

Java Coding Problems

Improve your Java Programming skills by solving
real-world coding challenges

Anghel Leonard

BIRMINGHAM - MUMBAI

Java Coding Problems
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Content Development Editor: Zeeyan Pinheiro
Senior Editor: Afshaan Khan
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Aparna Bhagat

First published: September 2019

Production reference: 1200919

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-141-5

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Anghel Leonard is a Chief Technology Strategist with more than 20 years of
experience in the Java ecosystem. In his daily work, he is focused on architecting and
developing Java distributed applications that empower robust architectures, clean
code, and high performance. He is also passionate about coaching, mentoring, and
technical leadership.

He is the author of several books, videos, and dozens of articles related to Java
technologies.

About the reviewers
Cristian Stancalau has an MSc and BSc in computer science and engineering from
Babes-Bolyai University, where he has contributed as an assistant lecturer since 2018.
Currently, he works as chief software architect, focused on enterprise code review at
DevFactory.

Previously, he co-founded and lead a video technology start-up as technical director.
Cristian has proven mentoring and teaching expertise in both the commercial and
academic sectors, advising on Java technologies and product architecture.

I would like to thank Anghel Leonard for the honor of entrusting me to perform the
technical review for Java Coding Problems. Reading it was a real pleasure for me
and I am sure it will also be for his readers.

Vishnu Govindrao Kulkarni is an enthusiastic freelancer solutions provider (with
Fortune Consulting). He has a wide range of experience in various domains, with 8
years of experience working with full-stack Java, Java Spring, Spring Boot, the
Hibernate REST API, and Oracle. He has also had the opportunity to work with
several organizations to build enterprise solutions using Java and Java frameworks.
Today, he continues to design and develop solutions while closely working with
clients to help them derive value from these solutions.

Previously, he worked as the technical reviewer for the book Java Fundamentals for
Packt Publishing.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Strings, Numbers, and Math 8
Problems 8
Solutions 11

1. Counting duplicate characters 11
What about Unicode characters? 12

2. Finding the first non-repeated character 14
3. Reversing letters and words 17
4. Checking whether a string contains only digits 18
5. Counting vowels and consonants 19
6. Counting the occurrences of a certain character 21
7. Converting a string into an int, long, float, or double 23
8. Removing white spaces from a string 24
9. Joining multiple strings with a delimiter 24
10. Generating all permutations 26
11. Checking whether a string is a palindrome 28
12. Removing duplicate characters 30
13. Removing a given character 32
14. Finding the character with the most appearances 33
15. Sorting an array of strings by length 36
16. Checking that a string contains a substring 37
17. Counting substring occurrences in a string 38
18. Checking whether two strings are anagrams 40
19. Declaring multiline strings (text blocks) 41
20. Concatenating the same string n times 43
21. Removing leading and trailing spaces 45
22. Finding the longest common prefix 45
23. Applying indentation 47
24. Transforming strings 49
25. Computing the minimum and maximum of two numbers 50
26. Summing two large int/long values and operation overflow 51
27. String as an unsigned number in the radix 52
28. Converting into a number by an unsigned conversion 53
29. Comparing two unsigned numbers 54
30. Division and modulo of unsigned values 55
31. double/float is a finite floating-point value 56
32. Applying logical AND/OR/XOR to two boolean expressions 57
33. Converting BigInteger into a primitive type 58
34. Converting long into int 59

Table of Contents

[ii]

35. Computing the floor of a division and modulus 60
36. Next floating-point value 61
37. Multiplying two large int/long values and operation overflow 62
38. Fused Multiply Add 64
39. Compact number formatting 65

Formatting 65
Parsing 68

Summary 69

Chapter 2: Objects, Immutability, and Switch Expressions 70
Problems 70
Solutions 72

40. Checking null references in functional style and imperative code 72
41. Checking null references and throwing customized
NullPointerException 75
42. Checking null references and throwing the specified exception 77
43. Checking null references and returning non-null default references 79
44. Checking the index in the range from 0 to length 80
45. Checking the subrange in the range from 0 to length 83
46. equals() and hashCode() 85
47. Immutable objects in a nutshell 91
48. Immutable string 91

Pros of string immutability 92
String constant pool or cached pool 92
Security 94
Thread safety 94
Hash code caching 94
Class loading 94

Cons of string immutability 95
String cannot be extended 95
Sensitive data in memory for a long time 95
OutOfMemoryError 95

Is String completely immutable? 95
49. Writing an immutable class 96
50. Passing/returning mutable objects to/from an immutable class 97
51. Writing an immutable class via the Builder pattern 100
52. Avoiding bad data in immutable objects 103
53. Cloning objects 105

Manual cloning 105
Cloning via clone() 106
Cloning via a constructor 107
Cloning via the Cloning library 108
Cloning via serialization 109
Cloning via JSON 110

54. Overriding toString() 110
55. Switch expressions 112
56. Multiple case labels 115
57. Statement blocks 116

Table of Contents

[iii]

Summary 117

Chapter 3: Working with Date and Time 118
Problems 118
Solutions 120

58. Converting a string to date and time 120
Before JDK 8 120
Starting with JDK 8 120

59. Formatting date and time 124
60. Getting the current date/time without time/date 128
61. LocalDateTime from LocalDate and LocalTime 128
62. Machine time via an Instant class 129

Converting String to Instant 130
Adding or subtracting time to/from Instant 130
Comparing Instant objects 130
Converting between Instant and LocalDateTime, ZonedDateTime, and
OffsetDateTime 131

63. Defining a period of time using date-based values and a duration
of time using time-based values 132

Period of time using date-based values 132
Duration of time using time-based values 134

64. Getting date and time units 137
65. Adding and subtracting to/from date-time 138

Working with Date 139
Working with LocalDateTime 139

66. Getting all time zones with UTC and GMT 140
Before JDK 8 140
Starting with JDK 8 140

67. Getting local date-time in all available time zones 142
Before JDK 8 142
Starting with JDK 8 143

68. Displaying date-time information about a flight 144
69. Converting a Unix timestamp to date-time 145
70. Finding the first/last day of the month 146
71. Defining/extracting zone offsets 149

Before JDK 8 150
Starting with JDK 8 150

72. Converting between Date and Temporal 151
Date – Instant 152
Date – LocalDate 153
Date – DateLocalTime 154
Date – ZonedDateTime 154
Date – OffsetDateTime 155
Date – LocalTime 155
Date – OffsetTime 156

73. Iterating a range of dates 156
Before JDK 8 156
Starting with JDK 8 157

Table of Contents

[iv]

Starting with JDK 9 157
74. Calculating age 158

Before JDK 8 158
Starting with JDK 8 158

75. Start and end of a day 159
76. Difference between two dates 162

Before JDK 8 162
Starting with JDK 8 162

77. Implementing a chess clock 164
Summary 169

Chapter 4: Type Inference 170
Problems 170
Solutions 172

78. Simple var example 172
79. Using var with primitive types 175
80. Using var and implicit type casting to sustain the code's
maintainability 176
81. Explicit downcast or better avoid var 178
82. Avoid using var if the called names don't contain enough type
information for humans 179
83. Combining LVTI and programming to the interface technique 180
84. Combining LVTI and the diamond operator 181
85. Assigning an array to var 183
86. Using LVTI in compound declarations 184
87. LVTI and variable scope 184
88. LVTI and the ternary operator 186
89. LVTI and for loops 187
90. LVTI and streams 188
91. Using LVTI to break up nested/large chains of expressions 189
92. LVTI and the method return and argument types 190
93. LVTI and anonymous classes 191
94. LVTI can be final and effectively final 192
95. LVTI and lambdas 193
96. LVTI and null initializers, instance variables, and catch blocks
variables 194

Try-with-resource 195
97. LVTI and generic types, T 195
98. LVTI, wildcards, covariants, and contravariants 196

LVTI and wildcards 197
LVTI and covariants/contravariants 197

Summary 198

Chapter 5: Arrays, Collections, and Data Structures 199
Problems 199
Solutions 201

99. Sorting an array 201

Table of Contents

[v]

JDK built-in solutions 201
Other sorting algorithms 204

Bubble sort 204
Insertion sort 206
Counting sort 209
Heap sort 210

100. Finding an element in an array 215
Check only for the presence 215
Check only for the first index 219

101. Checking whether two arrays are equal or mismatches 220
Checking whether two arrays are equal 221
Checking whether two arrays contain a mismatch 222

102. Comparing two arrays lexicographically 224
103. Creating a Stream from an array 227
104. Minimum, maximum, and average of an array 228

Computing maximum and minimum 228
Computing average 231

105. Reversing an array 232
106. Filling and setting an array 233
107. Next Greater Element 236
108. Changing array size 237
109. Creating unmodifiable/immutable collections 238

Problem 1 (Collections.unmodifiableList()) 239
Problem 2 (Arrays.asList()) 240
Problem 3 (Collections.unmodifiableList() and static block) 240
Problem 4 (List.of()) 241
Problem 5 (immutable) 242

110. Mapping a default value 245
111. Computing whether absent/present in a map 246

Example 1 (computeIfPresent()) 246
Example 2 (computeIfAbsent()) 247
Example 3 (compute()) 249
Example 4 (merge()) 250
Example 5 (putIfAbsent()) 251

112. Removal from a Map 252
113. Replacing entries from a Map 253
114. Comparing two maps 255
115. Sorting a Map 256

Sorting by key via TreeMap and natural ordering 257
Sorting by key and value via Stream and Comparator 257
Sorting by key and value via List 258

116. Copying HashMap 259
117. Merging two maps 260
118. Removing all elements of a collection that match a predicate 262

Removing via an iterator 263
Removing via Collection.removeIf() 263
Removing via Stream 263
Separating elements via Collectors.partitioningBy() 264

119. Converting a collection into an array 265

Table of Contents

[vi]

120. Filtering a Collection by a List 265
121. Replacing elements of a List 267
122. Thread-safe collections, stacks, and queues 269

Concurrent collections 269
Thread-safe lists 269
Thread-safe set 270
Thread-safe map 270
Thread-safe queue backed by an array 271
Thread-safe queue based on linked nodes 272
Thread-safe priority queue 272
Thread-safe delay queue 272
Thread-safe transfer queue 273
Thread-safe synchronous queue 273
Thread-safe stack 273
Synchronized collections 274

Concurrent versus synchronized collections 274
123. Breadth-first search 275
124. Trie 277

Inserting in a Trie 279
Finding in a Trie 280
Deleting from a Trie 281

125. Tuple 282
126. Union Find 284

Implementing the find operation 287
Implementing the union operation 287

127. Fenwick Tree or Binary Indexed Tree 289
128. Bloom filter 293

Summary 296

Chapter 6: Java I/O Paths, Files, Buffers, Scanning, and
Formatting 297

Problems 297
Solutions 299

129. Creating file paths 299
Creating a path relative to the file store root 300
Creating a path relative to the current folder 301
Creating an absolute path 301
Creating a path using shortcuts 302

130. Converting file paths 303
131. Joining file paths 305
132. Constructing a path between two locations 306
133. Comparing file paths 307

Path.equals() 308
Paths representing the same file/folder 308
Lexicographical comparison 309
Partial comparing 309

134. Walking paths 309
Trivial traversal of a folder 310
Searching for a file by name 312

Table of Contents

[vii]

Deleting a folder 314
Copying a folder 315
JDK 8, Files.walk() 318

135. Watching paths 319
Watching a folder for changes 320

136. Streaming a file's content 323
137. Searching for files/folders in a file tree 324
138. Reading/writing text files efficiently 326

Reading text files in memory 331
Writing text files 332

139. Reading/writing binary files efficiently 333
Reading binary files into memory 336
Writing binary files 337

140. Searching in big files 338
Solution based on BufferedReader 339
Solution based on Files.readAllLines() 339
Solution based on Files.lines() 340
Solution based on Scanner 340
Solution based on MappedByteBuffer 341

141. Reading a JSON/CSV file as an object 342
Read/write a JSON file as an object 342

Using JSON-B 343
Using Jackson 344
Using Gson 346

Reading a CSV file as an object 346
142. Working with temporary files/folders 347

Creating a temporary folder/file 348
Deleting a temporary folder/file via shutdown-hook 349
Deleting a temporary folder/file via deleteOnExit() 350
Deleting a temporary file via DELETE_ON_CLOSE 351

143. Filtering files 352
Filtering via Files.newDirectoryStream() 352
Filtering via FilenameFilter 355
Filtering via FileFilter 355

144. Discovering mismatches between two files 356
145. Circular byte buffer 358
146. Tokenizing files 366
147. Writing formatted output directly to a file 371
148. Working with Scanner 374

Scanner versus BufferedReader 378
Summary 378

Chapter 7: Java Reflection Classes, Interfaces, Constructors,
Methods, and Fields 379

Problems 379
Solutions 381

149. Inspecting packages 381
Getting the classes of a package 382

Table of Contents

[viii]

Inspecting packages inside modules 385
150. Inspecting classes 386

Get the name of the Pair class via an instance 386
Getting the Pair class modifiers 387
Getting the Pair class implemented interfaces 387
Getting the Pair class constructors 388
Getting the Pair class fields 388
Getting the Pair class methods 389
Getting the Pair class module 390
Getting the Pair class superclass 390
Getting the name of a certain type 390
Getting a string that describes the class 392
Getting the type descriptor string for a class 392
Getting the component type of an array 392
Getting a class for an array type whose component type is described by
Pair 393

151. Instantiating via a reflected constructor 393
Instantiating a class via a private constructor 395
Instantiating a class from a JAR 396
Useful snippets of code 397

152. Getting the annotation of a receiver type 398
153. Getting synthetic and bridge constructs 399
154. Checking the variable number of arguments 401
155. Checking default methods 402
156. Nest-based access control via reflection 402

Access via the Reflection API 404
157. Reflection for getters and setters 406

Fetching getters and setters 407
Generating getters and setters 409

158. Reflecting annotations 414
Inspecting package annotations 415
Inspecting class annotations 415
Inspecting methods annotations 416
Inspecting annotations of the thrown exceptions 417
Inspecting annotations of the return type 417
Inspecting annotations of the method's parameters 418
Inspecting annotations of fields 419
Inspecting annotations of the superclass 419
Inspecting annotations of interfaces 420
Get annotations by type 421
Get a declared annotation 421

159. Invoking an instance method 421
160. Getting static methods 422
161. Getting generic types of method, fields, and exceptions 424

Generics of methods 425
Generics of fields 426
Generics of a superclass 426
Generics of interfaces 427
Generics of exceptions 427

Table of Contents

[ix]

162. Getting public and private fields 428
163. Working with arrays 429
164. Inspecting modules 430
165. Dynamic proxies 432

Implementing a dynamic proxy 433
Summary 436

Chapter 8: Functional Style Programming - Fundamentals and
Design Patterns 437

Problems 437
Solutions 438

166. Writing functional interfaces 438
Day 1 (filtering melons by their type) 439
Day 2 (filtering melons of a certain weight) 440
Day 3 (filtering melons by type and weight) 440
Day 4 (pushing the behavior as a parameter) 441
Day 5 (implementing another 100 filters) 443
Day 6 (anonymous classes can be written as lambdas) 444
Day 7 (abstracting the List type) 445

167. Lambdas in a nutshell 447
168. Implementing the Execute Around pattern 448
169. Implementing the Factory pattern 450
170. Implementing the Strategy pattern 452
171. Implementing the Template Method pattern 454
172. Implementing the Observer pattern 456
173. Implementing the Loan pattern 459
174. Implementing the Decorator pattern 462
175. Implementing the Cascaded Builder pattern 466
176. Implementing the Command pattern 467

Summary 471

Chapter 9: Functional Style Programming - a Deep Dive 472
Problems 472
Solutions 474

177. Testing high-order functions 474
Testing a method that takes a lambda as a parameter 474
Testing a method that returns a functional interface 475

178. Testing methods that use lambdas 476
179. Debugging lambdas 478
180. Filtering the non-zero elements of a stream 482
181. Infinite streams, takeWhile(), and dropWhile() 484

Infinite sequential ordered stream 485
Unlimited stream of pseudorandom values 487
Infinite sequential unordered stream 489
Take while a predicate returns true 489
Drop while a predicate returns true 491

182. Mapping the elements of a stream 493

Table of Contents

[x]

Using Stream.map() 494
Using Stream.flatMap() 497

183. Finding elements in a stream 500
findAny 501
findFirst 501

184. Matching elements in a stream 503
185. Sum, max, and min in a stream 504

The sum(), min(), and max() terminal operations 505
Reducing 506

186. Collecting the result of a stream 509
187. Joining the results of a stream 513
188. Summarization collectors 514

Summing 514
Averaging 516
Counting 517
Maximum and minimum 517
Getting all 518

189. Grouping 518
Single-level grouping 519
Multilevel grouping 526

190. Partitioning 528
191. Filtering, flattening, and mapping collectors 531

filtering() 532
mapping() 533
flatMapping() 534

192. Teeing 535
193. Writing a custom collector 538

The supplier – Supplier<A> supplier(); 541
Accumulating elements – BiConsumer<A, T> accumulator(); 541
Applying the final transformation – Function<A, R> finisher(); 542
Parallelizing the collector – BinaryOperator<A> combiner(); 542
Returning the final result – Function<A, R> finisher(); 543
Characteristics – Set<Characteristics> characteristics(); 543
Testing time 543
Custom collecting via collect() 544

194. Method reference 545
Method reference to a static method 545
Method reference to an instance method 546
Method reference to a constructor 547

195. Parallel processing of streams 547
Spliterators 551
Writing a custom Spliterator 553

196. Null-safe streams 554
197. Composing functions, predicates, and comparators 556

Composing predicates 556
Composing comparators 558
Composing functions 560

198. Default methods 562

Table of Contents

[xi]

Summary 563

Chapter 10: Concurrency - Thread Pools, Callables, and
Synchronizers 564

Problems 564
Solutions 566

199. Thread life cycle states 566
The NEW state 567
The RUNNABLE state 567
The BLOCKED state 568
The WAITING state 570
The TIMED_WAITING state 571
The TERMINATED state 572

200. Object- versus class-level locking 573
Locking at the object level 573
Lock at the class level 574
Good to know 575

201. Thread pools in Java 576
Executor 576
ExecutorService 577
ScheduledExecutorService 579
Thread pools via Executors 580

202. Thread pool with a single thread 581
Producer waits for the consumer to be available 582
Producer doesn't wait for the consumer to be available 588

203. Thread pool with a fixed number of threads 589
204. Cached and scheduled thread pools 591
205. Work-stealing thread pool 598

A large number of small tasks 601
A small number of time-consuming tasks 603

206. Callable and Future 604
Canceling a Future 609

207. Invoking multiple Callable tasks 610
208. Latches 613
209. Barrier 616
210. Exchanger 621
211. Semaphores 624
212. Phasers 628

Summary 633

Chapter 11: Concurrency - Deep Dive 634
Problems 634
Solutions 635

213. Interruptible methods 636
214. Fork/join framework 639

Computing the sum via RecursiveTask 641
Computing Fibonacci via RecursiveAction 643
Using CountedCompleter 645

Table of Contents

[xii]

215. Fork/join framework and compareAndSetForkJoinTaskTag() 648
216. CompletableFuture 651

Running asynchronous task and return void 652
Running an asynchronous task and returning a result 653
Running an asynchronous task and returning a result via an explicit
thread pool 653
Attaching a callback that processes the result of an asynchronous task
and returns a result 654
Attaching a callback that processes the result of an asynchronous task
and returns void 656
Attaching a callback that runs after an asynchronous task and returns
void 657
Handling exceptions of an asynchronous task via exceptionally() 658
JDK 12 exceptionallyCompose() 664
Handling exceptions of an asynchronous task via handle() 665
Explicitly complete a CompletableFuture 667

217. Combining multiple CompletableFuture instances 668
Combining via thenCompose() 668
Combining via thenCombine() 670
Combining via allOf() 671
Combining via anyOf() 672

218. Optimizing busy waiting 674
219. Task Cancellation 675
220. ThreadLocal 677

Per-thread instances 677
Per-thread context 680

221. Atomic variables 682
Adders and accumulators 685

222. ReentrantLock 687
223. ReentrantReadWriteLock 690
224. StampedLock 693
225. Deadlock (dining philosophers) 697

Summary 701

Chapter 12: Optional 702
Problems 702
Solutions 704

226. Initializing Optional 705
227. Optional.get() and missing value 705
228. Returning an already-constructed default value 706
229. Returning a non-existent default value 707
230. Throwing NoSuchElementException 708
231. Optional and null references 709
232. Consuming a present Optional class 710
233. Returning a present Optional class or another one 712
234. Chaining lambdas via orElseFoo() 712
235. Do not use Optional just for getting a value 715
236. Do not use Optional for fields 715

Table of Contents

[xiii]

237. Do not use Optional in constructor args 716
238. Do not use Optional in setter args 718
239. Do not use Optional in method args 719
240. Do not use Optional to return empty or null collections or arrays 721
241. Avoiding Optional in collections 722
242. Confusing of() with ofNullable() 724
243. Optional<T> versus OptionalInt 725
244. Asserting equality of Optionals 726
245. Transforming values via Map() and flatMap() 727
246. Filter values via Optional.filter() 729
247. Chaining the Optional and Stream APIs 730
248. Optional and identity-sensitive operations 731
249. Returning a boolean if the Optional class is empty 733

Summary 734

Chapter 13: The HTTP Client and WebSocket APIs 735
Problems 735
Solutions 737

250. HTTP/2 737
251. Triggering an asynchronous GET request 738

Query parameter builder 740
252. Setting a proxy 741
253. Setting/getting headers 741

Setting request headers 741
Getting request/response headers 743

254. Specifying the HTTP method 744
255. Setting a request body 745

Creating a body from a string 746
Creating a body from InputStream 746
Creating a body from a byte array 747
Creating a body from a file 747

256. Setting connection authentication 747
257. Setting a timeout 749
258. Setting the redirect policy 749
259. Sending sync and async requests 750

Sending a request synchronously 751
Sending a request asynchronously 751
Sending multiple requests concurrently 752

260. Handling cookies 753
261. Getting response information 754
262. Handling response body types 755

Handling a response body as a string 755
Handling a response body as a file 756
Handling a response body as a byte array 756
Handling a response body as an input stream 756
Handling a response body as a stream of strings 757

263. Getting, updating, and saving a JSON 757

Table of Contents

[xiv]

JSON response to User 759
Updated User to JSON request 759
New User to JSON request 760

264. Compression 760
265. Handling form data 762
266. Downloading a resource 763
267. Uploading with multipart 764
268. HTTP/2 server push 767
269. WebSocket 771

Summary 773

Other Books You May Enjoy 774

Index 777

Preface
The super-fast evolution of the JDK between versions 8 and 12 has increased the
learning curve of modern Java, therefore has increased the time needed for placing
developers in the Plateau of Productivity. Its new features and concepts can be
adopted to solve a variety of modern-day problems. This book enables you to adopt
an objective approach to common problems by explaining the correct practices and
decisions with respect to complexity, performance, readability, and more.

Java Coding Problems will help you complete your daily tasks and meet deadlines. You
can count on the 300+ applications containing 1,000+ examples in this book to cover
the common and fundamental areas of interest: strings, numbers, arrays, collections,
data structures, date and time, immutability, type inference, Optional, Java I/O, Java
Reflection, functional programming, concurrency and the HTTP Client API. Put your
skills on steroids with problems that have been carefully crafted to highlight and
cover the core knowledge that is accessed in daily work. In other words (no matter if
your task is easy, medium or complex) having this knowledge under your tool belt is
a must, not an option.

By the end of this book, you will have gained a strong understanding of Java concepts
and have the confidence to develop and choose the right solutions to your problems.

Who this book is for
Java Coding Problems is especially useful for beginners and intermediate Java
developers. However, the problems looked at here are encountered in the daily work
of any Java developer.

The required technical background is quite thin. Mainly, you should be a Java fan and
have good skills and intuition in following a piece of Java code.

Preface

[2]

What this book covers
Chapter 1, Strings, Numbers, and Math, includes 39 problems that involve strings,
numbers, and mathematical operations. The chapter starts with a bunch of classical
problems for strings such as counting duplicates, reversing a string, and removing
white spaces. The chapter continues with problems dedicated to numbers and
mathematical operations such as summing two large numbers, operation overflow,
comparing two unsigned numbers, computing the floor of a division and a modulus,
and much more. Each problem is passed through several solutions, including Java 8
functional style. Moreover, the chapter covers problems that futures added in JDK 9,
10, 11, and 12.

Chapter 2, Objects, Immutability, and Switch Expressions, includes 18 problems that
involve objects, immutability, and switch expressions. The chapter starts with
several problems about dealing with null references. It continues with problems
regarding checking indexes, equals() and hashCode(), and immutability (for
example, writing immutable classes and passing/returning mutable objects from
immutable classes). The last part of the chapter deals with cloning objects and JDK 12
switch expressions.

Chapter 3, Working with Date and Time, includes 20 problems that involve date and
time. These problems are meant to cover a wide range of topics (converting,
formatting, adding, subtracting, defining periods/durations, computing, and so on)
via Date, Calendar, LocalDate, LocalTime, LocalDateTime, ZoneDateTime,
OffsetDateTime, OffsetTime, Instant, and so on. By the end of this chapter, you
will have no problems shaping date and time to conform to your application's needs.

Chapter 4, Type Inference, includes 21 problems that involve JEP 286, Java Local
Variable Type Inference (LVTI), or the var type. These problems have been
carefully crafted to reveal the best practices and common mistakes involved in using
var. By the end of this chapter, you will have everything you need to know about
var to push it in production.

Chapter 5, Arrays, Collections, and Data Structures, includes 30 problems that involve
arrays, collections, and several data structures. The aim is to provide solutions to a
category of problems encountered in a wide range of applications, such as sorting,
finding, comparing, ordering, reversing, filling, merging, copying, replacing, and so
on. The provided solutions are implemented in Java 8-12 and they can be used as the
base for solving other related problems as well. By the end of this chapter, you will
have a solid base of knowledge that's useful for solving a lot of problems that involve
arrays, collections, and data structures.

Preface

[3]

Chapter 6, Java I/O Paths, Files, Buffers, Scanning, and Formatting, includes 20 problems
that involve Java I/O for files. From manipulating, walking, and watching paths to
streaming files and efficient ways for reading/writing text and binary files, we will
cover problems that are a must in the arsenal of any Java developer. With the skills
gained from this chapter, you will be able to tackle most of the common problems
that involve Java I/O files.

Chapter 7, Java Reflection Classes, Interfaces, Constructors, Methods, and Fields, includes
17 problems that involve the Java Reflection API. From classical topics, such as
inspecting and instantiating Java artifacts (for example, modules, packages, classes,
interfaces, super-classes, constructors, methods, annotations, arrays, and so on), to
synthetic and bridge constructs or nest-based access control (JDK 11), this chapter
provides solid coverage of the Java Reflection API.

Chapter 8, Functional Style Programming – Fundamentals and Design Patterns, includes
11 problems that involve Java functional programming. The chapter starts with a
problem designed to acquaint you completely with functional interfaces. It continues
with a suite of design patterns from GoF interpreted in Java functional style.

Chapter 9, Functional Style Programming – Deep Dive, includes 22 problems that
involve Java functional programming. Here, we focus on several problems that
involve classical operations encountered in streams (for example, filters, and maps),
and we discuss infinite streams, null-safe streams, and default methods. A
comprehensive list of problems covers grouping, partitioning, and collectors,
including the JDK 12 teeing() collector and the matter of writing a custom collector.
In addition, takeWhile(), dropWhile(), composing functions, predicates and
comparators, testing and debugging lambdas, and other cool topics are discussed as
well.

Chapter 10, Concurrency – Thread Pools, Callables, and Synchronizers, includes 14
problems that involve Java concurrency. This chapter starts with several fundamental
problems about the thread life cycle and object-/class-level locking. It continues with a
bunch of problems about thread pools in Java, including JDK 8 work-stealing thread
pools. Afterward, we have problems dedicated to Callable and Future. Next, we
dedicate several problems to Java synchronizers (for example, barrier, semaphore,
and exchanger). By the end of this chapter, you should be familiar with the main
coordinates of Java concurrency and be ready to continue with a set of advanced
problems.

Preface

[4]

Chapter 11, Concurrency – Deep Dive, includes 13 problems that involve Java
concurrency. This chapter covers problems about fork/join frameworks,
CompletableFuture, ReentrantLock, ReentrantReadWriteLock, StampedLock,
atomic variables, task cancelation, interruptible methods, thread-local locks, and
deadlocks. Completing this chapter will guarantee the achievement of the
considerable amount of concurrency knowledge needed by any Java developer.

Chapter 12, Optional, includes 24 problems meant to draw several rules for working
with Optional. The problems and solutions presented in this section are based on
the Brian Goetz' (Java's language architect) definition—Optional is intended to provide a
limited mechanism for library method return types where there needed to be a clear way to
represent no result, and using null for such was overwhelmingly likely to cause errors. But
where there are rules, there are exceptions as well. Therefore, do not conclude that the
rules (or practices) presented here should be followed (or avoided) at all costs. Like
always, the solution depends on the problem.

Chapter 13, HTTP Client and WebSocket APIs, includes 20 problems meant to cover the
HTTP Client and WebSocket APIs. Remember HttpUrlConnection? Well, JDK 11
comes with the HTTP Client API as a reinvention of HttpUrlConnection. The HTTP
Client API is easy to use and supports HTTP/2 (default) and HTTP/1.1. For backward
compatibility, the HTTP Client API will automatically downgrade from HTTP/2 to
HTTP 1.1 when the server doesn't support HTTP/2. Moreover, the HTTP Client API
supports synchronous and asynchronous programming models and relies on streams
to transfer data (reactive streams). It also supports the WebSocket protocol used in
real-time web applications to provide client-server communication with low message
overhead.

To get the most out of this book
You should have fundamental knowledge about the Java language. You should
install the following:

An IDE (recommended, but not a must, is Apache NetBeans 11.x: https:/ ​/
netbeans. ​apache. ​org/ ​)
JDK 12 and Maven 3.3.x
Additional third-party libraries will need to be installed at the right
moment (nothing special)

https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/

Preface

[5]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/​github. ​com/
PacktPublishing/ ​Java- ​Coding- ​Problems. In case there's an update to the code, it will
be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/ ​downloads/
9781789801415_ ​ColorImages. ​pdf.

Code in action
To see the code being executed please visit the following link: http:/ ​/ ​bit.​ly/
2kSgFKf.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf

Preface

[6]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "If the current character exists in the Map instance, then simply
increase its occurrences by 1 with (character, occurrences+1)."

A block of code is set as follows:

public Map<Character, Integer> countDuplicateCharacters(String str) {

 Map<Character, Integer> result = new HashMap<>();

 // or use for(char ch: str.toCharArray()) { ... }
 for (int i = 0; i<str.length(); i++) {
 char ch = str.charAt(i);

 result.compute(ch, (k, v) -> (v == null) ? 1 : ++v);
 }

 return result;
}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

for (int i = 0; i < str.length(); i++) {
 int cp = str.codePointAt(i);
 String ch = String.valueOf(Character.toChars(cp));
 if(Character.charCount(cp) == 2) { // 2 means a surrogate pair
 i++;
 }
}

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "In Java, the logical AND operator is represented as &&, the
logical OR operator is represented as ||, and the logical XOR operator is represented
as ^."

Preface

[7]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Strings, Numbers, and Math

This chapter includes 39 problems that involve strings, numbers, and mathematical
operations. We will start by looking at a bunch of classical problems for strings such
as counting duplicates, reversing a string, and removing white spaces. Then, we will
look at problems dedicated to numbers and mathematical operations such as
summing two large numbers and operation overflow, comparing two unsigned
numbers, and computing the floor of a division and modulus. Each problem is passed
through several solutions, including Java 8's functional style. Moreover, we will be
covering problems that concern JDK 9, 10, 11, and 12.

By the end of this chapter, you will know how to use a bunch of techniques so that
you can manipulate strings and apply, adapt, and adjust them to many other
problems. You will also know how to solve mathematical corner cases that may lead
to weird and unpredictable results.

Problems
Use the following problems to test your string manipulation and mathematical corner
case programming prowess. I strongly encourage you to give each problem a try
before you turn to the solutions and download the example programs:

Counting duplicate characters: Write a program that counts duplicate1.
characters from a given string.
Finding the first non-repeated character: Write a program that returns the2.
first non-repeated character from a given string.
Reversing letters and words: Write a program that reverses the letters of3.
each word and a program that reverses the letters of each word and the
words themselves.
Checking whether a string contains only digits: Write a program that4.
checks whether the given string contains only digits.

Strings, Numbers, and Math Chapter 1

[9]

Counting vowels and consonants: Write a program that counts the5.
number of vowels and consonants in a given string. Do this for the English
language, which has five vowels (a, e, i, o, and u).
Counting occurrences of a certain character: Write a program that counts6.
the occurrences of a certain character in a given string.
Converting String into int, long, float, or double: Write a program7.
that converts the given String object (representing a number) into int,
long, float, or double.
Removing white spaces from a string: Write a program that removes all8.
white spaces from the given string.
Joining multiple strings with a delimiter: Write a program that joins the9.
given strings by the given delimiter.
Generating all permutations: Write a program that generates all of the10.
permutations of a given string.
Checking whether a string is a palindrome: Write a program that11.
determines whether the given string is a palindrome or not.
Removing duplicate characters: Write a program that removes the12.
duplicate characters from the given string.
Removing given characters: Write a program that removes the given13.
character from the given string.
Finding the character with the most appearances: Write a program that14.
finds the character with the most appearances in the given string.
Sorting an array of strings by length: Write a program that sorts by the15.
length of the given array of strings.
Checking that a string contains a substring: Write a program that checks16.
whether the given string contains the given substring.
Counting substring occurrences a string: Write a program that counts the17.
occurrences of a given string in another given string.
Checking whether two strings are anagrams: Write a program that checks18.
whether two strings are anagrams. Consider that an anagram of a string is
a permutation of this string by ignoring capitalization and white spaces.
Declaring multiline strings (text blocks): Write a program that declares19.
multiline strings or text blocks.
Concatenating the same string n times: Write a program that concatenates20.
the same string a given number of times.
Removing leading and trailing spaces: Write a program that removes the21.
leading and trailing spaces of the given string.

Strings, Numbers, and Math Chapter 1

[10]

Finding the longest common prefix: Write a program that finds the longest22.
common prefix of given strings.
Applying indentation: Write several snippets of code to apply indentation23.
to the given text.
Transforming strings: Write several snippets of code to transform a string24.
into another string.
Computing the minimum and maximum of two numbers: Write a25.
program that returns the minimum and maximum of two numbers.
Summing two large int/long numbers and operation overflow: Write a26.
program that sums two large int/long numbers and throws an arithmetic
exception in the case of an operation overflow.
String as an unsigned number in the radix: Write a program that parses27.
the given string into an unsigned number (int or long) in the given radix.
Converting into a number by an unsigned conversion: Write a program28.
that converts a given int number into long by an unsigned conversion.
Comparing two unsigned numbers: Write a program that compares the29.
given two numbers as unsigned.
Division and modulo of unsigned values: Write a program that computes30.
the division and modulo of the given unsigned value.
double/float is a finite floating-point value: Write a program that31.
determines whether the given double/float value is a finite floating-point
value.
Applying logical AND/OR/XOR to two boolean expressions: Write a32.
program that applies the logical AND/OR/XOR to two boolean expressions.
Converting BigInteger into a primitive type: Write a program that33.
extracts the primitive type value from the given BigInteger.
Converting long into int: Write a program that converts long into int.34.
Computing the floor of a division and modulus: Write a program that35.
computes the floor division and the floor modulus of the given dividend
(x) and divisor (y).
Next floating-point value: Write a program that returns the next floating-36.
point adjacent to the given float/double value in the direction of positive
and negative infinity.
Multiplying two large int/long values and operation overflow: Write a37.
program that multiplies two large int/long values and throws an
arithmetic exception in the case of operation overflow.

Strings, Numbers, and Math Chapter 1

[11]

Fused Multiply Add (FMA): Write a program that takes three38.
float/double values (a, b, c) and computes a * b + c in an efficient way.
Compact number formatting: Write a program that formats the number39.
1,000,000 to 1M (US locale) and to 1 mln (Italian locale). In addition, parse
1M and 1 mln from a string into a number.

Solutions
The following sections describe solutions to the preceding problems. Remember that
there usually isn't a single correct way to solve a particular problem. Also, remember
that the explanations shown here only include the most interesting and important
details needed to solve the problems. You can download the example solutions to see
additional details and experiment with the programs from https:/ ​/​github. ​com/
PacktPublishing/ ​Java- ​Coding- ​Problems.

1. Counting duplicate characters
The solution to counting the characters in a string (including special characters such
as #, $, and %) implies taking each character and comparing them with the rest.
During the comparison, the counting state is maintained via a numeric counter that's
increased by one each time the current character is found.

There are two solutions to this problem.

The first solution iterates the string characters and uses Map to store the characters as
keys and the number of occurrences as values. If the current character was never
added to Map, then add it as (character, 1). If the current character exists in Map,
then simply increase its occurrences by 1, for example, (character,
occurrences+1). This is shown in the following code:

public Map<Character, Integer> countDuplicateCharacters(String str) {

 Map<Character, Integer> result = new HashMap<>();

 // or use for(char ch: str.toCharArray()) { ... }
 for (int i = 0; i<str.length(); i++) {
 char ch = str.charAt(i);

 result.compute(ch, (k, v) -> (v == null) ? 1 : ++v);
 }

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Strings, Numbers, and Math Chapter 1

[12]

 return result;
}

Another solution relies on Java 8's stream feature. This solution has three steps. The
first two steps are meant to transform the given string into Stream<Character>,
while the last step is responsible for grouping and counting the characters. Here are
the steps:

Call the String.chars() method on the original string. This will1.
return IntStream. This IntStream contains an integer representation of
the characters from the given string.
Transform IntStream into a stream of characters via the mapToObj()2.
method (convert the integer representation into the human-friendly
character form).
Finally, group the characters (Collectors.groupingBy()) and count3.
them (Collectors.counting()).

The following snippet of code glues these three steps into a single method:

public Map<Character, Long> countDuplicateCharacters(String str) {

 Map<Character, Long> result = str.chars()
 .mapToObj(c -> (char) c)
 .collect(Collectors.groupingBy(c -> c, Collectors.counting()));

 return result;
}

What about Unicode characters?
We are pretty familiar with ASCII characters. We have unprintable control codes
between 0-31, printable characters between 32-127, and extended ASCII codes
between 128-255. But what about Unicode characters? Consider this section for each
problem that requires that we manipulate Unicode characters.

So, in a nutshell, early Unicode versions contained characters with values less than
65,535 (0xFFFF). Java represents these characters using the 16-bit char data type.
Calling charAt(i) works as expected as long as i doesn't exceed 65,535. But over
time, Unicode has added more characters and the maximum value has reached
1,114,111 (0x10FFFF). These characters don't fit into 16 bits, and so 32-bit values
(known as code points) were considered for the UTF-32 encoding scheme.

Strings, Numbers, and Math Chapter 1

[13]

Unfortunately, Java doesn't support UTF-32! Nevertheless, Unicode has come up with
a solution for still using 16 bits to represent these characters. This solution implies the
following:

16-bit high surrogates: 1,024 values (U+D800 to U+DBFF)
16-bit low surrogates: 1,024 values (U+DC00 to U+DFFF)

Now, a high surrogate followed by a low surrogate defines what is known as a
surrogate pair. Surrogate pairs are used to represent values between 65,536 (0x10000)
and 1,114,111 (0x10FFFF). So, certain characters, known as Unicode supplementary
characters, are represented as Unicode surrogate pairs (a one-character (symbol) fits
in the space of a pair of characters) that are merged into a single code point. Java takes
advantage of this representation and exposes it via a suite of methods such as
codePointAt(), codePoints(), codePointCount(),
and offsetByCodePoints() (take a look at the Java documentation for details).
Calling codePointAt() instead of charAt(), codePoints() instead of
chars(), and so on helps us to write solutions that cover ASCII and Unicode
characters as well.

For example, the well-known two hearts symbol is a Unicode surrogate pair that can
be represented as a char[] containing two values: \uD83D and \uDC95. The code
point of this symbol is 128149. To obtain a String object from this code point, call
String str = String.valueOf(Character.toChars(128149)). Counting the
code points in str can be done by calling str.codePointCount(0,
str.length()), which returns 1 even if the str length is 2. Calling
str.codePointAt(0) returns 128149 and calling str.codePointAt(1)
returns 56469. Calling Character.toChars(128149) returns 2 since two characters
are needed to represent this code point being a Unicode surrogate pair. For ASCII and
Unicode 16- bit characters, it will return 1.

So, if we try to rewrite the first solution (that iterates the string characters and
uses Map to store the characters as keys and the number of occurrences as values) to
support ASCII and Unicode (including surrogate pairs), we obtain the following code:

public static Map<String, Integer>
 countDuplicateCharacters(String str) {

 Map<String, Integer> result = new HashMap<>();

 for (int i = 0; i < str.length(); i++) {
 int cp = str.codePointAt(i);
 String ch = String.valueOf(Character.toChars(cp));
 if(Character.charCount(cp) == 2) { // 2 means a surrogate pair

Strings, Numbers, and Math Chapter 1

[14]

 i++;
 }

 result.compute(ch, (k, v) -> (v == null) ? 1 : ++v);
 }

 return result;
}

The highlighted code can be written as follows, as well:

String ch = String.valueOf(Character.toChars(str.codePointAt(i)));
if (i < str.length() - 1 && str.codePointCount(i, i + 2) == 1) {
 i++;
}

Finally, trying to rewrite the Java 8 functional style solution to cover Unicode
surrogate pairs can be done as follows:

public static Map<String, Long> countDuplicateCharacters(String str) {

 Map<String, Long> result = str.codePoints()
 .mapToObj(c -> String.valueOf(Character.toChars(c)))
 .collect(Collectors.groupingBy(c -> c, Collectors.counting()));

 return result;
}

For third-party library support, please consider
Guava: Multiset<String>.

Some of the following problems will provide solutions that cover ASCII, 16-bit
Unicode, and Unicode surrogate pairs as well. They have been chosen arbitrarily, and
so, by relying on these solutions, you can easily write solutions for problems that
don't provide such a solution.

2. Finding the first non-repeated character
There are different solutions to finding the first non-repeated character in a string.
Mainly, the problem can be solved in a single traversal of the string or in more
complete/partial traversals.

Strings, Numbers, and Math Chapter 1

[15]

In the single traversal approach, we populate an array that's meant to store the
indexes of all of the characters that appear exactly once in the string. With this array,
simply return the smallest index containing a non-repeated character:

private static final int EXTENDED_ASCII_CODES = 256;
...
public char firstNonRepeatedCharacter(String str) {

 int[] flags = new int[EXTENDED_ASCII_CODES];

 for (int i = 0; i < flags.length; i++) {
 flags[i] = -1;
 }

 for (int i = 0; i < str.length(); i++) {
 char ch = str.charAt(i);
 if (flags[ch] == -1) {
 flags[ch] = i;
 } else {
 flags[ch] = -2;
 }
 }

 int position = Integer.MAX_VALUE;

 for (int i = 0; i < EXTENDED_ASCII_CODES; i++) {
 if (flags[i] >= 0) {
 position = Math.min(position, flags[i]);
 }
 }

 return position == Integer.MAX_VALUE ?
 Character.MIN_VALUE : str.charAt(position);
}

This solution assumes that every character from the string is part of the extended
ASCII table (256 codes). Having codes greater than 256 requires us to increase the size
of the array accordingly (http:/ ​/​www. ​alansofficespace. ​com/ ​unicode/ ​unicd99. ​htm).
The solution will work as long as the array size is not extended beyond the largest
value of the char type, which is Character.MAX_VALUE, that is, 65,535. On the other
hand, Character.MAX_CODE_POINT returns the maximum value of a Unicode code
point, 1,114,111. To cover this range, we need another implementation based on
codePointAt() and codePoints().

http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm

Strings, Numbers, and Math Chapter 1

[16]

Thanks to the single traversal approach, this is pretty fast. Another solution consists
of looping the string for each character and counting the number of occurrences.
Every second occurrence (duplicate) simply breaks the loop, jumps to the next
character, and repeats the algorithm. If the end of the string is reached, then it returns
the current character as the first non-repeatable character. This solution is available in
the code bundled with this book.

Another solution that's presented here relies on LinkedHashMap. This Java map is an
insertion-order map (it maintains the order in which the keys were inserted into the
map) and is very convenient for this solution. LinkedHashMap is populated with
characters as keys and the number of occurrences as values. Once LinkedHashMap is
complete, it will return the first key that has a value equal to 1. Thanks to the
insertion-order feature, this is the first non-repeatable character in the string:

public char firstNonRepeatedCharacter(String str) {

 Map<Character, Integer> chars = new LinkedHashMap<>();

 // or use for(char ch: str.toCharArray()) { ... }
 for (int i = 0; i < str.length(); i++) {
 char ch = str.charAt(i);

 chars.compute(ch, (k, v) -> (v == null) ? 1 : ++v);
 }

 for (Map.Entry<Character, Integer> entry: chars.entrySet()) {
 if (entry.getValue() == 1) {
 return entry.getKey();
 }
 }

 return Character.MIN_VALUE;
}

In the code bundled with this book, the aforementioned solution has been written in
Java 8 functional style. Moreover, the functional style solution for supporting ASCII,
16-bit Unicode, and Unicode surrogate pairs is as follows:

public static String firstNonRepeatedCharacter(String str) {

 Map<Integer, Long> chs = str.codePoints()
 .mapToObj(cp -> cp)
 .collect(Collectors.groupingBy(Function.identity(),
 LinkedHashMap::new, Collectors.counting()));

 int cp = chs.entrySet().stream()

Strings, Numbers, and Math Chapter 1

[17]

 .filter(e -> e.getValue() == 1L)
 .findFirst()
 .map(Map.Entry::getKey)
 .orElse(Integer.valueOf(Character.MIN_VALUE));

 return String.valueOf(Character.toChars(cp));
}

To understand this code in more detail, please consider the What about Unicode
characters? subsection of the Counting duplicate characters section.

3. Reversing letters and words
First, let's reverse only the letters of each word. The solution to this problem can
exploit the StringBuilder class. The first step consists of splitting the string into an
array of words using a white space as the delimiter (Spring.split(" ")).
Furthermore, we reverse each word using the corresponding ASCII codes and
append the result to StringBuilder. First, we split the given string by space. Then,
we loop the obtained array of words and reverse each word by fetching each
character via charAt() in reverse order:

private static final String WHITESPACE = " ";
...
public String reverseWords(String str) {

 String[] words = str.split(WHITESPACE);
 StringBuilder reversedString = new StringBuilder();

 for (String word: words) {
 StringBuilder reverseWord = new StringBuilder();

 for (int i = word.length() - 1; i >= 0; i--) {
 reverseWord.append(word.charAt(i));
 }

 reversedString.append(reverseWord).append(WHITESPACE);
 }

 return reversedString.toString();
}

Obtaining the same result in Java 8 functional style can be done as follows:

private static final Pattern PATTERN = Pattern.compile(" +");
...

Strings, Numbers, and Math Chapter 1

[18]

public static String reverseWords(String str) {

 return PATTERN.splitAsStream(str)
 .map(w -> new StringBuilder(w).reverse())
 .collect(Collectors.joining(" "));
}

Notice that the preceding two methods return a string containing the letters of each
word reversed, but the words themselves are in the same initial order. Now, let's
consider another method that reverses the letters of each word and the words
themselves. Thanks to the built-in StringBuilder.reverse() method, this is very
easy to accomplish:

public String reverse(String str) {

 return new StringBuilder(str).reverse().toString();
}

For third-party library support, please consider the Apache
Commons Lang, StringUtils.reverse().

4. Checking whether a string contains only
digits
The solution to this problem relies on
the Character.isDigit() or String.matches() method.

The solution relying on Character.isDigit() is pretty simple and fast—loop the
string characters and break the loop if this method returns false:

public static boolean containsOnlyDigits(String str) {

 for (int i = 0; i < str.length(); i++) {
 if (!Character.isDigit(str.charAt(i))) {
 return false;
 }
 }

 return true;
}

Strings, Numbers, and Math Chapter 1

[19]

In Java 8 functional style, the preceding code can be rewritten using anyMatch():

public static boolean containsOnlyDigits(String str) {

 return !str.chars()
 .anyMatch(n -> !Character.isDigit(n));
}

Another solution relies on String.matches(). This method returns a
boolean value indicating whether or not this string matches the given regular
expression:

public static boolean containsOnlyDigits(String str) {

 return str.matches("[0-9]+");
}

Notice that Java 8 functional style and regular expression-based solutions are usually
slow, so if speed is a requirement, then it's better to rely on the first solution using
Character.isDigit().

Avoid solving this problem via parseInt() or parseLong(). First
of all, it's bad practice to catch NumberFormatException and take
business logic decisions in the catch block. Second, these methods
verify whether the string is a valid number, not whether it contains
only digits (for example, -4 is valid).
For third-party library support, please consider the Apache
Commons Lang, StringUtils.isNumeric().

5. Counting vowels and consonants
The following code is for English, but depending on how many languages you are
covering, the number of vowels and consonants may differ and the code should be
adjusted accordingly.

The first solution to this problem requires traversing the string characters and doing
the following:

We need to check whether the current character is a vowel (this is1.
convenient since we only have five pure vowels in English; other languages
have more vowels, but the number is still small).
If the current character is not a vowel, then check whether it sits between2.
'a' and 'z' (this means that the current character is a consonant).

Strings, Numbers, and Math Chapter 1

[20]

Notice that, initially, the given String object is transformed into lowercase. This is
useful to avoid comparisons with uppercase characters. For example, the comparison
is accomplished only against 'a' instead of 'A' and 'a'.

The code for this solution is as follows:

private static final Set<Character> allVowels
 = new HashSet(Arrays.asList('a', 'e', 'i', 'o', 'u'));

public static Pair<Integer, Integer>
 countVowelsAndConsonants(String str) {

 str = str.toLowerCase();
 int vowels = 0;
 int consonants = 0;

 for (int i = 0; i < str.length(); i++) {
 char ch = str.charAt(i);
 if (allVowels.contains(ch)) {
 vowels++;
 } else if ((ch >= 'a' && ch <= 'z')) {
 consonants++;
 }
 }

 return Pair.of(vowels, consonants);
}

In Java 8 functional style, this code can be rewritten using chars() and filter():

private static final Set<Character> allVowels
 = new HashSet(Arrays.asList('a', 'e', 'i', 'o', 'u'));

public static Pair<Long, Long> countVowelsAndConsonants(String str) {

 str = str.toLowerCase();

 long vowels = str.chars()
 .filter(c -> allVowels.contains((char) c))
 .count();

 long consonants = str.chars()
 .filter(c -> !allVowels.contains((char) c))
 .filter(ch -> (ch >= 'a' && ch<= 'z'))
 .count();

 return Pair.of(vowels, consonants);
}

Strings, Numbers, and Math Chapter 1

[21]

The given string is filtered accordingly and the count() terminal operation returns
the result. Relying on partitioningBy() will reduce the code, as follows:

Map<Boolean, Long> result = str.chars()
 .mapToObj(c -> (char) c)
 .filter(ch -> (ch >= 'a' && ch <= 'z'))
 .collect(partitioningBy(c -> allVowels.contains(c), counting()));

return Pair.of(result.get(true), result.get(false));

Done! Now, let's see how we can count occurrences of a certain character in a string.

6. Counting the occurrences of a certain
character
A simple solution to this problem consists of the following two steps:

Replace every occurrence of the character in the given string with ""1.
(basically, this is like removing all of the occurrences of this character in the
given string).
Subtract the length of the string that was obtained in the first step from the2.
length of the initial string.

The code for this method is as follows:

public static int countOccurrencesOfACertainCharacter(
 String str, char ch) {

 return str.length() - str.replace(String.valueOf(ch), "").length();
}

The following solution covers Unicode surrogate pairs as well:

public static int countOccurrencesOfACertainCharacter(
 String str, String ch) {

 if (ch.codePointCount(0, ch.length()) > 1) {
 // there is more than 1 Unicode character in the given String
 return -1;
 }

 int result = str.length() - str.replace(ch, "").length();

 // if ch.length() return 2 then this is a Unicode surrogate pair

Strings, Numbers, and Math Chapter 1

[22]

 return ch.length() == 2 ? result / 2 : result;
}

Another easy to implement and fast solution consists of looping the string characters
(a single traversal) and comparing each character with the given character. Increase
the counter by one for every match:

public static int countOccurrencesOfACertainCharacter(
 String str, char ch) {

 int count = 0;

 for (int i = 0; i < str.length(); i++) {
 if (str.charAt(i) == ch) {
 count++;
 }
 }

 return count;
}

The solution that covers the Unicode surrogate pairs is in the code that's bundled
with this book. In Java 8 functional style, one solution consists of using filter() or
reduce(). For example, using filter() will result in the following code:

public static long countOccurrencesOfACertainCharacter(
 String str, char ch) {

 return str.chars()
 .filter(c -> c == ch)
 .count();
}

The solution that covers the Unicode surrogate pairs is in the code that's bundled
with this book.

For third-party library support, please consider Apache Commons
Lang, StringUtils.countMatches(), Spring Framework,
StringUtils.countOccurrencesOf(), and Guava,
CharMatcher.is().countIn().

Strings, Numbers, and Math Chapter 1

[23]

7. Converting a string into an int, long, float,
or double
Let's consider the following strings (negatives can be used as well):

private static final String TO_INT = "453";
private static final String TO_LONG = "45234223233";
private static final String TO_FLOAT = "45.823F";
private static final String TO_DOUBLE = "13.83423D";

A proper solution for converting String into int, long, float, or double consists
of using the following Java methods of the Integer, Long, Float, and Double
classes—parseInt(), parseLong(), parseFloat(), and parseDouble():

int toInt = Integer.parseInt(TO_INT);
long toLong = Long.parseLong(TO_LONG);
float toFloat = Float.parseFloat(TO_FLOAT);
double toDouble = Double.parseDouble(TO_DOUBLE);

Converting String into an Integer, Long, Float, or Double object can be
accomplished via the following Java methods—Integer.valueOf(),
Long.valueOf(), Float.valueOf(), and Double.valueOf():

Integer toInt = Integer.valueOf(TO_INT);
Long toLong = Long.valueOf(TO_LONG);
Float toFloat = Float.valueOf(TO_FLOAT);
Double toDouble = Double.valueOf(TO_DOUBLE);

When a String cannot be converted successfully, Java throws
a NumberFormatException exception. The following code speaks for itself:

private static final String WRONG_NUMBER = "452w";

try {
 Integer toIntWrong1 = Integer.valueOf(WRONG_NUMBER);
} catch (NumberFormatException e) {
 System.err.println(e);
 // handle exception
}

try {
 int toIntWrong2 = Integer.parseInt(WRONG_NUMBER);
} catch (NumberFormatException e) {
 System.err.println(e);
 // handle exception
}

Strings, Numbers, and Math Chapter 1

[24]

For third-party library support, please consider Apache Commons
BeanUtils: IntegerConverter, LongConverter,
FloatConverter, and DoubleConverter.

8. Removing white spaces from a string
The solution to this problem consists of using the String.replaceAll() method
with the \s regular expression. Mainly, \s removes all white spaces, including the
non-visible ones, such as \t, \n, and \r:

public static String removeWhitespaces(String str) {
 return str.replaceAll("\\s", "");
}

Starting with JDK 11, String.isBlank() checks whether the string
is empty or contains only white space code points. For third-party
library support, please consider Apache Commons
Lang, StringUtils.deleteWhitespace(), and the Spring
Framework, StringUtils.trimAllWhitespace().

9. Joining multiple strings with a delimiter
There are several solutions that fit well and solve this problem. Before Java 8, a
convenient approach relied on StringBuilder, as follows:

public static String joinByDelimiter(char delimiter, String...args) {

 StringBuilder result = new StringBuilder();

 int i = 0;
 for (i = 0; i < args.length - 1; i++) {
 result.append(args[i]).append(delimiter);
 }
 result.append(args[i]);

 return result.toString();
}

Starting with Java 8, there are at least three more solutions to this problem. One of
these solutions relies on the StringJoiner utility class. This class can be used to
construct a sequence of characters separated by a delimiter (for example, a comma).

Strings, Numbers, and Math Chapter 1

[25]

It supports an optional prefix and suffix as well (ignored here):

public static String joinByDelimiter(char delimiter, String...args) {
 StringJoiner joiner = new StringJoiner(String.valueOf(delimiter));

 for (String arg: args) {
 joiner.add(arg);
 }

 return joiner.toString();
}

Another solution relies on the String.join() method. This method was introduced
in Java 8 and comes in two flavors:

String join ​(CharSequence delimiter, CharSequence... elems)
String join ​(CharSequence delimiter,
 Iterable<? extends CharSequence> elems)

An example of joining several strings delimited by a space is as follows:

String result = String.join(" ", "how", "are", "you"); // how are you

Going further, Java 8 streams and Collectors.joining() can be useful as well:

public static String joinByDelimiter(char delimiter, String...args) {
 return Arrays.stream(args, 0, args.length)
 .collect(Collectors.joining(String.valueOf(delimiter)));
}

Pay attention to concatenating strings via the += operator, and
the concat() and String.format() methods. These can be used
to join several strings, but they are prone to performance penalties.
For example, the following code relies on += and is much slower
than relying on StringBuilder :

String str = "";
for(int i = 0; i < 1_000_000; i++) {
 str += "x";
}

+= is appended to a string and reconstructs a new string, and that
costs time.

For third-party library support, please consider Apache Commons
Lang, StringUtils.join(), and Guava, Joiner.

Strings, Numbers, and Math Chapter 1

[26]

10. Generating all permutations
Problems that involve permutations commonly involve recursivity as well. Basically,
recursivity is defined as a process where some initial state is given and each successive
state is defined in terms of the preceding state.

In our case, the state can be materialized by the letters of the given string. The initial
state contains the initial string and each successive state can be computed by the
following formula—each letter of the string will become the first letter of the string
(swap positions) and then permute all of the remaining letters using a recursive call.
While non-recursive or other recursive solutions exist, this is a classical solution to
this problem.

Representing this solution for a string, ABC, can be done like so (notice how
permutations are done):

Coding this algorithm will result in something like the following:

public static void permuteAndPrint(String str) {

 permuteAndPrint("", str);
}

private static void permuteAndPrint(String prefix, String str) {

 int n = str.length();

 if (n == 0) {
 System.out.print(prefix + " ");
 } else {
 for (int i = 0; i < n; i++) {
 permuteAndPrint(prefix + str.charAt(i),
 str.substring(i + 1, n) + str.substring(0, i));

Strings, Numbers, and Math Chapter 1

[27]

 }
 }
}

Initially, the prefix should be an empty string, "". At each iteration, the prefix will
concatenate (fix) the next letter from the string. The remaining letters are passed
through the method again.

Let's suppose that this method lives in a utility class named Strings. You can call it
like so:

Strings.permuteAndStore("ABC");

This will produce the following output:

ABC ACB BCA BAC CAB CBA

Notice that this solution prints the result on the screen. Storing the result implies
adding Set to the implementation. It is preferable to use Set since it eliminates
duplicates:

public static Set<String> permuteAndStore(String str) {

 return permuteAndStore("", str);
}

private static Set<String>
 permuteAndStore(String prefix, String str) {

 Set<String> permutations = new HashSet<>();
 int n = str.length();

 if (n == 0) {
 permutations.add(prefix);
 } else {
 for (int i = 0; i < n; i++) {
 permutations.addAll(permuteAndStore(prefix + str.charAt(i),
 str.substring(i + 1, n) + str.substring(0, i)));
 }
 }

 return permutations;
}

Strings, Numbers, and Math Chapter 1

[28]

For example, if the passed string is TEST, then Set will cause the following output
(these are all unique permutations):

ETST SETT TEST TTSE STTE STET TETS TSTE TSET TTES ESTT ETTS

Using List instead of Set will result in the following output (notice the duplicates):

TEST TETS TSTE TSET TTES TTSE ESTT ESTT ETTS ETST ETST ETTS STTE STET
STET STTE SETT SETT TTES TTSE TEST TETS TSTE TSET

There are 24 permutations. It is easy to determine the number of resulted
permutations by computing the n factorial (n!). For n=4 (length of the string), 4! = 1 x 2
x 3 x 4 = 24. When expressed in recursive style, this is n! = n x (n-1)!.

Since n! results in high numbers extremely fast (example, 10! =
3628800), it is advisable to avoid storing the results. For a 10-
character string such as HELICOPTER, there are 3,628,800
permutations!

Trying to implement this solution in Java 8 functional style will result in something
like the following:

private static void permuteAndPrintStream(String prefix, String str) {

 int n = str.length();

 if (n == 0) {
 System.out.print(prefix + " ");
 } else {
 IntStream.range(0, n)
 .parallel()
 .forEach(i -> permuteAndPrintStream(prefix + str.charAt(i),
 str.substring(i + 1, n) + str.substring(0, i)));
 }
}

As a bonus, a solution that returns Stream<String> is available in the code bundled
with this book.

11. Checking whether a string is a palindrome
Just as a quick reminder, a palindrome (whether a string or a number) looks
unchanged when it's reversed. This means that processing (reading) a palindrome can
be done from both directions and the same result will be obtained (for example, the
word madam is a palindrome, while the word madame is not).

Strings, Numbers, and Math Chapter 1

[29]

An easy to implement solution consists of comparing the letters of the given string in
a meet-in-the-middle approach. Basically, this solution compares the first character with
the last one, the second character with the last by one, and so on until the middle of
the string is reached. The implementation relies on the while statement:

public static boolean isPalindrome(String str) {

 int left = 0;
 int right = str.length() - 1;

 while (right > left) {
 if (str.charAt(left) != str.charAt(right)) {
 return false;
 }

 left++;
 right--;
 }
 return true;
}

Rewriting the preceding solution in a more concise approach will consist of relying on
a for statement instead of a while statement, as follows:

public static boolean isPalindrome(String str) {

 int n = str.length();

 for (int i = 0; i < n / 2; i++) {
 if (str.charAt(i) != str.charAt(n - i - 1)) {
 return false;
 }
 }
 return true;
}

But can this solution be reduced to a single line of code? The answer is yes.

The Java API provides the StringBuilder class, which uses the reverse() method.
As its name suggests, the reverse() method returns the reverse given string. In the
case of a palindrome, the given string should be equal to the reverse version of it:

public static boolean isPalindrome(String str) {

 return str.equals(new StringBuilder(str).reverse().toString());
}

Strings, Numbers, and Math Chapter 1

[30]

In Java 8 functional style, there is a single line of code for this as well. Simply define
IntStream ranging from 0 to half of the given string and use the noneMatch() short-
circuiting terminal operation with a predicate that compares the letters by following
the meet-in-the-middle approach:

public static boolean isPalindrome(String str) {

 return IntStream.range(0, str.length() / 2)
 .noneMatch(p -> str.charAt(p) !=
 str.charAt(str.length() - p - 1));
}

Now, let's talk about removing duplicate characters from the given string.

12. Removing duplicate characters
Let's start with a solution to this problem that relies on StringBuilder. Mainly, the
solution should loop the characters of the given string and construct a new string
containing unique characters (it is not possible to simply remove characters from the
given string since, in Java, a string is immutable).

The StringBuilder class exposes a method named indexOf(), which returns the
index within the given string of the first occurrence of the specified substring (in our
case, the specified character). So, a potential solution to this problem would be to loop
the characters of the given string and add them one by one in StringBuilder every
time the indexOf() method that's applied to the current character returns -1 (this
negative means that StringBuilder doesn't contain the current character):

public static String removeDuplicates(String str) {

 char[] chArray = str.toCharArray(); // or, use charAt(i)
 StringBuilder sb = new StringBuilder();

 for (char ch : chArray) {
 if (sb.indexOf(String.valueOf(ch)) == -1) {
 sb.append(ch);
 }
 }
 return sb.toString();
}

Strings, Numbers, and Math Chapter 1

[31]

The next solution relies on a collaboration between HashSet and StringBuilder.
Mainly, HashSet ensures that duplicates are eliminated, while StringBuilder
stores the resulting string. If HashSet.add() returns true, then we add the character
in StringBuilder as well:

public static String removeDuplicates(String str) {

 char[] chArray = str.toCharArray();
 StringBuilder sb = new StringBuilder();
 Set<Character> chHashSet = new HashSet<>();

 for (char c: chArray) {
 if (chHashSet.add(c)) {
 sb.append(c);
 }
 }
 return sb.toString();
}

The solutions we've presented so far use the toCharArray() method to convert the
given string into char[]. Alternatively, both solutions can use
str.charAt(position) as well.

