

As shown in the preceding output, all the links from the child nodes are returned as a
single string:

blogXML = re.split(r'\s',urlXML .children().text())
print("Length of blogXML: ",len(blogXML))

#filter(), filters URLs from blogXML that matches string 'blog'
dataSet= list(filter(lambda blogXML:re.findall(r'blog',blogXML),blogXML))
print("Length of dataSet: ",len(dataSet))
print("Blog Urls: ",dataSet)

Here, re.split() is used to split the string of URLs received with the space character, \s.
This returns a total of 139 elements. Finally, blogXML is filtered using re.findall(),
which finds the blog string in the blogXML elements and results in the following:

Length of blogXML: 139
Length of dataSet: 131

Blog Urls: ['https://webscraping.com/blog',
'https://webscraping.com/blog/10/', 'https://webscraping.com/blog/11/',
'https://webscraping.com/blog/12/', 'https://webscraping.com/blog/13/',
'https://webscraping.com/blog/2/', 'https://webscraping.com/blog/3/',
'https://webscraping.com/blog/4/', 'https://webscraping.com/blog/5/',
'https://webscraping.com/blog/6/', 'https://webscraping.com/blog/7/',



Scraping Using pyquery – a Python Library Chapter 4

[ 144 ]

'https://webscraping.com/blog/8/',.........................................
......
'https://webscraping.com/blog/category/web2py',
'https://webscraping.com/blog/category/webkit',
'https://webscraping.com/blog/category/website/',
'https://webscraping.com/blog/category/xpath']

In this section, we have used a few scraping techniques to extract the desired content from
files and websites. Content identification and the requirement to scrape is pretty dynamic
and is also based on the structure of the website. With libraries such as pyquery, we can
obtain and deploy the necessary tools and techniques for scraping in an effective and
efficient manner.

Summary
pyquery seems to be more efficient in dealing with CSS selectors and provides a lot of
features related to LXML. Simple and readable code is always in demand, and pyquery
provides these features for scraping purposes. In this chapter, we explored various cases
that you may encounter while performing scraping tasks and successfully managed to get
the desired outcome.

In the next chapter, we will be exploring a few more libraries related to web scraping.

Further reading
PyQuery complete API: https:/ ​/​pyquery. ​readthedocs. ​io/ ​en/​latest/ ​api. ​html

pyquery: a jquery-like library for Python: https:/ ​/​pythonhosted. ​org/ ​pyquery/ ​

CSS Selector Reference: https:/ ​/​www. ​w3schools. ​com/ ​cssref/ ​css_ ​selectors.
asp

CSS Pseudo Class and Elements: https:/ ​/​www. ​w3schools. ​com/ ​css/​css_ ​pseudo_
elements. ​asp

CSS information: http:/ ​/ ​www. ​css3. ​info/ ​ and https:/ ​/​developer. ​mozilla.
org/​en- ​US/ ​docs/ ​Web/ ​CSS

Sitemaps: https:/ ​/ ​www. ​sitemaps. ​org/ ​

XML: https:/ ​/​www. ​w3schools. ​com/ ​xml/ ​ and https:/ ​/​www. ​w3. ​org/​XML/ ​

https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pyquery.readthedocs.io/en/latest/api.html
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://pythonhosted.org/pyquery/
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
https://www.w3schools.com/css/css_pseudo_elements.asp
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
http://www.css3.info/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.sitemaps.org/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3schools.com/xml/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/


5
Web Scraping Using Scrapy

and Beautiful Soup
So far, we have learned about web-development technologies, data-finding techniques, and
accessing various Python libraries to scrape data from the web.

In this chapter, we will be learning about and exploring two Python libraries that
are popular for document parsing and scraping activities: Scrapy and Beautiful Soup.

Beautiful Soup deals with document parsing. Parsing a document is done for element
traversing and extracting its content. Scrapy is a web crawling framework written in
Python. It provides a project-oriented scope for web scraping. Scrapy provides plenty
of built-in resources for email, selectors, items, and so on, and can be used from simple to
API-based content extraction. 

In this chapter, we will learn about the following:

Web scraping using Beautiful Soup
Web scraping using Scrapy
Deploying a web crawler (learning how to deploy scraping code using https:/ ​/
www.​scrapinghub. ​com

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) is required and we will be using the
application and Python libraries listed here:

Latest Python 3.7* or Python 3.0* (installed)
The Python libraries required are the following:

lxml

requests, urllib

https://www.scrapinghub.com
https://www.scrapinghub.com
https://www.scrapinghub.com
https://www.scrapinghub.com
https://www.scrapinghub.com
https://www.scrapinghub.com
https://www.scrapinghub.com
https://www.scrapinghub.com


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 146 ]

bs4 or beautifulsoup4 
scrapy

For setting up or installation refer to Chapter 2, Python and the Web – Using urllib and
Requests, Setting things up section.

Code files are available online at GitHub: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Hands-
On-​Web-​Scraping- ​with- ​Python/ ​tree/ ​master/ ​Chapter05.

Web scraping using Beautiful Soup
Web scraping is a procedure for extracting data from web documents. For data collection or
extracting data from web documents, identifying and traversing through elements (of
HTML, XML) is the basic requirement. Web documents are built with various types of
elements that can exist either individually or nested together.

Parsing is an activity of breaking down, exposing, or identifying the components with
contents from any given web content. Such activity enhances features such as searching and
collecting content from the desired element or elements. Web documents obtained, parsed,
and traversed through looking for required data or content is the basic scraping task. 

In Chapter 3, Using LXML, XPath, and CSS Selectors, we explored lxml for a similar task and
used XPath and CSS Selectors for data-extraction purposes. lxml is also used for scraping
and parsing because of its memory-efficient features and extensible libraries.

In the next subsection, we will learn and explore features of the Python bs4 library (for
Beautiful Soup). 

Introduction to Beautiful Soup
Beautiful Soup is generally identified as a parsing library, and is also known as an HTML
parser that is used to parse web documents either in HTML or XML. It generates a parsed
tree similar to lxml (ElementTree), which is used to identify and traverse through elements
to extract data and perform web scraping.

Beautiful Soup provides complete parsing-related features that are available using lxml
and htmllib. Collections of simple and easy-to-use methods, plus properties to deal with
navigation, searching, and parsing-related activity, make Beautiful Soup a favorite among
other Python libraries.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter05


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 147 ]

Document encoding can be handled manually using the Beautiful Soup constructor, but
Beautiful Soup handles encoding-related tasks automatically unless specified by the
constructor. 

One of the distinguishing features of Beautiful Soup, over other libraries and parsers, is that
it can also be used to parse broken HTML or files with incomplete or missing tags. For
more information on Beautiful Soup, please visit https:/ ​/ ​www.​crummy. ​com/ ​software/
BeautifulSoup. 

Let's now explore and learn some of the major tools and methods relevant to the data-
extraction process using Beautiful Soup.

Exploring Beautiful Soup
The Python bs4 library contains a BeautifulSoup class, which is used for parsing. For
more details on Beautiful Soup and installing the library, please refer to the official
documentation on installing Beautiful Soup at https:/ ​/​www. ​crummy. ​com/ ​software/
BeautifulSoup/​. On successful installation of the library, we can obtain the details as
shown in the following screenshot, using Python IDE:

Successful installation of bs4 with details

https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 148 ]

Also, the collection of simple (named) and explainable methods available as seen in the
preceding screenshot and encoding support makes it more popular among developers. 

Let's import BeautifulSoup and SoupStrainer from bs4, as seen in the following code:

from bs4 import BeautifulSoup
from bs4 import SoupStrainer #,BeautifulSoup

We will be using the HTML as shown in the following snippet or html_doc as a sample to
explore some of the fundamental features of Beautiful Soup. The response obtained for any
chosen URL, using requests or urllib, can also be used for content in real scraping cases:

html_doc="""<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and
their names were
<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
<h1>Secret agents</h1>
<ul>
    <li data-id="10784">Jason Walters, 003: Found dead in "A View to a
Kill".</li>
    <li data-id="97865">Alex Trevelyan, 006: Agent turned terrorist leader;
James' nemesis in "Goldeneye".</li>
    <li data-id="45732">James Bond, 007: The main man; shaken but not
stirred.</li>
</ul>
</body>
</html>"""

To proceed with parsing and accessing Beautiful Soup methods and properties, a Beautiful
Soup object, generally known as a soup object, must be created. Regarding the type
of string or markup content provided in the constructor, a few examples of creating
Beautiful Soup objects, along with the parameters mentioned earlier, are listed next:

soup = Beautifulsoup(html_markup)

soup = Beautifulsoup(html_markup, 'lxml')

soup = Beautifulsoup(html_markup, 'lxml',
parse_from=SoupStrainer("a"))

soup = Beautifulsoup(html_markup, 'html.parser')

soup = Beautifulsoup(html_markup, 'html5lib')



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 149 ]

soup = Beautifulsoup(xml_markup, 'xml')

soup = Beautifulsoup(some_markup, from_encoding='ISO-8859-8')

soup = Beautifulsoup(some_markup,
exclude_encodings=['ISO-8859-7'])

The Beautiful Soup constructor plays an important part and we will explore some of the
important parameters here:

markup: The first parameter passed to the constructor accepts a string or objects
to be parsed.
features: The name of the parser or type of markup to be used for markup. The
parser can be lxml, lxml-xml, html.parser, or html5lib. Similarly, markup
types that can be used are html, html5, and xml. Different types of supported
parsers can be used with Beautiful Soup. If we just want to parse some HTML,
we can simply pass the markup to Beautiful Soup and it will use the appropriate
parser installed accordingly. For more information on parsers and their
installation, please visit installing a parser at https:/ ​/​www. ​crummy. ​com/
software/ ​BeautifulSoup/ ​bs4/ ​doc/​#installing- ​a-​parser. 
parse_only: Accepts a bs4.SoupStrainer object, that is, only parts of the 
document matching the SoupStrainer object will be used to parse. It's pretty
useful for scraping when only part of the document is to be parsed considering
the effectiveness of the code and memory-related issues. For more information
on SoupStrainer, please visit parsing only part of a document at https:/ ​/​www.
crummy.​com/ ​software/ ​BeautifulSoup/ ​bs4/ ​doc/ ​#parsing- ​only- ​part- ​of- ​a-
document.
from_encoding: Strings indicating the proper encoding are used to parse the
markup. This is usually provided if Beautiful Soup is using the wrong encoding.
exclude_encodings: A list of strings indicating the wrong encodings if used by
Beautiful Soup.

Response time is a considerable factor when using Beautiful Soup. As
Beautiful Soup uses the parsers (lxml, html.parser, and html5lib),
there is always a concern regarding the extra time consumption.

Using a parser is always recommended to obtain similar results across
platforms and systems. Also, for speeding up, it is recommended to use
lxml as the parser with Beautiful Soup.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#parsing-only-part-of-a-document


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 150 ]

For this particular case, we will be creating the soupA object using lxml as a parser, along
with the SoupStrainer object tagsA (parsing only <a>, that is, the elements or anchor tag
of HTML). We can obtain partial content to parse using SoupStrainer, which is very
useful when dealing with heavy content. 

soupA, an object of Beautiful Soup, presents all of the <a> elements found for
the SoupStrainer object tagsA as used in the following code; as seen in the output, only
the <a> tag has been collected, or the parsed document is the SoupStrainer object parsed
using lxml:

tagsA = SoupStrainer("a")
soupA = BeautifulSoup(html_doc,'lxml',parse_only=tagsA)

print(type(soupA))
<class 'bs4.BeautifulSoup'>

print(soupA)
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a><a
class="sister" href="http://example.com/lacie" id="link2">Lacie</a><a
class="sister" href="http://example.com/tillie" id="link3">Tillie</a>

HTML content, available from the website, might not always be formatted in a clean string.
It would be difficult and time-consuming to read page content that is presented as
paragraphs rather than as a line-by-line code.

The Beautiful Soup prettify() function returns a Unicode string, presents the string in a
clean, formatted structure that is easy to read, and identifies the elements in a tree structure
as seen in the following code; the prettify() function also accepts the parameter
encoding:

print(soupA.prettify())

<a class="sister" href="http://example.com/elsie" id="link1">
 Elsie
</a>
<a class="sister" href="http://example.com/lacie" id="link2">
 Lacie
</a>
<a class="sister" href="http://example.com/tillie" id="link3">
 Tillie
</a>



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 151 ]

Document-based elements (such as HTML tags) in a parsed tree can have various attributes
with predefined values. Element attributes are important resources as they provide
identification and content together within the element. Verifying whether the element
contains certain attributes can be handy when traversing through the tree.

For example, as seen in the following code, the HTML <a> element contains the class,
href, and id attributes, each carrying predefined values, as seen in the following snippet:

<a class="sister" href="http://example.com/lacie" id="link2">

The has_attr() function from Beautiful Soup returns a Boolean response to the searched
attribute name for the chosen element, as seen in the following code element a:

Returns False for the name attribute
Returns True for the class attribute

We can use the has_attr() function to confirm the attribute keys by name, if it exists
inside the parsed document as follows:

print(soupA.a.has_attr('class'))
True

print(soupA.a.has_attr('name'))
False

With a basic introduction to Beautiful Soup and a few methods explored in this section, we
will now move forward for searching, traversing, and iterating through the parsed tree
looking for elements and their content in the upcoming section. 

Searching, traversing, and iterating
Beautiful Soup provides a lot of methods and properties to traverse and search elements in
the parsed tree. These methods are often named in a similar way to their implementation,
describing the task they perform. There are also a number of properties and methods that
can be linked together and used to obtain a similar result. 



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 152 ]

The find() function returns the first child that is matched for the searched criteria or
parsed element. It's pretty useful in scraping context for finding elements and extracting
details, but only for the single result. Additional parameters can also be passed to the
find() function to identify the exact element, as listed:

attrs: A dictionary with a key-value pair
text: With element text
name: HTML tag name

Let's implement the find() function with different, allowed parameters in the code:

print(soupA.find("a")) #print(soupA.find(name="a"))
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>

print(soupA.find("a",attrs={'class':'sister'}))
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>

print(soupA.find("a",attrs={'class':'sister'},text="Lacie"))
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>

print(soupA.find("a",attrs={'id':'link3'}))
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>

print(soupA.find('a',id="link2"))
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>

Here is a list of short descriptions of codes implemented in the preceding example:

find("a") or find(name="a"): Search the HTML <a> element or tag name
provided that a returns the first existence of <a> found in soupA
find("a",attrs={'class':'sister'}): Search element <a>, with attribute
key as class and value as sister
find("a",attrs={'class':'sister'}, text="Lacie"): Search
the <a> element with the class attribute key and
the sister value and text with the Lacie value
find("a",attrs={'id':'link3'}): Search the <a> element with
the id attribute key and the link3 value
find("a",id="link2"): Search the <a> element for the id attribute with the
link2 value



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 153 ]

The find_all() function works in a similar way to the find() function with the
additional attrs and text as a parameters and returns a list of matched (multiple)
elements for the provided criteria or name attribute as follows: 

#find all <a> can also be written as #print(soupA.find_all(name="a"))
print(soupA.find_all("a"))

[<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>, <a
class="sister" href="http://example.com/lacie" id="link2">Lacie</a>, <a
class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]

#find all <a>, but return only 2 of them
print(soupA.find_all("a",limit=2)) #attrs, text

[<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>, <a
class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]

The additional limit parameter, which accepts numeric values, controls the total count of
the elements to be returned using the find_all() function.

The string, list of strings, regular expression objects, or any of these, can be provided to
the name and text attributes as a value for attrs parameters, as seen in the code used in
the following snippet:

print(soupA.find("a",text=re.compile(r'cie'))) #import re
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>

print(soupA.find_all("a",attrs={'id':re.compile(r'3')}))
[<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]

print(soupA.find_all(re.compile(r'a')))
[<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>, <a
class="sister" href="http://example.com/lacie" id="link2">Lacie</a>, <a
class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]

The find_all() function has in-built support for global attributes such as class name
along with a name as seen in the following:

soup = BeautifulSoup(html_doc,'lxml')

print(soup.find_all("p","story")) #class=story
[<p class="story">Once upon a time there were three little sisters; and
their names were
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>, <p class="story">...</p>]



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 154 ]

print(soup.find_all("p","title"))
#soup.find_all("p",attrs={'class':"title"})
[<p class="title"><b>The Dormouse's story</b></p>]

Multiple name and attrs values can also be passed through a list as shown in the
following syntax:

soup.find_all("p",attrs={'class':["title","story"]}): Finding all
the <p> elements with the class attribute title and story values
soup.find_all(["p","li"]): Finding all the <p> and <li> elements from the
soup object

The preceding syntax can be observed in the following code:

print(soup.find_all("p",attrs={'class':["title","story"]}))
[<p class="title"><b>The Dormouse's story</b></p>,
<p class="story">Once upon a...
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,....
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>, <p class="story">...</p>]

print(soup.find_all(["p","li"]))
[<p class="title"><b>The Dormouse's story</b></p>,
<p class="story">Once...<a class="sister"
href="http://example.com/elsie"....,
<p class="story">...</p>,
<li data-id="10784">Jason Walters, 003:....</li>,<li.....,
<li data-id="45732">James Bond, 007: The main man; shaken but not
stirred.</li>]

We can also use element text to search and list the content. A string parameter, similar to
a text parameter, is used for such cases; it can also be used with, or without, any tag
names as in the following code:

print(soup.find_all(string="Elsie")) #text="Elsie"
['Elsie']

print(soup.find_all(text=re.compile(r'Elsie'))) #import re
['Elsie']

print(soup.find_all("a",string="Lacie")) #text="Lacie"
[<a class="sister" href="http://example.com/elsie" id="link2">Lacie</a>]



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 155 ]

Iteration through elements can also be achieved using the find_all() function. As can be
seen in the following code, we are retrieving all of the <li> elements found inside the <ul>
element and printing their tag name, attribute data, ID, and text:

for li in soup.ul.find_all('li'):
    print(li.name, ' > ',li.get('data-id'),' > ', li.text)
li > 10784 > Jason Walters, 003: Found dead in "A View to a Kill".
li > 97865 > Alex Trevelyan, 006: Agent turned terrorist leader; James'
nemesis in "Goldeneye".
li > 45732 > James Bond, 007: The main man; shaken but not stirred.

The elements value attribute can be retrieved using the get() function as
seen in the preceding code. Also, the presence of attributes can be checked
using the has_attr() function.

Element traversing can also be done with just a tag name, and with, or without, using
the find() or find_all() functions as seen in the following code: 

print(soupA.a) #tag a
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>

print(soup.li) #tag li
<li data-id="10784">Jason Walters, 003: Found dead in "A View to a
Kill".</li>

print(soup.p)
<p class="title"><b>The Dormouse's story</b></p>

print(soup.p.b) #tag p and b
<b>The Dormouse's story</b>

print(soup.ul.find('li',attrs={'data-id':'45732'}))
<li data-id="45732">James Bond, 007: The main man; shaken but not
stirred.</li>

The text and string attributes or the get_text() method can be used with the elements
to extract their text while traversing through the elements used in the following code.
There's also a parameter text and string in the find() or find_all() functions, which
are used to search the content as shown in the following code:

print(soup.ul.find('li',attrs={'data-id':'45732'}).text)
James Bond, 007: The main man; shaken but not stirred.

print(soup.p.text) #get_text()
The Dormouse's story



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 156 ]

print(soup.li.text)
Jason Walters, 003: Found dead in "A View to a Kill".

print(soup.p.string)
The Dormouse's story

In this section, we explored searching and traversing using elements and by implementing
important functions such as the find() and find_all() functions alongside their
appropriate parameters and criteria. 

In the next sections, we will explore elements based on their positions in the parsed tree. 

Using children and parents
For parsed documents, traversing through children or child elements can be achieved using
the contents, children, and descendants elements:

contents collect children for the provided criteria in a list.
children are used for iteration that has direct children.
descendants work slightly differently to the contents and
children elements. It allows iteration over all children, not just the direct ones,
that is, the element tag and the contents inside the tag are actually two separate
children.

The preceding list showed the features that can also be used for iteration. The following
code illustrates the use of these features with output:

print(list(soup.find('p','story').children))
['Once upon a time there were three little sisters; and their names
were\n', <a class="sister" href="http://example.com/elsie"
id="link1">Elsie</a>, ',\n', <a class="sister"
href="http://example.com/lacie" id="link2">Lacie</a>, ' and\n', <a
class="sister" href="http://example.com/tillie" id="link3">Tillie</a>,
';\nand they lived at the bottom of a well.']

print(list(soup.find('p','story').contents))
['Once upon a time there were three little sisters; and their names
were\n', <a class="sister" href="http://example.com/elsie"
id="link1">Elsie</a>, ',\n', <a class="sister"
href="http://example.com/lacie" id="link2">Lacie</a>, ' and\n', <a
class="sister" href="http://example.com/tillie" id="link3">Tillie</a>,
';\nand they lived at the bottom of a well.']

print(list(soup.find('p','story').descendants))
['Once upon a time there were three little sisters; and their names



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 157 ]

were\n', <a class="sister" href="http://example.com/elsie"
id="link1">Elsie</a>, 'Elsie', ',\n', <a class="sister"
href="http://example.com/lacie" id="link2">Lacie</a>, 'Lacie', ' and\n', <a
class="sister" href="http://example.com/tillie" id="link3">Tillie</a>,
'Tillie', ';\nand they lived at the bottom of a well.']

Selected children and descendants tag names can be obtained using the name attribute.
Parsed strings and the \n function (newline) are returned as None, which can be filtered
out, as in the following code:

#using List Comprehension Technique
print([a.name for a in soup.find('p','story').children])
[None, 'a', None, 'a', None, 'a', None]

print([{'tag':a.name,'text':a.text,'class':a.get('class')} for a in
soup.find('p','story').children if a.name!=None])
[{'tag': 'a', 'text': 'Elsie', 'class': ['sister']}, {'tag': 'a', 'text':
'Lacie', 'class': ['sister']}, {'tag': 'a', 'text': 'Tillie', 'class':
['sister']}]

print([a.name for a in soup.find('p','story').descendants])
[None, 'a', None, None, 'a', None, None, 'a', None, None]

print(list(filter(None,[a.name for a in
soup.find('p','story').descendants])))
['a', 'a', 'a']

Similar to the find() and find_all() functions, we can also traverse child elements
using the findChild() and findChildren() functions. The findChild() function is
used to retrieve the single child and the findChildren() function retrieves a list of
children as illustrated in the following code:

print(soup.find('p','story').findChildren())
[<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>, <a
class="sister" href="http://example.com/lacie" id="link2">Lacie</a>, <a
class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]

print(soup.find('p','story').findChild()) #soup.find('p','story').find()
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>

Similar to the children element, the parent element returns the parent object found for
the searched criteria. The main difference here is that the parent element returns the single
parent object from the tree as seen in the following code:

#print parent element of <a> with class=sister
print(soup.find('a','sister').parent)
<p class="story">Once upon a time there were three little sisters; and



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 158 ]

their names were
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>

#print parent element name of <a> with class=sister
print(soup.find('a','sister').parent.name)
p

#print text from parent element of <a> with class=sister
print(soup.find('a','sister').parent.text)
Once upon a time there were three little sisters; and their names were
Elsie,
Lacie and
Tillie;
and they lived at the bottom of a well.

The limitation of the single parents returned can be overcome by using
the parents element; this returns multiple existing parent elements and matches the
searched criteria provided in the find() function as seen in code here, which is normally
used for iteration:

for element in soup.find('a','sister').parents:
    print(element.name)

p
body
html #complete HTML
[document]  #soup object

As seen in the preceding output, [document] refers to the soup object
and html refers to the complete HTML block found in the soup. The
Beautiful Soup object that created itself is a parsed element. 

Similar to the functions that exist for child traversing, parents can also be traversed and
retrieved using the findParent() and findParents() search functions.
The findParent() function traverses to the immediate parent, while
the findParents() function returns all parents found for the criteria provided.



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 159 ]

It must also be noted that the children and parent traversing functions are used with
the find() function where necessary arguments and conditions are provided, as seen in
the following code: 

#find single Parent for selected <a> with class=sister
print(soup.find('a','sister').findParent())

<p class="story">Once upon a time there were three little sisters; and
their names were
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>

#find Parents for selected <a> with class=sister
print(soup.find('a','sister').findParents())

[<p class="story">Once upon a time there were three little sisters; and
their names were
<a class="sister".........Tillie</a>;and they lived at the bottom of a
well.</p>,
<body><p class="title"><b>The Dormouse's story</b></p>
<p class="story">Once upon........... <li data-id="45732">James Bond, 007:
The main man; shaken but not stirred.</li> </ul> </body>,
<html><head><title>The Dormouse's story</title></head><body><p
class="title"><b>The Dormouse's story</b></p> ........... </ul>
</body></html>,
<html><head><title>The Dormouse's story</title></head><body><p
class="title"><b>The Dormouse's story</b></p>...........</body></html>]

We explored traversing and searching with the children and parent element using a varied
handful of functions. In the next section, we'll explore and use positional elements from the
parsed tree.

Using next and previous
Similar to traversing through parsed children and parents in the tree, Beautiful Soup also
has the support to traverse and iterate elements located previous to and next to the
provided criteria.

The properties next and next_element return the immediately parsed content for the
selected criteria. We can also append the next and next_element functions to create a
chain of code for traversal, as seen in the following code:

print(soup.find('p','story').next)
Once upon a time there were three little sisters; and their names were



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 160 ]

print(soup.find('p','story').next.next)
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>

print(soup.find('p','story').next_element)
Once upon a time there were three little sisters; and their names were

print(soup.find('p','story').next_element.next_element)
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>

print(soup.find('p','story').next_element.next_element.next_element)
Elsie

Similar to the next and next_elements functions, there also exist properties with
traversal result that returns results from prior or previous parsed elements, such as
the previous and previous_element, which are opposite to work reversely when
compared to the next and next_element functions.

As seen in the following code, the previous and previous_element can also be
appended to themselves to create a traversal series:

print(soup.find('p','story').previous) #returns empty or new-line.
print(soup.find('p','title').next.next.next) #returns empty or newline
similar to code above

print(soup.find('p','story').previous.previous)
The Dormouse's story

print(soup.find('p','story').previous_element) #returns empty or new-line.
print(soup.find('p','story').previous_element.previous_element)
The Dormouse's story

print(soup.find('p','story').previous_element.previous_element.previous_ele
ment)
<b>The Dormouse's story</b>

We now combine the next or next_element and previous or
previous_element elements together to traverse as seen in the following:

print(soup.find('p','title').next.next.previous.previous)

<p class="title"><b>The Dormouse's story</b></p>



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 161 ]

Iterating features for the next_element and previous_element are obtained using
the next_elements and previous_elements, respectively. These iterators are used to
move to the next or previous parsed content as seen in the following:

for element in soup.find('ul').next_elements:
    print(element)

<li data-id="10784">Jason Walters, 003: Found dead in "A View to a
Kill".</li>
Jason Walters, 003: Found dead in "A View to a Kill".

<li data-id="97865">Alex Trevelyan, 006: Agent .............
"Goldeneye".</li>
Alex Trevelyan, 006: Agent turned terrorist leader; James' nemesis in
"Goldeneye".

<li data-id="45732">James Bond, 007: The main man; shaken but not
stirred.</li>
James Bond, 007: The main man; shaken but not stirred.

The find_next() function implements the next_elements but returns only a single
element that is found after the next or next_element element. There's also an advantage
of using the find_next() function over the next_elements as we can implement
additional search logic for elements.

The following code demonstrates the use of the find_next() function, with, and without,
search conditions; it also displays the outputs from the next element and
next_elements to compare the actual usage as shown in the following: 

print(soup.find('p','story').next)
Once upon a time there were three little sisters; and their names were

print(soup.find('p','story').next_element)
Once upon a time there were three little sisters; and their names were

print(soup.find('p','story').find_next()) #element after next_element
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>

print(soup.find('p','story').find_next('h1'))
<h1>Secret agents</h1>



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 162 ]

The find_all_next() function works in a similar way to the find_next() function, but
returns all of the next elements. It's also used as an iterating version of
the find_next() function. Additional search criteria and arguments such as limit can be
used to search and control the results returned as used in the following code:

print(soup.find('p','story').find_all_next())
[<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>, <a
class="sister" href="http://example.com/lacie" id="link2">Lacie</a>, <a
class="sister" href="http://example.com/tillie" id="link3">Tillie</a>, <p
class="story">...</p>, <h1>Secret agents</h1>, <ul>
<li data-id="10784">Jason Walters, 003: Found dead in "A View to a
Kill".</li>
<li data-id="97865">Alex Trevelyan, 006: Agent turned terrorist leader;
James' nemesis in "Goldeneye".</li>
<li data-id="45732">James Bond, 007: The main man; shaken but not
stirred.</li>
</ul>, <li data-id="10784">Jason Walters, 003: Found dead in "A View to a
Kill".</li>, <li data-id="97865">Alex Trevelyan, 006: Agent turned
terrorist leader; James' nemesis in "Goldeneye".</li>, <li data-
id="45732">James Bond, 007: The main man; shaken but not stirred.</li>]

print(soup.find('p','story').find_all_next('li',limit=2))
[<li data-id="10784">Jason Walters, 003: Found dead in "A View to a
Kill".</li>, <li data-id="97865">Alex Trevelyan, 006: Agent turned
terrorist leader; James' nemesis in "Goldeneye".</li>]

The find_previous() function implements previous_elements but returns only the 
single element that was found before the previous or previous_element. It also has an
advantage over the previous_elements as we can implement additional search logic for
elements. The following code demonstrates the use of the find_previous() function and
the previous function:

print(soup.find('ul').previous.previous.previous)
<h1>Secret agents</h1>

print(soup.find('ul').find_previous())
<h1>Secret agents</h1>

print(soup.find('ul').find_previous('p','title'))
<p class="title"><b>The Dormouse's story</b></p>



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 163 ]

The find_all_previous() function is an iterated version of the find_previous(); it
returns all previous elements satisfied with the available criteria as seen in the following
code: 

print(soup.find('ul').find_all_previous('p'))

[<p class="story">...</p>, <p class="story">Once upon a time there were
three little sisters; and their names were
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>, <p class="title"><b>The
Dormouse's story</b></p>]

next_sibling and previous_sibling are yet another way of traversing along the
parsed tree looking for next and previous siblings. A sibling or siblings are termed to the
element that appears or is found on the same level, in the parsed tree or those elements that
share the same parent. The following code illustrates the use of the next_sibling and
previous_sibling elements:

print(soup.find('p','title').next_sibling) #returns empty or new-line

print(soup.find('p','title').next_sibling.next_sibling)
#print(soup.find('p','title').next_sibling.next)
<p class="story">Once upon a time there were three little sisters; and
their names were
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>

print(soup.find('ul').previous_sibling) #returns empty or new-line

print(soup.find('ul').previous_sibling.previous_sibling)
<h1>Secret agents</h1>

Iteration is also possible with siblings, using the next_siblings and
previous_siblings elements as shown in the following code:

#using List Comprehension
title = [ele.name for ele in soup.find('p','title').next_siblings]
print(list(filter(None,title)))
['p', 'p', 'h1', 'ul']

ul = [ele.name for ele in soup.find('ul').previous_siblings]
print(list(filter(None,ul)))
['h1', 'p', 'p', 'p']



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 164 ]

Similar to the find_next() and find_all_next() functions for the next elements, there's
also functions available for siblings, that is,
the find_next_sibling() and find_next_siblings() functions. These functions
implement the next_siblings function to iterate and search for available siblings. As seen
in following code, the find_next_sibling() function returns a single element, whereas
the find_next_siblings() function returns all matched siblings:

#find next <p> siblings for selected <p> with class=title
print(soup.find('p','title').find_next_siblings('p'))
[<p class="story">Once upon a time there were three little sisters; and
their names were
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>, <p class="story">...</p>]

#find single or next sibling for selected <h1>
print(soup.find('h1').find_next_sibling())
<ul>
<li data-id="10784">Jason Walters, 003: Found dead in "A View to a
Kill".</li>
<li data-id="97865">Alex Trevelyan, 006: ............in "Goldeneye".</li>
<li data-id="45732">James Bond, 007: The main man; shaken but not
stirred.</li>
</ul>

#find single or next sibling <li> for selected <h1>
print(soup.find('h1').find_next_sibling('li'))
None

The find_previous_sibling() and find_previous_siblings() functions work in a
similar way to the find_next_sibling() and find_next_siblings() functions, but
result in elements traced through the previous_siblings function. Additional search
criteria and a result-controlling parameter limit can also be applied to the iterating
version, such as the find_previous_siblings() function.