The third solution relies on Java 8 functional style:

public static String removeDuplicates(String str) {

 return Arrays.asList(str.split("")).stream()
 .distinct()
 .collect(Collectors.joining());
}

First, the solution converts the given string into Stream<String>, where each entry
is actually a single character. Furthermore, the solution applies the stateful
intermediate operation, distinct(). This operation will eliminate duplicates from
the stream, so it returns a stream without duplicates. Finally, the solution calls
the collect() terminal operation and relies on Collectors.joining(), which
simply concatenates the characters into a string in the encounter order.

Strings, Numbers, and Math Chapter 1

[32]

13. Removing a given character
A solution that relies on JDK support can exploit the String.replaceAll()
method. This method replaces each substring (in our case, each character) of the given
string that matches the given regular expression (in our case, the regular expression is
the character itself) with the given replacement (in our case, the replacement is an
empty string, ""):

public static String removeCharacter(String str, char ch) {

 return str.replaceAll(Pattern.quote(String.valueOf(ch)), "");
}

Notice that the regular expression is wrapped in the Pattern.quote() method. This
is needed to escape special characters such as <, (, [, {, \, ^, -, =, $, !, |,], },), ?, *, +, .,
and >. Mainly, this method returns a literal pattern string for the specified string.

Now, let's take a look at a solution that avoids regular expressions. This time, the
solution relies on StringBuilder. Basically, the solution loops the characters of the
given string and compares each character with the character to remove. Each time the
current character is different from the character to remove, the current character is
appended in StringBuilder:

public static String removeCharacter(String str, char ch) {

 StringBuilder sb = new StringBuilder();
 char[] chArray = str.toCharArray();

 for (char c : chArray) {
 if (c != ch) {
 sb.append(c);
 }
 }

 return sb.toString();
}

Finally, let's focus on a Java 8 functional style approach. This is a four-step approach:

Convert the string into IntStream via the String.chars() method1.
Filter IntStream to eliminate duplicates2.
Map the resulted IntStream to Stream<String>3.
Join the strings from this stream and collect them as a single string4.

Strings, Numbers, and Math Chapter 1

[33]

The code for this solution can be written as follows:

public static String removeCharacter(String str, char ch) {

 return str.chars()
 .filter(c -> c != ch)
 .mapToObj(c -> String.valueOf((char) c))
 .collect(Collectors.joining());
}

Alternatively, if we want to remove a Unicode surrogate pair, then we can rely on
codePointAt() and codePoints(), as shown in the following implementation:

public static String removeCharacter(String str, String ch) {

 int codePoint = ch.codePointAt(0);

 return str.codePoints()
 .filter(c -> c != codePoint)
 .mapToObj(c -> String.valueOf(Character.toChars(c)))
 .collect(Collectors.joining());
 }

For third-party library support, please consider Apache Commons
Lang, StringUtils.remove().

Now, let's talk about how to find the character with the most appearances.

14. Finding the character with the most
appearances
A pretty straightforward solution relies on HashMap. This solution consists of three
steps:

First, loop the characters of the given string and put the pairs of the key-1.
value in HashMap where the key is the current character and the value is
the current number of occurrences
Second, compute the maximum value in HashMap (for example, using2.
Collections.max()) representing the maximum number of occurrences
Finally, get the character that has the maximum number of occurrences by3.
looping the HashMap entry set

Strings, Numbers, and Math Chapter 1

[34]

The utility method returns Pair<Character, Integer> containing the character
with the most appearances and the number of appearances (notice that the white
spaces are ignored). If you don't prefer to have this extra class, that is, Pair, then just
rely on Map.Entry<K, V>:

public static Pair<Character, Integer> maxOccurenceCharacter(
 String str) {

 Map<Character, Integer> counter = new HashMap<>();
 char[] chStr = str.toCharArray();

 for (int i = 0; i < chStr.length; i++) {
 char currentCh = chStr[i];
 if (!Character.isWhitespace(currentCh)) { // ignore spaces
 Integer noCh = counter.get(currentCh);
 if (noCh == null) {
 counter.put(currentCh, 1);
 } else {
 counter.put(currentCh, ++noCh);
 }
 }
 }

 int maxOccurrences = Collections.max(counter.values());
 char maxCharacter = Character.MIN_VALUE;

 for (Entry<Character, Integer> entry: counter.entrySet()) {
 if (entry.getValue() == maxOccurrences) {
 maxCharacter = entry.getKey();
 }
 }

 return Pair.of(maxCharacter, maxOccurrences);
}

If using HashMap looks cumbersome, then another solution (that's a little faster)
consists of relying on the ASCII codes. This solution starts with an empty array of 256
indexes (256 is the maximum number of extended ASCII table codes; more
information can be found in the Finding the first non-repeated character section).
Furthermore, this solution loops the characters of the given string and keeps track of
the number of appearances for each character by increasing the corresponding index
in this array:

private static final int EXTENDED_ASCII_CODES = 256;
...
public static Pair<Character, Integer> maxOccurenceCharacter(

Strings, Numbers, and Math Chapter 1

[35]

 String str) {

 int maxOccurrences = -1;
 char maxCharacter = Character.MIN_VALUE;
 char[] chStr = str.toCharArray();
 int[] asciiCodes = new int[EXTENDED_ASCII_CODES];

 for (int i = 0; i < chStr.length; i++) {
 char currentCh = chStr[i];
 if (!Character.isWhitespace(currentCh)) { // ignoring space
 int code = (int) currentCh;
 asciiCodes[code]++;
 if (asciiCodes[code] > maxOccurrences) {
 maxOccurrences = asciiCodes[code];
 maxCharacter = currentCh;
 }
 }
 }

 return Pair.of(maxCharacter, maxOccurrences);
}

The last solution we will discuss here relies on Java 8 functional style:

public static Pair<Character, Long>
 maxOccurenceCharacter(String str) {

 return str.chars()
 .filter(c -> Character.isWhitespace(c) == false) // ignoring space
 .mapToObj(c -> (char) c)
 .collect(groupingBy(c -> c, counting()))
 .entrySet()
 .stream()
 .max(comparingByValue())
 .map(p -> Pair.of(p.getKey(), p.getValue()))
 .orElse(Pair.of(Character.MIN_VALUE, -1L));
}

To start, this solution collects distinct characters as keys in Map, along with their
number of occurrences as values. Furthermore, it uses the Java
8 Map.Entry.comparingByValue() and max() terminal operations to determine
the entry in the map with the highest value (highest number of occurrences). Since
max() is a terminal operation, the solution may return
Optional<Entry<Character, Long>>, but this solution adds an extra step and
maps this entry to Pair<Character, Long>.

Strings, Numbers, and Math Chapter 1

[36]

15. Sorting an array of strings by length
The first thing that comes to mind when sorting is the use of a comparator.

In this case, the solution should compare lengths of strings, and so the integers are
returned by calling String.length() for each string in the given array. So, if the
integers are sorted (ascending or descending), then the strings will be sorted.

The Java Arrays class already provides a sort() method that takes the array to sort
and a comparator. In this case, Comparator<String> should do the job.

Before Java 7, code that implemented a comparator relied on the
compareTo() method. Common usage of this method was to
compute a difference of the x1-x2 type, but this computation may
lead to overflows. This makes compareTo() rather tedious. Starting
with Java 7, Integer.compare() is the way to go (no overflow
risks).

The following is a method that sorts the given array by relying on
the Arrays.sort() method:

public static void sortArrayByLength(String[] strs, Sort direction) {
 if (direction.equals(Sort.ASC)) {
 Arrays.sort(strs, (String s1, String s2)
 -> Integer.compare(s1.length(), s2.length()));
 } else {
 Arrays.sort(strs, (String s1, String s2)
 -> (-1) * Integer.compare(s1.length(), s2.length()));
 }
}

Each wrapper of a primitive numeric type has a compare() method.

Starting with Java 8, the Comparator interface was enriched with a significant
number of useful methods. One of these methods is comparingInt(), which takes a
function that extracts an int sort key from the generic type and returns a
Comparator<T> value that compares it with that sort key. Another useful method
is reversed(), which reverses the current Comparator value.

Strings, Numbers, and Math Chapter 1

[37]

Based on these two methods, we can empower Arrays.sort() as follows:

public static void sortArrayByLength(String[] strs, Sort direction) {
 if (direction.equals(Sort.ASC)) {
 Arrays.sort(strs, Comparator.comparingInt(String::length));
 } else {
 Arrays.sort(strs,
 Comparator.comparingInt(String::length).reversed());
 }
}

Comparators can be chained with the thenComparing() method.

The solutions we've presented here return void, which means that they sort the given
array. To return a new sorted array and not alter the given array, we can use Java 8
functional style, as shown in the following snippet of code:

public static String[] sortArrayByLength(String[] strs,
 Sort direction) {

 if (direction.equals(Sort.ASC)) {
 return Arrays.stream(strs)
 .sorted(Comparator.comparingInt(String::length))
 .toArray(String[]::new);
 } else {
 return Arrays.stream(strs)
 .sorted(Comparator.comparingInt(String::length).reversed())
 .toArray(String[]::new);
 }
}

So, the code creates a stream from the given array, sorts it via the sorted() stateful
intermediate operation, and collects the result in another array.

16. Checking that a string contains a
substring
A very simple, one line of code solution relies on the String.contains() method.

Strings, Numbers, and Math Chapter 1

[38]

This method returns a boolean value indicating whether the given substring is
present in the string or not:

String text = "hello world!";
String subtext = "orl";

// pay attention that this will return true for subtext=""
boolean contains = text.contains(subtext);

Alternatively, a solution can be implemented by relying on String.indexOf()
(or String.lastIndexOf()), as follows:

public static boolean contains(String text, String subtext) {

 return text.indexOf(subtext) != -1; // or lastIndexOf()
}

Another solution can be implemented based on a regular expression, as follows:

public static boolean contains(String text, String subtext) {

 return text.matches("(?i).*" + Pattern.quote(subtext) + ".*");
}

Notice that the regular expression is wrapped in the Pattern.quote() method. This
is needed to escape special characters such as <([{\^-=$!|]})?*+.> in the given
substring.

For third-party library support, please consider Apache Commons
Lang, StringUtils.containsIgnoreCase().

17. Counting substring occurrences in a string
Counting the number of occurrences of a string in another string is a problem that can
have at least two interpretations:

11 in 111 occurs 1 time
11 in 111 occurs 2 times

Strings, Numbers, and Math Chapter 1

[39]

In the first case (11 in 111 occurs 1 time), the solution can rely on
the String.indexOf() method. One of the flavors of this method allows us to
obtain the index within this string of the first occurrence of the specified substring,
starting at the specified index (or -1, if there is no such occurrence). Based on this
method, the solution can simply traverse the given string and count the given
substring occurrences. The traversal starts from position 0 and continues until the
substring is not found:

public static int countStringInString(String string, String toFind) {

 int position = 0;
 int count = 0;
 int n = toFind.length();

 while ((position = string.indexOf(toFind, position)) != -1) {
 position = position + n;
 count++;
 }

 return count;
}

Alternatively, the solution can use the String.split() method. Basically, the
solution can split the given string using the given substring as a delimiter. The length
of the resulting String[] array should be equal to the number of expected
occurrences:

public static int countStringInString(String string, String toFind) {

 int result = string.split(Pattern.quote(toFind), -1).length - 1;

 return result < 0 ? 0 : result;
}

In the second case (11 in 111 occurs 2 times), the solution can rely on the Pattern and
Matcher classes in a simple implementation, as follows:

public static int countStringInString(String string, String toFind) {

 Pattern pattern = Pattern.compile(Pattern.quote(toFind));
 Matcher matcher = pattern.matcher(string);

 int position = 0;
 int count = 0;

 while (matcher.find(position)) {

Strings, Numbers, and Math Chapter 1

[40]

 position = matcher.start() + 1;
 count++;
 }

 return count;
}

Nice! Let's continue with another problem with strings.

18. Checking whether two strings are
anagrams
Two strings that have the same characters, but that are in a different order, are
anagrams. Some definitions impose that anagrams are case-insensitive and/or that
white spaces (blanks) should be ignored.

So, independent of the applied algorithm, the solution must convert the given string
into lowercase and remove white spaces (blanks). Besides that, the first solution we
mentioned sorts the arrays via Arrays.sort() and will check their equality via
Arrays.equals().

Once they are sorted, if they are anagrams, they will be equal (the following diagram
shows two words that are anagrams):

This solution (including its Java 8 functional style version) is available in the code
bundled with this book. The main drawback of these two solutions is represented by
the sorting part. The following solution eliminates this step and relies on an empty
array (initially containing only 0) of 256 indexes (extended ASCII table codes of
characters—more information can be found in the Finding the first non-repeated
character section).

Strings, Numbers, and Math Chapter 1

[41]

The algorithm is pretty simple:

For each character from the first string, this solution increases the value in
this array corresponding to the ASCII code by 1
For each character from the second string, this solution decreases the value
in this array corresponding to the ASCII code by 1

The code is as follows:

private static final int EXTENDED_ASCII_CODES = 256;
...
public static boolean isAnagram(String str1, String str2) {

 int[] chCounts = new int[EXTENDED_ASCII_CODES];
 char[] chStr1 = str1.replaceAll("\\s",
 "").toLowerCase().toCharArray();
 char[] chStr2 = str2.replaceAll("\\s",
 "").toLowerCase().toCharArray();

 if (chStr1.length != chStr2.length) {
 return false;
 }

 for (int i = 0; i < chStr1.length; i++) {
 chCounts[chStr1[i]]++;
 chCounts[chStr2[i]]--;
 }

 for (int i = 0; i < chCounts.length; i++) {
 if (chCounts[i] != 0) {
 return false;
 }
 }

 return true;
}

At the end of this traversal, if the given strings are anagrams, then this array contains
only 0.

19. Declaring multiline strings (text blocks)
At the time of writing this book, JDK 12 had a proposal for adding multiline strings
known as JEP 326: Raw String Literals. But this was dropped at the last minute.

Strings, Numbers, and Math Chapter 1

[42]

Starting with JDK 13, the idea was reconsidered and, unlike the declined raw string
literals, text blocks are surrounded by three double quotes, """, as follows:

String text = """My high school,
the Illinois Mathematics and Science Academy,
showed me that anything is possible
and that you're never too young to think big.""";

Text blocks can be very useful for writing multiline SQL statements,
using polyglot languages, and so on. More details can be found
at https:/ ​/ ​openjdk. ​java.​net/ ​jeps/ ​355.

Nevertheless, there are several surrogate solutions that can be used before JDK 13.
These solutions have a common point—the use of the line separator:

private static final String LS = System.lineSeparator();

Starting with JDK 8, a solution may rely on String.join(), as follows:

String text = String.join(LS,
 "My high school, ",
 "the Illinois Mathematics and Science Academy,",
 "showed me that anything is possible ",
 "and that you're never too young to think big.");

Before JDK 8, an elegant solution may have relied on StringBuilder. This solution
is available in the code bundled with this book.

While the preceding solutions are good fits for a relatively large number of strings,
the following two are okay if we just have a few strings. The first one uses the
+ operator:

String text = "My high school, " + LS +
 "the Illinois Mathematics and Science Academy," + LS +
 "showed me that anything is possible " + LS +
 "and that you're never too young to think big.";

The second one uses String.format():

String text = String.format("%s" + LS + "%s" + LS + "%s" + LS + "%s",
 "My high school, ",
 "the Illinois Mathematics and Science Academy,",
 "showed me that anything is possible ",
 "and that you're never too young to think big.");

https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355

Strings, Numbers, and Math Chapter 1

[43]

How can we process each line of a multiline string? Well, a quick
approach requires JDK 11, which comes with the String.lines()
method. This method splits the given string via a line separator
(which supports \n, \r, and \r\n) and transforms it into
Stream<String>. Alternatively, the String.split() method can
be used as well (this is available starting with JDK 1.4). If the
number of strings becomes significant, it is advised to put them in a
file and read/process them one by one (for example, via
the getResourceAsStream() method). Other approaches rely
on StringWriter or BufferedWriter.newLine().

For third-party library support, please consider Apache Commons
Lang, StringUtils.join(), Guava, Joiner, and the custom
annotation, @Multiline.

20. Concatenating the same string n times
Before JDK 11, a solution could be quickly provided via StringBuilder, as follows:

public static String concatRepeat(String str, int n) {

 StringBuilder sb = new StringBuilder(str.length() * n);

 for (int i = 1; i <= n; i++) {
 sb.append(str);
 }

 return sb.toString();
}

Starting with JDK 11, the solution relies on the String.repeat(int count)
method. This method returns a string resulting from concatenating this string count
times. Behind the scenes, this method uses System.arraycopy(), which makes this
very fast:

String result = "hello".repeat(5);

Other solutions that can fit well in different scenarios are listed as follows:

Following is a String.join()-based solution:

String result = String.join("", Collections.nCopies(5, TEXT));

Strings, Numbers, and Math Chapter 1

[44]

Following is a Stream.generate()-based solution:

String result = Stream.generate(() -> TEXT)
 .limit(5)
 .collect(joining());

Following is a String.format()-based solution:

String result = String.format("%0" + 5 + "d", 0)
 .replace("0", TEXT);

Following is a char[] based solution:

String result = new String(new char[5]).replace("\0", TEXT);

For third-party library support, please consider Apache Commons
Lang, StringUtils.repeat(), and Guava, Strings.repeat().

To check whether a string is a sequence of the same substring, rely on the following
method:

public static boolean hasOnlySubstrings(String str) {

 StringBuilder sb = new StringBuilder();

 for (int i = 0; i < str.length() / 2; i++) {
 sb.append(str.charAt(i));
 String resultStr = str.replaceAll(sb.toString(), "");
 if (resultStr.length() == 0) {
 return true;
 }
 }

 return false;
}

The solution loops half of the given string and progressively replaces it with "", a
substring build, by appending the original string in StringBuilder, character by
character. If these replacements result in an empty string, it means that the given
string is a sequence of the same substring.

Strings, Numbers, and Math Chapter 1

[45]

21. Removing leading and trailing spaces
The quickest solution to this problem probably relies on the String.trim() method.
This method is capable of removing all leading and trailing spaces, that is, any
character whose code point is less than or equal to U+0020 or 32 (the space character):

String text = "\n \n\n hello \t \n \r";
String trimmed = text.trim();

The preceding snippet of code will work as expected. The trimmed string will
be hello. This only works because all of the white spaces that are being used are less
than U+0020 or 32 (the space character). There are 25 characters (https:/ ​/​en.
wikipedia.​org/ ​wiki/ ​Whitespace_ ​character#Unicode) defined as white spaces and
trim() covers only a part of them (in short, trim() is not Unicode aware). Let's
consider the following string:

char space = '\u2002';
String text = space + "\n \n\n hello \t \n \r" + space;

\u2002 is another type of white space that trim() doesn't recognize (\u2002 is
above \u0020). This means that, in such cases, trim() will not work as expected.
Starting with JDK 11, this problem has a solution named strip(). This method
extends the power of trim() into the land of Unicode:

String stripped = text.strip();

This time, all of the leading and trailing white spaces are removed.

Moreover, JDK 11 comes with two flavors of strip() for removing
only the leading (stripLeading()) or only the trailing
(stripTrailing()) white spaces. The trim() method doesn't
have these flavors.

22. Finding the longest common prefix
Let's consider the following array of strings:

String[] texts = {"abc", "abcd", "abcde", "ab", "abcd", "abcdef"};

Now, let's put these strings one below the other, as follows:

abc
abcd
abcde

https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode

Strings, Numbers, and Math Chapter 1

[46]

ab
abcd
abcdef

A simple comparison of these strings reveals that ab is the longest common
prefix. Now, let's dive into a solution for solving this problem. The solution that
we've presented here relies on a straightforward comparison. This solution takes the
first string from the array and compares each of its characters in the rest of the strings.
The algorithm stops if either of the following happens:

The length of the first string is greater than the length of any of the other
strings
The current character of the first string is not the same as the current
character of any of the other strings

If the algorithm forcibly stops because of one of the preceding scenarios, then the
longest common prefix is the substring from 0 to the index of the current character
from the first string. Otherwise, the longest common prefix is the first string from the
array. The code for this solution is as follows:

public static String longestCommonPrefix(String[] strs) {

 if (strs.length == 1) {
 return strs[0];
 }

 int firstLen = strs[0].length();

 for (int prefixLen = 0; prefixLen < firstLen; prefixLen++) {
 char ch = strs[0].charAt(prefixLen);
 for (int i = 1; i < strs.length; i++) {
 if (prefixLen >= strs[i].length()
 || strs[i].charAt(prefixLen) != ch) {
 return strs[i].substring(0, prefixLen);
 }
 }
 }

 return strs[0];
}

Other solutions to this problem use well-known algorithms such as Binary Search or
Trie. In the source code that accompanies this book, there is a solution based on
Binary Search as well.

Strings, Numbers, and Math Chapter 1

[47]

23. Applying indentation
Starting with JDK 12, we can indent text via the String.indent(int n) method.

Let's assume that we have the following String values:

String days = "Sunday\n"
 + "Monday\n"
 + "Tuesday\n"
 + "Wednesday\n"
 + "Thursday\n"
 + "Friday\n"
 + "Saturday";

Printing this String values with an indentation of 10 spaces can be done as follows:

System.out.print(days.indent(10));

The output will be as follows:

Now, let's try a cascade indentation:

List<String> days = Arrays.asList("Sunday", "Monday", "Tuesday",
 "Wednesday", "Thursday", "Friday", "Saturday");

for (int i = 0; i < days.size(); i++) {
 System.out.print(days.get(i).indent(i));
}

Strings, Numbers, and Math Chapter 1

[48]

The output will be as follows:

Now, let's indent depending on the length of the String value:

days.stream()
 .forEachOrdered(d -> System.out.print(d.indent(d.length())));

The output will be as follows:

How about indenting a piece of HTML code? Let's see:

String html = "<html>";
String body = "<body>";
String h2 = "<h2>";
String text = "Hello world!";
String closeH2 = "</h2>";
String closeBody = "</body>";
String closeHtml = "</html>";

System.out.println(html.indent(0) + body.indent(4) + h2.indent(8)
 + text.indent(12) + closeH2.indent(8) + closeBody.indent(4)
 + closeHtml.indent(0));

Strings, Numbers, and Math Chapter 1

[49]

The output will be as follows:

24. Transforming strings
Let's assume that we have a string and we want to transform it into another string (for
example, transform it into upper case). We can do this by applying a function such as
Function<? super String,​ ? extends R>.

In JDK 8, we can accomplish this via map(), as shown in the following two simple
examples:

// hello world
String resultMap = Stream.of("hello")
 .map(s -> s + " world")
 .findFirst()
 .get();

// GOOOOOOOOOOOOOOOOL! GOOOOOOOOOOOOOOOOL!
String resultMap = Stream.of("gooool! ")
 .map(String::toUpperCase)
 .map(s -> s.repeat(2))
 .map(s -> s.replaceAll("O", "OOOO"))
 .findFirst()
 .get();

Starting with JDK 12, we can rely on a new method named transform​(Function<?
super String, ​? extends R> f). Let's rewrite the preceding snippets of code via
transform():

// hello world
String result = "hello".transform(s -> s + " world");

// GOOOOOOOOOOOOOOOOL! GOOOOOOOOOOOOOOOOL!
String result = "gooool! ".transform(String::toUpperCase)
 .transform(s -> s.repeat(2))
 .transform(s -> s.replaceAll("O", "OOOO"));

Strings, Numbers, and Math Chapter 1

[50]

While map() is more general, transform() is dedicated to applying a function to a
string and returns the resulting string.

25. Computing the minimum and maximum of
two numbers
Before JDK 8, a possible solution would be to rely on the Math.min() and
Math.max() methods, as follows:

int i1 = -45;
int i2 = -15;
int min = Math.min(i1, i2);
int max = Math.max(i1, i2);

The Math class provides a min() and a max() method for each primitive numeric
type (int, long, float, and double).

Starting with JDK 8, each wrapper class of primitive numeric types (Integer, Long,
Float, and Double) comes with dedicated min() and max() methods, and, behind
these methods, there are invocations of their correspondents from the Math class. See
the following example (this is a little bit more expressive):

double d1 = 0.023844D;
double d2 = 0.35468856D;
double min = Double.min(d1, d2);
double max = Double.max(d1, d2);

In a functional style context, a potential solution will rely on the BinaryOperator
functional interface. This interface comes with two methods, minBy() and maxBy():

float f1 = 33.34F;
final float f2 = 33.213F;
float min = BinaryOperator.minBy(Float::compare).apply(f1, f2);
float max = BinaryOperator.maxBy(Float::compare).apply(f1, f2);

These two methods are capable of returning the minimum (respectively, the
maximum) of two elements according to the specified comparator.

Strings, Numbers, and Math Chapter 1

[51]

26. Summing two large int/long values and
operation overflow
Let's dive into the solution by starting with the + operator, as in the following
example:

int x = 2;
int y = 7;
int z = x + y; // 9

This is a very simple approach and works fine for most of the computations that
involve int, long, float, and double.

Now, let's apply this operator on the following two large numbers (sum 2,147,483,647
with itself):

int x = Integer.MAX_VALUE;
int y = Integer.MAX_VALUE;
int z = x + y; // -2

This time, z will be equal to -2, which is not the expected result, that is, 4,294,967,294.
Changing only the z type from int to long will not help. However, changing the
types of x and y from int to long as well will help:

long x = Integer.MAX_VALUE;
long y = Integer.MAX_VALUE;
long z = x + y; // 4294967294

But the problem will reappear if, instead of Integer.MAX_VALUE, there is
Long.MAX_VALUE:

long x = Long.MAX_VALUE;
long y = Long.MAX_VALUE;
long z = x + y; // -2

Starting with JDK 8, the + operator has been wrapped in a more expressive way by
each wrapper of a primitive numeric type. Therefore, the Integer, Long, Float, and
Double classes have a sum() method:

long z = Long.sum(); // -2

Strings, Numbers, and Math Chapter 1

[52]

Behind the scenes, the sum() methods uses the + operator as well, so they simply
produce the same result.

But also starting with JDK 8, the Math class was enriched with two addExact()
methods. There is one addExact() for summing two int variables and one for
summing two long variables. These methods are very useful if the result is prone to
overflowing int or long, as shown in the preceding case. In such cases, these
methods throw ArithmeticException instead of returning a misleading result, as
in the following example:

int z = Math.addExact(x, y); // throw ArithmeticException

The code will throw an exception such as java.lang.ArithmeticException:
integer overflow. This is useful since it allows us to avoid introducing misleading
results in further computations (for example, earlier, -2 could silently enter further
computations).

In a functional style context, a potential solution will rely on the BinaryOperator
functional interface, as follows (simply define the operation of the two operands of
the same type):

BinaryOperator<Integer> operator = Math::addExact;
int z = operator.apply(x, y);

Besides addExact(), Math has multiplyExact(), substractExact(), and
negateExact(). Moreover, the well-known increment and decrement expressions,
i++ and i--, can be controlled for overflowing their domains via the
incrementExact() and decrementExact() methods (for example,
Math.incrementExact(i)). Notice that these methods are only available for int
and long.

When working with a large number, also focus on the BigInteger
(immutable arbitrary-precision integers) and BigDecimal
(immutable, arbitrary-precision signed decimal numbers) classes.

27. String as an unsigned number in the radix
The support for unsigned arithmetic was added to Java starting with version 8. The
Byte, Short, Integer, and Long classes were affected the most by this addition.

Strings, Numbers, and Math Chapter 1

[53]

In Java, strings representing positive numbers can be parsed as unsigned int and
long types via the parseUnsignedInt() and parseUnsignedLong() JDK 8
methods. For example, let's consider the following integer as a string:

String nri = "255500";

The solution to parsing it into an unsigned int value in the radix of 36 (the maximum
accepted radix) looks as follows:

int result = Integer.parseUnsignedInt(nri, Character.MAX_RADIX);

The first argument is the number, while the second is the radix. The radix should be
in the range [2, 36] or [Character.MIN_RADIX, Character.MAX_RADIX].

Using a radix of 10 can be easily accomplished as follows (this method applies a radix
of 10 by default):

int result = Integer.parseUnsignedInt(nri);

Starting with JDK 9, parseUnsignedInt() has a new flavor. Besides the string and
the radix, this method accepts a range of the [beginIndex, endIndex] type. This
time, the parsing is accomplished in this range. For example, specifying the range [1,
3] can be done as follows:

int result = Integer.parseUnsignedInt(nri, 1, 4, Character.MAX_RADIX);

The parseUnsignedInt() method can parse strings that represent numbers greater
than Integer.MAX_VALUE (trying to accomplish this via Integer.parseInt() will
throw a java.lang.NumberFormatException exception):

// Integer.MAX_VALUE + 1 = 2147483647 + 1 = 2147483648
int maxValuePlus1 = Integer.parseUnsignedInt("2147483648");

The same set of methods exist for long numbers in the Long class
(for example, parseUnsignedLong()).

28. Converting into a number by an unsigned
conversion
The problem requires that we convert the given signed int into long via an unsigned
conversion. So, let's consider signed Integer.MIN_VALUE, which is -2,147,483,648.

Strings, Numbers, and Math Chapter 1

[54]

In JDK 8, by using the Integer.toUnsignedLong() method, the conversion will be
as follows (the result will be 2,147,483,648):

long result = Integer.toUnsignedLong(Integer.MIN_VALUE);

Here is another example that converts the signed Short.MIN_VALUE and
Short.MAX_VALUE into unsigned integers:

int result1 = Short.toUnsignedInt(Short.MIN_VALUE);
int result2 = Short.toUnsignedInt(Short.MAX_VALUE);

Other methods from the same category are Integer.toUnsignedString(),
Long.toUnsignedString(), Byte.toUnsignedInt(), Byte.toUnsignedLong(),
Short.toUnsignedInt(), and Short.toUnsignedLong().

29. Comparing two unsigned numbers
Let's consider two signed integers, Integer.MIN_VALUE (-2,147,483,648) and
Integer.MAX_VALUE (2,147,483,647). Comparing these integers (signed values) will
result in -2,147,483,648 being smaller than 2,147,483,647:

// resultSigned is equal to -1 indicating that
// MIN_VALUE is smaller than MAX_VALUE
int resultSigned = Integer.compare(Integer.MIN_VALUE,
 Integer.MAX_VALUE);

In JDK 8, these two integers can be compared as unsigned values via the
Integer.compareUnsigned() method (this is the equivalent of
Integer.compare() for unsigned values). Mainly, this method ignores the notion of
sign bit, and the left-most bit is considered the most significant bit. Under the unsigned
values umbrella, this method returns 0 if the compared numbers are equal, a value
less than 0 if the first unsigned value is smaller than the second, and a value greater
than 0 if the first unsigned value is greater than the second.

The following comparison returns 1, indicating that the unsigned value of
Integer.MIN_VALUE is greater than the unsigned value of Integer.MAX_VALUE:

// resultSigned is equal to 1 indicating that
// MIN_VALUE is greater than MAX_VALUE
int resultUnsigned
 = Integer.compareUnsigned(Integer.MIN_VALUE, Integer.MAX_VALUE);

Strings, Numbers, and Math Chapter 1

[55]

The compareUnsigned() method is available in the Integer and
Long classes starting with JDK 8, and in the Byte and Short classes
starting with JDK 9.

30. Division and modulo of unsigned values
Computing the unsigned quotient and remainder that resulted from the division of
two unsigned values is supported by the JDK 8 unsigned arithmetic API via
the divideUnsigned() and remainderUnsigned() methods.

Let's consider the Interger.MIN_VALUE and Integer.MAX_VALUE signed numbers
and let's apply division and modulo. There's nothing new here:

// signed division
// -1
int divisionSignedMinMax = Integer.MIN_VALUE / Integer.MAX_VALUE;

// 0
int divisionSignedMaxMin = Integer.MAX_VALUE / Integer.MIN_VALUE;

// signed modulo
// -1
int moduloSignedMinMax = Integer.MIN_VALUE % Integer.MAX_VALUE;

// 2147483647
int moduloSignedMaxMin = Integer.MAX_VALUE % Integer.MIN_VALUE;

Now, let's treat Integer.MIN_VALUE and Integer.MAX_VALUE as unsigned values
and let's apply divideUnsigned() and remainderUnsigned():

// division unsigned
int divisionUnsignedMinMax = Integer.divideUnsigned(
 Integer.MIN_VALUE, Integer.MAX_VALUE); // 1
int divisionUnsignedMaxMin = Integer.divideUnsigned(
 Integer.MAX_VALUE, Integer.MIN_VALUE); // 0

// modulo unsigned
int moduloUnsignedMinMax = Integer.remainderUnsigned(
 Integer.MIN_VALUE, Integer.MAX_VALUE); // 1
int moduloUnsignedMaxMin = Integer.remainderUnsigned(
 Integer.MAX_VALUE, Integer.MIN_VALUE); // 2147483647

Strings, Numbers, and Math Chapter 1

[56]

Notice their similarity to the comparison operation. Both operations, that is, unsigned
division and unsigned modulo, interpret all of the bits as value bits and ignore the sign
bit.

divideUnsigned() and remainderUnsigned() are present in
the Integer and Long classes, respectively.

31. double/float is a finite floating-point value
This problem arises from the fact that some floating-point methods and operations
produce Infinity or NaN as results instead of throwing an exception.

The solution to checking whether the given float/double is a finite floating-point
value relies on the following conditions—the absolute value of the given
float/double value must not exceed the largest positive finite value of
the float/double type:

// for float
Math.abs(f) <= Float.MAX_VALUE;

// for double
Math.abs(d) <= Double.MAX_VALUE

Starting with Java 8, the preceding conditions were exposed via two dedicated flag-
methods, Float.isFinite() and Double.isFinite(). Therefore, the following
examples are valid test cases for finite floating-point values:

Float f1 = 4.5f;
boolean f1f = Float.isFinite(f1); // f1 = 4.5, is finite

Float f2 = f1 / 0;
boolean f2f = Float.isFinite(f2); // f2 = Infinity, is not finite

Float f3 = 0f / 0f;
boolean f3f = Float.isFinite(f3); // f3 = NaN, is not finite

Double d1 = 0.000333411333d;
boolean d1f = Double.isFinite(d1); // d1 = 3.33411333E-4,is finite

Double d2 = d1 / 0;
boolean d2f = Double.isFinite(d2); // d2 = Infinity, is not finite

Strings, Numbers, and Math Chapter 1

[57]

Double d3 = Double.POSITIVE_INFINITY * 0;
boolean d3f = Double.isFinite(d3); // d3 = NaN, is not finite

These methods are handy in conditions such as the following:

if (Float.isFinite(d1)) {
 // do a computation with d1 finite floating-point value
} else {
 // d1 cannot enter in further computations
}

32. Applying logical AND/OR/XOR to two
boolean expressions
The truth table of elementary logic operations (AND, OR, and XOR) looks as follows:

In Java, the logical AND operator is represented as &&, the logical OR operator is
represented as ||, and the logical XOR operator is represented as ^. Starting with
JDK 8, these operators are applied to two booleans and are wrapped in three static
methods—Boolean.logicalAnd(), Boolean.logicalOr(), and
Boolean.logicalXor():

int s = 10;
int m = 21;

// if (s > m && m < 50) { } else { }
if (Boolean.logicalAnd(s > m, m < 50)) {} else {}

// if (s > m || m < 50) { } else { }
if (Boolean.logicalOr(s > m, m < 50)) {} else {}

// if (s > m ^ m < 50) { } else { }
if (Boolean.logicalXor(s > m, m < 50)) {} else {}

Strings, Numbers, and Math Chapter 1

[58]

Using a combination of these methods is also possible:

if (Boolean.logicalAnd(
 Boolean.logicalOr(s > m, m < 50),
 Boolean.logicalOr(s <= m, m > 50))) {} else {}

33. Converting BigInteger into a primitive type
The BigInteger class is a very handy tool for representing immutable arbitrary-
precision integers.

This class also contains methods (originating from java.lang.Number) that are
useful for converting BigInteger into a primitive type such as byte, long,
or double. However, these methods can produce unexpected results and confusion.
For example, let's assume that we have BigInteger that wraps Long.MAX_VALUE:

BigInteger nr = BigInteger.valueOf(Long.MAX_VALUE);

Let's convert this BigInteger into a primitive long via the
BigInteger.longValue() method:

long nrLong = nr.longValue();

So far, everything has worked as expected since the Long.MAX_VALUE is
9,223,372,036,854,775,807 and the nrLong primitive variable has exactly this value.

Now, let's try to convert this BigInteger class into a primitive int value via the
BigInteger.intValue() method:

int nrInt = nr.intValue();

This time, the nrInt primitive variable will have a value of -1 (the same result will
produce shortValue() and byteValue()). Conforming to the documentation, if the
value of BigInteger is too big to fit in the specified primitive type, only the low-
order n bits are returned (n depends on the specified primitive type). But if the code is
not aware of this statement, then it will push values as -1 in further computations,
which will lead to confusion.

However, starting with JDK 8, a new set of methods was added. These methods are
dedicated to identifying the information that's lost during the conversion from
BigInteger into the specified primitive type. If a piece of lost information is
detected, ArithmeticException will be thrown. This way, the code signals that the
conversion has encountered some issues and prevents this unpleasant situation.

Strings, Numbers, and Math Chapter 1

[59]

These methods are longValueExact(), intValueExact(), shortValueExact(),
and byteValueExact():

long nrExactLong = nr.longValueExact(); // works as expected
int nrExactInt = nr.intValueExact(); // throws ArithmeticException

Notice that intValueExact() did not return -1 as intValue(). This time, the lost
information that was caused by the attempt of converting the largest long value into
int was signaled via an exception of the ArithmeticException type.

34. Converting long into int
Converting a long value into an int value seems like an easy job. For example, a
potential solution can rely on casting the following:

long nr = Integer.MAX_VALUE;
int intNrCast = (int) nr;

Alternatively, it can rely on Long.intValue(), as follows:

int intNrValue = Long.valueOf(nrLong).intValue();

Both approaches work just fine. Now, let's suppose we have the following long
value:

long nrMaxLong = Long.MAX_VALUE;

This time, both approaches will return -1. In order to avoid such results, it is advisable
to rely on JDK 8, that is, Math.toIntExact(). This method gets an argument of
the long type and tries to convert it into int. If the obtained value overflows int,
then this method will throw ArithmeticException:

// throws ArithmeticException
int intNrMaxExact = Math.toIntExact(nrMaxLong);

Behind the scenes, toIntExact() relies on the ((int)value != value) condition.

Strings, Numbers, and Math Chapter 1

[60]

35. Computing the floor of a division and
modulus
Let's assume that we have the following division:

double z = (double)222/14;

This will initialize z with the result of this division, that is, 15.85, but our problem
requests the floor of this division, which is 15 (this is the largest integer value that is
less than or equal to the algebraic quotient). A solution to obtain this desired result
will consist of applying Math.floor(15.85), which is 15.

However, 222 and 14 are integers, and so this preceding division is written as follows:

int z = 222/14;

This time, z will be equal to 15, which is exactly the expected result (the / operator
returns the integer closest to zero). There is no need to apply Math.floor(z).
Moreover, if the divisor is 0, then 222/0 will throw ArithmeticException.

The conclusion so far is that the floor of a division for two integers that have the same
sign (both are positive or negative) can be obtained via the / operator.

Okay, so far, so good, but let's assume that we have the following two integers
(opposite signs; the dividend is negative and the divisor is positive, and vice versa):

double z = (double) -222/14;

This time, z will be equal to -15.85. Again, by applying Math.floor(z), the result
will be -16, which is correct (this is the largest integer value that is less than or equal
to the algebraic quotient).

Let's go over the same problem again with int:

int z = -222/14;

This time, z will be equal to -15. This is incorrect and Math.floor(z) will not help
us in this case since Math.floor(-15) is -15. So, this is a problem that should be
considered.

Strings, Numbers, and Math Chapter 1

[61]

From JDK 8 onward, all of these cases have been covered and exposed via the
Math.floorDiv() method. This method takes two integers representing the
dividend and the divisor as arguments and returns the largest (closest to positive
infinity) int value that is less than or equal to the algebraic quotient:

int x = -222;
int y = 14;

// x is the dividend, y is the divisor
int z = Math.floorDiv(x, y); // -16

The Math.floorDiv() method comes in three flavors: floorDiv(int x, int y),
floorDiv(long x, int y), and floorDiv(long x, long y).

After Math.floorDiv(), JDK 8 came with Math.floorMod(),
which returns the floor modulus of the given arguments. This is
computed as the result of x - (floorDiv(x, y) * y), and so it
will return the same result as the % operator for arguments with the
same sign and a different result for arguments that don't have the
same sign.

Rounding up the result of dividing two positive integers (a/b) can be accomplished
quickly as follows:

long result = (a + b - 1) / b;

The following is one example of this (we have 4 / 3 = 1.33 and we want 2):

long result = (4 + 3 - 1) / 3; // 2

The following is another example of this (we have 17 / 7 = 2.42 and we want 3):

long result = (17 + 7 - 1) / 7; // 3

If the integers are not positive, then we can rely on Math.ceil():

long result = (long) Math.ceil((double) a/b);

36. Next floating-point value
Having an integer value such as 10 makes it very easy for us to obtain the next
integer-point value, such as 10+1 (in the direction of positive infinity) or 10-1 (in the
direction of negative infinity). Trying to achieve the same thing for float or double
is not that easy as it is for integers.

Strings, Numbers, and Math Chapter 1

[62]

Starting with JDK 6, the Math class has been enriched with the nextAfter() method.
This method takes two arguments—the initial number (float or double) and the
direction (Float/Double.NEGATIVE/POSITIVE_INFINITY)—and returns the next
floating-point value. Here, it is a flavor of this method to return the next-floating
point adjacent to 0.1 in the direction of negative infinity:

float f = 0.1f;

// 0.099999994
float nextf = Math.nextAfter(f, Float.NEGATIVE_INFINITY);

Starting with JDK 8, the Math class has been enriched with two methods that act as
shortcuts for nextAfter() and are faster. These methods are nextDown() and
nextUp():

float f = 0.1f;

float nextdownf = Math.nextDown(f); // 0.099999994
float nextupf = Math.nextUp(f); // 0.10000001

double d = 0.1d;

double nextdownd = Math.nextDown(d); // 0.09999999999999999
double nextupd = Math.nextUp(d); // 0.10000000000000002

Therefore, nextAfter() in the direction of negative infinity is available via
Math.nextDown() and nextAfter(), while in the direction of positive infinity, this
is available via Math.nextUp().

37. Multiplying two large int/long values and
operation overflow
Let's dive into the solution starting from the * operator, as shown in the following
example:

int x = 10;
int y = 5;
int z = x * y; // 50

This is a very simple approach and works fine for most of the computations that
involve int, long, float, and double as well.

Strings, Numbers, and Math Chapter 1

[63]

Now, let's apply this operator to the following two large numbers (multiply
2,147,483,647 with itself):

int x = Integer.MAX_VALUE;
int y = Integer.MAX_VALUE;
int z = x * y; // 1

This time, z will be equal to 1, which is not the expected result, that is,
4,611,686,014,132,420,609. Changing only the z type from int to long will not help.
However, changing the types of x and y from int to long will:

long x = Integer.MAX_VALUE;
long y = Integer.MAX_VALUE;
long z = x * y; // 4611686014132420609

But the problem will reappear if we have Long.MAX_VALUE instead of
Integer.MAX_VALUE:

long x = Long.MAX_VALUE;
long y = Long.MAX_VALUE;
long z = x * y; // 1

So, computations that overflow the domain and rely on the * operator will end up in
misleading results.

Instead of using these results in further computations, it is better to be informed on
time when an overflow operation occurred. JDK 8 comes with
the Math.multiplyExact() method. This method tries to multiply two integers. If
the result overflows, int will just throw ArithmeticException:

int x = Integer.MAX_VALUE;
int y = Integer.MAX_VALUE;
int z = Math.multiplyExact(x, y); // throw ArithmeticException

In JDK 8, Math.muliplyExact(int x, int y) returns int and
Math.muliplyExact(long x, long y) returns long. In JDK 9,
Math.muliplyExact(long, int y) returning long was added as
well.

JDK 9 comes with Math.multiplyFull(int x, int y) returning long value. This
method is very useful for obtaining the exact mathematical product of two integers
as long, as follows:

int x = Integer.MAX_VALUE;
int y = Integer.MAX_VALUE;
long z = Math.multiplyFull(x, y); // 4611686014132420609

Strings, Numbers, and Math Chapter 1

[64]

Just for the record, JDK 9 also comes with a method named
Math.muliptlyHigh(long x, long y) returning a long. The long value
returned by this method represents the most significant 64 bits of the 128-bit product
of two 64-bit factors:

long x = Long.MAX_VALUE;
long y = Long.MAX_VALUE;
// 9223372036854775807 * 9223372036854775807 = 4611686018427387903
long z = Math.multiplyHigh(x, y);

In a functional style context, a potential solution will rely on the BinaryOperator
functional interface, as follows (simply define the operation of the two operands of
the same type):

int x = Integer.MAX_VALUE;
int y = Integer.MAX_VALUE;
BinaryOperator<Integer> operator = Math::multiplyExact;
int z = operator.apply(x, y); // throw ArithmeticException

For working with a large number, also focus on the BigInteger (immutable
arbitrary-precision integers) and BigDecimal (immutable, arbitrary-precision signed
decimal numbers) classes.

38. Fused Multiply Add
The mathematical computation (a * b) + c is heavily exploited in matrix
multiplications, which are frequently used in High-Performance Computing (HPC),
AI applications, machine learning, deep learning, neural networks, and so on.

The simplest way to implement this computation relies directly on the * and +
operators, as follows:

double x = 49.29d;
double y = -28.58d;
double z = 33.63d;
double q = (x * y) + z;

The main problem of this implementation consists of low accuracy and performance
caused by two rounding errors (one for the multiply operation and one for the
addition operation).

Strings, Numbers, and Math Chapter 1

[65]

But thanks to Intel AVX's instructions for performing SIMD operations and to JDK 9,
which added the Math.fma() method, this computation can be boosted. By relying
on Math.fma(), the rounding is done only once using the round to nearest even
rounding mode:

double fma = Math.fma(x, y, z);

Notice that this improvement is available for modern Intel processors, so it is not
enough to just have JDK 9 in place.

39. Compact number formatting
Starting with JDK 12, a new class for compact number formatting was added. This
class is named java.text.CompactNumberFormat. The main goal of this class is to
extend the existing Java number formatting API with support for locale and
compaction.

A number can be formatted into a short style (for example, 1000 becomes 1K) or into a
long style (for example, 1000 becomes 1 thousand). These two styles were grouped in
the Style enum as SHORT and LONG.

Besides the CompactNumberFormat constructor, CompactNumberFormat can be
created via two static methods that are added to the NumberFormat class:

The first is a compact number format for the default locale with
NumberFormat.Style.SHORT:

public static NumberFormat getCompactNumberInstance()

The second is a compact number format for the specified locale
with NumberFormat.Style:

public static NumberFormat getCompactNumberInstance ​(
 Locale locale, NumberFormat.Style formatStyle)

Let's take a close look at formatting and parsing.

Formatting
By default, a number is formatted using RoundingMode.HALF_EVEN. However, we
can explicitly set the rounding mode via NumberFormat.setRoundingMode().

Strings, Numbers, and Math Chapter 1

[66]

Trying to condense this information into a utility class named NumberFormatters
can be achieved as follows:

public static String forLocale(Locale locale, double number) {

 return format(locale, Style.SHORT, null, number);
}

public static String forLocaleStyle(
 Locale locale, Style style, double number) {

 return format(locale, style, null, number);
}

public static String forLocaleStyleRound(
 Locale locale, Style style, RoundingMode mode, double number) {

 return format(locale, style, mode, number);
}

private static String format(
 Locale locale, Style style, RoundingMode mode, double number) {

 if (locale == null || style == null) {
 return String.valueOf(number); // or use a default format
 }

 NumberFormat nf = NumberFormat.getCompactNumberInstance(locale,
 style);

 if (mode != null) {
 nf.setRoundingMode(mode);
 }

 return nf.format(number);
}

Now, let's format the numbers 1000, 1000000, and 1000000000 with the US locale,
SHORT style, and default rounding mode:

// 1K
NumberFormatters.forLocaleStyle(Locale.US, Style.SHORT, 1_000);

// 1M
NumberFormatters.forLocaleStyle(Locale.US, Style.SHORT, 1_000_000);

Strings, Numbers, and Math Chapter 1

[67]

// 1B
NumberFormatters.forLocaleStyle(Locale.US, Style.SHORT,
 1_000_000_000);

We can do the same with the LONG style:

// 1thousand
NumberFormatters.forLocaleStyle(Locale.US, Style.LONG, 1_000);

// 1million
NumberFormatters.forLocaleStyle(Locale.US, Style.LONG, 1_000_000);

// 1billion
NumberFormatters.forLocaleStyle(Locale.US, Style.LONG, 1_000_000_000);

We can also use the ITALIAN locale and SHORT style:

// 1.000
NumberFormatters.forLocaleStyle(Locale.ITALIAN, Style.SHORT,
 1_000);

// 1 Mln
NumberFormatters.forLocaleStyle(Locale.ITALIAN, Style.SHORT,
 1_000_000);

// 1 Mld
NumberFormatters.forLocaleStyle(Locale.ITALIAN, Style.SHORT,
 1_000_000_000);

Finally, we can also use the ITALIAN locale and LONG style:

// 1 mille
NumberFormatters.forLocaleStyle(Locale.ITALIAN, Style.LONG,
 1_000);

// 1 milione
NumberFormatters.forLocaleStyle(Locale.ITALIAN, Style.LONG,
 1_000_000);

// 1 miliardo
NumberFormatters.forLocaleStyle(Locale.ITALIAN, Style.LONG,
 1_000_000_000);

Now, let's suppose that we have two numbers: 1200 and 1600.

Strings, Numbers, and Math Chapter 1

[68]

From the rounding mode's perspective, they will be rounded to 1000 and 2000,
respectively. The default rounding mode, HALF_EVEN, will round 1200 to 1000 and
1600 to 2000. But if we want 1200 to become 2000 and 1600 to become 1000, then we
need to explicitly set up the rounding mode as follows:

// 2000 (2 thousand)
NumberFormatters.forLocaleStyleRound(
 Locale.US, Style.LONG, RoundingMode.UP, 1_200);

// 1000 (1 thousand)
NumberFormatters.forLocaleStyleRound(
 Locale.US, Style.LONG, RoundingMode.DOWN, 1_600);

Parsing
Parsing is the reverse process of formatting. We have a given string and try to parse it
as a number. This can be accomplished via the NumberFormat.parse() method. By
default, parsing doesn't take advantage of grouping (for example, without grouping,
5,50 K is parsed as 5; with grouping, 5,50 K is parsed as 550000).

If we condense this information into a set of helper methods, then we obtain the
following output:

public static Number parseLocale(Locale locale, String number)
 throws ParseException {

 return parse(locale, Style.SHORT, false, number);
}

public static Number parseLocaleStyle(
 Locale locale, Style style, String number) throws ParseException {

 return parse(locale, style, false, number);
}

public static Number parseLocaleStyleRound(
 Locale locale, Style style, boolean grouping, String number)
 throws ParseException {

 return parse(locale, style, grouping, number);
}

private static Number parse(
 Locale locale, Style style, boolean grouping, String number)
 throws ParseException {

Strings, Numbers, and Math Chapter 1

[69]

 if (locale == null || style == null || number == null) {
 throw new IllegalArgumentException(
 "Locale/style/number cannot be null");
 }

 NumberFormat nf = NumberFormat.getCompactNumberInstance(locale,
 style);
 nf.setGroupingUsed(grouping);

 return nf.parse(number);
}

Let's parse 5K and 5 thousand into 5000 without explicit grouping:

// 5000
NumberFormatters.parseLocaleStyle(Locale.US, Style.SHORT, "5K");

// 5000
NumberFormatters.parseLocaleStyle(Locale.US, Style.LONG, "5
thousand");

Now, let's parse 5,50K and 5,50 thousand to 550000 with explicit grouping:

// 550000
NumberFormatters.parseLocaleStyleRound(
 Locale.US, Style.SHORT, true, "5,50K");

// 550000
NumberFormatters.parseLocaleStyleRound(
 Locale.US, Style.LONG, true, "5,50 thousand");

More tuning can be obtained via the setCurrency​(), setParseIntegerOnly(),
setMaximumIntegerDigits(), setMinimumIntegerDigits(),
setMinimumFractionDigits(), and setMaximumFractionDigits() methods.

Summary
This chapter collected a bunch of the most common problems that involve strings and
numbers. Obviously, there are tons of such problems, and trying to cover all of them
is way beyond any book's scope. However, knowing how to solve the problems
presented in this chapter provides you with a solid base for solving many other
related problems by yourself.

Download the applications from this chapter to view the results and additional
details.

2
Objects, Immutability, and

Switch Expressions
This chapter includes 18 problems that involve objects, immutability, and switch
expressions. The chapter starts with several problems about dealing with null
references. It continues with problems regarding checking indexes, equals() and
hashCode(), and immutability (for example, writing immutable classes and
passing/returning mutable objects from immutable classes). The last part of the
chapter deals with cloning objects and the JDK 12 switch expressions. By the end of
this chapter, you will have a fundamental knowledge of objects and immutability.
Moreover, you will know how to deal with the new switch expressions. These are
valuable and non-optional bits of knowledge in any Java developer's arsenal.

Problems
Use the following problems to test your object, immutability, and switch expression
programming prowess. I strongly encourage you to give each problem a try before
you turn to the solutions and download the example programs:

Checking null references in functional style and imperative code: Write40.
a program that performs the null checks on the given references in a
functional style and imperative code.
Checking null references and throwing a customized41.
NullPointerException error: Write a program that performs the null
checks on the given references and throws NullPointerException with
custom messages.
Checking null references and throwing the specified exception42.
(example, IllegalArgumentException): Write a program that performs
the null checks on the given references and throws the specified exception.

Objects, Immutability, and Switch Expressions Chapter 2

[71]

Checking null references and returning non-null default43.
references: Write a program that performs the null checks on the given
reference, and if it is non-null, then return it; otherwise, return a non-null
default reference.
Checking the index in the range from 0 to length: Write a program that44.
checks whether the given index is between 0 (inclusive) and the given
length (exclusive). If the given index is out of the [0, given length] range,
then throw IndexOutOfBoundsException.
Checking the subrange in the range from 0 to length: Write a program45.
that checks whether the given subrange [given start, given end] is within the
bounds of the range from [0, given length]. If the given subrange is not in
the [0, given length] range, then throw IndexOutOfBoundsException.
equals() and hashCode(): Explain and exemplify how equals() and46.
hashCode() methods work in Java.
Immutable objects in a nutshell: Explain and exemplify what is an47.
immutable object in Java.
Immutable string: Explain why the String class is immutable.48.
Writing an immutable class: Write a program that represents an49.
immutable class.
Passing/returning mutable objects to/from an immutable class: Write a50.
program that passes and returns a mutable object to/from an immutable
class.
Writing an immutable class via the Builder pattern: Write a program that51.
represents an implementation of the Builder pattern in an immutable class.
Avoiding bad data in immutable objects: Write a program that prevents52.
bad data in immutable objects.
Cloning objects: Write a program that exemplifies shallow and deep53.
cloning techniques.
Overriding toString(): Explain and exemplify practices for overriding54.
toString().
switch expressions: Provide a brief overview of the switch expressions in55.
JDK 12.
Multiple case labels: Write a snippet of code for exemplifying the JDK 1256.
switch with multiple case labels.
Statement blocks: Write a snippet of code for exemplifying the JDK 1257.
switch with case labels that point to a curly-braced block.

Objects, Immutability, and Switch Expressions Chapter 2

[72]

Solutions
The following sections describe solutions to each of the preceding problems.
Remember that there usually isn't a single correct way to solve a particular problem.
Also, remember that the explanations shown here include only the most interesting
and important details needed to solve the problems. Download the example solutions
to see additional details and to experiment with the programs at https:/ ​/ ​github.
com/​PacktPublishing/ ​Java- ​Coding- ​Problems.

40. Checking null references in functional
style and imperative code
Independent of functional style or imperative code, checking null references is a
common and recommended technique used for mitigating the occurrence of famous
NullPointerException exception. This kind of checking is heavily exploited for
method arguments to ensure that the passing references will not cause
NullPointerException or unexpected behavior.

For example, passing List<Integer> to a method may require at least two null
checks. First, the method should ensure that the list reference itself is not null.
Second, depending on how the list is used, the method should ensure that the list
does not contain null objects:

List<Integer> numbers
 = Arrays.asList(1, 2, null, 4, null, 16, 7, null);

This list is passed to the following method:

public static List<Integer> evenIntegers(List<Integer> integers) {

 if (integers == null) {
 return Collections.EMPTY_LIST;
 }

 List<Integer> evens = new ArrayList<>();
 for (Integer nr: integers) {
 if (nr != null && nr % 2 == 0) {
 evens.add(nr);
 }
 }

 return evens;
}

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Objects, Immutability, and Switch Expressions Chapter 2

[73]

Notice that the preceding code uses the classical checks relying on the == and !=
operators (integers==null, nr !=null). Starting with JDK 8, the
java.util.Objects class contains two methods that wrap the null checks based
on these two operators: object == null was wrapped in Objects.isNull(), and
object != null was wrapped in Objects.nonNull().

Based on these methods, the preceding code can be rewritten as follows:

public static List<Integer> evenIntegers(List<Integer> integers) {

 if (Objects.isNull(integers)) {
 return Collections.EMPTY_LIST;
 }

 List<Integer> evens = new ArrayList<>();

 for (Integer nr: integers) {
 if (Objects.nonNull(nr) && nr % 2 == 0) {
 evens.add(nr);
 }
 }

 return evens;
}

Now, the code is somehow more expressive, but this is not the main usage of these
two methods. Actually, these two methods have been added for another purpose
(conforming to API notes)—to be used as predicates in the Java 8 functional style
code. In functional style code, the null checks can be accomplished as in the
following examples:

public static int sumIntegers(List<Integer> integers) {

 if (integers == null) {
 throw new IllegalArgumentException("List cannot be null");
 }

 return integers.stream()
 .filter(i -> i != null)
 .mapToInt(Integer::intValue).sum();
}

public static boolean integersContainsNulls(List<Integer> integers) {

 if (integers == null) {
 return false;

Objects, Immutability, and Switch Expressions Chapter 2

[74]

 }

 return integers.stream()
 .anyMatch(i -> i == null);
}

It is quite obvious that i -> i != null and i -> i == null are not expressed in
the same style with the surrounding code. Let's replace these snippets of code with
Objects.nonNull() and Objects.isNull():

public static int sumIntegers(List<Integer> integers) {

 if (integers == null) {
 throw new IllegalArgumentException("List cannot be null");
 }

 return integers.stream()
 .filter(Objects::nonNull)
 .mapToInt(Integer::intValue).sum();
}

public static boolean integersContainsNulls(List<Integer> integers) {

 if (integers == null) {
 return false;
 }

 return integers.stream()
 .anyMatch(Objects::isNull);
}

Or, we can use the Objects.nonNull() and Objects.isNull() methods for
arguments as well:

public static int sumIntegers(List<Integer> integers) {

 if (Objects.isNull(integers)) {
 throw new IllegalArgumentException("List cannot be null");
 }

 return integers.stream()
 .filter(Objects::nonNull)
 .mapToInt(Integer::intValue).sum();
}

public static boolean integersContainsNulls(List<Integer> integers) {

 if (Objects.isNull(integers)) {

Objects, Immutability, and Switch Expressions Chapter 2

[75]

 return false;
 }

 return integers.stream()
 .anyMatch(Objects::isNull);
}

Awesome! So, by way of conclusion, the functional style code should rely on these
two methods whenever the null checks are needed, while in the imperative code, it
is a matter of preference.

41. Checking null references and throwing
customized NullPointerException
Checking null references and throwing NullPointerException with customized
messages can be accomplished using the following code (this code does these four
times, twice in the constructor and twice in the assignDriver() method):

public class Car {

 private final String name;
 private final Color color;

 public Car(String name, Color color) {

 if (name == null) {
 throw new NullPointerException("Car name cannot be null");
 }

 if (color == null) {
 throw new NullPointerException("Car color cannot be null");
 }

 this.name = name;
 this.color = color;
 }

 public void assignDriver(String license, Point location) {

 if (license == null) {
 throw new NullPointerException("License cannot be null");
 }

 if (location == null) {
 throw new NullPointerException("Location cannot be null");

Objects, Immutability, and Switch Expressions Chapter 2

[76]

 }
 }
}

So, this code solves the problem by combining the == operator and manual
instantiation of the NullPointerException class. Starting with JDK 7, this
combination of code was hidden in a static method
named Objects.requireNonNull(). Via this method, the preceding code can be
rewritten in an expressive manner:

public class Car {

 private final String name;
 private final Color color;

 public Car(String name, Color color) {

 this.name = Objects.requireNonNull(name, "Car name cannot be
 null");
 this.color = Objects.requireNonNull(color, "Car color cannot be
 null");
 }

 public void assignDriver(String license, Point location) {

 Objects.requireNonNull(license, "License cannot be null");
 Objects.requireNonNull(location, "Location cannot be null");
 }
}

So, if the specified reference is null, then Objects.requireNonNull() will throw a
NullPointerException with the message provided. Otherwise, it returns the
checked reference.

In constructors, there is a typical approach to throw NullPointerException when
the references provided are null. But in methods (for example, assignDriver()),
this is a controversial approach. Some developers will prefer to return an inoffensive
result or to throw IllegalArgumentException. The next problem, checking null
references and throwing the specified exception (for example,
IllegalArgumentException), addresses the IllegalArgumentException
approach.

Objects, Immutability, and Switch Expressions Chapter 2

[77]

In JDK 7, there are the two Objects.requireNonNull() methods, the one used
previously, and another one that throws NullPointerException with a default
message, as in the following example:

this.name = Objects.requireNonNull(name);

Starting with JDK 8, there is one more Objects.requireNonNull(). This one wraps
the custom message of NullPointerException in Supplier. This means that the
message creation is postponed until the given reference is null (this means that using
the + operator for concatenating parts of the message is no longer an issue).

Here is an example:

this.name = Objects.requireNonNull(name, ()
 -> "Car name cannot be null ... Consider one from " + carsList);

If this reference is not null, then the message is not created.

42. Checking null references and throwing the
specified exception
Of course, one solution entails relying directly on the == operator as follows:

if (name == null) {
 throw new IllegalArgumentException("Name cannot be null");
}

This problem cannot be solved via the methods of java.util.Objects since there is
no requireNonNullElseThrow() method. Throwing
IllegalArgumentException or another specified exception may require a set of
methods, as shown in following screenshot:

Objects, Immutability, and Switch Expressions Chapter 2

[78]

Let's focus on the requireNonNullElseThrowIAE() methods. These two methods
throw IllegalArgumentException with a custom message specified as String or
as Supplier (to avoid creation until null is evaluated to true):

public static <T> T requireNonNullElseThrowIAE(
 T obj, String message) {

 if (obj == null) {
 throw new IllegalArgumentException(message);
 }

 return obj;
}

public static <T> T requireNonNullElseThrowIAE(T obj,
 Supplier<String> messageSupplier) {

 if (obj == null) {
 throw new IllegalArgumentException(messageSupplier == null
 ? null : messageSupplier.get());
 }

 return obj;
}

So, throwing IllegalArgumentException can be done via these two methods. But
they are not enough. For example, the code may need to
throw IllegalStateException, UnsupportedOperationException, and so on.
For such cases, the following methods are preferable:

public static <T, X extends Throwable> T requireNonNullElseThrow(
 T obj, X exception) throws X {

 if (obj == null) {
 throw exception;
 }

 return obj;
}

public static <T, X extends Throwable> T requireNotNullElseThrow(
 T obj, Supplier<<? extends X> exceptionSupplier) throws X {

 if (obj != null) {
 return obj;
 } else {
 throw exceptionSupplier.get();

Objects, Immutability, and Switch Expressions Chapter 2

[79]

 }
}

Consider adding these methods to a helper class named MyObjects. Call these
methods as shown in the following example:

public Car(String name, Color color) {

 this.name = MyObjects.requireNonNullElseThrow(name,
 new UnsupportedOperationException("Name cannot be set as null"));
 this.color = MyObjects.requireNotNullElseThrow(color, () ->
 new UnsupportedOperationException("Color cannot be set as null"));
}

Furthermore, we can follow these examples to enrich MyObjects with other kinds of
exceptions as well.

43. Checking null references and returning
non-null default references
A solution to this problem can easily be provided via if-else (or the ternary
operator), as in the following example (as a variation, name, and color can be
declared as non-final and initialized with the default values at declaration):

public class Car {

 private final String name;
 private final Color color;
 public Car(String name, Color color) {

 if (name == null) {
 this.name = "No name";
 } else {
 this.name = name;
 }

 if (color == null) {
 this.color = new Color(0, 0, 0);
 } else {
 this.color = color;
 }
 }
}

Objects, Immutability, and Switch Expressions Chapter 2

[80]

However, starting with JDK 9, the preceding code can be simplified via two methods
from the Objects class. These methods are requireNonNullElse() and
requireNonNullElseGet(). Both of them take two arguments—the reference to
check for nullity, and the non-null default reference to return in case the checked
reference is null:

public class Car {

 private final String name;
 private final Color color;

 public Car(String name, Color color) {

 this.name = Objects.requireNonNullElse(name, "No name");
 this.color = Objects.requireNonNullElseGet(color,
 () -> new Color(0, 0, 0));
 }
}

In the preceding example, these methods are used in a constructor, but they can be
used in methods as well.

44. Checking the index in the range from 0 to
length
To begin with, let's have a simple scenario to highlight this problem. This scenario
may materialize in the following simple class:

public class Function {

 private final int x;

 public Function(int x) {

 this.x = x;
 }

 public int xMinusY(int y) {

 return x - y;
 }

 public static int oneMinusY(int y) {

Objects, Immutability, and Switch Expressions Chapter 2

[81]

 return 1 - y;
 }
}

Notice that the preceding snippet of code doesn't assume any range restrictions over
x and y. Now, let's impose the following ranges (this is very common with
mathematical functions):

x must be between 0 (inclusive) and 11 (exclusive), so x belongs to [0, 11].
In the xMinusY() method, y must be between 0 (inclusive) and x
(exclusive), so y belongs to [0, x].
In the oneMinusY() method, y must be between 0 (inclusive) and 16
(exclusive), so y belongs to [0, 16).

These ranges can be imposed in code via the if statements, as follows:

public class Function {

 private static final int X_UPPER_BOUND = 11;
 private static final int Y_UPPER_BOUND = 16;
 private final int x;

 public Function(int x) {

 if (x < 0 || x >= X_UPPER_BOUND) {
 throw new IndexOutOfBoundsException("...");
 }

 this.x = x;
 }

 public int xMinusY(int y) {

 if (y < 0 || y >= x) {
 throw new IndexOutOfBoundsException("...");
 }

 return x - y;
 }

 public static int oneMinusY(int y) {

 if (y < 0 || y >= Y_UPPER_BOUND) {
 throw new IndexOutOfBoundsException("...");
 }

Objects, Immutability, and Switch Expressions Chapter 2

[82]

 return 1 - y;
 }
}

Consider replacing IndexOutOfBoundsException with a more meaningful
exception (for example, extend IndexOutOfBoundsException and create a custom
exception of type, RangeOutOfBoundsException).

Starting with JDK 9, the code can be rewritten to use the Objects.checkIndex()
method. This method verifies whether the given index is in the range [0, length] and
returns the given index in this range or throws IndexOutOfBoundsException:

public class Function {

 private static final int X_UPPER_BOUND = 11;
 private static final int Y_UPPER_BOUND = 16;
 private final int x;

 public Function(int x) {

 this.x = Objects.checkIndex(x, X_UPPER_BOUND);
 }

 public int xMinusY(int y) {

 Objects.checkIndex(y, x);

 return x - y;
 }

 public static int oneMinusY(int y) {

 Objects.checkIndex(y, Y_UPPER_BOUND);

 return 1 - y;
 }
}

For example, calling oneMinusY(), as shown in the next code snippet, will result
in IndexOutOfBoundsException since y can take values between [0, 16):

int result = Function.oneMinusY(20);

Now, let's go further and check the subrange in a range from 0 to the given length.

Objects, Immutability, and Switch Expressions Chapter 2

[83]

45. Checking the subrange in the range from 0
to length
Let's follow the same flow from the previous problem. So, this time, the Function
class will look as follows:

public class Function {

 private final int n;

 public Function(int n) {

 this.n = n;
 }

 public int yMinusX(int x, int y) {

 return y - x;
 }
}

Notice that the preceding snippet of code doesn't assume any range restrictions over
x, y, and n. Now, let's impose the following ranges:

n must be between 0 (inclusive) and 101 (exclusive), so n belongs to [0, 101].
In the yMinusX() method, the range bounded by x and y, [x, y] must be a
subrange of [0, n].

These ranges can be imposed in code via the if statements as follows:

public class Function {

 private static final int N_UPPER_BOUND = 101;
 private final int n;

 public Function(int n) {

 if (n < 0 || n >= N_UPPER_BOUND) {
 throw new IndexOutOfBoundsException("...");
 }

 this.n = n;
 }

 public int yMinusX(int x, int y) {

Objects, Immutability, and Switch Expressions Chapter 2

[84]

 if (x < 0 || x > y || y >= n) {
 throw new IndexOutOfBoundsException("...");
 }

 return y - x;
 }
}

Based on the previous problem, the condition for n can be replaced with
Objects.checkIndex(). Moreover, the JDK 9 Objects class comes with a method
named checkFromToIndex(int start, int end, int length) that checks
whether the given subrange [given start, given end] is within the bounds of the range
from [0, given length]. So, this method can be applied to the yMinusX() method to
check that the range bounded by x and y, [x, y) is a subrange of [0, n]:

public class Function {

 private static final int N_UPPER_BOUND = 101;
 private final int n;

 public Function(int n) {

 this.n = Objects.checkIndex(n, N_UPPER_BOUND);
 }

 public int yMinusX(int x, int y) {

 Objects.checkFromToIndex(x, y, n);
 return y - x;
 }
}

For example, the following test will lead to IndexOutOfBoundsException since x is
greater than y:

Function f = new Function(50);
int r = f.yMinusX(30, 20);

Beside this method, Objects come with another
method named checkFromIndexSize(int start, int size,
int length). This method checks that the subrange [given start,
given start + given size] is in the range [0, given length].

Objects, Immutability, and Switch Expressions Chapter 2

[85]

46. equals() and hashCode()
The equals() and hashCode() methods are defined in java.lang.Object. Since
Object is the superclass of all Java objects, these two methods are available for all
objects. Their main goal is to provide an easy, efficient, and robust solution for
comparing objects, and to determine whether they are equal. Without these methods
and their contracts, the solution relies on the big and cumbersome if statements
meant to compare each field of an object.

When these methods are not overridden, Java will use their default implementations.
Unfortunately, the default implementation is not really serving the goal of
determining whether two objects have the same value. By default, equals() checks
identity. In other words, it considers that two objects are equal if, and only if, they are
represented by the same memory address (same object references), while
hashCode() returns an integer representation of the object memory address. This is a
native function known as the identity hash code.

For example, let's assume the following class:

public class Player {

 private int id;
 private String name;

 public Player(int id, String name) {

 this.id = id;
 this.name = name;
 }
}

Then, let's create two instances of this class containing the same information, and let's
compare them for equality:

Player p1 = new Player(1, "Rafael Nadal");
Player p2 = new Player(1, "Rafael Nadal");

System.out.println(p1.equals(p2)); // false
System.out.println("p1 hash code: " + p1.hashCode()); // 1809787067
System.out.println("p2 hash code: " + p2.hashCode()); // 157627094

Objects, Immutability, and Switch Expressions Chapter 2

[86]

Do not use the == operator for testing the equality of objects
(avoid if(p1 == p2)). The == operator compares whether the
references of two objects are pointing to the same object, whereas
equals() compares object values (as humans, this is what we care
about).

As a rule of thumb, if two variables hold the same reference, they
are identical, but if they reference the same value, they are equal.
What the same value means is defined by equals().

For us, p1 and p2 are equal, but notice that equals() has returned false (the p1
and p2 instances have exactly the same field values, but they are stored at different
memory addresses). This means that relying on the default implementation of
equals() is not acceptable. The solution is to override this method, and for this it is
important to be aware of the equals() contract that imposes the following
statements:

Reflexivity: An object is equal to itself, which means that p1.equals(p1)
must return true.
Symmetry: p1.equals(p2) must return the same result (true/false) as
p2.equals(p1).
Transitive: If p1.equals(p2) and p2.equals(p3), then also
p1.equals(p3).
Consistent: Two equal objects must remain equal all the time unless one of
them is changed.
Null returns false: All objects must be unequal to null.

So, in order to respect this contract, the equals() method of the Player class can be
overridden as follows:

@Override
public boolean equals(Object obj) {

 if (this == obj) {
 return true;
 }

 if (obj == null) {
 return false;
 }

 if (getClass() != obj.getClass()) {
 return false;

Objects, Immutability, and Switch Expressions Chapter 2

[87]

 }

 final Player other = (Player) obj;

 if (this.id != other.id) {
 return false;
 }

 if (!Objects.equals(this.name, other.name)) {
 return false;
 }

 return true;
}

Now, let's perform the equality test again (this time, p1 is equal to p2):

System.out.println(p1.equals(p2)); // true

OK, so far so good! Now, let's add these two Player instances to a collection. For
example, let's add them to a HashSet (a Java collection that doesn't allow duplicates):

Set<Player> players = new HashSet<>();
players.add(p1);
players.add(p2);

Let's check the size of this HashSet and whether it contains p1:

System.out.println("p1 hash code: " + p1.hashCode()); // 1809787067
System.out.println("p2 hash code: " + p2.hashCode()); // 157627094
System.out.println("Set size: " + players.size()); // 2
System.out.println("Set contains Rafael Nadal: "
 + players.contains(new Player(1, "Rafael Nadal"))); // false

Conforming to the preceding implementation of equals(), p1, and p2 are equal;
therefore, the HashSet size should be 1, not 2. Moreover, it should contain Rafael
Nadal. So, what happened?

Well, the general answer resides in how Java was created. It is easy to intuit that
equals() is not a fast method; therefore, lookups will face performance penalties
when a significant number of equality comparisons are needed. For example, this
adds a serious drawback in the case of lookups by specific values in collections (for
example, HashSet, HashMap, and HashTable), since it may require a large number of
equality comparisons.

Objects, Immutability, and Switch Expressions Chapter 2

[88]

Based on this statement, Java tried to reduce equality comparisons by adding buckets.
A bucket is a hash-based container that groups equal objects. This means that equal
objects should return the same hash code, while unequal objects should return
different hash codes (if two unequal objects have the same hash code, then this is a
hash collision, and the objects will go in the same bucket). So, Java compares the hash
codes, and only if these are the same for two different object references (not for the
same object references) does it proceed further and call equals(). Basically, this
accelerates the lookups in collections.

But what happened in our case? Let's see it step by step:

When p1 is created, Java will assign to it a hash code based on the p1
memory address.
When p1 is added to Set, Java will link a new bucket to the p1 hash code.
When p2 is created, Java will assign to it a hash code based on the p2
memory address.
When p2 is added to Set, Java will link a new bucket to the p2 hash code
(when this happens, it looks like HashSet is not working as expected and it
allows duplicates).
When players.contains(new Player(1, "Rafael Nadal")) is
executed, a new player, p3, is created with a new hash code based on the
p3 memory address.
So, in the frame of contains(), testing p1 and p3, respectively, p2 and
p3 , for equality involves checking their hash codes, and since the p1 hash
code is different from the p3 hash code, and the p2 hash code is different
from the p3 hash code, the comparisons stop without evaluating equals()
and this means that HashSet doesn't contain the object (p3)

In order to get back on track, the code must override the hashCode() method as well.
The hashCode() contract imposes the following:

Two equal objects conforming to equals() must return the same hash
code.
Two objects with the same hash code are not mandatory equals.
As long as the object remains unchanged, hashCode() must return the
same value.

Objects, Immutability, and Switch Expressions Chapter 2

[89]

As a rule of thumb, in order to respect the equals() and hashCode() contracts,
follow two golden rules:

When equals() is overridden, hashCode() must be overridden as well,
and vice versa.
Use the same identifying attributes for both methods in the same order.

For the Player class, hashCode() can be overridden as follows:

@Override
public int hashCode() {

 int hash = 7;
 hash = 79 * hash + this.id;
 hash = 79 * hash + Objects.hashCode(this.name);

 return hash;
}

Now, let's execute another test (this time, it works as expected):

System.out.println("p1 hash code: " + p1.hashCode()); // -322171805
System.out.println("p2 hash code: " + p2.hashCode()); // -322171805
System.out.println("Set size: " + players.size()); // 1
System.out.println("Set contains Rafael Nadal: "
 + players.contains(new Player(1, "Rafael Nadal"))); // true

Now, let's enumerate some of the common mistakes of working with equals() and
hashCode():

You override equals() and forget to override hashCode() or vice versa
(override both or none).
You use the == operator instead of equals() for comparing object values.
In equals(), you omit one or more of the following:

Start by adding the self-check (if (this == obj)...).
Since no instance should be equal to null, continue by
adding null-check (if(obj == null)...).
Ensure that the instance is what we are expecting (use
getClass() or instanceof).
Finally, after these corner-cases, add field comparisons.

Objects, Immutability, and Switch Expressions Chapter 2

[90]

You violate equals() symmetry via inheritance. Assume a class A and a
class B extending A and adding a new field. The B class overrides the
equals() implementation inherited from A, and this implementation is
added to the new field. Relying on instanceof will reveal
that b.equals(a) will return false (as expected), but a.equals(b) will
return true (not expected), so therefore symmetry is broken. Relying on
slice comparison will not work since this breaks transitivity and reflexivity.
Fixing the problem means relying on getClass() instead of instanceof
(via getClass(), instances of the type and its subtypes cannot be equal),
or better relying on composition instead of inheritance as in the application
bundled to this book (P46_ViolateEqualsViaSymmetry).
You return a constant from hashCode() instead of a unique hash code per
object.

Since JDK 7, the Objects class has come with several helpers for dealing with object
equality and hash codes, as follows:

Objects.equals(Object a, Object b): Tests whether the a object is
equal to the b object.
Objects.deepEquals(Object a, Object b): Useful for testing
whether two objects are equal (if they are arrays, the test is performed via
Arrays.deepEquals()).
Objects.hash(Object ... values): Generates a hash code for a
sequence of input values.

Ensure that equals() and hashCode() respect the Java SE
contracts via the EqualsVerifier library (https:/ ​/
mvnrepository. ​com/ ​artifact/ ​nl.​jqno. ​equalsverifier/
equalsverifier).

Rely on the Lombok library to generate hashCode() and equals()
from the fields of your object (https:/ ​/​projectlombok. ​org/​). But
pay attention to the special case of combining Lombok with JPA
entities.

https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/

Objects, Immutability, and Switch Expressions Chapter 2

[91]

47. Immutable objects in a nutshell
An immutable object is an object that cannot be changed (its state is fixed) once it is
created.

In Java, the following applies:

Primitive types are immutable.
The famous Java String class is immutable (other classes are immutable as
well, for example, Pattern, and LocalDate)
Arrays are not immutable.
Collections can be mutable, unmodifiable, or immutable.

An unmodifiable collection is not automatically immutable. It depends on which
objects are stored in the collection. If the stored objects are mutable, then the
collection is mutable and unmodifiable. But if the stored objects are immutable, then
the collection is effectively immutable.

Immutable objects are useful in concurrent (multithread) applications and streams.
Since immutable objects cannot be changed, they are impassible to concurrency issues
and they don't risk being corrupted or inconsistent.

One of the main concerns of using immutable objects is related to the penalties of
creating new objects, instead of managing the state of a mutable object. But keep in
mind that immutable objects take advantage of special treatment during garbage
collection. Moreover, they are not prone to concurrency issues and eliminate the code
needed for managing the state of the mutable objects. The code necessary to manage
the state of mutable objects is prone to be slower than the creation of new objects.

Looking at the following problems will allow us to dive deeper into object
immutability in Java.

48. Immutable string
Every programming language has a way of representing strings. As primitive types,
strings are part of the predefined types, and they are used in almost every type of
Java application.

Objects, Immutability, and Switch Expressions Chapter 2

[92]

In Java, strings are not represented by a primitive type like int, long, and float.
They are represented by a reference type named String. Almost any Java application
uses strings, for example, the main() method of a Java application gets as an
argument an array of the String type.

The notoriety of String and its wide range of applications means we should know it
in detail. Besides knowing how to declare and manipulate strings (for example,
reverse, and capitalize) developers should understand why this class was designed in
a special or different way. More precisely, why is String immutable? Or maybe this
question has a better resonance formulated like this—what are the pros and cons of
String being immutable?

Pros of string immutability
Let's take a look at some of the pros of string immutability in the next section.

String constant pool or cached pool
One of the reasons in favor of string immutability is represented by the string
constant pool (SCP) or cached pool. In order to understand this statement, let's dive a
little bit into how the String class works internally.

The SCP is a special area in memory (not the normal heap memory) used for the
storage of string literals. Let's assume the following three String variables:

String x = "book";
String y = "book";
String z = "book";

How many String objects have been created? It is tempting to say three, but actually
Java creates only one String object with the "book" value. The idea is that
everything between quotes is considered as a string literal, and Java stores string
literals in this special area of memory called the SCP, by following an algorithm like
this (this algorithm is known as string interning):

When a string literal is created (for example, String x = "book"), Java
inspects the SCP to see whether this string literal exists.
If the string literal is not found in the SCP, then a new string object for the
string literal is created in the SCP and the corresponding variable, x, will
point to it.

Objects, Immutability, and Switch Expressions Chapter 2

[93]

If the string literal is found in the SCP (for example, String y = "book",
String z = "book"), then the new variable will point to the String
object (basically, all variables that have the same value will point to the
same String object):

But x should be "cook" and not "book", so let's replace "b" with "c"—x =

x.replace("b", "c");.

While x should be "cook", y and z should remain unchanged. This behavior is
provided by immutability. Java will create a new object and will perform the change
on it as follows:

So, string immutability permits the caching of string literals, which allows
applications to use a large number of string literals with a minimum impact on the
heap memory and garbage collector. In a mutable context, a modification of a string
literal may lead to corrupted variables.

Do not create a string as String x = new String("book"). This
is not a string literal; this is a String instance (built via a
constructor) that will go in the normal memory heap instead of the
SCP. A string created in the normal heap memory can point to the
SCP by explicitly calling the String.intern() method
as x.intern().

Objects, Immutability, and Switch Expressions Chapter 2

[94]

Security
Another benefit of string immutability is its security aspect. Commonly, a lot of
sensitive information (usernames, passwords, URLs, ports, databases, socket
connections, parameters, properties, and so on) are represented and passed around as
strings. By having this information immutable, the code becomes secure to a wide
range of security threats (for example, modifying the references accidentally or
deliberately).

Thread safety
Imagine an application using thousands of mutable String objects and dealing with
thread-safety code. Fortunately, in this case, our imagined scenario will not become a
reality, thanks to immutability. Any immutable object is thread-safe by its nature.
This means that strings can be shared and manipulated by multiple threads, with no
risk of corruption and inconsistency.

Hash code caching
The equals() and hashCode() section discussed equals() and hashCode(). Hash codes
should be calculated every time they are involved in hashing specific activities (for
example, searching an element in a collection). Since String is immutable, every
string has an immutable hash code that can be cached and reused as it cannot be
changed after string creation. This means that hash codes of strings can be used from
the cache instead of recalculating them at each usage. For example, HashMap hashes
its keys for different operations (for example, put(), get()), and if these keys are of
the String type, then hash codes will be reused from the cache instead of
recalculating them.

Class loading
A typical approach for loading a class in memory relies on calling
the Class.forName(String className) method. Notice the String argument
representing the class name. Thanks to string immutability, the class name cannot be
changed during the loading process. However, if String is mutable, then imagine
loading class A (for example, Class.forName("A")), and, during the loading
process, its name will get changed to BadA. Now, the BadA objects can do bad things!

Objects, Immutability, and Switch Expressions Chapter 2

[95]

Cons of string immutability
Let's take a look at some of the cons of string immutability in the next section.

String cannot be extended
An immutable class should be declared final to avoid extensibility. However,
developers need to extend the String class in order to add more features, and this
limitation can be considered a drawback of immutability.

Nevertheless, developers can write utility classes (for example, Apache Commons
Lang, StringUtils, Spring Framework, StringUtils, Guava, and strings) to
provide extra features and simply pass strings as arguments to the methods of these
classes.

Sensitive data in memory for a long time
Sensitive data in strings (for example, passwords) may reside in memory (in SCP) for
a long time. Being a cache, the SCP takes advantage of special treatment from the
garbage collector. More precisely, the SCP is not visited by the garbage collector with
the same frequency (cycles) as other memory zones. As a consequence of this special
treatment, sensitive data is kept in the SCP for a long time, and can be prone to
unwanted usages.

In order to avoid this potential drawback, it is advisable to store sensitive data (for
example, passwords) in char[] instead of String.

OutOfMemoryError
The SCP is a small memory zone in comparison with others and can be filled pretty
quickly. Storing too many string literals in the SCP will lead to OutOfMemoryError.

Is String completely immutable?
Well, behind the scenes, String uses private final char[] to store each
character of the string. By using the Java Reflection API, in JDK 8, the following code
will modify this char[] (the same code in JDK 11 will
throw java.lang.ClassCastException):

String user = "guest";
System.out.println("User is of type: " + user);

Objects, Immutability, and Switch Expressions Chapter 2

[96]

Class<String> type = String.class;
Field field = type.getDeclaredField("value");
field.setAccessible(true);

char[] chars = (char[]) field.get(user);

chars[0] = 'a';
chars[1] = 'd';
chars[2] = 'm';
chars[3] = 'i';
chars[4] = 'n';

System.out.println("User is of type: " + user);

So, in JDK 8, String is effectively immutable, but not completely.

49. Writing an immutable class
An immutable class must respect several requirements, such as the following:

The class should be marked as final to suppress extensibility (other
classes cannot extend this class; therefore, they cannot override methods)
All fields should be declared private and final (they are not visible in
other classes, and they are initialized only once in the constructor of this
class)
The class should contain a parameterized public constructor (or a
private constructor and factory methods for creating instances) that
initializes the fields
The class should provide getters for fields
The class should not expose setters

For example, the following Point class is immutable since it successfully passes the
preceding checklist:

public final class Point {

 private final double x;
 private final double y;

 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

Objects, Immutability, and Switch Expressions Chapter 2

[97]

 public double getX() {
 return x;
 }

 public double getY() {
 return y;
 }
}

If the immutable class should manipulate mutable objects, consider the following
problems.

50. Passing/returning mutable objects to/from
an immutable class
Passing mutable objects to an immutable class can break down immutability. Let's
consider the following mutable class:

public class Radius {

 private int start;
 private int end;

 public int getStart() {
 return start;
 }

 public void setStart(int start) {
 this.start = start;
 }

 public int getEnd() {
 return end;
 }

 public void setEnd(int end) {
 this.end = end;
 }
}

Objects, Immutability, and Switch Expressions Chapter 2

[98]

Then, let's pass an instance of this class to an immutable class named, Point. At first
glance, the Point class can be written as follows:

public final class Point {

 private final double x;
 private final double y;
 private final Radius radius;

 public Point(double x, double y, Radius radius) {
 this.x = x;
 this.y = y;
 this.radius = radius;
 }

 public double getX() {
 return x;
 }

 public double getY() {
 return y;
 }

 public Radius getRadius() {
 return radius;
 }
}

Is this class still immutable? The answer is—no. The Point class is not immutable
anymore because its state can be changed as in the following example:

Radius r = new Radius();
r.setStart(0);
r.setEnd(120);

Point p = new Point(1.23, 4.12, r);

System.out.println("Radius start: " + p.getRadius().getStart()); // 0
r.setStart(5);
System.out.println("Radius start: " + p.getRadius().getStart()); // 5

Objects, Immutability, and Switch Expressions Chapter 2

[99]

Notice that calling p.getRadius().getStart() returned two different results;
therefore, the state of p has been changed, so Point is no longer immutable. A
solution to this problem is cloning the Radius object and storing the clone as the field
of Point:

public final class Point {

 private final double x;
 private final double y;
 private final Radius radius;

 public Point(double x, double y, Radius radius) {
 this.x = x;
 this.y = y;

 Radius clone = new Radius();
 clone.setStart(radius.getStart());
 clone.setEnd(radius.getEnd());

 this.radius = clone;
 }

 public double getX() {
 return x;
 }

 public double getY() {
 return y;
 }

 public Radius getRadius() {
 return radius;
 }
}

This time, the Point class immutability level has increased (calling r.setStart(5)
will not affect the radius field since this field is a clone of r). But the Point class is
not completely immutable because there is one more problem to solve—returning
mutable objects from an immutable class can break down immutability. Check the
following code that breaks down the immutability of Point:

Radius r = new Radius();
r.setStart(0);
r.setEnd(120);

Point p = new Point(1.23, 4.12, r);

Objects, Immutability, and Switch Expressions Chapter 2

[100]

System.out.println("Radius start: " + p.getRadius().getStart()); // 0
p.getRadius().setStart(5);
System.out.println("Radius start: " + p.getRadius().getStart()); // 5

Again, calling p.getRadius().getStart() returned two different results;
therefore, the state of p has been changed. The solution consists of modifying the
getRadius() method to return a clone of the radius field, as follows:

...
public Radius getRadius() {
 Radius clone = new Radius();
 clone.setStart(this.radius.getStart());
 clone.setEnd(this.radius.getEnd());

 return clone;
 }
...

Now, the Point class is immutable again. Problem solved!

Before choosing the cloning technique/tool, in certain cases, it is
advisable to take your time and analyze/learn different possibilities
available in Java and third-party libraries (for example, check
the Cloning objects section in this chapter). For shallow copies, the
preceding technique can be the proper choice, but for deep copies,
the code may need to rely on different approaches such as copy
constructor, the Cloneable interface, or external libraries (for
example, Apache Commons Lang ObjectUtils, JSON serialization
with Gson or Jackson, or any others).

51. Writing an immutable class via the Builder
pattern
When a class (immutable or mutable) has too many fields, it requires a constructor
with many arguments. When some of those fields are required and others are
optional, this class will need several constructors to cover all the possible
combinations. This becomes cumbersome for the developer and for the user of the
class. This is where the Builder pattern comes to the rescue.

According to the Gang of Four (GoF)—the Builder pattern separates the construction of a
complex object from its representation so that the same construction process can create
different representations.

Objects, Immutability, and Switch Expressions Chapter 2

[101]

The Builder pattern can be implemented as a separate class or as an inner static
class. Let's focus on the second case. The User class has three required fields
(nickname, password, and created) and three optional fields (email, firstname,
and lastname).

Now, an immutable User class relying on the Builder pattern will appear as follows:

public final class User {

 private final String nickname;
 private final String password;
 private final String firstname;
 private final String lastname;
 private final String email;
 private final Date created;

 private User(UserBuilder builder) {
 this.nickname = builder.nickname;
 this.password = builder.password;
 this.created = builder.created;
 this.firstname = builder.firstname;
 this.lastname = builder.lastname;
 this.email = builder.email;
 }

 public static UserBuilder getBuilder(
 String nickname, String password) {
 return new User.UserBuilder(nickname, password);
 }

 public static final class UserBuilder {

 private final String nickname;
 private final String password;
 private final Date created;
 private String email;
 private String firstname;
 private String lastname;

 public UserBuilder(String nickname, String password) {
 this.nickname = nickname;
 this.password = password;
 this.created = new Date();
 }

 public UserBuilder firstName(String firstname) {
 this.firstname = firstname;

Objects, Immutability, and Switch Expressions Chapter 2

[102]

 return this;
 }

 public UserBuilder lastName(String lastname) {
 this.lastname = lastname;
 return this;
 }

 public UserBuilder email(String email) {
 this.email = email;
 return this;
 }

 public User build() {
 return new User(this);
 }
 }

 public String getNickname() {
 return nickname;
 }

 public String getPassword() {
 return password;
 }

 public String getFirstname() {
 return firstname;
 }

 public String getLastname() {
 return lastname;
 }

 public String getEmail() {
 return email;
 }

 public Date getCreated() {
 return new Date(created.getTime());
 }
}

Here are some usage examples:

import static modern.challenge.User.getBuilder;
...
// user with nickname and password

Objects, Immutability, and Switch Expressions Chapter 2

[103]

User user1 = getBuilder("marin21", "hjju9887h").build();

// user with nickname, password and email
User user2 = getBuilder("ionk", "44fef22")
 .email("ion@gmail.com")
 .build();

// user with nickname, password, email, firstname and lastname
User user3 = getBuilder("monika", "klooi0988")
 .email("monika@gmail.com")
 .firstName("Monika")
 .lastName("Ghuenter")
 .build();

52. Avoiding bad data in immutable objects
Bad data is any data that has a negative impact on the immutable object (for example,
corrupted data). Most probably, this data comes from user inputs or from external
data sources that are not under our direct control. In such cases, bad data can hit the
immutable object, and the worst part is that there is no fix for it. An immutable object
cannot be changed after creation; therefore, bad data will live happily as long as the
object lives.

The solution to this problem is to validate all data that enters in an immutable object
against a comprehensive set of constraints.

There are different ways of performing validation, from custom validation to built-in
solutions. Validation can be performed outside or inside the immutable object class,
depending on the application design. For example, if the immutable object is built via
the Builder pattern, then the validation can be performed in the builder class.

JSR 380 is a specification of the Java API for bean validation (Java SE/EE) that can be
used for validation via annotations. Hibernate Validator is the reference
implementation of the validation API, and it can be easily provided as a Maven
dependency in the pom.xml file (check the source code bundled to this book).

Furthermore, we rely on dedicated annotations to provide the needed constraints (for
example, @NotNull, @Min, @Max, @Size, and @Email). In the following example, the
constraints are added to the builder class as follows:

...
public static final class UserBuilder {

 @NotNull(message = "cannot be null")

Objects, Immutability, and Switch Expressions Chapter 2

[104]

 @Size(min = 3, max = 20, message = "must be between 3 and 20
 characters")
 private final String nickname;

 @NotNull(message = "cannot be null")
 @Size(min = 6, max = 50, message = "must be between 6 and 50
 characters")
 private final String password;

 @Size(min = 3, max = 20, message = "must be between 3 and 20
 characters")
 private String firstname;

 @Size(min = 3, max = 20, message = "must be between 3 and 20
 characters")
 private String lastname;

 @Email(message = "must be valid")
 private String email;

 private final Date created;

 public UserBuilder(String nickname, String password) {
 this.nickname = nickname;
 this.password = password;
 this.created = new Date();
 }
...

Finally, the validation process is triggered from code via the Validator API (this is
needed in Java SE only). If the data that enters the builder class is invalid, then the
immutable object is not created (don't call the build() method):

User user;
Validator validator
 = Validation.buildDefaultValidatorFactory().getValidator();

User.UserBuilder userBuilder
 = new User.UserBuilder("monika", "klooi0988")
 .email("monika@gmail.com")
 .firstName("Monika").lastName("Gunther");

final Set<ConstraintViolation<User.UserBuilder>> violations
 = validator.validate(userBuilder);
if (violations.isEmpty()) {
 user = userBuilder.build();
 System.out.println("User successfully created on: "
 + user.getCreated());

Objects, Immutability, and Switch Expressions Chapter 2

[105]

} else {
 printConstraintViolations("UserBuilder Violations: ", violations);
}

This way, the bad data cannot touch an immutable object. If there is no builder class,
then the constraints can be added directly at the field level in the immutable object.
The preceding solution simply displays the potential violations on the console, but,
depending on the situation, the solution may perform different actions (for example,
throw specific exceptions).

53. Cloning objects
Cloning objects is not a daily task, but it is important to do it properly. Mainly,
cloning objects refers to creating copies of objects. There are two main types of
copies—shallow copies (copy as little as possible) and deep copies (copy everything).

Let's assume the following class:

public class Point {

 private double x;
 private double y;

 public Point() {}
 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

 // getters and setters
}

So, we have a point of type (x, y) mapped in a class. Now, let's perform some cloning.

Manual cloning
A quick approach consists of adding a method that copies the current Point to a new
Point manually (this is a shallow copy):

public Point clonePoint() {
 Point point = new Point();
 point.setX(this.x);
 point.setY(this.y);

Objects, Immutability, and Switch Expressions Chapter 2

[106]

 return point;
}

The code here is pretty simple. Just create a new instance of Point and populate its
fields with the fields of the current Point. The returned Point is a shallow copy
(since Point doesn't depend on other objects, a deep copy will be exactly the same) of
the current Point:

Point point = new Point(...);
Point clone = point.clonePoint();

Cloning via clone()
The Object class contains a method named clone(). This method is useful for
creating shallow copies (it can be used for deep copies as well). In order to use it, a
class should follow the given steps:

Implement the Cloneable interface (if this interface is not implemented,
then CloneNotSupportedException will be thrown).
Override the clone() method (Object.clone() is protected).
Call super.clone().

The Cloneable interface doesn't contain any methods. It is just a signal for JVM that
this object can be cloned. Once this interface is implemented, the code needs to
override the Object.clone() method. This is needed because Object.clone() is
protected, and, in order to call it via super, the code needs to override this method.
This can be a serious drawback if clone() is added to a child class since all
superclasses should define a clone() method in order to avoid the failure of
the super.clone() chain invocation.

Moreover, Object.clone() doesn't rely on a constructor invocation, and so the
developer cannot control the object construction:

public class Point implements Cloneable {

 private double x;
 private double y;

 public Point() {}

 public Point(double x, double y) {
 this.x = x;
 this.y = y;

Objects, Immutability, and Switch Expressions Chapter 2

[107]

 }

 @Override
 public Point clone() throws CloneNotSupportedException {
 return (Point) super.clone();
 }

 // getters and setters
}

Creating a clone can be done as follows:

Point point = new Point(...);
Point clone = point.clone();

Cloning via a constructor
This cloning technique requires you to enrich the class with a constructor that takes a
single argument representing an instance of the class that will be used to create the
clone.

Let's see it in code:

public class Point {

 private double x;
 private double y;

 public Point() {}

 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public Point(Point another) {
 this.x = another.x;
 this.y = another.y;
 }

 // getters and setters
}

Creating a clone can be done as follows:

Point point = new Point(...);
Point clone = new Point(point);

Objects, Immutability, and Switch Expressions Chapter 2

[108]

Cloning via the Cloning library
A deep copy is needed when an object depends on another object. Performing a deep
copy means copying the object, including its chain of dependencies. For example, let's
assume that Point has a field of the Radius type:

public class Radius {

 private int start;
 private int end;

 // getters and setters
}

public class Point {

 private double x;
 private double y;
 private Radius radius;

 public Point(double x, double y, Radius radius) {
 this.x = x;
 this.y = y;
 this.radius = radius;
 }

 // getters and setters
}

Performing a shallow copy of Point will create a copy of x and y, but will not create
a copy of the radius object. This means that modifications that affect the radius
object will be reflected in the clone as well. It's time for a deep copy.

A cumbersome solution will involve adapting the shallow copy techniques
previously presented to support a deep copy. Fortunately, there are a few solutions
that can be applied out of the box, and one of them is the Cloning library (https:/ ​/
github.​com/​kostaskougios/ ​cloning):

import com.rits.cloning.Cloner;
...
Point point = new Point(...);
Cloner cloner = new Cloner();
Point clone = cloner.deepClone(point);

https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning

Objects, Immutability, and Switch Expressions Chapter 2

[109]

The code is self-explanatory. Notice that the Cloning library comes with several other
goodies as well, as can be seen in the following screenshot:

Cloning via serialization
This technique requires serializable objects (implement java.io.Serializable).
Basically, the object is serialized (writeObject()) and deserialized (readObject())
in a new object. A helper method able to accomplish this is listed as follows:

private static <T> T cloneThroughSerialization(T t) {

 try {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(baos);
 oos.writeObject(t);

 ByteArrayInputStream bais
 = new ByteArrayInputStream(baos.toByteArray());
 ObjectInputStream ois = new ObjectInputStream(bais);

 return (T) ois.readObject();
 } catch (IOException | ClassNotFoundException ex) {
 // log exception
 return t;
 }
}

So, the object is serialized in ObjectOutputStream and deserialized
in ObjectInputStream. Cloning an object via this method can be accomplished as
follows:

Point point = new Point(...);
Point clone = cloneThroughSerialization(point);

Objects, Immutability, and Switch Expressions Chapter 2

[110]

A built-in solution based on serialization is provided by Apache Commons Lang, via
SerializationUtils. Among its methods, this class provides a method named
clone() that can be used as follows:

Point point = new Point(...);
Point clone = SerializationUtils.clone(point);

Cloning via JSON
Almost any JSON library in Java can serialize any Plain Old Java Object (POJO)
without any extra configuration/mapping required. Having a JSON library in the
project (and many projects have) can save us from adding an extra library to provide
deep cloning. Mainly, the solution can leverage the existing JSON library to get the
same effect.

The following is an example using the Gson library:

private static <T> T cloneThroughJson(T t) {

 Gson gson = new Gson();
 String json = gson.toJson(t);

 return (T) gson.fromJson(json, t.getClass());
}

Point point = new Point(...);
Point clone = cloneThroughJson(point);

In addition to this, there is always the option of writing your own library dedicated to
cloning objects.

54. Overriding toString()
The toString() method is defined in java.lang.Object, and the JDK comes with
a default implementation of it. This default implementation is automatically used for
all objects that are the subject of print(), println(), printf(), debugging during
development, logging, informative messages in exceptions, and so on.

Objects, Immutability, and Switch Expressions Chapter 2

[111]

Unfortunately, the string representation of an object returned by the default
implementation is not very informative. For example, let's consider the following
User class:

public class User {
 private final String nickname;
 private final String password;
 private final String firstname;
 private final String lastname;
 private final String email;
 private final Date created;

 // constructor and getters skipped for brevity
}

Now, let's create an instance of this class, and let's print it on the console:

User user = new User("sparg21", "kkd454ffc",
 "Leopold", "Mark", "markl@yahoo.com");

System.out.println(user);

The output of this println() method will be something like the following:

The solution for avoiding outputs as in the preceding screenshot consists of
overriding the toString() method. For example, let's override it to expose the user
details, as follows:

@Override
public String toString() {
 return "User{" + "nickname=" + nickname + ", password=" + password
 + ", firstname=" + firstname + ", lastname=" + lastname
 + ", email=" + email + ", created=" + created + '}';
}

This time, println() will reveal the following output:

User {
 nickname = sparg21, password = kkd454ffc,
 firstname = Leopold, lastname = Mark,
 email = markl@yahoo.com, created = Fri Feb 22 10: 49: 32 EET 2019
}

Objects, Immutability, and Switch Expressions Chapter 2

[112]

This is much more informative than the previous output.

But, remember that toString() is automatically called for different purposes. For
example, logging can be as follows:

logger.log(Level.INFO, "This user rocks: {0}", user);

Here, the user password will hit the log, and this may represent a problem. Exposing
log-sensitive data, such as passwords, accounts, and secret IPs, in an application is
definitely a bad practice.

Therefore, pay extra attention to carefully selecting the information that goes in
toString(), since this information may end up in places where it can be maliciously
exploited. In our case, the password should not be part of toString():

@Override
public String toString() {
 return "User{" + "nickname=" + nickname
 + ", firstname=" + firstname + ", lastname=" + lastname
 + ", email=" + email + ", created=" + created + '}';
}

Commonly, toString() is a method generated via an IDE. So, pay attention to
which fields you select before the IDE generates the code for you.

55. Switch expressions
Before we have a brief overview of the switch expressions introduced in JDK 12, let's
see a typical old-school example wrapped in a method:

private static Player createPlayer(PlayerTypes playerType) {

 switch (playerType) {

 case TENNIS:
 return new TennisPlayer();
 case FOOTBALL:
 return new FootballPlayer();
 case SNOOKER:
 return new SnookerPlayer();
 case UNKNOWN:
 throw new UnknownPlayerException("Player type is unknown");
 default:
 throw new IllegalArgumentException(
 "Invalid player type: " + playerType);

Objects, Immutability, and Switch Expressions Chapter 2

[113]

 }
}

If we forget about default, then the code will not compile.

Obviously, the preceding example is acceptable. In the worst-case scenario, we can
add a spurious variable (for example, player), some cluttering break statements,
and get no complaints if default is missing. So, the following code is an old-school,
extremely ugly switch:

private static Player createPlayerSwitch(PlayerTypes playerType) {

 Player player = null;

 switch (playerType) {
 case TENNIS:
 player = new TennisPlayer();
 break;
 case FOOTBALL:
 player = new FootballPlayer();
 break;
 case SNOOKER:
 player = new SnookerPlayer();
 break;
 case UNKNOWN:
 throw new UnknownPlayerException(
 "Player type is unknown");
 default:
 throw new IllegalArgumentException(
 "Invalid player type: " + playerType);
 }

 return player;
}

If we forget about default, then there will be no complaints from the compiler side.
In this case, a missing default case may result in a null player.

However, since JDK 12, we have been able to rely on the switch expressions. Before
JDK 12, switch was a statement, a construct meant to control the flow (for example,
as an if statement) without representing the result. On the other hand, an expression
is evaluated to a result. Therefore, a switch expression can have a result.

Objects, Immutability, and Switch Expressions Chapter 2

[114]

The preceding switch expression can be written in the style of JDK 12 as follows:

private static Player createPlayer(PlayerTypes playerType) {

 return switch (playerType) {
 case TENNIS ->
 new TennisPlayer();
 case FOOTBALL ->
 new FootballPlayer();
 case SNOOKER ->
 new SnookerPlayer();
 case UNKNOWN ->
 throw new UnknownPlayerException(
 "Player type is unknown");
 // default is not mandatory
 default ->
 throw new IllegalArgumentException(
 "Invalid player type: " + playerType);
 };
}

This time, default is not mandatory. We can skip it.

The JDK 12 switch is smart enough to signal if switch doesn't cover all possible
input values. This is very useful in the case of Java enum values. The JDK 12 switch
can detect whether all the enum values are covered, and doesn't force a useless
default if they aren't. For example, if we remove default and add a new entry
to PlayerTypes enum (for example, GOLF), then the compiler will signal it via a
message, as in the following screenshot (this is from NetBeans):

Notice that between the label and execution, we've replaced the colon with an arrow
(the lambda-style syntax). The main role of this arrow is to prevent fall-through,
which means that only the block of code from its right will be executed. There is no
need to use break.

Objects, Immutability, and Switch Expressions Chapter 2

[115]

Do not conclude that the arrow turns the switch statement into a switch expression.
A switch expression can be used with a colon and break as well, as follows:

private static Player createPlayer(PlayerTypes playerType) {

 return switch (playerType) {
 case TENNIS:
 break new TennisPlayer();
 case FOOTBALL:
 break new FootballPlayer();
 case SNOOKER:
 break new SnookerPlayer();
 case UNKNOWN:
 throw new UnknownPlayerException(
 "Player type is unknown");
 // default is not mandatory
 default:
 throw new IllegalArgumentException(
 "Invalid player type: " + playerType);
 };
}

Our example posts switch over enum, but the JDK 12 switch can
also be used over int, Integer, short, Short, byte, Byte, char,
Character, and String.

Notice that JDK 12 brings the switch expressions as a preview
feature. This means that it is prone to changes in the next few
releases, and it needs to be unlocked via the --enable-
preview command-line option at compiling and runtime.

56. Multiple case labels
Before JDK 12, a switch statement allowed a single label per case. Starting with
the switch expressions, a case can have multiple labels separated by a comma.
Check out the following method that exemplifies multiple case labels:

private static SportType
 fetchSportTypeByPlayerType(PlayerTypes playerType) {

 return switch (playerType) {
 case TENNIS, GOLF, SNOOKER ->
 new Individual();
 case FOOTBALL, VOLLEY ->

Objects, Immutability, and Switch Expressions Chapter 2

[116]

 new Team();
 };
}

So, if we pass to this method TENNIS, GOLF, or SNOOKER, it will return an instance of
the Individual class. If we pass FOOTBALL or VOLLEY, it will return an instance of
the Team class.

57. Statement blocks
A label's arrow can point to a single statement (as in the examples from the previous
two problems) or to a curly-braced block. This is pretty similar to the lambda blocks.
Check out the following solution:

private static Player createPlayer(PlayerTypes playerType) {
 return switch (playerType) {
 case TENNIS -> {
 System.out.println("Creating a TennisPlayer ...");
 break new TennisPlayer();
 }
 case FOOTBALL -> {
 System.out.println("Creating a FootballPlayer ...");
 break new FootballPlayer();
 }
 case SNOOKER -> {
 System.out.println("Creating a SnookerPlayer ...");
 break new SnookerPlayer();
 }
 default ->
 throw new IllegalArgumentException(
 "Invalid player type: " + playerType);
 };
}

Notice that we exit from a curly-braced block via break, not
return. In other words, while we can return from inside a switch
statement, we can't return from within an expression.

Objects, Immutability, and Switch Expressions Chapter 2

[117]

Summary
That's all folks! This chapter has introduced you to several problems involving
objects, immutability, and the switch expressions. While the problems covering
objects and immutability represent fundamental concepts of programming, the
problems covering the switch expressions were dedicated to introducing the new
JDK 12 features addressing this topic.

Download the applications from this chapter to see the results and to see additional
details.

3
Working with Date and Time

This chapter includes 20 problems that involve date and time. These problems are
meant to cover a wide range of topics (converting, formatting, adding, subtracting,
defining periods/durations, computing, and so on) via Date, Calendar, LocalDate,
LocalTime, LocalDateTime, ZoneDateTime, OffsetDateTime, OffsetTime,
Instant, and so on. By the end of this chapter, you will have no problems in shaping
date and time, while conforming to your application's needs. The fundamental
problems presented in this chapter will be very helpful for obtaining the bigger
picture regarding date-time APIs, and will act like the pieces of the puzzle that need
to be pieced together in order to resolve complex challenges involving date and time.

Problems
Use the following problems to test your date and time programming prowess. I
strongly encourage you to give each problem a try before you turn to the solutions
and download the example programs:

Converting a string to date and time: Write a program that exemplifies58.
conversions between a string and date/time.
Formatting date and time: Explain the format pattern for date and time.59.
Getting the current date/time without time/date: Write a program that60.
extracts the current date without the time or date.
LocalDateTime from LocalDate and LocalTime: Write a program that61.
builds a LocalDateTime from LocalDate object and LocalTime. It
combines the date and time in a single LocalDateTime object.
Machine time via an Instant class: Explain and give an example of the62.
Instant API.
Defining a period of time using date-based values (Period) and a63.
duration of time using time-based values (Duration): Explain and give
an example of the usage of the Period and Duration APIs.

Working with Date and Time Chapter 3

[119]

Getting date and time units: Write a program that extracts the date and64.
time units (for example, extract from date the year, month, minute, and so
on) from an object representing a date-time.
Adding and subtracting to/from a date-time: Write a program that adds65.
(and subtracts) an amount of time (for example, years, days, or minutes) to
a date-time object (for example, add an hour to date, subtract 2 days from
LocalDateTime, and so on).
Getting all time zones with UTC and GMT: Write a program that displays66.
all the available time zones with UTC and GMT.
Getting the local date-time in all available time zones: Write a program67.
that displays the local time in all the available time zones.
Displaying date-time information about a flight: Write a program that68.
displays information about a scheduled flight time of 15 hours and 30
minutes. More precisely, a flight from Perth, Australia to
Bucharest, Europe.
Converting a Unix timestamp to date-time: Write a program that converts69.
a Unix timestamp to java.util.Date and java.time.LocalDateTime.
Finding the first/last day of the month: Write a program that finds the70.
first/last day of the month via JDK 8, TemporalAdjusters.
Defining/extracting zone offsets: Write a program that reveals different71.
techniques for defining and extracting zone offsets.
Converting between Date and Temporal: Write a program that converts72.
between Date and Instant, LocalDate, LocalDateTime, and so on.
Iterating a range of dates: Write a program that iterates a range of given73.
dates, day by day (with a step of a day).
Calculating age: Write a program that calculates the age of a person.74.
Start and end of a day: Write a program that returns the start and end time75.
of a day.
Difference between two dates: Write a program that calculates the amount76.
of time, in days, between two dates.
Implementing a chess clock: Write a program that implements a chess77.
clock.

Working with Date and Time Chapter 3

[120]

Solutions
The following sections describe solutions to the preceding problems. Remember that
there usually isn't a single correct way to solve a particular problem. Also, remember
that the explanations shown here include only the most interesting and important
details that are needed to solve the problems. Download the example solutions to see
additional details and to experiment with the programs at https:/ ​/​github. ​com/
PacktPublishing/ ​Java- ​Coding- ​Problems.

58. Converting a string to date and time
Converting or parsing String to date and time can be accomplished via a set of
parse() methods. Converting from date and time to String can be accomplished
via the toString() or format() methods.

Before JDK 8
Before JDK 8, the typical solution to this problem relies on the main extension of the
abstract DateFormat class, named SimpleDateFormat (this is not a thread-safe
class). In the code that is bundled to this book, there are several examples of how to
use this class.

Starting with JDK 8
Starting with JDK 8, SimpleDateFormat can be replaced with a new
class—DateTimeFormatter. This is an immutable (and, therefore, thread-safe) class,
and is used for printing and parsing date-time objects. This class supports everything
from predefined formatters (represented as constants, as the ISO local date,
2011-12-03, is ISO_LOCAL_DATE) to user-defined formatters (relying on a set of
symbols for writing custom format patterns).

Moreover, beside the Date class, JDK 8 comes with several new classes, which are
dedicated to working with date and time. Some of these classes are shown in the
following list (these are also referenced as temporals because they implement the
Temporal interface):

LocalDate (date without a time zone in the ISO-8601 calendar system)
LocalTime (time without a time zone in the ISO-8601 calendar system)

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Working with Date and Time Chapter 3

[121]

LocalDateTime (date-time without a time zone in the ISO-8601 calendar
system)
ZonedDateTime (date-time with a time zone in the ISO-8601 calendar
system), and so on
OffsetDateTime (date-time with an offset from UTC/GMT in the
ISO-8601 calendar system)
OffsetTime (time with an offset from UTC/GMT in the ISO-8601 calendar
system)

In order to convert String to LocalDate via a predefined formatter, it should
respect the DateTimeFormatter.ISO_LOCAL_DATE pattern, for example, 2020-06-01.
LocalDate provides a parse() method that can be used as follows:

// 06 is the month, 01 is the day
LocalDate localDate = LocalDate.parse("2020-06-01");

Similarly, in the case of LocalTime, the string should respect the
DateTimeFormatter.ISO_LOCAL_TIME pattern; for example, 10:15:30, as shown in
the following code snippet:

LocalTime localTime = LocalTime.parse("12:23:44");

In the case of LocalDateTime, the string should respect the
DateTimeFormatter.ISO_LOCAL_DATE_TIME pattern; for example,
2020-06-01T11:20:15, as shown in the following code snippet:

LocalDateTime localDateTime
 = LocalDateTime.parse("2020-06-01T11:20:15");

And, in case of ZonedDateTime, the string must respect the
DateTimeFormatter.ISO_ZONED_DATE_TIME pattern; for example,
2020-06-01T10:15:30+09:00[Asia/Tokyo], as shown in the following code
snippet:

ZonedDateTime zonedDateTime
 = ZonedDateTime.parse("2020-06-01T10:15:30+09:00[Asia/Tokyo]");

In the case of OffsetDateTime, the string must respect the
DateTimeFormatter.ISO_OFFSET_DATE_TIME pattern; for example,
2007-12-03T10:15:30+01:00, as shown in the following code snippet:

OffsetDateTime offsetDateTime
 = OffsetDateTime.parse("2007-12-03T10:15:30+01:00");

Working with Date and Time Chapter 3

[122]

Finally, in the case of OffsetTime, the string must respect the
DateTimeFormatter.ISO_OFFSET_TIME pattern; for example, 10:15:30+01:00, as
shown in the following code snippet:

OffsetTime offsetTime = OffsetTime.parse("10:15:30+01:00");

If the string doesn't respect any of the predefined formatters, then it is time for a user-
defined formatter via a custom format pattern; for example, the
string 01.06.2020 represents a date that needs a user-defined formatter, as follows:

DateTimeFormatter dateFormatter
 = DateTimeFormatter.ofPattern("dd.MM.yyyy");
LocalDate localDateFormatted
 = LocalDate.parse("01.06.2020", dateFormatter);

However, a string such as 12|23|44 requires a user-defined formatter as follows:

DateTimeFormatter timeFormatter
 = DateTimeFormatter.ofPattern("HH|mm|ss");
LocalTime localTimeFormatted
 = LocalTime.parse("12|23|44", timeFormatter);

A string such as 01.06.2020, 11:20:15 requires a user-defined formatter as
follows:

DateTimeFormatter dateTimeFormatter
 = DateTimeFormatter.ofPattern("dd.MM.yyyy, HH:mm:ss");
LocalDateTime localDateTimeFormatted
 = LocalDateTime.parse("01.06.2020, 11:20:15", dateTimeFormatter);

A string such as 01.06.2020, 11:20:15+09:00 [Asia/Tokyo] requires a user-
defined formatter as follows:

DateTimeFormatter zonedDateTimeFormatter
 = DateTimeFormatter.ofPattern("dd.MM.yyyy, HH:mm:ssXXXXX '['VV']'");
ZonedDateTime zonedDateTimeFormatted
 = ZonedDateTime.parse("01.06.2020, 11:20:15+09:00 [Asia/Tokyo]",
 zonedDateTimeFormatter);

A string such as 2007.12.03, 10:15:30, +01:00 requires a user-defined
formatter as follows:

DateTimeFormatter offsetDateTimeFormatter
 = DateTimeFormatter.ofPattern("yyyy.MM.dd, HH:mm:ss, XXXXX");
OffsetDateTime offsetDateTimeFormatted
 = OffsetDateTime.parse("2007.12.03, 10:15:30, +01:00",
 offsetDateTimeFormatter);

Working with Date and Time Chapter 3

[123]

Finally, a string such as 10 15 30 +01:00 requires a user-defined formatter as
follows:

DateTimeFormatter offsetTimeFormatter
 = DateTimeFormatter.ofPattern("HH mm ss XXXXX");
OffsetTime offsetTimeFormatted
 = OffsetTime.parse("10 15 30 +01:00", offsetTimeFormatter);

Each ofPattern() method from the previous examples also
supports Locale.

Converting from LocalDate, LocalDateTime, or ZonedDateTime to String can be
accomplished in at least two ways:

Rely on the LocalDate, LocalDateTime,
or ZonedDateTime.toString() method (automatically or explicitly).
Notice that relying on toString() will always print the date via the
corresponding predefined formatter:

// 2020-06-01 results in ISO_LOCAL_DATE, 2020-06-01
String localDateAsString = localDate.toString();

// 01.06.2020 results in ISO_LOCAL_DATE, 2020-06-01
String localDateAsString = localDateFormatted.toString();

// 2020-06-01T11:20:15 results
// in ISO_LOCAL_DATE_TIME, 2020-06-01T11:20:15
String localDateTimeAsString = localDateTime.toString();

// 01.06.2020, 11:20:15 results in
// ISO_LOCAL_DATE_TIME, 2020-06-01T11:20:15
String localDateTimeAsString
 = localDateTimeFormatted.toString();

// 2020-06-01T10:15:30+09:00[Asia/Tokyo]
// results in ISO_ZONED_DATE_TIME,
// 2020-06-01T11:20:15+09:00[Asia/Tokyo]
String zonedDateTimeAsString = zonedDateTime.toString();

// 01.06.2020, 11:20:15+09:00 [Asia/Tokyo]
// results in ISO_ZONED_DATE_TIME,
// 2020-06-01T11:20:15+09:00[Asia/Tokyo]
String zonedDateTimeAsString
 = zonedDateTimeFormatted.toString();

Working with Date and Time Chapter 3

[124]

Rely on the DateTimeFormatter.format() method. Notice that relying
on DateTimeFormatter.format() will always print the date/time using
the specified formatter (by default, the time zone will be null), as follows:

// 01.06.2020
String localDateAsFormattedString
 = dateFormatter.format(localDateFormatted);

// 01.06.2020, 11:20:15
String localDateTimeAsFormattedString
 = dateTimeFormatter.format(localDateTimeFormatted);

// 01.06.2020, 11:20:15+09:00 [Asia/Tokyo]
String zonedDateTimeAsFormattedString
 = zonedDateTimeFormatted.format(zonedDateTimeFormatter);

Adding an explicit time zone into the discussion can be done as follows:

DateTimeFormatter zonedDateTimeFormatter
 = DateTimeFormatter.ofPattern("dd.MM.yyyy, HH:mm:ssXXXXX '['VV']'")
 .withZone(ZoneId.of("Europe/Paris"));
ZonedDateTime zonedDateTimeFormatted
 = ZonedDateTime.parse("01.06.2020, 11:20:15+09:00 [Asia/Tokyo]",
 zonedDateTimeFormatter);

This time, the string represents the date/time in the Europe/Paris time zone:

// 01.06.2020, 04:20:15+02:00 [Europe/Paris]
String zonedDateTimeAsFormattedString
 = zonedDateTimeFormatted.format(zonedDateTimeFormatter);

59. Formatting date and time
The previous problem contains some flavors of formatting date and time via
SimpleDateFormat.format() and DateTimeFormatter.format(). In order to
define format patterns, the developer must be aware of the format pattern syntax. In
other words, the developer must be aware of the set of symbols that are used by the
Java date-time API in order to recognize a valid format pattern.

Working with Date and Time Chapter 3

[125]

Most of the symbols are common to SimpleDateFormat (before JDK 8) and to
DateTimeFormatter (starting with JDK 8). The following table lists the most
common symbols—the complete list is available in the JDK documentation:

Letter Meaning Presentation Example
y year year 1994; 94
M month of year number/text 7; 07; Jul; July; J
W week of month number 4
E day of week text Tue; Tuesday; T
d day of month number 15
H hour of day number 22
m minute of hour number 34
s second of minute number 55
S fraction of second number 345
z time zone name zone-name Pacific Standard Time; PST
Z zone offset zone-offset -0800
V time zone id (JDK 8) zone-id America/Los_Angeles; Z; -08:30

Some format pattern examples are available in the following table:

Pattern Example
yyyy-MM-dd 2019-02-24
MM-dd-yyyy 02-24-2019

MMM-dd-yyyy Feb-24-2019
dd-MM-yy 24-02-19

dd.MM.yyyy 24.02.2019
yyyy-MM-dd HH:mm:ss 2019-02-24 11:26:26

yyyy-MM-dd HH:mm:ssSSS 2019-02-24 11:36:32743
yyyy-MM-dd HH:mm:ssZ 2019-02-24 11:40:35+0200
yyyy-MM-dd HH:mm:ss z 2019-02-24 11:45:03 EET

E MMM yyyy HH:mm:ss.SSSZ Sun Feb 2019 11:46:32.393+0200
yyyy-MM-dd HH:mm:ss VV (JDK 8) 2019-02-24 11:45:41 Europe/Athens

Working with Date and Time Chapter 3

[126]

Before JDK 8, a format pattern can be applied via SimpleDateFormat:

// yyyy-MM-dd
Date date = new Date();
SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd");
String stringDate = formatter.format(date);

Starting with JDK 8, a format pattern can be applied via DateTimeFormatter:

For LocalDate (date without a time zone in the ISO-8601 calendar system):

// yyyy-MM-dd
LocalDate localDate = LocalDate.now();
DateTimeFormatter formatterLocalDate
 = DateTimeFormatter.ofPattern("yyyy-MM-dd");
String stringLD = formatterLocalDate.format(localDate);

// or shortly
String stringLD = LocalDate.now()
 .format(DateTimeFormatter.ofPattern("yyyy-MM-dd"));

For LocalTime (time without a time zone in the ISO-8601 calendar
system):

// HH:mm:ss
LocalTime localTime = LocalTime.now();
DateTimeFormatter formatterLocalTime
 = DateTimeFormatter.ofPattern("HH:mm:ss");
String stringLT
 = formatterLocalTime.format(localTime);

// or shortly
String stringLT = LocalTime.now()
 .format(DateTimeFormatter.ofPattern("HH:mm:ss"));

For LocalDateTime (date-time without a time zone in the ISO-8601
calendar system):

// yyyy-MM-dd HH:mm:ss
LocalDateTime localDateTime = LocalDateTime.now();
DateTimeFormatter formatterLocalDateTime
 = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
String stringLDT
 = formatterLocalDateTime.format(localDateTime);

// or shortly
String stringLDT = LocalDateTime.now()
 .format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"));

Working with Date and Time Chapter 3

[127]

For ZonedDateTime (date-time with a time zone in the ISO-8601 calendar
system):

// E MMM yyyy HH:mm:ss.SSSZ
ZonedDateTime zonedDateTime = ZonedDateTime.now();
DateTimeFormatter formatterZonedDateTime
 = DateTimeFormatter.ofPattern("E MMM yyyy HH:mm:ss.SSSZ");
String stringZDT
 = formatterZonedDateTime.format(zonedDateTime);

// or shortly
String stringZDT = ZonedDateTime.now()
 .format(DateTimeFormatter
 .ofPattern("E MMM yyyy HH:mm:ss.SSSZ"));

For OffsetDateTime (date-time with an offset from UTC/GMT in the
ISO-8601 calendar system):

// E MMM yyyy HH:mm:ss.SSSZ
OffsetDateTime offsetDateTime = OffsetDateTime.now();
DateTimeFormatter formatterOffsetDateTime
 = DateTimeFormatter.ofPattern("E MMM yyyy HH:mm:ss.SSSZ");
String odt1 = formatterOffsetDateTime.format(offsetDateTime);

// or shortly
String odt2 = OffsetDateTime.now()
 .format(DateTimeFormatter
 .ofPattern("E MMM yyyy HH:mm:ss.SSSZ"));

For OffsetTime (time with an offset from UTC/GMT in the ISO-8601
calendar system):

// HH:mm:ss,Z
OffsetTime offsetTime = OffsetTime.now();
DateTimeFormatter formatterOffsetTime
 = DateTimeFormatter.ofPattern("HH:mm:ss,Z");
String ot1 = formatterOffsetTime.format(offsetTime);

// or shortly
String ot2 = OffsetTime.now()
 .format(DateTimeFormatter.ofPattern("HH:mm:ss,Z"));

Working with Date and Time Chapter 3

[128]

60. Getting the current date/time without
time/date
Before JDK 8, the solution must focus on the java.util.Date class. The code that is
bundled to this book contains this solution.