As seen in the following code, the find_previous_sibling() function returns a single
sibling element, whereas the find_previous_siblings() function returns all siblings
available previously to the given criteria:

#find first previous sibling to <ul>
print(soup.find('ul').find_previous_sibling())
<h1>Secret agents</h1>

#find all previous siblings to <ul>
print(soup.find('ul').find_previous_siblings())



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 165 ]

[<h1>Secret agents</h1>, <p class="story">...</p>, <p class="story">Once
upon a time there were three little sisters; and their names were
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>, <p class="title"><b>The
Dormouse's story</b></p>]

We have explored various ways of searching and traversing through the parsed tree with
the functions and properties explored in this section.

The following is a list of tips that can be helpful in remembering and planning for search
and traversing activities using Beautiful Soup:

A function name that starts with the find function is used to search and iterate
for providing criteria and parameters:

A plural version of the find function works for iteration, such as
the findChildren() and findParents() elements
A singular version of the find function returns a single element
such as the find(), findChild(), or findParent() functions

A function name that starts with the word find_all returns all matched
elements and is used to search and iterate with provided criteria and parameters
such as the find_all(), find_all_next(), and
find_all_previous() functions
Properties with a plural name are used for iteration purposes such as
the next_elements, previous_elements, parents, children, contents,
descendants, next_siblings, and previous_siblings elements
Properties with a singular name return single elements and can also be appended
to form a chain of traversal code such as the parent, next, previous,
next_element, previous_element, next_sibling,
and previous_sibling functions

Using CSS Selectors
We have used plenty of properties and functions in the preceding sections, looking for
desired elements and their content. Beautiful Soup also supports CSS Selectors (with library
SoupSieve at https:/ ​/​facelessuser. ​github. ​io/ ​soupsieve/ ​selectors/ ​), which enhances
its use and allows developers to write effective and efficient codes to traverse the parsed
tree. 

https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 166 ]

CSS Selectors (CSS query or CSS Selector query) are defined patterns used by CSS to select
HTML elements, by element name or by using global attributes (ID, Class). For more
information on CSS Selectors, please refer to Chapter 3, Using LXML, XPath and CSS
Selectors, Introduction to XPath and CSS Selector section. 

For Beautiful Soup, the select() function is used to execute the CSS Selectors. We can
perform the searching, traversing, and iteration of elements by defining CSS Selectors.
The select() function is implemented individually, that is, it is not extended with other
functions and properties found in Beautiful Soup, creating a chain of codes.
The select() function returns a list of elements matched to the CSS Selectors
provided. It's also notable that code using CSS Selectors are quite short in length compared
to the code used in the preceding sections for a similar purpose. 

We will explore a few examples using select() to process CSS Selectors. 

Example 1 – listing <li> elements with the data-id
attribute 
In the following example, we will use the select() function to list the <li> element with
the data-id attribute:

print(soup.select('li[data-id]'))
[<li data-id="10784">Jason Walters, 003: Found dead in "A View to a
Kill".</li>, <li data-id="97865">Alex Trevelyan, 006: Agent turned
terrorist leader; James' nemesis in "Goldeneye".</li>, <li data-
id="45732">James Bond, 007: The main man; shaken but not stirred.</li>]

As seen in the preceding code, the li[data-id] selector queries the <li> element with the
attribute key named as data-id. The Value for data-id is empty, which allows traversing
through all <li> possessing data-id. The result is obtained as a list of objects, in which
indexes can be applied to fetch the exact elements as seen in the following code:

print(soup.select('ul li[data-id]')[1]) #fetch index 1 only from resulted
List
<li data-id="97865">Alex Trevelyan, 006: Agent turned terrorist leader;
James' nemesis in "Goldeneye".</li>



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 167 ]

If we wish to extract the first match that has resulted the from CSS query, we can use either
the list index, that is, 0 (zero) or the select_one() function in place of
the select() function as seen in the following code. The select_one() function returns
the string of objects, not the list: 

print(soup.select_one('li[data-id]'))
<li data-id="10784">Jason Walters, 003: Found dead in "A View to a
Kill".</li>

Example 2 – traversing through elements
CSS Selectors have various combinators such as +, >, a space character, and so on, which
show relationships between the elements. A few such combinators are used in the
following example code:

print(soup.select('p.story > a.sister'))#Selects all <a> with
class='sister' that are direct child to <p> with class="story"
[<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>, <a
class="sister" href="http://example.com/lacie" id="link2">Lacie</a>, <a
class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]

print(soup.select('p b'))#Selects <b> inside <p>
[<b>The Dormouse's story</b>]

print(soup.select('p + h1'))#Selects immediate <h1> after <p>
[<h1>Secret agents</h1>]

print(soup.select('p.story + h1'))#Selects immediate <h1> after <p> with
class 'story'
[<h1>Secret agents</h1>]

print(soup.select('p.title + h1'))#Selects immediate <h1> after <p> with
class 'title'
[]



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 168 ]

Example 3 – searching elements based on
attribute values
There are various ways of finding elements in Beautiful Soup, such as using functions
starting with the word find or using attributes in CSS Selectors. Patterns can be searched
for attributes keys using * in CSS Selectors as illustrated in the following code:

print(soup.select('a[href*="example.com"]'))
[<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>, <a
class="sister" href="http://example.com/lacie" id="link2">Lacie</a>, <a
class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]

print(soup.select('a[id*="link"]'))
[<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>, <a
class="sister" href="http://example.com/lacie" id="link2">Lacie</a>, <a
class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]

We were searching for the <a> element with the text example.com, which might exist in
the value of the href attribute. Also, we were searching for the <a> element,
which contains an attribute ID with a text link. 

With basic knowledge of CSS Selectors, we can deploy it with Beautiful Soup for various
purposes. Using the select() function is quite effective when dealing with elements, but
there are also limitations we might face, such as extracting text or content from the obtained
element.

We have introduced and explored the elements of Beautiful Soup in the preceding sections.
To wrap up the concept, we will create a crawler example in the upcoming section.

Building a web crawler
In this section, we will build a web crawler to demonstrate the real content-based scraping,
targeting web content.

We will be scraping quotes from http:/ ​/ ​toscrape. ​com/ ​ and targeting quotes from authors
found at http:/​/ ​quotes. ​toscrape. ​com/ ​. The crawler will collect the quote and author
information from the first five listing pages and write the data into a CSV file. We will also
explore the individual author page and extract information about the authors. 

http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 169 ]

To begin with the basic planning and identification of the fields that we are willing to
collect information from, please refer to Chapter 3, Using LXML, XPath, and CSS Selectors,
Using web browser developer tools for accessing web content section:

'''
Listing Quotes from first 5 or less pages found from
'http://quotes.toscrape.com/'
'''

import requests
import re
from bs4 import BeautifulSoup
import csv

sourceUrl = 'http://quotes.toscrape.com/'
keys =
['quote_tags','author_url','author_name','born_date','born_location','quote
_title']

In the preceding code there are a few libraries and objects found as listed and described
here:

sourceUrl: Represents the URL of the main page to be scraped for data for
category web scraping
keys: The Python list contains the columns name that will be used while writing
records to an external file
requests: This library is imported to use for making an HTTP request to page
URLs with quote listings and receiving a response
csv: This library will be used to write scraped data to an external CSV file
bs4: Library for implementing and using Beautiful Soup

The first line in a CSV file contains column names. We need to write these
columns before appending records with real content in the CSV file.

The read_url() function, as found in the following code, will be used to make a request
and receive a response using the requests function. This function will accept
a url argument for pages:

def read_url(url):
    """Read given Url, Returns requests object for page content"""
    response = requests.get(url)
    return response.text



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 170 ]

dataSet is a handle defined to manage the external file quotes.csv. csv.writer() file
handle is use for accessing CSV-based properties. The writerow() function is passed with
keys for writing a row containing the column names from the list keys to the external file as
shown in the following:

if __name__ == '__main__':
    dataSet = open('quotes.csv', 'w', newline='', encoding='utf-8')
    dataWriter = csv.writer(dataSet)

    # Write a Header or Column_names to CSV
    dataWriter.writerow(keys)

    #load details for provided URL
    get_details(sourceUrl, dataWriter)
    dataSet.close()

The implemented get_details() function is being coded for pagination and scraping
logic. The read_url() function is supplied with a dynamically generated page URL to
manage the pagination as follows: 

def get_details(page, dataWriter):
    """Get 'response' for first 5 pages, parse it and collect data for
'keys' headers"""
    nextPage = True
    pageNo = 1
    while (nextPage and pageNo <= 5):
        response = read_url(page + 'page/' + str(pageNo))
        soup = BeautifulSoup(response, 'lxml')

        rows = soup.find_all('div', 'quote')
        if (len(rows) > 0):
            print("Page ",pageNo," Total Quotes Found ",len(rows))
            for row in rows:
                if row.find('span',attrs={'itemprop':'text'}):
                    title =
row.find(attrs={'itemprop':'text'}).text.strip()
                    author =
row.find(attrs={'itemprop':'author'}).text.strip()
                    authorLink =
row.find('a',href=re.compile(r'/author/')).get('href')
                    tags =
row.find('div','tags').find(itemprop="keywords").get('content')
                    print(title, ' : ', author,' : ',authorLink, ' :
',tags)

                    if authorLink:
                        authorLink = 'http://quotes.toscrape.com' +



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 171 ]

authorLink
                        linkDetail = read_url(authorLink)
                        soupInner = BeautifulSoup(linkDetail, 'lxml')
                        born_date = soupInner.find('span','author-born-
date').text.strip()
                        born_location = soupInner.find('span','author-born-
location').text.strip()
                        # Write a list of values in file
                        dataWriter.writerow(
[tags,authorLink,author,born_date,born_location.replace('in ',''),title])

            nextPage = True
            pageNo += 1
        else:
            print("Quotes Not Listed!")

As used in the following code, the response element from the read_url() function is
parsed using lxml to obtain the soup element. The rows obtained using the soup list all of
the quotes available in a single page (that is, the element block containing the single quote
details) found inside the <div class="quote"> function and will be iterated to scrape
data for individual items such as quote_tags, author_url, and author_name traversing
through the quote element: 

Page source with quote element 

The individual items received are scraped, cleaned, and collected in a list maintaining the
order of their column names and are written to the file using the writerow() function
(appends the list of values to the file) accessed through the csv library and file handle.



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 172 ]

The quotes.csv data file will contain scraped data as seen in the following screenshot:

Rows with scraped data from http://quotes.toscrape.com/ 

In this section, we explored various ways to traverse and search using Beautiful Soup. In
the upcoming section, we will be using Scrapy, a web crawling framework.

Web scraping using Scrapy
We have used and explored various libraries and techniques for web scraping so far in this
book. The latest libraries available adapt to new concepts and implement the techniques in
a more effective, diverse, and easy way; Scrapy is among one of those libraries. 

We will be introducing and using Scrapy (an open source web crawling framework written
in Python) in this section. For more detailed information on Scrapy, please visit the official
documentation at http:/ ​/​docs. ​scrapy. ​org/​en/ ​latest/ ​. 

In this section, we will be implementing scraping features and building a project
demonstrating useful concepts.

Introduction to Scrapy
Scrapy is a web crawling framework written in Python used for crawling websites with
effective and minimal coding. According to the official website of Scrapy (https:/ ​/​scrapy.
org/​), it is "An open source and collaborative framework for extracting the data you need from
websites. In a fast, simple, yet extensible way." 

http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
http://docs.scrapy.org/en/latest/
https://scrapy.org/
https://scrapy.org/
https://scrapy.org/
https://scrapy.org/
https://scrapy.org/
https://scrapy.org/
https://scrapy.org/


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 173 ]

Scrapy provides a complete framework that is required to deploy a crawler with built-in
tools. Scrapy was originally designed for web scraping; with its popularity and
development, it is also used to extract data from APIs. Scrapy-based web crawlers are also
easy to manage and maintain because of their structure. In general, Scrapy provides a
project-based scope for projects dealing with web scraping.

The following are some of the features and distinguishable points that make Scrapy a
favorite among developers:

Scrapy provides built-in support for document parsing, traversing, and
extracting data using XPath, CSS Selectors, and regular expressions.
The crawler is scheduled and managed asynchronously allowing multiple links
to be crawled at the same time.
It automates HTTP methods and actions, that is, there's no need for importing
libraries such as requests or urllib manually for code. Scrapy handles
requests and responses using its built-in libraries.
There's built-in support for feed export, pipelines (items, files, images, and
media), that is, exporting, downloading, and storing data in JSON, CSV, XML,
and database.
The availability of the middleware and the large collection of built-in extensions
can handle cookies, sessions, authentication, robots.txt, logs, usage statistics,
email handling, and so on.
Scrapy-driven projects are composed of easy-to-use distinguishable components
and files, which can be handled with basic Python skills and many more.

Please refer to the official documentation of Scrapy at https:/ ​/​docs. ​scrapy. ​org/​en/
latest/​intro/​overview. ​html for an in-depth and detailed overview.

With a basic introduction to Scrapy, we now begin setting up a project and exploring the
framework in more detail in the next sections.

https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 174 ]

Setting up a project
We will require a Python library with scrapy successfully installed on the system before
proceeding with the project setup. For setting up or installation refer to Chapter 2, Python
and the Web – Using urllib and Requests, Setting things up section or, for more details on
Scrapy installation, please refer to the official installation guide at https:/ ​/​docs. ​scrapy.
org/​en/​latest/​intro/ ​overview. ​html. 

Upon successful installation, we can obtain the details shown in the following screenshot,
using Python IDE:

Successful installation of Scrapy with details

With the successful installation of the scrapy library, there's also the availability of the
scrapy command-line tool. This command-line tool contains a number of commands,
which are used at various stages of a project from starting or creating a project through to it
being fully up and running.

To begin with creating a project, let's follow the steps:

Open Terminal or command-line interface1.
Create a folder (ScrapyProjects) as shown in the following screenshot or select2.
a folder in which to place Scrapy projects
Inside the selected folder, run or execute the scrapy command3.
A list of available commands and their brief details will appear, similar to the4.
following screenshot: 

https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 175 ]

List of available commands for Scrapy

We will be creating a Quotes project to obtain author quotes related to web scraping from
http:/​/​toscrape. ​com/ ​, accessing information from the first five pages or less which exists
using the URL http:/ ​/​quotes. ​toscrape. ​com/​.

We are now going to start the Quotes project. From the Command Prompt, run or
execute the scrapy startproject Quotes command as seen in the following
screenshot:

Starting a project (using command: scrapy startproject Quotes)

http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 176 ]

If successful, the preceding command will be the creation of a new folder named
Quotes (that is, the project root directory) with additional files and subfolders as shown in
the following screenshot:

Contents for project folder ScrapyProjects\Quotes

With the project successfully created, let's explore the individual components inside the
project folder:

scrapy.cfg is a configuration file in which default project-related settings for
deployment are found and can be added.
Subfolder will find Quotes named same as project directory, which is actually a
Python module. We will find additional Python files and other resources in this
module as follows:

Contents for project folder ScrapyProjects\Quotes\Quotes 



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 177 ]

As seen in the preceding screenshot, the module is contained in the spiders folder and the
items.py, pipelines.py, and settings.py Python files. These content found inside
the Quotes module has specific implementation regarding the project scope explored in the
following list:

spiders: This folder will contain Spider classes or Spider writing in Python.
Spiders are classes that contain code that is used for scraping. Each individual
Spider class is designated to specific scraping activities.
items.py: This Python file contains item containers, that is, Python class files
inheriting scrapy. Items are used to collect the scraped data and use it inside
spiders. Items are generally declared to carry values and receive built-in support
from other resources in the main project. An item is like a Python dictionary
object, where keys are fields or objects of scrapy.item.Field, which will hold
certain values.

Although the default project creates the items.py for the item-related task, it's
not compulsory to use it inside the spider. We can use any lists or collect data
values and process them in our own way such as writing them into a file,
appending them to a list, and so on. 

pipelines.py: This part is executed after the data is scraped. The scraped items
are sent to the pipeline to perform certain actions. It also decides whether to
process the received scraped items or drop them.
settings.py: This is the most important file in which settings for the project can
be adjusted. According to the preference of the project, we can adjust the settings.
Please refer to the official documentation from Scrapy for settings at https:/ ​/
scrapy2. ​readthedocs. ​io/ ​en/ ​latest/ ​topics/ ​settings. ​html

In this section, we have successfully created a project and the required files using Scrapy.
These files will be used and updated as described in the following sections.

Generating a Spider
We need to generate a Spider to collect the data. The Spider will perform the crawling
activity. An empty default folder named spiders does exist inside
the ScrapyProjects\Quotes\Quotes folder.

From the ScrapyProjects\Quotes project folder, run or execute the scrapy genspider
quotes quotes.toscrape.com command.

https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html
https://scrapy2.readthedocs.io/en/latest/topics/settings.html


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 178 ]

Successful execution of the command will create a quotes.py file, that is, a Spider inside
the ScrapyProjects\Quotes\Quotes\spiders\ path. The generated Spider class
QuotesSpider inherits Scrapy features from scrapy.Spider. There's also a few required
properties and functions found inside QuotesSpider as seen in the following code:

import scrapy

class QuotesSpider(scrapy.Spider):
    name = "quotes"
    allowed_domains = ["quotes.toscrape.com"]
    start_urls = (
        'http://www.quotes.toscrape.com/',
    )

    def parse(self, response):
        pass

The QuotesSpider Spider class contains automatically generated properties that are
assigned for specific tasks, as explored in the following list:

name: This variable holds value, that is, the name of the Spider quotes as seen in
the preceding code. The name identifies the Spider and can be used to access it.
The value of the name is provided through the command-line instructions while
issuing scrapy genspider quotes, which is the first parameter after
genspider.
allowed_domains: The created Spiders are allowed to crawl within the listed
domains found in the allowed_domains. The last parameter passed is
the quotes.toscrape.com parameter, while generating a Spider is actually a
domain name that will be listed inside an allowed_domains list.
A domain name passed to allowed_domains will generate URLs for
start_urls. If there are any chances of URL redirection, such URL domain
names need to be mentioned inside the allowed_domains. 
start_urls: These contain a list of URLs that are actually processed by Spider
to crawl. The domain names found or provided to the allowed_domains are
automatically added to this list and can be manually added or updated. Scrapy
generates the URLs for start_urls adding HTTP protocols. On a few occasions,
we might also need to change or fix the URLs manually, for example, www added
to the domain name needs to be removed. start_urls after the update will be
seen as in the following code:

start_urls = ( 'http://quotes.toscrape.com/',)



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 179 ]

parse(): This function is implemented with the logic relevant to data extraction
or processing. parse() acts as a main controller and starting point for scraping
activity. Spiders created for the main project will begin processing the provided
URLs or start_urls from, or inside, the parse(). XPath-and CSS Selector-
related expressions and codes are implemented, and extracted values are also
added to the item (that is, the QuotesItem from the item.py file). 

We can also verify the successful creation of Spider by executing these commands: 

scrapy list

scrapy list spider

Both of these commands will list the Spider displaying its name, which is found inside the
spiders folder as seen in the following screenshot:

Listing Spiders from Command Prompt

In this section, we have generated a Spider named quotes for our scraping task. In the
upcoming section, we will create Item fields that will work with Spider and help with
collecting data.

Creating an item
Proceeding with the scraping task and the project folder, we will find a file named item.py
or item, containing the Python class QuotesItem. The item is also automatically generated
by Scrapy while issuing the scrapy startproject Quotes command. The
QuotesItem class inherits the scrapy.Item for built-in properties and methods such as
the Field. The Item or QuotesItem in Scrapy represents a container for collecting values
and the Fields listed as shown in the following code, including quotes, tags, and so on,
which will acts as the keys to the values which we will obtain using
the parse() function. Values for the same fields will be extracted and collected across the
found pages.



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 180 ]

The item is accessed as a Python dictionary with the provided fields as keys with their
values extracted. It's effective to declare the fields in the item and use them in Spider but is
not compulsory to use item.py as shown in the following example:

class QuotesItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()

    quote = scrapy.Field()
    tags = scrapy.Field()
    author = scrapy.Field()
    author_link = scrapy.Field()
    pass

We need to import the QuotesItem when the item is required inside the Spider, as seen in
the following code, and process it by creating an object and accessing the declared fields,
that is, quote, tags, author, and so on: 

#inside Spider 'quotes.py'
from Quotes.items import QuotesItem
....
#inside parse()
item = QuotesItem() #create an object 'item' and access the fields
declared.

item['quote'] = .......
item['tags'] = .......
item['author'] = ......
item['author_link'] = ......
......

In this section, we declared the item fields that we are willing to retrieve data from a
website. In the upcoming section, we will explore different methods of data extraction and
link them to the item fields.

Extracting data
With Spider generated and the item declared with the fields required, we will now proceed
to extract the values or data required for specific item fields. Extraction-related logic can be
applied using XPath, CSS Selectors, and regular expressions and we also can implement
Python-related libraries such as bs4 (Beautiful Soup), pyquery, and so on.



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 181 ]

With proper start_urls and item (QuotesItem) being set up for the Spider to crawl, we
can now proceed with the extraction logic using parse() and using selectors at https:/ ​/
docs.​scrapy.​org/ ​en/ ​latest/ ​topics/ ​selectors. ​html.

Using XPath
The parse() function inside Spider is the place to implement all logical processes for
scraping data. As seen in the following code, we are using XPath expressions in this Spider
to extract the values for the required fields in QuotesItem. 

For more information on XPath and obtaining XPath Query, using
browser-based developer tools, please refer to Chapter 3, Using LXML,
XPath and CSS Selectors, XPath and CSS Selectors using DevTools section.
Similarly, for more information on the pyquery Python library, please
refer to Chapter 4, Scraping Using pyquery – a Python Library.

As seen in the next code snippet an item object from QuotesItem is used to collect
individual field-related data and it's finally being collected and iterated using the Python
keyword yield. parse() is actually a generator that is returning object item from
QuotesItem.

Python keyword yield is used to return a generator. Generators are
functions that return an object that can be iterated. The Python function
can be treated as a generator using the yield in place of the return.

parse() has an additional argument response; this is an object of
scrapy.http.response.html.HtmlResponse that is returned by Scrapy with the page
content of the accessed or crawled URL. The response obtained can be used with XPath and
CSS Selectors for further scraping activities:

'''
Using XPath
'''
def parse(self, response):
 print("Response Type >>> ", type(response))
 rows = response.xpath("//div[@class='quote']") #root element

 print("Quotes Count >> ", rows.__len__())
 for row in rows:
     item = QuotesItem()

     item['tags'] =
row.xpath('div[@class="tags"]/meta[@itemprop="keywords"]/@content').extract

https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 182 ]

_first().strip()
     item['author'] =
row.xpath('//span/small[@itemprop="author"]/text()').extract_first()
     item['quote'] =
row.xpath('span[@itemprop="text"]/text()').extract_first()
     item['author_link'] =
row.xpath('//a[contains(@href,"/author/")]/@href').extract_first()

     if len(item['author_link'])>0:
         item['author_link'] =
'http://quotes.toscrape.com'+item['author_link']

     yield item

As seen in the following code, the XPath expression is being applied to the response using
the xpath() expression and is used as a response.xpath(). XPath expressions or queries
provided to response.xpath() are parsed as rows, that is, an element block containing
the desired elements for fields.

The obtained rows will be iterated for extracting individual element values by providing
the XPath query and using additional functions as listed here:

extract(): Extract all the elements matching the provided expression.
extract_first(): Extract only the first element that matches the provided
expression.
strip(): Clears the whitespace characters from the beginning and the end of the
string. We need to be careful using this function to the extracted content if they
result in a type other than string such as NoneType or List, and so on as it can
result in an error.

In this section, we have collected quotes listings details using XPath; in the next section, we
will cover the same process but using CSS Selectors.

Using CSS Selectors
In this section, we will be using CSS Selectors with their extensions such as ::text and
::attr along with extract() and strip(). Similar to response.xpath(), available to
run XPath expressions, CSS Selectors can be run using response.css().
The css() selector matches the elements using the provided expressions:

'''
Using CSS Selectors
'''
def parse(self, response):



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 183 ]

    print("Response Type >>> ", type(response))
    rows = response.css("div.quote") #root element

    for row in rows:
        item = QuotesItem()

        item['tags'] = row.css('div.tags >
meta[itemprop="keywords"]::attr("content")').extract_first()
        item['author'] =
row.css('small[itemprop="author"]::text').extract_first()
        item['quote'] =
row.css('span[itemprop="text"]::text').extract_first()
        item['author_link'] =
row.css('a:contains("(about)")::attr(href)').extract_first()

        if len(item['author_link'])>0:
            item['author_link'] =
'http://quotes.toscrape.com'+item['author_link']

        yield item

As seen in the preceding code, rows represent individual elements with the post-
item class, iterated for obtaining the Item fields. 

For more information on CSS Selectors and obtaining CSS Selectors using
browser-based development tools, please refer to Chapter 3, Using LXML,
XPath, and CSS Selectors, CSS Selectors section and XPath and CSS Selectors
using DevTools section, respectively. 

For more detailed information on selectors and their properties, please refer to the Scrapy
official documentation on selectors at https:/ ​/​docs. ​scrapy. ​org/ ​en/​latest/ ​topics/
selectors.​html. In the upcoming section, we will learn to scrape data from multiple pages.

Data from multiple pages
In the preceding section, we tried scraping data for the URL in start_urls, that is, http:/
/​quotes.​toscrape. ​com/ ​. It's also to be noted that this particular URL results in quotes
listings for the first page only. 

Quotes listings are found across multiple pages and we need to access each one of those
pages to collect the information. A pattern for pagination links is found in the following list:

http:/​/​quotes. ​toscrape. ​com/ ​ (first page)
http:/​/​quotes. ​toscrape. ​com/ ​page/ ​2/​

http:/​/​quotes. ​toscrape. ​com/ ​page/ ​3/​

https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
https://docs.scrapy.org/en/latest/topics/selectors.html
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/2/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/
http://quotes.toscrape.com/page/3/


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 184 ]

XPath and CSS Selectors used inside the parse(), as found in codes from the preceding
section, will be scraping data from the first page or page 1 only. Pagination links found
across pages can be requested and extracted by passing the link to parse() inside Spider
using the callback argument from a scrapy.Request.

As seen in the following code, a link to page 2 found on page 1 is extracted and passed to
scrapy.Request, making a request to the nextPage processing plus yielding the item
fields using parse(). Similarly, the iteration takes place until the link to the next page or
nextPage exists:

def parse(self, response):
    print("Response Type >>> ", type(response))
    rows = response.css("div.quote")
    for row in rows:
        item = QuotesItem()
        ......
        ......
        yield item
    #using CSS
    nextPage = response.css("ul.pager > li.next >
a::attr(href)").extract_first()
    #using XPath
    #nextPage =
response.xpath("//ul[@class='pager']//li[@class='next']/a/@href").extract_f
irst()
    if nextPage:
        print("Next Page URL: ",nextPage)
        #nextPage obtained from either XPath or CSS can be used.
        yield
scrapy.Request('http://quotes.toscrape.com'+nextPage,callback=self.parse)

 print('Completed')

We can also obtain the pagination-based result by making changes only to start_urls as
seen in the code next. Using this process doesn't require the use
of nextPage or scrapy.Request as used in the preceding code.

URLs to be crawled can be listed inside start_url and are recursively implemented by
parse() as seen in the following code:

'''
To be used for pagination purpose: include the URL to be used by parse()
'''

start_urls = (
    'http://quotes.toscrape.com/',



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 185 ]

    'http://quotes.toscrape.com/page/1/',
    'http://quotes.toscrape.com/page/2/',
)

We can also obtain a list of URLs using the Python list comprehension technique.
The range() function used in the following code accepts the start and end of the
argument, that is, 1 and 4, and will result in the numbers 1, 2, and 3 as follows:

start_urls = ['http://quotes.toscrape.com/page/%s' % page for page in
xrange(1, 6)]
'''
Results to:
[http://quotes.toscrape.com/page/1,
http://quotes.toscrape.com/page/2,
http://quotes.toscrape.com/page/3,
http://quotes.toscrape.com/page/4,
http://quotes.toscrape.com/page/5,]
'''

With extraction logic along with pagination and the item declared, in the next section, we
will run the crawler quotes and export the item to the external files. 

Running and exporting
We need to run a Spider and look for data for item fields in the provided URLs. We can
start running the Spider from the command line by issuing the scrapy crawl
quotes command or as seen in the following screenshot:

Running a Spider (scrapy crawl quotes)

The Scrapy argument crawl is provided with a Spider name (quotes) in the command. A
successful run of the command will result in information about Scrapy, bots, Spider,
crawling stats, and HTTP methods, and will list the item data as a dictionary. 

While executing a Spider we will receive various forms of information, such as
INFO/DEBUG/scrapy statistics and so on, as found in the following code:

...[scrapy] INFO: Scrapy 1.0.3 started (bot: Quotes)

...[scrapy] INFO: Optional features available: ssl, http11, boto

...[scrapy] INFO: Overridden settings: {'NEWSPIDER_MODULE':



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 186 ]

'Quotes.spiders', 'SPIDER_MODULES':     ['Quoyes.spiders'], 'BOT_NAME':
'Quotes'}
.......
...[scrapy] INFO: Enabled item pipelines:
...[scrapy] INFO: Spider opened
...[scrapy] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0
items/min)
...[scrapy] DEBUG: Telnet console listening on 127.0.0.1:6023
...[scrapy] DEBUG: Redirecting (301) to <GET http://quotes.toscrape.com/>
from <GET http://quotes.toscrape.com/>

[scrapy] DEBUG: Crawled (200) <GET http://quotes.toscrape.com/page/1/>
(referer: None)
('Response Type >>> ', <class
'scrapy.http.response.html.HtmlResponse'>).......
.......
('Response Type >>> ', <class 'scrapy.http.response.html.HtmlResponse'>)
...[scrapy] DEBUG: Scraped from <200 http://quotes.toscrape.com/>
{'author': u'J.K. Rowling',
.......
...[scrapy] DEBUG: Scraped from <200 http://quotes.toscrape.com/page/5/>
{'author': u'James Baldwin',
 'author_link': u'http://quotes.toscrape.com/author/James-Baldwin',
.....
('Next Page URL: ', u'/page/6/')
.......
.......
Completed
...[scrapy] INFO: Closing spider (finished)

The Scrapy statistics are as follows:

[scrapy] INFO: Dumping Scrapy stats:
{'downloader/request_bytes': 3316,
 'downloader/request_count': 13,
 'downloader/request_method_count/GET': 13,
 'downloader/response_bytes': 28699,
 'downloader/response_count': 13,
 'downloader/response_status_count/200': 11,
 'downloader/response_status_count/301': 2,
 'dupefilter/filtered': 1,
 'finish_reason': 'finished',
 'finish_time': datetime.datetime(.....
 'item_scraped_count': 110,
 'log_count/DEBUG': 126,
 'log_count/ERROR': 2,
 'log_count/INFO': 8,
 'log_count/WARNING': 1,



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 187 ]

 'request_depth_max': 8,
 'response_received_count': 11,
 'scheduler/dequeued': 13,
 'scheduler/dequeued/memory': 13,
 'scheduler/enqueued': 13,
 'scheduler/enqueued/memory': 13,
 'start_time': datetime.datetime(....
..... [scrapy] INFO: Spider closed (finished)

We can also run the Spider and save the item found or data scraped to the external files.
Data is exported or stored in files for easy access, usage, and convenience in sharing and
managing. 

With Scrapy, we can export scraped data to external files using crawl commands as seen in
the following list: 

To extract data to a CSV file we can use
the C:\ScrapyProjects\Quotes> scrapy crawl quotes -o
quotes.csv command as seen in the following screenshot:

Contents from file quotes.csv

To extract data to JSON file format, we can use
the C:\ScrapyProjects\Quotes> scrapy crawl quotes -o
quotes.json command as seen in the following:

Contents from file quotes.json



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 188 ]

The -o parameter followed by a filename will be generated inside the main project
folder. Please refer to the official Scrapy documentation about feed exports at
http://docs.scrapy.org/en/latest/topics/feed-exports.html for more detailed
information and file types that can be used to export data.

In this section, we learned about Scrapy and used it to create a Spider to scrape data and
export the data scraped to external files. In the next section, we will deploy the crawler on
the web.

Deploying a web crawler
Deploying a web crawler online or on a live server will certainly improve the effectiveness
of the crawling activity, with its speed, updated technology, web spaces, anytime usage,
and so on. Local tests and confirmation are required before deploying online. We need to
own or buy web spaces with web-hosting companies or the cloud server.