Starting with JDK 8, the date and time can be obtained via the dedicated classes,
LocalDate and LocalTime, from the java.time package:

// 2019-02-24
LocalDate onlyDate = LocalDate.now();

// 12:53:28.812637300
LocalTime onlyTime = LocalTime.now();

61. LocalDateTime from LocalDate and
LocalTime
The LocalDateTime class exposes a series of of() methods that are useful for
obtaining a different kind of instance of LocalDateTime. For example, a
LocalDateTime class that is obtained from the year, month, day, hour, minute,
second, or nanosecond looks like this:

LocalDateTime ldt = LocalDateTime.of ​(2020, 4, 1, 12, 33, 21, 675);

So, the preceding code combines date and time as arguments of the of() method. In
order to combine date and time as objects, the solution can take advantage of the
following of() method:

public static LocalDateTime of ​(LocalDate date, LocalTime time)

This results in LocalDate and LocalTime, as in the following:

LocalDate localDate = LocalDate.now(); // 2019-Feb-24
LocalTime localTime = LocalTime.now(); // 02:08:10 PM

Working with Date and Time Chapter 3

[129]

They can be combined in a single object, LocalDateTime, as follows:

LocalDateTime localDateTime = LocalDateTime.of(localDate, localTime);

Formatting LocalDateTime reveals the date and time as follows:

// 2019-Feb-24 02:08:10 PM
String localDateTimeAsString = localDateTime
 .format(DateTimeFormatter.ofPattern("yyyy-MMM-dd hh:mm:ss a"));

62. Machine time via an Instant class
JDK 8 comes with a new class, which is named java.time.Instant. Mainly, the
Instant class represents an instantaneous point on the timeline, beginning from the
first second of January 1, 1970 (the epoch), in the UTC time zone with a resolution of
nanoseconds.

A Java 8 Instant class is similar in concept to java.util.Date.
Both represent a moment on the timeline in UTC. While Instant
has a resolution up to nanoseconds, java.util.Date has a
milliseconds resolution.

This class is very handy for generating timestamps of machine time. In order to
obtain such a timestamp, simply call the now() method as follows:

// 2019-02-24T15:05:21.781049600Z
Instant timestamp = Instant.now();

A similar output can be obtained with the following code snippet:

OffsetDateTime now = OffsetDateTime.now(ZoneOffset.UTC);

Alternatively, use this code snippet:

Clock clock = Clock.systemUTC();

Calling Instant.toString() produces an output that follows the
ISO-8601 standard for representing date and time.

Working with Date and Time Chapter 3

[130]

Converting String to Instant
A string that follows the ISO-8601 standard for representing date and time can be
easily converted to Instant via the Instant.parse() method, as in the following
example:

// 2019-02-24T14:31:33.197021300Z
Instant timestampFromString =
 Instant.parse("2019-02-24T14:31:33.197021300Z");

Adding or subtracting time to/from Instant
For adding time, Instant has a suite of methods. For example, adding 2 hours to the
current timestamp can be accomplished as follows:

Instant twoHourLater = Instant.now().plus(2, ChronoUnit.HOURS);

In terms of subtracting time, for example, 10 minutes, use the following code snippet:

Instant tenMinutesEarlier = Instant.now()
 .minus(10, ChronoUnit.MINUTES);

Beside the plus() method, Instant also contains plusNanos(),
plusMillis(), and plusSeconds(). Moreover, beside the
minus() method, Instant also contains minusNanos(),
minusMillis(), and minusSeconds().

Comparing Instant objects
Comparing two Instant objects can be accomplished via the Instant.isAfter()
and Instant.isBefore() methods. For example, let's look at the following two
Instant objects:

Instant timestamp1 = Instant.now();
Instant timestamp2 = timestamp1.plusSeconds(10);

Check whether timestamp1 is after timestamp2:

boolean isAfter = timestamp1.isAfter(timestamp2); // false

Check whether timestamp1 is before timestamp2:

boolean isBefore = timestamp1.isBefore(timestamp2); // true

Working with Date and Time Chapter 3

[131]

The time difference between two Instant objects can be computed via the
Instant.until() method:

// 10 seconds
long difference = timestamp1.until(timestamp2, ChronoUnit.SECONDS);

Converting between Instant and LocalDateTime,
ZonedDateTime, and OffsetDateTime
These common conversions can be accomplished as in the following examples:

Convert between Instant and LocalDateTime—since LocalDateTime
has no idea of time zone, use a zero offset UTC+0:

// 2019-02-24T15:27:13.990103700
LocalDateTime ldt = LocalDateTime.ofInstant(
 Instant.now(), ZoneOffset.UTC);

// 2019-02-24T17:27:14.013105Z
Instant instantLDT =
LocalDateTime.now().toInstant(ZoneOffset.UTC);

Convert between Instant and ZonedDateTime—convert an Instant
UTC+0 to a Paris ZonedDateTime UTC+1:

// 2019-02-24T16:34:36.138393100+01:00[Europe/Paris]
ZonedDateTime zdt =
Instant.now().atZone(ZoneId.of("Europe/Paris"));

// 2019-02-24T16:34:36.150393800Z
Instant instantZDT = LocalDateTime.now()
 .atZone(ZoneId.of("Europe/Paris")).toInstant();

Convert between Instant and OffsetDateTime—specify an offset of 2
hours:

// 2019-02-24T17:34:36.151393900+02:00
OffsetDateTime odt =
Instant.now().atOffset(ZoneOffset.of("+02:00"));

// 2019-02-24T15:34:36.153394Z
Instant instantODT = LocalDateTime.now()
 .atOffset(ZoneOffset.of("+02:00")).toInstant();

Working with Date and Time Chapter 3

[132]

63. Defining a period of time using date-based
values and a duration of time using time-
based values
JDK 8 comes with two new classes, named java.time.Period and
java.time.Duration. Let's take a detailed look at them in the next sections.

Period of time using date-based values
The Period class is meant to represent an amount of time using date-based values
(years, months, weeks, and days). This period of time can be obtained in different
ways. For example, a period of 120 days can be obtained as follows:

Period fromDays = Period.ofDays(120); // P120D

Next to the ofDays() method, the Period class also has
ofMonths(), ofWeeks(), and ofYears().

Or, a period of 2,000 years, 11 months and 24 days can be obtained via the of()
method, as follows:

Period periodFromUnits = Period.of(2000, 11, 24); // P2000Y11M24D

Period can also be obtained from LocalDate:

LocalDate localDate = LocalDate.now();
Period periodFromLocalDate = Period.of(localDate.getYear(),
 localDate.getMonthValue(), localDate.getDayOfMonth());

Finally, Period can be obtained from a String object that respects the ISO-8601
period formats PnYnMnD and PnW. For example, the P2019Y2M25D string represents
2019 years, 2 months, and 25 days:

Period periodFromString = Period.parse("P2019Y2M25D");

Calling Period.toString() will return the period while also
respecting the ISO-8601 period formats, PnYnMnD and PnW (for
example, P120D, P2000Y11M24D).]

Working with Date and Time Chapter 3

[133]

But, the real power of Period is revealed when it is used to represent a period of time
between two dates (for example, LocalDate). The period of time between March 12,
2018 and July 20, 2019 can be represented as follows:

LocalDate startLocalDate = LocalDate.of(2018, 3, 12);
LocalDate endLocalDate = LocalDate.of(2019, 7, 20);
Period periodBetween = Period.between(startLocalDate, endLocalDate);

The amount of time in years, months, and days can be obtained via
Period.getYears(), Period.getMonths(), and Period.getDays(). For
example, the following helper method uses these methods to output the amount of
time as a string:

public static String periodToYMD(Period period) {

 StringBuilder sb = new StringBuilder();
 sb.append(period.getYears())
 .append("y:")
 .append(period.getMonths())
 .append("m:")
 .append(period.getDays())
 .append("d");

 return sb.toString();
}

Let's call this method periodBetween (the difference is 1 year, 4 months, and 8 days):

periodToYMD(periodBetween); // 1y:4m:8d

The Period class is also useful when determining whether a particular date is earlier
than another date. There is a flag method, named isNegative(). Having an A
period and a B period, the result of applying Period.between(A, B) can be
negative if B is before A, or positive if A is before B. Taking this logic
further, isNegative() returns true if B is before A or false if A is before B, as in
our case that follows (basically, this method returns false if years, months, or days is
negative):

// returns false, since 12 March 2018 is earlier than 20 July 2019
periodBetween.isNegative();

Working with Date and Time Chapter 3

[134]

Finally, Period can be modified by adding or subtracting a period of time. There are
methods such as plusYears(), plusMonths(), plusDays(), minusYears(),
minusMonths(), and minusDays(). For example, adding 1 year to periodBetween
can be done as follows:

Period periodBetweenPlus1Year = periodBetween.plusYears(1L);

Adding two Period classes can be accomplished via the Period.plus() method, as
follows:

Period p1 = Period.ofDays(5);
Period p2 = Period.ofDays(20);
Period p1p2 = p1.plus(p2); // P25D

Duration of time using time-based values
The Duration class is meant to represent an amount of time using time-based values
(hours, minutes, seconds, or nanoseconds). This duration of time can be obtained in
different ways. For example, a duration of 10 hours can be obtained as follows:

Duration fromHours = Duration.ofHours(10); // PT10H

Next to the ofHours() method, the Duration class also has
ofDays(), ofMillis(), ofMinutes(), ofSeconds(), and
ofNanos().

Alternatively, a duration of 3 minutes can be obtained via the of() method, as
follows:

Duration fromMinutes = Duration.of(3, ChronoUnit.MINUTES); // PT3M

Duration can also be obtained from LocalDateTime:

LocalDateTime localDateTime
 = LocalDateTime.of(2018, 3, 12, 4, 14, 20, 670);

// PT14M
Duration fromLocalDateTime
 = Duration.ofMinutes(localDateTime.getMinute());

Working with Date and Time Chapter 3

[135]

It can also be obtained from LocalTime:

LocalTime localTime = LocalTime.of(4, 14, 20, 670);

// PT0.00000067S
Duration fromLocalTime = Duration.ofNanos(localTime.getNano());

Finally, Duration can be obtained from a String object that respects the ISO-8601
duration format PnDTnHnMn.nS, with days considered to be exactly 24 hours. For
example, the P2DT3H4M string has 2 days, 3 hours, and 4 minutes:

Duration durationFromString = Duration.parse("P2DT3H4M");

Calling Duration.toString() will return the duration that
respects the ISO-8601 duration format, PnDTnHnMn.nS (for example,
PT10H, PT3M, or PT51H4M).

But, as in the case of Period, the real power of Duration is revealed when it is used
to represent a period of time between two times (for example, Instant). The
duration of time between November 3, 2015, 12:11:30, and December 6, 2016, 15:17:10,
can be represented as the difference between two Instant classes, as follows:

Instant startInstant = Instant.parse("2015-11-03T12:11:30.00Z");
Instant endInstant = Instant.parse("2016-12-06T15:17:10.00Z");

// PT10059H5M40S
Duration durationBetweenInstant
 = Duration.between(startInstant, endInstant);

In seconds, this difference can be obtained via the Duration.getSeconds()
method:

durationBetweenInstant.getSeconds(); // 36212740 seconds

Or, the duration of time between March 12, 2018, 04:14:20.000000670 and July 20,
2019, 06:10:10.000000720, can be represented as the difference between two
LocalDateTime objects, as follows:

LocalDateTime startLocalDateTime
 = LocalDateTime.of(2018, 3, 12, 4, 14, 20, 670);
LocalDateTime endLocalDateTime
 = LocalDateTime.of(2019, 7, 20, 6, 10, 10, 720);
// PT11881H55M50.00000005S, or 42774950 seconds
Duration durationBetweenLDT
 = Duration.between(startLocalDateTime, endLocalDateTime);

Working with Date and Time Chapter 3

[136]

Finally, the duration of time between 04:14:20.000000670 and 06:10:10.000000720, can
be represented as the difference between two LocalTime objects, as follows:

LocalTime startLocalTime = LocalTime.of(4, 14, 20, 670);
LocalTime endLocalTime = LocalTime.of(6, 10, 10, 720);

// PT1H55M50.00000005S, or 6950 seconds
Duration durationBetweenLT
 = Duration.between(startLocalTime, endLocalTime);

In the preceding examples, Duration was expressed in seconds via the
Duration.getSeconds() method—this is the number of seconds in the Duration
class. However, the Duration class contains a set of methods that are dedicated to
expressing Duration in other time units—in days via toDays(), in hours via
toHours(), in minutes via toMinutes(), in milliseconds via toMillis(), and in
nanoseconds via toNanos().

Converting from one unit of time to another unit of time may result in a remnant. For
example, converting from seconds to minutes may result in a remnant of seconds (for
example, 65 seconds is 1 minute and 5 seconds (5 seconds is the remnant)). The
remnant can be obtained via the following set of methods—the remnant in days via
toDaysPart(), the remnant in hours via toHoursPart(), the remnant in minutes
via toMinutesPart(), and so on.

Let's assume that the difference should be displayed as
days:hours:minutes:seconds:nano (for example, 9d:2h:15m:20s:230n). Joining the
forces of the toFoo() and toFooPart() methods in a helper method will result in
the following code:

public static String durationToDHMSN(Duration duration) {

 StringBuilder sb = new StringBuilder();
 sb.append(duration.toDays())
 .append("d:")
 .append(duration.toHoursPart())
 .append("h:")
 .append(duration.toMinutesPart())
 .append("m:")
 .append(duration.toSecondsPart())
 .append("s:")
 .append(duration.toNanosPart())
 .append("n");

 return sb.toString();
}

Working with Date and Time Chapter 3

[137]

Let's call this method durationBetweenLDT (the difference is 495 days, 1 hour, 55
minutes, 50 seconds, and 50 nanoseconds):

// 495d:1h:55m:50s:50n
durationToDHMSN(durationBetweenLDT);

Identical to the Period class, the Duration class has a flag method
named isNegative(). This method is useful when determining whether a particular
time is earlier than another time. Having duration A and duration B, the result of
applying Duration.between(A, B) can be negative if B is before A, or positive if A
is before B. Taking the logic further, isNegative() returns true if B is before A, or
false if A is before B, as in the following case:

durationBetweenLT.isNegative(); // false

Finally, Duration can be modified by adding or subtracting a duration of time. There
are methods such as plusDays(), plusHours(), plusMinutes(), plusMillis(),
plusNanos(), minusDays(), minusHours(), minusMinutes(), minusMillis(),
and minusNanos() to perform this. For example, adding 5 hours to
durationBetweenLT can be done as follows:

Duration durationBetweenPlus5Hours = durationBetweenLT.plusHours(5);

Adding two Duration classes can be accomplished via the Duration.plus()
method, as follows:

Duration d1 = Duration.ofMinutes(20);
Duration d2 = Duration.ofHours(2);

Duration d1d2 = d1.plus(d2);

System.out.println(d1 + "+" + d2 + "=" + d1d2); // PT2H20M

64. Getting date and time units
For a Date object, the solution may rely on a Calendar instance. The code that is
bundled to this book contains this solution.

Working with Date and Time Chapter 3

[138]

For JDK 8 classes, Java provides dedicated getFoo() methods and a get
(TemporalField field) method. For example, let's assume the following
LocalDateTime object:

LocalDateTime ldt = LocalDateTime.now();

Relying on getFoo() methods, we get the following code:

int year = ldt.getYear();
int month = ldt.getMonthValue();
int day = ldt.getDayOfMonth();
int hour = ldt.getHour();
int minute = ldt.getMinute();
int second = ldt.getSecond();
int nano = ldt.getNano();

Or, relying on get​(TemporalField field) results in the following:

int yearLDT = ldt.get(ChronoField.YEAR);
int monthLDT = ldt.get(ChronoField.MONTH_OF_YEAR);
int dayLDT = ldt.get(ChronoField.DAY_OF_MONTH);
int hourLDT = ldt.get(ChronoField.HOUR_OF_DAY);
int minuteLDT = ldt.get(ChronoField.MINUTE_OF_HOUR);
int secondLDT = ldt.get(ChronoField.SECOND_OF_MINUTE);
int nanoLDT = ldt.get(ChronoField.NANO_OF_SECOND);

Notice that the months are counted from one, which is January.

For example, a LocalDateTime object of 2019-02-25T12:58:13.109389100 can be
cut into date-time units, resulting in the following:

Year: 2019 Month: 2 Day: 25 Hour: 12 Minute: 58 Second: 13 Nano:
109389100

With a little intuition and documentation, it is very easy to adapt this example for
LocalDate, LocalTime, ZonedDateTime, and others.

65. Adding and subtracting to/from date-time
The solution to this problem relies on the Java APIs that are dedicated to
manipulating date and time. Let's take a look at them in the next sections.

Working with Date and Time Chapter 3

[139]

Working with Date
For a Date object, the solution may rely on a Calendar instance. The code that is
bundled to this book contains this solution.

Working with LocalDateTime
Jumping to JDK 8, the focus is on LocalDate, LocalTime, LocalDateTime,
Instant, and many more. The new Java date-time API comes with methods that are
dedicated to adding or subtracting an amount of time. LocalDate, LocalTime,
LocalDateTime, ZonedDateTime, OffsetDateTime, Instant, Period, Duration,
and many others come with methods such as plusFoo() and minusFoo(), where
Foo can be replaced with the unit of time (for example, plusYears(),
plusMinutes(), minusHours(), minusSeconds(), and so on).

Let's assume the following LocalDateTime:

// 2019-02-25T14:55:06.651155500
LocalDateTime ldt = LocalDateTime.now();

Adding 10 minutes is as easy as calling LocalDateTime.plusMinutes(long
minutes), while subtracting 10 minutes is as easy as calling
LocalDateTime.minusMinutes(long minutes):

LocalDateTime ldtAfterAddingMinutes = ldt.plusMinutes(10);
LocalDateTime ldtAfterSubtractingMinutes = ldt.minusMinutes(10);

The output will reveal the following dates:

After adding 10 minutes: 2019-02-25T15:05:06.651155500
After subtracting 10 minutes: 2019-02-25T14:45:06.651155500

Beside the methods dedicated per time unit, these classes also
support plus/minus(TemporalAmount amountToAdd) and
plus/minus(long amountToAdd, TemporalUnit unit).

Now, let's focus on the Instant class. Besides plus/minusSeconds(),
plus/minusMillis(), and plus/minusNanos(), the Instant class also provides
a plus/minus(TemporalAmount amountToAdd) method.

Working with Date and Time Chapter 3

[140]

In order to exemplify this method, let's assume the following Instant:

// 2019-02-25T12:55:06.654155700Z
Instant timestamp = Instant.now();

Now, let's add and subtract 5 hours:

Instant timestampAfterAddingHours
 = timestamp.plus(5, ChronoUnit.HOURS);
Instant timestampAfterSubtractingHours
 = timestamp.minus(5, ChronoUnit.HOURS);

The output will reveal the following Instant:

After adding 5 hours: 2019-02-25T17:55:06.654155700Z
After subtracting 5 hours: 2019-02-25T07:55:06.654155700Z

66. Getting all time zones with UTC and GMT
UTC and GMT are recognized as the standard references for dealing with dates and
times. Today, UTC is the preferred way to go, but UTC and GMT should return the
same result in most cases.

In order to get all the time zones with UTC and GMT, the solution should focus on
the implementation before and after JDK 8. So, let's start with the solution that was
useful before JDK 8.

Before JDK 8
The solution needs to extract the available time zone IDs (Africa/Bamako,
Europe/Belgrade, and so on). Furthermore, each time zone ID should be used to
create a TimeZone object. Finally, the solution needs to extract the offset that was
specific to each time zone, taking into account Daylight Saving Time. The code that is
bundled to this book contains this solution.

Starting with JDK 8
The new Java date-time API provides new leverages for solving this problem.

Working with Date and Time Chapter 3

[141]

At the first step, the available time zones IDs can be obtained via the ZoneId class, as
follows:

Set<String> zoneIds = ZoneId.getAvailableZoneIds();

At the second step, each time zone ID should be used to create a ZoneId instance.
This can be accomplished via the ZoneId.of(String zoneId) method:

ZoneId zoneid = ZoneId.of(current_zone_Id);

At the third step, each ZoneId can be used to obtain the time that is specific to the
identified zone. This means that a "lab rats" reference date-time is needed. This
reference date-time (without a time zone, LocalDateTime.now()) is combined with
the given time zone (ZoneId), via LocalDateTime.atZone(), in order to
obtain ZoneDateTime (a date-time that is time-zone aware):

LocalDateTime now = LocalDateTime.now();
ZonedDateTime zdt = now.atZone(ZoneId.of(zone_id_instance));

The atZone() method matches the date-time as closely as possible,
taking into account time zone rules, such as Daylight Saving Time.

At the fourth step, the code can exploit ZonedDateTime in order to extract the UTC
offset (for example, for Europe/Bucharest the UTC offset is +02:00):

String utcOffset = zdt.getOffset().getId().replace("Z", "+00:00");

The getId() method returns the normalized zone offset ID. The +00:00 offset is
returned as the Z character; therefore the code needs to quickly replace Z with +00:00,
in order to align with the rest of the offsets, which respect the format +hh:mm or
+hh:mm:ss.

Now, let's join these steps into a helper method:

public static List<String> fetchTimeZones(OffsetType type) {

 List<String> timezones = new ArrayList<>();
 Set<String> zoneIds = ZoneId.getAvailableZoneIds();
 LocalDateTime now = LocalDateTime.now();

 zoneIds.forEach((zoneId) -> {
 timezones.add("(" + type + now.atZone(ZoneId.of(zoneId))
 .getOffset().getId().replace("Z", "+00:00") + ") " + zoneId);
 });

Working with Date and Time Chapter 3

[142]

 return timezones;
}

Assuming that this method lives in a DateTimes class, the following code is obtained:

List<String> timezones
 = DateTimes.fetchTimeZones(DateTimes.OffsetType.GMT);
Collections.sort(timezones); // optional sort
timezones.forEach(System.out::println);

In addition, an output snapshot is shown, as follows:

(GMT+00:00) Africa/Abidjan
(GMT+00:00) Africa/Accra
(GMT+00:00) Africa/Bamako
...
(GMT+11:00) Australia/Tasmania
(GMT+11:00) Australia/Victoria
...

67. Getting local date-time in all available time
zones
The solution to this problem can be obtained by following these steps:

Get the local date-time.1.
Get the available time zones.2.
Before JDK 8, use SimpleDateFormat with the setTimeZone() method.3.
Starting with JDK 8, use ZonedDateTime.4.

Before JDK 8
Before JDK 8, the quick solution to get the current local date-time was to call the Date
empty constructor. Furthermore, use Date to display it in all the available time zones,
which can be obtained via the TimeZone class. The code that is bundled to this book
contains this solution.

Working with Date and Time Chapter 3

[143]

Starting with JDK 8
Starting with JDK 8, a convenient solution to get the current local date-time in the
default time zone is to call the ZonedDateTime.now() method:

ZonedDateTime zlt = ZonedDateTime.now();

So, this is the current date in the default time zone. Furthermore, this date should be
displayed in all the available time zones that are obtained via the ZoneId class:

Set<String> zoneIds = ZoneId.getAvailableZoneIds();

Finally, the code can loop the zoneIds, and for each zone id, it can call the
ZonedDateTime.withZoneSameInstant(ZoneId zone) method. This method
returns a copy of this date-time with a different time zone, retaining the instant:

public static List<String> localTimeToAllTimeZones() {

 List<String> result = new ArrayList<>();
 Set<String> zoneIds = ZoneId.getAvailableZoneIds();
 DateTimeFormatter formatter
 = DateTimeFormatter.ofPattern("yyyy-MMM-dd'T'HH:mm:ss a Z");
 ZonedDateTime zlt = ZonedDateTime.now();

 zoneIds.forEach((zoneId) -> {
 result.add(zlt.format(formatter) + " in " + zoneId + " is "
 + zlt.withZoneSameInstant(ZoneId.of(zoneId))
 .format(formatter));
 });

 return result;
}

An output snapshot of this method can be as follows:

2019-Feb-26T14:26:30 PM +0200 in Africa/Nairobi
 is 2019-Feb-26T15:26:30 PM +0300
2019-Feb-26T14:26:30 PM +0200 in America/Marigot
 is 2019-Feb-26T08:26:30 AM -0400
...
2019-Feb-26T14:26:30 PM +0200 in Pacific/Samoa
 is 2019-Feb-26T01:26:30 AM -1100

Working with Date and Time Chapter 3

[144]

68. Displaying date-time information about a
flight
The solution that is presented in this section will display the following information
about the 15 hours and 30 minutes flight from Perth, Australia to Bucharest, Europe:

UTC date-time at departure and arrival
Perth date-time at departure and arrival in Bucharest
Bucharest date-time at departure and arrival

Let's assume that the reference departure date-time from Perth is February 26, 2019, at
16:00 (or 4:00 PM):

LocalDateTime ldt = LocalDateTime.of(
 2019, Month.FEBRUARY, 26, 16, 00);

First, let's combines this date-time with the time zone of Australia/Perth (+08:00). This
will result in a ZonedDateTime object that is specific to Australia/Perth (this is the
clock date and time in Perth at departure):

// 04:00 PM, Feb 26, 2019 +0800 Australia/Perth
ZonedDateTime auPerthDepart
 = ldt.atZone(ZoneId.of("Australia/Perth"));

Further, let's add 15 hours and 30 minutes to ZonedDateTime. The resulting
ZonedDateTime represents the date-time in Perth (this is the clock date and time in
Perth on arrival in Bucharest):

// 07:30 AM, Feb 27, 2019 +0800 Australia/Perth
ZonedDateTime auPerthArrive
 = auPerthDepart.plusHours(15).plusMinutes(30);

Now, let's calculate the date-time in Bucharest at the departure date-time in Perth.
Basically, the following code expresses the departure date-time from the Perth time
zone in the Bucharest time zone:

// 10:00 AM, Feb 26, 2019 +0200 Europe/Bucharest
ZonedDateTime euBucharestDepart
 = auPerthDepart.withZoneSameInstant(ZoneId.of("Europe/Bucharest"));

Working with Date and Time Chapter 3

[145]

Finally, let's calculate the date-time in Bucharest on arrival. The following code
expresses the arrival date-time from the Perth time zone in the Bucharest time zone:

// 01:30 AM, Feb 27, 2019 +0200 Europe/Bucharest
ZonedDateTime euBucharestArrive
 = auPerthArrive.withZoneSameInstant(ZoneId.of("Europe/Bucharest"));

As shown in the following figure, the UTC time at departure from Perth is 8:00 AM,
while the UTC time on arrival in Bucharest is 11:30 PM:

These times can be easily extracted as OffsetDateTime, as follows:

// 08:00 AM, Feb 26, 2019
OffsetDateTime utcAtDepart = auPerthDepart.withZoneSameInstant(
 ZoneId.of("UTC")).toOffsetDateTime();

// 11:30 PM, Feb 26, 2019
OffsetDateTime utcAtArrive = auPerthArrive.withZoneSameInstant(
 ZoneId.of("UTC")).toOffsetDateTime();

69. Converting a Unix timestamp to date-time
For this solution, let's suppose the following Unix timestamp—1573768800. This
timestamp is equivalent to the following:

11/14/2019 @ 10:00pm (UTC)
2019-11-14T22:00:00+00:00 in ISO-8601
Thu, 14 Nov 2019 22:00:00 +0000 in RFC 822, 1036, 1123, 2822
Thursday, 14-Nov-19 22:00:00 UTC in RFC 2822
2019-11-14T22:00:00+00:00 in RFC 3339

Working with Date and Time Chapter 3

[146]

In order to convert a Unix timestamp to a date-time, it is important to know that the
Unix timestamps resolution is in seconds, while java.util.Date needs
milliseconds. So, the solution to obtain a Date object from a Unix timestamp requires
a conversion from seconds to milliseconds by multiplying the Unix timestamp by
1,000 as shown in the following two examples:

long unixTimestamp = 1573768800;

// Fri Nov 15 00:00:00 EET 2019 - in the default time zone
Date date = new Date(unixTimestamp * 1000L);

// Fri Nov 15 00:00:00 EET 2019 - in the default time zone
Date date = new Date(TimeUnit.MILLISECONDS
 .convert(unixTimestamp, TimeUnit.SECONDS));

Starting with JDK 8, the Date class uses the from(Instant instant) method.
Moreover, the Instant class comes with the ofEpochSecond(long epochSecond)
method, which returns an instance of Instant, using the given seconds from the
epoch, of 1970-01-01T00:00:00Z:

// 2019-11-14T22:00:00Z in UTC
Instant instant = Instant.ofEpochSecond(unixTimestamp);

// Fri Nov 15 00:00:00 EET 2019 - in the default time zone
Date date = Date.from(instant);

The instant that was obtained in the previous example can be used to create
LocalDateTime or ZonedDateTime, as follows:

// 2019-11-15T06:00
LocalDateTime date = LocalDateTime
 .ofInstant(instant, ZoneId.of("Australia/Perth"));

// 2019-Nov-15 00:00:00 +0200 Europe/Bucharest
ZonedDateTime date = ZonedDateTime
 .ofInstant(instant, ZoneId.of("Europe/Bucharest"));

70. Finding the first/last day of the month
The proper solution to this problem will rely on JDK 8's, Temporal and
TemporalAdjuster interfaces.

Working with Date and Time Chapter 3

[147]

The Temporal interface sits behind representations of date-time. In other words,
classes that represent a date and/or a time implement this interface. For example, the
following classes are just a few that implement this interface:

LocalDate (date without a time zone in the ISO-8601 calendar system)
LocalTime (time without a time zone in the ISO-8601 calendar system)
LocalDateTime (date-time without a time zone in the ISO-8601 calendar
system)
ZonedDateTime (date-time with a time zone in the ISO-8601 calendar
system), and so on
OffsetDateTime (date-time with an offset from UTC/Greenwich in the
ISO-8601 calendar system)
HijrahDate (date in the Hijrah calendar system)

The TemporalAdjuster class is a functional interface that defines strategies that can
be used to adjust a Temporal object. Beside the possibility of defining custom
strategies, the TemporalAdjuster class provides several predefined strategies, as
follows (the documentation contains the entire list, which is pretty impressive):

firstDayOfMonth() (return the first day of the current month)
lastDayOfMonth() (return the last day of the current month)
firstDayOfNextMonth() (return the first day of the next month)
firstDayOfNextYear() (return the first day of the next year)

Notice that the first two adjusters in the preceding list are exactly the ones needed by
this problem.

Consider a fix—LocalDate:

LocalDate date = LocalDate.of(2019, Month.FEBRUARY, 27);

And, let's see when the first/last days of February are:

// 2019-02-01
LocalDate firstDayOfFeb
 = date.with(TemporalAdjusters.firstDayOfMonth());

// 2019-02-28
LocalDate lastDayOfFeb
 = date.with(TemporalAdjusters.lastDayOfMonth());

Working with Date and Time Chapter 3

[148]

Looks like relying on the predefined strategies is pretty simple. But, let's assume that
the problem requests you to find the date that's 21 days after February, 27 2019, which
is March 20, 2019. For this problem there is no predefined strategy, therefore a custom
strategy is needed. A solution to this problem can rely on a lambda expression, as in
the following helper method:

public static LocalDate getDayAfterDays(
 LocalDate startDate, int days) {

 Period period = Period.ofDays(days);
 TemporalAdjuster ta = p -> p.plus(period);
 LocalDate endDate = startDate.with(ta);

 return endDate;
}

If this method lives in a class named DateTimes, then the following call will return
the expected result:

// 2019-03-20
LocalDate datePlus21Days = DateTimes.getDayAfterDays(date, 21);

Following the same technique, but relying on the static factory
method ofDateAdjuster(), the following snippet of code defines a static adjuster
that returns the next date that falls on a Saturday:

static TemporalAdjuster NEXT_SATURDAY
 = TemporalAdjusters.ofDateAdjuster(today -> {

 DayOfWeek dayOfWeek = today.getDayOfWeek();

 if (dayOfWeek == DayOfWeek.SATURDAY) {
 return today;
 }

 if (dayOfWeek == DayOfWeek.SUNDAY) {
 return today.plusDays(6);
 }

 return today.plusDays(6 - dayOfWeek.getValue());
});

Let's call this method for February 27, 2019 (the next Saturday is on March 2, 2019):

// 2019-03-02
LocalDate nextSaturday = date.with(NEXT_SATURDAY);

Working with Date and Time Chapter 3

[149]

Finally, this functional interface defines an abstract method named adjustInto().
This method can be overridden in custom implementations by passing a Temporal
object to it, as follows:

public class NextSaturdayAdjuster implements TemporalAdjuster {

 @Override
 public Temporal adjustInto(Temporal temporal) {

 DayOfWeek dayOfWeek = DayOfWeek
 .of(temporal.get(ChronoField.DAY_OF_WEEK));

 if (dayOfWeek == DayOfWeek.SATURDAY) {
 return temporal;
 }

 if (dayOfWeek == DayOfWeek.SUNDAY) {
 return temporal.plus(6, ChronoUnit.DAYS);
 }

 return temporal.plus(6 - dayOfWeek.getValue(), ChronoUnit.DAYS);
 }
}

Here is the usage example:

NextSaturdayAdjuster nsa = new NextSaturdayAdjuster();

// 2019-03-02
LocalDate nextSaturday = date.with(nsa);

71. Defining/extracting zone offsets
By zone offset, we understand the amount of time needed to be added/subtracted from
the GMT/UTC time in order to obtain the date-time for a specific zone on the globe
(for example, Perth, Australia). Commonly, a zone offset is printed as a fixed number
of hour and minutes: +02:00, -08:30, +0400, UTC+01:00, and so on.

So, in short, a zone offset is the amount of time by which a time zone differs from
GMT/UTC.

Working with Date and Time Chapter 3

[150]

Before JDK 8
Before JDK 8, a time zone can be defined via java.util.TimeZone. With this time
zone, the code can obtain the zone offset via the TimeZone.getRawOffset()
method (the raw part comes from the fact that this method doesn't take into account
Daylight Saving Time). The code that is bundled to this book contains this solution.

Starting with JDK 8
Starting with JDK 8, there are two classes responsible for dealing with time zone
representations. First, there is java.time.ZoneId, which represents a time zone
such as Athens, Europe, and second there is java.time.ZoneOffset (extends
ZoneId), which represents the fixed amount of time (offset) of the specified time zone
with GMT/UTC.

The new Java date-time API deals with Daylight Saving Time by default; therefore, a
region with summer-winter cycles that uses Daylight Saving Time will have two
ZoneOffset classes.

The UTC zone offset can be easily obtained as follows (this is +00:00, represented in
Java by the Z character):

// Z
ZoneOffset zoneOffsetUTC = ZoneOffset.UTC;

The system default time zone can also be obtained via the ZoneOffset class:

// Europe/Athens
ZoneId defaultZoneId = ZoneOffset.systemDefault();

In order to take the zone offset with Daylight Saving Time, the code needs to associate
a date-time with it. For example, associate a LocalDateTime class (Instant can also
be used) like this:

// by default it deals with the Daylight Saving Times
LocalDateTime ldt = LocalDateTime.of(2019, 6, 15, 0, 0);
ZoneId zoneId = ZoneId.of("Europe/Bucharest");

// +03:00
ZoneOffset zoneOffset = zoneId.getRules().getOffset(ldt);

Working with Date and Time Chapter 3

[151]

A zone offset can also be obtained from a string. For example, the following code
obtains a zone offset of +02:00:

ZoneOffset zoneOffsetFromString = ZoneOffset.of("+02:00");

This is a very convenient approach of quickly adding a zone offset to a Temporal
object that supports zone offsets. For example, use it to add a zone offset to
OffsetTime and OffsetDateTime (convenient ways for storing a date in a
database, or sending over the wires):

OffsetTime offsetTime = OffsetTime.now(zoneOffsetFromString);
OffsetDateTime offsetDateTime
 = OffsetDateTime.now(zoneOffsetFromString);

Another solution to our problem is to rely on defining ZoneOffset from hours,
minutes, and seconds. One of the helper methods of ZoneOffset is dedicated to this:

// +08:30 (this was obtained from 8 hours and 30 minutes)
ZoneOffset zoneOffsetFromHoursMinutes
 = ZoneOffset.ofHoursMinutes(8, 30);

Next to ZoneOffset.ofHoursMinutes(), there is
ZoneOffset.ofHours(), ofHoursMinutesSeconds() and
ofTotalSeconds().

Finally, every Temporal object that supports a zone offset provides a handy
getOffset() method. For example, the following code gets the zone offset from the
preceding offsetDateTime object:

// +02:00
ZoneOffset zoneOffsetFromOdt = offsetDateTime.getOffset();

72. Converting between Date and Temporal
The solution that is presented here will cover the following Temporal
classes—Instant, LocalDate, LocalDateTime, ZonedDateTime,
OffsetDateTime, LocalTime, and OffsetTime.

Working with Date and Time Chapter 3

[152]

Date – Instant
In order to convert from Date to Instant, the solution can rely on the
Date.toInstant() method. The reverse can be accomplished via the
Date.from(Instant instant) method:

Date to Instant can be accomplished like this:

Date date = new Date();

// e.g., 2019-02-27T12:02:49.369Z, UTC
Instant instantFromDate = date.toInstant();

Instant to Date can be accomplished like this:

Instant instant = Instant.now();

// Wed Feb 27 14:02:49 EET 2019, default system time zone
Date dateFromInstant = Date.from(instant);

Keep in mind that Date is not time-zone aware, but it is displayed in
the system default time zone (for example, via toString()).
Instant is with a UTC time zone.

Let's quickly wrap these snippets of code in two utility methods, defined in a utility
class—DateConverters:

public static Instant dateToInstant(Date date) {

 return date.toInstant();
}

public static Date instantToDate(Instant instant) {

 return Date.from(instant);
}

Working with Date and Time Chapter 3

[153]

Further, let's enrich this class with the methods from the following screenshot:

The constant from the screenshot, DEFAULT_TIME_ZONE, is the system default time
zone:

public static final ZoneId DEFAULT_TIME_ZONE = ZoneId.systemDefault();

Date – LocalDate
A Date object can be converted to LocalDate via an Instant object. Once we have
obtained the Instant object from the given Date object, the solution can apply to it
the system default time zone, and call the toLocaleDate() method:

// e.g., 2019-03-01
public static LocalDate dateToLocalDate(Date date) {

 return dateToInstant(date).atZone(DEFAULT_TIME_ZONE).toLocalDate();
}

Converting from LocalDate to Date should take into account that LocalDate
doesn't contain a time component as Date, so the solution must supply a time
component as the start of the day (more details regarding this can be found in the
Start and end of a day problem):

// e.g., Fri Mar 01 00:00:00 EET 2019
public static Date localDateToDate(LocalDate localDate) {

 return Date.from(localDate.atStartOfDay(

Working with Date and Time Chapter 3

[154]

 DEFAULT_TIME_ZONE).toInstant());
}

Date – DateLocalTime
Converting from Date to DateLocalTime is the same as converting from Date to
LocalDate, apart from the fact that the solution should call the toLocalDateTime()
method as follows:

// e.g., 2019-03-01T07:25:25.624
public static LocalDateTime dateToLocalDateTime(Date date) {

 return dateToInstant(date).atZone(
 DEFAULT_TIME_ZONE).toLocalDateTime();
}

Converting from LocalDateTime to Date is straightforward. Just apply the system
default time zone and call toInstant():

// e.g., Fri Mar 01 07:25:25 EET 2019
public static Date localDateTimeToDate(LocalDateTime localDateTime) {

 return Date.from(localDateTime.atZone(
 DEFAULT_TIME_ZONE).toInstant());
}

Date – ZonedDateTime
Converting Date to ZonedDateTime can be accomplished via the Instant object
obtained from the given Date object and the system default time zone:

// e.g., 2019-03-01T07:25:25.624+02:00[Europe/Athens]
public static ZonedDateTime dateToZonedDateTime(Date date) {

 return dateToInstant(date).atZone(DEFAULT_TIME_ZONE);
}

Converting ZonedDateTime to Date is just about converting ZonedDateTime to
Instant:

// e.g., Fri Mar 01 07:25:25 EET 2019
public static Date zonedDateTimeToDate(ZonedDateTime zonedDateTime) {

 return Date.from(zonedDateTime.toInstant());
}

Working with Date and Time Chapter 3

[155]

Date – OffsetDateTime
Converting from Date to OffsetDateTime relies on the toOffsetDateTime()
method:

// e.g., 2019-03-01T07:25:25.624+02:00
public static OffsetDateTime dateToOffsetDateTime(Date date) {

 return dateToInstant(date).atZone(
 DEFAULT_TIME_ZONE).toOffsetDateTime();
}

An approach for converting from OffsetDateTime to Date requires two steps. First,
convert OffsetDateTime to LocalDateTime. Second, convert LocalDateTime to
Instant with the corresponding offset:

// e.g., Fri Mar 01 07:55:49 EET 2019
public static Date offsetDateTimeToDate(
 OffsetDateTime offsetDateTime) {

 return Date.from(offsetDateTime.toLocalDateTime()
 .toInstant(ZoneOffset.of(offsetDateTime.getOffset().getId())));
}

Date – LocalTime
Converting Date to LocalTime can rely on the LocalTime.toInstant() method as
follows:

// e.g., 08:03:20.336
public static LocalTime dateToLocalTime(Date date) {

 return LocalTime.ofInstant(dateToInstant(date), DEFAULT_TIME_ZONE);
}

Converting LocalTime to Date should take into account that LocalTime doesn't
have a date component. This means that the solution should set the date on January 1,
1970, the epoch:

// e.g., Thu Jan 01 08:03:20 EET 1970
public static Date localTimeToDate(LocalTime localTime) {

 return Date.from(localTime.atDate(LocalDate.EPOCH)
 .toInstant(DEFAULT_TIME_ZONE.getRules()
 .getOffset(Instant.now())));
}

Working with Date and Time Chapter 3

[156]

Date – OffsetTime
Converting Date to OffsetTime can rely on the OffsetTime.toInstant() method
as follows:

// e.g., 08:03:20.336+02:00
public static OffsetTime dateToOffsetTime(Date date) {

 return OffsetTime.ofInstant(dateToInstant(date), DEFAULT_TIME_ZONE);
}

Converting OffsetTime to Date should take into account that OffsetTime doesn't
have a date component. This means that the solution should set the date at January 1,
1970, the epoch:

// e.g., Thu Jan 01 08:03:20 EET 1970
public static Date offsetTimeToDate(OffsetTime offsetTime) {

 return Date.from(offsetTime.atDate(LocalDate.EPOCH).toInstant());
}

73. Iterating a range of dates
Let's assume that the range is demarcated by the start date, 2019 Feb 1, and the end
date, 2019 Feb 21. The solution to this problem should loop the [2019 Feb 1, 2019 Feb
21) interval with a step of a day and print each date on the screen. Basically, there are
two main problems to solve:

Stop looping once the start date is equal with the end date.
Increase the start date day by day until the end date.

Before JDK 8
Before JDK 8, the solution can rely on the Calendar utility class. The code that is
bundled to this book contains this solution.

Working with Date and Time Chapter 3

[157]

Starting with JDK 8
First, starting with JDK 8, the dates can be easily defined as LocalDate, without the
help of Calendar:

LocalDate startLocalDate = LocalDate.of(2019, 2, 1);
LocalDate endLocalDate = LocalDate.of(2019, 2, 21);

Once the start date is equal with the end date, we stop the loop via the
LocalDate.isBefore(ChronoLocalDate other) method. This flag method
checks if this date is before the given date.

Increasing the start date day by day until the end date can be accomplished using the
LocalDate.plusDays(long daysToAdd) method. Using these two methods in a
for loop results in the following code:

for (LocalDate date = startLocalDate;
 date.isBefore(endLocalDate); date = date.plusDays(1)) {

 // do something with this day
 System.out.println(date);
}

A snapshot of the output should be as follows:

2019-02-01
2019-02-02
2019-02-03
...
2019-02-20

Starting with JDK 9
JDK 9 can solve this problem using a single line of code. This is possible thanks to the
new LocalDate.datesUntil(LocalDate endExclusive) method. This method
returns Stream<LocalDate> with an incremental step of one day:

startLocalDate.datesUntil(endLocalDate).forEach(System.out::println);

If the incremental step should be expressed in days, weeks, months, or years, then
rely on LocalDate.datesUntil(LocalDate endExclusive, Period step). For
example, an incremental step of 1 week can be specified as follows:

startLocalDate.datesUntil(endLocalDate,
Period.ofWeeks(1)).forEach(System.out::println);

Working with Date and Time Chapter 3

[158]

The output should be (weeks 1-8, weeks 8-15) as follows:

2019-02-01
2019-02-08
2019-02-15

74. Calculating age
Probably the most commonly used case of difference between two dates is about
calculating the age of a person. Typically, the age of a person is expressed in years,
but sometimes months, and even days, should be provided.

Before JDK 8
Before JDK 8, trying to provide a good solution can rely on Calendar and/or
SimpleDateFormat. The code that is bundled to this book contains such a solution.

Starting with JDK 8
A better idea is to upgrade to JDK 8, and rely on the following straightforward
snippet of code:

LocalDate startLocalDate = LocalDate.of(1977, 11, 2);
LocalDate endLocalDate = LocalDate.now();

long years = ChronoUnit.YEARS.between(startLocalDate, endLocalDate);

Adding months and days to the result is also easy to accomplish, thanks to the
Period class:

Period periodBetween = Period.between(startLocalDate, endLocalDate);

Now, the age in years, months, and days can be obtained via
periodBetween.getYears(), periodBetween.getMonths(), and
periodBetween.getDays().

For example, between the current date, February 28, 2019, and November 2, 1977, we
have 41 years, 3 months, and 26 days.

Working with Date and Time Chapter 3

[159]

75. Start and end of a day
In JDK 8, trying to find the start/end of a day can be accomplished in several ways.

Let's consider a day expressed via LocalDate:

LocalDate localDate = LocalDate.of(2019, 2, 28);

The solution to finding the start of the day February 28, 2019, relies on a method
named atStartOfDay(). This method returns LocalDateTime from this date at the
time of midnight, 00:00:

// 2019-02-28T00:00
LocalDateTime ldDayStart = localDate.atStartOfDay();

Alternatively, the solution can use the of(LocalDate date, LocalTime time)
method. This method combines the given date and time into LocalDateTime. So, if
the passed time is LocalTime.MIN (the time of midnight at the start of the day) then
the result will be as follows:

// 2019-02-28T00:00
LocalDateTime ldDayStart = LocalDateTime.of(localDate, LocalTime.MIN);

The end of the day of a LocalDate object can be obtained using at least two
solutions. One solution consist of relying on LocalDate.atTime(LocalTime
time). The resulting LocalDateTime can represent the combination of this date with
the end of the day, if the solution passes as an argument, LocalTime.MAX (the time
just before midnight at the end of the day):

// 2019-02-28T23:59:59.999999999
LocalDateTime ldDayEnd = localDate.atTime(LocalTime.MAX);

Alternatively, the solution can combine LocalTime.MAX with the given date, via the
atDate(LocalDate date) method:

// 2019-02-28T23:59:59.999999999
LocalDateTime ldDayEnd = LocalTime.MAX.atDate(localDate);

Working with Date and Time Chapter 3

[160]

Since LocalDate doesn't have the concept of a time zone, the preceding examples are
prone to issues caused by different corner-cases, for example, Daylight Saving Time.
Some Daylight Saving Times impose a change of hour at midnight (00:00 becomes
01:00 AM), which means that the start of the day is at 01:00:00, not at 00:00:00. In
order to mitigate these issues, consider the following examples that extend the
preceding examples to use ZonedDateTime, which is Daylight Saving Time aware:

// 2019-02-28T00:00+08:00[Australia/Perth]
ZonedDateTime ldDayStartZone
 = localDate.atStartOfDay(ZoneId.of("Australia/Perth"));

// 2019-02-28T00:00+08:00[Australia/Perth]
ZonedDateTime ldDayStartZone = LocalDateTime
 .of(localDate, LocalTime.MIN).atZone(ZoneId.of("Australia/Perth"));

// 2019-02-28T23:59:59.999999999+08:00[Australia/Perth]
ZonedDateTime ldDayEndZone = localDate.atTime(LocalTime.MAX)
 .atZone(ZoneId.of("Australia/Perth"));

// 2019-02-28T23:59:59.999999999+08:00[Australia/Perth]
ZonedDateTime ldDayEndZone = LocalTime.MAX.atDate(localDate)
 .atZone(ZoneId.of("Australia/Perth"));

Now, let's consider the following—LocalDateTime, February 28, 2019, 18:00:00:

LocalDateTime localDateTime = LocalDateTime.of(2019, 2, 28, 18, 0, 0);

The obvious solution is to extract LocalDate from LocalDateTime and apply the
previous approaches. Another solution relies on the fact that every implementation of
the Temporal interface (including LocalDate) can take advantage of the
with(TemporalField field, long newValue) method. Mainly, the with()
method returns a copy of this date with the specified field, ChronoField, set
to newValue. So, if the solution sets ChronoField.NANO_OF_DAY (nanoseconds of a
day) as LocalTime.MIN, then the result will be the start of the day. The trick here is
to convert LocalTime.MIN to nanoseconds via toNanoOfDay(), as follows:

// 2019-02-28T00:00
LocalDateTime ldtDayStart = localDateTime
 .with(ChronoField.NANO_OF_DAY, LocalTime.MIN.toNanoOfDay());

This is equivalent to the following:

LocalDateTime ldtDayStart
 = localDateTime.with(ChronoField.HOUR_OF_DAY, 0);

Working with Date and Time Chapter 3

[161]

The end of the day is pretty similar. Just pass LocalTime.MAX instead of MIN:

// 2019-02-28T23:59:59.999999999
LocalDateTime ldtDayEnd = localDateTime
 .with(ChronoField.NANO_OF_DAY, LocalTime.MAX.toNanoOfDay());

This is equivalent to the following:

LocalDateTime ldtDayEnd = localDateTime.with(
 ChronoField.NANO_OF_DAY, 86399999999999L);

Like LocalDate, the LocalDateTime object is not aware of time zones. In this case,
ZonedDateTime can help:

// 2019-02-28T00:00+08:00[Australia/Perth]
ZonedDateTime ldtDayStartZone = localDateTime
 .with(ChronoField.NANO_OF_DAY, LocalTime.MIN.toNanoOfDay())
 .atZone(ZoneId.of("Australia/Perth"));

// 2019-02-28T23:59:59.999999999+08:00[Australia/Perth]
ZonedDateTime ldtDayEndZone = localDateTime
 .with(ChronoField.NANO_OF_DAY, LocalTime.MAX.toNanoOfDay())
 .atZone(ZoneId.of("Australia/Perth"));

As a bonus here, let's see the start/end of the day with UTC. Beside the solution
relying on the with() method, another solution can rely on toLocalDate(), as
follows:

// e.g., 2019-02-28T09:23:10.603572Z
ZonedDateTime zdt = ZonedDateTime.now(ZoneOffset.UTC);

// 2019-02-28T00:00Z
ZonedDateTime dayStartZdt
 = zdt.toLocalDate().atStartOfDay(zdt.getZone());

// 2019-02-28T23:59:59.999999999Z
ZonedDateTime dayEndZdt = zdt.toLocalDate()
 .atTime(LocalTime.MAX).atZone(zdt.getZone());

Because of the numerous issues with java.util.Date and
Calendar, it is advisable to avoid trying to implement a solution to
this problem with them.

Working with Date and Time Chapter 3

[162]

76. Difference between two dates
Computing the difference between two dates is a very common task (for example, see
the Calculating age section). Let's see a collection of other approaches that can be used
to obtain the difference between two dates in milliseconds, seconds, hours, and so on.

Before JDK 8
The recommended way to represent date-time information is via the
java.util.Date and Calendar classes. The easiest difference to compute is
expressed in milliseconds. The code that is bundled to this book contains such a
solution.

Starting with JDK 8
Starting with JDK 8, the recommended way to represent date-time information is
via Temporal (for example, DateTime, DateLocalTime, ZonedDateTime, and so
on).

Let's assume the following two LocalDate objects, January 1, 2018, and March 1,
2019:

LocalDate ld1 = LocalDate.of(2018, 1, 1);
LocalDate ld2 = LocalDate.of(2019, 3, 1);

The simplest way to compute the difference between these two Temporal objects is
via the ChronoUnit class. Beside representing the standard set of date periods units,
ChronoUnit comes with several handy methods, including between(Temporal
t1Inclusive, Temporal t2Exclusive). As its name suggests, the between()
method calculates the amount of time between two Temporal objects. Let's see it at
work to compute the difference between ld1 and ld2 in days, months, and years:

// 424
long betweenInDays = Math.abs(ChronoUnit.DAYS.between(ld1, ld2));

// 14
long betweenInMonths = Math.abs(ChronoUnit.MONTHS.between(ld1, ld2));

// 1
long betweenInYears = Math.abs(ChronoUnit.YEARS.between(ld1, ld2));

Working with Date and Time Chapter 3

[163]

Alternatively, every Temporal exposes a method named until(). Actually,
LocalDate has two, one that returns Period as a difference between two dates and
another one that returns long as a difference between two dates in the specified time
unit. Using the one that returns Period looks like this:

Period period = ld1.until(ld2);

// Difference as Period: 1y2m0d
System.out.println("Difference as Period: " + period.getYears() + "y"
 + period.getMonths() + "m" + period.getDays() + "d");

Using the one that allows us to specify the time unit looks like this:

// 424
long untilInDays = Math.abs(ld1.until(ld2, ChronoUnit.DAYS));

// 14
long untilInMonths = Math.abs(ld1.until(ld2, ChronoUnit.MONTHS));

// 1
long untilInYears = Math.abs(ld1.until(ld2, ChronoUnit.YEARS));

The ChronoUnit.convert() method is also useful in the case of LocalDateTime.
Let's consider the following two LocalDateTime objects—January 1, 2018 22:15:15,
and March 1, 2019 23:15:15:

LocalDateTime ldt1 = LocalDateTime.of(2018, 1, 1, 22, 15, 15);
LocalDateTime ldt2 = LocalDateTime.of(2018, 1, 1, 23, 15, 15);

Now, let's see the difference between ldt1 and ldt2, when expressed in minutes:

// 60
long betweenInMinutesWithoutZone
 = Math.abs(ChronoUnit.MINUTES.between(ldt1, ldt2));

And, the difference when expressed in hours via the LocalDateTime.until()
method:

// 1
long untilInMinutesWithoutZone
 = Math.abs(ldt1.until(ldt2, ChronoUnit.HOURS));

Working with Date and Time Chapter 3

[164]

But, a really awesome thing about ChronoUnit.between() and until() is the fact
that they work with ZonedDateTime. For example, let's consider ldt1 in the
Europe/Bucharest time zone and in the Australia/Perth time zone, plus one hour:

ZonedDateTime zdt1 = ldt1.atZone(ZoneId.of("Europe/Bucharest"));
ZonedDateTime zdt2 = zdt1.withZoneSameInstant(
 ZoneId.of("Australia/Perth")).plusHours(1);

Now, let's use ChronoUnit.between() to express the difference between zdt1 and
zdt2 in minutes, and ZonedDateTime.until() to express the difference between
zdt1 and zdt2 in hours:

// 60
long betweenInMinutesWithZone
 = Math.abs(ChronoUnit.MINUTES.between(zdt1, zdt2));

// 1
long untilInHoursWithZone
 = Math.abs(zdt1.until(zdt2, ChronoUnit.HOURS));

Finally, let's repeat this technique, but for two independent ZonedDateTime objects;
one obtained for ldt1 and one for ldt2:

ZonedDateTime zdt1 = ldt1.atZone(ZoneId.of("Europe/Bucharest"));
ZonedDateTime zdt2 = ldt2.atZone(ZoneId.of("Australia/Perth"));

// 300
long betweenInMinutesWithZone
 = Math.abs(ChronoUnit.MINUTES.between(zdt1, zdt2));

// 5
long untilInHoursWithZone
 = Math.abs(zdt1.until(zdt2, ChronoUnit.HOURS));

77. Implementing a chess clock
Starting with JDK 8, the java.time package has an abstract class named Clock. The
main purpose of this class is to allow us to plug in different clocks when needed (for
example, for testing purposes). By default, Java comes with four implementations:
SystemClock, OffsetClock, TickClock, and FixedClock. For each of these
implementations, there are static methods in the Clock class. For example, the
following code creates FixedClock (a clock that always returns the same Instant):

Clock fixedClock = Clock.fixed(Instant.now(), ZoneOffset.UTC);

Working with Date and Time Chapter 3

[165]

There is also TickClock, which returns the current Instant ticking in whole
seconds for the given time zone:

Clock tickClock = Clock.tickSeconds(ZoneId.of("Europe/Bucharest"));

There is also a method that can be used to tick in whole minutes,
tickMinutes(), and a generic one, tick(), which allows us to
specify Duration.

A Clock class may also support time zones and offsets, but the most important
method of a Clock class is instant(). This method returns the instant of Clock:

// 2019-03-01T13:29:34Z
System.out.println(tickClock.instant());

There is also the millis() method, which returns the current
instant of the clock in milliseconds.

Let's assume that we want to implement a clock that acts a chess clock:

In order to implement a Clock class, there are several steps to follow:

Extend the Clock class.1.
Implement Serializable.2.
Override at least the abstract methods inherited from Clock.3.

A skeleton of a Clock class is as follows:

public class ChessClock extends Clock implements Serializable {

 @Override
 public ZoneId getZone() {
 ...
 }

Working with Date and Time Chapter 3

[166]

 @Override
 public Clock withZone(ZoneId zone) {
 ...
 }

 @Override
 public Instant instant() {
 ...
 }
}

Our ChessClock will work only with UTC; no other time zone will be supported.
This means that the getZone() and withZone() methods can be implemented as
follows (of course, this can be modified in the future):

@Override
public ZoneId getZone() {
 return ZoneOffset.UTC;
}

@Override
public Clock withZone(ZoneId zone) {
 throw new UnsupportedOperationException(
 "The ChessClock works only in UTC time zone");
}

The climax of our implementation is the instant() method. The difficulty consists
in managing two Instant, one for the player from the left (instantLeft) and one
for the player from the right (instantRight). We can associate every call of the
instant() method with the fact that the current player has performed a move, and
now it is the other player's turn. So, basically, this logic says that the same player
cannot call instant() twice. Implementing this logic, the instant() method is as
follows:

public class ChessClock extends Clock implements Serializable {

 public enum Player {
 LEFT,
 RIGHT
 }

 private static final long serialVersionUID = 1L;

 private Instant instantStart;
 private Instant instantLeft;
 private Instant instantRight;
 private long timeLeft;

Working with Date and Time Chapter 3

[167]

 private long timeRight;
 private Player player;

 public ChessClock(Player player) {
 this.player = player;
 }

 public Instant gameStart() {

 if (this.instantStart == null) {
 this.timeLeft = 0;
 this.timeRight = 0;
 this.instantStart = Instant.now();
 this.instantLeft = instantStart;
 this.instantRight = instantStart;
 return instantStart;
 }

 throw new IllegalStateException(
 "Game already started. Stop it and try again.");
 }

 public Instant gameEnd() {

 if (this.instantStart != null) {
 instantStart = null;
 return Instant.now();
 }

 throw new IllegalStateException("Game was not started.");
 }

 @Override
 public ZoneId getZone() {
 return ZoneOffset.UTC;
 }

 @Override
 public Clock withZone(ZoneId zone) {
 throw new UnsupportedOperationException(
 "The ChessClock works only in UTC time zone");
 }

 @Override
 public Instant instant() {

 if (this.instantStart != null) {
 if (player == Player.LEFT) {

Working with Date and Time Chapter 3

[168]

 player = Player.RIGHT;

 long secondsLeft = Instant.now().getEpochSecond()
 - instantRight.getEpochSecond();
 instantLeft = instantLeft.plusSeconds(
 secondsLeft - timeLeft);
 timeLeft = secondsLeft;

 return instantLeft;
 } else {
 player = Player.LEFT;

 long secondsRight = Instant.now().getEpochSecond()
 - instantLeft.getEpochSecond();
 instantRight = instantRight.plusSeconds(
 secondsRight - timeRight);
 timeRight = secondsRight;

 return instantRight;
 }
 }

 throw new IllegalStateException("Game was not started.");
 }
}

So, depending on which player calls the instant() method, the code computes the
number of seconds needed by that player to think until she/he performed a move.
Moreover, the code switches the player, so the next call of instant() will deal with
the other player.

Let's consider a chess game starting at 2019-03-01T14:02:46.309459Z:

ChessClock chessClock = new ChessClock(Player.LEFT);

// 2019-03-01T14:02:46.309459Z
Instant start = chessClock.gameStart();

Working with Date and Time Chapter 3

[169]

Further, the players perform the following sequence of movements until the player
from the right wins the game:

Left moved first after 2 seconds: 2019-03-01T14:02:48.309459Z
Right moved after 5 seconds: 2019-03-01T14:02:51.309459Z
Left moved after 6 seconds: 2019-03-01T14:02:54.309459Z
Right moved after 1 second: 2019-03-01T14:02:52.309459Z
Left moved after 2 second: 2019-03-01T14:02:56.309459Z
Right moved after 3 seconds: 2019-03-01T14:02:55.309459Z
Left moved after 10 seconds: 2019-03-01T14:03:06.309459Z
Right moved after 11 seconds and win: 2019-03-01T14:03:06.309459Z

It looks like the clock has correctly registered the movements of the players.

Finally, the game is over after 40 seconds:

Game ended:2019-03-01T14:03:26.350749300Z
Instant end = chessClock.gameEnd();

Game duration: 40 seconds
// Duration.between(start, end).getSeconds();

Summary
Mission accomplished! This chapter provided a comprehensive overview of working
with date and time information. A wide range of applications must manipulate this
kind of information. Therefore, having the solutions to these problems under your
tool belt is not optional. From Date and Calendar to LocalDate, LocalTime,
LocalDateTime, ZoneDateTime, OffsetDateTime, OffsetTime,
and Instant—they are all important and very useful in daily tasks that involve date
and time.

Download the applications from this chapter to see the results and to see additional
details.

4
Type Inference

This chapter includes 21 problems that involve JEP 286 or Java Local Variable Type
Inference (LVTI), also known as the var type. These problems have been carefully
crafted to reveal the best practices and common mistakes that are involved in using
var. By the end of this chapter, you will have learned everything you need to know
about var to push it to production.

Problems
Use the following problems to test your type inference programming prowess. I
strongly encourage you to give each problem a try before you turn to the solutions
and download the example programs:

Simple var example: Write a program that exemplifies the correct usage of78.
type inference (var) with respect to the code's readability.
Using var with primitive types: Write a program that exemplifies the79.
usage of var with Java primitive types (int, long, float, and double).
Using var and implicit type casting to sustain the code's maintainability:80.
Write a program that exemplifies how var and implicit type casting can
sustain the code's maintainability.
Explicit downcast or better avoid var: Write a program that exemplifies81.
the combination of var and explicit downcast and explain why var should
be avoided.
Avoid using var if the called names don't contain enough type82.
information for humans: Provide examples where var should be avoided
because its combination with called names causes loss of information for
humans.
Combining LVTI and programming to the interface technique: Write a83.
program that exemplifies the usage of var via the programming to the
interface technique.

Type Inference Chapter 4

[171]

Combining LVTI and the diamond operator: Write a program that84.
exemplifies the usage of var with the diamond operator.
Assigning an array to var: Write a program that assigns an array to var.85.
Using LVTI in compound declarations: Explain and exemplify the usage86.
of LVTI with compound declarations.
LVTI and variable scope: Explain and exemplify why LVTI should87.
minimize the variable's scope as much as possible.
LVTI and the ternary operator: Write several snippets of code that88.
exemplify the advantages of combining LVTI and the ternary operator.
LVTI and for loops: Write several examples that exemplify the usage of89.
LVTI in for loops.
LVTI and streams: Write several snippets of code that exemplify the usage90.
of LVTI and Java streams.
Using LVTI to break up nested/large chains of expressions: Write a91.
program that exemplifies the usage of LVTI for breaking up a nested/large
chain of expressions.
LVTI and the method return and argument types: Write several snippets92.
of code that exemplify the usage of LVTI and Java methods in terms of
return and argument types.
LVTI and anonymous classes: Write several snippets of code that93.
exemplify the usage of LVTI in anonymous classes.
LVTI can be final and effectively final: Write several snippets of code94.
that exemplify how LVTI can be used for final and effectively final
variables.
LVTI and lambdas: Explain via several snippets of code how LVTI can be95.
used in combination with lambda expressions.
LVTI and null initializers, instance variables, and catch blocks96.
variables: Explain with examples how LVTI can be used in combination
with null initializers, instance variables, and catch blocks.
LVTI and generic types, T: Write several snippets of code that exemplify97.
how LVTI can be used in combination with generic types.
LVTI, wildcards, covariants, and contravariants: Write several snippets of98.
code that exemplify how LVTI can be used in combination with wildcards,
covariants, and contravariants.