Scrapy Cloud at https:/ ​/ ​scrapinghub. ​com/​scrapy- ​cloud from Scrapinghub at https:/ ​/
scrapinghub.​com/ ​ is one of the best platforms to deploy and manage the Scrapy Spider.
The Scrapy Cloud provides an easy and interactive interface to deploy Scrapy and is free,
with some of the additional features listed here:

Coding/managing and running Spider
Deploying Spider to cloud
Downloading and sharing data
API access with resource management

http://docs.scrapy.org/en/latest/topics/feed-exports.html
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 189 ]

The following are the steps performed to deploy projects using Scrapy Cloud:

Open the web browser and go to https:/ ​/​scrapinghub. ​com/ ​.1.
From the navigation menu, select PRODUCTS and choose SCRAPY CLOUD as2.
seen in the following screenshot:

Scrapinghub products

https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 190 ]

Log in or register on the page loaded from https:/ ​/​scrapinghub. ​com/ ​scrapy-3.
cloud (or open the login page: https:/ ​/​app. ​scrapinghub. ​com/ ​account/ ​login/ ​):

Log in and register page from scraping hub

After completing registration and logging in, users are provided with an4.
interactive dashboard and an option to CREATE A PROJECT, as seen in the
following screenshot:

User dashboard 

https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/
https://app.scrapinghub.com/account/login/


Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 191 ]

Clicking CREATE PROJECT will pop up a window, as seen in the following5.
screenshot:

Create a new project from Scrapy Cloud

Create a project named as seen in the screenshot and choose6.
technology SCRAPY to deploy the spiders; click CREATE.
A Dashboard with Scrapy Cloud Projects will be loaded, listing newly created7.
projects as seen in the following screenshot:

Scrapy Cloud Projects listings with option CREATE PROJECT



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 192 ]

To deploy the codes for the created project, select the project listed from8.
the Scrapy Cloud Projects listings.
The project dashboard will be loaded with various options. Choose the option9.
Code & Deploys:

Project dashboard with various options

Deploy the code using either the command line or the GitHub. 10.
The successful deployment will list the Spider as seen in the following11.
screenshot:

Listing of Spider after code deploy



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 193 ]

Click the listed Spider, and detailed information and available options will be12.
displayed as shown in the following screenshot:

Spider details

Click RUN to start crawling the chosen Spider as seen here:13.

Spider Run window



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 194 ]

Click RUN with the default options.14.
Crawling jobs will be listed as seen in the following screenshot. We can browse15.
through the Completed jobs for details on Items, Requests, Errors, Logs, and so
on:

Jobs details for Spider

When exploring items for completed jobs, options such as filters, data export,16.
and downloading with crawling job details for requests, logs, stats, and so on are
available in the job details. More information can be loaded by clicking a
particular Spider listed:

Listing items from Spider



Web Scraping Using Scrapy and Beautiful Soup Chapter 5

[ 195 ]

Using the actions listed previously, we can deploy Scrapy Spider successfully using the
Scraping hub.

In this section, we used and explored the Scraping hub to deploy the Scrapy Spider.

Summary
Selecting the right libraries and frameworks does depend on the project scope. Users are
free to choose libraries and experience the online process.

In this chapter, we have used and explored various aspects of traversing web documents
using Beautiful Soup and have explored a framework built for crawling activities using
Spiders: Scrapy. Scrapy provides a complete framework to develop a crawler and is
effective using XPath and CSS Selectors with support for the data export. Scrapy projects
can also be deployed using Scraping hub to experience the live performance of the
deployed Spider and enjoy features provided by the Scrapings hub (Scrapy Cloud)
at https:/​/​scrapinghub. ​com/ ​scrapy- ​cloud. 

In the next chapter, we will explore more information regarding scraping data from the
web. 

Further reading
Scrapy: https:/ ​/ ​docs. ​scrapy. ​org/ ​en/ ​latest/ ​intro/ ​overview. ​html

Learn Scrapy: https:/ ​/​learn. ​scrapinghub. ​com/ ​scrapy/ ​

Beautiful Soup: https:/ ​/ ​www. ​crummy. ​com/ ​software/ ​BeautifulSoup/ ​bs4/ ​doc/ ​

SoupSieve: https:/ ​/​facelessuser. ​github. ​io/ ​soupsieve/ ​selectors/ ​

XPath tutorial: https:/ ​/​doc. ​scrapy. ​org/ ​en/​xpath- ​tutorial/ ​topics/ ​xpath-
tutorial. ​html

CSS Selector reference: https:/ ​/​www. ​w3schools. ​com/ ​cssref/ ​css_ ​selectors. ​asp

Feed exports: http:/ ​/​docs. ​scrapy. ​org/ ​en/ ​latest/ ​topics/ ​feed- ​exports. ​html

Scraping hub (Scrapy Cloud): https:/ ​/​scrapinghub. ​com/ ​

https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/scrapy-cloud
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://learn.scrapinghub.com/scrapy/
https://learn.scrapinghub.com/scrapy/
https://learn.scrapinghub.com/scrapy/
https://learn.scrapinghub.com/scrapy/
https://learn.scrapinghub.com/scrapy/
https://learn.scrapinghub.com/scrapy/
https://learn.scrapinghub.com/scrapy/
https://learn.scrapinghub.com/scrapy/
https://learn.scrapinghub.com/scrapy/
https://learn.scrapinghub.com/scrapy/
https://learn.scrapinghub.com/scrapy/
https://learn.scrapinghub.com/scrapy/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://doc.scrapy.org/en/xpath-tutorial/topics/xpath-tutorial.html
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
http://docs.scrapy.org/en/latest/topics/feed-exports.html
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapinghub.com/


3
Section 3: Advanced Concepts

In this section, you will learn how to scrape secure websites, and also deal with HTML
forms and web cookies. You will also explore web-based APIs for targeted data and use
web-based testing frameworks such as Selenium.

This section consists of the following chapters: 

Chapter 6, Working with Secure Web
Chapter 7, Data Extraction Using Web-Based APIs
Chapter 8, Using Selenium to Scrape the Web
Chapter 9, Using Regex to Extract Data



6
Working with Secure Web

So far, we have learned about web-development technologies, data-finding techniques, and
Python libraries that we can use to access and scrape web content.

Various forms of web-based security measures exist nowadays that protect us against
unauthenticated usage and unauthorized access to sensitive web content. A number of
tools and technologies exist that are applied by websites; some target user-based actions,
while some target a website's contents and their availability. 

Secure web (or web-based security-enabled features) is considered to be one of the
technologies that's implemented by websites and utilized by end users who want to use or
view a website's contents. We will be covering a few basic concepts that deal with such
features from a web scraping perspective.

In this chapter, we will learn about the following topics:

Introduction to secure web
HTML <form> processing
Handling user authentication
Working with cookies and sessions



Working with Secure Web Chapter 6

[ 198 ]

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) is required for this chapter. We will be
using the following Python libraries:

requests

pyquery

If these libraries don't exist in your current Python setup, refer to Chapter 2, Python and the
Web – Using urllib and Requests, the Setting things up section for more information on their
installation and how to set them up.

The code files for this chapter are available in this book's GitHub repository at https:/ ​/
github.​com/​PacktPublishing/ ​Hands- ​On- ​Web-​Scraping- ​with- ​Python/ ​tree/ ​master/
Chapter06.

Introduction to secure web
The implementation of web-based security features (or features that are used to maintain a
secure state of access) to access information is rapidly growing, day by day. With ever-
growing web-based technologies, websites and web applications deploy secure
mechanisms that are basic or highly sophisticated. 

Secure web-enabled content is often challenging from a crawling and scraping perspective.
In this section, you will be introduced to a few basic security-based concepts. We will
explore these concepts, along with their implementation, in the upcoming sections.

The following sections will talk about a few security-enabled concepts or concepts that are
vulnerable to security. These concepts can be implemented independently and
collaboratively in websites using a number of underlying tools or measures.

Form processing
This is also known as HTML <form> processing, form handling, or form submission. This 
method processes and handles data inside an HTML <form>.

HTML <form> or elements inside a <form> tag, such as <input>, <option>, <button>,
<textarea>, and so on, with certain specific attributes, are normally used to collect and
submit data. Please visit the W3School HTML form (https:/ ​/​www. ​w3schools. ​com/ ​html/
html_​forms.​asp) for practical examples and detailed information on HTML form.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter06
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp


Working with Secure Web Chapter 6

[ 199 ]

HTTP methods or request methods, such as GET, POST, PUT, and so on, are used to access or
submit data across web pages. For more information on HTTP, please visit https:/ ​/​www.
w3.​org/​Protocols/ ​. 

From a security point of view, HTML <form> can contain dynamic and hidden or system-
generated values that manage validation, provide value to fields, or perform security-based
implementation during form submission. Forms with fields such as <input
type="hidden"...> might not be visible to users in pages. The user must get help from
the page source or browser-based developer tools in such cases.

A web page with a form might be displaying in certain fields and asking for input, and can
contain a few more fields on the backend or in the source, which can contain user-or
system-based information. Such information is collected and processed behind the scenes
for web-based analysis, marketing, user and system identification, managing security, and
more.

For more information on form processing, please refer to Chapter 3, Using
LXML, XPath, and CSS Selectors, Using web browser developer tools for
accessing web content section.

Cookies and sessions
To access cookie and session values that have been set by browsed websites, please refer to
Chapter 1, Web Scraping Fundamentals, the Data finding techniques section of the Developer
tools section. Now, let's get an idea of what cookies and sessions are.

Cookies
Cookies are data that's generated and stored by websites on your system or computer. Data
in cookies helps identify web requests from the user to the website. Data in cookies is
stored in key:value pairs. Data that's stored in cookies helps websites access that data and
transfer certain saved values in the form of a quick interaction.

Cookies also allow websites to track user profiles, their web habits, and so on, and use such
information for indexing, page ads, and marketing activities. 

https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/


Working with Secure Web Chapter 6

[ 200 ]

Cookie-based data can last for a session (that is, from the time that a web page is loaded
until the browser is closed) forming what are known as a session cookies, or for days,
weeks, or months, which are known as permanent or stored cookies. Cookies can also
contain expiry values in seconds and are expired or deleted from the system once the
period of time expressed in this value elapses.

For more information on cookies, please refer to Chapter 1, Web Scraping
Fundamentals, the Understanding Web Development and Technologies
section of the HTTP section. You can also visit https:/ ​/ ​www.
aboutcookies. ​org/ ​ and http:/ ​/​www. ​allaboutcookies. ​org/ ​ for more
information.

Sessions
Sessions are properties that enforce state-based communication between two systems. A
session is used to store user information temporarily and is also deleted as soon as the user
quits the browser or leaves the website.

A session is used for maintaining security activity. A unique identification number, also
known as a session ID or session key, is generated by the website and is used to track their
users or security-based features independently. In most cases of session availability, it can
be traced using cookies too.

User authentication
User authentication deals with handling and managing user-based identification processes.
Websites offer user registration through their registration page and thereby collect user
inputs for required or available fields. A user's details are saved in secure places such as the
cloud or server-based databases, or any other secure system. 

Registered users are verified and are permitted to log in and log out from their system, and
are identified by their username, password, and email address. 

Form processing, cookies, session management, and other security-based measures can be
deployed either individually or collaboratively for this process.

In the previous chapter, we explored and tackled various scenarios based on information
availability, accessing web pages, applying various HTTP methods, and so on to extract
data. The sections in this chapter deal with various measures and situations that can be
implemented or that might be faced during web scraping. 

https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/


Working with Secure Web Chapter 6

[ 201 ]

HTML <form> processing
In this section, we will be handling form processing or form submission in order to search
for an activity from http:/ ​/​toscrape. ​com (ViewState). ViewState is an AJAX-based filter
form.

This particular form submission is performed in multiple steps with the help of AJAX
(https:/​/​www.​w3schools. ​com/ ​js/ ​js_ ​ajax_ ​intro. ​asp). For more information on AJAX,
please visit W3Schools AJAX:

http://toscrape.com with various endpoints in the Quotes section

Let's set up the code. The pyquery and requests libraries need to be imported and the
required URLs need to be collected so that they can be used.
The processRequests() function, along with positional and named arguments, is used
for processing requests to the provided url, with the HTTP POST and GET methods based
on the params argument returning a PyQuery object as a response.

We are also interested in iterating authorTags and collecting the quoteAuthor and
message, respectively. In a similar way, any information that's obtained from a page can be
extracted:

from pyquery import PyQuery as pq
import requests
mainurl = "http://toscrape.com/"

http://toscrape.com
http://toscrape.com
http://toscrape.com
http://toscrape.com
http://toscrape.com
http://toscrape.com
http://toscrape.com
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp


Working with Secure Web Chapter 6

[ 202 ]

searchurl = "http://quotes.toscrape.com/search.aspx"
filterurl = "http://quotes.toscrape.com/filter.aspx"
quoteurl = "http://quotes.toscrape.com/"
authorTags = [('Albert Einstein', 'success'), ('Thomas A. Edison',
'inspirational')]

def processRequests(url, params={}, customheaders={}):
    if len(params) > 0:
        response = requests.post(url, data=params, headers=customheaders)
    else:
        response = requests.get(url)
    return pq(response.text)

if __name__ == '__main__':
    for authorTag in authorTags:
        authorName,tagName= authorTag

The following screenshot displays the content of the searchurl page, as defined in the
preceding code. Two separate drop-downs exist, each with options for the author and their
tags, respectively:

http://quotes.toscrape.com/search.aspx searchurl with author and tag



Working with Secure Web Chapter 6

[ 203 ]

Let's load searchurl, as shown in the following code, and select an author from
the Author drop-down. The <option> tag is generated using AJAX for the selected
<option> of the Author:

Please refer to Chapter 3, Using LXML, XPath, and CSS Selectors, the Using
web browser developer tools for accessing web content section, and Chapter 1,
Web Scraping Fundamentals, the Data finding techniques and Developer tools
sections.

#Step 1: load searchURL
searchResponse = processRequests(searchurl)
author = searchResponse.find('select#author option:contains("' + authorName
+ '")').attr('value')
viewstate = searchResponse.find('input#__VIEWSTATE').attr('value')
tag = searchResponse.find('select#tag option').text()

print("Author: ", author)
print("ViewState: ", viewstate)
print("Tag: ", tag)

As you can see, the processRequests() function is called using an HTTP GET to
searchurl and will be returning a response as an object of PyQuery. From
searchResponse, let's collect the necessary form fields. Fields such as author,
viewstate, and tag are collected, and the values that were obtained for the fields on each
iteration are shown in the following output:

Author: Albert Einstein
ViewState:
NTA2MjI4NmE1Y2Q3NGFhMzhjZTgxMzM4ZWU0NjU4MmUsQWxiZXJ0IEVpbnN0ZWluLEouSy4gUm9
3bGluZyxKYW5lIEF1c3Rlbi............BDdW1taW5ncyxLaGFsZWQgSG9zc2VpbmksSGFycG
VyIExlZSxNYWRlbGVpbmUgTCdFbmdsZQ==
Tag: ----------

Author: Thomas A. Edison
ViewState:
ZjNhZTUwZDYzY2YyNDZlZmE5ODY0YTI5OWRhNDAyMDYsQWxiZXJ0IEVpbnN0ZWluLEouSy4gUm9
3bGluZyxKYW5lIEF1c3Rlbi............BDdW1taW5ncyxLaGFsZWQgSG9zc2VpbmksSGFycG
VyIExlZSxNYWRlbGVpbmUgTCdFbmdsZQ==
Tag: ----------

From the preceding output, we can see that viewstate (<input
id="__VIEWSTATE"..>) contains unique values on both iterations for authorTags.



Working with Secure Web Chapter 6

[ 204 ]

ViewState is a unique and random value that's generated by websites to
identify individual states of the page, which are often found as a hidden
<input> value. This <form> value exists in most websites that
use <form> and built-in ASP or ASP.NET technologies.
The ViewState value is used on the client side, and it preserves or retains
the value of the <form> elements, alongside page identity. Use
of ViewState is one of the techniques related to state management. For
more information, please visit the article from C#Corner found at https:/
/​www. ​c- ​sharpcorner. ​com/ ​article/ ​Asp-​Net- ​state- ​management-
techniques/ ​. 

The value of ViewState is compulsory for obtaining the <option> tag for the selected
Author. As we can see in the following code, params is created with author, tag,
and __VIEWSTATE, and is posted or submitted to filterurl using HTTP POST and
customheaders by obtaining filterResponse. The following code shows what happens
when filterurl has been loaded with the author and default tag:

#Step 2: load filterurl with author and default tag
params = {'author': author, 'tag': tag, '__VIEWSTATE': viewstate}
customheaders = {
    'Accept':
'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apn
g,*/*;q=0.8',
    'Content-Type': 'application/x-www-form-urlencoded',
    'Referer': searchurl
}

filterResponse = processRequests(filterurl,params,customheaders)
viewstate = filterResponse.find('input#__VIEWSTATE').attr('value')
tagSuccess = filterResponse.find('select#tag option:contains("' + tagName +
'")').attr('value')
submitButton =
filterResponse.find('input[name="submit_button"]').attr('value')

print("Author: ", author)
print("ViewState: ", viewstate)
print("Tag: ", tagSuccess)
print("Submit: ", submitButton)

https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/
https://www.c-sharpcorner.com/article/Asp-Net-state-management-techniques/


Working with Secure Web Chapter 6

[ 205 ]

Iterating the preceding code will result in the following output:

http://quotes.toscrape.com/filter.aspx with the selected author
(Thomas A. Edison) and tag (inspirational):

Author: Thomas A. Edison
ViewState:
ZjNhZTUwZDYzY2YyNDZlZmE5ODY0YTI5OWRhNDAyMDYsQWxiZXJ0IEVpbnN0ZWluLEo
uSy4gUm93bGluZyxKYW5lIEF1c3Rlbi............BDdW1taW5ncyxLaGFsZWQgSG
9zc2VpbmksSGFycGVyIExlZSxNYWRlbGVpbmUgTCdFbmdsZSwtLS0tLS0tLS0t
Tag: inspirational
Submit: Search

http://quotes.toscrape.com/filter.aspx with the selected author
(Albert Einstein) and tag (success):

Author: Albert Einstein
ViewState:
NTA2MjI4NmE1Y2Q3NGFhMzhjZTgxMzM4ZWU0NjU4MmUsQWxiZXJ0IEVpbnN0ZWluLEo
uSy4gUm93bGluZyxKYW5lIEF1c3Rlbi............BDdW1taW5ncyxLaGFsZWQgSG
9zc2VpbmksSGFycGVyIExlZSxNYWRlbGVpbmUgTCdFbmdsZSwtLS0tLS0tLS0t
Tag: success
Submit: Search

Now that we have obtained all the filter <form>-based parameters for each authorTags,
the final step is to submit these parameters—that is, params to filterurl—using HTTP
POST and extract the resulting information:

#Step 3: load filterurl with author and defined tag
params = {'author': author, 'tag': tagSuccess, 'submit_button':
submitButton, '__VIEWSTATE': viewstate}
customheaders = {
'Accept':
'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apn
g,*/*;q=0.8',
'Content-Type': 'application/x-www-form-urlencoded',
'Referer': filterurl
}

finalResponse = processRequests(filterurl,params, customheaders)

#Step 4: Extract results
quote = finalResponse.find('div.quote span.content').text()

quoteAuthor = finalResponse.find('div.quote span.author').text()
message = finalResponse.find('div.quote span.tag').text()
print("Author: ", quoteAuthor, "\nMessage: ", message)



Working with Secure Web Chapter 6

[ 206 ]

As we can see, finalResponse is a PyQuery object that's returned by
processRequests() and is parsed to obtain the quote, quoteAuthor, and message, as
shown in the following screenshot:

http://quotes.toscrape.com/filter.aspx with results for Author and Tag

The output from iteration number one using the preceding code with Author and
Message is as follows:

Author: Albert Einstein
Message: success

The following is a screenshot for iteration number two:

http://quotes.toscrape.com/filter.aspx with results for Author and Tag



Working with Secure Web Chapter 6

[ 207 ]

The output from iteration number two using the preceding code with Author and
Message is as follows:

Author: Thomas A. Edison
Message: inspirational

Form processing with searching and filtering actions, alongside the use of hidden fields, is
shown in the preceding code. The ViewState value is used by the system behind the
scenes to identify the selected option and filter the tags associated with it, resulting in
quotes by the author.

The total number of HTTP POST parameters for the final form submission is four, whereas
the page only displays or allows you to interact with two options. If any changes are made
to a value, such as viewstate, or if viewstate is missing from params, it will result in
empty quotes, as shown in the following code:

#params={'author':author,'tag':tagSuccess,'submit_button':submitButton,'__V
IEWSTATE':viewstate}
params={'author':author,'tag':tagSuccess,'submit_button':submitButton,'__VI
EWSTATE':viewstate+"TEST"}
#params={'author':author,'tag':tagSuccess,'submit_button':submitButton}
......
finalResponse = processRequests(filterurl,params, customheaders)
......
print("Author: ", quoteAuthor, "\nMessage: ", message)

Quote:
Author:
Message:

Form submission is not only dependent on the required parameters that are selected from
visible <form> elements in the page—there can also be hidden values and dynamically
generated state representation that should be processed and handled effectively for
successful output. 

In the next section, we will be dealing with form submission and user authentication.



Working with Secure Web Chapter 6

[ 208 ]

Handling user authentication
In this section, we will be exploring a task that's used to process basic user authentication,
which is available from http:/ ​/​testing- ​ground. ​scraping. ​pro/ ​login. User authentication
is often processed with a unique combination of information, such as username, password,
email, and so on, to identify the user on the website. 

The code in this section deals with logging in and changing the login credentials, as well as
with obtaining the respective messages from the page. 

As we can see in the following screenshot, the HTML <form> exists with two <input>
boxes that accept the username and password (that is, the login credentials) that
are required to login. Login credentials are private and secure information, but for this
particular testing site, the values are visible, predefined, and provided—namely, Username
= "admin" and Password = "12345":

Login page

To process logging in with these credentials on http:/ ​/​testing- ​ground. ​scraping. ​pro/
login, we need to find the <form> attributes—that is, action and method—that were used
on the page to process the entered credentials. As we can see, the HTTP POST method will
be applied to perform form submission on http:/ ​/​testing- ​ground. ​scraping. ​pro/ ​login?
mode=​login: 

http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login
http://testing-ground.scraping.pro/login?mode=login


Working with Secure Web Chapter 6

[ 209 ]

Inspecting <form> elements

Let's move on and set up the code. The pyquery and requests libraries need to be
imported and the required URLs need to be collected so that they can be used:

from pyquery import PyQuery as pq
import requests
mainUrl = "http://testing-ground.scraping.pro"
loginUrl = "http://testing-ground.scraping.pro/login"
logoutUrl = "http://testing-ground.scraping.pro/login?mode=logout"
postUrl="http://testing-ground.scraping.pro/login?mode=login"

As shown in the following code, the responseCookies() function will accept response
objects that are obtained from requests.get() before printing the headers and cookies
information. Similarly, the processParams() function accepts <form>-based parameters
that will be posted and prints the message that's obtained from the page:

def responseCookies(response):
    headers = response.headers
    cookies = response.cookies
    print("Headers: ", headers)
    print("Cookies: ", cookies)

def processParams(params):
    response = requests.post(postUrl, data=params)



Working with Secure Web Chapter 6

[ 210 ]

    responseB = pq(response.text)
    message = responseB.find('div#case_login h3').text()
    print("Confirm Login : ",message)

if __name__ == '__main__':
    requests.get(logoutUrl)

    response = requests.get(mainUrl)
    responseCookies(response)
    response = requests.get(loginUrl)
    responseCookies(response)

Now, let's request logoutUrl to clean the cookies and sessions, if they exist. Alternatively,
for a completely new process, we can request mainUrl and loginUrl, respectively, and
check the message that was received from responseCookies(). Here is the output:

Headers:{'Vary':'Accept-Encoding','Content-
Type':'text/html','Connection':'Keep-Alive', ..........., 'Content-
Encoding':'gzip','X-Powered-By':'PHP/5.4.4-14+deb7u12'}
Cookies: <RequestsCookieJar[]>

Headers:{'Vary':'Accept-Encoding','Content-
Type':'text/html','Connection':'Keep-Alive',.............., 'Set-
Cookie':'tdsess=deleted; expires=Thu, 01-Jan-1970 00:00:01 GMT',.........,
'Keep-Alive':'timeout=5, max=100','X-Powered-By':'PHP/5.4.4-14+deb7u12'}
Cookies: <RequestsCookieJar[]>

As shown in the preceding output, cookies is empty for both mainUrl and loginUrl and
no other unique header pairs are available except Set-Cookie, with a value
of tdsess=deleted; expires=Thu, 01-Jan-1970 00:00:01 GMT from loginUrl. 

Now that responseA from the loginUrl <form> elements attribute name has been
collected as username and password, this information will be used to create
the paramsCorrect and paramsIncorrect parameter strings, which will be posted to
postUrl:

responseA = pq(response.text)
username = responseA.find('input[id="usr"]').attr('name')
password = responseA.find('input[id="pwd"]').attr('name')

#Welcome : Success
paramsCorrect = {username: 'admin', password: '12345'} #Success
print(paramsCorrect)
processParams(paramsCorrect)



Working with Secure Web Chapter 6

[ 211 ]

A successful form submission with the provided paramsCorrect parameter string will
result in the following output:

{'pwd': '12345', 'usr': 'admin'}
Confirm Login : WELCOME :)

The preceding output is extracted from the response of postUrl, which in this test case is
actually a redirected page with a URL of http:/​/ ​testing- ​ground. ​scraping. ​pro/ ​login?
mode=​welcome:

Successful form submission with valid login credentials

Let's continue with form submission, but with invalid credentials.
The paramsIncorrect phrase contains an invalid value for password:

 paramsIncorrect = {username: 'admin', password: '123456'} #Access Denied
 print(paramsIncorrect)
 processParams(paramsIncorrect)

The preceding code will result in the following output:

{'pwd': '123456', 'usr': 'admin'}
Confirm Login : ACCESS DENIED!

http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome
http://testing-ground.scraping.pro/login?mode=welcome


Working with Secure Web Chapter 6

[ 212 ]

The preceding output can also be found in the loginUrl itself, and no redirection takes
place this time:

Access Denied! (processed with wrong credentials)

As you can see, user authentication and form submission work in tandem. With the use of
proper login credentials and by being able to handle the form submission process using
Python, we can obtain a successful output or deal with the related output that's returned
from a website. 

In the next section, we will be performing form submission and user authentication by
handling cookies that contain a session.

Working with cookies and sessions
In this section, we will be handling form processing for user authentication and managing
cookies and sessions for http:/ ​/ ​quotes. ​toscrape. ​com/​login from http:/ ​/​toscrape. ​com

In order to log in, you need to log in with a CSRF token (any
username/password works). 

http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://quotes.toscrape.com/login
http://toscrape.com
http://toscrape.com
http://toscrape.com
http://toscrape.com
http://toscrape.com
http://toscrape.com
http://toscrape.com


Working with Secure Web Chapter 6

[ 213 ]

Let's set up the code. The pyquery and requests libraries need to be imported and the
required URLs will be collected and used. The getCustomHeaders() function, together
with the cookieHeader argument, is used to set the cookie value for the URL request
headers. The responseCookies() function, together with the response argument,
displays the headers and cookies, and also returns the Set-Cookie value from
cookies: 

from pyquery import PyQuery as pq
import requests
mainUrl = "http://toscrape.com/"
loginUrl = "http://quotes.toscrape.com/login"
quoteUrl = "http://quotes.toscrape.com/"

def getCustomHeaders(cookieHeader):
    return {
        'Host': 'quotes.toscrape.com',
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:65.0)
Gecko/20100101 Firefox/65.0',
        'Accept':
'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
',
        'Referer': 'http://quotes.toscrape.com/login',
        'Content-Type': 'application/x-www-form-urlencoded',
        'Cookie': cookieHeader
    }

def responseCookies(response):
    headers = response.headers
    cookies = response.cookies
    print("Headers: ", headers)
    print("Cookies: ", cookies)
    return headers['Set-Cookie']

if __name__ == '__main__':

For more information on HTTP and HTTP headers, please visit Chapter
1, Web Scraping Fundamentals, the Understanding Web Development and
Technologies and HTTP sections. For more details on cookies, please visit
https:/ ​/​www. ​aboutcookies. ​org/ ​ or allaboutcookies.org.

Now, let's begin by loading mainUrl and loginUrl, respectively:

requests.get(mainUrl)
response = requests.get(loginUrl)

https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
http://www.allaboutcookies.org/


Working with Secure Web Chapter 6

[ 214 ]

The following screenshot shows what a login page looks like when using loginUrl:

Login page from http://quotes.toscrape.com/login

As soon as  loginUrl is loaded, we can inspect or use browser-based developer tools to
find the request headers and confirm whether any cookies exist. We receive the following
output:

Network panel Doc-based headers tab from browser developer tools



Working with Secure Web Chapter 6

[ 215 ]

The following code accepts cookies from response and is used in headers:

setCookie = responseCookies(response)
print("Set-Cookie: ",setCookie)

As we can see from the preceding screenshot, Request Headers contains key=Cookie with
a value beginning with sessio=...., also known as the session ID. This information is
found in both response.headers and response.cookies, and
the responseCookies() function returns the cookie value from response.headers
before printing the details:

Headers: {'Set-Cookie':
session=eyJjc3JmX3Rva2VuIjoicUlPVGNnQ2FKZmJaS3NOdmlIREFWbVdvWGtMakJkVXl1U3B
ScmVZTWhRd0d6dEZueFBsRSJ9.D68Log.3ANox76h0whpTRjkqNo7JRgCtWI; HttpOnly;
Path=/',...,'Content-Encoding':'gzip','Content-Type':'text/html;
charset=utf-8',......}

Cookies: <RequestsCookieJar[<Cookie
session=eyJjc3JmX3Rva2VuIjoicUlPVGNnQ2FKZmJaS3NOdmlIREFWbVdvWGtMakJkVXl1U3B
ScmVZTWhRd0d6dEZueFBsRSJ9.D68Log.3ANox76h0whpTRjkqNo7JRgCtWI for
quotes.toscrape.com/>]>

Set-Cookie:
session=eyJjc3JmX3Rva2VuIjoicUlPVGNnQ2FKZmJaS3NOdmlIREFWbVdvWGtMakJkVXl1U3B
ScmVZTWhRd0d6dEZueFBsRSJ9.D68Log.3ANox76h0whpTRjkqNo7JRgCtWI; HttpOnly;
Path=/

A session ID is a unique number that a website's server assigns to a
specific user for a certain duration or for a session. This ID can be stored in
certain <form> fields or cookies, or even appended to a URL query string. 

Now that we've received the cookie-based session value, we need to maintain this value so
that we have a successful login procedure.



Working with Secure Web Chapter 6

[ 216 ]

Let's collect the <form>-based fields and more information on form submission:

Elements panel from Browser Developer Tools with page source

As we can see from the preceding screenshot, <form> is using HTTP POST to submit form
fields to loginUrl, and there's also a hidden <input> field with csrf_token, along with
the fields accepting the login credentials. 

Cross-Site Request Forgery (CSRF) or session riding is a security
measure that is used to identify each individual request between a user
and a website. Generally, CSRF_TOKEN or a token is used to manage such
a mechanism. A token is a random string generated by websites when a
request to the page is made by a user. A token value is required to process
any form of HTTP request to the website. The token value keeps changing
for each successful request. An HTML <form> containing a token value
can be processed with either an updated or deleted token, which are not
accepted by websites.



Working with Secure Web Chapter 6

[ 217 ]

In this example, username and password are open string values, and test has been used
for both:

responseA = pq(response.text)
csrf_token = responseA.find('input[name="csrf_token"]').attr('value')
username = responseA.find('input[id="username"]').attr('name')
password = responseA.find('input[id="password"]').attr('name')

params = {username: 'test', password: 'test', 'csrf_token': csrf_token}
print(params)

The form fields with the existing value and name are collected and params is configured,
which results in the following output:

{'password':'test','username':'test','csrf_token':'jJgAHDQykMBnCFsPIZOoqdbf
lYRzXtSuiEmwKeGavVWxpNLUhrcT'}

The parameters to be submitted via a form action are built using the name
attribute of the <form> element as a key and default, respectively, and is
required to receive values as their value. 

The requests.post() phrase implements a HTTP POST request
to loginURL with the params and customHeaders that have been setup.
A customHeaders is created with the setCookie value that we received earlier:

customHeaders = getCustomHeaders(setCookie)
response = requests.post(loginUrl, data=params, headers=customHeaders)
setCookie = responseCookies(response)
#print("Set-Cookie: ",setCookie)

responseB = pq(response.text)
logoutText = responseB.find('a[href*="logout"]').text()
logoutLink = responseB.find('a[href*="logout"]').attr('href')

print("Current Page : ",response.url)
print("Confirm Login : ", responseB.find('.row h2').text())
print("Logout Info : ", logoutText," & ",logoutLink)

Finally, we receive a successful output, along with the redirected URL and information
regarding the logout:

Current Page : http://quotes.toscrape.com/
Confirm Login : Top Ten tags
Logout Info : Logout & /logout



Working with Secure Web Chapter 6

[ 218 ]

The following screenshot shows the successful authentication with the information verified:

Successful authentication verified with information from http://quotes.toscrape.com/

Empty customHeaders or customHeaders without
a key named Cookie will not be successful in the authentication process.
Similarly, csrf_token is also required as the parameter. A posted,
updated, or empty csrf_token will not be successful in the
authentication process, even when customHeaders is provided with the
required key:value pairs of information.