Type Inference Chapter 4

[172]

Solutions
The following sections describe the solutions to the preceding problems. Remember
that there usually isn't a single correct way to solve a particular problem. Also,
remember that the explanations shown here include only the most interesting and
important details that are needed to solve the problems. You can download the
example solutions to view additional details and experiment with the programs
from https:/​/​github. ​com/ ​PacktPublishing/ ​Java- ​Coding- ​Problems.

78. Simple var example
Starting with version 10, Java comes with JEP 286, or Java LVTI, also known as the
var type.

The var identifier is not a Java keyword, it is a reserved type name.

This is a 100% compile feature with no side effects in terms of bytecode, runtime, or
performance. In a nutshell, LVTI is applied to local variables and works as follows:
the compiler checks the right-hand side and infers the real type (if the right-hand side
is an initializer, then it uses that type).

This feature ensures compile-time safety. This means that we cannot
compile an application that tries to achieve a wrong assignment. If
the compiler has inferred the concrete/actual type of var, we can
only assign the values of that type.

There are multiple benefits of LVTI; for example, it reduces code verbosity and
mitigates redundancy and boilerplate code. Moreover, the time spent to write code can
be reduced by LVTI, especially in cases that involve heavy declarations, as follows:

// without var
Map<Boolean, List<Integer>> evenAndOddMap...

// with var
var evenAndOddMap = ...

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Type Inference Chapter 4

[173]

A controversial benefit is represented by code readability. Some voices sustain that
using var reduces code readability, while other voices support the opposite.
Depending on the use case, it may require a trade-off in readability, but the truth is
that, typically, we pay a lot of attention to meaningful names for fields (instance
variables) and we neglect the names of local variables. For example, let's consider the
following method:

public Object fetchTransferableData(String data)
 throws UnsupportedFlavorException, IOException {

 StringSelection ss = new StringSelection(data);
 DataFlavor[] df = ss.getTransferDataFlavors();
 Object obj = ss.getTransferData(df[0]);

 return obj;
}

This is a short method; it has a meaningful name and a clean implementation. But
checkout the local variables' names. Their names are drastically reduced (they are just
shortcuts), but this is not a problem since the left-hand side provides enough
information that we can easily understand the type of each local variable. Now, let's
write this code using LVTI:

public Object fetchTransferableData(String data)
 throws UnsupportedFlavorException, IOException {

 var ss = new StringSelection(data);
 var df = ss.getTransferDataFlavors();
 var obj = ss.getTransferData(df[0]);

 return obj;
}

Obviously, the code's readability has decreased since it's now harder to infer the type
of the local variables. As the following screenshot reveals, the compiler doesn't have a
problem with inferring the correct types, but for humans, this is a lot more difficult:

Type Inference Chapter 4

[174]

The solution to this problem consists of providing a meaningful name to local
variables when relying on LVTI. For example, the code can regain its readability if the
local variables' names are provided, as follows:

public Object fetchTransferableData(String data)
 throws UnsupportedFlavorException, IOException {

 var stringSelection = new StringSelection(data);
 var dataFlavorsArray = stringSelection.getTransferDataFlavors();
 var obj = stringSelection.getTransferData(dataFlavorsArray[0]);

 return obj;
}

Nevertheless, the readability problem is also caused by the fact that, typically, we
tend to look at the type as primary information and the variable name as secondary
information, while this should be the opposite.

Let's look at two more examples that are meant to enforce the aforementioned
statements. A method that uses collections (for example, List) is as follows:

// Avoid
public List<Player> fetchPlayersByTournament(String tournament) {

 var t = tournamentRepository.findByName(tournament);
 var p = t.getPlayers();

 return p;
}

// Prefer
public List<Player> fetchPlayersByTournament(String tournament) {

 var tournamentName = tournamentRepository.findByName(tournament);
 var playerList = tournamentName.getPlayers();

 return playerList;
}

Providing meaningful names for local variables doesn't mean falling into the over-
naming technique.

For example, avoid naming variables by simply repeating the type name:

// Avoid
var fileCacheImageOutputStream ​
 = new FileCacheImageOutputStream ​(..., ...);

Type Inference Chapter 4

[175]

// Prefer
var outputStream ​ = new FileCacheImageOutputStream ​(..., ...);

// Or
var outputStreamOfFoo ​ = new FileCacheImageOutputStream ​(..., ...);

79. Using var with primitive types
The problem of using LVTI with primitive types (int, long, float, and double) is
that the expected and inferred types may differ. Obviously, this causes confusion and
unexpected behavior in code.

The guilty party in this situation is the implicit type casting used by the var type.

For example, let's consider the following two declarations that rely on explicit
primitive types:

boolean valid = true; // this is of type boolean
char c = 'c'; // this is of type char

Now, let's replace the explicit primitive type with LVTI:

var valid = true; // inferred as boolean
var c = 'c'; // inferred as char

Nice! There are no problems so far! Now, let's have a look at another set of
declarations based on explicit primitive types:

int intNumber = 10; // this is of type int
long longNumber = 10; // this is of type long
float floatNumber = 10; // this is of type float, 10.0
double doubleNumber = 10; // this is of type double, 10.0

Let's follow the logic from the first example and replace the explicit primitive types
with LVTI:

// Avoid
var intNumber = 10; // inferred as int
var longNumber = 10; // inferred as int
var floatNumber = 10; // inferred as int
var doubleNumber = 10; // inferred as int

Type Inference Chapter 4

[176]

Conforming to the following screenshot, all four variables have been inferred as
integers:

The solution to this problem consists of using explicit Java literals:

// Prefer
var intNumber = 10; // inferred as int
var longNumber = 10L; // inferred as long
var floatNumber = 10F; // inferred as float, 10.0
var doubleNumber = 10D; // inferred as double, 10.0

Finally, let's consider the case of a number with decimals, as follows:

var floatNumber = 10.5; // inferred as double

The variable name suggests that 10.5 is float, but actually, it is inferred as double.
So, it is advisable to rely on literals even for numbers with decimals (especially for
numbers of the float type):

var floatNumber = 10.5F; // inferred as float

80. Using var and implicit type casting to
sustain the code's maintainability
In the previous section, Using var with primitive types, we saw that combining var
with implicit type casting can cause real problems. But in certain scenarios, this
combination can be advantageous and sustain the code's maintainability.

Let's consider the following scenario—we need to write a method that sits between
two existing methods of an external API named ShoppingAddicted (by
extrapolation, these methods can be two web services, endpoints, and so on). One
method is dedicated to returning the best price for a given shopping cart. Basically,
this method takes a bunch of products and queries different online stores to fetch the
best price.

Type Inference Chapter 4

[177]

The resulting price is returned as int. A stub of this method is listed as follows:

public static int fetchBestPrice(String[] products) {

 float realprice = 399.99F; // code to query the prices in stores
 int price = (int) realprice;

 return price;
}

The other method receives the price as int and performs the payment. If the payment
is successful, it returns true:

public static boolean debitCard(int amount) {

 return true;
}

Now, by programming with respect to this code, our method will act as a client, as
follows (the customers can decide what items to buy, and our code will return the
best price for them and debit their cards accordingly):

// Avoid
public static boolean purchaseCart(long customerId) {

 int price = ShoppingAddicted.fetchBestPrice(new String[0]);
 boolean paid = ShoppingAddicted.debitCard(price);

 return paid;
}

But after some time, the owners of the ShoppingAddicted API realize that they lose
money by converting the real price into int (for example, the real price is 399.99, but
in int form, it's 399.0, which means a loss of 99 cents). So, they decide to quit this
practice and return the real price as float:

public static float fetchBestPrice(String[] products) {

 float realprice = 399.99F; // code to query the prices in stores

 return realprice;
}

Type Inference Chapter 4

[178]

Since the returned price is float, debitCard() is updated as well:

public static boolean debitCard(float amount) {

 return true;
}

But once we upgrade to the new release of the ShoppingAddicted API, the code will
fail with a possible lossy conversion from float into int exceptions. This is normal
since our code expects int. Since our code doesn't tolerate these modifications well,
the code needs to be modified accordingly.

Nevertheless, if we have anticipated this situation and used var instead of int, then
the code will work without problems thanks to implicit type casting:

// Prefer
public static boolean purchaseCart(long customerId) {

 var price = ShoppingAddicted.fetchBestPrice(new String[0]);
 var paid = ShoppingAddicted.debitCard(price);

 return paid;
}

81. Explicit downcast or better avoid var
In the Using var with primitive types section, we talked about using literals with
primitive types (int, long, float, and double) to avoid issues caused by implicit
type casting. But not all Java primitive types can take advantage of literals. In such a
situation, the best approach is to avoid using var. But let's see why!

Check out the following declarations of byte and short variables:

byte byteNumber = 25; // this is of type byte
short shortNumber = 1463; // this is of type short

If we replace the explicit types with var, then the inferred type will be int:

var byteNumber = 25; // inferred as int
var shortNumber = 1463; // inferred as int

Type Inference Chapter 4

[179]

Unfortunately, there are no literals available for these two primitive types. The only
approach to help the compiler to infer the correct types is to rely on an explicit
downcast:

var byteNumber = (byte) 25; // inferred as byte
var shortNumber = (short) 1463; // inferred as short

While this code compiles successfully and works as expected, we cannot say that
using var brought any value compared to using explicit types. So, in this case, it is
better to avoid var and explicit downcast.

82. Avoid using var if the called names don't
contain enough type information for humans
Well, var is not a silver bullet, and this problem will highlight this once again. The
following snippet of code can be written using explicit types or var without losing
information:

// using explicit types
MemoryCacheImageInputStream is =
 new MemoryCacheImageInputStream(...);
JavaCompiler jc = ToolProvider.getSystemJavaCompiler();
StandardJavaFileManager fm = compiler.getStandardFileManager(...);

So, migrating the preceding snippet of code to var will result in the following code
(the variables names have been chosen by visually inspecting the called names from
the right-hand side):

// using var
var inputStream = new MemoryCacheImageInputStream(...);
var compiler = ToolProvider.getSystemJavaCompiler();
var fileManager = compiler.getStandardFileManager(...);

The same will happen at the border of over-naming:

// using var
var inputStreamOfCachedImages = new MemoryCacheImageInputStream(...);
var javaCompiler = ToolProvider.getSystemJavaCompiler();
var standardFileManager = compiler.getStandardFileManager(...);

So, the preceding code doesn't raise any issues in choosing the variable's names and
readability. The called names contain enough information for humans to feel
comfortable with var.

Type Inference Chapter 4

[180]

But let's consider the following snippet of code:

// Avoid
public File fetchBinContent() {
 return new File(...);
}

// called from another place
// notice the variable name, bin
var bin = fetchBinContent();

For humans, it is pretty difficult to infer the type that's returned by the called name
without inspecting the returned type of this name, fetchBinContent(). As a rule of
thumb, in such cases, the solution should avoid var and rely on explicit types since
there is not enough information on the right-hand side for us to choose a proper name
for the variable and obtain highly readable code:

// called from another place
// now the left-hand side contains enough information
File bin = fetchBinContent();

So, if var in combination with the called names causes loss of clarity, then it is better
to avoid the usage of var. Ignoring this statement may lead to confusion and will
increase the time needed to understand and/or extend the code.

Consider another example based on the java.nio.channels.Selector class. This
class exposes a static method named open() that returns a newly opened
Selector. But if we capture this return in a variable declared with var, it's tempting
to think that this method may return a boolean representing the success of opening
the current selector. Using var without considering the possible loss of clarity can
produce exactly these kinds of problems. Just a few issues like this one and the code
will become a real pain.

83. Combining LVTI and programming to the
interface technique
Java best practices encourage us to bind the code to the abstraction. In other words,
we need to rely on the programming to the interface technique.

This technique fits very well for collection declarations. For example, it is advisable to
declare ArrayList as follows:

List<String> players = new ArrayList<>();

Type Inference Chapter 4

[181]

We should also avoid something like this:

ArrayList<String> players = new ArrayList<>();

By following the first example, the code instantiates the ArrayList class
(or HashSet, HashMap, and so on), but declares a variable of the List type (or Set,
Map, and so on). Since List, Set, Map, and many more are interfaces (or contracts), it
is very easy to replace the instantiation with other implementation of List (Set,
and Map) without subsequent modifications being made to the code.

Unfortunately, LVTI cannot take advantage of the programming to the interface
technique. In other words, when we use var, the inferred type is the concrete
implementation, not the contract. For example, replacing List<String> with var
will result in the inferred type, ArrayList<String>:

// inferred as ArrayList<String>
var playerList = new ArrayList<String>();

Nevertheless, there are some explanations that sustain this behavior:

LVTI acts at the local level (local variables) where the programming to the
interface technique is used less than method parameters/return types or
field types.
Since local variables have a small scope, the modifications that are induced
by switching to another implementation should be small as well. Switching
implementation should have a small impact on detecting and fixing the
code.
LVTI sees the code from the right-hand side as an initializer that's useful for
inferring the actual type. If this initializer is going to be modified in the
future, then the inferred type may differ, and this will cause problems in
the code that uses this variable.

84. Combining LVTI and the diamond operator
As a rule of thumb, LVTI combined with the diamond operator may result in
unexpected inferred types if the information that's needed for inferring the expected
type is not present in the right-hand side.

Before JDK 7, that is, Project Coin, List<String> would be declared as follows:

List<String> players = new ArrayList<String>();

Type Inference Chapter 4

[182]

Basically, the preceding example explicitly specifies the generic class's instantiation
parameter type. Starting with JDK 7, Project Coin introduced the diamond operator,
which is capable of inferring the generic class instantiation parameter type, as
follows:

List<String> players = new ArrayList<>();

Now, if we think about this example in terms of LVTI, we will get the following
result:

var playerList = new ArrayList<>();

But what will be the inferred type now? Well, we have a problem because the inferred
type will be ArrayList<Object>, not ArrayList<String>. The explanation is
quite obvious: the information that's needed for inferring the expected type (String)
is not present (notice that there is no String type mentioned in the right-hand side).
This instructs LVTI to infer the type that is the broadest applicable type, which, in this
case, is Object.

But if ArrayList<Object> was not our intention, then we need a solution to this
problem. The solution is to provide the information that's needed for inferring the
expected type, as follows:

var playerList = new ArrayList<String>();

Now, the inferred type is ArrayList<String>. The type can be inferred indirectly as
well. See the following example:

var playerStack = new ArrayDeque<String>();

// inferred as ArrayList<String>
var playerList = new ArrayList<>(playerStack);

It can also be inferred indirectly in the following way:

Player p1 = new Player();
Player p2 = new Player();
var listOfPlayer = List.of(p1, p2); // inferred as List<Player>

// Don't do this!
var listOfPlayer = new ArrayList<>(); // inferred as ArrayList<Object>
listOfPlayer.add(p1);
listOfPlayer.add(p2);

Type Inference Chapter 4

[183]

85. Assigning an array to var
As a rule of thumb, assigning an array to var doesn't require brackets, []. Defining
an array of int via the corresponding explicit type can be done as follows:

int[] numbers = new int[10];

// or, less preferred
int numbers[] = new int[10];

Now, trying to intuit how to use var instead of int may result in the following
attempts:

var[] numberArray = new int[10];
var numberArray[] = new int[10];

Unfortunately, none of these two approaches will compile. The solution requires us to
remove the brackets from the left-hand side:

// Prefer
var numberArray = new int[10]; // inferred as array of int, int[]
numberArray[0] = 3; // works
numberArray[0] = 3.2; // doesn't work
numbers[0] = "3"; // doesn't work

There is a common practice to initialize an array at declaration time, as follows:

// explicit type work as expected
int[] numbers = {1, 2, 3};

However, trying to use var will not work (will not compile):

// Does not compile
var numberArray = {1, 2, 3};
var numberArray[] = {1, 2, 3};
var[] numberArray = {1, 2, 3};

This code doesn't compile because the right-hand side doesn't have its own type.

Type Inference Chapter 4

[184]

86. Using LVTI in compound declarations
A compound declaration allows us to declare a group of variables of the same type
without repeating the type. The type is specified a single time and the variables are
demarcated by a comma:

// using explicit type
String pending = "pending", processed = "processed",
 deleted = "deleted";

Replacing String with var will result in code that doesn't compile:

// Does not compile
var pending = "pending", processed = "processed", deleted = "deleted";

The solution to this problem is to transform the compound declaration into one
declaration per single line:

// using var, the inferred type is String
var pending = "pending";
var processed = "processed";
var deleted = "deleted";

So, as a rule of thumb, LVTI cannot be used in compound declarations.

87. LVTI and variable scope
The clean code best practices include keeping a small scope for all local variables. This
is one of the clean code golden rules that was followed even before the existence of
LVTI.

This rule sustains the readability and debugging phase. It can speed up the process of
finding bugs and writing fixes. Consider the following example that breaks down this
rule:

// Avoid
...
var stack = new Stack<String>();
stack.push("John");
stack.push("Martin");
stack.push("Anghel");
stack.push("Christian");

// 50 lines of code that doesn't use stack

Type Inference Chapter 4

[185]

// John, Martin, Anghel, Christian
stack.forEach(...);

So, the preceding code declares a stack with four names, contains 50 lines of code that
don't use this stack, and finishes with a loop of this stack via the forEach() method.
This method is inherited from java.util.Vector and will loop the stack as any
vector (John, Martin, Anghel, Christian). This is the order of traversal that we
want.

But later on, we decide to switch from the stack to ArrayDeque (the reason is
irrelevant). This time, the forEach() method will be the one provided by the
ArrayDeque class. The behavior of this method is different from
Vector.forEach(), meaning that the loop will traverse the entries following the
Last In First Out (LIFO) traversal (Christian, Anghel, Martin, John):

// Avoid
...
var stack = new ArrayDeque<String>();
stack.push("John");
stack.push("Martin");
stack.push("Anghel");
stack.push("Christian");

// 50 lines of code that doesn't use stack

// Christian, Anghel, Martin, John
stack.forEach(...);

This was not our intention! We switched to ArrayDeque for other purposes, not for
affecting the looping order. But it is pretty difficult to see that there was a bug in the
code since the part of the code containing the forEach() part is not in proximity of
the code where we completed the modifications (50 lines below this line of code). It is
our duty to come up with a solution that maximizes the chances of getting this bug
fixed quickly and avoiding a bunch of scrolling up and down to understand what is
going on. The solution consists of following the clean code rule we invoked earlier
and writing this code with a small scope for the stack variable:

// Prefer
...
var stack = new Stack<String>();
stack.push("John");
stack.push("Martin");
stack.push("Anghel");
stack.push("Christian");

Type Inference Chapter 4

[186]

// John, Martin, Anghel, Christian
stack.forEach(...);

// 50 lines of code that doesn't use stack

Now, when we switch from Stack to ArrayQueue, we should notice the bug faster
and be able to fix it.

88. LVTI and the ternary operator
As long as it is written correctly, the ternary operator allows us to use different types
of operands on the right-hand side. For example, the following code will not compile:

// Does not compile
List evensOrOdds = containsEven ?
 List.of(10, 2, 12) : Set.of(13, 1, 11);

// Does not compile
Set evensOrOdds = containsEven ?
 List.of(10, 2, 12) : Set.of(13, 1, 11);

Nevertheless, this code can be fixed by rewriting it using the correct/supported
explicit types:

Collection evensOrOdds = containsEven ?
 List.of(10, 2, 12) : Set.of(13, 1, 11);

Object evensOrOdds = containsEven ?
 List.of(10, 2, 12) : Set.of(13, 1, 11);

A similar attempt will fail for the following snippet of code:

// Does not compile
int numberOrText = intOrString ? 2234 : "2234";

// Does not compile
String numberOrText = intOrString ? 2234 : "2234";

However, it can be fixed like this:

Serializable numberOrText = intOrString ? 2234 : "2234";

Object numberOrText = intOrString ? 2234 : "2234";

Type Inference Chapter 4

[187]

So, in order to have a ternary operator with different types of operands on the right-
hand side, the developer must match the correct type that supports both conditional
branches. Alternatively, the developer can rely on LVTI, as follows (of course, this
works for the same types of operands as well):

// inferred type, Collection<Integer>
var evensOrOddsCollection = containsEven ?
 List.of(10, 2, 12) : Set.of(13, 1, 11);

// inferred type, Serializable
var numberOrText = intOrString ? 2234 : "2234";

Don't conclude from these examples that the var type is inferred at runtime! It is
NOT!

89. LVTI and for loops
Declaring simple for loops using explicit types is a trivial task, as follows:

// explicit type
for (int i = 0; i < 5; i++) {
 ...
}

Alternatively, we can use an enhanced for loop:

List<Player> players = List.of(
 new Player(), new Player(), new Player());
for (Player player: players) {
 ...
}

Starting with JDK 10, we can replace the explicit types of the variables, i and player,
with var, as follows:

for (var i = 0; i < 5; i++) { // i is inferred of type int
 ...
}

for (var player: players) { // i is inferred of type Player
 ...
}

Type Inference Chapter 4

[188]

Using var can be helpful when the type of a looped array, collection, and so on is
changed. For example, by using var, both versions of the following array can be
looped without specifying the explicit type:

// a variable 'array' representing an int[]
int[] array = { 1, 2, 3 };

// or the same variable, 'array', but representing a String[]
String[] array = {
 "1", "2", "3"
};

// depending on how 'array' is defined
// 'i' will be inferred as int or as String
for (var i: array) {
 System.out.println(i);
}

90. LVTI and streams
Let's consider the following Stream<Integer> stream:

// explicit type
Stream<Integer> numbers = Stream.of(1, 2, 3, 4, 5);
numbers.filter(t -> t % 2 == 0).forEach(System.out::println);

Using LVTI instead of Stream<Integer> is pretty straightforward. Simply replace
Stream<Integer> with var, as follows:

// using var, inferred as Stream<Integer>
var numberStream = Stream.of(1, 2, 3, 4, 5);
numberStream.filter(t -> t % 2 == 0).forEach(System.out::println);

Here is another example:

// explicit types
Stream<String> paths = Files.lines(Path.of("..."));
List<File> files = paths.map(p -> new File(p)).collect(toList());

// using var
// inferred as Stream<String>
var pathStream = Files.lines(Path.of(""));

// inferred as List<File>
var fileList = pathStream.map(p -> new File(p)).collect(toList());

Type Inference Chapter 4

[189]

It looks like Java 10, LVTI, Java 8, and the Stream API make a good team.

91. Using LVTI to break up nested/large chains
of expressions
Large/nested expressions are usually snippets of codes that look pretty impressive
and are intimidating. They are commonly seen as pieces of smart or clever code. It is
controversial as to whether this is good or bad, but most likely, the balance tends to
be in favor of those who claim that such code should be avoided. For example, check
out the following expression:

List<Integer> ints = List.of(1, 1, 2, 3, 4, 4, 6, 2, 1, 5, 4, 5);

// Avoid
int result = ints.stream()
 .collect(Collectors.partitioningBy(i -> i % 2 == 0))
 .values()
 .stream()
 .max(Comparator.comparing(List::size))
 .orElse(Collections.emptyList())
 .stream()
 .mapToInt(Integer::intValue)
 .sum();

Such expressions can be written deliberately or they can represent the final result of
an incremental process that enriches an initially small expression in time.
Nevertheless, when such expressions start to become gaps in readability, they must
be broken into pieces via local variables. But this is not fun and can be considered
exhausting work that we want to avoid:

List<Integer> ints = List.of(1, 1, 2, 3, 4, 4, 6, 2, 1, 5, 4, 5);

// Prefer
Collection<List<Integer>> evenAndOdd = ints.stream()
 .collect(Collectors.partitioningBy(i -> i % 2 == 0))
 .values();

List<Integer> evenOrOdd = evenAndOdd.stream()
 .max(Comparator.comparing(List::size))
 .orElse(Collections.emptyList());

int sumEvenOrOdd = evenOrOdd.stream()
 .mapToInt(Integer::intValue)
 .sum();

Type Inference Chapter 4

[190]

Check out the types of the local variables in the preceding code. We
have Collection<List<Integer>>, List<Integer>, and int. It is obvious that
these explicit types require some time to be fetched and written. This may be a good
reason to avoid breaking this expression into pieces. Nevertheless, the triviality of
using the var type instead of explicit types is tempting if we wish to adopt the local
variable's style because it saves time that's usually spent fetching the explicit types:

var intList = List.of(1, 1, 2, 3, 4, 4, 6, 2, 1, 5, 4, 5);

// Prefer
var evenAndOdd = intList.stream()
 .collect(Collectors.partitioningBy(i -> i % 2 == 0))
 .values();

var evenOrOdd = evenAndOdd.stream()
 .max(Comparator.comparing(List::size))
 .orElse(Collections.emptyList());

var sumEvenOrOdd = evenOrOdd.stream()
 .mapToInt(Integer::intValue)
 .sum();

Awesome! Now, it is the compiler's job to infer the types of these local variables. We
only choose the points where we break the expression and demarcate them with var.

92. LVTI and the method return and argument
types
As a rule of thumb, LVTI cannot be used as a return method type or as an argument
method type; instead, variables of the var type can be passed as method arguments
or store a return method. Let's iterate these statements via several examples:

LVTI cannot be used as the method return type—the following code
doesn't compile:

// Does not compile
public var fetchReport(Player player, Date timestamp) {

 return new Report();
}

Type Inference Chapter 4

[191]

LVTI cannot be used as a method argument type—the following code
doesn't compile:

public Report fetchReport(var player, var timestamp) {

 return new Report();
}

Variables of the var type can be passed as method arguments or store a
return method—the following code compiles successfully and it works:

public Report checkPlayer() {

 var player = new Player();
 var timestamp = new Date();
 var report = fetchReport(player, timestamp);

 return report;
}

public Report fetchReport(Player player, Date timestamp) {

 return new Report();
}

93. LVTI and anonymous classes
LVTI can be used for anonymous classes. Let's take a look at the following example of
an anonymous class that uses an explicit type for the weighter variable:

public interface Weighter {
 int getWeight(Player player);
}

Weighter weighter = new Weighter() {
 @Override
 public int getWeight(Player player) {
 return ...;
 }
};

Player player = ...;
int weight = weighter.getWeight(player);

Type Inference Chapter 4

[192]

Now, look at what happens if we use LVTI:

var weighter = new Weighter() {
 @Override
 public int getWeight(Player player) {
 return ...;
 }
};

94. LVTI can be final and effectively final
As a quick reminder, starting in Java SE 8, a local class can access local variables and
parameters of the enclosing block that are final or effectively final. A variable or parameter
whose value is never changed after it is initialized is effectively final.

The following snippet of code represents the use case of an effectively final variable
(trying to reassign the ratio variable will result in an error, which means that this
variable is effectively final) and two final variables (trying to reassign the limit and
bmi variables will result in an error, which means that these variables are final):

public interface Weighter {
 float getMarginOfError();
}

float ratio = fetchRatio(); // this is effectively final

var weighter = new Weighter() {
 @Override
 public float getMarginOfError() {
 return ratio * ...;
 }
};

ratio = fetchRatio(); // this reassignment will cause error

public float fetchRatio() {

 final float limit = new Random().nextFloat(); // this is final
 final float bmi = 0.00023f; // this is final

 limit = 0.002f; // this reassignment will cause error
 bmi = 0.25f; // this reassignment will cause error

 return limit * bmi / 100.12f;
}

Type Inference Chapter 4

[193]

Now, let's replace the explicit types with var. The compiler will infer the correct
types for these variables (ratio, limit, and bmi) and maintain their state—ratio

will be effectively final while limit and bmi are final. Trying to reassign any of them
will cause a specific error:

var ratio = fetchRatio(); // this is effectively final

var weighter = new Weighter() {
 @Override
 public float getMarginOfError() {
 return ratio * ...;
 }
};

ratio = fetchRatio(); // this reassignment will cause error

public float fetchRatio() {

 final var limit = new Random().nextFloat(); // this is final
 final var bmi = 0.00023f; // this is final

 limit = 0.002f; // this reassignment will cause error
 bmi = 0.25f; // this reassignment will cause error

 return limit * bmi / 100.12f;
}

95. LVTI and lambdas
The problem with using LVTI and lambdas is that the concrete type cannot be
inferred. Lambdas and method reference initializers are not allowed. This statement is
part of var limitations; therefore, lambda expressions and method references need
explicit target types.

For example, the following snippet of code will not compile:

// Does not compile
// lambda expression needs an explicit target-type
var incrementX = x -> x + 1;

// method reference needs an explicit target-type
var exceptionIAE = IllegalArgumentException::new;

Type Inference Chapter 4

[194]

Since var cannot be used, these two snippets of code need to be written as follows:

Function<Integer, Integer> incrementX = x -> x + 1;
Supplier<IllegalArgumentException> exceptionIAE
 = IllegalArgumentException::new;

But in the context of lambdas, Java 11 allows us to use var in lambda parameters. For
example, the following code is working in Java 11 (more details can be found in JEP
323: Local-Variable Syntax for Lambda Parameters at https:/ ​/​openjdk. ​java. ​net/ ​jeps/
323):

@FunctionalInterface
public interface Square {
 int calculate(int x);
}

Square square = (var x) -> x * x;

However, keep in mind that the following will not work:

var square = (var x) -> x * x; // cannot infer

96. LVTI and null initializers, instance variables,
and catch blocks variables
What does LVTI have in common with null initializers, instance variables, and catch
blocks variables? Well, LVTI cannot be used with any of them. The following
attempts will fail:

LVTI cannot be used with null initializers:

// result in an error of type: variable initializer is 'null'
var message = null;

// result in: cannot use 'var' on variable without initializer
var message;

LVTI cannot be used with instance variables (fields):

public class Player {

 private var age; // error: 'var' is not allowed here
 private var name; // error: 'var' is not allowed here
 ...
}

https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323

Type Inference Chapter 4

[195]

LVTI cannot be used in catch block variables:

try {
 TimeUnit.NANOSECONDS.sleep(1000);
} catch (var ex) { ... }

Try-with-resource
On the other hand, the var type is a very nice fit for try-with-resource, as in the
following example:

// explicit type
try (PrintWriter writer = new PrintWriter(new File("welcome.txt"))) {
 writer.println("Welcome message");
}

// using var
try (var writer = new PrintWriter(new File("welcome.txt"))) {
 writer.println("Welcome message");
}

97. LVTI and generic types, T
In order to understand how LVTI can be combined with generic types, let's start with
an example. The following method is a classical usage case of a generic type, T:

public static <T extends Number> T add(T t) {
 T temp = t;
 ...
 return temp;
}

In this case, we can replace T with var and the code will work fine:

public static <T extends Number> T add(T t) {
 var temp = t;
 ...
 return temp;
}

Type Inference Chapter 4

[196]

So, local variables that have generic types can take advantage of LVTI. Let's look at
some other examples, first using the generic type, T:

public <T extends Number> T add(T t) {

 List<T> numberList = new ArrayList<T>();
 numberList.add(t);
 numberList.add((T) Integer.valueOf(3));
 numberList.add((T) Double.valueOf(3.9));

 // error: incompatible types: String cannot be converted to T
 // numbers.add("5");

 return numberList.get(0);
}

Now, let's replace List<T> with var:

public <T extends Number> T add(T t) {

 var numberList = new ArrayList<T>();
 numberList.add(t);
 numberList.add((T) Integer.valueOf(3));
 numberList.add((T) Double.valueOf(3.9));

 // error: incompatible types: String cannot be converted to T
 // numbers.add("5");

 return numberList.get(0);
}

Pay attention and double-check the ArrayList instantiation for the presence of T.
Don't do this (this will be inferred as ArrayList<Object> and will ignore the real
type behind the generic type, T):

var numberList = new ArrayList<>();

98. LVTI, wildcards, covariants, and
contravariants
Replacing wildcards, covariants, and contravariants with LVTI is a delicate job and
should be done with full awareness of the consequences.

Type Inference Chapter 4

[197]

LVTI and wildcards
First, let's talk about LVTI and wildcards (?). It is a common practice to associate
wildcards with Class and write something like this:

// explicit type
Class<?> clazz = Long.class;

In such cases, there is no problem with using var instead of Class<?>. Depending on
the right-hand side type, the compiler will infer the correct type. In this example, the
compiler will infer Class<Long>.

But notice that replacing wildcards with LVTI should be done carefully and that you
should be aware of the consequences (or side effects). Let's look at an example where
replacing a wildcard with var is a bad choice. Consider the following piece of code:

Collection<?> stuff = new ArrayList<>();
stuff.add("hello"); // compile time error
stuff.add("world"); // compile time error

This code doesn't compile because of incompatible types. A very bad approach would
be to fix this code by replacing the wildcard with var, as follows:

var stuff = new ArrayList<>();
strings.add("hello"); // no error
strings.add("world"); // no error

By using var, the error will disappear, but this is not what we had in mind when we
wrote the preceding code (the code with type incompatibility errors). So, as a rule of
thumb, don't replace Foo<?> with var just because some annoying errors will
disappear by magic! Try to think about what the intended task was and act
accordingly. For example, maybe in the preceding snippet of code, we tried to define
ArrayList<String> and, by mistake, ended up with Collection<?>.

LVTI and covariants/contravariants
Replacing covariants (Foo<? extends T>) or contravariants (Foo<? super T>)
with LVTI is a dangerous approach and should be avoided.

Check out the following snippet of code:

// explicit types
Class<? extends Number> intNumber = Integer.class;
Class<? super FilterReader> fileReader = Reader.class;

Type Inference Chapter 4

[198]

In the covariant, we have an upper bound represented by the Number class, while in
the contravariant, we have a lower bound represented by the FilterReader class.
Having these bounds (or constraints) in place, the following code will trigger a
specific compile-time error:

// Does not compile
// error: Class<Reader> cannot be converted
// to Class<? extends Number>
Class<? extends Number> intNumber = Reader.class;

// error: Class<Integer> cannot be converted
// to Class<? super FilterReader>
Class<? super FilterReader> fileReader = Integer.class;

Now, let's use var instead of the preceding covariant and contravariant:

// using var
var intNumber = Integer.class;
var fileReader = Reader.class;

This code will not cause any issues. Now, we can assign any class to these variables so
that our bounds/constraints vanish. This is not what we intended to do:

// this will compile just fine
var intNumber = Reader.class;
var fileReader = Integer.class;

So, using var in place of our covariant and contravariant was a bad choice!

Summary
This was the last problem of this chapter. Take a look at JEP 323: Local-Variable Syntax
for Lambda Parameters (https:/ ​/​openjdk. ​java. ​net/ ​jeps/ ​323) and JEP 301: Enhanced
Enums (http:/ ​/​openjdk. ​java. ​net/ ​jeps/ ​301) for more information. Adopting these
features should be pretty smooth as long as you are familiar with the problems that
were covered in this chapter.

Download the applications from this chapter to see the results and additional details.

https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301

5
Arrays, Collections, and Data

Structures
This chapter includes 30 problems that involve arrays, collections, and several data
structures. The aim is to provide solutions to a category of problems encountered in a
wide range of applications, including sorting, finding, comparing, ordering,
reversing, filling, merging, copying, and replacing. The solutions provided are
implemented in Java 8-12 and they can also be used as a basis for solving other
related issues. At the end of this chapter, you will have at your disposal a solid
breadth of knowledge that will prove useful in solving a variety of problems
involving arrays, collections, and data structures.

Problems
Use the following problems to test your programming prowess based on arrays,
collections, and data structures. I strongly encourage you to give each problem a try
before you turn to the solutions and download the example programs:

Sorting an array: Write several programs that exemplify different sorting99.
algorithms for arrays. Also, write a program for shuffling arrays.
Finding an element in an array: Write several programs that exemplify100.
how to find the given element (primitive and object) in a given array. Find
the index and/or simply check whether the value is in the array.
Checking whether two arrays are equal or mismatches: Write a program101.
that checks whether the two given arrays are equals or whether there is a
mismatch.
Comparing two arrays lexicographically: Write a program that compares102.
the given arrays lexicographically.

Arrays, Collections, and Data Structures Chapter 5

[200]

Creating a stream from an array: Write a program that creates a stream103.
from the given array.
Minimum, maximum, and average of an array: Write a program that104.
computes the maximum, minimum, and average of the given array.
Reversing an array: Write a program that reverses the given array.105.
Filling and setting an array: Write several examples for filling up an array106.
and setting all elements based on a generator function to compute each
element.
Next Greater Element (NGE): Write a program that returns the NGE for107.
each element of an array.
Changing array size: Write a program that adds an element to an array by108.
increasing its size by one. In addition, write a program that increases the
size of an array with the given length.
Creating unmodifiable/immutable collections: Write several examples109.
that create unmodifiable and immutable collections.
Mapping a default value: Write a program that gets a value from Map or a110.
default value.
Computing whether absent/present in a Map: Write a program that111.
computes the value of an absent key or a new value of a present key.
Removal from a Map: Write a program that removes from a Map by means112.
of the given key.
Replacing entries from a Map: Write a program that replaces the given113.
entries from a Map.
Comparing two maps: Write a program that compares two maps.114.
Merging two maps: Write a program that merges two given maps.115.
Copying HashMap: Write a program that performs a shallow and deep116.
copy of HashMap.
Sorting a Map: Write a program that sorts a Map.117.
Removing all elements of a collection that match a predicate: Write a118.
program that removes all elements of a collection that match the given
predicate.
Converting a collection into an array: Write a program that converts a119.
collection into an array.
Filtering a collection by List: Write several solutions for filtering a120.
collection by a List. Reveal the best way of doing this.
Replacing elements of a List: Write a program that replaces each element121.
of a List with the result of applying a given operator to it.

Arrays, Collections, and Data Structures Chapter 5

[201]

Thread-safe collections, stacks, and queues: Write several programs that122.
exemplify the usage of Java thread-safe collections.
Breadth-first search (BFS): Write a program that implements the BFS123.
algorithm.
Trie: Write a program that implements a Trie data structure.124.
Tuple: Write a program that implements a Tuple data structure.125.
Union Find: Write a program that implements the Union Find algorithm.126.
Fenwick Tree or Binary Indexed Tree: Write a program that implements127.
the Fenwick Tree algorithm.
Bloom filter: Write a program that implements the Bloom filter algorithm.128.

Solutions
The following sections describe solutions to the preceding problems. Remember that
there usually isn't a single correct way to solve a particular problem. Also, remember
that the explanations shown here include only the most interesting and important
details needed to solve the problems. Download the example solutions to see
additional details and to experiment with the programs at https:/ ​/​github. ​com/
PacktPublishing/ ​Java- ​Coding- ​Problems.

99. Sorting an array
Sorting an array is a common task encountered in a lot of domains/applications. It is
so common that Java provides a built-in solution for sorting arrays of primitives and
objects using a comparator. This solution works very well and is the preferable way
to go in most of the cases. Let's take a look at the different solutions in the next
section.

JDK built-in solutions
The built-in solution is named sort() and it comes in many different flavors in the
java.util.Arrays class (15+ flavors).

Behind the sort() method, there is a performant sorting algorithm of the Quicksort
type, named Dual-Pivot Quicksort.

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Arrays, Collections, and Data Structures Chapter 5

[202]

Let's assume that we need to sort an array of integers by natural order (primitive
int). For this, we can rely on Arrays.sort(int[] a), as in the following example:

int[] integers = new int[]{...};
Arrays.sort(integers);

Sometimes, we need to sort an array of an object. Let's assume that we have a class as
Melon:

public class Melon {

 private final String type;
 private final int weight;

 public Melon(String type, int weight) {
 this.type = type;
 this.weight = weight;
 }

 // getters omitted for brevity
}

An array of Melon can be sorted by ascending weight via the proper Comparator:

Melon[] melons = new Melon[] { ... };

Arrays.sort(melons, new Comparator<Melon>() {
 @Override
 public int compare(Melon melon1, Melon melon2) {
 return Integer.compare(melon1.getWeight(), melon2.getWeight());
 }
});

The same result can be obtained by rewriting the preceding code via a lambda
expression:

Arrays.sort(melons, (Melon melon1, Melon melon2)
 -> Integer.compare(melon1.getWeight(), melon2.getWeight()));

Moreover, arrays provide a method for sorting elements in parallel,
parallelSort(). The sorting algorithm used behind the scenes is a parallel sort-
merge based on ForkJoinPool that breaks up the array into sub-arrays that are
themselves sorted and then merged. Here is an example:

Arrays.parallelSort(melons, new Comparator<Melon>() {
 @Override
 public int compare(Melon melon1, Melon melon2) {

Arrays, Collections, and Data Structures Chapter 5

[203]

 return Integer.compare(melon1.getWeight(), melon2.getWeight());
 }
});

Or, via a lambda expression, we have the following example:

Arrays.parallelSort(melons, (Melon melon1, Melon melon2)
 -> Integer.compare(melon1.getWeight(), melon2.getWeight()));

The preceding examples sort an array in ascending order, but sometimes, we need to
sort it by descending order. When we sort an array of Object and rely on a
Comparator, we can simply multiply the result returned by Integer.compare() by
-1:

Arrays.sort(melons, new Comparator<Melon>() {
 @Override
 public int compare(Melon melon1, Melon melon2) {
 return (-1) * Integer.compare(melon1.getWeight(),
 melon2.getWeight());
 }
});

Or, we can simply switch the arguments in the compare() method.

In the case of an array of boxed primitive types, the solution can rely on
the Collections.reverse() method, as in the following example:

Integer[] integers = new Integer[] {3, 1, 5};

// 1, 3, 5
Arrays.sort(integers);

// 5, 3, 1
Arrays.sort(integers, Collections.reverseOrder());

Unfortunately, there is no built-in solution for sorting an array of primitives
in descending order. Most commonly, if we still want to rely on Arrays.sort(), the
solution to this problem consists of reversing the array (O(n)) after it is sorted in
ascending order:

// sort ascending
Arrays.sort(integers);

// reverse array to obtain it in descending order
for (int leftHead = 0, rightHead = integers.length - 1;
 leftHead < rightHead; leftHead++, rightHead--) {

Arrays, Collections, and Data Structures Chapter 5

[204]

 int elem = integers[leftHead];
 integers[leftHead] = integers[rightHead];
 integers[rightHead] = elem;
}

Another solution can rely on Java 8 functional style and boxing (be aware that boxing
is a pretty time-consuming operation):

int[] descIntegers = Arrays.stream(integers)
 .boxed() //or .mapToObj(i -> i)
 .sorted((i1, i2) -> Integer.compare(i2, i1))
 .mapToInt(Integer::intValue)
 .toArray();

Other sorting algorithms
Well, there are plenty of other sorting algorithms out there. Each of them has pros
and cons, and the best way to choose between them is to benchmark the situation
specific to the application.

Let's examine some of these, as highlighted in the next section, and begin with a
pretty slow algorithm.

Bubble sort
Bubble sort is a simple algorithm that basically bubbles up the elements of the array.
This means that it traverses the array multiple times and swaps the adjacent elements
if they are in the wrong order, as in the following diagram:

The time complexity cases are as follows: best case O(n), average case O(n2), and
worst case O(n2)

Arrays, Collections, and Data Structures Chapter 5

[205]

The space complexity case is as follows: worst case O(1)

A utility method implementing the Bubble sort is as follows:

public static void bubbleSort(int[] arr) {

 int n = arr.length;

 for (int i = 0; i < n - 1; i++) {
 for (int j = 0; j < n - i - 1; j++) {

 if (arr[j] > arr[j + 1]) {
 int temp = arr[j];
 arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 }
 }
 }
}

There is also an optimized version of it that relies on a while loop. You can find it in
the code bundled to this book under the name bubbleSortOptimized().

As a performance comparison of time execution, for a random array of 100,000
integers, the optimized version will work around 2 seconds faster.

The preceding implementations work well for sorting arrays of primitives, but, for
sorting an array of Object, we need to bring Comparator into the code, as follows:

public static <T> void bubbleSortWithComparator(
 T arr[], Comparator<? super T> c) {

 int n = arr.length;

 for (int i = 0; i < n - 1; i++) {
 for (int j = 0; j < n - i - 1; j++) {

 if (c.compare(arr[j], arr[j + 1]) > 0) {
 T temp = arr[j];
 arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 }
 }
 }
}

Arrays, Collections, and Data Structures Chapter 5

[206]

Remember the Melon class from before? Well, we can write a Comparator for it by
implementing the Comparator interface:

public class MelonComparator implements Comparator<Melon> {

 @Override
 public int compare(Melon o1, Melon o2) {
 return o1.getType().compareTo(o2.getType());
 }
}

Or, in Java 8 functional style, we have the following:

// Ascending
Comparator<Melon> byType = Comparator.comparing(Melon::getType);

// Descending
Comparator<Melon> byType
 = Comparator.comparing(Melon::getType).reversed();

Having an array of Melon, the preceding Comparator, and the
bubbleSortWithComparator() method in a utility class named ArraySorts, we
can write something along the lines of the following:

Melon[] melons = {...};
ArraySorts.bubbleSortWithComparator(melons, byType);

For brevity, the Bubble sort optimized version with a Comparator was skipped, but it
is available in the code bundled to the book.

Bubble sort is fast when the array is almost sorted. Also, it fits well
for sorting rabbits (big elements that are close to the start of the
array) and turtles (small elements that are close to the end of the
array). But overall, this is a slow algorithm.

Insertion sort
The insertion sort algorithm relies on a simple flow. It starts from the second element
and compares it with the element before. If the element before is greater than the
current element, then the algorithm swaps the elements. This process continues until
the element before is smaller than the current element.

Arrays, Collections, and Data Structures Chapter 5

[207]

In that case, the algorithm passes to the next element in the array and repeats the
flow, as in the following diagram:

The time complexity cases are as follows: best case O(n), average case O(n2), worst
case O(n2)

The space complexity case is as follows: worst case O(1)

Based on this flow, an implementation for primitive types will be as follows:

public static void insertionSort(int arr[]) {

 int n = arr.length;

 for (int i = 1; i < n; ++i) {

 int key = arr[i];
 int j = i - 1;

 while (j >= 0 && arr[j] > key) {
 arr[j + 1] = arr[j];
 j = j - 1;
 }

 arr[j + 1] = key;
 }
}

Arrays, Collections, and Data Structures Chapter 5

[208]

For comparing an array of Melon, we need to bring a Comparator in to the
implementation as follows:

public static <T> void insertionSortWithComparator(
 T arr[], Comparator<? super T> c) {

 int n = arr.length;

 for (int i = 1; i < n; ++i) {

 T key = arr[i];
 int j = i - 1;

 while (j >= 0 && c.compare(arr[j], key) > 0) {
 arr[j + 1] = arr[j];
 j = j - 1;
 }

 arr[j + 1] = key;
 }
}

Here, we have a Comparator that sorts the melons by type and weight written in
Java 8 functional style using the thenComparing() method:

Comparator<Melon> byType = Comparator.comparing(Melon::getType)
 .thenComparing(Melon::getWeight);

Having an array of Melon, the preceding Comparator, and the
insertionSortWithComparator() method in a utility class named ArraySorts,
we can write something as follows:

Melon[] melons = {...};
ArraySorts.insertionSortWithComparator(melons, byType);

This can be fast for small and mostly sorted arrays. Also, it performs
well when adding new elements to an array. It is also very memory-
efficient since a single element is moved around.

Arrays, Collections, and Data Structures Chapter 5

[209]

Counting sort
The counting sort flow starts by calculating the minimum and the maximum element
in the array. Based on the computed minimum and maximum, the algorithm defines
a new array that will be used to count the unsorted elements by using the element as
the index. Furthermore, this new array is modified in such a way that each element at
each index stores the sum of previous counts. Finally, the sorted array is obtained
from this new array.

The time complexity cases are as follows: best case O(n + k), average case O(n +
k), worst case O(n + k)

The space complexity case is as follows: worst case O(k)

k is the number of possible values in the range.
n is the number of elements to be sorted.

Let's consider a quick example. The initial array contains the following elements, arr:
4, 2, 6, 2, 6, 8, 5:

The minimum element is 2 and the maximum element is 8. The new array, counts,
will have a size equal to the maximum minus the minimum + 1 = 8 - 2 + 1 = 7.

Counting each element will result in the following array (counts[arr[i] -
min]++):

counts[2] = 1 (4); counts[0] = 2 (2); counts[4] = 2 (6);
counts[6] = 1 (8); counts[3] = 1 (5);

Arrays, Collections, and Data Structures Chapter 5

[210]

Now, we must loop this array and use it to reconstruct the sorted array as in the
following implementation:

public static void countingSort(int[] arr) {

 int min = arr[0];
 int max = arr[0];

 for (int i = 1; i < arr.length; i++) {
 if (arr[i] < min) {
 min = arr[i];
 } else if (arr[i] > max) {
 max = arr[i];
 }
 }

 int[] counts = new int[max - min + 1];

 for (int i = 0; i < arr.length; i++) {
 counts[arr[i] - min]++;
 }

 int sortedIndex = 0;

 for (int i = 0; i < counts.length; i++) {
 while (counts[i] > 0) {
 arr[sortedIndex++] = i + min;
 counts[i]--;
 }
 }
}

This is a very fast algorithm.

Heap sort
Heap sort is an algorithm that relies on a binary heap (complete binary tree).

The time complexity cases are as follows: best case O(n log n), average case O(n
log n), worst case O(n log n)

The space complexity case is as follows: worst case O(1)

Arrays, Collections, and Data Structures Chapter 5

[211]

Sorting elements in ascending order can be accomplished via a Max
Heap (the parent node is always greater than, or equal to, child
nodes), and in descending order via a Min Heap (the parent node is
always smaller than, or equal to, child nodes).

At the first step, the algorithm uses the array provided to build this heap and
transform it into a Max Heap (the heap is represented by another array). Since this is a
Max Heap, the largest element is the root of the heap. At the next step, the root is
swapped with the last element from the heap and the heap size is reduced by 1
(delete the last node from the heap). The elements that are at the top of the heap come
out in sorted order. The final step consists of heapify (the recursive process that builds
the heap in a top-down manner), and the root of the heap (reconstruct the Max Heap).
These three steps are repeated until the heap size is greater than 1:

For example, let's assume the array from the preceding diagram – 4, 5, 2, 7, 1:

So, at the first step, we build the heap: 4, 5, 2, 7, 1.1.
We build the Max Heap: 7, 5, 2, 4, 1 (we swapped 5 with 4, 4 with 7, and 52.
with 7).
Next, we swap the root (7) with the last element (1) and delete 7. Result: 1,3.
5, 2, 4, 7.
Further, we construct the Max Heap again: 5, 4, 2, 1 (we swapped 5 with 14.
and 1 with 4).
We swap the root (5) with the last element (1) and delete 5. Result: 1, 4, 2, 5,5.
7.
Next, we construct the Max Heap again: 4, 1, 2 (we swapped 1 with 4).6.
We swap the root (4) with the last element (2) and delete 4. Result: 2, 1.7.
This is a Max Heap, so swap the root (2) with the last element (1) and8.
remove 2: 1, 2, 4, 5, 7.
Done! There is a single element left in the heap (1).9.

Arrays, Collections, and Data Structures Chapter 5

[212]

In code lines, the preceding example can be generalized as follows:

public static void heapSort(int[] arr) {
 int n = arr.length;

 buildHeap(arr, n);

 while (n > 1) {
 swap(arr, 0, n - 1);
 n--;
 heapify(arr, n, 0);
 }
}

private static void buildHeap(int[] arr, int n) {
 for (int i = arr.length / 2; i >= 0; i--) {
 heapify(arr, n, i);
 }
}

private static void heapify(int[] arr, int n, int i) {
 int left = i * 2 + 1;
 int right = i * 2 + 2;
 int greater;

 if (left < n && arr[left] > arr[i]) {
 greater = left;
 } else {
 greater = i;
 }

 if (right < n && arr[right] > arr[greater]) {
 greater = right;
 }

 if (greater != i) {
 swap(arr, i, greater);
 heapify(arr, n, greater);
 }
}

private static void swap(int[] arr, int x, int y) {
 int temp = arr[x];
 arr[x] = arr[y];
 arr[y] = temp;
}

Arrays, Collections, and Data Structures Chapter 5

[213]

If we want to compare objects, then we have to bring a Comparator into the
implementation. This solution is available in the code bundled to this book under the
name heapSortWithComparator().

Here, it is a Comparator written in Java 8 functional style that uses the
thenComparing() and reversed() methods to sort the melons in descending
order by type and weight:

Comparator<Melon> byType = Comparator.comparing(Melon::getType)
 .thenComparing(Melon::getWeight).reversed();

Having an array of Melon, the preceding Comparator, and the
heapSortWithComparator() method in a utility class named ArraySorts, we can
write something as follows:

Melon[] melons = {...};
ArraySorts.heapSortWithComparator(melons, byType);

Heap sort is pretty fast, but is not stable. For example, sorting an
array that is already sorted may leave it in a different order.

We will stop our dissertation regarding sorting arrays here, but, in the code bundled
to this book, there are a few more sorting algorithms available:

Arrays, Collections, and Data Structures Chapter 5

[214]

There are many other algorithms dedicated to sorting arrays. Some of them are built
on top of those presented here (for example, Comb sort, Cocktail sort, and Odd-even
sort are flavors of Bubble sort, Bucket sort is a distribution sort commonly relying on
Insertion sort, Radix sort (LSD) is a stable distribution similar to Bucket sort, and
Gnome sort is a variation of Insertion sort).

Others are different approaches (for example, Quicksort implemented by
the Arrays.sort() method, and Merge sort implemented by
Arrays.parallelSort()).

By way of a bonus to this section, let's see how we can shuffle an array. An efficient
way to accomplish this relies on the Fisher-Yates shuffle (known as the Knuth
shuffle). Basically, we loop the array in reverse order and we randomly swap
elements. For primitives (for example, int), the implementation is as follows:

public static void shuffleInt(int[] arr) {

 int index;

 Random random = new Random();

 for (int i = arr.length - 1; i > 0; i--) {

 index = random.nextInt(i + 1);
 swap(arr, index, i);
 }
}

In the code bundled to this book, there is also the implementation for shuffling an
array of Object.

Shuffling a list is pretty straightforward
via Collections.shuffle(List<?> list).

Arrays, Collections, and Data Structures Chapter 5

[215]

100. Finding an element in an array
When we search for an element in an array, we may be interested to find out the
index at which this element occurs, or only whether it is present in the array. The
solutions presented in this section are materialized in the methods from the following
screenshot:

Let's take a look at the different solutions in the next sections.

Check only for the presence
Let's assume the following array of integers:

int[] numbers = {4, 5, 1, 3, 7, 4, 1};

Since this is an array of primitives, the solution can simply loop the array and return
to the first occurrence of the given integer, as follows:

public static boolean containsElement(int[] arr, int toContain) {

 for (int elem: arr) {
 if (elem == toContain) {
 return true;
 }
 }

 return false;
}

Arrays, Collections, and Data Structures Chapter 5

[216]

Another solution to this problem can rely on the Arrays.binarySearch() methods.
There are several flavors of this method, but in this case, we need this one: int
binarySearch​(int[] a, int key). The method will search the given key in the
given array and will return the corresponding index or a negative value. The only
issue is that this method works only for sorted arrays; therefore, we need to sort the
array beforehand:

public static boolean containsElement(int[] arr, int toContain) {

 Arrays.sort(arr);
 int index = Arrays.binarySearch(arr, toContain);

 return (index >= 0);
}

If the array is already sorted, then the preceding method can be
optimized by removing the sorting step. Moreover, if the array is
sorted, the preceding method may return the index where the
element occurs in the array instead of a boolean. However, if the
array is not sorted, then keep in mind that the returned index
corresponds to the sorted array, not to the unsorted (initial) array. If
you don't want to sort the initial array, then it is advisable to pass a
clone of the array to this method. Another approach will be to clone
the array inside this helper method.

In Java 8, the solution can rely on a functional style approach. A good candidate here
is the anyMatch() method. This method returns whether any elements of the stream
match the predicate provided. So, all we need to do is to convert the array to a stream,
as follows:

public static boolean containsElement(int[] arr, int toContain) {

 return Arrays.stream(arr)
 .anyMatch(e -> e == toContain);
}

For any other primitive type, it is pretty straightforward to adapt or generalize the
preceding examples.

Arrays, Collections, and Data Structures Chapter 5

[217]

Now, let's focus on finding Object in arrays. Let's consider the Melon class:

public class Melon {

 private final String type;
 private final int weight;

 // constructor, getters, equals() and hashCode() skipped for brevity
}

Next, let's consider an array of Melon:

Melon[] melons = new Melon[] {new Melon("Crenshaw", 2000),
 new Melon("Gac", 1200), new Melon("Bitter", 2200)
};

Now, let's assume that we want to find the Gac melon of 1,200 g in this array. A
solution can rely on the equals() method, which is used to determine the equality of
two objects:

public static <T> boolean
 containsElementObject(T[] arr, T toContain) {

 for (T elem: arr) {
 if (elem.equals(toContain)) {
 return true;
 }
 }

 return false;
}

Similarly, we can rely on Arrays.asList(arr).contains(find).
Basically, convert the array to a List and call the contains()
method. Behind the scenes, this method uses the equals() contract.

If this method lives in a utility class named ArraySearch, then the following call will
return true:

// true
boolean found = ArraySearch.containsElementObject(
 melons, new Melon("Gac", 1200));

Arrays, Collections, and Data Structures Chapter 5

[218]

This solution works fine as long as we want to rely on the equals() contract. But we
may consider that our melon is present in the array if its name occurs (Gac), or if its
weight occurs (1,200). For such cases, it is more practical to rely on a Comparator:

public static <T> boolean containsElementObject(
 T[] arr, T toContain, Comparator<? super T> c) {

 for (T elem: arr) {
 if (c.compare(elem, toContain) == 0) {
 return true;
 }
 }

 return false;
}

Now, a Comparator that takes into account only the type of melons can be written as
follows:

Comparator<Melon> byType = Comparator.comparing(Melon::getType);

Since the Comparator ignores the weight of the melon (there is no melon of 1,205
grams), the following invocation will return true:

// true
boolean found = ArraySearch.containsElementObject(
 melons, new Melon("Gac", 1205), byType);

Another approach relies on another flavor of binarySearch(). The Arrays class
provides a binarySearch() method that gets a Comparator, <T> int
binarySearch(T[] a, T key, Comparator<? super T> c). This means that
we can use it as follows:

public static <T> boolean containsElementObject(
 T[] arr, T toContain, Comparator<? super T> c) {

 Arrays.sort(arr, c);
 int index = Arrays.binarySearch(arr, toContain, c);

 return (index >= 0);
}

If the initial array state should remain unmodified, then it is
advisable to pass a clone of the array to this method. Another
approach would be to clone the array inside this helper method.

Arrays, Collections, and Data Structures Chapter 5

[219]

Now, a Comparator that takes into account only the weight of melons can be written
as follows:

Comparator<Melon> byWeight = Comparator.comparing(Melon::getWeight);

Since the Comparator ignores the type of melon (there is no melon of the Honeydew
type), the following invocation will return true:

// true
boolean found = ArraySearch.containsElementObject(
 melons, new Melon("Honeydew", 1200), byWeight);

Check only for the first index
For an array of primitives, the simplest implementation speaks for itself:

public static int findIndexOfElement(int[] arr, int toFind) {

 for (int i = 0; i < arr.length; i++) {
 if (arr[i] == toFind) {
 return i;
 }
 }

 return -1;
}

Relying on Java 8 functional style, we can try to loop the array and filter the elements
that match the given element. In the end, simply return the first found element:

public static int findIndexOfElement(int[] arr, int toFind) {

 return IntStream.range(0, arr.length)
 .filter(i -> toFind == arr[i])
 .findFirst()
 .orElse(-1);
}

For an array of Object, there are at least three approaches. In the first instance, we
can rely on the equals() contract:

public static <T> int findIndexOfElementObject(T[] arr, T toFind) {

 for (int i = 0; i < arr.length; i++) {
 if (arr[i].equals(toFind)) {
 return i;

Arrays, Collections, and Data Structures Chapter 5

[220]

 }
 }

 return -1;
}

Similarly, we can rely on Arrays.asList(arr).indexOf(find).
Basically, convert the array to a List and call the indexOf()
method. Behind the scenes, this method uses the equals() contract.

Secondly, we can rely on a Comparator:

public static <T> int findIndexOfElementObject(
 T[] arr, T toFind, Comparator<? super T> c) {

 for (int i = 0; i < arr.length; i++) {
 if (c.compare(arr[i], toFind) == 0) {
 return i;
 }
 }

 return -1;
}

And thirdly, we can rely on Java 8 functional style and a Comparator:

public static <T> int findIndexOfElementObject(
 T[] arr, T toFind, Comparator<? super T> c) {

 return IntStream.range(0, arr.length)
 .filter(i -> c.compare(toFind, arr[i]) == 0)
 .findFirst()
 .orElse(-1);
}

101. Checking whether two arrays are equal or
mismatches
Two arrays of primitives are equal if they contain the same number of elements, and
all corresponding pairs of elements in the two arrays are equal.

The solutions to these two problems rely on the Arrays utility class. The following
sections give the solutions to these problems.

Arrays, Collections, and Data Structures Chapter 5

[221]

Checking whether two arrays are equal
Checking whether two arrays are equal can be easily accomplished via
the Arrays.equals() method. This flag method comes in many flavors for primitive
types, Object, and generics. It also supports comparators.

Let's consider the following three arrays of integers:

int[] integers1 = {3, 4, 5, 6, 1, 5};
int[] integers2 = {3, 4, 5, 6, 1, 5};
int[] integers3 = {3, 4, 5, 6, 1, 3};

Now, let's check whether integers1 is equal to integers2, and
whether integers1 is equal to integers3. This is very simple:

boolean i12 = Arrays.equals(integers1, integers2); // true
boolean i13 = Arrays.equals(integers1, integers3); // false

The preceding examples check whether two arrays are equal, but we can check
whether two segments (or ranges) of the arrays are equal as well via the boolean
equals(int[] a, int aFromIndex, int aToIndex, int[] b, int

bFromIndex, int bToIndex) method. So, we demarcate the segment of the first
array via the range [aFromIndex, aToIndex) and the segment of the second array via
the range [bFromIndex, bToIndex):

// true
boolean is13 = Arrays.equals(integers1, 1, 4, integers3, 1, 4);

Now, let's assume three arrays of Melon:

public class Melon {

 private final String type;
 private final int weight;

 public Melon(String type, int weight) {
 this.type = type;
 this.weight = weight;
 }

 // getters, equals() and hashCode() omitted for brevity
}

Melon[] melons1 = {
 new Melon("Horned", 1500), new Melon("Gac", 1000)
};

Arrays, Collections, and Data Structures Chapter 5

[222]

Melon[] melons2 = {
 new Melon("Horned", 1500), new Melon("Gac", 1000)
};

Melon[] melons3 = {
 new Melon("Hami", 1500), new Melon("Gac", 1000)
};

Two arrays of Object are considered equal based on the equals() contract, or based
on the specified Comparator. We can easily check whether melons1 is equal
to melons2, and whether melons1 is equal to melons3 as follows:

boolean m12 = Arrays.equals(melons1, melons2); // true
boolean m13 = Arrays.equals(melons1, melons3); // false

And, in an explicit range, use boolean equals(Object[] a, int aFromIndex,
int aToIndex, Object[] b, int bFromIndex, int bToIndex):

boolean ms13 = Arrays.equals(melons1, 1, 2, melons3, 1, 2); // false

While these examples rely on the Melon.equals() implementation, the following
two examples rely on the following two Comparator:

Comparator<Melon> byType = Comparator.comparing(Melon::getType);
Comparator<Melon> byWeight = Comparator.comparing(Melon::getWeight);

Using the boolean equals(T[] a, T[] a2, Comparator<? super T> cmp), we
have the following:

boolean mw13 = Arrays.equals(melons1, melons3, byWeight); // true
boolean mt13 = Arrays.equals(melons1, melons3, byType); // false

And, in an explicit range, using Comparator, <T> boolean equals(T[] a, int
aFromIndex, int aToIndex, T[] b, int bFromIndex, int bToIndex,

Comparator<? super T> cmp), we have the following:

// true
boolean mrt13 = Arrays.equals(melons1, 1, 2, melons3, 1, 2, byType);

Checking whether two arrays contain a mismatch
If two arrays are equal, then a mismatch should return -1. But if two arrays are not
equal, then a mismatch should return the index of the first mismatch between the two
given arrays. In order to resolve this problem, we can rely on JDK
9 Arrays.mismatch() methods.

Arrays, Collections, and Data Structures Chapter 5

[223]

For example, we can check for mismatches between integers1 and integers2 as
follows:

int mi12 = Arrays.mismatch(integers1, integers2); // -1

The result is -1, since integers1 and integers2 are equal. But if we check for
integers1 and integers3, we receive the value 5, which is the index of the first
mismatch between these two:

int mi13 = Arrays.mismatch(integers1, integers3); // 5

If the given arrays have different lengths and the smaller one is a
prefix for the larger one, then the returned mismatch is the length of
the smaller array.

For arrays of Object, there are dedicated mismatch() methods as well. These
methods count on the equals() contract or on the given Comparator. We can check
whether there is a mismatch between melons1 and melons2 as follows:

int mm12 = Arrays.mismatch(melons1, melons2); // -1

If the mismatch occurs on the first index, then the returned value is 0. This is
happening in the case of melons1 and melons3:

int mm13 = Arrays.mismatch(melons1, melons3); // 0

As in the case of Arrays.equals(), we can check mismatches in an explicit range
using a Comparator:

// range [1, 2), return -1
int mms13 = Arrays.mismatch(melons1, 1, 2, melons3, 1, 2);

// Comparator by melon's weights, return -1
int mmw13 = Arrays.mismatch(melons1, melons3, byWeight);

// Comparator by melon's types, return 0
int mmt13 = Arrays.mismatch(melons1, melons3, byType);

// range [1,2) and Comparator by melon's types, return -1
int mmrt13 = Arrays.mismatch(melons1, 1, 2, melons3, 1, 2, byType);

Arrays, Collections, and Data Structures Chapter 5

[224]

102. Comparing two arrays lexicographically
Starting with JDK 9, we can compare two arrays lexicographically via the
Arrays.compare() methods. Since there is no need to reinvent the wheel, just
upgrade to JDK 9 and let's dive into it.

A lexicographic comparison of two arrays may return the following:

0, if the given arrays are equal and contain the same elements in the same
order
A value less than 0 if the first array is lexicographically less than the second
array
A value greater than 0 if the first array is lexicographically greater than the
second array

If the first array length is less than the second array length, then the first array is
lexicographically less than the second array. If the arrays have the same length,
contain primitives, and share a common prefix, then the lexicographic comparison is
the result of comparing two elements, precisely as Integer.compare(int, int),
Boolean.compare(boolean, boolean), Byte.compare(byte, byte), and so
on. If the arrays contain Object, then the lexicographic comparison is relying on the
given Comparator or on the Comparable implementation.

First, let's consider the following arrays of primitives:

int[] integers1 = {3, 4, 5, 6, 1, 5};
int[] integers2 = {3, 4, 5, 6, 1, 5};
int[] integers3 = {3, 4, 5, 6, 1, 3};

Now, integers1 is lexicographically equal to integers2 because they are equal and
contain the same elements in the same order, int compare(int[] a, int[] b):

int i12 = Arrays.compare(integers1, integers2); // 0

However, integers1 is lexicographically greater than integers3, since they share
the same prefix (3, 4, 5, 6, 1), but for the last element, Integer.compare(5,3)
returns a value greater than 0 since 5 is greater than 3:

int i13 = Arrays.compare(integers1, integers3); // 1

Arrays, Collections, and Data Structures Chapter 5

[225]

A lexicographical comparison can be accomplished on different ranges of the arrays.
For example, the following example compares integers1 and integers3 in the
range [3, 6) via the int compare(int[] a, int aFromIndex, int aToIndex,
int[] b, int bFromIndex, int bToIndex) method:

int is13 = Arrays.compare(integers1, 3, 6, integers3, 3, 6); // 1

For arrays of Object, the Arrays class also provides a set of dedicated compare()
methods. Remember the Melon class? Well, in order to compare two arrays of Melon
without an explicit Comparator, we need to implement the Comparable interface
and implement the compareTo() method. Let's assume that we are relying on melon
weights as follows:

public class Melon implements Comparable {

 private final String type;
 private final int weight;

 @Override
 public int compareTo(Object o) {
 Melon m = (Melon) o;

 return Integer.compare(this.getWeight(), m.getWeight());
 }

 // constructor, getters, equals() and hashCode() omitted for brevity
}

Note that the lexicographic comparison of arrays of Object doesn't
rely on equals(). It requires an explicit Comparator or
Comparable elements.

Let's assume the following arrays of Melon:

Melon[] melons1 = {new Melon("Horned", 1500), new Melon("Gac", 1000)};
Melon[] melons2 = {new Melon("Horned", 1500), new Melon("Gac", 1000)};
Melon[] melons3 = {new Melon("Hami", 1600), new Melon("Gac", 800)};

And, let's compare lexicographically melons1 with melons2 via <T extends
Comparable<? super T>> int compare(T[] a, T[] b):

int m12 = Arrays.compare(melons1, melons2); // 0

Arrays, Collections, and Data Structures Chapter 5

[226]

Since melons1 and melons2 are identical, the result is 0.

Now, let's do the same thing with melons1 and melons3. This time, the result will be
negative, which means that melons1 is lexicographically less than melons3. This is
true since, at index 0, the Horned melon has a weight of 1,500 g, which is less than the
weight of the Hami melon, which is 1,600 g:

int m13 = Arrays.compare(melons1, melons3); // -1

We can perform the comparison in different ranges of the arrays via the <T extends
Comparable<? super T>> int compare(T[] a, int aFromIndex, int

aToIndex, T[] b, int bFromIndex, int bToIndex) method. For example, in
the common range [1, 2), melons1 is lexicographically greater than melons2, since
the weight of Gac is 1,000g in melons1 and 800g in melons3:

int ms13 = Arrays.compare(melons1, 1, 2, melons3, 1, 2); // 1

If we don't want to rely on Comparable elements (implement Comparable), we can
pass in a Comparator via the <T> int compare(T[] a, T[] b, Comparator<?
super T> cmp) method:

Comparator<Melon> byType = Comparator.comparing(Melon::getType);
int mt13 = Arrays.compare(melons1, melons3, byType); // 14

Using ranges is also possible by means of <T> int compare(T[] a, int
aFromIndex, int aToIndex, T[] b, int bFromIndex, int bToIndex,

Comparator<? super T> cmp):

int mrt13 = Arrays.compare(melons1, 1, 2, melons3, 1, 2, byType); // 0

If the arrays of numbers should be treated unsigned, then rely on
the bunch of Arrays.compareUnsigned​() methods, which are
available for byte, short, int, and long.

To compare two strings lexicographically, rely on
String.compareTo() and int compareTo(String
anotherString).

Arrays, Collections, and Data Structures Chapter 5

[227]

103. Creating a Stream from an array
Once we create a Stream from an array, we have access to all the Stream API goodies.
Therefore, this is a handy operation that is important to have in our tool belt.

Let's start with an array of strings (can be other objects as well):

String[] arr = {"One", "Two", "Three", "Four", "Five"};

The easiest way to create Stream from this String[] array is to rely on the
Arrays.stream() method available starting with JDK 8:

Stream<String> stream = Arrays.stream(arr);

Or, if we need a stream from a sub-array, then simply add the range as arguments.
For example, let's create a Stream from the elements that range between (0,2), which
are one and two:

Stream<String> stream = Arrays.stream(arr, 0, 2);

The same cases, but passing through a List, can be written as follows:

Stream<String> stream = Arrays.asList(arr).stream();
Stream<String> stream = Arrays.asList(arr).subList(0, 2).stream();

Another solution relies on Stream.of() methods, as in the following
straightforward examples:

Stream<String> stream = Stream.of(arr);
Stream<String> stream = Stream.of("One", "Two", "Three");

Creating an array from a Stream can be accomplished via the Stream.toArray()
method. For example, a simple approach appears as follows:

String[] array = stream.toArray(String[]::new);

In addition, let's consider an array of primitives:

int[] integers = {2, 3, 4, 1};

In such a case, the Arrays.stream() method can help again, the only difference
being that the returned result is of the IntStream type (this is the int primitive
specialization of Stream):

IntStream intStream = Arrays.stream(integers);

Arrays, Collections, and Data Structures Chapter 5

[228]

But the IntStream class also provides an of() method that can be used as follows:

IntStream intStream = IntStream.of(integers);

Sometimes, we need to define a Stream of sequentially ordered integers with an
incremental step of 1. Moreover, the size of the Stream should be equal to the size of
an array. Especially for such cases, the IntStream method provides two
methods—range(int inclusive, int exclusive) and rangeClosed(int
startInclusive, int endInclusive):

IntStream intStream = IntStream.range(0, integers.length);
IntStream intStream = IntStream.rangeClosed(0, integers.length);

Creating an array from a Stream of integers can be accomplished via
the Stream.toArray() method. For example, a simple approach appears as follows:

int[] intArray = intStream.toArray();

// for boxed integers
int[] intArray = intStream.mapToInt(i -> i).toArray();

Besides the IntStream specialization of Stream, JDK 8 provides
specializations for long (LongStream) and double (DoubleStream).

104. Minimum, maximum, and average of an
array
Computing the minimum, maximum, and average values of an array is a common
task. Let's look at several approaches to solving this problem in functional style and
imperative programming.

Computing maximum and minimum
Computing the maximum value of an array of numbers can be implemented by
looping the array and tracking the maximum value via a comparison with each
element of the array. In terms of lines of code, this can be written as follows:

public static int max(int[] arr) {

 int max = arr[0];

Arrays, Collections, and Data Structures Chapter 5

[229]

 for (int elem: arr) {
 if (elem > max) {
 max = elem;
 }
 }

 return max;
}

A little pinch in readability here may entail using the Math.max() method instead of
an if statement:

...
max = Math.max(max, elem);
...

Let's suppose that we have the following array of integers and a utility class named
MathArrays that contains the preceding methods:

int[] integers = {2, 3, 4, 1, -4, 6, 2};

The maximum of this array can easily be obtained as follows:

int maxInt = MathArrays.max(integers); // 6

In Java 8 functional style, the solution to this problem entails a single line of code:

int maxInt = Arrays.stream(integers).max().getAsInt();

In the functional-style approach, the max() method returns an
OptionalInt. Similarly, we have OptionalLong and
OptionalDouble.

Furthermore, let's assume an array of objects, in this case, an array of Melon:

Melon[] melons = {
 new Melon("Horned", 1500), new Melon("Gac", 2200),
 new Melon("Hami", 1600), new Melon("Gac", 2100)
};

public class Melon implements Comparable {

 private final String type;
 private final int weight;

 @Override
 public int compareTo(Object o) {

Arrays, Collections, and Data Structures Chapter 5

[230]

 Melon m = (Melon) o;

 return Integer.compare(this.getWeight(), m.getWeight());
 }

 // constructor, getters, equals() and hashCode() omitted for brevity
}

It is obvious that our max() methods defined earlier cannot be used in this case, but
the logical principle remains the same. This time, the implementation should rely on
Comparable or Comparator. The implementation based on Comparable can be as
follows:

public static <T extends Comparable<T>> T max(T[] arr) {

 T max = arr[0];

 for (T elem : arr) {
 if (elem.compareTo(max) > 0) {
 max = elem;
 }
 }

 return max;
}

Check the Melon.compareTo() method and note that our implementation will
compare the weights of melons. Therefore, we can easily find the heaviest melon from
our array as follows:

Melon maxMelon = MathArrays.max(melons); // Gac(2200g)

And the implementation relying on Comparator can be written as follows:

public static <T> T max(T[] arr, Comparator<? super T> c) {

 T max = arr[0];

 for (T elem: arr) {
 if (c.compare(elem, max) > 0) {
 max = elem;
 }
 }

 return max;
}

Arrays, Collections, and Data Structures Chapter 5

[231]

And, if we define a Comparator according to the type of melon, we have the
following:

Comparator<Melon> byType = Comparator.comparing(Melon::getType);

Then, we get the maximum melon conforming to the lexicographical comparison of
strings:

Melon maxMelon = MathArrays.max(melons, byType); // Horned(1500g)

In Java 8 functional style, the solution to this problem entails a single line of code:

Melon maxMelon = Arrays.stream(melons).max(byType).orElseThrow();

Computing average
Computing the average value of an array of numbers (in this case integers) can be
implemented in two simple steps:

Compute the sum of the elements from the array.1.
Divide this sum by the length of the array.2.

In code lines, we have the following:

public static double average(int[] arr) {

 return sum(arr) / arr.length;
}

public static double sum(int[] arr) {

 double sum = 0;

 for (int elem: arr) {
 sum += elem;
 }

 return sum;
}

The average of our integers array is 2.0:

double avg = MathArrays.average(integers);

Arrays, Collections, and Data Structures Chapter 5

[232]

In Java 8 functional style, the solution to this problem entails a single line of code:

double avg = Arrays.stream(integers).average().getAsDouble();

For third-party library support, please consider Apache Common
Lang (ArrayUtil) and Guava's Chars, Ints, Longs, and other
classes.

105. Reversing an array
There are several solutions to this problem. Some of them mutate the initial array,
while others just return a new array.

Let's assume the following array of integers:

int[] integers = {-1, 2, 3, 1, 4, 5, 3, 2, 22};

Let's start with a simple implementation that swaps the first element of the array with
the last element, the second element with the penultimate element, and so on:

public static void reverse(int[] arr) {

 for (int leftHead = 0, rightHead = arr.length - 1;
 leftHead < rightHead; leftHead++, rightHead--) {

 int elem = arr[leftHead];
 arr[leftHead] = arr[rightHead];
 arr[rightHead] = elem;
 }
}

The preceding solution mutates the given array and this is not always the desired
behavior. Of course, we can modify it to return a new array, or we can rely on Java 8
functional style as follows:

// 22, 2, 3, 5, 4, 1, 3, 2, -1
int[] reversed = IntStream.rangeClosed(1, integers.length)
 .map(i -> integers[integers.length - i]).toArray();

Now, let's reverse an array of objects. For this, let's consider the Melon class:

public class Melon {

 private final String type;
 private final int weight;

Arrays, Collections, and Data Structures Chapter 5

[233]

 // constructor, getters, equals(), hashCode() omitted for brevity
}

Also, let's consider an array of Melon:

Melon[] melons = {
 new Melon("Crenshaw", 2000),
 new Melon("Gac", 1200),
 new Melon("Bitter", 2200)
};

The first solution entails using generics to shape the implementation that swaps the
first element of the array with the last element, the second element with the second
last element, and so on:

public static <T> void reverse(T[] arr) {

 for (int leftHead = 0, rightHead = arr.length - 1;
 leftHead < rightHead; leftHead++, rightHead--) {

 T elem = arr[leftHead];
 arr[leftHead] = arr[rightHead];
 arr[rightHead] = elem;
 }
}

Since our array contains objects, we can rely on Collections.reverse() as well.
We just need to convert the array to a List via the Arrays.asList() method:

// Bitter(2200g), Gac(1200g), Crenshaw(2000g)
Collections.reverse(Arrays.asList(melons));

The preceding two solutions mutate the elements of the array. Java 8 functional style
can help us to avoid this mutation:

// Bitter(2200g), Gac(1200g), Crenshaw(2000g)
Melon[] reversed = IntStream.rangeClosed(1, melons.length)
 .mapToObj(i -> melons[melons.length - i])
 .toArray(Melon[]:new);

For third-party library support, please consider Apache Common
Lang (ArrayUtils.reverse()) and Guava's Lists class.

Arrays, Collections, and Data Structures Chapter 5

[234]

106. Filling and setting an array
Sometimes, we need to fill up an array with a fixed value. For example, we may want
to fill up an array of integers with the value 1. The simplest way to accomplish this
relies on a for statement as follows:

int[] arr = new int[10];

// 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
for (int i = 0; i < arr.length; i++) {
 arr[i] = 1;
}

But we can reduce this code to a single line of code by means of the Arrays.fill()
methods. This method comes in different flavors for primitives and for objects. The
preceding code can be rewritten via Arrays.fill(int[] a, int val) as follows:

// 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Arrays.fill(arr, 1);

Arrays.fill() also come with flavors for filling up just a
segment/range of an array. For integers, this method is fill​(int[]
a, int fromIndexInclusive, int toIndexExclusive, int

val).

Now, how about applying a generator function to compute each element of the array?
For example, let's assume that we want to compute each element as the previous one
plus 1. The simplest approach will again rely on a for statement as follows:

// 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
for (int i = 1; i < arr.length; i++) {
 arr[i] = arr[i - 1] + 1;
}

The preceding code has to be modified accordingly depending on the computations
that need to be applied to each element.

For such tasks, JDK 8 comes with a bunch of Arrays.setAll() and
Arrays.parallelSetAll() methods. For example, the preceding snippet of code
can be rewritten via setAll​(int[] array, IntUnaryOperator generator) as
follows:

// 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Arrays.setAll(arr, t -> {
 if (t == 0) {

Arrays, Collections, and Data Structures Chapter 5

[235]

 return arr[t];
 } else {
 return arr[t - 1] + 1;
 }
});

Besides this method, we also have setAll​(double[] array,
IntToDoubleFunction generator), setAll​(long[] array,
IntToLongFunction generator), and setAll​(T[] array,
IntFunction<? extends T> generator).

Depending on the generator function, this task can be accomplished in parallel or not.
For example, the preceding generator function cannot be applied in parallel since
each element depends on the value of the preceding element. Trying to apply this
generator function in parallel will lead to incorrect and unstable results.

But let's assume that we want to take the preceding array (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
and multiply each even value by itself and decrease each odd value by 1. Since each
element can be computed individually, we can empower a parallel process in this
case. This is the perfect job for Arrays.parallelSetAll() methods. Basically, these
methods are meant to parallelize Arrays.setAll() methods.

Let's now apply parallelSetAll​(int[] array, IntUnaryOperator
generator) to this array:

// 0, 4, 2, 16, 4, 36, 6, 64, 8, 100
Arrays.parallelSetAll(arr, t -> {
 if (arr[t] % 2 == 0) {
 return arr[t] * arr[t];
 } else {
 return arr[t] - 1;
 }
});

For each Arrays.setAll() method, there is an
Arrays.parallelSetAll() method.

As a bonus, Arrays come with a set of methods named parallelPrefix(). These
methods are useful for applying a mathematical function to the elements of the array,
both cumulatively and concurrently.

Arrays, Collections, and Data Structures Chapter 5

[236]

For example, if we want to compute each element of the array as the sum of the
preceding elements, then we can do it as follows:

// 0, 4, 6, 22, 26, 62, 68, 132, 140, 240
Arrays.parallelPrefix(arr, (t, q) -> t + q);

107. Next Greater Element
NGE is a classic problem that involves arrays.

Basically, having an array and an element from it, e, we want to fetch the next (right-
hand side) element greater than e. For example, let's assume the following array:

int[] integers = {1, 2, 3, 4, 12, 2, 1, 4};

Fetching the NGE for each element will result in the following pairs (-1 is interpreted
as no element from the right-hand side is greater than the current one):

1 : 2 2 : 3 3 : 4 4 : 12 12 : -1 2 : 4 1 : 4 4 : -1

A simple solution to this problem will be looping the array for each element until a
greater element is found or there are no more elements to check. If we just want to
print the pairs on the screen, then we can write a trivial code such as the following:

public static void println(int[] arr) {

 int nge;
 int n = arr.length;

 for (int i = 0; i < n; i++) {
 nge = -1;
 for (int j = i + 1; j < n; j++) {
 if (arr[i] < arr[j]) {
 nge = arr[j];
 break;
 }
 }

 System.out.println(arr[i] + " : " + nge);
 }
}

Arrays, Collections, and Data Structures Chapter 5

[237]

Another solution relies on a stack. Mainly, we push elements in the stack until the
currently processed element is greater than the top element in the stack. When this is
happening, we pop that element. The solution is available in the code bundled to this
book.

108. Changing array size
Increasing the size of an array is not straightforward. This is because Java arrays are
of a fixed size and we cannot modify their size. The solution to this problem entails
creating a new array of the requisite size and copying all the values from the original
array to this one. This can be done via the Arrays.copyOf() method or via
System.arraycopy() (used internally by Arrays.copyOf()).

For an array of primitives (for example, int), we can add the value to an array after
increasing its size by 1 as follows:

public static int[] add(int[] arr, int item) {

 int[] newArr = Arrays.copyOf(arr, arr.length + 1);
 newArr[newArr.length - 1] = item;

 return newArr;
}

Or, we can remove the last value as follows:

public static int[] remove(int[] arr) {

 int[] newArr = Arrays.copyOf(arr, arr.length - 1);

 return newArr;
}

Alternatively, we can resize the array with the given length as follows:

public static int[] resize(int[] arr, int length) {

 int[] newArr = Arrays.copyOf(arr, arr.length + length);

 return newArr;
}

Arrays, Collections, and Data Structures Chapter 5

[238]

The code bundled to this book also contains the System.arraycopy() alternatives.
Moreover, it contains the implementations for generic arrays. The signatures are as
follows:

public static <T> T[] addObject(T[] arr, T item);
public static <T> T[] removeObject(T[] arr);
public static <T> T[] resize(T[] arr, int length);

Being in a favorable context, let's bring a related topic into the discussion: how to
create a generic array in Java. The following will not work:

T[] arr = new T[arr_size]; // causes generic array creation error

There are several approaches, but Java uses the following code in copyOf(T[]
original, int newLength):

// newType is original.getClass()
T[] copy = ((Object) newType == (Object) Object[].class) ?
 (T[]) new Object[newLength] :
 (T[]) Array.newInstance(newType.getComponentType(), newLength);

109. Creating unmodifiable/immutable
collections
Creating unmodifiable/immutable collections in Java can easily be accomplished by
means of the Collections.unmodifiableFoo() method (for example,
unmodifiableList()) and, starting with JDK 9, via the set of of() methods from
List, Set, Map, and other interfaces.

Furthermore, we will use these methods in a bunch of examples to obtain
unmodifiable/immutable collections. The main goal is to determine whether each
defined collection is unmodifiable or immutable.

Before reading this section, it is advisable to read the problems
dedicated to immutability from Chapter 2, Objects, Immutability, and
Switch Expressions.

Arrays, Collections, and Data Structures Chapter 5

[239]

OK. In the case of primitives, it is pretty simple. For example, we can create an
immutable List of integers as follows:

private static final List<Integer> LIST
 = Collections.unmodifiableList(Arrays.asList(1, 2, 3, 4, 5));

private static final List<Integer> LIST = List.of(1, 2, 3, 4, 5);

For the next examples, let's consider the following mutable class:

public class MutableMelon {

 private String type;
 private int weight;

 // constructor omitted for brevity

 public void setType(String type) {
 this.type = type;
 }

 public void setWeight(int weight) {
 this.weight = weight;
 }

 // getters, equals() and hashCode() omitted for brevity
}

Problem 1 (Collections.unmodifiableList())
Let's create a list of MutableMelon via the Collections.unmodifiableList()
method:

// Crenshaw(2000g), Gac(1200g)
private final MutableMelon melon1
 = new MutableMelon("Crenshaw", 2000);
private final MutableMelon melon2
 = new MutableMelon("Gac", 1200);

private final List<MutableMelon> list
 = Collections.unmodifiableList(Arrays.asList(melon1, melon2));

Arrays, Collections, and Data Structures Chapter 5

[240]

So, is list unmodifiable or immutable? The answer is unmodifiable. While mutator
methods will throw UnsupportedOperationException, the underlying melon1
and melon2 are mutable. For example, let's set the weights of our melons to 0:

melon1.setWeight(0);
melon2.setWeight(0);

Now, the list will reveal the following melons (so the list was mutated):

Crenshaw(0g), Gac(0g)

Problem 2 (Arrays.asList())
Let's create a list of MutableMelon by hardcoding the instances directly in
Arrays.asList():

private final List<MutableMelon> list
 = Collections.unmodifiableList(Arrays.asList(
 new MutableMelon("Crenshaw", 2000),
 new MutableMelon("Gac", 1200)));

So, is the list unmodifiable or immutable? The answer is unmodifiable. While mutator
methods will throw UnsupportedOperationException, the hardcoded instances
can be accessed via the List.get() method. Once they can be accessed, they can be
mutated:

MutableMelon melon1 = list.get(0);
MutableMelon melon2 = list.get(1);

melon1.setWeight(0);
melon2.setWeight(0);

Now, the list will reveal the following melons (so the list was mutated):

Crenshaw(0g), Gac(0g)

Problem 3 (Collections.unmodifiableList() and static
block)
Let's create a list of MutableMelon via the Collections.unmodifiableList()
method and a static block:

private static final List<MutableMelon> list;
static {

Arrays, Collections, and Data Structures Chapter 5

[241]

 final MutableMelon melon1 = new MutableMelon("Crenshaw", 2000);
 final MutableMelon melon2 = new MutableMelon("Gac", 1200);

 list = Collections.unmodifiableList(Arrays.asList(melon1, melon2));
}

So, is the list unmodifiable or immutable? The answer is unmodifiable. While mutator
methods will throw UnsupportedOperationException, the hardcoded instances
can still be accessed via the List.get() method. Once they can be accessed, they can
be mutated:

MutableMelon melon1l = list.get(0);
MutableMelon melon2l = list.get(1);

melon1l.setWeight(0);
melon2l.setWeight(0);

Now, the list will reveal the following melons (so the list was mutated):

Crenshaw(0g), Gac(0g)

Problem 4 (List.of())
Let's create a list of MutableMelon via List.of():

private final MutableMelon melon1
 = new MutableMelon("Crenshaw", 2000);
private final MutableMelon melon2
 = new MutableMelon("Gac", 1200);

private final List<MutableMelon> list = List.of(melon1, melon2);

So, is the list unmodifiable or immutable? The answer is unmodifiable. While mutator
methods will throw UnsupportedOperationException, the hardcoded instances
can still be accessed via the List.get() method. Once they can be accessed, they can
be mutated:

MutableMelon melon1l = list.get(0);
MutableMelon melon2l = list.get(1);

melon1l.setWeight(0);
melon2l.setWeight(0);

Now, the list will reveal the following melons (so the list was mutated):

Crenshaw(0g), Gac(0g)

Arrays, Collections, and Data Structures Chapter 5

[242]

For the next examples, let's consider the following immutable class:

public final class ImmutableMelon {

 private final String type;
 private final int weight;

 // constructor, getters, equals() and hashCode() omitted for brevity
}

Problem 5 (immutable)
Let's now create a list of ImmutableMelon via Collections.unmodifiableList()
and the List.of() methods:

private static final ImmutableMelon MELON_1
 = new ImmutableMelon("Crenshaw", 2000);
private static final ImmutableMelon MELON_2
 = new ImmutableMelon("Gac", 1200);

private static final List<ImmutableMelon> LIST
 = Collections.unmodifiableList(Arrays.asList(MELON_1, MELON_2));
private static final List<ImmutableMelon> LIST
 = List.of(MELON_1, MELON_2);

So, is the list unmodifiable or immutable? The answer is immutable. Mutator
methods will throw UnsupportedOperationException, and we cannot mutate the
instances of ImmutableMelon.

As a rule of thumb, a collection is unmodifiable if it is defined via
unmodifiableFoo() or of() methods and contains mutable data,
and it is immutable if it is unmodifiable and contains immutable
data (including primitives).

Pay attention to the fact that impenetrable immutability should take
into consideration Java Reflection API and similar APIs that have
supplementary powers in manipulating code.

For third-party library support, please consider Apache Common
Collection, UnmodifiableList (and companions), and Guava's
ImmutableList (and companions).

In the case of Map, we can create an unmodifiable/immutable Map via
unmodifiableMap() or the Map.of() methods.

Arrays, Collections, and Data Structures Chapter 5

[243]

But we can also create an immutable empty Map via Collections.emptyMap():

Map<Integer, MutableMelon> emptyMap = Collections.emptyMap();

Similar to emptyMap(), we have Collections.emptyList(), and
Collections.emptySet(). These methods are very handy as
returns in methods that return a Map, List, or Set, and we want to
avoid returning null.

Alternatively, we can create an unmodifiable/immutable Map with a single element
via Collections.singletonMap(K key, V value):

// unmodifiable
Map<Integer, MutableMelon> mapOfSingleMelon
 = Collections.singletonMap(1, new MutableMelon("Gac", 1200));

// immutable
Map<Integer, ImmutableMelon> mapOfSingleMelon
 = Collections.singletonMap(1, new ImmutableMelon("Gac", 1200));

Similar to singletonMap(), we have singletonList() and
singleton(). The latter is for Set.

Moreover, starting with JDK 9, we can create an unmodifiable Map via a method
named ofEntries(). This method takes Map.Entry as an argument, as in the
following example:

// unmodifiable Map.Entry containing the given key and value
import static java.util.Map.entry;
...
Map<Integer, MutableMelon> mapOfMelon = Map.ofEntries(
 entry(1, new MutableMelon("Apollo", 3000)),
 entry(2, new MutableMelon("Jade Dew", 3500)),
 entry(3, new MutableMelon("Cantaloupe", 1500))
);

Alternatively, an immutable Map is another option:

Map<Integer, ImmutableMelon> mapOfMelon = Map.ofEntries(
 entry(1, new ImmutableMelon("Apollo", 3000)),
 entry(2, new ImmutableMelon("Jade Dew", 3500)),
 entry(3, new ImmutableMelon("Cantaloupe", 1500))
);

Arrays, Collections, and Data Structures Chapter 5

[244]

In addition, an unmodifiable/immutable Map can be obtained from a
modifiable/mutable Map via JDK 10, the Map.copyOf​(Map<? extends K,​?
extends V> map) method:

Map<Integer, ImmutableMelon> mapOfMelon = new HashMap<>();
mapOfMelon.put(1, new ImmutableMelon("Apollo", 3000));
mapOfMelon.put(2, new ImmutableMelon("Jade Dew", 3500));
mapOfMelon.put(3, new ImmutableMelon("Cantaloupe", 1500));

Map<Integer, ImmutableMelon> immutableMapOfMelon
 = Map.copyOf(mapOfMelon);

By way of a bonus for this section, let's talk about an immutable array.

Question: Can I create an immutable array in Java?

Answer: No, you cannot. Or... there is one way to make an immutable array in Java:

static final String[] immutable = new String[0];

So, all useful arrays in Java are mutable. But we can create a helper class to create
immutable arrays based on Arrays.copyOf(), which copies the elements and
creates a new array (behind the scenes, this method relies on System.arraycopy()).

So, our helper class is as follows:

import java.util.Arrays;

public final class ImmutableArray<T> {

 private final T[] array;

 private ImmutableArray(T[] a) {
 array = Arrays.copyOf(a, a.length);
 }

 public static <T> ImmutableArray<T> from(T[] a) {
 return new ImmutableArray<>(a);
 }

 public T get(int index) {
 return array[index];
 }

 // equals(), hashCode() and toString() omitted for brevity
}

Arrays, Collections, and Data Structures Chapter 5

[245]

A usage example is as follows:

ImmutableArray<String> sample =
 ImmutableArray.from(new String[] {
 "a", "b", "c"
 });

110. Mapping a default value
Before JDK 8, the solution to this problem relied on a helper method, which basically
checks the presence of the given key in a Map and returns the corresponding value, or
a default value. Such a method can be written in a utility class or by extending the
Map interface. By returning a default value, we avoid returning null if the given key
was not found in the Map. Moreover, this is a convenient approach for relying on a
default setting or configuration.

Starting with JDK 8, the solution to this problem consists of a simple invocation of
the Map.getOrDefault() method. This method gets two arguments representing
the key to look up in the Map method and the default value. The default value acts as
the backup value that should be returned when the given key is not found.

For example, let's assume the following Map that wraps several databases and their
default host:port:

Map<String, String> map = new HashMap<>();
map.put("postgresql", "127.0.0.1:5432");
map.put("mysql", "192.168.0.50:3306");
map.put("cassandra", "192.168.1.5:9042");

And, let's try to see whether this Map contains the default host:port for Derby DB as
well:

map.get("derby"); // null

Since Derby DB is not present in the map, the result will be null. This is not what we
want. Actually, when the searched database is not present on the map, we can use
MongoDB on 69:89.31.226:27017, which is always available. Now, we can easily
shape this behavior as follows:

// 69:89.31.226:27017
String hp1 = map.getOrDefault("derby", "69:89.31.226:27017");

// 192.168.0.50:3306
String hp2 = map.getOrDefault("mysql", "69:89.31.226:27017");

Arrays, Collections, and Data Structures Chapter 5

[246]

This method is convenient for building fluent expressions and
avoiding disrupting the code for null checks. Note that returning
the default value doesn't mean that this value will be added to the
Map. Map remains unmodified.

111. Computing whether absent/present in a
map
Sometimes, a Map doesn't contain the exact out-of-the-box entry that we need.
Moreover, when an entry is absent, returning a default entry is not an option as well.
Basically, there are cases when we need to compute our entry.

For such cases, JDK 8 comes with a bunch of methods: compute(),
computeIfAbsent(), computeIfPresent(), and merge(). Choosing between
these methods is a matter of knowing each of them very well.

Let's now take a look at the implementation of these methods using examples.

Example 1 (computeIfPresent())
Let's suppose that we have the following Map:

Map<String, String> map = new HashMap<>();
map.put("postgresql", "127.0.0.1");
map.put("mysql", "192.168.0.50");

We use this map to build JDBC URLs for different database types.

Let's assume that we want to build the JDBC URL for MySQL. If the mysql key is
present in the map, then the JDBC URL should be computed based on the
corresponding value, jdbc:mysql://192.168.0.50/customers_db. But if the
mysql key is not present, then the JDBC URL should be null. In addition to this, if
the result of our computation is null (the JDBC URL cannot be computed), then we
want to remove this entry from the map.

This is a job for V computeIfPresent​(K key, BiFunction<? super K,​? super
V,​? extends V> remappingFunction).

Arrays, Collections, and Data Structures Chapter 5

[247]

In our case, BiFunction used for computing the new value will be as follows (k is
the key from the map, v is the value associated with the key):

BiFunction<String, String, String> jdbcUrl
 = (k, v) -> "jdbc:" + k + "://" + v + "/customers_db";

Once we have this function in place, we can compute the new value for the mysql key
as follows:

// jdbc:mysql://192.168.0.50/customers_db
String mySqlJdbcUrl = map.computeIfPresent("mysql", jdbcUrl);

Since the mysql key is present in the map, the result will be
jdbc:mysql://192.168.0.50/customers_db, and the new map contains the
following entries:

postgresql=127.0.0.1, mysql=jdbc:mysql://192.168.0.50/customers_db

Calling computeIfPresent() again will recompute the value,
which means that it will result in something like mysql=
jdbc:mysql://jdbc:mysql://.... Obviously, this is not OK, so
pay attention to this aspect.

On the other hand, if we try the same computation for an entry that doesn't exist (for
example, voltdb), then the returned value will be null and the map remains
untouched:

// null
String voldDbJdbcUrl = map.computeIfPresent("voltdb", jdbcUrl);

Example 2 (computeIfAbsent())
Let's suppose that we have the following Map:

Map<String, String> map = new HashMap<>();
map.put("postgresql", "jdbc:postgresql://127.0.0.1/customers_db");
map.put("mysql", "jdbc:mysql://192.168.0.50/customers_db");

We use this map to build JDBC URLs for different databases.

Arrays, Collections, and Data Structures Chapter 5

[248]

Let's assume that we want to build the JDBC URL for MongoDB. This time, if the
mongodb key is present in the map, then the corresponding value should be returned
without further computations. But if this key is absent (or is associated with a null
value), then it should be computed based on this key and the current IP and be added
to the map. If the computed value is null, then null is the returned result and the
map remains untouched.

Well, this is a job for V computeIfAbsent​(K key, Function<? super K,​?
extends V> mappingFunction).

In our case, Function used to compute the value will be as follows (the first String
is the key from the map (k), while the second String is the value computed for this
key):

String address = InetAddress.getLocalHost().getHostAddress();

Function<String, String> jdbcUrl
 = k -> k + "://" + address + "/customers_db";

Based on this function, we can try to obtain the JDBC URL for MongoDB via the
mongodb key as follows:

// mongodb://192.168.100.10/customers_db
String mongodbJdbcUrl = map.computeIfAbsent("mongodb", jdbcUrl);

Since our map doesn't contain the mongodb key, it will be computed and added to the
map.

If our Function is evaluated to null, then the map remains untouched and the
returned value is null.

Calling computeIfAbsent() again will not recompute the value.
This time, since mongodb is in the map (it was added at the previous
call), the returned value will be
mongodb://192.168.100.10/customers_db. This is the same as
trying to fetch the JDBC URL for mysql, which will
return jdbc:mysql://192.168.0.50/customers_db without
further computations.

Arrays, Collections, and Data Structures Chapter 5

[249]

Example 3 (compute())
Let's suppose that we have the following Map:

Map<String, String> map = new HashMap<>();
map.put("postgresql", "127.0.0.1");
map.put("mysql", "192.168.0.50");

We use this map to build JDBC URLs for different database types.

Let's assume that we want to build the JDBC URLs for MySQL and Derby DB. In this
case, irrespective of whether the key (mysql or derby) is present in the map, the
JDBC URL should be computed based on the corresponding key and value (which
can be null). In addition, if the key is present in the map and the result of our
computation is null (the JDBC URL cannot be computed), then we want to remove
this entry from the map. Basically, this is a combination of computeIfPresent()
and computeIfAbsent().

This is a job for V compute​(K key, BiFunction<? super K,​? super V,​?
extends V> remappingFunction).

This time, BiFunction should be written to cover the case when the value of the
searched key is null:

String address = InetAddress.getLocalHost().getHostAddress();
BiFunction<String, String, String> jdbcUrl = (k, v)
 -> "jdbc:" + k + "://" + ((v == null) ? address : v)
 + "/customers_db";

Now, let's compute the JDBC URL for MySQL. Since the mysql key is present in the
map, the computation will rely on the corresponding value, 192.168.0.50. The
result will update the value of the mysql key in the map:

// jdbc:mysql://192.168.0.50/customers_db
String mysqlJdbcUrl = map.compute("mysql", jdbcUrl);

In addition, let's compute the JDBC URL for Derby DB. Since the derby key is not
present in the map, the computation will rely on the current IP. The result will be
added to the map under the derby key:

// jdbc:derby://192.168.100.10/customers_db
String derbyJdbcUrl = map.compute("derby", jdbcUrl);

Arrays, Collections, and Data Structures Chapter 5

[250]

After these two computations, the map will contain the following three entries:

postgresql=127.0.0.1

derby=jdbc:derby://192.168.100.10/customers_db

mysql=jdbc:mysql://192.168.0.50/customers_db

Pay attention to the fact that calling compute() again will
recompute the values. This can lead to unwanted results such
as jdbc:derby://jdbc:derby://....
If the result of the computation is null (for example, the JDBC URL
cannot be computed) and the key (for example, mysql) exists in the
map, then this entry will be removed from the map and the returned
result is null.

Example 4 (merge())
Let's suppose that we have the following Map:

Map<String, String> map = new HashMap<>();
map.put("postgresql", "9.6.1 ");
map.put("mysql", "5.1 5.2 5.6 ");

We use this map to store the versions of each database type separated by a space.

Now, let's assume that every time a new version of a database type is released, we
want to add it to our map under the corresponding key. If the key (for example,
mysql) is present in the map, then we want to simply concatenate the new version to
the end of the current value. If the key (for example, derby) is not present in the map,
then we just want to add it now.

This is the perfect job for V merge​(K key, V value, BiFunction<? super V,​?
super V,​? extends V> remappingFunction).

If the given key (K) is not associated with a value or is associated with null, then the
new value will be V. If the given key (K) is associated with a non-null value, then the
new value is computed based on the given BiFunction. If the result of this
BiFunction is null, and the key is present in the map, then this entry will be
removed from the map.

Arrays, Collections, and Data Structures Chapter 5

[251]

In our case, we want to concatenate the current value with the new version, so our
BiFunction can be written as follows:

BiFunction<String, String, String> jdbcUrl = String::concat;

We have a similar situation with the following:

BiFunction<String, String, String> jdbcUrl
 = (vold, vnew) -> vold.concat(vnew);

For example, let's suppose that we want to concatenate in the map version 8.0 of
MySQL. This can be accomplished as follows:

// 5.1 5.2 5.6 8.0
String mySqlVersion = map.merge("mysql", "8.0 ", jdbcUrl);

Later on, we concatenate version 9.0 as well:

// 5.1 5.2 5.6 8.0 9.0
String mySqlVersion = map.merge("mysql", "9.0 ", jdbcUrl);

Or, we add version 10.11.1.1 of Derby DB. This will result in a new entry in the
map since there is no derby key present:

// 10.11.1.1
String derbyVersion = map.merge("derby", "10.11.1.1 ", jdbcUrl);

At the end of these three operations, the map entries will be as follows:

postgresql=9.6.1, derby=10.11.1.1, mysql=5.1 5.2 5.6 8.0 9.0

Example 5 (putIfAbsent())
Let's suppose that we have the following Map:

Map<Integer, String> map = new HashMap<>();
map.put(1, "postgresql");
map.put(2, "mysql");
map.put(3, null);

We use this map to store the names of some database types.

Arrays, Collections, and Data Structures Chapter 5

[252]

Now, let's suppose that we want to include more database types in this map based on
the following constraints:

If the given key is present in the map, then simply return the
corresponding value and leave the map untouched.
If the given key is not present in the map (or is associated with a null
value), then put the given value in the map and return null.

Well, this is a job for putIfAbsent​(K key, V value).

The following three attempts speak for themselves:

String v1 = map.putIfAbsent(1, "derby"); // postgresql
String v2 = map.putIfAbsent(3, "derby"); // null
String v3 = map.putIfAbsent(4, "cassandra"); // null

And the map content is as follows:

1=postgresql, 2=mysql, 3=derby, 4=cassandra

112. Removal from a Map
Removal from a Map can be accomplished by a key, or by a key and value.

For example, let's assume that we have the following Map:

Map<Integer, String> map = new HashMap<>();
map.put(1, "postgresql");
map.put(2, "mysql");
map.put(3, "derby");

Removal by key is as simple as calling the V Map.remove(Object key) method. If
the entry corresponding to the given key is successfully removed, then this method
returns the associated value, otherwise it returns null.

Check the following examples:

String r1 = map.remove(1); // postgresql
String r2 = map.remove(4); // null

Now, the map contains the following entries (the entry from key 1 was removed):

2=mysql, 3=derby

Arrays, Collections, and Data Structures Chapter 5

[253]

Starting with JDK 8, the Map interface was enriched with a new remove() flag
method with the following signature: boolean remove​(Object key, Object
value). Using this method, we can remove an entry from a map only if there is a
perfect match between the given key and value. Basically, this method is a shortcut of
the following compound condition: map.containsKey(key) &&
Objects.equals(map.get(key), value).

Let's have two simple examples:

// true
boolean r1 = map.remove(2, "mysql");

// false (the key is present, but the values don't match)
boolean r2 = map.remove(3, "mysql");

The resultant map contains the single remaining entry, 3=derby.

Iterating and removing from a Map can be accomplished in at least two ways; first, via
an Iterator (solution present in the bundled code), and second, starting with JDK 8,
we can do it via removeIf​(Predicate<? super E> filter):

map.entrySet().removeIf(e -> e.getValue().equals("mysql"));

More details about removing from a collection are available in the Removing all
elements of a collection that match a predicate section.

113. Replacing entries from a Map
Replacing entries from a Map is a problem that can be encountered in a wide range of
cases. The convenient solution to accomplish this and avoid a snippet of spaghetti
code written in a helper method relies on JDK 8, the replace() method.

Let's assume that we have the following Melon class and a map of Melon:

public class Melon {

 private final String type;
 private final int weight;

 // constructor, getters, equals(), hashCode(),
 // toString() omitted for brevity
}

Map<Integer, Melon> mapOfMelon = new HashMap<>();

Arrays, Collections, and Data Structures Chapter 5

[254]

mapOfMelon.put(1, new Melon("Apollo", 3000));
mapOfMelon.put(2, new Melon("Jade Dew", 3500));
mapOfMelon.put(3, new Melon("Cantaloupe", 1500));

Replacing the melon corresponding to key 2 can be accomplished by means of V
replace​(K key, V value). If the replacement is successful, then this method will
return the initial Melon:

// Jade Dew(3500g) was replaced
Melon melon = mapOfMelon.replace(2, new Melon("Gac", 1000));

Now, the map contains the following entries:

1=Apollo(3000g), 2=Gac(1000g), 3=Cantaloupe(1500g)

Furthermore, let's suppose that we want to replace the entry with key 1 and the
Apollo melon (3,000g). So, the melon should be the same one in order to obtain a
successful replacement. This can be accomplished via the Boolean, replace​(K key,
V oldValue, V newValue). This method relies on the equals() contract to
compare the given values; therefore Melon needs to implement the equals()
method, otherwise the result will be unpredictable:

// true
boolean melon = mapOfMelon.replace(
 1, new Melon("Apollo", 3000), new Melon("Bitter", 4300));

Now, the map contains the following entries:

1=Bitter(4300g), 2=Gac(1000g), 3=Cantaloupe(1500g)

Finally, let's assume that we want to replace all entries from a Map based on a given
function. This can be done via void replaceAll​(BiFunction<? super K,​?
super V,​? extends V> function).

For example, let's replace all melons that weigh more than 1,000 g with melons
weighing equal to 1,000g. The following BiFunction shapes this function (k is the
key and v is the value of each entry from the Map):

BiFunction<Integer, Melon, Melon> function = (k, v)
 -> v.getWeight() > 1000 ? new Melon(v.getType(), 1000) : v;

Next, replaceAll() appears on the scene:

mapOfMelon.replaceAll(function);

Arrays, Collections, and Data Structures Chapter 5

[255]

Now, the map contains the following entries:

1=Bitter(1000g), 2=Gac(1000g), 3=Cantaloupe(1000g)

114. Comparing two maps
Comparing two maps is straightforward as long as we rely on the Map.equals()
method. When comparing two maps, this method compares the keys and values of
them using the Object.equals() method.

For example, let's consider two maps of melons having the same entries (the presence
of equals() and hashCode() is a must in the Melon class):

public class Melon {

 private final String type;
 private final int weight;

 // constructor, getters, equals(), hashCode(),
 // toString() omitted for brevity
}

Map<Integer, Melon> melons1Map = new HashMap<>();
Map<Integer, Melon> melons2Map = new HashMap<>();
melons1Map.put(1, new Melon("Apollo", 3000));
melons1Map.put(2, new Melon("Jade Dew", 3500));
melons1Map.put(3, new Melon("Cantaloupe", 1500));
melons2Map.put(1, new Melon("Apollo", 3000));
melons2Map.put(2, new Melon("Jade Dew", 3500));
melons2Map.put(3, new Melon("Cantaloupe", 1500));

Now, if we test melons1Map and melons2Map for equality, then we obtain true:

boolean equals12Map = melons1Map.equals(melons2Map); // true

But this will not work if we use arrays. For example, consider the next two maps:

Melon[] melons1Array = {
 new Melon("Apollo", 3000),
 new Melon("Jade Dew", 3500), new Melon("Cantaloupe", 1500)
};
Melon[] melons2Array = {
 new Melon("Apollo", 3000),
 new Melon("Jade Dew", 3500), new Melon("Cantaloupe", 1500)
};

Arrays, Collections, and Data Structures Chapter 5

[256]

Map<Integer, Melon[]> melons1ArrayMap = new HashMap<>();
melons1ArrayMap.put(1, melons1Array);
Map<Integer, Melon[]> melons2ArrayMap = new HashMap<>();
melons2ArrayMap.put(1, melons2Array);

Even if melons1ArrayMap and melons2ArrayMap are equal, Map.equals() will
return false:

boolean equals12ArrayMap = melons1ArrayMap.equals(melons2ArrayMap);

The problem originates in the fact that the array's equals() method compares
identity and not the contents of the array. In order to solve this problem, we can write
a helper method as follows (this time relying on Arrays.equals(), which compares
the contents of the arrays):

public static <A, B> boolean equalsWithArrays(
 Map<A, B[]> first, Map<A, B[]> second) {

 if (first.size() != second.size()) {
 return false;
 }

 return first.entrySet().stream()
 .allMatch(e -> Arrays.equals(e.getValue(),
 second.get(e.getKey())));
}

115. Sorting a Map
There are several solutions for sorting a Map. For a start, let's assume the following
Map of Melon:

public class Melon implements Comparable {

 private final String type;
 private final int weight;

 @Override
 public int compareTo(Object o) {
 return Integer.compare(this.getWeight(), ((Melon) o).getWeight());
 }

 // constructor, getters, equals(), hashCode(),
 // toString() omitted for brevity
}

Arrays, Collections, and Data Structures Chapter 5

[257]

Map<String, Melon> melons = new HashMap<>();
melons.put("delicious", new Melon("Apollo", 3000));
melons.put("refreshing", new Melon("Jade Dew", 3500));
melons.put("famous", new Melon("Cantaloupe", 1500));

Now, let's examine several solutions for sorting this Map. Basically, the goal is to
expose the methods from the following screenshot via a utility class named Maps:

Let's take a look at the different solutions in the next sections.

Sorting by key via TreeMap and natural ordering
A quick solution to sorting a Map relies on TreeMap. By definition, the keys in
TreeMap are sorted by their natural order. Moreover, TreeMap has a constructor of
the TreeMap​(Map<? extends K,​? extends V> m) type:

public static <K, V> TreeMap<K, V> sortByKeyTreeMap(Map<K, V> map) {

 return new TreeMap<>(map);
}

And calling it will sort the map by key:

// {delicious=Apollo(3000g),
// famous=Cantaloupe(1500g), refreshing=Jade Dew(3500g)}
TreeMap<String, Melon> sortedMap = Maps.sortByKeyTreeMap(melons);

Sorting by key and value via Stream and
Comparator
Once we create a Stream for a map, we can easily sort it by means of
the Stream.sorted() method with or without a Comparator. This time, let's use a
Comparator:

public static <K, V> Map<K, V> sortByKeyStream(
 Map<K, V> map, Comparator<? super K> c) {

Arrays, Collections, and Data Structures Chapter 5

[258]

 return map.entrySet()
 .stream()
 .sorted(Map.Entry.comparingByKey(c))
 .collect(toMap(Map.Entry::getKey, Map.Entry::getValue,
 (v1, v2) -> v1, LinkedHashMap::new));
}

public static <K, V> Map<K, V> sortByValueStream(
 Map<K, V> map, Comparator<? super V> c) {

 return map.entrySet()
 .stream()
 .sorted(Map.Entry.comparingByValue(c))
 .collect(toMap(Map.Entry::getKey, Map.Entry::getValue,
 (v1, v2) -> v1, LinkedHashMap::new));
}

We need to rely on LinkedHashMap instead of HashMap. Otherwise, we cannot
preserve the iteration order.

Let's sort our map as follows:

// {delicious=Apollo(3000g),
// famous=Cantaloupe(1500g),
// refreshing=Jade Dew(3500g)}
Comparator<String> byInt = Comparator.naturalOrder();
Map<String, Melon> sortedMap = Maps.sortByKeyStream(melons, byInt);

// {famous=Cantaloupe(1500g),
// delicious=Apollo(3000g),
// refreshing=Jade Dew(3500g)}
Comparator<Melon> byWeight = Comparator.comparing(Melon::getWeight);
Map<String, Melon> sortedMap
 = Maps.sortByValueStream(melons, byWeight);

Sorting by key and value via List
The preceding examples sort the given map, and the result is also a map. If all we
need is the sorted keys (and we don't care about the values) or vice versa, then we can
rely on a List created via Map.keySet() for keys, and via Map.values() for
values:

public static <K extends Comparable, V> List<K>
 sortByKeyList(Map<K, V> map) {

 List<K> list = new ArrayList<>(map.keySet());

Arrays, Collections, and Data Structures Chapter 5

[259]

 Collections.sort(list);

 return list;
}

public static <K, V extends Comparable> List<V>
 sortByValueList(Map<K, V> map) {

 List<V> list = new ArrayList<>(map.values());
 Collections.sort(list);

 return list;
}

Now, let's sort our map:

// [delicious, famous, refreshing]
List<String> sortedKeys = Maps.sortByKeyList(melons);

// [Cantaloupe(1500g), Apollo(3000g), Jade Dew(3500g)]
List<Melon> sortedValues = Maps.sortByValueList(melons);

If duplicate values are not allowed, then you have to rely on an implementation using
SortedSet:

SortedSet<String> sortedKeys = new TreeSet<>(melons.keySet());
SortedSet<Melon> sortedValues = new TreeSet<>(melons.values());

116. Copying HashMap
A handy solution for performing a shallow copy of HashMap relies on the HashMap
constructor, HashMap​(Map<? extends K,​? extends V> m). The following code is
self-explanatory:

Map<K, V> mapToCopy = new HashMap<>();
Map<K, V> shallowCopy = new HashMap<>(mapToCopy);

Another solution may rely on the putAll​(Map<? extends K,​? extends V> m)
method. This method copies all of the mappings from the specified map to this map,
as shown in the following helper method:

@SuppressWarnings("unchecked")
public static <K, V> HashMap<K, V> shallowCopy(Map<K, V> map) {

 HashMap<K, V> copy = new HashMap<>();
 copy.putAll(map);

Arrays, Collections, and Data Structures Chapter 5

[260]

 return copy;
}

We can also write a helper method in Java 8 functional style as follows:

@SuppressWarnings("unchecked")
public static <K, V> HashMap<K, V> shallowCopy(Map<K, V> map) {

 Set<Entry<K, V>> entries = map.entrySet();
 HashMap<K, V> copy = (HashMap<K, V>) entries.stream()
 .collect(Collectors.toMap(
 Map.Entry::getKey, Map.Entry::getValue));

 return copy;
}

However, these three solutions only provide a shallow copy of the map. A solution
for obtaining a deep copy can rely on the Cloning library (https:/ ​/​github. ​com/
kostaskougios/ ​cloning) introduced in Chapter 2, Objects, Immutability, and Switch
Expressions. A helper method that will use Cloning can be written as follows:

@SuppressWarnings("unchecked")
public static <K, V> HashMap<K, V> deepCopy(Map<K, V> map) {
 Cloner cloner = new Cloner();
 HashMap<K, V> copy = (HashMap<K, V>) cloner.deepClone(map);

 return copy;
}

117. Merging two maps
Merging two maps is the process of joining two maps into a single map that contains
the elements of both maps. Furthermore, for key collisions, we incorporate in the final
map the value belonging to the second map. But this is a design decision.

Let's consider the following two maps (we intentionally added a collision for key 3):

public class Melon {

 private final String type;
 private final int weight;

 // constructor, getters, equals(), hashCode(),
 // toString() omitted for brevity
}

https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning

Arrays, Collections, and Data Structures Chapter 5

[261]

Map<Integer, Melon> melons1 = new HashMap<>();
Map<Integer, Melon> melons2 = new HashMap<>();
melons1.put(1, new Melon("Apollo", 3000));
melons1.put(2, new Melon("Jade Dew", 3500));
melons1.put(3, new Melon("Cantaloupe", 1500));
melons2.put(3, new Melon("Apollo", 3000));
melons2.put(4, new Melon("Jade Dew", 3500));
melons2.put(5, new Melon("Cantaloupe", 1500));

Starting with JDK 8, we have the following method in Map: V merge​(K key, V
value, BiFunction<? super V,​? super V,​? extends V>
remappingFunction).

If the given key (K) is not associated with a value, or is associated with null, then the
new value will be V. If the given key (K) is associated with a non-null value, then the
new value is computed based on the given BiFunction. If the result of this
BiFunction is null, and the key is present in the map, then this entry will be
removed from the map.

Based on this definition, we can write a helper method for merging two maps as
follows:

public static <K, V> Map<K, V> mergeMaps(
 Map<K, V> map1, Map<K, V> map2) {

 Map<K, V> map = new HashMap<>(map1);

 map2.forEach(
 (key, value) -> map.merge(key, value, (v1, v2) -> v2));

 return map;
}

Note that we don't modify the original maps. We prefer to return a new map
containing the elements of the first map merged with the elements of the second map.
In the case of a collision of keys, we replace the existing value with the value from the
second map (v2).

Another solution can be written based on Stream.concat(). Basically, this method
concatenates two streams into a single Stream. In order to create a Stream from a
Map, we call Map.entrySet().stream(). After concatenating the two streams
created from the given maps, we simply collect the result via the toMap() collector:

public static <K, V> Map<K, V> mergeMaps(
 Map<K, V> map1, Map<K, V> map2) {

Arrays, Collections, and Data Structures Chapter 5

[262]

 Stream<Map.Entry<K, V>> combined
 = Stream.concat(map1.entrySet().stream(),
 map2.entrySet().stream());

 Map<K, V> map = combined.collect(
 Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue,
 (v1, v2) -> v2));

 return map;
}

As a bonus, a Set (for example, a Set of integers) can be sorted as follows:

List<Integer> sortedList = someSetOfIntegers.stream()
 .sorted().collect(Collectors.toList());

For objects, rely on sorted(Comparator<? super T>.

118. Removing all elements of a collection that
match a predicate
Our collection will hold a bunch of Melon:

public class Melon {

 private final String type;
 private final int weight;

 // constructor, getters, equals(),
 // hashCode(), toString() omitted for brevity
}

Let's assume the following collection (ArrayList) throughout our examples to
demonstrate how we can remove elements from it that match a given predicate:

List<Melon> melons = new ArrayList<>();
melons.add(new Melon("Apollo", 3000));
melons.add(new Melon("Jade Dew", 3500));
melons.add(new Melon("Cantaloupe", 1500));
melons.add(new Melon("Gac", 1600));
melons.add(new Melon("Hami", 1400));

Let's take a look at the different solutions given in the following sections.

Arrays, Collections, and Data Structures Chapter 5

[263]

Removing via an iterator
Removing via an Iterator is the oldest approach available in Java. Mainly, an
Iterator allows us to iterate (or traverse) a collection and remove certain elements.
The oldest approach also has some drawbacks. First of all, depending on the
collection type, removing via an Iterator is prone to
ConcurrentModificationException if multiple threads modify the collection.
Moreover, removal does not behave the same for all collections (for example,
removing from a LinkedList is faster than removing from an ArrayList because
the former simply moves the pointer to the next element while the latter needs to shift
elements). Nevertheless, the solution is available in the bundled code.

If all you need is the size of Iterable, then consider one of the following approaches:

// for any Iterable
StreamSupport.stream(iterable.spliterator(), false).count();

// for collections
((Collection<?>) iterable).size()

Removing via Collection.removeIf()
Starting with JDK 8, we can reduce the preceding code to a single line of code via
the Collection.removeIf() method. This method relies on Predicate, as in the
following example:

melons.removeIf(t -> t.getWeight() < 3000);

This time, the ArrayList iterates the list and marks for deletion those elements that
satisfy our Predicate. Furthermore, ArrayList iterates again to remove the marked
elements and shift the remaining elements.

Using this approach, LinkedList and ArrayList perform in almost an identical
fashion.

Removing via Stream
Starting with JDK 8, we can create a Stream from a collection
(Collection.stream()) and filter its elements via filter(Predicate p). The
filter will only retain those elements that satisfy the given Predicate.

Arrays, Collections, and Data Structures Chapter 5

[264]

Finally, we collect these elements via the proper collector:

List<Melon> filteredMelons = melons.stream()
 .filter(t -> t.getWeight() >= 3000)
 .collect(Collectors.toList());

Unlike the other two solutions, this one doesn't mutate the original
collection, but it may be slower and consume more memory.

Separating elements via Collectors.partitioningBy()
Sometimes, we don't want to delete the elements that don't match our predicate.
What we actually want is to separate elements based on our predicate. Well, this is
achievable via Collectors.partitioningBy(Predicate p).

Basically, Collectors.partitioningBy() will separate the elements into two lists.
These two lists are added to a Map as values. The two keys of this Map will be true
and false:

Map<Boolean, List<Melon>> separatedMelons = melons.stream()
 .collect(Collectors.partitioningBy(
 (Melon t) -> t.getWeight() >= 3000));

List<Melon> weightLessThan3000 = separatedMelons.get(false);
List<Melon> weightGreaterThan3000 = separatedMelons.get(true);

So, the true key is for retrieving the List that contains the elements that match the
predicate, while the false key is for retrieving the List that contains the elements
that didn't match the predicate.

By way of a bonus, if we want to check whether all the elements of a List are the
same, then we can rely on Collections.frequency(Collection c, Object
obj). This method returns the number of elements in the specified collection equal to
the specified object:

boolean allTheSame = Collections.frequency(
 melons, melons.get(0)) == melons.size());

If allTheSame is true, then all elements are the same. Note that equals() and
hashCode() of the object from the List must be implemented accordingly.

Arrays, Collections, and Data Structures Chapter 5

[265]

119. Converting a collection into an array
In order to convert a collection into an array, we can rely on
the Collection.toArray() method. Without arguments, this method will convert
the given collection into an Object[], as in the following example:

List<String> names = Arrays.asList("ana", "mario", "vio");
Object[] namesArrayAsObjects = names.toArray();

Obviously, this is not entirely useful since we are expecting a String[] instead of
Object[]. This can be accomplished via Collection.toArray​(T[] a) as follows:

String[] namesArraysAsStrings = names.toArray(new
String[names.size()]);
String[] namesArraysAsStrings = names.toArray(new String[0]);

From these two solutions, the second one is preferable since we avoid computing the
collection size.

But starting with JDK 11, there is one more method dedicated to this task,
Collection.toArray​(IntFunction<T[]> generator). This method returns an
array containing all the elements in this collection, using the generator function
provided to allocate the returned array:

String[] namesArraysAsStrings = names.toArray(String[]::new);

Next to the fixed-size modifiable Arrays.asList(), we can build an unmodifiable
List/Set from an array via the of() methods:

String[] namesArray = {"ana", "mario", "vio"};

List<String> namesArrayAsList = List.of(namesArray);
Set<String> namesArrayAsSet = Set.of(namesArray);

120. Filtering a Collection by a List
A common problem that we encounter in applications is filtering a Collection by a
List. Mainly, we start from a huge Collection, and we want to extract from it the
elements that match the elements of a List.

Arrays, Collections, and Data Structures Chapter 5

[266]

In the following examples, let's consider the Melon class:

public class Melon {

 private final String type;
 private final int weight;

 // constructor, getters, equals(), hashCode(),
 // toString() omitted for brevity
}

Here, we have a huge Collection (in this case, an ArrayList) of Melon:

List<Melon> melons = new ArrayList<>();
melons.add(new Melon("Apollo", 3000));
melons.add(new Melon("Jade Dew", 3500));
melons.add(new Melon("Cantaloupe", 1500));
melons.add(new Melon("Gac", 1600));
melons.add(new Melon("Hami", 1400));
...

And we also have a List containing the types of melons that we want to extract from
the preceding ArrayList:

List<String> melonsByType
 = Arrays.asList("Apollo", "Gac", "Crenshaw", "Hami");

One solution to this problem may involve looping both collections and comparing the
types of melons, but the resultant code will be pretty slow. Another solution to this
problem may involve the List.contains() method and a lambda expression:

List<Melon> results = melons.stream()
 .filter(t -> melonsByType.contains(t.getType()))
 .collect(Collectors.toList());

The code is compact and fast. Behind the scenes, List.contains() relies on the
following check:

// size - the size of melonsByType
// o - the current element to search from melons
// elementData - melonsByType
for (int i = 0; i < size; i++)
 if (o.equals(elementData[i])) {
 return i;
 }
}

Arrays, Collections, and Data Structures Chapter 5

[267]

However, we can give another boost to performance via a solution that relies on
HashSet.contains() instead of List.contains(). While List.contains() uses
the preceding for statement to match the elements, HashSet.contains() uses
Map.containsKey(). Mainly, Set is implemented based on a Map, and each added
element is mapped as a key-value of the element-PRESENT type. So, element is a
key in this Map, while PRESENT is just a dummy value.

When we call HashSet.contains(element), we actually call
Map.containsKey(element). This method matches the given element with the
proper key in the map based on its hashCode(), which is much faster than
equals().

Once we convert the initial ArrayList to a HashSet, we are ready to go:

Set<String> melonsSetByType = melonsByType.stream()
 .collect(Collectors.toSet());

List<Melon> results = melons.stream()
 .filter(t -> melonsSetByType.contains(t.getType()))
 .collect(Collectors.toList());

Well, this solution is faster than the previous one. It should run in half of the time
required by the previous solution.