Summary
In this chapter, we have explored some basic measures and techniques that are relevant to
security concerns, faced often, and are challenging with regards to web scraping.

Maintaining security measures between a user and a website is quite a challenging
and hazardous task. Different security concern exist and need to be managed. Various new
concepts exist on the web that need to be processed effectively and legally so that we can
perform web scraping activities.

In the next chapter, we will be using the Python programming language to interact with the
web API for data extraction.



Working with Secure Web Chapter 6

[ 219 ]

Further reading
AJAX: http:/ ​/​api. ​jquery. ​com/ ​jquery. ​ajax/ ​, https:/ ​/​www. ​w3schools. ​com/ ​js/
js_​ajax_ ​intro. ​asp

Browser developer tools: https:/ ​/​developers. ​google. ​com/ ​web/​tools/ ​chrome-
devtools/ ​, https:/ ​/​developer. ​mozilla. ​org/ ​son/ ​docs/ ​Tools

Cookies: https:/ ​/​www. ​aboutcookies. ​org/ ​ , http:/ ​/​www. ​allaboutcookies. ​org/ ​

CSRF: https:/ ​/​www. ​owasp. ​org/ ​index. ​php/ ​Cross- ​Site_ ​Request_ ​Forgery_
(CSRF)

HTML forms: https:/ ​/ ​www. ​w3schools. ​com/​html/ ​html_ ​forms. ​asp, https:/ ​/
developer. ​mozilla. ​org/ ​en- ​US/ ​docs/ ​Learn/ ​HTML/ ​Forms

HTTP: https:/ ​/​www. ​w3. ​org/ ​Protocols/ ​

HTTP headers: http:/ ​/​jkorpela. ​fi/​http. ​html

HTTP session: https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/​HTTP/ ​Session

Web scraping sandbox: http:/ ​/ ​toscrape. ​com/​

Web scraper testing ground: http:/ ​/​testing- ​ground. ​scraping. ​pro/ ​

http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://www.w3schools.com/js/js_ajax_intro.asp
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
https://www.aboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
http://www.allaboutcookies.org/
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://www.w3schools.com/html/html_forms.asp
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
http://jkorpela.fi/http.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://toscrape.com/
http://testing-ground.scraping.pro/
http://testing-ground.scraping.pro/
http://testing-ground.scraping.pro/
http://testing-ground.scraping.pro/
http://testing-ground.scraping.pro/
http://testing-ground.scraping.pro/
http://testing-ground.scraping.pro/
http://testing-ground.scraping.pro/
http://testing-ground.scraping.pro/
http://testing-ground.scraping.pro/
http://testing-ground.scraping.pro/
http://testing-ground.scraping.pro/


7
Data Extraction Using Web-

Based APIs
Web-based APIs allow users to interact with information on the web. API deals directly
with data that's in a formatted pattern easy to use and maintain. Some APIs also require
user authentication before they can provide data to the user. This chapter will cover the use
of Python and some web APIs to interact with, and extract data from, the available API.
Generally, APIs provide data in an exchangeable document format, such as JSON, CSV, and
XML.

In this chapter, we will cover the following topics:

Introduction to web APIs
Accessing web APIs using the Python programming language
Processing and extracting data via web APIs

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) is required for this chapter. We will be
using the following Python libraries:

requests

json

collections

If these libraries don't exist on your current Python setup, refer to Chapter 2, Python and the
Web – Using urllib and Requests, in the Setting things up section to learn how to download
them.



Data Extraction Using Web-Based APIs Chapter 7

[ 221 ]

The code files for this chapter are available in this book's GitHub repository: https:/ ​/
github.​com/​PacktPublishing/ ​Hands- ​On- ​Web-​Scraping- ​with- ​Python/ ​tree/ ​master/
Chapter07.

Introduction to web APIs
A web-based application programming information, or web-based API, is an interface
provided by a website to return information for the request that's received. A web API (or
API) is actually a web service that's provided by websites to users or third-party web
applications or automated scripts in order to share and exchange information.

Generally, this is a user interface (UI) that's processed via a web browser for retrieving
certain information from requests that have been made to a website or web server. Websites
with large amount of information of any type can provide a web API to their user, which
facilitates information sharing.

API in the field of software applications is known for its set of facilities,
such as methods and libraries, which can be used to further enhance,
build, or develop applications. This is also known as a developer API.

Web APIs are not dependent on any programming languages. They enable easy access to
web-based information in a raw format, and usually return a structured response in JSON,
XML, or CSV format. 

They work on the HTTP principle (request and response cycle), but accept only sets of a
predefined format of requests and parameters to generate a response. In terms of security
concerns, many APIs also provide authentication tools, such as an API key, which is
required to make a request to a website.

REST and SOAP
API is a service that's provided by web servers that are based on software architecture or
principles. Simple Object Access Protocol (SOAP) and Representational State Transfer
(REST) are methods for accessing web services. While REST is an architecture, SOAP is a
protocol based on web standards. We will be dealing with the REST API in upcoming
sections.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter07


Data Extraction Using Web-Based APIs Chapter 7

[ 222 ]

REST 
REST (https:/​/ ​www. ​ics. ​uci. ​edu/ ​~fielding/ ​pubs/ ​dissertation/ ​rest_ ​arch_ ​style.
htm) is a style of software architecture based on a set of defining and addressing network
principles. REST is a software architecture, not a set of standards. REST uses standard
HTTP protocol and methods such as GET, POST, PUT, and DELETE to provide services. It is
stateless, multilayered, and also supports caching. 

Web APIs are generally classed as RESTful web services; they provide an interface to the
user and other resources for communication. RESTful web services (REST APIs or web
APIs) (https:/​/​restfulapi. ​net/ ​) is the service provided by the web for adapting to the
REST architecture. 

Services that are provided via REST don't need to be adapted to the new standards,
development, or frameworks. Most of the time, it will be using a GET request, along with
query strings that have been issued to APIs, searching for their response. HTTP status
codes (https:/​/​restfulapi. ​net/ ​http- ​status- ​codes/ ​) (404, 200, 304) are often tracked to
determine the response of an API. Responses can also be obtained in various formats, such
as JSON, XML, and CSV.

In terms of choosing between REST and SOAP, REST is more easy and efficient when it
comes to processing compared to SOAP, and is being provided to the public by a large
number of websites. 

SOAP 
SOAP (https:/​/​www. ​w3. ​org/ ​TR/ ​soap/ ​is) is a set of standards specified by W3C and also
represents alternative to REST when it comes to web services. SOAP uses HTTP and SMTP
(Simple Mail Transfer Protocol), and is used to exchange documents over the internet, as
well as via remote procedures.

SOAP uses XML as a messaging service and is also known as an XML-based protocol.
SOAP requests contain XML documents (with an envelope and body) that describes the
methods and parameters that are sent to a server. The server will execute the method that's
received, along with parameters, and send an SOAP response back to the program
initiating the request.

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is
https://www.w3.org/TR/soap/is


Data Extraction Using Web-Based APIs Chapter 7

[ 223 ]

SOAP is highly extensible and includes built-in error handling. It also works with other
protocols, such as SMTP. SOAP is also independent to platforms and programming
languages, and is mostly implemented in distributed enterprise environments.

Benefits of web APIs
Day by day, information requirements are growing, along with their availability across the
web. Information sources, their availability, facilities, and technologies to share and
exchange have become a global demand. The API is one of the preferred data sources and
can be used to retrieve data. 

API is not only a way of communicating with a user via a web browser – you can also use
systems. APIs allow communication between systems and devices, such as mobiles, despite
their underlying system or programming languages. Many mobile apps generate requests
to certain APIs and display related information that has been retrieved from responses.
APIs are not just a simple service for retrieving data; they are used to exchange and process
information and even communicate between systems across different platforms and
services.

From a web scraping perspective, responses or data that's available through APIs are
preferred over data that's retrieved using scraping scripts. This is due to the following
reasons:

An API's returned data is completely specific to the requests being performed,
along with the filters or parameters that have been applied to it.
Tasks such as parsing HTML or XML using Python libraries, such
as BeautifulSoup, pyquery, and lxml, isn't always required.
The format of the data is structured and easy to handle.
Data cleaning and processing for final listings will be more easy or might not be
required.
There will be significant reductions in processing time (compared to coding,
analyzing the web, and applying XPath and CSS selectors to retrieve data).
They are easy to process.



Data Extraction Using Web-Based APIs Chapter 7

[ 224 ]

There are also certain factors to be considered before adapting completely to the web API
from a scraping point of view, including the following:

Not all websites provide users with access to web APIs.
Responses from APIs are specific to the set of predefined parameters. This might
restrict the exact requests based on requirements that can be made, and restrict
the availability of data to be obtained immediately.
Responses that are returned are limited to a certain volume, such as the number
of records returned per request and the maximum number of requests allowed.
Although data will be available in a structured format, it can be distributed
across key-value pairs, which might require some additional merging tasks.

Given these points, we can see that the web API is the preferred choice for obtaining
information from websites. 

Accessing web API and data formats
In this section, we will be exploring various APIs that are available on the web, send
requests to them, and receive responses, before explaining how they work via the Python
programming language.

Let's consider the following sample URL, https://www.someexampledomain.com. The
API it provides comes with parameters, locators, and authentication. By using these, we can
access the following resources:

https://api.someexampledomain.com 

https://api.someexampledomain.com/resource?key1=value1&key2=val
ue2

https://api.someexampledomain.com/resource?api_key=ACCESS_KEY&k
ey1=value1&key2=value2

https://api.someexampledomain.com/resource/v1/2019/01



Data Extraction Using Web-Based APIs Chapter 7

[ 225 ]

Parameters or collections of key-value pairs are actually sets of predefined variables that
are provided by the web. Usually, the API provides some sort of documentation or basic
guidelines regarding its usage, HTTP methods, available keys and types, or permitted
values that the key can receive, along with other information on the features that are
supported by the API, as shown in the following screenshot: 

API details and links from https://sunrise-sunset.org/api

End users and systems can only use the API with the features and functions that the
provider permits.

The following a number of actual API links and example calls that show the formats and
parameters that are used in URLs:

http:/​/​api. ​walmartlabs. ​com/ ​v1/​reviews/ ​33093101? ​apiKey= ​{apiKey}
lsPublisherId= ​{Your LinkShare Publisher Id} ​format= ​json

https:/​/ ​api. ​nasa. ​gov/ ​neo/ ​rest/ ​v1/ ​feed? ​start_ ​date= ​START_ ​DATE ​end_ ​date=
END_​DATE ​api_ ​key= ​API_ ​KEY

https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://developer.walmartlabs.com/docs/read/Reviews_Api
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS
https://api.nasa.gov/api.html#NeoWS


Data Extraction Using Web-Based APIs Chapter 7

[ 226 ]

https:/​/ ​api. ​sunrise- ​sunset. ​org/​json? ​lat= ​36. ​7201600 ​lng= ​-​4. ​4203400 ​date=
today

https:/​/ ​api. ​twitter. ​com/ ​1. ​1/ ​search/ ​tweets. ​json? ​q=​nasa ​result_ ​type=
popular

http:/​/​api. ​geonames. ​org/ ​postalCodeSearchJSON? ​postalcode= ​9011 ​maxRows= ​10
username= ​demo

http:/​/​api. ​geonames. ​org/ ​postalCodeSearch? ​postalcode= ​9011​maxRows= ​10
username= ​demo

https:/​/ ​api. ​nytimes. ​com/ ​svc/ ​mostpopular/ ​v2/ ​viewed/ ​1. ​json? ​api-​key=
yourkey

https:/​/ ​maps. ​googleapis. ​com/ ​maps/ ​api/ ​staticmap? ​center=
Brooklyn+Bridge,New+York,NY ​zoom= ​13​size= ​600x300 ​maptype= ​roadmap markers=
color:blue%7Clabel:S%7C40. ​702147,- ​74. ​015794 ​markers=
color:green%7Clabel:G%7C40. ​711614,- ​74. ​012318 ​markers=
color:red%7Clabel:C%7C40. ​718217,- ​73.​998284 ​key=​YOUR_ ​API_ ​KEY

Parameters such as key, api_key, apiKey and api-key are required for security and
tracking measures and need to be obtained before you process any API requests. 

The API links and example calls in this section are linked to the resources
they are listed on. For
example, https://api.twitter.com/1.1/search/tweets.json?q=nasa&r
esult_type=popular is listed on https:/ ​/​developer. ​twitter. ​com/ ​en/
docs/ ​tweets/ ​search/ ​api- ​reference/ ​get- ​search- ​tweets.

Making requests to the web API using a web
browser
Obtaining information about the parameters to be applied through query strings and
obtaining the API key, if required, is the preliminary step in gaining API access. Most of the
public or free APIs are quite straightforward and easy to manage in comparison to
developer APIs that are provided by Google, Twitter, and Facebook.

API requests can be made by using a web browser. However, in this section, we will try to
display some general cases that can be encountered while accessing APIs, while also
exhibiting some important properties of the RESTful API. 

https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://api.sunrise-sunset.org/json?lat=36.7201600&lng=-4.4203400&date=today
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearchJSON?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
http://api.geonames.org/postalCodeSearch?postalcode=9011&maxRows=10&username=demo
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?api-key=yourkey
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://developers.google.com/maps/documentation/maps-static/intro#quick_example
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets


Data Extraction Using Web-Based APIs Chapter 7

[ 227 ]

Case 1 – accessing a simple API (request and
response)
In this section, we will be using the following URL: https:/ ​/ ​api.​sunrise- ​sunset. ​org/
json?​lat=​27.​717245 ​lng= ​85. ​323959 ​date= ​2019-​03- ​04.

Let's process a request through a simple API in order to obtain the sunrise and sunset
timings (available in UTC) for Kathmandu, Nepal. Query strings require values for lat
(latitude), lng (longitude), and date for the chosen location. As we can see in the following
screenshot, the response that we obtained is in JSON format (formatted using a browser
extension), and its a successful request was verified by using a browser-based developer
tool with Request Method and HTTP Status Code (200, that is, OK or Success):

Response from https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04 with Status Code

https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04
https://api.sunrise-sunset.org/json?lat=27.717245&lng=85.323959&date=2019-03-04


Data Extraction Using Web-Based APIs Chapter 7

[ 228 ]

The response is returned in a raw format or JSON format, as shown in the following code.
The JSON response, when obtained normally, is processed using the Python json library.
In the following code, the API request has been processed using the requests library.
requests provide various features for dealing with HTTP; for example, the HTTP status
code can be obtained by using status_code. Headers are obtained by using headers.
Here, we are interested in status_code and headers, and, in particular, Content-Type,
so that we can plan further processing and the use of libraries that might be required:

import requests
url =
'https://api.sunrise-sunset.org/json?lat=27.7172&lng=85.3239&date=2019-03-0
4'

results = requests.get(url) #request url
print("Status Code: ", results.status_code)
print("Headers-ContentType: ", results.headers['Content-Type'])
print("Headers: ", results.headers)

jsonResult = results.json() #read JSON content
print("Type JSON Results",type(jsonResult))
print(jsonResult)
print("SunRise & Sunset: ",jsonResult['results']['sunrise']," &
",jsonResult['results']['sunset'])

As we can see, status_code is 200 (that is, OK) and Content-Type is of the JSON type.
This gives us confirmation that we can use JSON-related libraries to move forward.
However, in this case, we are using the json() function from the requests library, which
reduces our dependence on extra libraries and converts the response object into
a dict object. With the dict we received, we can access the desired elements by using
a key:value pair:

Type Results <class 'requests.models.Response'>
Status Code: 200
Headers-ContentType: application/json

Headers: {'Access-Control-Allow-Origin':'*','Content-
Type':'application/json','Vary':'Accept-Encoding',
'Server':'nginx','Connection':'keep-alive','Content-
Encoding':'gzip','Transfer-Encoding':'chunked','Date': 'Mon, 04 Mar 2019
07:48:29 GMT'}

Type JSON Results <class 'dict'>

{'status':'OK','results':{'civil_twilight_end':'12:44:16
PM','astronomical_twilight_end':'1:38:31 PM',
'civil_twilight_begin':'12:16:32 AM','sunrise':'12:39:54



Data Extraction Using Web-Based APIs Chapter 7

[ 229 ]

AM',......,'sunset':'12:20:54 PM','solar_noon': '6:30:24
AM','day_length':'11:41:00'}}

SunRise & Sunset: 12:39:54 AM & 12:20:54 PM

Case 2 – demonstrating status codes and informative
responses from the API
In this section, we will be using the following URL: https:/ ​/ ​api.​twitter. ​com/ ​1.​1/
search/​tweets.​json? ​q= ​.

In this section, we will be processing an API request from Twitter. The URL to be requested
is https:/​/​api.​twitter. ​com/ ​1. ​1/​search/ ​tweets. ​json? ​q=​. By using this URL, we can
easily identify that the query string, q, is empty, and that the value that's expected by the
Twitter API is not provided. The complete URL should have been something along the
lines of https:/​/ ​api. ​twitter. ​com/ ​1. ​1/ ​search/ ​tweets. ​json? ​q= ​nasa​result_ ​type=
popular.

The response that was returned was for an incomplete API call, and can be seen in the
following screenshot, along with the HTTP status code (400 or Bad Request) and a
message that was returned by the API stating errors with "message" : "Bad Authentication
data". For more information on the Twitter API's Search option, please refer to https:/ ​/
developer.​twitter. ​com/ ​en/ ​docs/ ​tweets/ ​search/ ​api- ​reference/ ​get- ​search- ​tweets:

Incomplete request made to Twitter API

https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://api.twitter.com/1.1/search/tweets.json?q=nasa&result_type=popular
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets


Data Extraction Using Web-Based APIs Chapter 7

[ 230 ]

The response that was returned by Twitter API is actually information, not an error. Such
informative responses make the API more scalable and easy to debug when they're used by
other resources. It's also an appreciated characteristic of RESTful web services. This kind of
information can be easily overcome by deploying API parameters and other requirements. 

The following code will make a request to Twitter with an empty query string and identify
the responses:

import requests
import json
url = 'https://api.twitter.com/1.1/search/tweets.json?q='

results = requests.get(url)
print("Status Code: ", results.status_code)
print("Headers: Content-Type: ", results.headers['Content-Type'])

jsonResult = results.content    #jsonResult = results.json()
print(jsonResult)

jsonFinal = json.loads(jsonResult.decode())
print(jsonFinal) #print(json.loads(requests.get(url).content.decode()))

if results.status_code==400:
    print(jsonFinal['errors'][0]['message'])
else:
    pass

The preceding code uses the json Python library to load the decoded jsonResult that
was obtained by using the loads() function. We can also use json() from requests, as
we did in case 1. jsonFinal is now a Python dictionary object and can be explored so that
we can find its 'key:value'. The final output is as follows:

Status Code: 400
Headers: Content-Type: application/json; charset=utf-8

b'{"errors":[{"code":215,"message":"Bad Authentication data."}]}'
{'errors': [{'message': 'Bad Authentication data.', 'code': 215}]}

Bad Authentication data.



Data Extraction Using Web-Based APIs Chapter 7

[ 231 ]

Case 3 – demonstrating RESTful API cache
functionality
In this section, we will be using the following URL: https:/ ​/ ​api.​github. ​com/ ​.

GitHUb (https:/​/ ​github. ​com/ ​) is a place for developers and their code repositories. The
GitHub API is quite famous among developers, all of which come from various
programming backgrounds. As we can see in the following screenshot, the response is
obtained in JSON. The request was a success since the HTTP status code that was returned
was 200, that is, OK or Success:

Response from https://api.github.com with HTTP Status Code 200

As you can see, we made a basic call to https:/ ​/​api. ​github. ​com. The content that was
returned contains links for the API, along with some parameters to be supplied for specific
calls, such as {/gist_id}, {/target}, and {query}. 

https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://api.github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com


Data Extraction Using Web-Based APIs Chapter 7

[ 232 ]

Let's send a request to the API again, but this time without any changes or updates in the
parameter values. The content that we will receive will be similar to the previous response,
but there will be a difference in the HTTP Status Code; that is, we will get 304 Not
Modified in comparison to 200 OK:

 

HTTP Status code 304 for https://api.github.com

This HTTP status code (304 or Not Modified) demonstrates REST's caching functionality.
Since the response doesn't have any updates or updated content, the client-side caching
functionality comes into play. This helps with processing time, as well as bandwidth time
and usage. The cache is one of the important properties of RESTful web services. The
following is the Python code revealing the cache property of the RESTful API, which was
obtained by passing external headers that were supplied to the headers parameter while
making a request with requests.get():

import requests
url = 'https://api.github.com'

#First Request
results = requests.get(url)
print("Status Code: ", results.status_code)
print("Headers: ", results.headers)

#Second Request with 'headers'
etag = results.headers['ETag']
print("ETag: ",etag)

results = requests.get(url, headers={'If-None-Match': etag})
print("Status Code: ", results.status_code)

requests is used to call url twice in the code. We can also see that the second request has
been supplied with etag for header information, that is, If-None-Match. This particular
header checks for the response header that was obtained using the ETag key as an HTTP
Response Header. ETag is used for tracking purposes and normally identifies the resources
that exist. This exhibits the cache ability. For more information on ETag, please refer
to https:/​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​HTTP/ ​Headers/ ​ETag.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag


Data Extraction Using Web-Based APIs Chapter 7

[ 233 ]

ETag is collected from results.headers and forwarded with second request that was
made by obtaining HTTP Status Code: 304. The following code shows the output:

Status Code: 200
Headers: Content-Type: application/json; charset=utf-8
Headers: {'X-GitHub-Request-Id': 'A195:073C:37F223:79CCB0:5C8144B4',
'Status': '200 OK','ETag': 'W/"7dc470913f1fe9bb6c7355b50a0737bc"',
'Content-Encoding': 'gzip','Date': 'Thu, 07 Mar 2019 16:20:05
GMT',........, 'Content-Type': 'application/json; charset=utf-8', .....,
'Server': 'GitHub.com'}

ETag: W/"7dc470913f1fe9bb6c7355b50a0737bc"
Status Code: 304

In this section, we have learned about various APIs, accessing them via the use of features,
and demonstrated a number of important concepts that are relevant to web scraping
methods. In the next section, we will be scraping data with the use of APIs.

Web scraping using APIs
In this section, we will be requesting APIs and collecting the required data through them.
Technically, data that's obtained through an API isn't similar to performing a scraping
activity since we can't only extract data that's required from the API and process it further.

Example 1 – searching and collecting university
names and URLs
In this example, we will be using an API provided by HIPO (https:/ ​/ ​hipolabs. ​com/ ​) to
search for universities: http:/ ​/​universities. ​hipolabs. ​com/ ​search? ​name= ​Wales.

This API uses a query parameter called name, which will look for a university name. We
will also provide an additional parameter, country, with country names such as United
States, and United Kingdom. This API can be requested from the following URLs, while
more information can be found at https:/ ​/​github. ​com/​hipo/ ​university- ​domains- ​list:

http:/​/​universities. ​hipolabs. ​com

http:/​/​universities. ​hipolabs. ​com/ ​search? ​name= ​Wales

http:/​/​universities. ​hipolabs. ​com/ ​search? ​name= ​Medicine ​country= ​United
Kingdom

https://hipolabs.com/
https://hipolabs.com/
https://hipolabs.com/
https://hipolabs.com/
https://hipolabs.com/
https://hipolabs.com/
https://hipolabs.com/
https://hipolabs.com/
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
https://github.com/hipo/university-domains-list
http://universities.hipolabs.com
http://universities.hipolabs.com
http://universities.hipolabs.com
http://universities.hipolabs.com
http://universities.hipolabs.com
http://universities.hipolabs.com
http://universities.hipolabs.com
http://universities.hipolabs.com
http://universities.hipolabs.com
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Wales
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom
http://universities.hipolabs.com/search?name=Medicine&country=United%20Kingdom


Data Extraction Using Web-Based APIs Chapter 7

[ 234 ]

Let's import the required libraries and use the readUrl() function to request the API and
return the JSON response, as shown in the following code:

import requests
import json
dataSet = []

def readUrl(search):
    results = requests.get(url+search)
    print("Status Code: ", results.status_code)
    print("Headers: Content-Type: ", results.headers['Content-Type'])
    return results.json()

With the JSON response returned, the required values can be retrieved with the keys and
index that we have found, as shown in the following screenshot:

JSON (formatted) obtained from the API

name and url are traversed and appended to dataSet:

url = 'http://universities.hipolabs.com/search?name='
jsonResult = readUrl('Wales') # print(jsonResult)

for university in jsonResult:
    name = university['name']



Data Extraction Using Web-Based APIs Chapter 7

[ 235 ]

    url = university['web_pages'][0]
    dataSet.append([name,url])

print("Total Universities Found: ",len(dataSet))
print(dataSet)

The final output is as follows:

Status Code: 200
Headers: Content-Type: application/json
Total Universities Found: 10

[['University of Wales', 'http://www.wales.ac.uk/'],
['University of Wales Institute, Cardiff', 'http://www.uwic.ac.uk/'],
.......,
['University of Wales, Lampeter', 'http://www.lamp.ac.uk/'],
['University of Wales, Bangor', 'http://www.bangor.ac.uk/']]

Example 2 – scraping information from GitHub
events
In this example, we will be collecting information regarding type (type of event),
created_at (date of event created), id (event identification code), and repo (repository
name) across pages. We will be using the following URL: https:/ ​/​api. ​github. ​com/ ​events.

GitHub Events lists public activities that have been performed within the past 90 days.
These events are provided in pages, with 30 items per page, and a maximum of 300 being
shown. Various sections exist inside events, all of which reveal the description about
the actor, repo, org, created_at, type, and more. 

For more details, please refer to the following link: https:/ ​/​developer.
github. ​com/ ​v3/ ​activity/ ​events/ ​.

Here is the code we will be using:

if __name__ == "__main__":
    eventTypes=[]
    #IssueCommentEvent,WatchEvent,PullRequestReviewCommentEvent,CreateEvent
    for page in range(1, 4): #First 3 pages
        events = readUrl('events?page=' + str(page))
        for event in events:
            id = event['id']

https://api.github.com/events
https://api.github.com/events
https://api.github.com/events
https://api.github.com/events
https://api.github.com/events
https://api.github.com/events
https://api.github.com/events
https://api.github.com/events
https://api.github.com/events
https://api.github.com/events
https://api.github.com/events
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/
https://developer.github.com/v3/activity/events/


Data Extraction Using Web-Based APIs Chapter 7

[ 236 ]

            type = event['type']
            actor = event['actor']['display_login']
            repoUrl = event['repo']['url']
            createdAt = event['created_at']
            eventTypes.append(type)
            dataSet.append([id, type, createdAt, repoUrl, actor])

    eventInfo = dict(Counter(eventTypes))
    print("Individual Event Counts:", eventInfo)
    print("CreateEvent Counts:", eventInfo['CreateEvent'])
    print("DeleteEvent Counts:", eventInfo['DeleteEvent'])

print("Total Events Found: ", len(dataSet))
print(dataSet)

The preceding code gives us the following output:

Status Code: 200
Headers: Content-Type: application/json; charset=utf-8
................
Status Code: 200
Headers: Content-Type: application/json; charset=utf-8

Individual Event Counts: {'IssueCommentEvent': 8, 'PushEvent': 42,
'CreateEvent': 12, 'WatchEvent': 9, 'PullRequestEvent': 10, 'IssuesEvent':
2, 'DeleteEvent': 2, 'PublicEvent': 2, 'MemberEvent': 2,
'PullRequestReviewCommentEvent': 1}

CreateEvent Counts: 12
DeleteEvent Counts: 2
Total Events Found: 90

[['9206862975','PushEvent','2019-03-08T14:53:46Z','https://api.github.com/r
epos/CornerYoung/MDN','CornerYoung'],'https://api.github.com/repos/OUP/INTE
GRATION-ANSIBLE','peter-
masters'],.....................,'2019-03-08T14:53:47Z','https://api.github.
com/repos/learn-co-curriculum/hs-zhw-shoes-layout','maxwellbenton']]

The Counter class from the collections Python module is used to obtain the individual
count of elements from eventTypes: 

from collections import Counter



Data Extraction Using Web-Based APIs Chapter 7

[ 237 ]

Summary
APIs provide several benefits, all of which we have covered in this chapter. RESTful web
services are growing in demand and will contribute to data requests and responses in the
future more than ever before. Structured, easy access, parameter-based filters make APIs
more convenient to use, and are excellent at saving time.

In the next chapter, we will be learning about Selenium and how to use it to scrape data
from the web.

Further reading
Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine, 2000
REST: https:/ ​/​www. ​ics. ​uci. ​edu/​~fielding/ ​pubs/ ​dissertation/ ​rest_ ​arch_
style.​htm

SOAP: https:/ ​/ ​www. ​w3. ​org/ ​TR/ ​soap/ ​

A simple SOAP client: https:/ ​/​www. ​ibm. ​com/​developerworks/ ​xml/ ​library/ ​x-
soapcl/​index. ​html

RESTful API HTTP Status Codes: https:/ ​/ ​restfulapi. ​net/ ​http- ​status-
codes/​

304 Not Modified: What It Is and How to Fix It: https:/ ​/​airbrake. ​io/ ​blog/
http-​errors/ ​304- ​not- ​modified

ETag: https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​HTTP/ ​Headers/ ​ETag

Types of Numeric Data: https:/ ​/​www. ​stat. ​berkeley. ​edu/ ​~spector/ ​extension/
python/​notes/ ​node22. ​html

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://www.ibm.com/developerworks/xml/library/x-soapcl/index.html
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-status-codes/
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://airbrake.io/blog/http-errors/304-not-modified
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html
https://www.stat.berkeley.edu/~spector/extension/python/notes/node22.html


8
Using Selenium to Scrape the

Web
So far, we have learned how to use a number of data finding techniques and how to access
web content by implementing various Python libraries for web scraping.  

Selenium is a web application testing framework, which automates the browsing action and
can be used for both easy and complex web scraping activities. Selenium provides a web
browser as an interface or automated tool. Dynamic or secure web content that uses
JavaScript, cookies, scripts, and so on are loaded, tested, and even scraped with the help of
Selenium.

There is so much to learn about the Selenium framework. In this chapter, we will be
covering the major concepts of the framework that are relevant to web scraping.

This chapter will cover the following topics:

Introduction to Selenium
Using Selenium for web scraping



Using Selenium to Scrape the Web Chapter 8

[ 239 ]

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) is required for this chapter, and we will
be using the following Python libraries: 

selenium (Python library)
re

If these libraries are not present in your current Python setup, then you can set them up or
install them by referring to the Setting things up section in Chapter 2, Python and the Web –
Using urllib and Requests. 

In addition to the Python libraries and web browsers mentioned, we will be using
WebDriver for Google Chrome.

Code files are available online at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Hands- ​On- ​Web-
Scraping-​with-​Python/ ​tree/ ​master/ ​Chapter08.

Introduction to Selenium
As I mentioned, Selenium is a web application framework that can be used for web
scraping activities. It can also be used as a browser automation tool. 

The automation of tasks or activities related to web applications, such as those in the
following list, involves those tasks being performed without the direct involvement of
human beings:

Browsing
Clicking links
Saving screenshots
Downloading images
Filling out HTML <form> templates and many more activities

Selenium provides a web browser as an interface or automated tool. With the automation of
the browsing action, Selenium can also be used in web scraping. Dynamic or secure web
services that use JavaScript, cookies, scripts, and so on are loaded, tested, and even crawled
and scraped with the help of Selenium. 

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter08


Using Selenium to Scrape the Web Chapter 8

[ 240 ]

Selenium is open source and can be accessed across multiple platforms. Various web
browsers can be used for testing using libraries that are available for programming
languages such as Java, and Python. Libraries are used to create scripts that interact with
Selenium to perform browser-based automation.

Although using Selenium in application testing has many advantages when it comes to
actions such as crawling and scraping, it also has its disadvantages, such as time and
memory consumption. Selenium is extendable and effective, but is slow in performing its
actions, and consumes large amounts of memory space.

For more detailed information on Selenium, please visit https:/ ​/​www.
seleniumhq. ​org/ ​.