121. Replacing elements of a List
Another common problem that we encounter in applications entails replacing the
elements of a List that matches certain conditions.

In the following example, let's consider the Melon class:

public class Melon {

 private final String type;
 private final int weight;

 // constructor, getters, equals(), hashCode(),
 // toString() omitted for brevity
}

Arrays, Collections, and Data Structures Chapter 5

[268]

And then, let's consider a List of Melon:

List<Melon> melons = new ArrayList<>();

melons.add(new Melon("Apollo", 3000));
melons.add(new Melon("Jade Dew", 3500));
melons.add(new Melon("Cantaloupe", 1500));
melons.add(new Melon("Gac", 1600));
melons.add(new Melon("Hami", 1400));

Let's assume that we want to replace all melons weighing less than 3,000 grams with
other melons of the same types and that weigh 3,000 grams.

A solution to this problem will entail iterating the List and then using
List.set(int index, E element) to replace the melons accordingly.

This is a snippet of spaghetti code as follows:

for (int i = 0; i < melons.size(); i++) {

 if (melons.get(i).getWeight() < 3000) {

 melons.set(i, new Melon(melons.get(i).getType(), 3000));
 }
}

Another solution relies on Java 8 functional style or, more precisely, on
the UnaryOperator functional interface.

Based on this functional interface, we can write the following operator:

UnaryOperator<Melon> operator = t
 -> (t.getWeight() < 3000) ? new Melon(t.getType(), 3000) : t;

Now, we can use the JDK 8, List.replaceAll(UnaryOperator<E> operator), as
follows:

melons.replaceAll(operator);

Both approaches should perform almost the same.

Arrays, Collections, and Data Structures Chapter 5

[269]

122. Thread-safe collections, stacks, and
queues
Whenever a collection/stack/queue is prone to be accessed by multiple threads, it is
also prone to concurrency-specific exceptions (for example,
java.util.ConcurrentModificationException). Now, let's have a brief
overview of, and introduction to, the Java built-in concurrent collections.

Concurrent collections
Fortunately, Java provides thread-safe (concurrent) alternatives to non-thread-safe
collections (including stacks and queues), as follows.

Thread-safe lists
The thread-safe version of an ArrayList is CopyOnWriteArrayList. The following
table enumerates the Java built-in single-threaded and multithreaded lists:

Single thread Multithreaded
ArrayList
LinkedList

CopyOnWriteArrayList (often reads, seldom updates)
Vector

The CopyOnWriteArrayList implementation holds the elements in an array. Every
time we invoke a method that mutates the list (for example, add(), set(),
and remove()), Java will operate on a copy of this array.

An Iterator over this collection will operate on an immutable copy of the collection.
Therefore, the original collection can be modified without issues. Potential
modifications of the original collection are not visible in the Iterator:

List<Integer> list = new CopyOnWriteArrayList<>();

Use this collection when reads are frequent and changes are seldom.

Arrays, Collections, and Data Structures Chapter 5

[270]

Thread-safe set
The thread-safe version of a Set is CopyOnWriteArraySet. The following table
enumerates the Java built-in single-threaded and multithreaded sets:

Single thread Multithreaded
HashSet

TreeSet (sorted set)
LinkedHashSet (maintain insertions
order)
BitSet
EnumSet

ConcurrentSkipListSet

(sorted set)
CopyOnWriteArraySet (often
reads, seldom updates)

This is a Set that uses an internal CopyOnWriteArrayList for all of its operations.
Creating such a Set can be done as follows:

Set<Integer> set = new CopyOnWriteArraySet<>();

Use this collection when reads are frequent and changes are seldom.

The thread-safe version of NavigableSet is ConcurrentSkipListSet (concurrent
SortedSet implementation, with most basic operations in O(log n)).

Thread-safe map
The thread-safe version of a Map is ConcurrentHashMap.

The following table enumerates the Java built-in single-thread and multithreaded
maps:

Single thread Multithreaded
HashMap

TreeMap (sorted keys)
LinkedHashMap (maintain insertion order)
IdentityHashMap (keys compared via ==)
WeakHashMap
EnumMap

ConcurrentHashMap
ConcurrentSkipListMap

(sorted map)
Hashtable

Arrays, Collections, and Data Structures Chapter 5

[271]

ConcurrentHashMap allows retrieval operations (for example, get()) without
blocking. This means that retrieval operations may overlap with update operations
(including put() and remove()).

Creating a ConcurrentHashMap can be done as follows:

ConcurrentMap<Integer, Integer> map = new ConcurrentHashMap<>();

Whenever thread safety and high performance are required, you can
rely on the thread-safe version of a Map , which is
ConcurrentHashMap.

Avoid Hashtable and Collections.synchronizedMap() since
they have poor performance.

For a ConcurrentMap supporting NavigableMap, operations rely on
ConcurrentSkipListMap:

ConcurrentNavigableMap<Integer, Integer> map
 = new ConcurrentSkipListMap<>();

Thread-safe queue backed by an array
Java provides a thread-safe queue (First In First Out (FIFO)) backed by an array via
ArrayBlockingQueue. The following table lists the single-thread and multithreaded
Java built-in queues backed by an array:

Single thread Multithreaded

ArrayDeque

PriorityQueue (sorted
retrievals)

ArrayBlockingQueue (bounded)
ConcurrentLinkedQueue (unbounded)
ConcurrentLinkedDeque (unbounded)
LinkedBlockingQueue (optionally
bounded)
LinkedBlockingDeque (optionally
bounded)
LinkedTransferQueue
PriorityBlockingQueue
SynchronousQueue
DelayQueue
Stack

Arrays, Collections, and Data Structures Chapter 5

[272]

The capacity of ArrayBlockingQueue cannot be changed following creation.
Attempts to put an element into a full queue will result in the operation blocking;
attempts to take an element from an empty queue will similarly block.

Creating ArrayBlockingQueue can easily be done as follows:

BlockingQueue<Integer> queue = new
ArrayBlockingQueue<>(QUEUE_MAX_SIZE);

Java also comes with two thread-safe, optionally bounded blocking
queues based on linked nodes via LinkedBlockingQueue and
LinkedBlockingDeque (a deque is a linear collection that supports
element insertion and removal at both ends).

Thread-safe queue based on linked nodes
Java provides an unbounded thread-safe queue/deque backed by linked nodes via
ConcurrentLinkedDeque/ ConcurrentLinkedQueue. Here, it
is ConcurrentLinkedDeque:

Deque<Integer> queue = new ConcurrentLinkedDeque<>();

Thread-safe priority queue
Java provides an unbounded thread-safe priority blocking queue based on a priority
heap via PriorityBlockingQueue.

Creating PriorityBlockingQueue can easily be done as follows:

BlockingQueue<Integer> queue = new PriorityBlockingQueue<>();

The non-thread-safe version is named PriorityQueue.

Thread-safe delay queue
Java provides a thread-safe unbounded blocking queue in which an element can only
be taken when its delay has expired via DelayQueue. Creating a DelayQueue is as
simple as the following:

BlockingQueue<TrainDelay> queue = new DelayQueue<>();

Arrays, Collections, and Data Structures Chapter 5

[273]

Thread-safe transfer queue
Java provides a thread-safe unbounded transfer queue based on linked nodes via
LinkedTransferQueue.

This is a FIFO queue in which the head is the element that has been on the queue the
longest time for some producer. The tail of the queue is the element that has been on
the queue the shortest time for some producer.

One way to create this kind of queue is as follows:

TransferQueue<String> queue = new LinkedTransferQueue<>();

Thread-safe synchronous queue
Java provides a blocking queue in which each insert operation must wait for a
corresponding remove operation by another thread, and vice versa, via
SynchronousQueue:

BlockingQueue<String> queue = new SynchronousQueue<>();

Thread-safe stack
Thread-safe implementations of a stack are Stack and ConcurrentLinkedDeque.

The Stack class represents a Last In First Out (LIFO) stack of objects. It extends the
Vector class with several operations that allow a vector to be treated as a stack.
Every method of Stack is synchronized. Creating a Stack is as simple as the
following:

Stack<Integer> stack = new Stack<>();

A ConcurrentLinkedDeque implementation can be used as a Stack (LIFO) via its
push() and pop() methods:

Deque<Integer> stack = new ConcurrentLinkedDeque<>();

For better performance, prefer ConcurrentLinkedDeque over
Stack.

The code bundled to this book comes with an application for each of the preceding
collections meant to span several threads in order to reveal their thread-safe
character.

Arrays, Collections, and Data Structures Chapter 5

[274]

Synchronized collections
Besides concurrent collections, we also have synchronized collections. Java provides
a suite of wrappers that expose a collection as a thread-safe collection. These
wrappers are available in Collections. The most common ones are as follows:

synchronizedCollection​(Collection<T> c): Returns a synchronized
(thread-safe) collection backed by the specified collection
synchronizedList​(List<T> list): Returns a synchronized (thread-
safe) list backed by the specified list:

List<Integer> syncList
 = Collections.synchronizedList(new ArrayList<>());

synchronizedMap​(Map<K,​V> m): Returns a synchronized (thread-safe)
map backed by the specified map:

Map<Integer, Integer> syncMap
 = Collections.synchronizedMap(new HashMap<>());

synchronizedSet​(Set<T> s): Returns a synchronized (thread-safe) set
backed by the specified set:

Set<Integer> syncSet
 = Collections.synchronizedSet(new HashSet<>());

Concurrent versus synchronized collections
The obvious question is What is the difference between a concurrent and a synchronized
collection? Well, the main difference consists of the way in which they achieve thread-
safety. Concurrent collections achieve thread-safety by partitioning the data into
segments. Threads can access these segments concurrently and obtain locks only on
the segments that are used. On the other hand, synchronized collection locks the
entire collection via intrinsic locking (a thread that invokes a synchronized method will
automatically acquire the intrinsic lock for that method's object and release it when
the method returns).

Iterating a synchronized collection requires manual synchronization as follows:

List syncList = Collections.synchronizedList(new ArrayList());
...
synchronized(syncList) {
 Iterator i = syncList.iterator();
 while (i.hasNext()) {

Arrays, Collections, and Data Structures Chapter 5

[275]

 do_something_with i.next();
 }
}

Since concurrent collections allow concurrent access of threads, they
are much more performant than the synchronized collection.

123. Breadth-first search
BFS is a classic algorithm for traversing (visiting) all nodes of a graph or tree.

The easiest way to understand this algorithm is via pseudo-code and an example. The
pseudo-code of BFS is as follows:

Create a queue Q1.
Mark v as visited and put v into Q2.
While Q is non-empty3.
Remove the head h of Q4.
Mark and en-queue all (unvisited) neighbors of h5.

Let's assume the graph from the following diagram, Step 0:

Arrays, Collections, and Data Structures Chapter 5

[276]

At the first step (Step 1), we visit vertex 0. We put this in the visited list and all its
adjacent vertices in the queue (3, 1). Furthermore, at Step 2, we visit the element at
the front of the queue, 3. Vertex 3 has an unvisited adjacent vertex in 2, so we add
that to the back of the queue. Next, at Step 3, we visit the element at the front of the
queue, 1. This vertex has a single adjacent vertex (0), but this was visited. Finally, we
visit vertex 2, the last from the queue. This one has a single adjacent vertex (3) that
was already visited.

In code lines, the BFS algorithm can be implemented as follows:

public class Graph {

 private final int v;
 private final LinkedList<Integer>[] adjacents;

 public Graph(int v) {

 this.v = v;
 adjacents = new LinkedList[v];

 for (int i = 0; i < v; ++i) {
 adjacents[i] = new LinkedList();
 }
 }

 public void addEdge(int v, int e) {
 adjacents[v].add(e);
 }

 public void BFS(int start) {

 boolean visited[] = new boolean[v];
 LinkedList<Integer> queue = new LinkedList<>();
 visited[start] = true;

 queue.add(start);

 while (!queue.isEmpty()) {
 start = queue.poll();
 System.out.print(start + " ");

 Iterator<Integer> i = adjacents[start].listIterator();
 while (i.hasNext()) {
 int n = i.next();
 if (!visited[n]) {
 visited[n] = true;
 queue.add(n);

Arrays, Collections, and Data Structures Chapter 5

[277]

 }
 }
 }
 }
}

And, if we introduce the following graph (from the preceding diagram), we have the
following:

Graph graph = new Graph(4);
graph.addEdge(0, 3);
graph.addEdge(0, 1);
graph.addEdge(1, 0);
graph.addEdge(2, 3);
graph.addEdge(3, 0);
graph.addEdge(3, 2);
graph.addEdge(3, 3);

The output will be 0 3 1 2.

124. Trie
A Trie (also known as digital tree) is an ordered tree structure used commonly for
storing strings. Its name comes from the fact that Trie is reTrieval data structure. Its
performance is better than a binary tree.

Except for the root of the Trie, every node of a Trie contains a single character (for
example, for the word hey, there will be three nodes). Mainly, each node of a Trie
contains the following:

A value (a character, or a digit)
Pointers to children nodes
A flag that is true if the current node completes a word
A single root used for branching nodes

Arrays, Collections, and Data Structures Chapter 5

[278]

The following diagram represents the sequence of steps for building a Trie containing
the words cat, caret, and bye:

So, in code lines, a Trie node can be shaped as follows:

public class Node {

 private final Map<Character, Node> children = new HashMap<>();
 private boolean word;

 Map<Character, Node> getChildren() {
 return children;
 }

 public boolean isWord() {
 return word;
 }

 public void setWord(boolean word) {
 this.word = word;

Arrays, Collections, and Data Structures Chapter 5

[279]

 }
}

Based on this class, we can define a Trie basic structure as follows:

class Trie {

 private final Node root;

 public Trie() {
 root = new Node();
 }

 public void insert(String word) {
 ...
 }

 public boolean contains(String word) {
 ...
 }

 public boolean delete(String word) {
 ...
 }
}

Inserting in a Trie
Now, let's focus on the algorithm for inserting words in a Trie:

Consider the current node as the root.1.
Loop the given word character by character, starting from the first2.
character.
If the current node (the Map<Character, Node>) maps a value (a Node)3.
for the current character, then simply advance to this node. Otherwise,
create a new Node, set its character equal to the current character, and
advance to this node.
Repeat from step 2 (pass to next character) until the end of the word.4.
Mark the current node as a node that completes the word.5.

Arrays, Collections, and Data Structures Chapter 5

[280]

In terms of code lines, we have the following:

public void insert(String word) {

 Node node = root;

 for (int i = 0; i < word.length(); i++) {
 char ch = word.charAt(i);
 Function function = k -> new Node();

 node = node.getChildren().computeIfAbsent(ch, function);
 }

 node.setWord(true);
}

The complexity of insertion is O(n), where n represents the word
size.

Finding in a Trie
Now, let's search for a word in a Trie:

Consider the current node as the root.1.
Loop the given word character by character (start from the first character).2.
For each character, check its presence in the Trie (in Map<Character,3.
Node>).
If a character is not present, then return false.4.
Repeat from step 2 until the end of the word.5.
At the end of the word, return true if this was a word, or false if it was6.
just a prefix.

In terms of code lines, we have the following:

public boolean contains(String word) {

 Node node = root;

 for (int i = 0; i < word.length(); i++) {
 char ch = word.charAt(i);
 node = node.getChildren().get(ch);

Arrays, Collections, and Data Structures Chapter 5

[281]

 if (node == null) {
 return false;
 }
 }

 return node.isWord();
}

The complexity of finding is O(n), where n represents the word size.

Deleting from a Trie
Finally, let's try to delete from a Trie:

Verify whether the given word is part of the Trie.1.
If it is part of the Trie, then simply remove it.2.

Deletion takes place in a bottom-up manner using recursion and following these
rules:

If the given word is not in the Trie, then nothing happens (return false)
If the given word is unique (not part of another word), then delete all
corresponding nodes (return true)
If the given word is a prefix of another long word in the Trie, then set the
leaf node flag to false (return false)
If the given word has at least another word as a prefix, then delete the
corresponding nodes from the end of the given word until the first leaf
node of the longest prefix word (return false)

In terms of code lines, we have the following:

public boolean delete(String word) {
 return delete(root, word, 0);
}

private boolean delete(Node node, String word, int position) {

 if (word.length() == position) {
 if (!node.isWord()) {
 return false;
 }

Arrays, Collections, and Data Structures Chapter 5

[282]

 node.setWord(false);

 return node.getChildren().isEmpty();
 }

 char ch = word.charAt(position);
 Node children = node.getChildren().get(ch);

 if (children == null) {
 return false;
 }

 boolean deleteChildren = delete(children, word, position + 1);

 if (deleteChildren && !children.isWord()) {
 node.getChildren().remove(ch);

 return node.getChildren().isEmpty();
 }

 return false;
}

The complexity of finding is O(n), where n represents the word size.

Now, we can build a Trie as follows:

Trie trie = new Trie();
trie.insert/contains/delete(...);

125. Tuple
Basically, a tuple is a data structure consisting of multiple parts. Usually, a tuple has
two or three parts. Typically, when more than three parts are needed, a dedicated
class is a better choice.

Tuples are immutable and are used whenever we need to return multiple results from
a method. For example, let's assume that we have a method that returns the minimum
and maximum of an array. Normally, a method cannot return both, and using a tuple
is a convenient solution.

Arrays, Collections, and Data Structures Chapter 5

[283]

Unfortunately, Java doesn't provide built-in tuple support. Nevertheless, Java comes
with Map.Entry<K,​V>, which is used to represent an entry from a Map. Moreover,
starting with JDK 9, the Map interface was enriched with a method named entry(K
k, V v), which returns an unmodifiable Map.Entry<K, V> containing the given
key and value.

For a tuple of two parts, we can write our method as follows:

public static <T> Map.Entry<T, T> array(
 T[] arr, Comparator<? super T> c) {

 T min = arr[0];
 T max = arr[0];

 for (T elem: arr) {
 if (c.compare(min, elem) > 0) {
 min = elem;
 } else if (c.compare(max, elem)<0) {
 max = elem;
 }
 }

 return entry(min, max);
}

If this method lives in a class named Bounds, then we can call it as follows:

public class Melon {

 private final String type;
 private final int weight;

 // constructor, getters, equals(), hashCode(),
 // toString() omitted for brevity
}

Melon[] melons = {
 new Melon("Crenshaw", 2000), new Melon("Gac", 1200),
 new Melon("Bitter", 2200), new Melon("Hami", 800)
};

Comparator<Melon> byWeight = Comparator.comparing(Melon::getWeight);
Map.Entry<Melon, Melon> minmax = Bounds.array(melons, byWeight);

System.out.println("Min: " + minmax1.getKey()); // Hami(800g)
System.out.println("Max: " + minmax1.getValue()); // Bitter(2200g)

Arrays, Collections, and Data Structures Chapter 5

[284]

But we can write an implementation as well. A tuple with two parts is commonly
named a pair; therefore, an intuitive implementation can be as follows:

public final class Pair<L, R> {

 final L left;
 final R right;

 public Pair(L left, R right) {
 this.left = left;
 this.right = right;
 }

 static <L, R> Pair<L, R> of (L left, R right) {

 return new Pair<>(left, right);
 }

 // equals() and hashCode() omitted for brevity
}

Now, we can rewrite our method that computes the minimum and maximum as
follows:

public static <T> Pair<T, T> array(T[] arr, Comparator<? super T> c) {
 ...
 return Pair.of(min, max);
}

126. Union Find
The Union Find algorithm operates on a disjoint-set data structure.

A disjoint-set data structure defines sets of elements separated in certain disjoint
subsets that are not overlapping. Graphically, we can represent a disjoint-set with
three subsets, as in the following diagram:

Arrays, Collections, and Data Structures Chapter 5

[285]

In the code, a disjoint-set is represented as follows:

n is the total number of elements (for example, in the preceding diagram, n
is 11).
rank is an array initialized with 0 that is useful to decide how to union two
subsets with multiple elements (subsets with lower rank become children
of subsets with a higher rank).
parent is the array that allows us to build an array-based Union Find
(initially, parent[0] = 0; parent[1] = 1; ... parent[10] = 10;):

public DisjointSet(int n) {

 this.n = n;
 rank = new int[n];
 parent = new int[n];

 initializeDisjointSet();
}

Mainly, the Union Find algorithms should be capable of the following:

Merging two subsets into a single subset
Returning its subset for the given element (this is useful for finding
elements that are in the same subset)

In order to store a disjoint-set data structure in memory, we can represent it as an
array. Initially, at each index of the array, we store that index (x[i] = i). Each index
can be mapped to a piece of meaningful information for us, but this is not mandatory.
For example, such an array can be shaped as in the following diagram (initially, we
have 11 subsets and each element is a parent of itself):

Or, if we use numbers, we can represent it in the following diagram:

Arrays, Collections, and Data Structures Chapter 5

[286]

In terms of code lines, we have the following:

private void initializeDisjointSet() {

 for (int i = 0; i < n; i++) {
 parent[i] = i;
 }
}

Furthermore, we need to define our subsets via the union operation. We can define
subsets via a sequence of (parent, child) pairs. For example, let's define the following
three pairs—union(0,1);, union(4, 9);, and union(6, 5);. Each time an
element (subset) becomes a child of another element (subset), it will modify its value
to reflect the value of its parent, as in the following diagram:

This process continues until we define all our subsets. For example, we can add more
unions—union(0, 7);, union(4, 3);, union(4, 2);, union(6, 10);,
and union(4, 5);. This will result in the following graphical representation:

As a rule of thumb, it is advisable to union smaller subsets to larger subsets and not
vice versa. For example, check the moment when we unify the subset that contains 4
with the subset that contains 5. At that moment, 4 is the parent of the subset and it
has three children (2, 3, and 9), while 5 is next to 10, the two children of 6. So, the
subset that contains 5 has three nodes (6, 5, 10), while the subset that contains 4 has
four nodes (4, 2, 3, 9). So, 4 becomes the parent of 6 and, implicitly, the parent of 5.

Arrays, Collections, and Data Structures Chapter 5

[287]

In code lines, this is the job of the rank[] array:

Let's now take a look at how to implement the find and union operation.

Implementing the find operation
Finding the subset of the given element is a recursive process that traverses the subset
by following the parent elements until the current element is the parent of itself (root
element):

public int find(int x) {

 if (parent[x] == x) {
 return x;
 } else {
 return find(parent[x]);
 }
}

Implementing the union operation
The union operation begins by fetching the root elements of the given subsets.
Furthermore, if these two roots are different, they need to rely on their rank to decide
which one will become the parent of the other one (the bigger rank becomes a parent).
If they have the same rank, then choose one of them and increase its rank by 1:

public void union(int x, int y) {

 int xRoot = find(x);
 int yRoot = find(y);

 if (xRoot == yRoot) {
 return;
 }

 if (rank[xRoot] < rank[yRoot]) {
 parent[xRoot] = yRoot;

Arrays, Collections, and Data Structures Chapter 5

[288]

 } else if (rank[yRoot] < rank[xRoot]) {
 parent[yRoot] = xRoot;
 } else {
 parent[yRoot] = xRoot;
 rank[xRoot]++;
 }
}

OK. Let's now define a disjoint set:

DisjointSet set = new DisjointSet(11);
set.union(0, 1);
set.union(4, 9);
set.union(6, 5);
set.union(0, 7);
set.union(4, 3);
set.union(4, 2);
set.union(6, 10);
set.union(4, 5);

And now let's play with it:

// is 4 and 0 friends => false
System.out.println("Is 4 and 0 friends: "
 + (set.find(0) == set.find(4)));

// is 4 and 5 friends => true
System.out.println("Is 4 and 5 friends: "
 + (set.find(4) == set.find(5)));

This algorithm can be optimized by compressing the paths between elements. For
example, check the following diagram:

On the left-hand side, in trying to find the parent of 5, you must pass through 6 until
it reaches 4. Similarly, in trying to find the parent of 10, you must pass through 6 until
it reaches 4. However, on the right-hand side, we compress the paths of 5 and 10 by
linking them directly to 4. This time, we can find the parent of 5 and 10 without
passing through intermediary elements.

Arrays, Collections, and Data Structures Chapter 5

[289]

Path compression can take place in relation to the find() operation, as follows:

public int find(int x) {

 if (parent[x] != x) {
 return parent[x] = find(parent[x]);
 }

 return parent[x];
}

The code bundled to this book contains both applications, with and without path
compression.

127. Fenwick Tree or Binary Indexed Tree
The Fenwick Tree (FT) or Binary Indexed Tree (BIT) is an array built to store sums
corresponding to another given array. The built array has the same size as the given
array, and each position (or node) of the built array stores the sum of some elements
of the given array. Since BIT stores partial sums of the given array, it is a very efficient
solution for computing the sum of elements of the given array between two given
indexes (range sum/queries) by avoiding looping between the indexes and computing
the sum.

The BIT can be constructed in linear time or O(n log n). Obviously, we prefer it in
linear time, so let's see how we can do this. We begin with the given (original) array
that can be (the subscripts represent the index in the array):

3(1), 1(2), 5(3), 8(4), 12(5), 9(6), 7(7), 13(8), 0(9), 3(10), 1(11), 4(12), 9(13), 0(14), 11(15), 5(16)

The idea of building the BIT relies on the Least Significant Bit (LSB) concept. More
precisely, let's assume that we are currently dealing with the element from the index,
a. Then, the value immediately above us must be at index b, where b = a + LSB(a). In
order to apply the algorithm, the value from index 0 must be 0; therefore the array
that we operate is as follows:

0(0), 3(1), 1(2), 5(3), 8(4), 12(5), 9(6), 7(7), 13(8), 0(9), 3(10), 1(11), 4(12), 9(13), 0(14), 11(15), 5(16)

Arrays, Collections, and Data Structures Chapter 5

[290]

Now, let's apply a few steps of the algorithm and let's populate the BIT with sums. At
index 0 in BIT, we have 0. Furthermore, we use the b = a + LSB(a) formula to compute
the remaining sums, as follows:

a = 1: If a = 1 = 000012, then b = 000012 + 000012 = 1 + 1 = 2 = 000102. We say1.
that 2 is responsible for a (which is 1). Therefore, in BIT, at index 1, we store
the value 3, and, at index 2, we store the value sum, 3 + 1 = 4.
a = 2: If a = 2 = 000102, then b = 000102 + 000102 = 2 + 2 = 4 = 001002. We say2.
that 4 is responsible for a (which is 2). Therefore, in BIT, at index 4, we store
the value sum, 8 + 4 = 12.
a = 3: If a = 3 = 000112, then b = 000112 + 000012 = 3 + 1 = 4 = 001002. We say3.
that 4 is responsible for a (which is 3). Therefore, in BIT, at index 4, we store
the value sum, 12 + 5 = 17.
a = 4. If a = 4 = 001002, then b = 001002 + 001002 = 4 + 4 = 8 = 010002. We say4.
that 8 is responsible for a (which is 4). Therefore, in BIT, at index 8, we store
the value sum, 13 + 17 = 30.

The algorithm will continue in the same manner until the BIT is complete. In a
graphical representation, our case can be shaped as follows:

Arrays, Collections, and Data Structures Chapter 5

[291]

If a computed point of an index is out of bounds, then simply ignore
it.

In code lines, the preceding flow can be shaped as follows (values are the given
array):

public class FenwickTree {

 private final int n;
 private long[] tree;
 ...

 public FenwickTree(long[] values) {

 values[0] = 0 L;
 this.n = values.length;
 tree = values.clone();

 for (int i = 1; i < n; i++) {

 int parent = i + lsb(i);
 if (parent < n) {
 tree[parent] += tree[i];
 }
 }
 }

 private static int lsb(int i) {

 return i & -i;

 // or
 // return Integer.lowestOneBit(i);
 }

 ...
}

Now, the BIT is ready and we can perform updates and range queries.

Arrays, Collections, and Data Structures Chapter 5

[292]

For example, in order to perform range sums, we have to fetch the corresponding
ranges and total them up. Consider a few examples on the right-hand side of the
following diagram to quickly understand this process:

In terms of code lines, this can be easily shaped as follows:

public long sum(int left, int right) {

 return prefixSum(right) - prefixSum(left - 1);
}

private long prefixSum(int i) {

 long sum = 0L;

 while (i != 0) {
 sum += tree[i];
 i &= ~lsb(i); // or, i -= lsb(i);
 }

 return sum;
}

Arrays, Collections, and Data Structures Chapter 5

[293]

Moreover, we can add a new value:

public void add(int i, long v) {

 while (i < n) {
 tree[i] += v;
 i += lsb(i);
 }
}

And we can also set a new value to a certain index:

public void set(int i, long v) {
 add(i, v - sum(i, i));
}

Having all these features in place, we can create the BIT for our array as follows:

FenwickTree tree = new FenwickTree(new long[] {
 0, 3, 1, 5, 8, 12, 9, 7, 13, 0, 3, 1, 4, 9, 0, 11, 5
});

And then we can play with it:

long sum29 = tree.sum(2, 9); // 55
tree.set(4, 3);
tree.add(4, 5);

128. Bloom filter
The Bloom filter is a fast and memory-efficient data structure capable of providing a
probabilistic answer to the question Is value X in the given set?

Commonly, this algorithm is useful when the set is huge and most searching
algorithms are facing memory and speed issues.

The speed and memory efficiency of the Bloom filter come from the fact that this data
structure relies on an array of bits (for example, java.util.BitSet). Initially, the
bits of this array are set to 0 or false.

Arrays, Collections, and Data Structures Chapter 5

[294]

The array of bits is the first main ingredient of the Bloom filter. The second main
ingredient consists of one or more hash functions. Ideally, these are pairwise
independent and uniformly distributed hash functions. Also, it is very important to be
extremely fast. Murmur, the fnv series, and HashMix are some of the hash functions
that respect these constraints to an acceptable extent for being used by the Bloom
filter.

Now, when we add an element to the Bloom filter, we need to hash this element (pass
it through each available hash function) and set the bits in the bit array at the index of
those hashes to 1 or true.

The following snippet of code should clarify the main idea:

private BitSet bitset; // the array of bits
private static final Charset CHARSET = StandardCharsets.UTF_8;
...
public void add(T element) {

 add(element.toString().getBytes(CHARSET));
}

public void add(byte[] bytes) {

 int[] hashes = hash(bytes, numberOfHashFunctions);

 for (int hash: hashes) {
 bitset.set(Math.abs(hash % bitSetSize), true);
 }

 numberOfAddedElements++;
}

Now, when we search for an element, we pass this element through the same hash
functions. Furthermore, we check whether the resultant values are marked in the
array of bits as 1 or true. If they are not, then the element is not in the set for sure.
But if they are, then we know with a certain probability that the element is in the set.
This is not 100% certain since another element or combination of elements may have
been flipped up those bits. Wrong answers are known as false positives.

In terms of code lines, we have the following:

private BitSet bitset; // the array of bits
private static final Charset CHARSET = StandardCharsets.UTF_8;
...

public boolean contains(T element) {

Arrays, Collections, and Data Structures Chapter 5

[295]

 return contains(element.toString().getBytes(CHARSET));
}

public boolean contains(byte[] bytes) {

 int[] hashes = hash(bytes, numberOfHashFunctions);

 for (int hash: hashes) {
 if (!bitset.get(Math.abs(hash % bitSetSize))) {

 return false;
 }
 }

 return true;
}

In a graphical representation, we can represent a Bloom filter with an array of bits of
size 11 and three hash functions as follows (we have added two elements):

Obviously, we want to reduce the number of false positives as much as possible. While
we cannot totally eliminate them, we can still affect their rate by joggling with the size
of the bit array, the number of hash functions, and the number of elements in the set.

The following mathematical formulas can be used to shape the optimal Bloom filter:

Number of items in the filter (can be estimated based on m, k, and p):

n = ceil(m / (-k / log(1 - exp(log(p) / k))));

Arrays, Collections, and Data Structures Chapter 5

[296]

Probability of false positives, a fraction between 0 and 1, or a number
indicating 1-in-p:

p = pow(1 - exp(-k / (m / n)), k);

Number of bits in the filter (or size in terms of KB, KiB, MB, Mb, GiB, and
so on):

m = ceil((n * log(p)) / log(1 / pow(2, log(2))));

Number of hash functions (can be estimated based on m and n):

k = round((m / n) * log(2));

As a rule of thumb, a larger filter will have fewer false positives than a
smaller one. Moreover, by increasing the number of hash functions,
we obtain fewer false positives, but we slow down the filter and will
fill it up quickly. The performance of the Bloom filter is O(h), where
h is the number of hash functions.

In the code bundled to this book, there is an implementation of the Bloom filter using
hash functions based on SHA-256 and murmur. Since this code is too big to be listed
in this book, please consider as a starting point the example from the Main class.

Summary
This chapter covered 30 problems involving arrays, collections, and several data
structures. While the problems covering arrays and collections are part of daily work,
the problems covering data structures have introduced a few less well-known (but
powerful) data structures, such as FT, Union Find, and Trie.

Download the applications from this chapter to see the results and to examine
additional details.

6
Java I/O Paths, Files, Buffers,

Scanning, and Formatting
This chapter includes 20 problems that involve Java I/O for files. From manipulating,
walking, and watching paths to streaming files and efficient ways for reading/writing
text and binary files, we will cover problems that Java developers may face on a day-
to-day basis.

With the skills you will have gained from this chapter, you will be able to tackle most
of the common problems that involve Java I/O files. The wide range of topics in this
chapter will provide a plethora of information about how Java tackles I/O tasks.

Problems
Take a look at the following problems in order to test your Java I/O programming
prowess. I strongly encourage you to give each problem a try before you turn to the
solutions and download the example programs:

Creating file paths: Write several examples of creating several kinds of file129.
paths (for example, absolute paths, relative paths, and so on).
Converting file paths: Write several examples of converting file paths (for130.
example, converting a file path into a string, URI, file, and so on).
Joining file paths: Write several examples of joining (combining) file paths.131.
Define a fixed path and append other different paths to it (or replace a part
of it with other paths).
Constructing a path between two locations: Write several examples that132.
construct a relative path between two given paths (from one path to
another).
Comparing file paths: Write several examples of comparing the given file133.
paths.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[298]

Walking paths: Write a program that visits all the files within a directory,134.
including subdirectories. Moreover, write a program that searches a file by
name, deletes a directory, moves a directory, and copies a directory.
Watching paths: Write several programs that watch changes that occur on135.
a certain path (for example, create, delete, and modify).
Streaming a file's content: Write a program that streams the content of the136.
given file.
Searching for files/folders in a file tree: Write a program that searches for137.
the given files/folders in the given file tree.
Reading/writing text files efficiently: Write several programs to exemplify138.
different approaches for reading and writing a text file in an efficient
manner.
Reading/writing binary files efficiently: Write several programs to139.
exemplify different approaches for reading and writing a binary file in an
efficient manner.
Searching in big files: Write a program that efficiently searches the given140.
string in a big file.
Reading a JSON/CSV file as an object: Write a program that reads the141.
given JSON/CSV file as an object (POJO).
Working with temporary files/folders: Write several programs for142.
working with temporary files/folders.
Filtering files: Write several user-defined filters for files.143.
Discovering mismatches between two files: Write a program that144.
discovers the mismatches between two files at the byte level.
Circular byte buffer: Write a program that represents an implementation145.
of a circular byte buffer.
Tokenizing files: Write several snippets of code to exemplify different146.
techniques of tokenizing a file content.
Writing formatted output directly to a file: Write a program that formats147.
the given numbers (integers and doubles) and outputs them to a file.
Working with Scanner: Write several snippets of code to reveal Scanner148.
capabilities.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[299]

Solutions
The following sections describe the solutions to the preceding problems. Remember
that there usually isn't a single correct way to solve a particular problem. Also,
remember that the explanations that are shown here only include the most interesting
and important details that are needed to solve the problems. You can download the
example solutions to view additional details and experiment with the programs
from https:/​/​github. ​com/ ​PacktPublishing/ ​Java- ​Coding- ​Problems.

129. Creating file paths
Starting with JDK 7, we can create a file path via the NIO.2 API. More precisely, a file
path can be easily defined via the Path and Paths APIs.

The Path class is a programmatic representation of a path in a filesystem. The path
string contains the following information:

The filename
The directories list
The OS-dependent file delimiter (for example, a forward slash / on Solaris
and Linux and a backslash \ on Microsoft Windows)
Other allowed characters, for example, the . (current directory) and ..
(parent directory) notations

The Path class works with files in different filesystems
(FileSystem) that can use different storage places (FileStore is
the underlying storage).

A common solution for defining a Path is to call one of the get() methods of the
Paths helper class. Another solution relies on
the FileSystems.getDefault().getPath() method.

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[300]

A Path resides in a filesystem—a filesystem stores and organizes files or some form of
media, generally on one or more hard drives, in such a way that they can be easily retrieved.
The filesystem can be obtained through the final class
of java.nio.file.FileSystems, which is used to get an instance of
java.nio.file.FileSystem. The default FileSystem of the JVM (commonly
known as the default filesystem of the operating system) can be obtained via
the FileSystems().getDefault() method. Once we know the filesystem and the
location of a file (or directory/folder), we can create a Path object for it.

Another approach consists of creating a Path from a Uniform Resource Identifier
(URI). Java wraps a URI via the URI class; then, we can obtain a URI from a String
via the URI.create(String uri) method. Furthermore, the Paths class provides a
get() method that takes a URI object as an argument and returns the corresponding
Path.

Starting with JDK 11, we can create a Path via two of() methods. One of them
converts a URI into a Path, while the other one converts a path-string, or a sequence
of strings, joined as a path-string.

In the upcoming sections, we'll take a look at the various ways we can create paths.

Creating a path relative to the file store root
A path that's relative to the current file store root (for example, C:/) must start with
the file delimiter. In the following examples, if the current file store root is C, then the
absolute path is C:\learning\packt\JavaModernChallenge.pdf:

Path path = Paths.get("/learning/packt/JavaModernChallenge.pdf");
Path path = Paths.get("/learning", "packt/JavaModernChallenge.pdf");

Path path = Path.of("/learning/packt/JavaModernChallenge.pdf");
Path path = Path.of("/learning", "packt/JavaModernChallenge.pdf");

Path path = FileSystems.getDefault()
 .getPath("/learning/packt", "JavaModernChallenge.pdf");
Path path = FileSystems.getDefault()
 .getPath("/learning/packt/JavaModernChallenge.pdf");

Path path = Paths.get(
 URI.create("file:///learning/packt/JavaModernChallenge.pdf"));
Path path = Path.of(
 URI.create("file:///learning/packt/JavaModernChallenge.pdf"));

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[301]

Creating a path relative to the current folder
When we create a path that's relative to the current working folder, the path should
not start with the file delimiter. If the current folder is named books and is under
the C root, then the absolute path that's returned by the following snippet of code will
be C:\books\learning\packt\JavaModernChallenge.pdf:

Path path = Paths.get("learning/packt/JavaModernChallenge.pdf");
Path path = Paths.get("learning", "packt/JavaModernChallenge.pdf");

Path path = Path.of("learning/packt/JavaModernChallenge.pdf");
Path path = Path.of("learning", "packt/JavaModernChallenge.pdf");

Path path = FileSystems.getDefault()
 .getPath("learning/packt", "JavaModernChallenge.pdf");
Path path = FileSystems.getDefault()
 .getPath("learning/packt/JavaModernChallenge.pdf");

Creating an absolute path
Creating an absolute path can be accomplished by explicitly specifying the root
directory and all other subdirectories that contain the file or folder, as shown in the
following examples (C:\learning\packt\JavaModernChallenge.pdf):

Path path = Paths.get("C:/learning/packt", "JavaModernChallenge.pdf");
Path path = Paths.get(
 "C:", "learning/packt", "JavaModernChallenge.pdf");
Path path = Paths.get(
 "C:", "learning", "packt", "JavaModernChallenge.pdf");
Path path = Paths.get("C:/learning/packt/JavaModernChallenge.pdf");
Path path = Paths.get(
 System.getProperty("user.home"), "downloads", "chess.exe");

Path path = Path.of(
 "C:", "learning/packt", "JavaModernChallenge.pdf");
Path path = Path.of(
 System.getProperty("user.home"), "downloads", "chess.exe");

Path path = Paths.get(URI.create(
 "file:///C:/learning/packt/JavaModernChallenge.pdf"));
Path path = Path.of(URI.create(
 "file:///C:/learning/packt/JavaModernChallenge.pdf"));

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[302]

Creating a path using shortcuts
We understand shortcuts to be the . (current directory) and .. (parent directory)
notations. This kind of path can be normalized via the normalize() method. This
method eliminates redundancies such as . and directory/..:

Path path = Paths.get(
 "C:/learning/packt/chapters/../JavaModernChallenge.pdf")
 .normalize();
Path path = Paths.get(
 "C:/learning/./packt/chapters/../JavaModernChallenge.pdf")
 .normalize();

Path path = FileSystems.getDefault()
 .getPath("/learning/./packt", "JavaModernChallenge.pdf")
 .normalize();

Path path = Path.of(
 "C:/learning/packt/chapters/../JavaModernChallenge.pdf")
 .normalize();
Path path = Path.of(
 "C:/learning/./packt/chapters/../JavaModernChallenge.pdf")
 .normalize();

Without normalization, the redundant parts of the path will not be
removed.

For creating paths that are 100% compatible with the current operating system, we
can rely on FileSystems.getDefault().getPath(), or a combination of
File.separator (system-dependent default name separator character) and
File.listRoots() (the available filesystem roots). For relative paths, we can rely
on the following examples:

private static final String FILE_SEPARATOR = File.separator;

Alternatively, we can rely on getSeparator():

private static final String FILE_SEPARATOR
 = FileSystems.getDefault().getSeparator();

// relative to current working folder
Path path = Paths.get("learning",
 "packt", "JavaModernChallenge.pdf");
Path path = Path.of("learning",

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[303]

 "packt", "JavaModernChallenge.pdf");
Path path = Paths.get(String.join(FILE_SEPARATOR, "learning",
 "packt", "JavaModernChallenge.pdf"));
Path path = Path.of(String.join(FILE_SEPARATOR, "learning",
 "packt", "JavaModernChallenge.pdf"));

// relative to the file store root
Path path = Paths.get(FILE_SEPARATOR + "learning",
 "packt", "JavaModernChallenge.pdf");
Path path = Path.of(FILE_SEPARATOR + "learning",
 "packt", "JavaModernChallenge.pdf");

We can also do the same for absolute paths:

Path path = Paths.get(File.listRoots()[0] + "learning",
 "packt", "JavaModernChallenge.pdf");
Path path = Path.of(File.listRoots()[0] + "learning",
 "packt", "JavaModernChallenge.pdf");

The list of root directories can be obtained via FileSystems as well:

FileSystems.getDefault().getRootDirectories()

130. Converting file paths
Converting a file path into a String, URI, File, and so on is a common task that can
occur in a wide range of applications. Let's consider the following file path:

Path path = Paths.get("/learning/packt", "JavaModernChallenge.pdf");

Now, based on JDK 7 and the NIO.2 API, let's see how we can convert a Path into a
String, a URI, an absolute path, a real path, and a file:

Converting a Path into a String is as simple as calling (explicitly or
automatically) the Path.toString() method. Notice that if the path was
obtained via the FileSystem.getPath() method, then the path-string
returned by toString() may differ from the initial String that was used
to create the path:

// \learning\packt\JavaModernChallenge.pdf
String pathToString = path.toString();

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[304]

Converting a Path into a URI (browser format) can be accomplished via the
Path.toURI() method. The returned URI wraps a path-string that can be
used in the address bar of a web browser:

// file:///D:/learning/packt/JavaModernChallenge.pdf
URI pathToURI = path.toUri();

Let's say that we want to extract the filename present in a URI/URL as Path (this is a
common scenario to encounter). In such cases, we can rely on the following snippets
of code:

// JavaModernChallenge.pdf
URI uri = URI.create(
 "https://www.learning.com/packt/JavaModernChallenge.pdf");
Path URIToPath = Paths.get(uri.getPath()).getFileName();

// JavaModernChallenge.pdf
URL url = new URL(
 "https://www.learning.com/packt/JavaModernChallenge.pdf");
Path URLToPath = Paths.get(url.getPath()).getFileName();

Conversion of paths can be done as follows:

Converting a relative Path into an absolute Path can be done via
the Path.toAbsolutePath() method. If the Path is already absolute,
then the same result will be returned:

// D:\learning\packt\JavaModernChallenge.pdf
Path pathToAbsolutePath = path.toAbsolutePath();

Converting a Path into a real Path can be accomplished via
the Path.toRealPath() method and its result is dependent on the
implementation. If the file that's being pointed to doesn't exist, then this
method will throw an IOException. But, as a rule of thumb, the result of
calling this method is an absolute path without redundant elements
(normalized). This method gets an argument that indicates how symbolic
links should be treated. By default, if the filesystem supports symbolic links,
then this method will try to resolve them. If you wish to ignore the symbolic
links, simply pass the LinkOption.NOFOLLOW_LINKS constant to the
method. Moreover, the path name elements will represent the actual name
of the directories and the file.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[305]

For example, let's consider the following Path and the result of calling this
method (notice that we have intentionally added several redundant
elements and capitalized the PACKT folder):

Path path = Paths.get(
 "/learning/books/../PACKT/./", "JavaModernChallenge.pdf");

// D:\learning\packt\JavaModernChallenge.pdf
Path realPath = path.toRealPath(LinkOption.NOFOLLOW_LINKS);

Converting a Path into a file can be done via the Path.toFile() method.
For converting a file into a Path, we can rely on the File.toPath()
method:

File pathToFile = path.toFile();
Path fileToPath = pathToFile.toPath();

131. Joining file paths
Joining (or combining) file paths means defining a fixed root path and appending to it
a partial path or replacing a part of it (for example, a filename needs to be replaced
with another filename). Basically, this is a handy technique when we want to create
new paths that share a common fixed part.

This can be accomplished via NIO.2 and the Path.resolve() and
Path.resolveSibling() methods.

Let's consider the following fixed root path:

Path base = Paths.get("D:/learning/packt");

Let's also assume that we want to obtain the Path for two different books:

// D:\learning\packt\JBossTools3.pdf
Path path = base.resolve("JBossTools3.pdf");

// D:\learning\packt\MasteringJSF22.pdf
Path path = base.resolve("MasteringJSF22.pdf");

We can use this feature to loop a set of files; for example, let's loop a String[] of
books:

Path basePath = Paths.get("D:/learning/packt");
String[] books = {
 "Book1.pdf", "Book2.pdf", "Book3.pdf"

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[306]

};

for (String book: books) {
 Path nextBook = basePath.resolve(book);
 System.out.println(nextBook);
}

Sometimes, the fixed root path contains the filename as well:

Path base = Paths.get("D:/learning/packt/JavaModernChallenge.pdf");

This time, we can replace the name of the file (JavaModernChallenge.pdf) with
another name via the resolveSibling() method. This method resolves the given
path against this path's parent path, as shown in the following example:

// D:\learning\packt\MasteringJSF22.pdf
Path path = base.resolveSibling("MasteringJSF22.pdf");

If we bring the Path.getParent() method into the discussion and we chain
the resolve() and resolveSibling() methods, then we can create more complex
paths, as shown in the following example:

// D:\learning\publisher\MyBook.pdf
Path path = base.getParent().resolveSibling("publisher")
 .resolve("MyBook.pdf");

The resolve()/resolveSibling() method comes in two flavors – resolve
(String other) / resolveSibling​(String other) and resolve​(Path other)
/ resolveSibling​(Path other), respectively.

132. Constructing a path between two
locations
Constructing a relative path between two locations is a job for
the Path.relativize() method.

Basically, the resulted relative path (returned by Path.relativize()) starts from a
path and ends on another path. This is a powerful feature that allows us to navigate
between different locations using relative paths that are resolved against the previous
paths.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[307]

Let's consider the following two paths:

Path path1 = Paths.get("JBossTools3.pdf");
Path path2 = Paths.get("JavaModernChallenge.pdf");

Notice that JBossTools3.pdf and JavaModernChallenge.pdf are siblings. This
means that we can navigate from one to another by going up one level and then
down one level. This navigation case is revealed by the following examples as well:

// ..\JavaModernChallenge.pdf
Path path1ToPath2 = path1.relativize(path2);

// ..\JBossTools3.pdf
Path path2ToPath1 = path2.relativize(path1);

Another common case involves a common root element:

Path path3 = Paths.get("/learning/packt/2003/JBossTools3.pdf");
Path path4 = Paths.get("/learning/packt/2019");

So, path3 and path4 share the same common root element, /learning. For
navigating from path3 to path4, we need to go up two levels and down one level. In
addition, for navigating from path4 to path3, we need to go up one level and down
two levels. Check out the following code:

// ..\..\2019
Path path3ToPath4 = path3.relativize(path4);

// ..\2003\JBossTools3.pdf
Path path4ToPath3 = path4.relativize(path3);

Both paths must include a root element. Accomplishing this
requirement does not guarantee success because the construction of
the relative path is implementation-dependent.

133. Comparing file paths
Depending on how we perceive the equality between two file paths, there are several
solutions to this problem. Mainly, Path equality can be verified in different ways for
different goals.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[308]

Let's assume that we have the following three paths (consider reproducing path3 on
your computer):

Path path1 = Paths.get("/learning/packt/JavaModernChallenge.pdf");
Path path2 = Paths.get("/LEARNING/PACKT/JavaModernChallenge.pdf");
Path path3 = Paths.get("D:/learning/packt/JavaModernChallenge.pdf");

In the following sections, we'll take a look at the different methods that are used to
compare file paths.

Path.equals()
Is path1 equal to path2? Or, is path2 equal to path3? Well, if we perform these tests
via Path.equals(), then a possible result will reveal that path1 is equal to path2,
but path2 is not equal to path3:

boolean path1EqualsPath2 = path1.equals(path2); // true
boolean path2EqualsPath3 = path2.equals(path3); // false

The Path.equals() method follows the Object.equals() specification. While this
method doesn't access the filesystem, equality depends on the filesystem
implementation. For example, some filesystem implementations may compare paths
in a case-sensitive manner, while others may ignore case.

Paths representing the same file/folder
However, this probably isn't the kind of comparison that we want. It is more
meaningful to say that two paths are equal if they are the same file or folder. This can
be accomplished via the Files.isSameFile() method. This method acts in two
steps:

First, it calls Path.equals(), and, if this method returns true, then the1.
paths are equal and need no further action.

Second, if Path.equals() returns false, then it checks if both paths2.
represent the same file/folder (depending on the implementation, this
action may need to open/access both files, so the files must exist in order to
avoid an IOException).

//true
boolean path1IsSameFilePath2 = Files.isSameFile(path1, path2);
//true
boolean path1IsSameFilePath3 = Files.isSameFile(path1, path3);

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[309]

//true
boolean path2IsSameFilePath3 = Files.isSameFile(path2, path3);

Lexicographical comparison
If all we want is a lexicographical comparison of the paths, then we can rely on
the Path.compareTo() method (this can be useful for sorting).

This method returns the following information:

0 if the paths are equal
A value less than zero if the first path is lexicographically less than the
argument path
A value greater than zero if the first path is lexicographically greater than
the argument path:

int path1compareToPath2 = path1.compareTo(path2); // 0
int path1compareToPath3 = path1.compareTo(path3); // 24
int path2compareToPath3 = path2.compareTo(path3); // 24

Note that you may obtain different values than in the preceding example.
Furthermore, in your business logic, it is important to rely on their meaning and not
on their value (for example, say if(path1compareToPath3 > 0) { ... } and
avoid if(path1compareToPath3 == 24) { ... }).

Partial comparing
Partial comparing is achievable via the Path.startsWith() and Path.endsWith()
methods. Using these methods, we can test whether the current path starts/ends with
the given path:

boolean sw = path1.startsWith("/learning/packt"); // true
boolean ew = path1.endsWith("JavaModernChallenge.pdf"); // true

134. Walking paths
There are different solutions for walking (or visiting) paths, and one of them is
provided by the NIO.2 API via the FileVisitor interface.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[310]

This interface exposes a set of methods that represent checkpoints in the recursive
process of visiting the given path. By overriding these checkpoints, we are allowed to
interfere in this process. We can process the currently visited file/folder and decide
what should happen further via the FileVisitResult enumeration, which contains
the following constants:

CONTINUE: The traversal process should continue (visit next file, folder,
skip a failure, and so on)
SKIP_SIBLINGS: The traversal process should continue without visiting
the siblings of the current file/folder
SKIP_SUBTREE: The traversal process should continue without visiting the
entries in the current folder
TERMINATE: The traversal should brutally terminate

The methods that are exposed by FileVisitor are as follows:

FileVisitResult visitFile​(T file, BasicFileAttributes
attrs) throws IOException: Automatically called for each visited
file/folder
FileVisitResult preVisitDirectory​(T dir,
BasicFileAttributes attrs) throws IOException: Automatically
called for a folder before visiting its content
FileVisitResult postVisitDirectory​(T dir, IOException exc)
throws IOException: Automatically called after the content in the
directory (including descendants) is visited or, during the iteration of the
folder, an I/O error occurred or the visit was programmatically aborted
FileVisitResult visitFileFailed​(T file, IOException exc)
throws IOException: Automatically called when the file cannot be
visited (accessed) for different reasons (for example, the file's attributes
cannot be read or a folder cannot be opened)

Ok; so far, so good! Let's continue with several practical examples.

Trivial traversal of a folder
Implementing the FileVisitor interface requires that we override its four methods.
However, NIO.2 comes with a built-in simple implementation of this interface
called SimpleFileVisitor. For simple cases, extending this class is more
convenient than implementing FileVisitor since it allows us to override only the
necessary methods.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[311]

For example, let's assume that we store our e-courses in the subfolders of
the D:/learning folder, and we want to visit each of these subfolders via
the FileVisitor API. If something goes wrong during the iteration of a subfolder,
we will simply throw the reported exception.

In order to shape this behavior, we need to override the postVisitDirectory()
method, as follows:

class PathVisitor extends SimpleFileVisitor<Path> {

 @Override
 public FileVisitResult postVisitDirectory(
 Path dir, IOException ioe) throws IOException {

 if (ioe != null) {
 throw ioe;
 }

 System.out.println("Visited directory: " + dir);

 return FileVisitResult.CONTINUE;
 }
}

In order to use the PathVisitor class, we just need to set up the path and call one of
the Files.walkFileTree() methods, as follows (the flavor of
walkFileTree() that's used here gets the starting file/folder and the corresponding
FileVisitor):

Path path = Paths.get("D:/learning");
PathVisitor visitor = new PathVisitor();

Files.walkFileTree(path, visitor);

By using the preceding code, we will receive the following output:

Visited directory: D:\learning\books\ajax
Visited directory: D:\learning\books\angular
...

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[312]

Searching for a file by name
Searching a certain file on a computer is a common task. Typically, we rely on tools
that are provided by the operating system or additional tools, but if we want to
accomplish this programmatically (for example, we may want to write a file search
tool with special features), then FileVisitor can help us achieve this in a pretty
straightforward way. The stub of this application is listed as follows:

public class SearchFileVisitor implements FileVisitor {

 private final Path fileNameToSearch;
 private boolean fileFound;
 ...

 private boolean search(Path file) throws IOException {

 Path fileName = file.getFileName();

 if (fileNameToSearch.equals(fileName)) {
 System.out.println("Searched file was found: " +
 fileNameToSearch + " in " + file.toRealPath().toString());

 return true;
 }

 return false;
 }
}

Let's take a look at the main checkpoints and the implementation of searching a file
by name:

visitFile() is our main checkpoint. Once we have control, we can query
the currently visited file for its name, extension, attributes, and so on. This
information is needed in order to draw a comparison with the same
information on the searched file. For example, we compare the names, and
at first match, we TERMINATE the search. But if we search for more such
files (if we know that there is more than one), then we can return
CONTINUE:

@Override
public FileVisitResult visitFile(
 Object file, BasicFileAttributes attrs) throws IOException {

 fileFound = search((Path) file);

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[313]

 if (!fileFound) {
 return FileVisitResult.CONTINUE;
 } else {
 return FileVisitResult.TERMINATE;
 }
}

The visitFile() method cannot be used for finding folders. Use
the preVisitDirectory() or postVisitDirectory() methods
instead.

visitFileFailed() is the second important checkpoint. When this
method is invoked, we know that something went wrong while visiting the
current file. We prefer to ignore any such issues and CONTINUE the search.
It's pointless to stop the search process:

@Override
public FileVisitResult visitFileFailed(
 Object file, IOException ioe) throws IOException {
 return FileVisitResult.CONTINUE;
}

The preVisitDirectory() and postVisitDirectory() methods don't carry any
important tasks, so we can skip them for brevity.

In order to start the search, we rely on another flavor of the Files.walkFileTree()
method. This time, we specify the start point of the search (for example, all roots), the
options that were used during searching (for example, follow symbolic links), the
maximum number of directory levels to visit (for example, Integer.MAX_VALUE),
and the FileVisitor (for example, SearchFileVisitor):

Path searchFile = Paths.get("JavaModernChallenge.pdf");

SearchFileVisitor searchFileVisitor
 = new SearchFileVisitor(searchFile);

EnumSet opts = EnumSet.of(FileVisitOption.FOLLOW_LINKS);
Iterable<Path> roots = FileSystems.getDefault().getRootDirectories();

for (Path root: roots) {
 if (!searchFileVisitor.isFileFound()) {
 Files.walkFileTree(root, opts,
 Integer.MAX_VALUE, searchFileVisitor);
 }
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[314]

If you take a look at the code that's bundled with this book, the preceding search
traverses all the roots (directories) of your computer in a recursive approach. The
preceding example can be easily adapted for searching by extension, by a pattern, or
to look inside files from some text.

Deleting a folder
Before attempting to delete a folder, we must delete all the files from it. This
statement is very important since it doesn't allow us to simply call the
delete()/deleteIfExists() methods for a folder that contains files. An elegant
solution to this problem relies on a FileVisitor implementation that starts from the
following stub:

public class DeleteFileVisitor implements FileVisitor {
 ...
 private static boolean delete(Path file) throws IOException {

 return Files.deleteIfExists(file);
 }
}

Let's take a look at the main checkpoints and the implementation of deleting a folder:

visitFile() is the perfect place for deleting each file from the given
folder or subfolder (if a file cannot be deleted, then we simply pass it to the
next file, but feel free to adapt the code to suit your needs):

@Override
public FileVisitResult visitFile(
 Object file, BasicFileAttributes attrs) throws IOException {

 delete((Path) file);

 return FileVisitResult.CONTINUE;
}

A folder can be deleted only if it is empty, and so postVisitDirectory()
is the perfect place to do this (we ignore any potential IOException, but
feel free to adapt the code to suit your needs (for example, log the names of
the folders that couldn't be deleted or throw an exception to stop the
process)):

@Override
public FileVisitResult postVisitDirectory(

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[315]

 Object dir, IOException ioe) throws IOException {

 delete((Path) dir);

 return FileVisitResult.CONTINUE;
}

In visitFileFailed() and preVisitDirectory(), we simply return CONTINUE.

For deleting the folder, in D:/learning, we can call DeleteFileVisitor, as
follows:

Path directory = Paths.get("D:/learning");
DeleteFileVisitor deleteFileVisitor = new DeleteFileVisitor();
EnumSet opts = EnumSet.of(FileVisitOption.FOLLOW_LINKS);

Files.walkFileTree(directory, opts,
 Integer.MAX_VALUE, deleteFileVisitor);

By combining SearchFileVisitor and DeleteFileVisitor, we
can obtain a search-delete application.

Copying a folder
In order to copy a file, we can rely on the Path copy​(Path source, Path
target, CopyOption options) throws IOException method. This method
copies a file to the target file with the options parameter specifying how the copy is
performed.

By combining the copy() method with a custom FileVisitor, we can copy an
entire folder (including all its content). The stub code of this custom FileVisitor is
listed as follows:

public class CopyFileVisitor implements FileVisitor {

 private final Path copyFrom;
 private final Path copyTo;
 ...

 private static void copySubTree(
 Path copyFrom, Path copyTo) throws IOException {

 Files.copy(copyFrom, copyTo,

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[316]

 REPLACE_EXISTING, COPY_ATTRIBUTES);
 }
}

Let's take a look at the main checkpoints and the implementation of copying a folder
(note that we will act indulgently by copying anything that we can and avoid
throwing exceptions, but feel free to adapt the code to suit your needs):

Before copying any files from a source folder, we need to copy the source
folder itself. Copying a source folder (empty or not) will result in an empty
target folder. This is the perfect task to accomplish in
the preVisitDirectory() method:

@Override
public FileVisitResult preVisitDirectory(
 Object dir, BasicFileAttributes attrs) throws IOException {

 Path newDir = copyTo.resolve(
 copyFrom.relativize((Path) dir));

 try {
 Files.copy((Path) dir, newDir,
 REPLACE_EXISTING, COPY_ATTRIBUTES);
 } catch (IOException e) {
 System.err.println("Unable to create "
 + newDir + " [" + e + "]");

 return FileVisitResult.SKIP_SUBTREE;
 }

 return FileVisitResult.CONTINUE;
}

The visitFile() method is the perfect place to copy each file:

@Override
public FileVisitResult visitFile(
 Object file, BasicFileAttributes attrs) throws IOException {

 try {
 copySubTree((Path) file, copyTo.resolve(
 copyFrom.relativize((Path) file)));
 } catch (IOException e) {
 System.err.println("Unable to copy "
 + copyFrom + " [" + e + "]");
 }

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[317]

 return FileVisitResult.CONTINUE;
}

Optionally, we can preserve the attributes of the source directory. This can
be accomplished only after the files have been copied into
the postVisitDirectory() method (for example, let's preserve the last
modified time):

@Override
public FileVisitResult postVisitDirectory(
 Object dir, IOException ioe) throws IOException {

 Path newDir = copyTo.resolve(
 copyFrom.relativize((Path) dir));

 try {
 FileTime time = Files.getLastModifiedTime((Path) dir);
 Files.setLastModifiedTime(newDir, time);
 } catch (IOException e) {
 System.err.println("Unable to preserve
 the time attribute to: " + newDir + " [" + e + "]");
 }

 return FileVisitResult.CONTINUE;
}

If a file cannot be visited, then visitFileFailed() will be invoked. This
is a good moment to detect circular links and report them. By following
links (FOLLOW_LINKS), we can encounter cases where the file tree has a
circular link to a parent folder. These cases are reported via
FileSystemLoopException exceptions in visitFileFailed():

@Override
public FileVisitResult visitFileFailed(
 Object file, IOException ioe) throws IOException {

 if (ioe instanceof FileSystemLoopException) {
 System.err.println("Cycle was detected: " + (Path) file);
 } else {
 System.err.println("Error occured, unable to copy:"
 + (Path) file + " [" + ioe + "]");
 }

 return FileVisitResult.CONTINUE;
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[318]

Let's copy the D:/learning/packt folder to D:/e-courses:

Path copyFrom = Paths.get("D:/learning/packt");
Path copyTo = Paths.get("D:/e-courses");

CopyFileVisitor copyFileVisitor
 = new CopyFileVisitor(copyFrom, copyTo);

EnumSet opts = EnumSet.of(FileVisitOption.FOLLOW_LINKS);

Files.walkFileTree(copyFrom, opts, Integer.MAX_VALUE,
copyFileVisitor);

By combining CopyFileVisitor and DeleteFileVisitor, we
can easily shape an application for moving folders. In the code
bundled with this book, there is a complete example of moving
folders as well. Based on the expertise we've accumulated so far, the
code should be pretty accessible without further details.

Pay attention when logging information regarding files (for
example, as in the case of handling exceptions) since files (for
example, their names, paths, and attributes) may contain sensitive
information that can be exploited in a malicious fashion.