In the following section, we will set up Selenium WebDriver and test the setup with a
Python library, which can be found at https:/ ​/​selenium- ​python. ​readthedocs. ​io/ ​. 

Selenium is a web testing framework, whereas Selenium (https:/ ​/​pypi.
org/​project/ ​selenium/ ​) is a Python library that binds Selenium
WebDriver or is used to create scripts to interact with Selenium.

Application testing is performed to ensure that the requirements are met by the application
and that bugs and errors are detected to ensure a quality product. It can be conducted
either manually (with the help of users) or by using automated tools (such as Selenium).
Testing web-based applications is done prior to the launch of the application over the
internet. 

Selenium projects
Selenium consists of multiple components or tools that are also known as Selenium
projects, which makes it a complete framework for web-based application testing. We will
now look at some of the major components of these Selenium projects. 

https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/


Using Selenium to Scrape the Web Chapter 8

[ 241 ]

Selenium WebDriver
Selenium WebDriver is a component of Selenium that is used to automate the browser.
Automating the browser can be conducted by providing commands with various language
bindings available for Java, Python, JavaScript, and so on by using third-party drivers such
as Google Chrome driver, Mozilla Gecko driver, and Opera (https:/ ​/ ​github. ​com/
mozilla/​geckodriver/ ​). Selenium WebDriver has no external dependency on any other
software or servers.

WebDriver is an object-oriented API with updated features that overcomes and addresses
the limitations of previous Selenium versions and Selenium Remote Control (RC). Please 
visit the Selenium WebDriver web page (https:/ ​/​www. ​seleniumhq. ​org/ ​projects/
webdriver/​) for more information.

Selenium RC
Selenium RC is a server that is programmed in Java. It uses HTTP to accept commands for
the browser and is used to test complex AJAX-based web applications.

Selenium RC has been officially deprecated following the release of
Selenium 2 (Selenium version 2). However, WebDriver contains the major
features of Selenium RC. Please visit https:/ ​/ ​www.​seleniumhq. ​org/
projects/ ​remote- ​control/ ​ for more information. 

Selenium Grid
Selenium Grid is also a server that allows tests to run parallel on multiple machines across
multiple browsers and operating systems, distributing the system load and cutting down
performance issues, such as time consumption. 

Complex tests were used to process Selenium RC and Selenium Grid together. Since the
release of version 2.0, the Selenium server now has built-in support for WebDriver,
Selenium RC, and Selenium Grid. Please visit the Selenium Grid web page (https:/ ​/​www.
seleniumhq.​org/​projects/ ​grid/ ​) for more information. 

https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/remote-control/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/
https://www.seleniumhq.org/projects/grid/


Using Selenium to Scrape the Web Chapter 8

[ 242 ]

Selenium IDE
An open source Selenium integrated development environment (IDE) is used to build test
cases with Selenium. It's basically a web browser extension available with features such as
the ability to record and play back web automation through a graphical user interface
(GUI).

The following are a few key features of the Selenium IDE:

Extendable and easy to use for debugging
Resilient tests
Cross-browser support
Can create scripts that can run commands and support control-flow structures

Please visit the Selenium IDE web page (https:/ ​/ ​www.​seleniumhq. ​org/​selenium- ​ide/ ​) for
more information and installation procedures. Please visit the Selenium projects web page
(https:/​/​www.​seleniumhq. ​org/ ​projects/ ​) for more information on Selenium components.

Now that we know what Selenium is used for and some of its major components, let's look
at how we can install and perform general tests using Selenium WebDriver.

Setting things up
For the successful implementation of browser automation and application testing using
Selenium, WebDriver needs to be set up. Let's go through the following steps to set up
WebDriver for Google Chrome:

Visit https:/ ​/ ​www. ​seleniumhq. ​org/​:1.

 SeleniumHQ Browser Automation main page

https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/selenium-ide/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/projects/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/


Using Selenium to Scrape the Web Chapter 8

[ 243 ]

Click Download (or browse to https:/ ​/​www. ​seleniumhq. ​org/ ​download/ ​).2.
Under the Third Party Drivers, Bindings, and Plugins section, click Google3.
Chrome Driver (or browse to https:/ ​/ ​sites. ​google. ​com/ ​a/​chromium. ​org/
chromedriver/ ​):

 Third -party drivers, Selenium

From ChromeDriver - WebDriver for Chrome (https:/ ​/​sites. ​google. ​com/​a/4.
chromium. ​org/ ​chromedriver), download the latest stable release of
ChromeDriver, appropriate to the platform:

ChromeDriver listings

https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/


Using Selenium to Scrape the Web Chapter 8

[ 244 ]

Unzip the downloaded chromedriver*.zip. An application file named5.
chromedriver.exe should appear. We can place the .exe file on the main
folder containing the codes.

We will be using Google Chrome and ChromeDriver throughout the
chapter; for details about using other browsers, or more information on
Selenium, please visit SeleniumHQ. For more information on the
installation, please refer to https:/ ​/​selenium- ​python. ​readthedocs. ​io/
installation. ​html.

Now that we have completed the setup for WebDriver and the Selenium Python
library, let's verify this setup through the Python IDE. As shown in the following
screenshot, selenium contains the webdriver module, with submodules such as Chrome,
Android, Firefox, Ie, and Opera. The current version is 3.14.1:

Printing the selenium.webdriver version 

We will be using Selenium with Google Chrome, so let's explore the contents of Chrome
inside webdriver:

Exploring Chrome from Selenium WebDriver.

https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html
https://selenium-python.readthedocs.io/installation.html


Using Selenium to Scrape the Web Chapter 8

[ 245 ]

As shown in the preceding screenshot, there are a number of functions that will be called
and used to implement the browser automation. You can also see that there are many
function names that begin with find_element*, similar to the traversing and parsing
functions that we used and learned about in earlier chapters on the scraping activity.

In the next section, we will learn about selenium.webdriver.

Exploring Selenium
In this section, we will use and introduce various properties for webdriver and
webdriver.Chrome, while looking at some real cases. The following sections will illustrate
the use of Selenium and explore its major properties.

Accessing browser properties
In this section, we will demonstrate the use of Selenium and Chrome WebDriver to load
Google Chrome with URLs and access certain browser-based features.

To begin with, let's import webdriver from selenium and set a
path to chromedriver.exe—let's call it chromedriver_path. The path created will be
required to load Google Chrome. Depending on the application location, the complete path
to chromedriver.exe should be mentioned, and is required for successful
implementation:

from selenium import webdriver
import re

#setting up path to 'chromedriver.exe'
chromedriver_path='chromedriver' #C:\\Users\\....\\...\chromedriver.exe

The selenium.webdriver is used to implement various browsers, in this case, Google
Chrome. The webdriver.Chrome() phrase is provided with the path of
Chrome WebDriver so that chromedriver_path can be used for execution.



Using Selenium to Scrape the Web Chapter 8

[ 246 ]

The phrase driver, which is an object of the
selenium.webdriver.chrome.webdriver.WebDriver class, is created using
webdriver.Chrome(), which will now provide access to the various attributes and
properties from webdriver:

driver = webdriver.Chrome(executable_path=chromedriver_path)

chromedriver.exe will be instantiated at this instance or upon creation of the
driver object. The Terminal screen and an empty new window of Google Chrome will be
loaded, as shown in the following screenshot:

The Terminal screen and empty browser page

If you encounter any error in executing the code so far, please go through the following
steps, and then execute the code again:

Obtain the latest ChromeDriver and replace the existing one1.
Update and verify the PATH of chromedriver_path2.

The new window from Google Chrome is then provided with a URL using the
get() function from webdriver.

The get() phrase accepts the URL that is to be loaded on the browser. Let's provide
https:/​/​www.​python. ​org as an argument to get(); the browser will start loading the
URL, as shown in the following screenshot:

driver.get('https://www.python.org')

https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org


Using Selenium to Scrape the Web Chapter 8

[ 247 ]

As you can see in the following screenshot, a notice is displayed just below the address bar
with the message Chrome is being controlled by automated test software. This message
also confirms the successful execution of the selenium.webdriver activity, and it can be
provided with further codes to act on or automate the page that has been loaded:   

Chrome browser loaded with https://www.python.org

Upon successful loading of the page, we can access and explore its properties using
driver. To illustrate this, let's extract or print the title from the HTML <title> tag and
print the current URL that is accessible:

print("Title: ",driver.title) #print <title> text
Title:  Welcome to Python.org

print("Current Page URL: ",driver.current_url) #print current url, loaded
in the browser
Current Page URL:  https://www.python.org/

As seen in the preceding code, the page title is available using driver.title, and the
current page URL is found with driver.current_url. The current_url phrase can be
used to verify whether any URL redirection has taken place after loading the initial URL.
Let's save a page screenshot with a condition that is verified using search() from the
Python library, re:

#check if pattern matches the current url loaded

if re.search(r'python.org',driver.current_url):
    driver.save_screenshot("pythonorg.png") #save screenshot with provided
name
    print("Python Screenshot Saved!")



Using Selenium to Scrape the Web Chapter 8

[ 248 ]

The save_screenshot() phrase is provided with the filename as an argument for the
image, and it creates a PNG image. The image will be saved at the current code location; the
full destination or desired path can also be provided.

To explore further, let's collect the web cookies from https:/ ​/ ​www.​python. ​org.
The get_cookies() phrase is used to retrieve cookies, as follows: 

#get cookie information
cookies = driver.get_cookies()
print("Cookies obtained from python.org")
print(cookies)

Cookies obtained from python.org
[{'domain': '.python.org', 'expiry': 1619415025, 'httpOnly': False, 'name':
'__utma', 'path': '/', 'secure': False, 'value':
'32101439.1226541417.1556343026.1556343026.1556343026.1'},........
{'domain': '.python.org', 'expiry': 1556343625, 'httpOnly': False, 'name':
'__utmt', 'path': '/', 'secure': False, 'value': '1'}]

The page source can be obtained using driver.page_source.

To obtain the page source manually, right-click on the page and click View page source, or
press Ctrl + U:

print(driver.page_source) #page source

The page can be reloaded or refreshed using driver.refresh().

 To refresh the page source manually, right-click on the page and click Reload, or press Ctrl
+ R:

driver.refresh() #reload or refresh the browser

With the features that were accessed using driver in the preceding code, let's continue
loading, taking screenshots, and accessing cookies from https:/ ​/​www. ​google. ​com using the
following code:

driver.get('https://www.google.com')
print("Title: ",driver.title)
print("Current Page URL: ",driver.current_url)

if re.search(r'google.com',driver.current_url):
    driver.save_screenshot("google.png")
    print("Google Screenshot Saved!")

cookies = driver.get_cookies()

https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com
https://www.google.com


Using Selenium to Scrape the Web Chapter 8

[ 249 ]

The action performed with http:/ ​/​google. ​com will take place on the same browser
window that was used for accessing http:/ ​/ ​python. ​org. With this, we can now perform
actions using the browser history (that is, we will use the Back and Forward buttons that
are available in the web browser) and retrieve the URL, as shown in the following code:

print("Current Page URL: ",driver.current_url)

driver.back() #History back action
print("Page URL (Back): ",driver.current_url)

driver.forward() #History forward action
print("Page URL (Forward): ",driver.current_url)

In the preceding code, back() takes the browser back a page, whereas forward() moves it
a step forward along the browser history. The output received is as follows:

Current Page URL: https://www.google.com/
Page URL (Back): https://www.python.org/
Page URL (Forward): https://www.google.com/

Following successful execution of the code, it is recommended that you close and quit
the driver to free up system resources. We can perform the termination actions using the
following functions:

driver.close() #close browser
driver.quit()  #quit webdriver

The preceding code contains the following two phrases:

close() terminates the loaded browser window
quit() ends the WebDriver application

The complete code we have executed so far in this particular section is as follows:

from selenium import webdriver
import re
chrome_path='chromedriver'
driver = webdriver.Chrome(executable_path=chrome_path)
#print(type(driver))
driver.get('https://www.python.org')
print("Title: ",driver.title)
print("Current Page URL: ",driver.current_url)

if re.search(r'python.org',driver.current_url):
    driver.save_screenshot("pythonorg.png")
    print("Python Screenshot Saved!")
cookies = driver.get_cookies()

http://google.com
http://google.com
http://google.com
http://google.com
http://google.com
http://google.com
http://google.com
http://python.org
http://python.org
http://python.org
http://python.org
http://python.org
http://python.org
http://python.org


Using Selenium to Scrape the Web Chapter 8

[ 250 ]

print(driver.page_source)
driver.refresh()

driver.get('https://www.google.com')
print("Title: ",driver.title)
print("Current Page URL: ",driver.current_url)
if re.search(r'google.com',driver.current_url):
    driver.save_screenshot("google.png")
    print("Google Screenshot Saved!")
cookies = driver.get_cookies()

print("Current Page URL: ",driver.current_url)
driver.back()
print("Page URL (Back): ",driver.current_url)
driver.forward()
print("Page URL (Forward): ",driver.current_url)

driver.close()
driver.quit()

The preceding code demonstrates the use of selenium.webdriver and its various
properties. In the next section, we will demonstrate the use of webdriver and web
elements (elements from the web page).

Locating web elements
In this section, we will perform a search on http:/ ​/​automationpractice. ​com to obtain a
list of products that match the search query, illustrating the use of selenium.webdriver.
Web elements are elements that are listed in a web page or that are found in a page source.
We also look at a class called WebElement, used
as selenium.webdriver.remote.webelement.WebElement.

The automation practice website (http:/ ​/​automationpractice. ​com/ ​) is a
sample e-commerce website from http:/ ​/​www. ​seleniumframework.
com that you can use for practice.

To begin with, let's import webdriver from selenium, set a path to chromedriver.exe,
create an object of webdriver—that is, driver, as implemented in the previous
section, Accessing browser properties—and load the URL, http:/ ​/​automationpractice. ​com:

driver.get('http://automationpractice.com')

http://automationpractice.com
http://automationpractice.com
http://automationpractice.com
http://automationpractice.com
http://automationpractice.com
http://automationpractice.com
http://automationpractice.com
http://automationpractice.com/
http://automationpractice.com/
http://automationpractice.com/
http://automationpractice.com/
http://automationpractice.com/
http://automationpractice.com/
http://automationpractice.com/
http://automationpractice.com/
http://www.seleniumframework.com
http://www.seleniumframework.com
http://www.seleniumframework.com
http://www.seleniumframework.com
http://www.seleniumframework.com
http://www.seleniumframework.com
http://www.seleniumframework.com
http://www.seleniumframework.com
http://automationpractice.com
http://automationpractice.com
http://automationpractice.com
http://automationpractice.com
http://automationpractice.com
http://automationpractice.com
http://automationpractice.com


Using Selenium to Scrape the Web Chapter 8

[ 251 ]

The new Google Chrome window will be loaded with the URL provided. Find the search
(input) box just above Cart, as shown in the following screenshot: 

Inspecting elements (search box) from http://automationpractice.com

To continue searching through the script, we need to identify the element with the HTML
<input>. Please refer to the Using web browser developer tools for accessing web
content section in Chapter 3, Using LXML, XPath, and CSS Selectors.

In our case, the search box can be identified by the attributes shown in the preceding
screenshot, or even by using the XPath or CSS selectors:

id="search_query_top"

name="search_query"

class="search_query" 

The selenium.webdriver provides lots of locators (methods that are used to locate
elements) that can be applied conveniently as applicable to the cases encountered.



Using Selenium to Scrape the Web Chapter 8

[ 252 ]

Locators return single, multiple, or lists of WebElement instances, written
as selenium.webdriver.remote.webelement.WebElement. The following are a few
locators, along with a brief description:

find_element_by_id(): This finds an element by its id attribute. This method
returns a single WebElement.
find_element_by_name(): This finds a single element by its name attribute.
Multiple WebElements can be found or located
using find_elements_by_name().
find_element_by_tag_name(): This finds a single element by the name of its
HTML tag. Multiple WebElements can be located
using find_elements_by_tag_name().
find_element_by_class_name(): This finds a single element by
its class attribute. Multiple WebElements can be located
using find_elements_by_class_name(). 
find_element_by_link_text(): This finds a single element by a link
identified by the link text. Multiple WebElements can be located
using find_elements_by_link_text(). 
find_element_by_partial_link_text(): This finds a single element by a
link identified by the partial text the element is carrying. Multiple WebElements
can be located using find_elements_by_partial_link_text().
find_element_by_xpath(): This finds a single element by providing an XPath
expression. Multiple WebElements can be located
using find_elements_by_xpath(). 
find_element_by_css_selector(): This finds a single element by providing
CSS selectors. Multiple WebElements can be located
using find_elements_by_css_selector(). 

Now, let's find the input box using find_element_by_id():

searchBox = driver.find_element_by_id('search_query_top')
#searchBox = driver.find_element_by_xpath('//*[@id="search_query_top"]')
#searchBox = driver.find_element_by_css_selector('#search_query_top')

As you can see in the preceding code, searchBox can be located using any convenient
locators that are provided with their respective arguments.



Using Selenium to Scrape the Web Chapter 8

[ 253 ]

The WebElement that is obtained can be accessed for the following properties and general
methods, as well as many more:

get_attribute(): This returns the attribute value for the key
argument provided, such as value, id, name, and class.
tag_name: This returns the HTML tag name of a particular WebElement.
text: This returns the text of the WebElement.
clear(): This clears the text of HTML form elements.
send_keys(): This is used to fill with text and provide the key effect, such as
pressing ENTER, BACKSPACE, and  DELETE, available from
the selenium.webdriver.common.keys module in
selenium.webdriver.common to the HTML form elements.
click(): This performs the clicking action to the WebElement. This is used for
HTML elements such as Submit Button.

In the following code, we will be using the functions and properties listed previously in
searchBox:

print("Type :",type(searchBox))
<class 'selenium.webdriver.remote.webelement.WebElement'>

print("Attribute Value :",searchBox.get_attribute("value")) #is empty
Attribute Value :

print("Attribute Class :",searchBox.get_attribute("class"))
Attribute Class : search_query form-control ac_input

print("Tag Name :",searchBox.tag_name)
Tag Name : input

Let's clear the text inside searchBox and input the text Dress to be searched. We also need
to submit the button located on the right-hand side of the searchBox and click it to execute
the search using the WebElement method, click():

searchBox.clear()
searchBox.send_keys("Dress")
submitButton = driver.find_element_by_name("submit_search")
submitButton.click()

The browser will process the search action for the submitted text Dress and load the results
page.



Using Selenium to Scrape the Web Chapter 8

[ 254 ]

Now that the search action is complete, to verify the successful search, we will extract
information regarding the product numbers and count using the following code:

#find text or provided class name
resultsShowing = driver.find_element_by_class_name("product-count")
print("Results Showing: ",resultsShowing.text)

Results Showing: Showing 1-7 of 7 items

#find results text using XPath
resultsFound =
driver.find_element_by_xpath('//*[@id="center_column"]//span[@class="headin
g-counter"]')
print("Results Found: ",resultsFound.text)

Results Found: 7 results have been found.

With the number of items and the count of the products that were found, this conveys a
successful message to our search process. Now, we can proceed with looking for products
using XPath, CSS selectors, and so on:

#Using XPath
products =
driver.find_elements_by_xpath('//*[@id="center_column"]//a[@class="product-
name"]')

#Using CSS Selector
#products = driver.find_elements_by_css_selector('ul.product_list
li.ajax_block_product a.product-name')

foundProducts=[]
for product in products:
    foundProducts.append([product.text,product.get_attribute("href")])

From the preceding code,  products obtained is iterated and an individual item is added
to the Python list foundProducts. product is an object of WebElement, in other
words, selenium.webdriver.remote.webelement.WebElement,  while properties are
collected using text and get_attribute():

print(foundProducts)

[['Printed Summer Dress',
'http://automationpractice.com/index.php?id_product=5&controller=product&se
arch_query=Dress&results=7'],
['Printed Dress',
'http://automationpractice.com/index.php?id_product=4&controller=product&se
arch_query=Dress&results=7'],



Using Selenium to Scrape the Web Chapter 8

[ 255 ]

['Printed Summer Dress',
'http://automationpractice.com/index.php?id_product=6&controller=product&se
arch_query=Dress&results=7'],
['Printed Chiffon Dress',
'http://automationpractice.com/index.php?id_product=7&controller=product&se
arch_query=Dress&results=7'],['PrintedDress',
'http://automationpractice.com/index.php?id_product=3&controller=product&se
arch_query=Dress&results=7'],
['Faded Short Sleeve T-shirts',
'http://automationpractice.com/index.php?id_product=1&controller=product&se
arch_query=Dress&results=7'],['Blouse',
'http://automationpractice.com/index.php?id_product=2&controller=product&se
arch_query=Dress&results=7']]

In this section, we explored the various properties and methods from
selenium.webdriver that are used to deal with the browser, use HTML forms, read page
content, and so on. Please visit https:/ ​/ ​selenium- ​python. ​readthedocs. ​io for more
detailed information on Python Selenium and its modules. In the next section, we will use
most of the methodologies that were used in the current section to scrape information from
a web page.

Using Selenium for web scraping
Selenium is used to test web applications. It is mostly used to perform browser automation
using various programming language-based libraries and browser drivers. As we saw in a
previous section, Exploring Selenium, we can navigate and locate elements in a page
using Selenium and perform crawling and scraping-related activities. 

Let's look at a few examples of scraping contents from web pages using Selenium.

Example 1 – scraping product information
In this example, we will continue using the search results obtained from foundProducts in
the Exploring Selenium section. 

We will extract some specific information from each individual product link found in
foundProducts, listed as follows:

product_name : Product name
product_price: Listed price
image_url: URL of product's main image  

https://selenium-python.readthedocs.io
https://selenium-python.readthedocs.io
https://selenium-python.readthedocs.io
https://selenium-python.readthedocs.io
https://selenium-python.readthedocs.io
https://selenium-python.readthedocs.io
https://selenium-python.readthedocs.io
https://selenium-python.readthedocs.io
https://selenium-python.readthedocs.io
https://selenium-python.readthedocs.io
https://selenium-python.readthedocs.io


Using Selenium to Scrape the Web Chapter 8

[ 256 ]

item_condition: Condition of product  
product_description: Short description of product

Each individual product link from foundProducts is loaded using driver.get():

dataSet=[]
if len(foundProducts)>0:
   for foundProduct in foundProducts:
       driver.get(foundProduct[1])

       product_url = driver.current_url
       product_name =
driver.find_element_by_xpath('//*[@id="center_column"]//h1[@itemprop="name"
]').text
       short_description =
driver.find_element_by_xpath('//*[@id="short_description_content"]').text
       product_price =
driver.find_element_by_xpath('//*[@id="our_price_display"]').text
       image_url =
driver.find_element_by_xpath('//*[@id="bigpic"]').get_attribute('src')
       condition =
driver.find_element_by_xpath('//*[@id="product_condition"]/span').text
dataSet.append([product_name,product_price,condition,short_description,imag
e_url,product_url])
print(dataSet)

Targeted fields or information to be extracted are obtained using XPath, and are appended
to the dataSet. Please refer to the Using web browser developer tools for accessing web
content section in Chapter 3, Using LXML, XPath, and CSS Selectors.

The output from dataSet is obtained as follows:

[['Printed Summer Dress','$28.98','New','Long printed dress with thin
adjustable straps. V-neckline and wiring under the bust with ruffles at the
bottom of the dress.',
'http://automationpractice.com/img/p/1/2/12-large_default.jpg',
'http://automationpractice.com/index.php?id_product=5&controller=product&se
arch_query=Dress&results=7'],
['Printed Dress','$50.99','New','Printed evening dress with straight
sleeves with black .............,
['Blouse','$27.00','New','Short sleeved blouse with feminine draped sleeve
detail.',
'http://automationpractice.com/img/p/7/7-large_default.jpg','http://automat
ionpractice.com/index.php?id_product=2&controller=product&search_query=Dres
s&results=7']]

https://cdp.packtpub.com/hands_on_web_scraping_with_python/wp-admin/post.php?post=31&action=edit#post_26


Using Selenium to Scrape the Web Chapter 8

[ 257 ]

Finally, system resources are kept free using close() and quit(). The complete code for
this example is listed as follows:

from selenium import webdriver
chrome_path='chromedriver'
driver = webdriver.Chrome(executable_path=chrome_path)
driver.get('http://automationpractice.com')

searchBox = driver.find_element_by_id('search_query_top')
searchBox.clear()
searchBox.send_keys("Dress")
submitButton = driver.find_element_by_name("submit_search")
submitButton.click()

resultsShowing = driver.find_element_by_class_name("product-count")
resultsFound =
driver.find_element_by_xpath('//*[@id="center_column"]//span[@class="headin
g-counter"]')

products =
driver.find_elements_by_xpath('//*[@id="center_column"]//a[@class="product-
name"]')
foundProducts=[]
for product in products:
    foundProducts.append([product.text,product.get_attribute("href")])

dataSet=[]
if len(foundProducts)>0:
   for foundProduct in foundProducts:
       driver.get(foundProduct[1])
       product_url = driver.current_url
       product_name =
driver.find_element_by_xpath('//*[@id="center_column"]//h1[@itemprop="name"
]').text
       short_description =
driver.find_element_by_xpath('//*[@id="short_description_content"]').text
       product_price =
driver.find_element_by_xpath('//*[@id="our_price_display"]').text
       image_url =
driver.find_element_by_xpath('//*[@id="bigpic"]').get_attribute('src')
       condition =
driver.find_element_by_xpath('//*[@id="product_condition"]/span').text
dataSet.append([product_name,product_price,condition,short_description,imag
e_url,product_url])

driver.close()
driver.quit()



Using Selenium to Scrape the Web Chapter 8

[ 258 ]

In this example, we performed HTML <form>- based action and extracted the required
details from each individual page. Form processing is one of the major tasks performed
during the testing of a web application.  

Example 2 – scraping book information
In this example, we will automate the browser to process the category and pagination link
from the main URL provided. We are interested in extracting details from the Food and
Drink category across multiple pages from http:/ ​/​books. ​toscrape. ​com/ ​index. ​html.

An individual page from the category contains listings of products (Books), with certain
information listed as follows:

title: Title of the book listed
titleLarge: Title of the book listed (complete title, found as a value to
the title  attribute) 
price: Listed book price 
stock: Stock information relating to the listed book
image: URL of book image
starRating: Rating (number of stars found)
url: URL of each listed book.

A similar example was also shown in Chapter 3, Using LXML, XPath and
CSS Selectors in the section named Web Scraping Using LXML, under the
name Example 2 – Looping with XPath and scraping data from multiple pages.
There, we used the Python library lxml.  

With selenium.webdriver imported and the Chrome driver path set up, let's start
loading http:/​/​books. ​toscrape. ​com/ ​index. ​html. As the main page gets loaded, we will
see various categories appear, listed one below the other.

The targeted category contains the text Food and Drink, and can be found
using find_element_by_link_text() (we can use any applicable find_element...
methods to find the particular category). The element found is processed further with
click()—clicking on the element returned. This action will load the particular category
URL in the browser:

driver.get('http://books.toscrape.com/index.html')

driver.find_element_by_link_text("Food and Drink").click()

http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
https://cdp.packtpub.com/hands_on_web_scraping_with_python/wp-admin/post.php?post=31&action=edit#post_26
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html
http://books.toscrape.com/index.html


Using Selenium to Scrape the Web Chapter 8

[ 259 ]

print("Current Page URL: ", driver.current_url)
totalBooks =
driver.find_element_by_xpath("//*[@id='default']//form/strong[1]")
print("Found: ", totalBooks.text)

To deal with multiple pages that are found during  iteration, NoSuchElementException
from selenium.common.exceptions will be imported:

from selenium.common.exceptions import NoSuchElementException

As we will be using the pagination button next, NoSuchElementException will be helpful
in dealing with the condition if no further next or pages are found. 

As seen in the following code, the pagination option next is located in the page and
processed with the click() action. This action will load the URL it contains to the
browser, and the iteration will continue until next is not located or found in the page,
caught by the except block in the code:

try:
    #Check for Pagination with text 'next'
    driver.find_element_by_link_text('next').click()
    continue
except NoSuchElementException:
    page = False

The complete code for this example is listed as follows:

from selenium import webdriver
from selenium.common.exceptions import NoSuchElementException
chrome_path = 'chromedriver'
driver = webdriver.Chrome(executable_path=chrome_path)
driver.get('http://books.toscrape.com/index.html')

dataSet = []
driver.find_element_by_link_text("Food and Drink").click()
totalBooks =
driver.find_element_by_xpath("//*[@id='default']//form/strong[1]")

page = True
while page:
    listings =
driver.find_elements_by_xpath("//*[@id='default']//ol/li[position()>0]")
    for listing in listings:
url=listing.find_element_by_xpath(".//article[contains(@class,'product_pod'
)]/h3/a"). get_attribute('href')
title=listing.find_element_by_xpath(".//article[contains(@class,'product_po
d')]/h3/a").text



Using Selenium to Scrape the Web Chapter 8

[ 260 ]

titleLarge=listing.find_element_by_xpath(".//article[contains(@class,'produ
ct_pod')]/h3/a"). get_attribute('title')
price=listing.find_element_by_xpath(".//article/div[2]/p[contains(@class,'p
rice_color')]").text
stock=listing.find_element_by_xpath(".//article/div[2]/p[2][contains(@class
,'availability')]"). text
image=listing.find_element_by_xpath(".//article/div[1][contains(@class,'ima
ge_container')]/a/img") .get_attribute('src')
starRating=listing.find_element_by_xpath(".//article/p[contains(@class,'sta
r-rating')]"). get_attribute('class')
dataSet.append([titleLarge,title,price,stock,image,starRating.replace('star
-rating ',''),url])

    try:
        driver.find_element_by_link_text('next').click()
        continue
    except NoSuchElementException:
        page = False

driver.close()
driver.quit()

Finally, upon completion of the iteration, dataSet will contain the listing data for all pages,
as follows:

[['Foolproof Preserving: A Guide to Small Batch Jams, Jellies, Pickles,
Condiments, and More: A Foolproof Guide to Making Small Batch Jams,
Jellies, Pickles, Condiments, and More', 'Foolproof Preserving: A Guide
...','£30.52','In stock',
'http://books.toscrape.com/media/cache/9f/59/9f59f01fa916a7bb8f0b28a4012179
a4.jpg','Three','http://books.toscrape.com/catalogue/foolproof-preserving-a
-guide-to-small-batch-jams-jellies-pickles-condiments-and-more-a-foolproof-
guide-to-making-small-batch-jams-jellies-pickles-condiments-and-
more_978/index.html'], ['The Pioneer Woman Cooks: Dinnertime: Comfort
Classics, Freezer Food, 16-Minute Meals, and Other Delicious Ways to Solve
Supper!', 'The Pioneer Woman Cooks: ...', '£56.41', 'In stock',
'http://books.toscrape.com/media/cache/b7/f4/b7f4843dbe062d44be1ffcfa16b2fa
a4.jpg', 'One',
'http://books.toscrape.com/catalogue/the-pioneer-woman-cooks-dinnertime-com
fort-classics-freezer-food-16-minute-meals-and-other-delicious-ways-to-
solve-supper_943/index.html'],................,
['Hungry Girl Clean & Hungry: Easy All-Natural Recipes for Healthy Eating
in the Real World', 'Hungry Girl Clean & ...', '£33.14', 'In stock',
'http://books.toscrape.com/media/cache/6f/c4/6fc450625cd672e871a6176f74909b
e2.jpg', 'Three',
'http://books.toscrape.com/catalogue/hungry-girl-clean-hungry-easy-all-natu
ral-recipes-for-healthy-eating-in-the-real-world_171/index.html']]



Using Selenium to Scrape the Web Chapter 8

[ 261 ]

In this section, we explored the methods and properties from selenium.webdriver and
implemented them for web scraping activity.

Summary
In this chapter, we learned about Selenium and using the Python library for Selenium to
perform browser automation, the scraping of web content, browser-based activities, and
HTML <form> processing. Selenium can be used to process multiple activities, and it's one
of the major advantages that Selenium holds over Python-dedicated libraries, such as lxml,
pyquery, bs4, and scrapy. 

In the next chapter, we will learn more about web-scraping techniques using regular
expressions.

Further reading
SeleniumHQ:  https:/ ​/ ​www. ​seleniumhq. ​org/ ​

Selenium with Python: https:/ ​/​selenium- ​python. ​readthedocs. ​io/​

Python Selenium: http:/ ​/ ​pypi. ​python. ​org/ ​pypi/ ​selenium

https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium
http://pypi.python.org/pypi/selenium


9
Using Regex to Extract Data

If these libraries don't exist in your current Python setup, refer to Chapter 2, Python and the
Web – Using urllib and Requests, the Setting things up section, for more information on their
installation and how to set them up. So far, we have learned about web technologies, data
finding techniques, and how to access web content using Python libraries.

Regular Expressions (Regex or regex) is actually a pattern that's built using predefined
commands and formats to match the desired content. Regex provides a great value during
data extraction when there is no particular layout or markup patterns to be chosen and can
be applied with other techniques such as XPath, and CSS selectors.

Complex web content and data in general text or character format might require the use of
Regex to complete activities, such as matching and extraction, plus function replacing,
splitting, and so on.  

In this chapter, we will learn about the following topics:

Overview of Regex
Using Regex to extract data



Using Regex to Extract Data Chapter 9

[ 263 ]

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) is required for this chapter. We will be
using the following Python libraries:

requests

re

bs4

If these libraries don't exist in your current Python setup, refer to Chapter 2, Python and the
Web – Using urllib and Requests, the Setting things up section, for more information on their
installation and how to set them up.

The code files for this chapter are available in this book's GitHub repository: https:/ ​/
github.​com/​PacktPublishing/ ​Hands- ​On- ​Web-​Scraping- ​with- ​Python/ ​tree/ ​master/
Chapter09.

Those of you who are already using re can refer to the Using regular
expressions to extract data section.

Overview of regular expressions
Regular expressions are used to match patterns found in text or strings. Regex can be used
for testing and finding patterns as desired against text or web content. Regex contains
various ways to define patterns and special notations, such as escape codes to apply some
predefined rules. For more information on Regex, please refer to the Further reading section.

There are various cases where Regex can be quite effective and quick for obtaining the
desired results. Regex can be applied to content (text or web sources) alone and can be used
to target specific information patterns that aren't easily extractable while using XPath, CSS
selectors, BS4, PyQuery, and so on.

Sometimes, cases may arise that will demand Regex and XPath or CSS selectors to be used
together in order to obtain the desired output. This output can then be tested using Regex
in order to find patterns or to clean and manage data. Code editors, document writers, and
readers also provide embedded Regex-based utilities.

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter09


Using Regex to Extract Data Chapter 9

[ 264 ]

Regex can be applied to any text or strings of characters, HTML sources, and so on that
contain proper or improper formatting. Regex can be used for various applications, such as
the following:

Content based on a particular pattern
Page links
Image titles and links
Texts inside links
Matching and validating email addresses
Matching a postal code or zip code from address strings
Validating phone numbers, and so on

Using tools such as searching, finding, splitting, substituting, matching, and iterating, are
applicable with or without other technology interference.  

In the following sections, we will be using the re Python module and exploring its
methods, which we can then apply to Regex.

Regular expressions and Python
re is a standard Python library that's used to deal with Regex. Every default Python
installation contains the re library. If the library doesn't exist, please refer to Chapter 2,
Python and the Web – Using urllib and Requests, the Setting things up section, to learn how to
set it up.

>>> in code represents the use of the Python IDE. It accepts the code or
instructions it's given and displays the output on the next line.

Let's begin by importing re using the Python IDE and listing its properties using
the dir() function:

>>> import re
>>> print(dir(re)) #listing features from re



Using Regex to Extract Data Chapter 9

[ 265 ]

The following is the output of the preceding command:

['A', 'ASCII', 'DEBUG', 'DOTALL', 'I', 'IGNORECASE', 'L', 'LOCALE', 'M',
'MULTILINE', 'S', 'Scanner', 'T', 'TEMPLATE', 'U', 'UNICODE', 'VERBOSE',
'X', '_MAXCACHE', '__all__', '__builtins__', '__cached__', '__doc__',
'__file__', '__loader__', '__name__', '__package__', '__spec__', '__versio
n__', '_alphanum_bytes', '_alphanum_str', '_cache', '_cache_repl',
'_compile', '_compile_repl', '_expand', '_locale', '_pattern_type',
'_pickle', '_subx', 'compile', 'copyreg', 'error', 'escape', 'findall',
'finditer', 'fullmatch', 'match', 'purge', 'search', 'split',
'sre_compile', 'sre_parse', 'sub', 'subn', 'sys', 'template']

As we can see from the preceding output, there are various functions available in re. We
will be using a few of these functions from a content extraction perspective, and we will
explain the basics of Regex fundamentals by using examples such as the following:

>>> sentence = """Brief information about Jobs in Python. Programming and
Scripting experience in some language (such as Python R, MATLAB, SAS,
Mathematica, Java, C, C++, VB, JavaScript or FORTRAN) is expected.
Participants should be comfortable with basic programming concepts like
variables, loops, and functions."""

sentence we declared previously contains brief information regarding Python jobs and job
descriptions. We will be using this sentence to explain basic Regex functionalities. 

The split() function explodes the string and returns the list of individual words, which
are separated by the space character by default. We can also split the string object
using re.split(). In this case, split() accepts the Regex pattern to split the sentence, for
example, re.split(r'\s+',sentence):

>>> splitSentence = sentence.split() #split sentence or
re.split(r'\s',sentence)

>>> print("Length of Sentence: ",len(sentence), '& splitSentence:
',len(splitSentence))
Length of Sentence: 297 & splitSentence: 42

>>> print(splitSentence) #List of words obtained using split()

['Brief', 'information', 'about', 'Jobs', 'in', 'Python.', 'Programming',
'and', 'Scripting', 'experience', 'in', 'some', 'language', '(such', 'as',
'Python', 'R,', 'MATLAB,', 'SAS,', 'Mathematica,', 'Java,', 'C,', 'C++,',
'VB,', 'JavaScript', 'or', 'FORTRAN)', 'is', 'expected.', 'Participants',
'should', 'be', 'comfortable', 'with', 'basic', 'programming', 'concepts',
'like', 'variables,', 'loops,', 'and', 'functions.']



Using Regex to Extract Data Chapter 9

[ 266 ]

The length of sentence and the Python splitSentence list object is obtained and printed
using the preceding code. These counts of element and character will be helpful while
comparing answers that are returned from the following examples: 

>>> matches = re.findall(r"([A-Z+]+)\,",sentence) #finding pattern with [A-
Z+] and comma behind
>>> print("Findall found total ",len(matches)," Matches >> ",matches)

Findall found total  6  Matches >>  ['R', 'MATLAB', 'SAS', 'C', 'C++',
'VB']

>>> matches = re.findall(r"([A-Z]+)\,",sentence) #finding pattern with [A-
Z] and comma behind
>>> print("Findall found total ",len(matches)," Matches >> ",matches)

Findall found total 5 Matches >> ['R', 'MATLAB', 'SAS', 'C', 'VB']

re.findall() accepts a pattern to search and the content to look for regarding the
provided pattern. Normally, patterns can be provided directly to functions as an argument
and as a raw string preceded with r, such as r'([A-Z]+)', or a variable containing a
raw string. 

In the preceding code, we can see similar patterns with certain additional characters
provided, but they differ in output. A general explanation is provided for some of these
patterns, as follows:

[A-Z]: Square brackets in the pattern match a set of characters and are case-
sensitive. Here, it matches characters from A to Z but not a to z. We can provide a
set of characters such as [A-Za-z0-9], which matches any characters from A to
Z and a to z, as well as numeric characters from 0 to 9. Additional characters, if
required, can be passed inside the set as [A-Z+]; the + character can exist with
A to Z of characters, for example, C++ or C. 
(): Round brackets in the pattern hold the group of values that were matched. 
+ (used for repetition): Found outside of the character set, it matches one or more
occurrences of the pattern it follows. [A-Z]+ will match at least one or more
combinations that's found with the A to Z characters, for example, R and
MATLAB from the preceding code. There are a few more characters for specifying
repetition or occurrences, also known as Regex quantifiers:

* matches zero or more occurrences of the patterns
? matches zero or one occurrence of the pattern
{m,n} matches the minimum, m, and maximum, n, numbers of
repetition, respectively:



Using Regex to Extract Data Chapter 9

[ 267 ]

{2,5}: Minimum 2 or maximum 5
{2,}: Minimum 2 or could be more
{,5}: Maximum 5
{3}: 3 occurrences

\, (comma): In Regex, characters other than [A-Za-z0-9] are normally written
as escaped characters in order to mention that particular character (\, for
comma, \. for period, \? for question mark, and so on).

Regex quantifiers are also categorized as follows:

Greedy quantifiers: These match any element as many times as possible. 
Lazy or non-greedy quantifiers: These match any element as few times as
possible. Normally, a greedy quantifier is converted into a lazy quantifier by
adding ? to it.

Patterns such as ([A-Z+]+)\, match the set of characters from A to Z and + that can exist
in at least one or more characters, followed by ,. In sentence in the preceding code, we
can find R, MATLAB, SAS, Mathematica, Java, C, C++, VB, and JavaScript (there's
also FORTRAN), that is, names followed by , (but not in the case of FORTRAN; this is why it's
been excluded in the output for provided patterns). 

In the following code, we are trying to matchFORTRAN that was found in sentence, which
is being omitted with the patterns we tried in the code previously:

>>> matches = re.findall(r"\s*([\sorA-Z+]+)\)",sentence) #r'\s*([A-Z]+)\)'
matches 'FORTRAN'
>>> print("Findall found total ",len(matches)," Matches >> ",matches)

Findall found total  1  Matches >>  ['or FORTRAN']

>>> fortran = matches[0] # 'or FORTRAN'
>>> if re.match(r'or',fortran):
        fortran = re.sub(r'or\s*','',fortran) #substitute 'or ' with empty
string
>>> print(fortran)

FORTRAN

>>> if re.search(r'^F.*N$',fortran):  #using beginning and end of line
searching pattern
        print("True")

True



Using Regex to Extract Data Chapter 9

[ 268 ]

As shown in the preceding code block, the Python library, re, possesses various functions,
which are as follows:

re.match(): This matches a pattern provided at the start of the string and
returns the matched object.
re.sub(): This finds a pattern and substitutes it with the provided string. It
works similar to find and replace in text. 
re.search(): This matches a pattern in the string and returns the matched
object that's found.
\s: This represents the space, tab, and newline characters. Here, [\sorA-Z+]+\) is
matching one or more characters, including A-Z, o,r, \s, and +, followed by \)
(closing parenthesis). There are a few more escape codes found in Regex, as
follows:

\d: Matches a digit
\D: Matches a non-digit
\s: Matches whitespace
\S: Matches non-whitespace
\w: Matches alphanumeric characters
\W: Matches non-alphanumeric characters
\b: Matches a word boundary
\B: Matches a non-word boundary

^: This matches the start of the string.

Note: r'[^a-z]' (the caret or ^), when used inside a character set, acts as
negation. Here, this means except or exclude [a-z].

$: This matches the end of the string.
|: This implements the logical expression, OR, in the pattern. For example,
r'a|b' will match any true expression, that is, a or b.

The following code shows the use of some of these Regex patterns and the findall()
function, along with their output:

>>> matches  = re.findall(r'\s(MAT.*?)\,',sentence,flags=re.IGNORECASE)
>>> print("(MAT.*?)\,: ",matches)  #r'(?i)\s(MAT.*?)\,' can also be used

(MAT.*?)\,: ['MATLAB', 'Mathematica']



Using Regex to Extract Data Chapter 9

[ 269 ]

>>> matches = re.findall(r'\s(MAT.*?)\,',sentence) #findall with 'MAT'
case-sensitive
>>> print("(MAT.*?)\,: ",matches)

(MAT.*?)\,: ['MATLAB']

>>> matches = re.findall(r'\s(C.*?)\,',sentence)
>>> print("\s(C.*?)\,: ",matches)

\s(C.*?)\,: ['C', 'C++']

The following functions were found in the preceding code:

re functions also support an optional flags argument. There's also an
abbreviation for these flags (i for re.IGNORECASE, s for re.DOTALL, and M for
re.MULTILINE). These can be used in patterns by including them at the
beginning of the expressions. For example, r'(?i)\s(MAT.*?)\, will
return [MATLAB, Mathematica]. The following are some other re functions that
were found in the code:

re.IGNORECASE : Ignores the case-sensitivity found in the pattern
that's provided  
re.DOTALL : Allows . (period) to match a newline, and works
with strings containing multiple lines
re.MULTILINE : Works with multiline strings and searches for
patterns, including newline ("\n")

. or period: This matches any single character but not the newline ("\n"). It's
used in patterns mostly with repetition characters. A period or . is required to be
matched in the string, and should be used as \.:

>>> matchesOne = re.split(r"\W+",sentence)  #split by word, \w
(word characters, \W - nonword)
>>> print("Regular Split '\W+' found total: ",len(matchesOne
),"\n",matchesOne)

Regular Split '\W+' found total: 43
['Brief', 'information', 'about', 'Jobs', 'in', 'Python',
'Programming', 'and', 'Scripting', 'experience', 'in', 'some',
'language', 'such', 'as', 'Python', 'R', 'MATLAB', 'SAS',
'Mathematica', 'Java', 'C', 'C', 'VB', 'JavaScript', 'or',
'FORTRAN', 'is', 'expected', 'Participants', 'should', 'be',
'comfortable', 'with', 'basic', 'programming', 'concepts', 'like',
'variables', 'loops', 'and', 'functions', '']

>>> matchesTwo = re.split(r"\s",sentence) #split by space



Using Regex to Extract Data Chapter 9

[ 270 ]

>>> print("Regular Split '\s' found total: ",len(matchesTwo),"\n",
matchesTwo)

Regular Split '\s' found total: 42
['Brief', 'information', 'about', 'Jobs', 'in', 'Python.',
'Programming', 'and', 'Scripting', 'experience', 'in', 'some',
'language', '(such', 'as', 'Python', 'R,', 'MATLAB,', 'SAS,',
'Mathematica,', 'Java,', 'C,', 'C++,', 'VB,', 'JavaScript', 'or',
'FORTRAN)', 'is', 'expected.', 'Participants', 'should', 'be',
'comfortable', 'with', 'basic', 'programming', 'concepts', 'like',
'variables,', 'loops,', 'and', 'functions.']

re.split(): This splits the provided content based on the pattern and returns a
list with results. A split() also exists, which can be used with a string to
explode with the default or provided characters. It's used in a similar fashion
to splitSentence, from earlier in this section.

You are suggested to compare the results of matchesOne and
matchesTwo from this section.

In code below we are trying to apply the regex pattern for the value found inside
datetime attribute. Pattern defined will be compiled and then used to search in
the code block:

>>> timeDate= '''<time datetime="2019-02-11T18:00:00+00:00"></time>
<time datetime="2018-02-11T13:59:00+00:00"></time>
<time datetime="2019-02-06T13:44:00.000002+00:00"></time>
<time datetime="2019-02-05T17:39:00.000001+00:00"></time>
<time datetime="2019-02-04T12:53:00+00:00"></time>'''

>>> pattern = r'(20\d+)([-]+)(0[1-9]|1[012])([-]+)(0[1-9]|[12][0-9]|3[01])'
>>> recompiled = re.compile(pattern)  # <class '_sre.SRE_Pattern'>
>>> dateMatches = recompiled.search(timeDate)

re.compile(): This is used to compile a Regex pattern and receive a pattern
object (_sre.SRE_Pattern). The object that's received can be used with other
Regex features.

Group matches can be individually explored by using the group() method, as shown in
the following code:

>>> print("Group : ",dateMatches.group())
Group : 2019-02-11



Using Regex to Extract Data Chapter 9

[ 271 ]

>>> print("Groups : ",dateMatches.groups())
Groups : ('2019', '-', '02', '-', '11')

>>> print("Group 1 : ",dateMatches.group(1))
Group 1 : 2019

>>> print("Group 5 : ",dateMatches.group(5))
Group 5 : 11

As we can see, though the pattern has been searched against multiline timeDate, it results
in a single group; an individual group can be returned using the index too. An re-related
match object contains the groups() and group() functions; groups(0) results in the
same output as groups(). Individual elements in groups() will require an index starting
from 1. 

re.finditer(): This is used to iterate over resulting matches that are obtained
for the pattern or pattern object found in the content that's provided. It returns a
match (_sre.SRE_Match) object that's found from re.match().

re.match() returns an object that contains various functions and attributes that are used
in code examples. These are as follows:

start(): Returns the starting character index that matches the expression
end(): Returns the ending character index that matches the expression
span(): Returns the starting and ending character indexes of the matching
expression
lastindex: Returns the index of the last matched expression
groupdict(): Returns the matching group dictionary with a pattern string and
matched values
groups(): Returns all matching elements
group(): Returns an individual group and can be accessed with the group name
lastgroup: Returns the name of the last group

>>> for match in re.finditer(pattern, timeDate): # <class '_sre.SRE_Match'>
        #for match in re.finditer(recompiled, timeDate):
        s = match.start()
        e = match.end()
        l = match.lastindex
        g = match.groups()

        print('Found {} at {}:{}, groups{}
lastindex:{}'.format(timeDate[s:e], s, e,g,l))



Using Regex to Extract Data Chapter 9

[ 272 ]

Found 2019-02-11 at 16:26, groups('2019', '-', '02', '-', '11') lastindex:5
Found 2018-02-11 at 67:77, groups('2018', '-', '02', '-', '11') lastindex:5
Found 2019-02-06 at 118:128, groups('2019', '-', '02', '-', '06')
lastindex:5
Found 2019-02-05 at 176:186, groups('2019', '-', '02', '-', '05')
lastindex:5
Found 2019-02-04 at 234:244, groups('2019', '-', '02', '-', '04')
lastindex:5

Patterns can also specify string names for the groups they are in; for example,
r'(?P<year>[0-9]{4})' matches the year group. Using group-based patterns in Regex
helps us to read the pattern and manage the output more accurately; this means that we
don't have to worry about indexing.

Let's consider the patterns pDate (implementing group(), groupdict(), start(),
end(), lastgroup, and lastindex) with a group name and code that are exhibiting the
outputs for date and time, respectively:

>>> pDate = r'(?P<year>[0-9]{4})(?P<sep>[-
])(?P<month>0[1-9]|1[012])-(?P<day>0[1-9]|[12][0-9]|3[01])'
>>> recompiled = re.compile(pDate) #compiles the pattern

>>> for match in re.finditer(recompiled,timeDate): #apply pattern
on timeDate
        s = match.start()
        e = match.end()
        l = match.lastindex

        print("Group ALL or 0: ",match.groups(0)) #or
match.groups() that is all
        print("Group Year: ",match.group('year')) #return year
        print("Group Month: ",match.group('month')) #return month
        print("Group Day: ",match.group('day')) #return day

        print("Group Delimiter: ",match.group('sep')) #return
seperator
        print('Found {} at {}:{}, lastindex:
{}'.format(timeDate[s:e], s, e,l))

        print('year :',match.groupdict()['year']) #accessing
groupdict()
        print('day :',match.groupdict()['day'])

        print('lastgroup :',match.lastgroup) #lastgroup name



Using Regex to Extract Data Chapter 9

[ 273 ]

The preceding code results in the following output:

Group ALL or 0: ('2019', '-', '02', '11')
Group Year: 2019
Group Month: 02
Group Day: 11
Group Delimiter: -
Found 2019-02-11 at 16:26, lastindex: 4
year : 2019
day : 11
lastgroup : day

The following code shows the use of pTime (implementing span()):

>>> pTime =
r'(?P<hour>[0-9]{2})(?P<sep>[:])(?P<min>[0-9]{2}):(?P<sec_mil>[0-9.:+]+)'
>>> recompiled = re.compile(pTime)

>>> for match in re.finditer(recompiled,timeDate):
        print("Group String: ",match.group()) #groups
        print("Group ALL or 0: ",match.groups())

        print("Group Span: ",match.span()) #using span()
        print("Group Span 1: ",match.span(1))
        print("Group Span 4: ",match.span(4))

        print('hour :',match.groupdict()['hour']) #accessing groupdict()
        print('minute :',match.groupdict()['min'])
        print('second :',match.groupdict()['sec_mil'])

        print('lastgroup :',match.lastgroup) #lastgroup name

The preceding code will result in the following output:

Group String: 12:53:00+00:00
Group ALL or 0: ('12', ':', '53', '00+00:00')
Group Span: (245, 259)
Group Span 1: (245, 247)
Group Span 4: (251, 259)
hour : 12
minute : 53
second : 00+00:00
lastgroup : sec_mil

In this section, we have covered a general introduction to Regex and the features of
the re Python library, along with some practical examples. Please refer to the Further
reading section for more information regarding Regex. In the next section, we will be
applying Regex to extract data from web-based content. 



Using Regex to Extract Data Chapter 9

[ 274 ]

Using regular expressions to extract data
Now that we've covered the basics and had an overview of Regex, we will use Regex to
scrape (extract) data in bulk in a similar manner to using XPath, CSS selectors, pyquery,
bs4, and so on by choosing between the implementation of Regex, XPath, pyquery, and
more. This depends on the requirements and feasibility of web access and the availability of
the content.

It's not always a requirement that the content should be unstructured to apply Regex and
extract data. Regex can be implemented for both structured and unstructured web content
that's found in order to extract the desired data. In this section, we'll explore a few
examples while using Regex and its various properties.

Example 1 – extracting HTML-based content
In this example, we will be using the HTML content from the regexHTML.html file and
apply a Regex pattern to extract information such as the following:

HTML elements
The element's attributes (key and values)
The element's content

This example will provide you with a general overview of how we can deal with various
elements, values, and so on that exist inside web content and how we can apply Regex to
extract that content. The steps we will be applying in the following code will be helpful for
processing HTML and similar content:

<html>
<head>
   <title>Welcome to Web Scraping: Example</title>
   <style type="text/css">
        ....
   </style>
</head>
<body>
    <h1 style="color:orange;">Welcome to Web Scraping</h1>
     Links:
    <a href="https://www.google.com" style="color:red;">Google</a>
    <a class="classOne" href="https://www.yahoo.com">Yahoo</a>
    <a id="idOne" href="https://www.wikipedia.org"
style="color:blue;">Wikipedia</a>
    <div>
        <p id="mainContent" class="content">



Using Regex to Extract Data Chapter 9

[ 275 ]

            <i>Paragraph contents</i>
            <img src="mylogo.png" id="pageLogo" class="logo"/>
        </p>
        <p class="content" id="subContent">
            <i style="color:red">Sub paragraph content</i>
            <h1 itemprop="subheading">Sub heading Content!</h1>
        </p>
    </div>
</body>
</html>

The preceding code is the HTML page source we will be using. The content here is
structured, and there are numerous ways that we can deal with it.

In the following code, we will be using functions such as the following:

read_file(): This will read the HTML file and return the page source for
further processing. 
applyPattern(): This accepts a pattern argument, that is, the Regex pattern
for finding content, which is applied to the HTML source using re.findall()
and prints information such as a list of searched elements and their counts.

To begin with, let's import re and bs4:

import re
from bs4 import BeautifulSoup

def read_file():
   ''' Read and return content from file (.html). '''
    content = open("regexHTML.html", "r")
    pageSource = content.read()
    return pageSource

def applyPattern(pattern):
'''Applies regex pattern provided to Source and prints count and
contents'''
    elements = re.findall(pattern, page) #apply pattern to source
    print("Pattern r'{}' ,Found total: {}".format(pattern,len(elements)))
    print(elements) #print all found tags
    return

if __name__ == "__main__":
    page = read_file() #read HTML file



Using Regex to Extract Data Chapter 9

[ 276 ]

Here, page is an HTML page source that's read from an HTML file using read_file().
We have also imported BeautifulSoup in the preceding code to extract individual HTML
tag names and just to compare the implementation of code and results found by using
soup.find_all() and a Regex pattern that we will be applying:

soup = BeautifulSoup(page, 'lxml')
print([element.name for element in soup.find_all()])
['html', 'head', 'title', 'style', 'body', 'h1', 'a', 'a', 'a', 'div', 'p',
'i', 'img', 'p', 'i', 'h1']

For finding all of the HTML tags that exist inside page, we used the find_all() method
with soup as an object of BeautifulSoup using the lxml parser.

For more information on Beautiful Soup, please visit Chapter 5, Web
Scraping using Scrapy and Beautiful Soup, the Web scraping using Beautiful
Soup section.

Here, we are finding all HTML tag names that don't have any attributes. \w+ matches any
word with one or more character:

applyPattern(r'<(\w+)>') #Finding Elements without attributes

Pattern r'<(\w+)>' ,Found total: 6
['html', 'head', 'title', 'body', 'div', 'i']

Finding all HTML tags or elements that don't end with > or contain some attributes can be
found with the help of the space character, that is, \s: 

applyPattern(r'<(\w+)\s') #Finding Elements with attributes

Pattern r'<(\w+)\s' ,Found total: 10
['style', 'h1', 'a', 'a', 'a', 'p', 'img', 'p', 'i', 'h1']

Now, by combining all of these patterns, we are listing all HTML tags that were found in
the page source. The same result was also obtained in the previous code by using
soup.find_all() and the name attribute:

applyPattern(r'<(\w+)\s?') #Finding all HTML element

Pattern r'<(\w+)\s?' ,Found total: 16
['html', 'head', 'title', 'style', 'body', 'h1', 'a', 'a', 'a', 'div', 'p',
'i', 'img', 'p', 'i', 'h1']



Using Regex to Extract Data Chapter 9

[ 277 ]

Let's find the attribute's name, as found in the HTML element:

applyPattern(r'<\w+\s+(.*?)=') #Finding attributes name

Pattern r'<\w+\s+(.*?)=' ,Found total: 10
['type', 'style', 'href', 'class', 'id', 'id', 'src', 'class', 'style',
'itemprop']

As we can see, there were only 10 attributes listed. In the HTML source, a few tags contain
more than one attribute, such as <a href="https://www.google.com"
style="color:red;">Google</a>, and only the first attribute was found using the
provided pattern. 

Let's rectify this. We can select words with the = character after them by using
the r'(\w+)=' pattern, which will result in all of the attributes found in the page source
being returned:

applyPattern(r'(\w+)=') #Finding names of all attributes

Pattern r'(\w+)=' ,Found total: 18
['type', 'style', 'href', 'style', 'class', 'href', 'id', 'href', 'style',
'id', 'class', 'src', 'id', 'class', 'class', 'id', 'style', 'itemprop']

Similarly, let's find all of the values for the attributes we've found. The following code lists
the values of the attributes and compares the 18 attributes we listed previously. Only 9
values were found. With the pattern we used here, r'=\"(\w+)\"' will only find the word
characters. Some of the attribute values contained non-word characters, such as <a
href="https://www.google.com" style="color:red;">: 

applyPattern(r'=\"(\w+)\"')

Pattern r'=\"(\w+)\"' ,Found total: 9
['classOne', 'idOne', 'mainContent', 'content', 'pageLogo', 'logo',
'content', 'subContent', 'subheading']

Here, the complete attribute values are listed by using the proper pattern we analyzed. The
content attribute values also contained non-word characters such as ;, /, :, and .. In Regex,
we can include such characters in the pattern individually, but this approach may not be
appropriate in all cases. 

In this case, the pattern that includes \w and the non-whitespace character, \S, fits
perfectly, that is, r'=\"([\w\S]+)\": 

applyPattern(r'=\"([\w\S]+)\"')

Pattern r'=\"([\w\S]+)\"' ,Found total: 18



Using Regex to Extract Data Chapter 9

[ 278 ]

['text/css', 'color:orange;', 'https://www.google.com', 'color:red;',
'classOne', 'https://www.yahoo.com', 'idOne', 'https://www.wikipedia.org',
'color:blue;', 'mainContent', 'content', 'mylogo.png', 'pageLogo', 'logo',
'content', 'subContent', 'color:red', 'subheading']

Finally, let's collect all of the text inside the HTML elements that are found in-between the
opening and closing HTML tags:

applyPattern(r'\>(.*)\<')
Pattern r'\>(.*)\<' ,Found total: 8
['Welcome to Web Scraping: Example', 'Welcome to Web Scraping', 'Google',
'Yahoo', 'Wikipedia', 'Paragraph contents', 'Sub paragraph content', 'Sub
heading Content!']

While applying Regex to the content, preliminary analysis for the type of content and the
values to be extracted is compulsory. This will help to obtain the required results and can
be done in one attempt.

Example 2 – extracting dealer locations
In this example, we will be extracting content from http:/ ​/​godfreysfeed. ​com/
dealersandlocations. ​php. This website contains dealer locations information, which is
shown in the screenshot that follows:

import re
import requests

def read_url(url):
'''
Handles URL Request and Response
Loads the URL provided using requests and returns the text of page source
'''
    pageSource = requests.get(url).text
    return pageSource

if __name__ == "__main__":

For this and the other examples in this section, we will be using the re and requests
libraries in order to retrieve the page source, that is, pageSource. Here, we will be using
the read_url() function to do so.

http://godfreysfeed.com/dealersandlocations.php
http://godfreysfeed.com/dealersandlocations.php
http://godfreysfeed.com/dealersandlocations.php
http://godfreysfeed.com/dealersandlocations.php
http://godfreysfeed.com/dealersandlocations.php
http://godfreysfeed.com/dealersandlocations.php
http://godfreysfeed.com/dealersandlocations.php
http://godfreysfeed.com/dealersandlocations.php
http://godfreysfeed.com/dealersandlocations.php
http://godfreysfeed.com/dealersandlocations.php


Using Regex to Extract Data Chapter 9

[ 279 ]

The page contains HTML <form> elements so that we can search for dealers based on
the zipcode entered. There's also a geographic map with markers:

Godfreysfeed Dealers front page

You can either perform form submission with zipcode or extract content from the map.

By analyzing the page source, we will find that there's no HTML elements with dealers'
information. Implementing Regex fits this case perfectly. Here, dealers' information is
found inside JavaScript code with variables such as latLng and infoWindowContent, as
shown in the following screenshot:

Godfreysfeed Dealers page source



Using Regex to Extract Data Chapter 9

[ 280 ]

We will now proceed with loading the page source for the desired URL and implementing
Regex to find data:

dataSet=list() #collecting data extracted
sourceUrl = 'http://godfreysfeed.com/dealersandlocations.php'
page = read_url(sourceUrl) #load sourceUrl and return the page source

With the page source obtained from read_url(), let's do a basic analysis and build a
pattern to collect latitude and longitude information. We will need two distinct patterns for
the dealer's address and coordinate values, respectively. Output from both patterns can be
combined to obtain the final results:

#Defining pattern matching latitude and longitude as found in page.
pLatLng= r'var latLng = new
google.maps.LatLng\((?P<lat>.*)\,\s*(?P<lng>.*)\)\;'

#applying pattern to page source
latlngs = re.findall(pLatLng,page)
print("Findall found total LatLngs: ", len(latlngs))

#Print coordinates found
print(latlngs)

By using the pLatLng pattern, a total of 55 coordinate values were found:

Findall found total LatLngs: 55

[('33.2509855','-84.2633946'),('31.0426107','-84.8821949'),('34.8761989','-
83.9582412'),('32.43158','-81.749293'),('33.8192864','-83.4387722'),('34.29
59968','-83.0062267'),
('32.6537561','-83.7596295'),('31.462497','-82.5866503'),('33.7340136','-82
.7472304')
,.................................................................,
('32.5444125','-82.8945945'),('32.7302168','-82.7117232'),('34.0082425','-8
1.7729772'),
('34.6639864',
'-82.5126743'),('31.525261','-83.06603'),('34.2068698','-83.4689814'),
('32.9765932','-84.98978'),('34.0412765','-83.2001394'),('33.3066615','-83.
6976187'),
('31.3441482','-83.3002373'),('30.02116','-82.329495'),('34.58403','-83.760
829')]

Now that we have the dealer's coordinates, let's find out the dealer's name, address, and
more: 

#Defining pattern to find dealer from page.
pDealers = r'infoWindowContent = infoWindowContent\+\s*\"(.*?)\"\;'



Using Regex to Extract Data Chapter 9

[ 281 ]

#applying dealers pattern to page source
dealers = re.findall(pDealers, page)
print("Findall found total Address: ", len(dealers))

#Print dealers information found
print(dealers)

There was also a total of 55 pieces of address-based information, which was found by using
the pDealers pattern. Note that the dealer's content is in HTML format and that further
implementation of Regex will be required to obtain individual titles such as name,
address, and city:

Findall found total Address: 55

["<strong><span style='color:#e5011c;'>Akins Feed &
Seed</span></strong><br><strong>206 N Hill Street
</strong><br><strong>Griffin,
GA</strong><br><strong>30223</strong><br><br>", "<strong><span
style='color:#e5011c;'>Alf&apos;s Farm and
Garden</span></strong><br><strong>101 East 1st
Street</strong><br><strong>Donalsonville,
GA</strong><br><strong>39845</strong><br><br>", "<strong><span
style='color:#e5011c;'>American Cowboy Shop</span></strong><br><strong>513
D Murphy Hwy</strong><br><strong>Blairsville,
GA</strong><br><strong>30512</strong><br><br>",............................
....... ....................................,"<strong><span
style='color:#e5011c;'>White Co. Farmers Exchange
</span></strong><br><strong>951 S Main St</strong><br><strong>Cleveland,
GA</strong><br><strong>30528 </strong><br><br>"]

Now that we have results from both latlngs and dealers, let's collect the individual
portions of the dealer's address. Raw data for the dealers contains some HTML tags, and
has been used to split and clean the dealer's address information. Since re.findall()
returns the Python list, indexing can also be useful for retrieving address components:

d=0 #maintaining loop counter
for dealer in dealers:
    dealerInfo = re.split(r'<br>',re.sub(r'<br><br>','',dealer))
    #extract individual item from dealerInfo
    name = re.findall(r'\'>(.*?)</span',dealerInfo[0])[0]
    address = re.findall(r'>(.*)<',dealerInfo[1])[0]
    city = re.findall(r'>(.*),\s*(.*)<',dealerInfo[2])[0][0]
    state = re.findall(r'>(.*),\s*(.*)<',dealerInfo[2])[0][1]
    zip = re.findall(r'>(.*)<',dealerInfo[3])[0]
    lat = latlngs[d][0]
    lng = latlngs[d][1]
    d+=1



Using Regex to Extract Data Chapter 9

[ 282 ]

    #appending items to dataset
    dataSet.append([name,address,city,state,zip,lat,lng])

print(dataSet)  #[[name,address, city, state, zip, lat,lng],]

Finally, dataSet will contain an individual dealer's information that's been merged from
dealers and latlngs in the listing:

[['Akins Feed & Seed', '206 N Hill Street', 'Griffin', 'GA', '30223',
'33.2509855', '-84.2633946'], ['Alf&apos;s Farm and Garden', '101 East 1st
Street', 'Donalsonville', 'GA', '39845', '31.0426107',
'-84.8821949'],....................................,
['Twisted Fitterz', '10329 Nashville Enigma Rd', 'Alapaha', 'GA', '31622',
'31.3441482', '-83.3002373'],
['Westside Feed II', '230 SE 7th Avenue', 'Lake Butler', 'FL', '32054',
'30.02116', '-82.329495'],
['White Co. Farmers Exchange', '951 S Main St', 'Cleveland', 'GA', '30528',
'34.58403', '-83.760829']]

In this example, we tried to extract data using different patterns and retrieved a dealer's
information from the URL provided.

Example 3 – extracting XML content
In this example, we will be extracting contents from the sitemap.xml file, which can
be downloaded from https:/ ​/​webscraping. ​com/ ​sitemap. ​xml:

The sitemap.xml file from https://webscraping.com

https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml
https://webscraping.com/sitemap.xml


Using Regex to Extract Data Chapter 9

[ 283 ]

By analyzing the XML content, we can see that different types of URLs exist as child nodes,
that is, <loc>. From these URLs, we will be extracting the following:

Blog URLs (URLs with a /blog/ string, such as https:/ ​/​webscraping. ​com/
blog/​Why- ​Python/ ​)
Titles obtained from the blog URLs (Why-Python)
Category URLs (URLs with a /category/ string, such as https:/ ​/​webscraping.
com/​blog/ ​category/ ​beautifulsoup)
Category titles obtained from category URLs (beautifulsoup)

Blog titles and category titles that are obtained from code are retrieved
from the URL or representations of the real content that's available from
the URL. Actual titles might be different. 

To begin with, let's import the re Python library and read the file's contents, as well as
create a few Python lists in order to collect relevant data:

import re

filename = 'sitemap.xml'
dataSetBlog = [] # collect Blog title information from URLs except
'category'
dataSetBlogURL = [] # collects Blog URLs
dataSetCategory = [] # collect Category title
dataSetCategoryURL = [] # collect Category URLs

page = open(filename, 'r').read()

From the XML content, that is, page, we need to find the URL pattern. pattern used in
code matches and returns all of the URLs inside the <loc> node. urlPatterns (<class
'list'>) is a Python list object that contains searched URLs and is iterated to collect and
process the desired information:

#Pattern to be searched, found inside <loc>(.*)</loc>
pattern = r"loc>(.*)</loc"

urlPatterns = re.findall(pattern, page) #finding pattern on page

for url in urlPatterns: #iterating individual url inside urlPatterns

https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/Why-Python/
https://webscraping.com/blog/category/beautifulsoup
https://webscraping.com/blog/category/beautifulsoup
https://webscraping.com/blog/category/beautifulsoup
https://webscraping.com/blog/category/beautifulsoup
https://webscraping.com/blog/category/beautifulsoup
https://webscraping.com/blog/category/beautifulsoup
https://webscraping.com/blog/category/beautifulsoup
https://webscraping.com/blog/category/beautifulsoup
https://webscraping.com/blog/category/beautifulsoup
https://webscraping.com/blog/category/beautifulsoup
https://webscraping.com/blog/category/beautifulsoup
https://webscraping.com/blog/category/beautifulsoup


Using Regex to Extract Data Chapter 9

[ 284 ]

Now, let's match a url, such as https:/ ​/​webscraping. ​com/​blog/ ​Google- ​App- ​Engine-
limitations/​, which contains a blog string and append it to dataSetBlogURL. There are 
also few other URLs, such as https:/ ​/ ​webscraping. ​com/ ​blog/ ​8/​, which will be ignored
while we extract blogTitle. 

Also, any blogTitle that's found as text equal to category will be ignored. The
r'blog/([A-Za-z0-9\-]+) pattern matches alphabetical and numerical values with the -
character:

if re.match(r'.*blog', url): #Blog related
    dataSetBlogURL.append(url)
    if re.match(r'[\w\-]', url):
        blogTitle = re.findall(r'blog/([A-Za-z0-9\-]+)', url)
        if len(blogTitle) > 0 and not re.match('(category)', blogTitle[0]):
            #blogTitle is a List, so index is applied.
            dataSetBlog.append(blogTitle[0])

Here's the output for dataSetBlogURL:

print("Blogs URL: ", len(dataSetBlogURL))
print(dataSetBlogURL)

Blogs URL: 80
['https://webscraping.com/blog', 'https://webscraping.com/blog/10/',
'https://webscraping.com/blog/11/', .......,
'https://webscraping.com/blog/category/screenshot',
'https://webscraping.com/blog/category/sitescraper',
'https://webscraping.com/blog/category/sqlite',
'https://webscraping.com/blog/category/user-agent',
'https://webscraping.com/blog/category/web2py',
'https://webscraping.com/blog/category/webkit',
'https://webscraping.com/blog/category/website/',
'https://webscraping.com/blog/category/xpath']

dataSetBlog will contain the following titles (URL portion). The set() method, when
applied to dataSetBlog, will return unique elements from dataSetBlog. As shown in the
following code, there's no duplicate title inside dataSetBlog:

print("Blogs Title: ", len(dataSetBlog))
print("Unique Blog Count: ", len(set(dataSetBlog)))
print(dataSetBlog)
#print(set(dataSetBlog)) #returns unique element from List similar to
dataSetBlog.

Blogs Title: 24
Unique Blog Count: 24

https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/Google-App-Engine-limitations/
https://webscraping.com/blog/8/
https://webscraping.com/blog/8/
https://webscraping.com/blog/8/
https://webscraping.com/blog/8/
https://webscraping.com/blog/8/
https://webscraping.com/blog/8/
https://webscraping.com/blog/8/
https://webscraping.com/blog/8/
https://webscraping.com/blog/8/
https://webscraping.com/blog/8/
https://webscraping.com/blog/8/
https://webscraping.com/blog/8/


Using Regex to Extract Data Chapter 9

[ 285 ]

['Android-Apps-Update', 'Apple-Apps-Update', 'Automating-CAPTCHAs',
'Automating-webkit', 'Bitcoin', 'Client-Feedback', 'Fixed-fee-or-hourly',
'Google-Storage', 'Google-interview', 'How-to-use-proxies', 'I-love-AJAX',
'Image-efficiencies', 'Luminati', 'Reverse-Geocode', 'Services', 'Solving-
CAPTCHA', 'Startup', 'UPC-Database-Update', 'User-agents', 'Web-Scrapping',
'What-is-CSV', 'What-is-web-scraping', 'Why-Python', 'Why-web']

Now, let's extract information that's relevant to the URL by using category. The
r'.*category' Regex pattern, which matches url from the iteration, is collected or
appended to datasetCategoryURL. categoryTitle is extracted from url that matches
the r'category/([\w\s\-]+) pattern and is added to dataSetCategory:

if re.match(r'.*category', url): #Category Related
    dataSetCategoryURL.append(url)
    categoryTitle = re.findall(r'category/([\w\s\-]+)', url)
    dataSetCategory.append(categoryTitle[0])

print("Category URL Count: ", len(dataSetCategoryURL))
print(dataSetCategoryURL)

dataSetCategoryURL will result in the following values:

Category URL Count: 43
['https://webscraping.com/blog/category/ajax',
'https://webscraping.com/blog/category/android/',
'https://webscraping.com/blog/category/big picture',
'https://webscraping.com/blog/category/business/',
'https://webscraping.com/blog/category/cache',
'https://webscraping.com/blog/category/captcha',
...................................,
'https://webscraping.com/blog/category/sitescraper',
'https://webscraping.com/blog/category/sqlite',
'https://webscraping.com/blog/category/user-agent',
'https://webscraping.com/blog/category/web2py',
'https://webscraping.com/blog/category/webkit',
'https://webscraping.com/blog/category/website/',
'https://webscraping.com/blog/category/xpath']

Finally, the following output displays the title that was retrieved from dataSetCategory,
as well as its counts:

print("Category Title Count: ", len(dataSetCategory))
print("Unique Category Count: ", len(set(dataSetCategory)))
print(dataSetCategory)
#returns unique element from List similar to dataSetCategory.
#print(set(dataSetCategory))



Using Regex to Extract Data Chapter 9

[ 286 ]

Category Title Count: 43
Unique Category Count: 43

['ajax', 'android', 'big picture', 'business', 'cache', 'captcha',
'chickenfoot', 'concurrent', 'cookies', 'crawling', 'database',
'efficiency', 'elance', 'example', 'flash', 'freelancing', 'gae', 'google',
'html', 'image', 'ip', 'ir', 'javascript', 'learn', 'linux', 'lxml',
'mobile', 'mobile apps', 'ocr', 'opensource', 'proxies', 'python', 'qt',
'regex', 'scrapy', 'screenshot', 'sitescraper', 'sqlite', 'user-agent',
'web2py', 'webkit', 'website', 'xpath']

From these example cases, we can see that, by using Regex, we can write patterns that
target specific data from sources such as web pages, HTML, or XML.

Regex features such as searching, splitting, and iterating can be implemented with the help
of various functions from the re Python library. Although Regex can be implemented on
any type of content, unstructured content is preferred. Structured web content with
elements that carry attributes are preferred when using XPath and CSS selectors.

Summary
In this chapter, we learned about regular expressions and their implementation by using
the re Python library.

So far, we've learned about various scraping-based tools and techniques. Regex can provide
more flexibility when it comes to extraction tasks and can be used with other tools. 

In the next chapter, we will be learning about further steps and topics that could be
beneficial in a learning context, such as managing scraped data, visualization and analysis,
and an introduction to machine learning and data mining, as well as exploring some related
resources. 



Using Regex to Extract Data Chapter 9

[ 287 ]

Further reading
Regular Expression HOWTO: https:/ ​/​docs. ​python. ​org/ ​2/ ​howto/ ​regex. ​html

Regular Expressions – JavaScript: https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/
docs/​Web/ ​JavaScript/ ​Guide/ ​Regular_ ​Expressions 
Python Regular Expressions: https:/ ​/​developers. ​google. ​com/ ​edu/​python/
regular- ​expressions

Online Regex Tester and Debugger: https:/ ​/​regex101. ​com/ ​

Regular Expressions Cookbook: 2nd Edition, 2012 by Jan Goyvaerts and Steven
Levithan
Regular Expressions References: https:/ ​/​regexone. ​com/ ​references/ ​python

Regular Expressions – Information: http:/ ​/​www. ​regular- ​expressions. ​info/
python.​html

https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://docs.python.org/2/howto/regex.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regexone.com/references/python
https://regexone.com/references/python
https://regexone.com/references/python
https://regexone.com/references/python
https://regexone.com/references/python
https://regexone.com/references/python
https://regexone.com/references/python
https://regexone.com/references/python
https://regexone.com/references/python
https://regexone.com/references/python
https://regexone.com/references/python
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html
http://www.regular-expressions.info/python.html


4
Section 4: Conclusion

In this section, you will learn about certain topics that are applicable to collected or scraped
data and you will learn about some advanced concepts, that are worth knowing from an
information and career perspective.

This section consists of the following chapter:

Chapter 10, Next Steps



10
Next Steps

So far, we have explored various tools and techniques regarding web scraping via the use
of the Python programming language.

Web scraping, or web harvesting, is done in order to extract and collect data from websites.
Web scraping comes in handy in terms of model development, which requires data to be
collected on the fly that's true, relevant to the topic, and accurate. This is desirable as it
takes less time compared to implementing datasets. The data that's collected is stored in
various formats, such as JSON, CSV, XML, and more, is written to databases for later use,
and is also made available online as datasets. 

Websites also provide web APIs with a user interface to interact with information on the
web. This data can be used for research, analysis, marketing, machine learning (ML)
models, information building, knowledge discovery, and more in the field of computer
science, management, medicine, and more. We can also perform analysis on the data that's
obtained through APIs and publicly, or freely, available datasets and generate an outcome,
but this process isn't classed as web scraping.



Next Steps Chapter 10

[ 290 ]

In this chapter, we will learn about topics that are applicable to collected or scraped data
and learn about some advanced concepts that are worth knowing about from an
information and career perspective:

Managing scraped data
Analysis and visualization using pandas and matplotlib
ML
Data mining 
What's next?

Technical requirements
A web browser (Google Chrome or Mozilla Firefox) is required. We will be using the
following Python libraries in this chapter: 

pandas

matplotlib

csv

json

If these libraries don't exist in your current Python setup, refer to Chapter 2, Python and the
Web – Using urllib and Requests, in the Setting things up section, for instructions on installing
them and setting them up.

The code files for this chapter are available in this book's GitHub repository: https:/ ​/
github.​com/​PacktPublishing/ ​Hands- ​On- ​Web-​Scraping- ​with- ​Python/ ​tree/ ​master/
Chapter10.

Managing scraped data
In this section, we will explore some tools and learn more about handling and managing
the data that we have scraped or extracted from certain websites. 

https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Web-Scraping-with-Python/tree/master/Chapter10


Next Steps Chapter 10

[ 291 ]

Data that's collected from websites using scraping scripts is known as raw data. This data
might require some additional tasks to be performed on top of it before it can be processed
further so that we can gain an insight on it. Therefore, raw data should be verified and
processed (if required), which can be done by doing the following:

Cleaning: As the name suggests, this step is used to remove unwanted pieces of
information, such as space and whitespace characters, and unwanted portions of
text. The following code shows some relevant steps that were used in examples
in previous chapters, such as Chapter 9, Using Regex to Extract Data, and Chapter
3, Using LXML, XPath, and CSS Selectors. Functions such as sub() (that is,
re.sub()), strip(), and replace() are used in many places and can also be
used for the purpose of cleaning:

dealerInfo = re.split(r'<br>', re.sub(r'<br><br>', '', dealer))

stock = list(map(lambda stock:stock.strip(),availability))

availability = stockPath(row)[0].strip()

article['lastUpdated'] = article['lastUpdated'].replace('This page
was last edited on', '')

title = row.find(attrs={'itemprop':'text'}).text.strip()

re.sub(r'or\s*','',fortran)

dealerInfo = re.split(r'<br>',re.sub(r'<br><br>','',dealer))

Formatting: This step is used to obtain the desired format from the data. For
example, we might require fixed decimal places in the price that's received, we
may need to convert or round up large floating values into fixed decimal places,
split large strings into smaller units, and more, and then write them to datasets.
There may also be cases where decimal numbers or integers are extracted as
strings and need to be formatted. Normally, converting data types and
presenting data is considered formatting:

>>> price = 1234.567801
>>> newprice = round(price,2)
>>> print(newprice)
1234.57

>>> totalsum="200.35"
>>> print(type(totalsum))
<class 'str'>



Next Steps Chapter 10

[ 292 ]

#For large precision use:
https://docs.python.org/2/library/decimal.html
>>> totalsum = float(totalsum)
>>> print(type(totalsum))
<class 'float'>

>>> totalsum
200.35

>>> ratings = 5.5
>>> print(int(rating))
5

These additional steps can also be performed within the scripts while we
are extracting particular data, and has been done in the examples we've
looked at throughout the book. In many cases, cleaning and formatting
works together, or is done side by side.

Writing to files
We have needed to extract lines of data throughout this book. You may have noticed that,
in most of these examples, we used a dataset (a Python list object that was used to collect
data) that was appended with various fields in a Python list, as shown in the following
code (collected from various examples of this book):

dataSet.append([year,month,day,game_date,team1,team1_score,team2,team2_scor
e,game_status])
..
dataSet.append([title,price,availability,image.replace('../../../..',baseUr
l),rating.replace('star-rating ','')])
...
dataSet.append([link, atype, adate, title, excerpt,",".join(categories)])
...
dataSet.append([titleLarge, title, price, stock, image,
starRating.replace('star-rating ', ''), url])

With the availability of such a dataset, we can write this information to external files, as
well as to the database. Before we write the dataset to the files, column names that describe
the data from the dataset are needed. Consider the following code, where keys is a
separate list containing a string title, that is, the name of the columns to the respective list
item appended to the dataset:

keys = ['year','month','day','game_date','team1', 'team1_score', 'team2',
'team2_score', 'game_status']
......



Next Steps Chapter 10

[ 293 ]

dataSet.append([year,month,day,game_date,team1,team1_score,team2,team2_scor
e,game_status])

Let's consider the following example, which contains colNames with the column to be
used, and dataSet with the cleaned and formatted data:

import csv
import json

colNames = ['Title','Price','Stock','Rating']
dataSet= [['Rip it Up and ...', 35.02, 'In stock', 5],['Our Band Could Be
...', 57.25, 'In stock', 4],
    ['How Music Works', 37.32, 'In stock', 2],['Love Is a Mix ...', 18.03,
'Out of stock',1],
    ['Please Kill Me: The ...', 31.19, 'In stock', 4],["Kill 'Em and Leave:
...", 45.0, 'In stock',5],
    ['Chronicles, Vol. 1', 52.60, 'Out of stock',2],['This Is Your Brain
...', 38.4, 'In stock',1],
    ['Orchestra of Exiles: The ...', 12.36, 'In stock',3],['No One Here
Gets ...', 20.02, 'In stock',5],
   ['Life', 31.58, 'In stock',5],['Old Records Never Die: ...', 55.66, 'Out
of Stock',2],
    ['Forever Rockers (The Rocker ...', 28.80, 'In stock',3]]

Now we will write the preceding dataSet to the CSV file. The first line of the CSV file
should always contain the column names. In this case, we will use colNames for the
columns:

fileCsv = open('bookdetails.csv', 'w', newline='', encoding='utf-8')
writer = csv.writer(fileCsv) #csv.writer object created

writer.writerow(colNames)  #write columns from colNames
for data in dataSet:       #iterate through dataSet and write to file
    writer.writerow(data)

fileCsv.close() #closes the file handler

The preceding code will result in the bookdetails.csv file, which has the following
content:

Title,Price,Stock,Rating
Rip it Up and ...,35.02,In stock,5
Our Band Could Be ...,57.25,In stock,4
...........
Life,31.58,In stock,5
Old Records Never Die: ...,55.66,Out of Stock,2
Forever Rockers (The Rocker ...,28.8,In stock,3



Next Steps Chapter 10

[ 294 ]

Similarly, let's create a JSON file with colNames and dataSets. JSON is similar to Python
dictionary, where each data or value possesses a key; that is, it exists in a key-value pair:

finalDataSet=list() #empty DataSet

for data in dataSet:
    finalDataSet.append(dict(zip(colNames,data)))

print(finalDataSet)

[{'Price': 35.02, 'Stock': 'In stock', 'Title': 'Rip it Up and ...',
'Rating': 5}, {'Price': 57.25, 'Stock': 'In stock', ..........'Title': 'Old
Records Never Die: ...', 'Rating': 2}, {'Price': 28.8, 'Stock': 'In stock',
'Title': 'Forever Rockers (The Rocker ...', 'Rating': 3}]

As we can see, finalDataSet is formed by appending data from dataSet and by using
the zip() Python function. zip() combines each individual element from the list. This
zipped object is then converted into a Python dictionary. For example, consider the
following code:

#first iteration from loop above dict(zip(colNames,data)) will generate
{'Rating': 5, 'Title': 'Rip it Up and ...', 'Price': 35.02, 'Stock': 'In
stock'}

Now, with the available finalDataSet, we can dump or add the data to a JSON file using
the dump() function from the json module:

with open('bookdetails.json', 'w') as jsonfile:
    json.dump(finalDataSet,jsonfile)

The preceding code will result in the bookdetails.json file. Its content is as follows:

[
  {
    "Price": 35.02,
    "Stock": "In stock",
    "Title": "Rip it Up and ...",
    "Rating": 5
  },
  ................
  {
    "Price": 28.8,
    "Stock": "In stock",
    "Title": "Forever Rockers (The Rocker ...",
    "Rating": 3
  }
]



Next Steps Chapter 10

[ 295 ]

In this section, we have covered the basic steps for managing raw data. The files we have
obtained can be shared and exchanged easily across various independent systems, used as
models for ML, and can be imported as data sources in applications. Furthermore, we can 
also use Database Management Systems (DBMS) such as MySQL, PostgreSQL, and more
to store data and execute Structured Query Language (SQL) using the necessary Python
libraries.

Analysis and visualization using pandas
and matplotlib
In this section, we will be exploring a few basic concepts with regard to analyzing data
using pandas and plotting general charts using matplotlib. 

pandas is one of the most popular data analysis libraries in recent times. Data analysis and 
visualization are major tasks and can be performed with the help of pandas and other 
libraries such as matplotlib. 

For more details and documentation on pandas and matplotlib, please
visit their official sites at https:/ ​/​pandas. ​pydata. ​org/​ and https:/ ​/
matplotlib. ​org/ ​.

pandas is also termed and used as a raw spreadsheet. It supports mathematical, statistical
and query-type statements, and allows you to read from and write to various files. It is also
popular among developers and analysts since it has easy functions and properties available
that can help you handle data that's in a row and column structure:

Exploring pandas using the Python IDE

https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/


Next Steps Chapter 10

[ 296 ]

In this section, we will be reading data from the bookdetails.csv file and conducting
analysis and visualization using the file's data. Let's import the libraries that are required,
that is, pandas and matplotlib.pyplot. We will be using the  pd and plt aliases,
respectively, and reading the data from the file:

import pandas as pd
import matplotlib.pyplot as plt

dataSet = pd.read_csv('bookdetails.csv') #loads the file content as
dataframe.

print(type(dataSet)) #<class 'pandas.core.frame.DataFrame'>

As we can see, the read_csv() function reads the content from a CSV file and generates a
DataFrame object. pandas also supports various data files via the use of functions such as
read_html(), read_excel(), read_json(), and read_sql_table().

Here, dataSet is an object of the pandas DataFrame. The DataFrame represents a two-
dimensional tabular structure with rows, columns, and indexes. Query-level analysis,
conditional statements, filtering, grouping, and more are supported by DataFrames against
data in rows and columns:

print(dataSet)

The following screenshot displays the content that's now available in dataSet:

Dataset contents from a CSV file

Row indexes are also shown, all of which start with 0 (zero). The general statistical output
can be obtained by using the describe() function:

print(dataSet.describe())
#print(dataSet.describe('price') will only generate values for column price
      Price      Rating
count 13.000000  13.000000



Next Steps Chapter 10

[ 297 ]

mean  35.633077  3.230769
std   14.239014  1.535895
min   12.360000  1.000000
25%   28.800000  2.000000
50%   35.020000  3.000000
75%   45.000000  5.000000
max   57.250000  5.000000

As we can see, by default, describe() selects the columns that are applicable to statistical
functions and returns calculations with the following functions:

count: Number of rows

mean: Average value for the related column

min: Minimum value found

max: Maximum value found

std: Calculated standard deviation

25%: Returns the 25th percentile

50%: Returns the 50th percentile

75%: Returns the 75th percentile

In the following code, we are selecting an individual column called Price as
price_group. All of the columns from the dataset can be listed using dataSet.columns.
Multiple columns can be selected by using the following dataSet[['Price','Rating']]
format:

print(dataSet.columns)
Index(['Title', 'Price', 'Stock', 'Rating'], dtype='object')

print(sum(dataSet['Price']))
463.23

print(sum(dataSet['Rating']))
42

print(dataSet['Price'][0:5])
0 35.02
1 57.25



Next Steps Chapter 10

[ 298 ]

2 37.32
3 18.03
4 31.19
Name: Price, dtype: float64

The following code shows the individual data for the Price column:

#dataSet[['Price','Rating']] will select both column
price_group = dataSet[['Price']] #selecting 'Price' column only.
print(price_group)

Index(['Title', 'Price', 'Stock', 'Rating'], dtype='object')
  Price
0 35.02
1 57.25
2 37.32
.....
11 55.66
12 28.80

pandas DataFrames also accept conditions or filtering actions being used on columns. As
you can see, the filter is applied to Rating for values that are >=4.0, and only Title and
Price are going to be returned:

 print(dataSet[dataSet['Rating']>=4.0][['Title','Price']])

  Title                  Price
0 Rip it Up and ...      35.02
1 Our Band Could Be ...  57.25
4 Please Kill Me: The ...31.19
5 Kill 'Em and Leave: ...45.00
9 No One Here Gets ...   20.02
10 Life                  31.58

Similarly, string-based filters can also be applied. Stock, which contains the Out text, is
filtered, and the output returns all the columns that satisfy the Out text. The
contains() function accepts regular expressions and strings:

print(dataSet[dataSet.Stock.str.contains(r'Out')])

   Title                     Price Stock        Rating
3  Love Is a Mix ...         18.03 Out of stock 1
6  Chronicles, Vol. 1        52.60 Out of stock 2
11 Old Records Never Die: ...55.66 Out of Stock 2

#will return only column 'Price'
#print(dataSet[dataSet.Stock.str.contains(r'Out')]['Price'])



Next Steps Chapter 10

[ 299 ]

The between() function is supplied with values that refer to Rating to filter and
return Title of the books:

print(dataSet[dataSet.Rating.between(3.5,4.5)]['Title'])

1 Our Band Could Be ...
4 Please Kill Me: The ...

Since we have the price_group data, we can call the plot() function on the data with the
help of the show() function:

 bar_plot = price_group.plot()  #default plot
 bar_plot.set_xlabel("No of Books") #set X axis: label
 bar_plot.set_ylabel("Price") #set Y axis: label
 plt.show() #displays the plot or chart created

The preceding code will generate a line chart with default properties, such as colors and
legend placements, as follows: 

Default line chart for the Price column

We can also change the kind of chart, that is, line, bar, and more.



Next Steps Chapter 10

[ 300 ]

Visit matplotlib at https:/ ​/ ​matplotlib. ​org/ ​gallery/ ​index. ​html to find
out more about various functional chart types and their additional
associated properties.

In the following code, kind='bar' overwrites the default line type:

bar_plot = price_group.plot(kind='bar') #kind='bar'
bar_plot.set_xlabel("No of Books")  #Label for X-Axis
bar_plot.set_ylabel("Price") #label for Y-Axis
plt.show()

 The preceding code generates the following bar chart:

Bar chart for the Price column

So far, we have used a basic chart type with a single column. In the following code, we are
plotting a bar chart with the Price and Rating values:

price_group = dataSet[['Price','Rating']]  #obtain both columns
#title: generates a title for plot
bar_plot = price_group.plot(kind='bar',title="Book Price ad Rating")

https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html
https://matplotlib.org/gallery/index.html


Next Steps Chapter 10

[ 301 ]

bar_plot.set_xlabel("No of Books")
bar_plot.set_ylabel("Price")
plt.show()

We receive the following output:

Bar chart with Price and Rating columns

So far, we have successfully plotted line and bar charts. The following code plots a pie chart
for the first six items from the Price column and labels them with the first six Title
available from dataSet:

prices = dataSet['Price'][0:6] #Price from first 6 items
labels = dataSet['Title'][0:6] #Book Titles from first 6 items
legends,ax1 = plt.pie(prices, labels=labels, shadow=True, startangle=45)
plt.legend(legends, prices, loc="best") #legend built using Prices
plt.show()



Next Steps Chapter 10

[ 302 ]

The values from Price are used as legends. We receive the following output:

Pie chart with Price and Title column data

There's a lot more to explore in terms of using pandas and matplotlib. In this section, we
have displayed the basic features that are available from both libraries. Now, we will look
at ML.



Next Steps Chapter 10

[ 303 ]

Machine learning 
ML is a branch of artificial intelligence (AI) that deals with the study of mathematical and 
statistical algorithms to process and develop an automated system that can learn from data
with minimal human involvement. ML predictions and decision-making models are
dependent on data. Web scraping is one of the resources that makes data available to ML
models.

Nowadays, many recommendation engines implement ML in order to serve the marketing
ads and recommendations such as Google AdSense and AdWords in real time. The process
that's implemented in ML is similar to that of data mining and predictive modeling. Both of
these concepts seek patterns while skimming through data and modifying the program's
actions as per the requirements. Therefore, ML is a handy tool when it comes to exploring
the field of business, marketing, retail, stock prices, video surveillance, face recognition,
medical diagnosis, weather prediction, online customer support, online fraud detection,
and more.

With new and improved ML algorithms, data capture methods, and faster computer and
networking, the field of ML is accelerating.

ML and AI
AI is a broad spectrum that covers a wide range of topics, such as neural networks, expert
systems, robotics, fuzzy logic, and more. ML is a subset of AI. It explores the idea of
building a machine that learns on its own, thus surpassing the need for constant
speculation. Therefore, ML has led to a major breakthrough for achieving AI.

ML incorporates the use of several algorithms, thus allowing software to provide accurate
results. Making a useful prediction from a set of parsed data is what the concept of ML
aims to do. The foremost benefit of ML is that it can tirelessly learn and predict without the
need for a hardcoded software regime. Training includes feeding huge datasets as input.
This allows an algorithm to learn, process, and make predictions, which are provided as
output.



Next Steps Chapter 10

[ 304 ]

Several important parameters are employed when measuring the potential of any model.
Accuracy is one of them, and is an important parameter in measuring the success of any
developed model. In ML, 80% accuracy is a success. If the model has 80% accuracy, then we
are saving 80% of our time and increasing productivity. However, it is not always the best
metric for accessing classification models if the data is unbalanced.

In general, accuracy is termed as an intuitive measure. While employing accuracy, equal
cost is assigned to false positives and false negatives. For imbalanced data (such as 94%
falling in one instance and 6% in other), there are many great ways to decrease the cost;
make a vague prediction that every instance belongs to the majority class, prove that the
overall accuracy is 94%, and complete the task. In the same line, problems arise if what we
are talking about, such as a disease, is rare and lethal. The cost of failing to properly
examine the disease of a sick person is higher than the cost of pushing a healthy individual
to more tests.

All in all, there are no best metrics. It is common for two people to choose different metrics
to reach their goal.

Python and ML
A Dutch programmer (Guido Van Rossum) launched Python as his side project but did not
realize that it would accelerate his height of success. Python is widely adapted among
developers when it comes to speedy prototyping. It is gaining popularity among all the ML
tools that are available for its readability, versatility, and easiness.

As ML engineers, computer vision engineers, data scientists, or data engineers, we have to
juggle with the ideas of linear algebra and calculus, which often get complex once we dive
deeper. However, Python comes to the rescue with its quick implementation, thus
bypassing the hurdle of the maximum effort. Quick validation of this idea makes the
Python programming language more desirable.

Data is everything for ML. Raw data is unstructured, large, incomplete, and has missing
values. Data cleaning is one of the most crucial steps of ML so that we can move on with
our data. There are many essential libraries available in Python that make the
implementation of ML simpler. Various open source repositories in Python help bring
changes to the existing method. Web scraping is one of these methods that deals with data
that exists on the web, which it then processes further as input to ML models.



Next Steps Chapter 10

[ 305 ]

The following are some of the most common and widely used libraries that are worth
looking at if we decide to work with Python and ML:

scikit-learn: Used for working with classical ML algorithms

NumPy (numerical Python): Designed to work for scientific computing

SciPy: Contains modules for linear algebra, optimization, integration, and
statistics

pandas: Used for data aggregation, manipulation, and visualization

matplotlib and Seaborn: For data visualization

Bokeh and Plotly: For interactive visualization

TensorFlow and Theano: Used for deep learning

Beautiful Soup, LXML, PyQuery and Scrapy: Used to withdraw data from
HTML and XML documents

Once we have a basic understanding of Python, these libraries can be imported and
implemented. Alternatively, we can also apply these functionalities from scratch, which is
what most developers do.

Python requires less writing and debugging in terms of code, which saves time compared
to other programming languages. This is exactly what AI and ML programmers want: a
focus on understanding the architectural aspect rather than spending all of their time on
debugging. Thus, Python can be easily handled by people with less knowledge in
programming due to syntax that provides human-level readability.

Apart from Python, there are several other tools for ML, such as Microsoft Excel, SAS,
MATLAB, and R. These tools are often overlooked due to a lack of adequate community
services and because they are incapable of handling large datasets. MATLAB also provides
sophisticated libraries and packages for image processing and analysis. In comparison to
Python, the execution time is moderate and the functionality is limited to prototyping, not
deployment.



Next Steps Chapter 10

[ 306 ]

R is another tool that's used for statistical analysis. Python performs data manipulation by
providing various development tools that can be collaborated with other systems.
However, R only works on a particular form of dataset, and so the predefined functions
require the predefined input. R provides a primitive ground to the data, which Python
allows us to explore the data.

Types of ML algorithms
In general, there are three types of ML algorithms, as shown here:

Supervised learning:

Classification

Regression

Unsupervised learning:

Association

Clustering

Reinforcement learning

Supervised learning
Supervised learning is about observing or directing the execution of something. The input
that's given to the model is the prediction we want to make. The labeled data is the explicit
prediction given for the particular instances of the input. Supervised learning requires
labeled data, which requires some expertise. However, these conditions are not always met.
We don't always posses the labeled dataset. For example, fraud prediction is one of the
rapidly unfolding fields where the attacker is constantly looking for available exploits.
These new attacks can't possibly be maintained under a dataset with labelled attacks.

Mathematically, the mapping functions of the input to the output can be expressed as Y =
f(X). Here, Y is the output variable and X is the input variable.



Next Steps Chapter 10

[ 307 ]

Classification
Classification determines or categorizes a model based on its attributes, and is the process
of identifying the genre to which a new observation belongs to, as per the membership
category, which is known in advance. It is a technique of determining which class a
dependent variable belongs to based on one or more independent variables. The output
variable in the classification problem is either a group or a category.

Some examples include, credit scoring (differentiating between high risk and low risk
based on earning and saving), medical diagnosis (predicting the risk of disease), web
advertising (predicting whether a user will click on advertisements or not), and more. 

The ability of the classification model can be determined by using model evaluation
procedures and model evaluation metrics.

Model evaluation procedures

Model evaluation procedures help you find out how well a model will adapt to the sample
data:

Training and testing the data: The training data is used to train the model so that
it fits the parameter. The testing data is a masked dataset for which a prediction
has to be made.

Train and test split: Typically, when the data is separated, most of the data is
used for training, whereas a small portion of the data is used for testing.

K-fold cross-validation: K-train and test splits are created and averaged
together. The process runs k-times slower than train and test splits.

Model evaluation metrics

Model evaluation metrics are employed to quantify the performance of the model. The
following metrics can be implemented in order to measure the ability of a classification
predictive model. 

Evaluation metrics are managed with the help of the following:

Confusion matrix: This is a 2 x 2 matrix, also known as an error matrix. It helps
picture the performance of an algorithm – typically a supervised learning
one—with the help of classification accuracy, classification error, sensitivity,
precision measures, and predictions. The choice of metrics depends on the
business objective. Hence, it is necessary to identify whether false positives or
false negatives can be reduced based on the requirements.



Next Steps Chapter 10

[ 308 ]

Logistic regression: Logistic regression is a statistical model that aids in
analyzing the dataset. It has several independent variables that are responsible
for determining the output. The output is measured with diploid variables
(involving two possible outcomes). The aim of logistic regression is to find the
best-fitting model to describe the relationship between diploid variables
(dependent variables) and a set of independent variables (predictors). Hence, it is
also known as a predictive learning model.

Naives Bayes: This works on the concept of conditional probability, as given by
Bayes theorem. Bayes theorem calculates the conditional probability of an event
based on the prior knowledge that might be in relation to the event. This
approach is widely used in face recognition, medical diagnosis, news
classification, and more. The Naives Bayes classifier is based on Bayes theorem,
where the conditional probability of A given B can be calculated as follows:

P(A | B) = ( P(B | A) * P( A ))/ P( B  )
Given:
P(A | B) = Conditional probability of A given B
P(B | A) = Conditional probability of B given A
P( A )= Probability of occurrence of event A
P( B  )= Probability of occurrence of event B

Decision tree: A decision tree is a type of supervised learning model where the
final outcome can be viewed in the form of a tree. The decision tree includes leaf
nodes, decision nodes, and the root node. The decision node has two or more
branches, whereas the leaf node represents the classification or decision. The
decision tree breaks down the dataset further into smaller subsets, thus
incrementally developing the associated tree. It is simple to understand and can
easily handle categorical and numerical datasets.

Random forest algorithm: This algorithm is a supervised ML algorithm that is
easy to use and provides great results, even without hyperparameter tuning. Due
to its simplicity, it can be used for both regression and classification tasks. It can
handle larger sets of data in order to maintain missing values. This algorithm is
also considered the best at performing classification-related tasks compared to
regression.



Next Steps Chapter 10

[ 309 ]

Neural network: Although we already have linear and classification algorithms,
a neural network is the state of art technique for many ML problems. A neural
network is comprised of units, namely neurons, which are arranged into layers.
They are responsible for the conversion of an input vector into some output. Each
unit takes an input, applies a function, and passes the output to the next
layer. Usually, nonlinear functions are applied to this algorithm. 

Support Vector Machine (SVM) algorithm: The SVM learning algorithm is a
supervised ML model. It is used for both classification and regression analysis,
and is widely known as a constrained optimization problem. SVM can be made
more powerful using the kernel trick (linear, radial basis function, polynomial,
and sigmoid). However, the limitations of the SVM approach lies in the selection
of the kernel.

Regression
Regression is a statistical measurement that aids in estimating the relationship among
variables. In general, classification focuses on the prediction of a label, whereas regression
focuses on the prediction of a quantity. Regression is used in finance, investing, and other
disciplines by managers to value their assets. In the same line, it attempts to determine the
strength of the relationship between dependent variables and a series of other changing
variables (independent variables); for example, the relationship between commodity prices
and the businesses dealing in those commodities.

The regression model has two major characteristics. The output variable in the regression
problem is a real value or quantitative in nature. The creation of the model takes past data
into consideration. Mathematically, a predictive model maps the input variable (X) to the
continuous output variable (Y). A continuous output variable is an integer or floating-point
value.

The ability of the regression predictive model can be measured by calculating the root
mean square error (RMSE). For example, in total, the regression prediction model made
two predictions, that is, 1.5 and 3.3, where the expected values are 1.0 and 3.0. Therefore,
RMSE can be calculated as follows:

RMSE = sqrt(average(error^2))
RMSE = sqrt(((1.0 - 1.5)^2 + (3.0 - 3.3)^2) / 2)
RMSE = sqrt((0.25 + 0.09) / 2)
RMSE = sqrt(0.17)
RMSE = 0.412



Next Steps Chapter 10

[ 310 ]

Unsupervised learning
Unsupervised learning is a class of ML techniques in which the data that's given as input
isn't labeled. Moreover, only the input variables (X) are given, with no correspondence to
the output variables (Y). In unsupervised learning, the algorithms are left in solitude to
learn and explore on their own, with no real early expectations. This absence of labeling
teaches us about the reconstruction of input data either using representation or embedding.
It is beneficial when it comes to data mining and feature extraction.

Unsupervised learning allows you to discover hidden trends and patterns. Some real-world
examples are predicting or understanding handwritten digits, nano camera fabrication
technology, Planck quantum spectrum, and more.

Mathematically, unsupervised learning has an input value (X) with no corresponding
output value. In comparison to supervised learning, the task processing of unsupervised
learning is quite complex. The implementation of unsupervised learning can be found in
automatic or self-driving cars, facial recognition programs, expert systems, bioinformatics,
and more.

Association and clustering are two parts of unsupervised learning.

Association
This is a technique that's used to discover new patterns in huge datasets. Association is
deliberated to identify strong rules from a dataset based on the degree of newsworthiness.
During prolonged analysis of the data, more new rules are generated.

The association rule is largely employed in market basket analysis. This technique helps to
determine the strength of association between the pairs of the product purchased and the
frequency of cooccurrence in the observations.

Market basket analysis is one of the modeling techniques that's used by retailers to uncover
associations between items. The theory elaborates around the fact that if we buy some
items, we are more likely to buy similar items. 

Mathematically, it is represented as P(A|B), where a person who buys A also buys B. It can
also be written as if {A}, then {B}. In other words, if there is a probability of A to occur, then
there is also a probability of B to occur as well. For example, P(milk | bread ) = 0.7.



Next Steps Chapter 10

[ 311 ]

Clustering
Cluster is the assembly of an object belonging to the same label, treated as one. Clustering is
the technique of grouping an object to its corresponding category. This includes sorting
several objects into their particular groups, where the capacity of association is at its
maximum if it belongs to the same group, or minimum, otherwise. 

One of the most popular clustering algorithms is the k-means clustering algorithm. This
algorithm demands the predefined value of k. K represents the number of clusters we want
to divide data into. The real performance is obtained when the cluster is hyperspherical,
such as circles in a 2D space or spheres in a 3D space.

The main advantage of clustering is that it helps you figure out the distinct, useful feature
from the data and that it is flexible to changes.

Reinforcement learning
Reinforcement learning is a part of ML that deals with taking necessary action in order to
increase the reward for a particular situation. It employs several pieces of software and
machines in order to find the best possible path for a specific situation.

Reinforcement learning is different from supervised learning. In supervised learning,
training data is provided with a label, based on which it is trained. In the case of
reinforcement learning, the reinforcement agent makes the decision to resolve the task
that's been assigned to them.

There are two types of reinforcement learning:

Positive reinforcement: Maximizes performance and sustains changes for a
longer duration

Negative reinforcement: Minimizes performance and sustains change for a
shorter duration

Data mining 
The process of discovering hidden or predictive information from large datasets or
databases is known as data mining. Data mining is a form of analysis that's conducted on
data to discover new patterns and facts. These facts are used to discover knowledge and is
also considered as a step toward knowledge discovery in databases (KDD). 



Next Steps Chapter 10

[ 312 ]

Various processes and steps from AI, ML, statistics, database management systems, and
more are often combined to search for the new pattern. With growing volumes of data and
ML algorithms, there is always a tendency of finding new or hidden facts in the database.
Facts and patterns that are found or searched for are then used to predict a certain outcome,
and can also be applied in many fields, such as statistics, data visualization, marketing,
management, medical, decision making systems, and so on. 

Data analysis and data mining are often compared or talked about in tandem. Data mining
is considered a part of the data analysis process. We will need some predefined hypotheses
while working with data analysis since it's the process of organizing data to develop
models and determine some insights. In terms of applied practices, data mining is mainly
conducted on structured data, whereas data analysis can be done on structured,
unstructured, or semi-structured data.

Data mining is based on scientific and mathematical methods, whereas data analysis uses
analytics models and intelligence systems. When looking from a distance, both data
analysis and data mining are subsets of data science, where data mining
implements predictive algorithms to discover patterns and data analysis implements
activities to gain some insights from datasets.

A major benefit of data mining is being able to process huge volumes of data in a short
amount of time. It can also be implemented across new or existing platforms, predict
hidden patterns or help in discovering them, help in decision-making, knowledge
discovery, and much more. 

Tasks of data mining
In general, data mining tasks are segregated into two types, also known as data mining
analytics or data mining modeling. Both can be further categorized, as shown here:

Predictive:

Classification

Regression

Prediction



Next Steps Chapter 10

[ 313 ]

Descriptive:

Clustering

Summarization

Association rules

Predictive
This uses statistical analysis and turns data into valuable information. It predicts the
probable future outcome of occurring situations. Prediction-related techniques that
generate output by analyzing current and historical facts fall under this model.

Classification
This is one of the most common mining techniques and classifies and categorizes samples
before processing them to find facts. For more information on the classification and model
evaluation procedure, please refer to the Types of ML algorithms section.

Regression
This technique is used to predict, forecast, and analyze information trends and the
relationship between variables. For more information on regression, please refer to the
Types of ML algorithms section.

Prediction 
This technique analyzes past events and predicts the possible missing or future values by
using references from other data mining techniques such as clustering, classification, and
more.

Descriptive
Also known as the preliminary stage of data processing, it uses business intelligence and
many other systems. This form of analytics is limited since it only analyzes past data and
normally provides information about things that have already happened. 



Next Steps Chapter 10

[ 314 ]

Clustering
Clustering is a technique that's used to identify data that's similar to each other. For more
information on clustering, please refer to the Types of ML algorithms section.

Summarization
This provides a more compact representation of the dataset and includes visualization and
report generation. Most management reporting regarding sales and marketing use this
technique. 

Association rules
For more information on association, please refer to the Types of ML algorithms section.

What's next?
Web scraping is dynamic, demanding, and also a challenging task. We need to obey the
legal perspective, which is presented on a website's Terms of Services (ToS) and Privacy
Policy before carrying this task forward. Python programming, with its supportive nature,
easy syntax, short and readable code formation, and the availability of libraries and tools is
one of the best languages to be used in web scraping.

Still, the challenges are there and general scripts might not be able to fulfill the demand that
exists. Sometimes, a scraping task might be for a huge volume, and personal PCs or laptops
won't be a place worth implementing when you consider time, machine resources, and
more. There are a number of features and procedures that can make a scraping task more
complicated and challenging. Let's go over some of them:

The adoption of growing web-based security measures

Dynamic loading of data and the involvement of scripting languages makes
scraping complex

Presence of CAPTCHA, which can be found at http:/ ​/​www. ​captcha. ​net/ ​

Blocking a user's IP address (for simultaneous requests)

Blocking requests from certain parts of the world (using and switching proxies
might help) 

http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/


Next Steps Chapter 10

[ 315 ]

For such cases, we can get help from organizations who are doing scraping-related work.
These organizations can help us with our demand of data by charging certain fees and
providing us with a web interface where we can process our demand. Such companies may
be searched for in Google as Web Scraping Services or Web Scraping Softwares.
There's also various browser-based extensions available that can be found by searching for
Scraping Extensions.

Summary 
In this chapter, we have explored and learned about the basic concepts regarding data
management by using files, analysis, and visualization using pandas and matplotlib. We
also introduced ML and data mining, and we also explored some related resources that can
be helpful for further learning and career development. 

With this chapter, we come to the end of the book! Web scraping is a broad topic that is
related directly or indirectly to a number of technologies and development techniques.
Throughout this book, we have learned about numerous concepts in this domain by using
the Python programming language. We can also explore more of the topics related to web
scraping like ML, Data mining, Web scraping, AI and Python programming. These topics
are worth exploring from a knowledge and career perspective.



Next Steps Chapter 10

[ 316 ]

Further reading
Artificial Intelligence: A Modern Approach, at http:/ ​/​aima. ​cs. ​berkeley. ​edu/​

Machine Learning, at http:/ ​/ ​www.​cs. ​cmu. ​edu/​~tom/ ​mlbook. ​html

Data Mining and Analysis, Fundamental Concepts and Algorithms, at http:/ ​/ ​www.
dataminingbook. ​info/ ​pmwiki. ​php

The Python data analysis library, at https:/ ​/​pandas. ​pydata. ​org

matplotlib: Python plotting, at https:/ ​/​matplotlib. ​org

File handling (Python), at https:/ ​/​www. ​w3schools. ​com/ ​python/ ​python_ ​file_
handling. ​asp

Introduction to Information Retrieval, at https:/ ​/ ​nlp.​stanford. ​edu/ ​IR- ​book/ ​

SQLite, at https:/ ​/ ​www. ​sqlite. ​org/ ​index. ​html

MySQL, at https:/ ​/ ​www. ​mysql. ​com/ ​

PostgreSQL, at https:/ ​/ ​www. ​postgresql. ​org/ ​

CAPTCHA, at http:/ ​/​www. ​captcha. ​net/ ​

Overview of the KDD Process, at http:/ ​/​www2. ​cs.​uregina. ​ca/ ​~dbd/ ​cs831/ ​notes/
kdd/​1_ ​kdd. ​html

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.dataminingbook.info/pmwiki.php
http://www.dataminingbook.info/pmwiki.php
http://www.dataminingbook.info/pmwiki.php
http://www.dataminingbook.info/pmwiki.php
http://www.dataminingbook.info/pmwiki.php
http://www.dataminingbook.info/pmwiki.php
http://www.dataminingbook.info/pmwiki.php
http://www.dataminingbook.info/pmwiki.php
http://www.dataminingbook.info/pmwiki.php
http://www.dataminingbook.info/pmwiki.php
http://www.dataminingbook.info/pmwiki.php
http://www.dataminingbook.info/pmwiki.php
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://www.w3schools.com/python/python_file_handling.asp
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www.captcha.net/
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html


Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

R Web Scraping Quick Start Guide
Olgun Aydin

ISBN: 9781789138733

Write and create regEX rules
Write XPath rules to query your data
Learn how web scraping methods work
Use rvest to crawl web pages
Store data retrieved from the web
Learn the key uses of Rselenium to scrape data

https://www.packtpub.com/big-data-and-business-intelligence/r-web-scraping-quick-start-guide


Other Books You May Enjoy

[ 318 ]

Python Web Scraping Cookbook
Michael Heydt

ISBN: 9781787285217

Use a wide variety of tools to scrape any website and data—including
BeautifulSoup, Scrapy, Selenium, and many more
Master expression languages such as XPath, CSS, and regular expressions to
extract web data
Deal with scraping traps such as hidden form fields, throttling, pagination, and
different status codes
Build robust scraping pipelines with SQS and RabbitMQ
Scrape assets such as images media and know what to do when Scraper fails to
run
Explore ETL techniques of build a customized crawler, parser, and convert
structured and unstructured data from websites

https://www.packtpub.com/big-data-and-business-intelligence/python-web-scraping-cookbook


Other Books You May Enjoy

[ 319 ]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Index

A
AJAX (Asynchronous JavaScript and XML)
   about  19
   reference  19, 201
AngularJS
   about  22
   reference  24
artificial intelligence (AI)  303
automation practice
   reference  250

B
Beautiful Soup, parameters
   exclude_encodings  149
   features  149
   from_encoding  149
   html5lib  149
   markup  149
   parse_only  149
Beautiful Soup
   about  146
   children elements  156
   CSS Selectors  166
   exploring  147, 148, 149, 150, 151
   iteration  155
   next element  159, 161, 162, 164
   parent element  157
   parent elements  158
   previous element  160, 162
   reference  147
   searching methods  151, 153, 154
   traversing methods  155
bytes types
   reference  52

C
C#Corner
   reference  203
Chrome DevTools
   about  30
   reference  29
chropath
   reference  93
classification
   about  307
   model evaluation metrics  307
   model evaluation procedures  307
cluster  311
confusion matrix  307
cookies
   about  199
   reference  13, 200
   working with  212, 213, 215, 217
crawling  8
Cross Site Request Forgery (CSRF)  216
CSS (Cascading Style Sheets)
   about  21
   reference  22
CSS query selectors  92
CSS Selectors
   about  72, 80, 81, 82
   attribute selectors  83
   element selectors  82
   ID and class selectors  83
   pseudo selectors  84, 85, 86
   using, for data extraction  182

D
data analysis  312
data cleaning  304
data finding techniques, for web



[ 321 ]

   about  24
   DevTools  28
   HTML page source  24
data formats
   accessing  224
data mining tasks
   about  312
   descriptive  313
   predictive  313
data mining
   about  311
   benefits  312
data
   extracting  180
   extracting, from multiple pages  183, 184
   writing, to files  292, 293, 294
Database Management Systems (DBMS)  295
decision tree  308
descriptive tasks, data mining
   about  313
   association rules  314
   clustering  314
   summarization  314
Developer tools
   panels  30, 31, 32
DevTools  29
DevTools Network panel
   reference  33
Document Object Model (DOM)  72
DOM navigation  88, 89

E
element-tree  72
error matrix  307
ETag
   reference  232
eXtensible Stylesheet Language Transformations

(XSLT)  73

F
files
   data, writing to  292, 293, 294
Firefox DevTools
   reference  29
form submission, AJAX

   reference  201

G
GET command  66
GitHub
   reference  231
global attributes
   reference  15
Google Chrome
   WebDriver, setting up for  244, 245
graphical user interface (GUI)  242

H
HTML (Hypertext Markup Language)
   about  14
   global attributes  15
HTML attributes  16
HTML Document Object Model (DOM)
   about  18
   reference  18
HTML elements  14, 15, 88, 89
HTML form processing  198, 199, 201, 203, 204,

206, 207
HTML tags  16
HTTP (Hyper Text Transfer Protocol)
   about  9
   reference  12
HTTP cookies  12
HTTP headers
   Response Headers  11
HTTP methods
   GET  10
   GET command  66
   implementing  66
   POST  10
   POST command  67, 69
HTTP proxies  13
HTTP requests  10
HTTP Requests  12
HTTP responses  12
HTTP status codes
   reference  222



[ 322 ]

I
integrated development environment (IDE)  242
item
   creating  179

J
JavaScript
   about  18
   reference  19
jQuery
   about  19
   reference  19
JSON (JavaScript Object Notation)
   about  20
   reference  20
JSON Line
   about  20
   reference  20

K
k-means clustering algorithm  311
knowledge discovery in databases (KDD)  311

L
lxml.cssselect
   reference  94
lxml.etree
   reference  94
lxml.html
   reference  94
lxml
   about  93
   examples  94, 95, 96, 97, 98, 100, 101, 102
   for web scraping  102
   modules  94
   reference  93
   used, for scraping Python library  93

M
machine learning (ML)
   about  295, 303
   reinforcement learning  311
   supervised learning  306
matplotlib

   about  295
   reference  295, 299
MDN web docs-HTTP
   reference  13
MVC (model-view-controller)  22

N
Naives Bayes  308
neural network  309

P
pandas
   about  295
Pandas
   reference  93
pandas
   reference  295
   using, for analysis  296, 297, 299, 300, 301
   using, for visualization  295, 296, 297, 299, 300,

301

parsing  146
patterns  272
POST command  67, 69
predictive tasks, data mining
   about  313
   classification  313
   prediction  313
   regression  313
pyquery
   about  115
   attributes  119, 122, 123
   documents, loading  118, 119
   element, traversing  119, 122, 123
   exploring  116, 117
   iterating  123, 126
   pseudo classes  119, 122, 123
   reference  115
   used, for web scraping  127
Python 3.0
   reference  52
Python Beautiful Soup
   reference  93
Python library
   scraping, lxml used  93
Python packages



[ 323 ]

   installation link  42
Python, and ML
   about  304, 305
   libraries  305
Python
   installation links  42
   used, for accessing web  41

Q
quotes listing  183
QuotesSpider Spider class
   properties  178

R
R  306
random forest algorithm  308
raw data  304
raw data, processing steps
   cleaning  291
   formatting  291
re library  264
Regex  262, 263
Regex Quantifiers
   greedy quantifiers  267
   non-greedy quantifiers  267
regression  309
regular expressions, for data extraction
   about  274
   dealer locations, extracting  278, 279, 280, 281,

282

   HTML-based content, extracting  274, 275, 276,
277

   XML content, extracting  282, 283, 284, 285
regular expressions
   about  262
   overview  263, 264
   with Python  264, 266, 268, 269, 271
reinforcement learning
   negative reinforcement  311
   positive reinforcement  311
Remote Control (RC)  241
Representational State Transfer (REST)
   about  221, 222
   reference  222
requests

   for URL handling and operations  53, 64, 66
RESTful API
   reference  222
reverse engineering  9
robots.txt file
   about  36
   reference  37
root mean square error (RMSE)  309

S
scraped data
   managing  290, 291
scraping  8
Scrapinghub
   reference  188
Scrapy Cloud
   features  188
   reference  188
Scrapy projects
   deploying, Scrapy Cloud used  190, 191, 192,

193, 194
Scrapy
   about  172
   features  173
   installation guide, reference  174
   installing  174
   reference  172, 173
secure web  198
selectors
   reference  183
Selenium Grid
   about  241
   reference  241
Selenium IDE
   about  242
   reference  242
Selenium projects  240
Selenium RC  241
Selenium WebDriver
   about  241
   reference  241
Selenium, with Python
   reference  240
Selenium
   about  239, 240



[ 324 ]

   browser properties, accessing  245, 247, 249,
250

   exploring  245
   reference  240
   using, for scraping web  255
   web elements, loading  250, 253, 255
SEO (search engine optimization)  34
sessions
   about  200
   working with  212, 214, 215, 217
Simple Object Access Protocol (SOAP)
   about  221, 222
   reference  222
sitemaps  34
SMTP (Simple Mail Transfer Protocol)  222
SoupSieve
   reference  165
Spider
   generating  177, 178
   running  185, 187
spidering  8
Str types
   reference  52
Structured Query Language (SQL)  295
supervised learning
   about  306
   classification  307
   regression  309
Support Vector Machine (SVM) algorithm  309

T
tree-type structure  72

U
unsupervised learning
   about  310
   association  310
   clustering  311
URL handling and operations
   with request  53
   with requests  62, 64, 66
   with urllib  53, 56, 60, 62
URL
   loading  45, 47, 50, 52
urllib

   for URL handling and operations  53, 56, 60, 62
user authentication
   about  200
   handling  208, 209, 210, 211, 212
user interface (UI)  221

W
W3School HTML form
   reference  198
web APIs
   about  221
   accessing  224
   benefits  223
   considerations  224
web browser developer tools
   used, for accessing web content  86
web browser, used for making requests to web API
   about  226
   informative responses, demonstrating from API 

230

   RESTful API cache functionality, demonstrating 
231, 232, 233

   simple API (request and response), accessing 
227, 228

   Status Codes, demonstrating  229
web crawler
   building  168, 169, 171
   deploying  188
web development  9
web page  8, 9
web scarping, with APIs
   about  233
   information, searching from GitHub events  235,

236

   university names, searching  233
web scraping, with Beautiful Soup
   about  146
   elements, searching based on attribute values 

168

   li elements, listing with attribute data-id  166, 167
   traversing through elements  167
web scraping, with lxml
   about  102
   examples  103, 104, 105, 106, 107, 108, 109,

110, 112



web scraping, with pyquery
   about  127
   AHL Playoff results, extracting  134, 137
   data science announcements, scraping  127, 129
   information, scraping from nested links  130, 133
   URLs, collecting from sitemap.xml  138
   URLs, collecting from sitemap.xml with HTML

parser  139, 140
   URLs, collecting from sitemap.xml with XML

parser  141, 143
web scraping, with Scrapy
   about  172
   project setup  174, 175, 177
web scraping, with Selenium
   about  255
   book information, scraping  258, 260
   product information, scraping  255, 258
web scraping
   about  8
   cases  25, 27
web, accessing with Python
   about  41
   Python, installing  42, 44
   URL, loading  45, 47, 50, 52
WebDriver
   setting up, for Google Chrome  242, 244, 245
WebElement  250

World Wide Web Consortium (W3C)  73

X
XHTML (Extensible Hypertext Markup Language) 

14

XML (Extensible Markup Language)
   about  17
   reference  17
XML Path (XPath)  73
XML Query (XQuery)  73
XMLHttpRequest (XHR) objects  19
XPath expressions
   about  76, 79
   absolute path  73
   exploring  74, 75
   relative path  73
XPath selectors  92
XPath tester tools
   reference  74
XPath-Tester
   reference  74
XPath
   using, for data extraction  181, 182
   with DevTools  91, 92
XSLT
   reference  93


	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Introduction to Web Scraping
	Chapter 1: Web Scraping Fundamentals
	Introduction to web scraping
	Understanding web development and technologies
	HTTP
	HTML 
	HTML elements and attributes
	Global attributes

	XML
	JavaScript
	JSON
	CSS
	AngularJS

	Data finding techniques for the web
	HTML page source
	Case 1
	Case 2

	Developer tools
	Sitemaps
	The robots.txt file

	Summary
	Further reading

	Section 2: Beginning Web Scraping
	Chapter 2: Python and the Web – Using urllib and Requests
	Technical requirements
	Accessing the web with Python
	Setting things up
	Loading URLs

	URL handling and operations with urllib and requests
	urllib
	requests

	Implementing HTTP methods
	GET
	POST

	Summary
	Further reading

	Chapter 3: Using LXML, XPath, and CSS Selectors
	Technical requirements
	Introduction to XPath and CSS selector
	XPath
	CSS selectors
	Element selectors
	ID and class selectors
	Attribute selectors
	Pseudo selectors


	Using web browser developer tools for accessing web content
	HTML elements and DOM navigation
	XPath and CSS selectors using DevTools

	Scraping using lxml, a Python library
	lxml by examples
	Example 1 – reading XML from file and traversing through its elements
	Example 2 – reading HTML documents using lxml.html
	Example 3 – reading and parsing HTML for retrieving HTML form type element attributes

	Web scraping using lxml
	Example 1 – extracting selected data from a single page using lxml.html.xpath
	Example 2 – looping with XPath and scraping data from multiple pages
	Example 3 – using lxml.cssselect to scrape content from a page


	Summary
	Further reading

	Chapter 4: Scraping Using pyquery – a Python Library
	Technical requirements
	Introduction to pyquery
	Exploring pyquery
	Loading documents
	Element traversing, attributes, and pseudo-classes
	Iterating

	Web scraping using pyquery
	Example 1 – scraping data science announcements
	Example 2 – scraping information from nested links
	Example 3 – extracting AHL Playoff results
	Example 4 – collecting URLs from sitemap.xml
	Case 1 – using the HTML parser
	Case 2 – using the XML parser


	Summary
	Further reading

	Chapter 5: Web Scraping Using Scrapy and Beautiful Soup
	Technical requirements
	Web scraping using Beautiful Soup
	Introduction to Beautiful Soup
	Exploring Beautiful Soup
	Searching, traversing, and iterating
	Using children and parents
	Using next and previous
	Using CSS Selectors


	Example 1 – listing <li> elements with the data-id attribute 
	Example 2 – traversing through elements
	Example 3 – searching elements based on attribute values
	Building a web crawler

	Web scraping using Scrapy
	Introduction to Scrapy
	Setting up a project
	Generating a Spider
	Creating an item
	Extracting data
	Using XPath
	Using CSS Selectors
	Data from multiple pages

	Running and exporting


	Deploying a web crawler
	Summary
	Further reading

	Section 3: Advanced Concepts
	Chapter 6: Working with Secure Web
	Technical requirements
	Introduction to secure web
	Form processing
	Cookies and sessions
	Cookies
	Sessions

	User authentication

	HTML <form> processing
	Handling user authentication
	Working with cookies and sessions
	Summary
	Further reading

	Chapter 7: Data Extraction Using Web-Based APIs
	Technical requirements
	Introduction to web APIs
	REST and SOAP
	REST 
	SOAP 

	Benefits of web APIs

	Accessing web API and data formats
	Making requests to the web API using a web browser
	Case 1 – accessing a simple API (request and response)
	Case 2 – demonstrating status codes and informative responses from the API
	Case 3 – demonstrating RESTful API cache functionality


	Web scraping using APIs
	Example 1 – searching and collecting university names and URLs
	Example 2 – scraping information from GitHub events

	Summary
	Further reading

	Chapter 8: Using Selenium to Scrape the Web
	Technical requirements
	Introduction to Selenium
	Selenium projects
	Selenium WebDriver
	Selenium RC
	Selenium Grid
	Selenium IDE

	Setting things up
	Exploring Selenium
	Accessing browser properties
	Locating web elements


	Using Selenium for web scraping
	Example 1 – scraping product information
	Example 2 – scraping book information

	Summary
	Further reading

	Chapter 9: Using Regex to Extract Data
	Technical requirements
	Overview of regular expressions
	Regular expressions and Python

	Using regular expressions to extract data
	Example 1 – extracting HTML-based content
	Example 2 – extracting dealer locations
	Example 3 – extracting XML content

	Summary
	Further reading

	Section 4: Conclusion
	Chapter 10: Next Steps
	Technical requirements
	Managing scraped data
	Writing to files

	Analysis and visualization using pandas and matplotlib
	Machine learning 
	ML and AI
	Python and ML
	Types of ML algorithms
	Supervised learning
	Classification
	Regression

	Unsupervised learning
	Association
	Clustering

	Reinforcement learning


	Data mining 
	Tasks of data mining
	Predictive
	Classification
	Regression
	Prediction 

	Descriptive
	Clustering
	Summarization
	Association rules



	What's next?
	Summary 
	Further reading

	Other Books You May Enjoy
	Index