JDK 8, Files.walk()
Starting with JDK 8, the Files class has been enriched with two walk() methods.
These methods return a Stream that is lazily populated with Path. It does this by
walking the file tree that's rooted at a given starting file using the given maximum
depth and options:

public static Stream<Path> walk ​(
 Path start, FileVisitOption...options)
 throws IOException

public static Stream<Path> walk ​(
 Path start, int maxDepth, FileVisitOption...options)
 throws IOException

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[319]

For example, let's display all the paths from D:/learning that start with
D:/learning/books/cdi:

Path directory = Paths.get("D:/learning");

Stream<Path> streamOfPath = Files.walk(
 directory, FileVisitOption.FOLLOW_LINKS);

streamOfPath.filter(e -> e.startsWith("D:/learning/books/cdi"))
 .forEach(System.out::println);

Now, let's compute the size in bytes for a folder (for example, D:/learning):

long folderSize = Files.walk(directory)
 .filter(f -> f.toFile().isFile())
 .mapToLong(f -> f.toFile().length())
 .sum();

This method is weakly consistent. It doesn't freeze the file tree during
the iteration process. The potential updates to the file tree may or
may not be reflected.

135. Watching paths
Watching paths for changes is just one of the thread-safe goals that can be
accomplished via the JDK 7 NIO.2, low-level WatchService API.

In a nutshell, a path can be watched for changes by following two major steps:

Register a folder (or folders) to be watched for different kinds of event1.
types.
When a registered event type is detected by WatchService, it is handled2.
in a separate thread, so the watch service is not blocked.

At the API level, the starting point is the WatchService interface. This interface
comes in different flavors for different file/operating systems.

This interface works hand-in-hand with two main classes. Together, they provide a
convenient approach that you can implement to add watching capabilities to a certain
context (for example, to the filesystem):

Watchable: Any object that implements this interface is a watchable object,
and so it can be watched for changes (for example, Path)

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[320]

StandardWatchEventKinds: This class defines the standard event types
(these are the event types that we can register for notifications:

ENTRY_CREATE: Directory entry created
ENTRY_DELETE: Directory entry deleted
ENTRY_MODIFY: Directory entry modified; what is
considered as a modification is somewhat platform-specific,
but actually modifying the content of a file should always
trigger this event type
OVERFLOW: A special event to indicate that events may have
been lost or discarded

WatchService is known as the watcher, and we say that the watcher watches
watchables. In the following examples, WatchService will be created through the
FileSystem class and will watch the registered Path.

Watching a folder for changes
Let's start with a stub method that gets the Path of the folder that should be
monitored for changes as an argument:

public void watchFolder(Path path)
 throws IOException, InterruptedException {
 ...
}

WatchService will notify us when any of the ENTRY_CREATE, ENTRY_DELETE, and
ENTRY_MODIFY event types occur on the given folder. For this, we need to follow
several steps:

Create WatchService so that we can monitor the filesystem—this is1.
accomplished via FileSystem.newWatchService(), as follows:

WatchService watchService
 = FileSystems.getDefault().newWatchService();

Register the event types that should be notified—this is accomplished2.
via Watchable.register():

path.register(watchService,
StandardWatchEventKinds.ENTRY_CREATE,
 StandardWatchEventKinds.ENTRY_MODIFY,
 StandardWatchEventKinds.ENTRY_DELETE);

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[321]

For each watchable object, we receive a registration token as a
WatchKey instance (watch key). We receive this watch key at
registration time, but WatchService returns the relevant WatchKey
every time an event is triggered.

Now, we need to wait for incoming events. This is accomplished in an3.
infinite loop (when an event occurs, the watcher is responsible for queuing
the corresponding watch key for later retrieval and changing its status to
signaled):

while (true) {
 // process the incoming event types
}

Now, we need to retrieve a watch key – there are at least three methods4.
dedicated to retrieving a watch key:

poll(): Returns the next key from the queue and removes it
(alternatively, it will return null if no key is present).
poll​(long timeout, TimeUnit unit): Returns the next key
from the queue and removes it; if no key is present, then it waits
for the specified timeout and tries again. If a key still isn't
available, then it returns null.
take(): Returns the next key from the queue and removes it; if
no key is present, then it will wait until a key is queued or the
infinite loop is stopped:

WatchKey key = watchService.take();

Next, we need to retrieve the pending events of a watch key. A watch key in5.
signaled status has at least one pending event; we can retrieve and remove
all the events of a certain watch key via the WatchKey.pollEvents()
method (each event is represented by a WatchEvent instance):

for (WatchEvent<?> watchEvent : key.pollEvents()) {
 ...
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[322]

Then, we retrieve information about the event type. For each event, we can6.
obtain different information (for example, the event type, number of
occurrences, and context-specific information (for example, the filename
that caused the event), which is useful for processing the event)):

Kind<?> kind = watchEvent.kind();
WatchEvent<Path> watchEventPath = (WatchEvent<Path>)
watchEvent;
Path filename = watchEventPath.context();

Next, we reset the watch key. A watch key has a status that can be either ready7.
(initial status at creation), signaled, or invalid. Once signaled, a watch key
remains like this until we call the reset() method, which attempts to put
it back in the ready status to accept the event's state. If the transition from
signaled to ready (resume waiting events) was successful, then the reset()
method returns true; otherwise, it returns false, which means that the
watch key may be invalid. A watch key can be in an invalid state if it is no
longer active (inactivity can be caused by explicitly calling the close()
method of the watch key, closing the watcher, the directory was deleted, and
so on):

boolean valid = key.reset();

if (!valid) {
 break;
}

When there is a single watch key in an invalid state, then there is no
reason to stay in the infinite loop. Simply call break to jump out of
the loop.

Finally, we close the watcher. This can be accomplished by explicitly calling8.
the close() method of WatchService or relying on try-with-resources, as
follows:

try (WatchService watchService
 = FileSystems.getDefault().newWatchService()) {
 ...
}

The code that's bundled with this book glues all these snippets of code into a single
class named FolderWatcher. The result will be a watcher that's capable of reporting
the create, delete, and modify events that occurred on the specified path.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[323]

In order to watch the path, that is, D:/learning/packt, we just call the
watchFolder() method:

Path path = Paths.get("D:/learning/packt");

FolderWatcher watcher = new FolderWatcher();
watcher.watchFolder(path);

Running the application will display the following message:

Watching: D:\learning\packt

Now, we can create, delete, or modify a file directly under this folder and check the
notifications. For example, if we simply copy-paste a file called resources.txt, then
the output will be as follows:

ENTRY_CREATE -> resources.txt
ENTRY_MODIFY -> resources.txt

In the end, don't forget to stop the application, since it will run indefinitely (in
theory).

Starting with this application, the source code bundled with this book comes with
two more applications. One of them is a simulation of a video capture system, while
the other is a simulation of a printer tray watcher. By relying on the knowledge that
we've accumulated during this section, it should be pretty straightforward to
understand these two applications without further details.

136. Streaming a file's content
Streaming a file's content is a problem that can be solved via JDK 8 using the
Files.lines() and BufferedReader.lines() methods.

Stream<String> Files.lines​(Path path, Charset cs) reads all the lines
from a file as a Stream. This happens lazily, as the stream is consumed. During the
execution of the Terminal stream operation, the file's content should not be modified;
otherwise, the result is undefined.

Let's take a look at an example that reads the content of the
D:/learning/packt/resources.txt file and displays it on the screen (notice that
we run the code in a try-with-resources, and so the file is closed by closing the stream):

private static final String FILE_PATH
 = "D:/learning/packt/resources.txt";

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[324]

...
try (Stream<String> filesStream = Files.lines(
 Paths.get(FILE_PATH), StandardCharsets.UTF_8)) {

 filesStream.forEach(System.out::println);
} catch (IOException e) {
 // handle IOException if needed, otherwise remove the catch block
}

A similar method without arguments is available in the BufferedReader class:

try (BufferedReader brStream = Files.newBufferedReader(
 Paths.get(FILE_PATH), StandardCharsets.UTF_8)) {

 brStream.lines().forEach(System.out::println);
} catch (IOException e) {
 // handle IOException if needed, otherwise remove the catch block
}

137. Searching for files/folders in a file tree
Searching for files or folders in a file tree is a common task that's needed in a lot of
situations. Thanks to JDK 8 and the new Files.find() method, we can accomplish
this pretty easily.

The Files.find() method returns a Stream<Path> which is lazily populated with
the paths that match the provided finding constraints:

public static Stream<Path> find ​(
 Path start,
 int maxDepth,
 BiPredicate<Path, ​BasicFileAttributes > matcher,
 FileVisitOption...options
) throws IOException

This method acts as the walk() method, and so it traverses the current file tree,
starting from the given path (start), and reaching the maximum given depth
(maxDepth). During the iteration of the current file tree, this method applies the given
predicate (matcher). Via this predicate, we specify the constraints that must be
matched by each file that goes in the final stream. Optionally, we can specify a set of
visiting options (options).

Path startPath = Paths.get("D:/learning");

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[325]

Let's take a look at some examples that are meant to clarify the usage of this method:

Find all the files ending with the .properties extension and follow
the symbolic links:

Stream<Path> resultAsStream = Files.find(
 startPath,
 Integer.MAX_VALUE,
 (path, attr) -> path.toString().endsWith(".properties"),
 FileVisitOption.FOLLOW_LINKS
);

Find all the regular files whose names start with application:

Stream<Path> resultAsStream = Files.find(
 startPath,
 Integer.MAX_VALUE,
 (path, attr) -> attr.isRegularFile() &&
 path.getFileName().toString().startsWith("application")
);

Find all the directories that were created after 16 March 2019:

Stream<Path> resultAsStream = Files.find(
 startPath,
 Integer.MAX_VALUE,
 (path, attr) -> attr.isDirectory() &&
 attr.creationTime().toInstant()
 .isAfter(LocalDate.of(2019, 3, 16).atStartOfDay()
 .toInstant(ZoneOffset.UTC))
);

If we prefer to express the constraints as an expression (for example, a regular
expression), then we can use the PathMatcher interface. This interface comes with a
method called matches(Path path), which can tell if the given path matches this
matcher's pattern.

A FileSystem implementation supports the glob and regex syntaxes (and may
support others) via FileSystem.getPathMatcher(String syntaxPattern). The
constraints take the form of syntax:pattern.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[326]

Based on PathMatcher, we can write helper methods that are capable of covering a
wide range of constraints. For example, the following helper method only fetches files
that respect the given constraint as a syntax:pattern:

public static Stream<Path> fetchFilesMatching(Path root,
 String syntaxPattern) throws IOException {

 final PathMatcher matcher
 = root.getFileSystem().getPathMatcher(syntaxPattern);

 return Files.find(root, Integer.MAX_VALUE, (path, attr)
 -> matcher.matches(path) && !attr.isDirectory());
}

Finding all Java files via the glob syntax can be achieved as follows:

Stream<Path> resultAsStream
 = fetchFilesMatching(startPath, "glob:**/*.java");

If all we want to do is list the files from the current folder (without any constraints
and a single level deep), then we can rely on the Files.list() method, as shown in
the following example:

try (Stream<Path> allfiles = Files.list(startPath)) {
 ...
}

138. Reading/writing text files efficiently
In Java, reading files efficiently is a matter of choosing the right approach. For a better
understanding of the following example, let's assume that our platform's default
charset is UTF-8. Programmatically, the platform's default charset can be obtained
via Charset.defaultCharset().

First, we need to distinguish between raw binary data and text files from a Java
perspective. Dealing with raw binary data is the job of two abstract classes, that
is, InputStream and OutputStream. For streaming files of raw binary data, we
focus on the FileInputStream and FileOutputStream classes, which read/write a
byte (8 bits) at a time. For famous types of binary data, we also have dedicated classes
(for example, an audio file should be processed via AudioInputStream instead of
FileInputStream).

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[327]

While these classes are doing a spectacular job for raw binary data, they are not good
for text files because they are slow and may produce wrong outputs. This becomes
pretty clear if we think that streaming a text file via these classes means that each byte
is read from the text file and processed (the same tedious flow is needed for writing a
byte). Moreover, if a char has more than 1 byte, then it is possible to see some weird
characters. In other words, decoding and encoding 8 bits independent of the charset
(for example, Latin, Chinese, and so on) may produce unexpected output.

For example, let's suppose that we have the following Chinese poem saved in UTF-16:

Path chineseFile = Paths.get("chinese.txt");

...

The following code will not display it as expected:

try (InputStream is = new FileInputStream(chineseFile.toString())) {

 int i;
 while ((i = is.read()) != -1) {
 System.out.print((char) i);
 }
}

So, in order to fix this, we should specify the proper charset. While InputStream
doesn't have support for this, we can rely on InputStreamReader
(or OutputStreamReader, respectively). This class is a bridge from raw byte streams
to character streams and allows us to specify the charset:

try (InputStreamReader isr = new InputStreamReader(
 new FileInputStream(chineseFile.toFile()),
 StandardCharsets.UTF_16)) {

 int i;
 while ((i = isr.read()) != -1) {
 System.out.print((char) i);
 }
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[328]

Things are back on track but are still slow! Now, the application can read more than
one single byte at once (depending on the charset) and decodes them into characters
using the specified charset. But a few more bytes are still slow.

InputStreamReader is a bridge between ray binary data streams and character
streams. But Java provides the FileReader class as well. Its goal is to eliminate this
bridge for character streams that are represented by character files.

For text files, we have a dedicated class known as the FileReader class
(or FileWriter, respectively). This class reads 2 or 4 bytes (depending on the used
charset) at a time. Actually, before JDK 11, FileReader didn't support an explicit
charset. It simply used the platform's default charset. This isn't good for us because
the following code will not produce the expected output:

try (FileReader fr = new FileReader(chineseFile.toFile())) {

 int i;
 while ((i = fr.read()) != -1) {
 System.out.print((char) i);
 }
}

But starting with JDK 11, the FileReader class was enriched with two more
constructors that support an explicit charset:

FileReader​(File file, Charset charset)
FileReader​(String fileName, Charset charset)

This time, we can rewrite the preceding snippet of code and obtain the expected
output:

try (FileReader frch = new FileReader(
 chineseFile.toFile(), StandardCharsets.UTF_16)) {

 int i;
 while ((i = frch.read()) != -1) {
 System.out.print((char) i);
 }
}

Reading 2 or 4 bytes at a time is still better than reading 1, but it's still slow.
Moreover, notice that the preceding solutions use an int to store the retrieved char,
and we need to explicitly cast it to char in order to display it. Basically, the retrieved
char from the input file is converted into an int, and we convert it back into a char.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[329]

This is where buffering streams enter the scene. Think about what happens when we
watch a video online. While we are watching the video, the browser is buffering the
incoming bytes ahead of time. This way, we have a smooth experience because we
can see the bytes from the buffer and avoid the potential interruptions caused by
seeing the bytes during network transfer:

The same principle is used by classes such as BufferedInputStream,
BufferedOutputStream for raw binary streams and BufferedReader,
and BufferedWriter for character streams. The main idea is to buffer the data
before processing. This time, FileReader returns the data to BufferedReader until
it hits the end of the line (for example, \n or \n\r). BufferedReader uses RAM to
store the buffered data:

try (BufferedReader br = new BufferedReader(
 new FileReader(chineseFile.toFile(), StandardCharsets.UTF_16))) {

 String line;
 // keep buffering and print
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
}

So, instead of reading 2 bytes at a time, we read a complete line, which is much faster.
This is a really efficient way of reading text files.

For further optimization, we can set the size of the buffer via
dedicated constructors.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[330]

Notice that the BufferedReader class knows how to create and deal with the buffer
in the context of the incoming data but is independent of the source of data. In our
example, the source of data is FileReader, which is a file, but the same
BufferedReader can buffer data from different sources (for example, network, file,
console, printer, sensor, and so on). In the end, we read what we buffered.

The preceding examples represent the main approaches for reading text files in Java.
Starting with JDK 8, a new set of methods were added to make our life easier. In
order to create a BufferedReader, we can rely on Files.newBufferedReader
(Path path, Charset cs) as well:

try (BufferedReader br = Files.newBufferedReader(
 chineseFile, StandardCharsets.UTF_16)) {

 String line;
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
}

For BufferedWriter, we have Files.newBufferedWriter(). The advantage of
these methods is that they support Path directly.

For fetching a text file's content as a Stream<T>, take a look at the problem in
the Streaming a file's content section.

Another valid solution that may cause eye strain is as follows:

try (BufferedReader br = new BufferedReader(new InputStreamReader(
 new FileInputStream(chineseFile.toFile()),
 StandardCharsets.UTF_16))) {

 String line;
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
}

Now, it's time to talk about reading text files directly into memory.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[331]

Reading text files in memory
The Files class comes with two methods that can read an entire text file in memory.
One of them is List<String> readAllLines​(Path path, Charset cs):

List<String> lines = Files.readAllLines(
 chineseFile, StandardCharsets.UTF_16);

Moreover, we can read the entire content in a String via Files.readString​(Path
path, Charset cs):

String content = Files.readString(chineseFile,
 StandardCharsets.UTF_16);

While these methods are very convenient for relatively small files, they are not a good
choice for large files. Trying to fetch large files in memory is prone to
OutOfMemoryError and, obviously, will consume a lot of memory. Alternatively, in
the case of huge files (for example, 200 GB), we can focus on memory-mapped files
(MappedByteBuffer). MappedByteBuffer allows us to create and modify huge files
and treat them as very big arrays. They look like they are in memory, even if they are
not. Everything happens at the native level:

// or use, Files.newByteChannel()
try (FileChannel fileChannel = (FileChannel.open(chineseFile,
 EnumSet.of(StandardOpenOption.READ)))) {

 MappedByteBuffer mbBuffer = fileChannel.map(
 FileChannel.MapMode.READ_ONLY, 0, fileChannel.size());

 if (mbBuffer != null) {
 String bufferContent
 = StandardCharsets.UTF_16.decode(mbBuffer).toString();

 System.out.println(bufferContent);
 mbBuffer.clear();
 }
}

For huge files, it is advisable to traverse the buffer with a fixed size, as follows:

private static final int MAP_SIZE = 5242880; // 5 MB in bytes

try (FileChannel fileChannel = (FileChannel.open(chineseFile,
 EnumSet.of(StandardOpenOption.READ)))) {

 int position = 0;
 long length = fileChannel.size();

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[332]

 while (position < length) {
 long remaining = length - position;
 int bytestomap = (int) Math.min(MAP_SIZE, remaining);

 MappedByteBuffer mbBuffer = fileChannel.map(
 MapMode.READ_ONLY, position, bytestomap);

 ... // do something with the current buffer

 position += bytestomap;
 }
}

JDK 13 prepares the release of non-volatile MappedByteBuffers. Stay
tuned!

Writing text files
For each class/method dedicated to reading a text file (for example,
BufferedReader and readString()) Java provides its counterpart for writing a
text file (for example, BufferedWriter and writeString()). Here is an example of
writing a text file via BufferedWriter:

Path textFile = Paths.get("sample.txt");

try (BufferedWriter bw = Files.newBufferedWriter(
 textFile, StandardCharsets.UTF_8, StandardOpenOption.CREATE,
 StandardOpenOption.WRITE)) {
 bw.write("Lorem ipsum dolor sit amet, ... ");
 bw.newLine();
 bw.write("sed do eiusmod tempor incididunt ...");
}

A very handy method for writing an Iterable into a text file is Files.write​(Path
path, Iterable<? extends CharSequence> lines, Charset cs,

OpenOption... options). For example, let's write the content of a list into a text
file (each element from the list is written on a line in the file):

List<String> linesToWrite = Arrays.asList("abc", "def", "ghi");
Path textFile = Paths.get("sample.txt");
Files.write(textFile, linesToWrite, StandardCharsets.UTF_8,
 StandardOpenOption.CREATE, StandardOpenOption.WRITE);

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[333]

Finally, to write a String to a file, we can rely on the Files.writeString​(Path
path, CharSequence csq, OpenOption... options) method:

Path textFile = Paths.get("sample.txt");

String lineToWrite = "Lorem ipsum dolor sit amet, ...";
Files.writeString(textFile, lineToWrite, StandardCharsets.UTF_8,
 StandardOpenOption.CREATE, StandardOpenOption.WRITE);

Via StandardOpenOption, we can control how the file is opened.
In the preceding examples, the files were created if they didn't exist
(CREATE) and they were opened for write access (WRITE). Many
other options are available (for example, APPEND,
DELETE_ON_CLOSE, and so on).

Finally, writing a text file via MappedByteBuffer can be accomplished as follows
(this can be useful for writing huge text files):

Path textFile = Paths.get("sample.txt");
CharBuffer cb = CharBuffer.wrap("Lorem ipsum dolor sit amet, ...");

try (FileChannel fileChannel = (FileChannel) Files.newByteChannel(
 textFile, EnumSet.of(StandardOpenOption.CREATE,
 StandardOpenOption.READ, StandardOpenOption.WRITE))) {

 MappedByteBuffer mbBuffer = fileChannel
 .map(FileChannel.MapMode.READ_WRITE, 0, cb.length());

 if (mbBuffer != null) {
 mbBuffer.put(StandardCharsets.UTF_8.encode(cb));
 }
}

139. Reading/writing binary files efficiently
In the previous problem, Reading/writing text files efficiently, we talked about buffering
streaming (for a clear picture, consider reading that problem before this one). Things
work the same for binary files too, and so we can jump directly into some examples.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[334]

Let's consider the following binary file and its size in bytes:

Path binaryFile = Paths.get(
 "build/classes/modern/challenge/Main.class");

int fileSize = (int) Files.readAttributes(
 binaryFile, BasicFileAttributes.class).size();

We can read the file's content in a byte[] via FileInputStream (this doesn't use
buffering):

final byte[] buffer = new byte[fileSize];
try (InputStream is = new FileInputStream(binaryFile.toString())) {

 int i;
 while ((i = is.read(buffer)) != -1) {
 System.out.print("\nReading ... ");
 }
}

However, the preceding example isn't very efficient. Achieving high efficiency when
it comes to reading the buffer.length bytes from this input stream into a byte array
can be done via BufferedInputStream, as follows:

final byte[] buffer = new byte[fileSize];

try (BufferedInputStream bis = new BufferedInputStream(
 new FileInputStream(binaryFile.toFile()))) {

 int i;
 while ((i = bis.read(buffer)) != -1) {
 System.out.print("\nReading ... " + i);
 }
}

FileInputStream can be obtained via the Files.newInputStream() method as
well. The advantage of this method consists of the fact that it supports Path directly:

final byte[] buffer = new byte[fileSize];

try (BufferedInputStream bis = new BufferedInputStream(
 Files.newInputStream(binaryFile))) {

 int i;
 while ((i = bis.read(buffer)) != -1) {
 System.out.print("\nReading ... " + i);
 }
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[335]

If the file is too large to fit in a buffer of the file size, then it is preferable to read it via
a smaller buffer with a fixed size (for example, 512 bytes) and the read() flavors,
which are as follows:

read​(byte[] b)
read​(byte[] b, int off, int len)
readNBytes​(byte[] b, int off, int len)
readNBytes​(int len)

The read() method without arguments will read the input stream
byte by byte. This is the most inefficient way, especially without
using buffering.

Alternatively, if our goal is to read the input stream as a byte array, we can rely on
ByteArrayInputStream (it uses an internal buffer, so there is no need to use
BufferedInputStream):

final byte[] buffer = new byte[fileSize];

try (ByteArrayInputStream bais = new ByteArrayInputStream(buffer)) {

 int i;
 while ((i = bais.read(buffer)) != -1) {
 System.out.print("\nReading ... ");
 }
}

The preceding approaches are a good fit for raw binary data, but sometimes, our
binary files contain certain data (for example, ints, floats, and so on). In such cases,
DataInputStream and DataOutputStream provide convenient methods for reading
and writing certain data types. Let's consider that we have a file, data.bin, that
contains float numbers. We can efficiently read it as follows:

Path dataFile = Paths.get("data.bin");

try (DataInputStream dis = new DataInputStream(
 new BufferedInputStream(Files.newInputStream(dataFile)))) {

 while (dis.available() > 0) {
 float nr = dis.readFloat();
 System.out.println("Read: " + nr);
 }
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[336]

These two classes are just two of the data filters provided by Java. For
an overview of all the supported data filters, check out the subclasses
of FilterInputStream. Moreover, the Scanner class is a good
alternative for reading certain types of data. Check out the problem
in the Working with Scanner section for more information.

Now, let's see how we can read binary files directly into memory.

Reading binary files into memory
Reading an entire binary file into memory can be accomplished via
Files.readAllBytes():

byte[] bytes = Files.readAllBytes(binaryFile);

A similar method exists in the InputStream class as well.

While these methods are very convenient for relatively small files, they are not a good
choice for large files. Trying to fetch large files into memory is prone to OOM errors
and, obviously, will consume a lot of memory. Alternatively, in the case of huge files
(e.g., 200 GB), we can focus on memory-mapped files (MappedByteBuffer).
MappedByteBuffer allows us to create and modify huge files and treat them as a
very big array. They look like they are in memory even if they are not. Everything
happens at the native level:

try (FileChannel fileChannel = (FileChannel.open(binaryFile,
 EnumSet.of(StandardOpenOption.READ)))) {

 MappedByteBuffer mbBuffer = fileChannel.map(
 FileChannel.MapMode.READ_ONLY, 0, fileChannel.size());

 System.out.println("\nRead: " + mbBuffer.limit() + " bytes");
}

For huge files it is advisable to traverse the buffer with a fixed size as follows:

private static final int MAP_SIZE = 5242880; // 5 MB in bytes

try (FileChannel fileChannel = FileChannel.open(
 binaryFile, StandardOpenOption.READ)) {

 int position = 0;
 long length = fileChannel.size();

 while (position < length) {

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[337]

 long remaining = length - position;
 int bytestomap = (int) Math.min(MAP_SIZE, remaining);

 MappedByteBuffer mbBuffer = fileChannel.map(
 MapMode.READ_ONLY, position, bytestomap);

 ... // do something with the current buffer

 position += bytestomap;
 }
}

Writing binary files
An efficient way of writing binary files is by using BufferedOutputStream. For
example, writing a byte[] to a file can be accomplished as follows:

final byte[] buffer...;
Path classFile = Paths.get(
 "build/classes/modern/challenge/Main.class");

try (BufferedOutputStream bos = newBufferedOutputStream(
 Files.newOutputStream(classFile, StandardOpenOption.CREATE,
 StandardOpenOption.WRITE))) {

 bos.write(buffer);
}

If you're writing byte by byte, use the write(int b) method, and,
if you're writing a chunk of data, use the write​(byte[] b, int
off, int len) method.

A very handy method for writing a byte[] to a file is Files.write​(Path path,
byte[] bytes, OpenOption... options). For example, let's write the content of
the preceding buffer:

Path classFile = Paths.get(
 "build/classes/modern/challenge/Main.class");

Files.write(classFile, buffer,
 StandardOpenOption.CREATE, StandardOpenOption.WRITE);

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[338]

Writing a binary file via MappedByteBuffer can be accomplished as follows (this can
be useful for writing huge text files):

Path classFile = Paths.get(
 "build/classes/modern/challenge/Main.class");
try (FileChannel fileChannel = (FileChannel) Files.newByteChannel(
 classFile, EnumSet.of(StandardOpenOption.CREATE,
 StandardOpenOption.READ, StandardOpenOption.WRITE))) {

 MappedByteBuffer mbBuffer = fileChannel
 .map(FileChannel.MapMode.READ_WRITE, 0, buffer.length);

 if (mbBuffer != null) {
 mbBuffer.put(buffer);
 }
}

Finally, if we are writing a certain piece of data (not raw binary data), then we can
rely on DataOutputStream. This class comes with writeFoo() methods for
different kinds of data. For example, let's write several floats into a file:

Path floatFile = Paths.get("float.bin");

try (DataOutputStream dis = new DataOutputStream(
 new BufferedOutputStream(Files.newOutputStream(floatFile)))) {
 dis.writeFloat(23.56f);
 dis.writeFloat(2.516f);
 dis.writeFloat(56.123f);
}

140. Searching in big files
Searching and counting the number of occurrences of a certain string in a file is a
common task. Trying to achieve this as fast as possible is a mandatory requirement,
especially if the file is big (for example, 200 GB).

Note that the following implementations assume that string 11 occurs only once in
111, not twice. Moreover, the first three implementations rely on the following helper
method from Chapter 1, Strings, Numbers, and Math, the Counting a string in another
string section:

private static int countStringInString(String string, String tofind) {
 return string.split(Pattern.quote(tofind), -1).length - 1;
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[339]

With that being said, let's take a look at several approaches to this problem.

Solution based on BufferedReader
We already know from the previous problems that BufferedReader is very efficient
for reading text files. Therefore, we can use it to read a big file as well. While reading,
for each line obtained via BufferedReader.readLine(), we need to count the
number of occurrences of the searched string via countStringInString():

public static int countOccurrences(Path path, String text, Charset ch)
 throws IOException {

 int count = 0;

 try (BufferedReader br = Files.newBufferedReader(path, ch)) {
 String line;
 while ((line = br.readLine()) != null) {
 count += countStringInString(line, text);
 }
 }

 return count;
}

Solution based on Files.readAllLines()
If memory (RAM) is not a problem for us, then we can try to read the entire file into
memory (via Files.readAllLines()) and process it from there. Having the entire
file in memory sustains parallel processing. Therefore, if our hardware can be
highlighted by parallel processing, then we can try to rely on parallelStream(), as
follows:

public static int countOccurrences(Path path, String text, Charset ch)
 throws IOException {

 return Files.readAllLines(path, ch).parallelStream()
 .mapToInt((p) -> countStringInString(p, text))
 .sum();
}

If parallelStream() doesn't come with any benefits, then we can
simply switch to stream(). It is just a matter of benchmarking.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[340]

Solution based on Files.lines()
We can try to take advantage of streams via Files.lines() as well. This time, we
fetch the file as a lazy Stream<String>. If we can take advantage of parallel
processing (benchmarking reveals better performances), then it is very simple to
parallelize Stream<String> by calling the parallel() method:

public static int countOccurrences(Path path, String text, Charset ch)
 throws IOException {

 return Files.lines(path, ch).parallel()
 .mapToInt((p) -> countStringInString(p, text))
 .sum();
}

Solution based on Scanner
Starting with JDK 9, the Scanner class comes with a method that returns a stream of
delimiter-separated tokens, Stream<String> tokens(). If we treat the text to
search as the delimiter of Scanner and we count the entries of the Stream returned
by tokens(), then we obtain the correct result:

public static long countOccurrences(
 Path path, String text, Charset ch) throws IOException {

 long count;

 try (Scanner scanner = new Scanner(path, ch)
 .useDelimiter(Pattern.quote(text))) {

 count = scanner.tokens().count() - 1;
 }

 return count;
}

The constructors for scanner that support an explicit charset were
added in JDK 10.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[341]

Solution based on MappedByteBuffer
The last solution that we'll talk about here is based on Java NIO.2,
MappedByteBuffer, and FileChannel. This solution opens a memory-mapped byte
buffer (MappedByteBuffer) from a FileChannel on the given file. We traverse the
fetched byte buffer and look for matches with the searched string (this string is
converted into a byte[] and searching take place byte by byte).

For small files, it is faster to load the entire file into memory. For large/huge files, it is
faster to load and process the files in chunks (for example, a chunk of 5 MB). Once we
have loaded a chunk, we have to count the number of occurrences of the searched
string. We store the result and pass it to the next chunk of data. We repeat this until
the entire file has been traversed.

Let's take a look at the core lines of this implementation (take a look at the source
code bundled with this book for the complete code):

private static final int MAP_SIZE = 5242880; // 5 MB in bytes

public static int countOccurrences(Path path, String text)
 throws IOException {

 final byte[] texttofind = text.getBytes(StandardCharsets.UTF_8);
 int count = 0;

 try (FileChannel fileChannel = FileChannel.open(path,
 StandardOpenOption.READ)) {
 int position = 0;
 long length = fileChannel.size();

 while (position < length) {
 long remaining = length - position;
 int bytestomap = (int) Math.min(MAP_SIZE, remaining);

 MappedByteBuffer mbBuffer = fileChannel.map(
 MapMode.READ_ONLY, position, bytestomap);

 int limit = mbBuffer.limit();
 int lastSpace = -1;
 int firstChar = -1;

 while (mbBuffer.hasRemaining()) {
 // spaghetti code omitted for brevity
 ...
 }
 }

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[342]

 }

 return count;
}

This solution is extremely fast because the file is read directly from the operating
system's memory without having to be loaded into the JVM. The operations take
place at the native level, called the operating system level. Note that this
implementation works only for the UTF-8 charset, but it can be adapted for other
charsets as well.

141. Reading a JSON/CSV file as an object
JSON and CSV files are everywhere these days. Reading (deserialize) JSON/CSV files
can be a day-to-day task that typically precedes our business logic. Writing (serialize)
JSON/CSV files is also a popular task that typically occurs at the end of the business
logic. Between reading and writing such files, an application uses the data as objects.

Read/write a JSON file as an object
Let's start with three text files that represent typical JSON-like mappings:

In melons_raw.json, we have a JSON entry per line. Each line is a piece of JSON
that's independent of the previous line but has the same schema. In
melons_array.json, we have a JSON array, and in melons_map.json, we have a
JSON that fits well in a Java Map.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[343]

For each of these files, we have a Path, as follows:

Path pathArray = Paths.get("melons_array.json");
Path pathMap = Paths.get("melons_map.json");
Path pathRaw = Paths.get("melons_raw.json");

Now, let's take a look at three dedicated libraries for reading the contents of these
files as Melon instances:

public class Melon {

 private String type;
 private int weight;

 // getters and setters omitted for brevity
}

Using JSON-B
Java EE 8 comes with a JAXB-like, declarative JSON binding called JSON-B (JSR-367).
JSON-B is consistent with JAXB and other Java EE/SE APIs. Jakarta EE takes Java EE 8
JSON (P and B) to the next level. Its API is exposed via the javax.json.bind.Jsonb
and javax.json.bind.JsonbBuilder classes:

Jsonb jsonb = JsonbBuilder.create();

For deserialization, we use Jsonb.fromJson(), while, for serialization, we use
Jsonb.toJson():

Let's read melons_array.json as an Array of Melon:

Melon[] melonsArray = jsonb.fromJson(Files.newBufferedReader(
 pathArray, StandardCharsets.UTF_8), Melon[].class);

Let's read melons_array.json as a List of Melon:

List<Melon> melonsList
 = jsonb.fromJson(Files.newBufferedReader(
 pathArray, StandardCharsets.UTF_8), ArrayList.class);

Let's read melons_map.json as a Map of Melon:

Map<String, Melon> melonsMap
 = jsonb.fromJson(Files.newBufferedReader(
 pathMap, StandardCharsets.UTF_8), HashMap.class);

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[344]

Let's read melons_raw.json line by line into a Map:

Map<String, String> stringMap = new HashMap<>();

try (BufferedReader br = Files.newBufferedReader(
 pathRaw, StandardCharsets.UTF_8)) {

 String line;

 while ((line = br.readLine()) != null) {
 stringMap = jsonb.fromJson(line, HashMap.class);
 System.out.println("Current map is: " + stringMap);
 }
}

Let's read melons_raw.json line by line into a Melon:

try (BufferedReader br = Files.newBufferedReader(
 pathRaw, StandardCharsets.UTF_8)) {

 String line;

 while ((line = br.readLine()) != null) {
 Melon melon = jsonb.fromJson(line, Melon.class);
 System.out.println("Current melon is: " + melon);
 }
}

Let's write an object into a JSON file (melons_output.json):

Path path = Paths.get("melons_output.json");

jsonb.toJson(melonsMap, Files.newBufferedWriter(path,
 StandardCharsets.UTF_8, StandardOpenOption.CREATE,
 StandardOpenOption.WRITE));

Using Jackson
Jackson is a popular and fast library dedicated to processing
(serializing/deserializing) JSON data. The Jackson API relies
on com.fasterxml.jackson.databind.ObjectMapper. Let's go over the
preceding examples again, but this time using Jackson:

ObjectMapper mapper = new ObjectMapper();

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[345]

For deserialization, we use ObjectMapper.readValue(), while for serialization, we
use ObjectMapper.writeValue():

Let's read melons_array.json as an Array of Melon:

Melon[] melonsArray
 = mapper.readValue(Files.newBufferedReader(
 pathArray, StandardCharsets.UTF_8), Melon[].class);

Let's read melons_array.json as a List of Melon:

List<Melon> melonsList
 = mapper.readValue(Files.newBufferedReader(
 pathArray, StandardCharsets.UTF_8), ArrayList.class);

Let's read melons_map.json as a Map of Melon:

Map<String, Melon> melonsMap
 = mapper.readValue(Files.newBufferedReader(
 pathMap, StandardCharsets.UTF_8), HashMap.class);

Let's read melons_raw.json line by line into a Map:

Map<String, String> stringMap = new HashMap<>();

try (BufferedReader br = Files.newBufferedReader(
 pathRaw, StandardCharsets.UTF_8)) {

 String line;

 while ((line = br.readLine()) != null) {
 stringMap = mapper.readValue(line, HashMap.class);
 System.out.println("Current map is: " + stringMap);
 }
}

Let's read melons_raw.json line by line into a Melon:

try (BufferedReader br = Files.newBufferedReader(
 pathRaw, StandardCharsets.UTF_8)) {

 String line;

 while ((line = br.readLine()) != null) {
 Melon melon = mapper.readValue(line, Melon.class);
 System.out.println("Current melon is: " + melon);
 }
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[346]

Let's write an object into a JSON file (melons_output.json):

Path path = Paths.get("melons_output.json");

mapper.writeValue(Files.newBufferedWriter(path,
 StandardCharsets.UTF_8, StandardOpenOption.CREATE,
 StandardOpenOption.WRITE), melonsMap);

Using Gson
Gson is another fast library dedicated to processing (serializing/deserializing) JSON
data. In a Maven project, it can be added as a dependency in pom.xml. Its API relies
on a class name, com.google.gson.Gson. The code that's bundled with this book
provides a suite of examples for it.

Reading a CSV file as an object
The simplest CSV file looks like the file in the following illustration (lines of data
separated by commas):

A simple and efficient solution to deserializing this kind of CSV file relies on
the BufferedReader and String.split() methods. We can read each line from
the file via BufferedReader.readLine() and split it with a comma delimiter via
Spring.split(). The result (each line of content) can be stored in a List<String>.
The final result will be a List<List<String>>, as follows:

public static List<List<String>> readAsObject(
 Path path, Charset cs, String delimiter) throws IOException {

 List<List<String>> content = new ArrayList<>();

 try (BufferedReader br = Files.newBufferedReader(path, cs)) {

 String line;

 while ((line = br.readLine()) != null) {
 String[] values = line.split(delimiter);

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[347]

 content.add(Arrays.asList(values));
 }
 }

 return content;
}

If the CSV data has POJOs correspondents (for example, our CSV is the result of
serializing a bunch of Melon instances), then it can be deserialized, as shown in the
following example:

public static List<Melon> readAsMelon(
 Path path, Charset cs, String delimiter) throws IOException {

 List<Melon> content = new ArrayList<>();

 try (BufferedReader br = Files.newBufferedReader(path, cs)) {

 String line;

 while ((line = br.readLine()) != null) {
 String[] values = line.split(Pattern.quote(delimiter));
 content.add(new Melon(values[0], Integer.valueOf(values[1])));
 }
 }

 return content;
}

For complex CSV files, it is advisable to rely on dedicated libraries
(for example, OpenCSV, Apache Commons CSV, Super CSV, and so
on).

142. Working with temporary files/folders
The Java NIO.2 API provides support for working with temporary folders/files. For
example, we can easily locate the default location for temporary folders/files as
follows:

String defaultBaseDir = System.getProperty("java.io.tmpdir");

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[348]

Commonly, in Windows, the default temporary folder is C:\Temp,
%Windows%\Temp, or a temporary directory per user in Local Settings\Temp (this
location is usually controlled via the TEMP environment variable). In Linux/Unix, the
global temporary directories are /tmp and /var/tmp. The preceding line of code will
return the default location, depending on the operating system.

In the next section, we'll learn how to create a temporary folder/file.

Creating a temporary folder/file
Creating a temporary folder can be accomplished using Path
createTempDirectory​(Path dir, String prefix, FileAttribute<?>...
attrs). This is a static method in the Files class that can be used as follows:

Let's create a temporary folder in the OS's default location with no prefix:

// C:\Users\Anghel\AppData\Local\Temp\8083202661590940905
Path tmpNoPrefix = Files.createTempDirectory(null);

Let's create a temporary folder in the OS's default location with a custom
prefix:

// C:\Users\Anghel\AppData\Local\Temp\logs_5825861687219258744
String customDirPrefix = "logs_";
Path tmpCustomPrefix
 = Files.createTempDirectory(customDirPrefix);

Let's create a temporary folder in a custom location with a custom prefix:

// D:\tmp\logs_10153083118282372419
Path customBaseDir
 = FileSystems.getDefault().getPath("D:/tmp");
String customDirPrefix = "logs_";
Path tmpCustomLocationAndPrefix
 = Files.createTempDirectory(customBaseDir, customDirPrefix);

Creating a temporary file can be accomplished via Path createTempFile​(Path
dir, String prefix, String suffix, FileAttribute<?>... attrs). This
is a static method in the Files class that can be used as follows:

Let's create a temporary file in the OS's default location with no prefix and
suffix:

// C:\Users\Anghel\AppData\Local\Temp\16106384687161465188.tmp
Path tmpNoPrefixSuffix = Files.createTempFile(null, null);

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[349]

Let's create a temporary file in the OS's default location with a custom
prefix and suffix:

// C:\Users\Anghel\AppData\Local\Temp\log_402507375350226.txt
String customFilePrefix = "log_";
String customFileSuffix = ".txt";
Path tmpCustomPrefixAndSuffix
 = Files.createTempFile(customFilePrefix, customFileSuffix);

Let's create a temporary file in a custom location with a custom prefix and
suffix:

// D:\tmp\log_13299365648984256372.txt
Path customBaseDir
 = FileSystems.getDefault().getPath("D:/tmp");
String customFilePrefix = "log_";
String customFileSuffix = ".txt";
Path tmpCustomLocationPrefixSuffix = Files.createTempFile(
 customBaseDir, customFilePrefix, customFileSuffix);

In the following sections, we'll take a look at the different ways we can delete a
temporary folder/file.

Deleting a temporary folder/file via shutdown-hook
Deleting a temporary folder/file is a task that can be accomplished by the operating
system or specialized tools. However, sometimes, we need to control this
programmatically and delete a folder/file based on different design considerations.

A solution to this problem relies on the shutdown-hook mechanism, which can be
implemented via the Runtime.getRuntime().addShutdownHook() method. This
mechanism is useful whenever we need to complete certain tasks (for example,
cleanup tasks) right before the JVM shuts down. It is implemented as a Java thread
whose run() method is invoked when the shutdown-hook is executed by JVM at shut
down. This is shown in the following code:

Path customBaseDir = FileSystems.getDefault().getPath("D:/tmp");
String customDirPrefix = "logs_";
String customFilePrefix = "log_";
String customFileSuffix = ".txt";

try {
 Path tmpDir = Files.createTempDirectory(
 customBaseDir, customDirPrefix);
 Path tmpFile1 = Files.createTempFile(

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[350]

 tmpDir, customFilePrefix, customFileSuffix);
 Path tmpFile2 = Files.createTempFile(
 tmpDir, customFilePrefix, customFileSuffix);

 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 try (DirectoryStream<Path> ds
 = Files.newDirectoryStream(tmpDir)) {
 for (Path file: ds) {
 Files.delete(file);
 }

 Files.delete(tmpDir);
 } catch (IOException e) {
 ...
 }
 }
 });

 //simulate some operations with temp file until delete it
 Thread.sleep(10000);
} catch (IOException | InterruptedException e) {
 ...
}

A shutdown-hook will not be executed in the case of abnormal/forced
terminations (for example, JVM crashes, Terminal operations are
triggered, and so on). It runs when all the threads finish or when
System.exit(0) is called. It is advisable to run it fast since they
can be forcibly stopped before completion if something goes wrong
(for example, the OS shuts down). Programmatically, a shutdown-
hook can only be stopped by Runtime.halt().

Deleting a temporary folder/file via deleteOnExit()
Another solution for deleting a temporary folder/file relies on
the File.deleteOnExit() method. By calling this method, we can register for the
deletion of a folder/file. The deletion action happens when JVM shuts down:

Path customBaseDir = FileSystems.getDefault().getPath("D:/tmp");
String customDirPrefix = "logs_";
String customFilePrefix = "log_";
String customFileSuffix = ".txt";

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[351]

try {
 Path tmpDir = Files.createTempDirectory(
 customBaseDir, customDirPrefix);
 System.out.println("Created temp folder as: " + tmpDir);
 Path tmpFile1 = Files.createTempFile(
 tmpDir, customFilePrefix, customFileSuffix);
 Path tmpFile2 = Files.createTempFile(
 tmpDir, customFilePrefix, customFileSuffix);

 try (DirectoryStream<Path> ds = Files.newDirectoryStream(tmpDir)) {
 tmpDir.toFile().deleteOnExit();

 for (Path file: ds) {
 file.toFile().deleteOnExit();
 }
 } catch (IOException e) {
 ...
 }

 // simulate some operations with temp file until delete it
 Thread.sleep(10000);
} catch (IOException | InterruptedException e) {
 ...
}

It is advisable to only rely on this method (deleteOnExit()) when
the application manages a small number of temporary folders/files.
This method may consume a lot of memory (it consumes memory
for each temporary resource that's registered for deletion) and this
memory may not be released until JVM terminates. Pay attention,
since this method needs to be called in order to register each
temporary resource, and the deletion takes place in reverse order of
registration (for example, we must register a temporary folder
before registering its content).

Deleting a temporary file via DELETE_ON_CLOSE
Another solution when it comes to deleting a temporary file relies on
StandardOpenOption.DELETE_ON_CLOSE (this deletes the file when the stream is
closed). For example, the following piece of code creates a temporary file via the
createTempFile() method and opens a buffered writer stream for it with
DELETE_ON_CLOSE explicitly specified:

Path customBaseDir = FileSystems.getDefault().getPath("D:/tmp");
String customFilePrefix = "log_";

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[352]

String customFileSuffix = ".txt";
Path tmpFile = null;

try {
 tmpFile = Files.createTempFile(
 customBaseDir, customFilePrefix, customFileSuffix);
} catch (IOException e) {
 ...
}

try (BufferedWriter bw = Files.newBufferedWriter(tmpFile,
 StandardCharsets.UTF_8, StandardOpenOption.DELETE_ON_CLOSE)) {

 //simulate some operations with temp file until delete it
 Thread.sleep(10000);
} catch (IOException | InterruptedException e) {
 ...
}

This solution can be adopted for any file. It is not specific to
temporary resources.

143. Filtering files
Filtering files from a Path is a very common task. For example, we may only want the
files of a specific type, with a certain name pattern, modified today, and so on.

Filtering via Files.newDirectoryStream()
Without any kind of filter, we can easily loop a folder's content (one level deep) via
the Files.newDirectoryStream(Path dir) method. This method returns a
DirectoryStream<Path>, which is an object that we can use to iterate over the
entries in a directory:

Path path = Paths.get("D:/learning/books/spring");

try (DirectoryStream<Path> ds = Files.newDirectoryStream(path)) {

 for (Path file: ds) {
 System.out.println(file.getFileName());
 }
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[353]

If we want to enrich this snippet of code with a filter, then we have at least two
solutions. One solution relies on another flavor of the newDirectoryStream()
method, newDirectoryStream​(Path dir, String glob). Besides Path, this
method receives a filter by using the glob syntax. For example, we can filter the
D:/learning/books/spring folder for files that are of the PNG, JPG, and BMP
types:

try (DirectoryStream<Path> ds =
 Files.newDirectoryStream(path, "*.{png,jpg,bmp}")) {

 for (Path file: ds) {
 System.out.println(file.getFileName());
 }
}

When glob syntax cannot help us anymore, it's time to use another flavor of
newDirectoryStream() that gets a Filter, that is, newDirectoryStream​(Path
dir, DirectoryStream.Filter<? super Path> filter). First, let's define a
filter for files larger than 10 MB:

DirectoryStream.Filter<Path> sizeFilter
 = new DirectoryStream.Filter<>() {

 @Override
 public boolean accept(Path path) throws IOException {
 return (Files.size(path) > 1024 * 1024 * 10);
 }
};

We can also do this in functional-style:

DirectoryStream.Filter<Path> sizeFilter
 = p -> (Files.size(p) > 1024 * 1024 * 10);

Now, we can apply this filter like so:

try (DirectoryStream<Path> ds =
 Files.newDirectoryStream(path, sizeFilter)) {

 for (Path file: ds) {
 System.out.println(file.getFileName() + " " +
 Files.readAttributes(file, BasicFileAttributes.class).size()
 + " bytes");
 }
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[354]

Let's check out a few more filters that we can use with this technique:

The following is a user-defined filter for folders:

DirectoryStream.Filter<Path> folderFilter
 = new DirectoryStream.Filter<>() {

 @Override
 public boolean accept(Path path) throws IOException {
 return (Files.isDirectory(path, NOFOLLOW_LINKS));
 }
};

The following is a user-defined filter for files that have been modified
today:

DirectoryStream.Filter<Path> todayFilter
 = new DirectoryStream.Filter<>() {

 @Override
 public boolean accept(Path path) throws IOException {
 FileTime lastModified = Files.readAttributes(path,
 BasicFileAttributes.class).lastModifiedTime();

 LocalDate lastModifiedDate = lastModified.toInstant()
 .atOffset(ZoneOffset.UTC).toLocalDate();
 LocalDate todayDate = Instant.now()
 .atOffset(ZoneOffset.UTC).toLocalDate();

 return lastModifiedDate.equals(todayDate);
 }
};

The following is a user-defined filter for hidden files/folders:

DirectoryStream.Filter<Path> hiddenFilter
 = new DirectoryStream.Filter<>() {

 @Override
 public boolean accept(Path path) throws IOException {
 return (Files.isHidden(path));
 }
};

In the following sections, we'll take a look at the different ways we can filter a file.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[355]

Filtering via FilenameFilter
The FilenameFilter functional interface can be used to filter files from a folder as
well. First, we need to define a filter (for example, the following is a filter for files of
the PDF type):

String[] files = path.toFile().list(new FilenameFilter() {

 @Override
 public boolean accept(File folder, String fileName) {
 return fileName.endsWith(".pdf");
 }
});

We can do the same in functional-style:

FilenameFilter filter = (File folder, String fileName)
 -> fileName.endsWith(".pdf");

Let's make this more concise:

FilenameFilter filter = (f, n) -> n.endsWith(".pdf");

In order to use this filter, we need to pass it to the overloaded File.list
(FilenameFilter filter) or File.listFiles​(FilenameFilter filter)
method:

String[] files = path.toFile().list(filter);

The files array will only contain the names of the PDF files.

For fetching the result as a File[], we should call listFiles()
instead of list().

Filtering via FileFilter
FileFilter is another functional interface that can be used to filter files and folders.
For example, let's filter only folders:

File[] folders = path.toFile().listFiles(new FileFilter() {

 @Override
 public boolean accept(File file) {
 return file.isDirectory();

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[356]

 }
});

We can do the same in functional-style:

File[] folders = path.toFile().listFiles((File file)
 -> file.isDirectory());

Let's make this more concise:

File[] folders = path.toFile().listFiles(f -> f.isDirectory());

Finally, we can do this via member reference:

File[] folders = path.toFile().listFiles(File::isDirectory);

144. Discovering mismatches between two
files
The solution to this problem is comparing the content of two files (a byte by byte
comparison) until the first mismatch is found or the EOF is reached.

Let's consider the following four text files:

Only the first two files (file1.txt and file2.txt) are identical. Any other
comparison should reveal the presence of at least one mismatch.

One solution is to use MappedByteBuffer. This solution is super-fast and easy to
implement. We just open two FileChannels (one for each file) and perform a byte
by byte comparison until we find the first mismatch or EOF. If the files don't have the
same length in terms of bytes, then we assume that the files are not the same and
return immediately:

private static final int MAP_SIZE = 5242880; // 5 MB in bytes

public static boolean haveMismatches(Path p1, Path p2)
 throws IOException {

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[357]

 try (FileChannel channel1 = (FileChannel.open(p1,
 EnumSet.of(StandardOpenOption.READ)))) {

 try (FileChannel channel2 = (FileChannel.open(p2,
 EnumSet.of(StandardOpenOption.READ)))) {

 long length1 = channel1.size();
 long length2 = channel2.size();

 if (length1 != length2) {
 return true;
 }

 int position = 0;
 while (position < length1) {
 long remaining = length1 - position;
 int bytestomap = (int) Math.min(MAP_SIZE, remaining);

 MappedByteBuffer mbBuffer1 = channel1.map(
 MapMode.READ_ONLY, position, bytestomap);
 MappedByteBuffer mbBuffer2 = channel2.map(
 MapMode.READ_ONLY, position, bytestomap);

 while (mbBuffer1.hasRemaining()) {
 if (mbBuffer1.get() != mbBuffer2.get()) {
 return true;
 }
 }

 position += bytestomap;
 }
 }
 }

 return false;
}

JDK 13 has prepared the release of non-volatile
MappedByteBuffers. Stay tuned!

Starting with JDK 12, the Files class has been enriched with a new method
dedicated to pointing mismatches between two files. This method has the following
signature:

public static long mismatch ​(Path path, Path path2) throws IOException

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[358]

This method finds and returns the position of the first mismatched byte in the content
of two files. If there is no mismatch, then it returns -1:

long mismatches12 = Files.mismatch(file1, file2); // -1
long mismatches13 = Files.mismatch(file1, file3); // 51
long mismatches14 = Files.mismatch(file1, file4); // 60

145. Circular byte buffer
The Java NIO.2 API comes with an implementation of a byte buffer
called java.nio.ByteBuffer. Basically, this is an array of bytes (byte[]) that's
wrapped with a suite of methods dedicated to manipulating this array (for example,
get(), put(), and so on). A circular buffer (cyclic buffer, ring buffer, or circular
queue) is a fixed-size buffer that's connected end-to-end. The following diagram
shows us what a circular queue looks like:

A circular buffer relies on a pre-allocated array (pre-allocated capacity), but some
implementations may require a resizing capability as well. The elements are
written/added to the back (tail) and removed/read from the front (head); this can be
seen in the following diagram:

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[359]

For the main operations, that is, read (get) and write (put), a circular buffer maintains
a pointer (a read pointer and a write pointer). Both pointers are wrapped around the
buffer capacity. We can find out how many elements are available to be read and how
many free slots can be written whenever we like. This operation takes place in O(1).

A circular byte buffer is a circular buffer of bytes; it can be of chars or some other
type. This is exactly what we want to implement here. We can start by writing a stub
of our implementation, as follows:

public class CircularByteBuffer {

 private int capacity;
 private byte[] buffer;
 private int readPointer;
 private int writePointer;
 private int available;

 CircularByteBuffer(int capacity) {
 this.capacity = capacity;
 buffer = new byte[capacity];
 }

 public synchronized int available() {
 return available;
 }

 public synchronized int capacity() {
 return capacity;
 }

 public synchronized int slots() {
 return capacity - available;
 }

 public synchronized void clear() {
 readPointer = 0;
 writePointer = 0;
 available = 0;
 }
 ...
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[360]

Now, let's focus on putting (writing) new bytes and reading (getting) existing bytes.
For example, a circular byte buffer that has a capacity of 8 can be represented like so:

Let's take a look at what's happening at each step:

The circular byte buffer is empty and both pointers point to slot 0 (the first1.
slot).
We put the 5 bytes corresponding to hello in the buffer. readPointer2.
remains in the same position, while writePointer points to slot 5.
We get the bytes corresponding with the h, so readPointer moves to slot3.
1.
Finally, we attempt to put the bytes of world in the buffer. This word is4.
made up of 5 bytes, but we have only four free slots until we reach the
buffer capacity. This means we can only write the bytes that correspond
with world.

Now, let's take a look at the scenario in the following diagram:

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[361]

From left to right, the steps are as follows::

The first two steps are the same as the ones from the previous scenario.1.
We get the bytes for hell. This will move readPointer to position 4.2.
Finally, we put the bytes of world in the buffer. This time, the word fits in3.
the buffer and writePointer moves to slot 2.

Based on this flow, we can easily implement a method that puts one byte in the buffer
and another that gets one byte from the buffer, as follows:

public synchronized boolean put(int value) {
 if (available == capacity) {
 return false;
 }

 buffer[writePointer] = (byte) value;
 writePointer = (writePointer + 1) % capacity;
 available++;

 return true;
}

public synchronized int get() {
 if (available == 0) {
 return -1;
 }

 byte value = buffer[readPointer];
 readPointer = (readPointer + 1) % capacity;
 available--;

 return value;
}

If we check the Java NIO.2 ByteBuffer API, we'll notice that it exposes several
flavors of the get() and put() methods. For example, we should be able to pass a
byte[] to the get() method and this method should copy a range of elements from
the buffer into this byte[]. The elements are read from the buffer, starting with the
current readPointer, and are written in the given byte[], starting from the
specified offset.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[362]

The following diagram exposes a case where writePointer is greater than
readPointer:

On the left-hand side, we are reading 3 bytes. This moves readPointer from its
initial slot, 1, to slot 4. On the right-hand side, we are reading 4 (or more than 4) bytes.
Since there are only 4 bytes available, readPointer is moved from its initial slot to
the same slot as writePointer (slot 5).

Now, let's analyze a case where writePointer is less than readPointer:

On the left-hand side, we are reading 3 bytes. This moves readPointer from its
initial slot, 6, to slot 1. On the right-hand side, we are reading 4 (or more than 4) bytes.
This moves readPointer from its initial slot, 6, to slot 2 (the same slot as
writePointer).

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[363]

Now that we have these two use cases in mind, we can write a get() method in
order to copy a range of bytes from the buffer into the given byte[], as follows (this
method attempts to read len bytes from the buffer and write them into the given
byte[], starting from the given offset):

public synchronized int get(byte[] dest, int offset, int len) {

 if (available == 0) {
 return 0;
 }

 int maxPointer = capacity;

 if (readPointer < writePointer) {
 maxPointer = writePointer;
 }

 int countBytes = Math.min(maxPointer - readPointer, len);
 System.arraycopy(buffer, readPointer, dest, offset, countBytes);
 readPointer = readPointer + countBytes;

 if (readPointer == capacity) {
 int remainingBytes = Math.min(len - countBytes, writePointer);

 if (remainingBytes > 0) {
 System.arraycopy(buffer, 0, dest,
 offset + countBytes, remainingBytes);
 readPointer = remainingBytes;
 countBytes = countBytes + remainingBytes;
 } else {
 readPointer = 0;
 }
 }

 available = available - countBytes;

 return countBytes;
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[364]

Now, let's focus on putting the given byte[] into the buffer. The elements are read
from the given byte[] starting from the specified offset and are written into the
buffer starting from the current writePointer. The following diagram exposes a
case where writePointer is greater than readPointer:

On the left-hand side, we have the initial state of the buffer. So, readPointer points
to slot 2, and writePointer points to slot 5. After writing 4 bytes (on the right-hand
side), we can see that readPointer was not affected and that writePointer points
to slot 1.

The other use case assumes that readPointer is greater than writePointer:

On the left-hand side, we have the initial state of the buffer. So, readPointer points
to slot 4, and writePointer points to slot 2. After writing 4 bytes (on the right-hand
side), we can see that readPointer was not affected and that writePointer points
to slot 4. Notice that only two bytes were successfully written. This has happened
because we reached the maximum capacity of the buffer before writing all 4 bytes.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[365]

Now that we have these two use cases in mind, we can write a put() method in
order to copy a range of bytes from the given byte[] into the buffer, as follows (the
method attempts to read len bytes from the given byte[] starting from the given
offset and attempts to write them into the buffer starting from the current
writePointer):

public synchronized int put(byte[] source, int offset, int len) {

 if (available == capacity) {
 return 0;
 }

 int maxPointer = capacity;

 if (writePointer < readPointer) {
 maxPointer = readPointer;
 }

 int countBytes = Math.min(maxPointer - writePointer, len);
 System.arraycopy(source, offset, buffer, writePointer, countBytes);
 writePointer = writePointer + countBytes;

 if (writePointer == capacity) {
 int remainingBytes = Math.min(len - countBytes, readPointer);

 if (remainingBytes > 0) {
 System.arraycopy(source, offset + countBytes,
 buffer, 0, remainingBytes);
 writePointer = remainingBytes;
 countBytes = countBytes + remainingBytes;
 } else {
 writePointer = 0;
 }
 }

 available = available + countBytes;

 return countBytes;
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[366]

As we mentioned earlier, sometimes, we need to resize the buffer. For example, we
may want to double its size by simply calling the resize() method. Basically, this
means copying all the available bytes (elements) into a new buffer with double
capacity:

public synchronized void resize() {

 byte[] newBuffer = new byte[capacity * 2];

 if (readPointer < writePointer) {
 System.arraycopy(buffer, readPointer, newBuffer, 0, available);
 } else {
 int bytesToCopy = capacity - readPointer;
 System.arraycopy(buffer, readPointer, newBuffer, 0, bytesToCopy);
 System.arraycopy(buffer, 0, newBuffer, bytesToCopy, writePointer);
 }

 buffer = newBuffer;
 capacity = buffer.length;
 readPointer = 0;
 writePointer = available;
}

Check the source code bundled with this book to see how it works in full.

146. Tokenizing files
The content in a file is not always received in a way that means it can be processed
immediately and will require some additional steps so that it can be prepared for
processing. Typically, we need to tokenize the file and extract information from
different data structures (arrays, lists, maps, and so on).

For example, let's consider a file, clothes.txt:

Path path = Paths.get("clothes.txt");

Its content is as follows:

Top|white\10/XXL&Swimsuit|black\5/L
Coat|red\11/M&Golden Jacket|yellow\12/XLDenim|Blue\22/M

This file contains some clothing articles and their details separated by the &
character. A single article is represented as follows:

article name | color \ no. available items / size

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[367]

Here, we have several delimiters (&, |, \, /) and a very specific format.

Now, let's take a look at several solutions for extracting and tokenizing the
information from this file as a List. We'll collect this information in a utility class,
FileTokenizer.

One solution for fetching the articles in a List relies on the String.split()
method. Basically, we have to read the file line by line and apply String.split() to
each line. The result of tokenizing each line is collected in a List via
the List.addAll() method:

public static List<String> get(Path path,
 Charset cs, String delimiter) throws IOException {

 String delimiterStr = Pattern.quote(delimiter);
 List<String> content = new ArrayList<>();

 try (BufferedReader br = Files.newBufferedReader(path, cs)) {

 String line;
 while ((line = br.readLine()) != null) {
 String[] values = line.split(delimiterStr);
 content.addAll(Arrays.asList(values));
 }
 }

 return content;
}

Calling this method with the & delimiter will produce the following output:

[Top|white\10/XXL, Swimsuit|black\5/L, Coat|red\11/M, Golden
Jacket|yellow\12/XL, Denim|Blue\22/M]

Another flavor of the preceding solution can rely on Collectors.toList() instead
of Arrays.asList():

public static List<String> get(Path path,
 Charset cs, String delimiter) throws IOException {

 String delimiterStr = Pattern.quote(delimiter);
 List<String> content = new ArrayList<>();

 try (BufferedReader br = Files.newBufferedReader(path, cs)) {

 String line;
 while ((line = br.readLine()) != null) {

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[368]

 content.addAll(Stream.of(line.split(delimiterStr))
 .collect(Collectors.toList()));
 }
 }

 return content;
}

Alternatively, we can process the content in a lazy manner via Files.lines():

public static List<String> get(Path path,
 Charset cs, String delimiter) throws IOException {

 try (Stream<String> lines = Files.lines(path, cs)) {

 return lines.map(l -> l.split(Pattern.quote(delimiter)))
 .flatMap(Arrays::stream)
 .collect(Collectors.toList());
 }
}

For relatively small files, we can load it in memory and process it accordingly:

Files.readAllLines(path, cs).stream()
 .map(l -> l.split(Pattern.quote(delimiter)))
 .flatMap(Arrays::stream)
 .collect(Collectors.toList());

Another solution can rely on JDK 8's Pattern.splitAsStream() method. This
method creates a stream from the given input sequence. For the sake of variation, this
time, let's collect the resulted list via Collectors.joining(";"):

public static List<String> get(Path path,
 Charset cs, String delimiter) throws IOException {

 Pattern pattern = Pattern.compile(Pattern.quote(delimiter));
 List<String> content = new ArrayList<>();

 try (BufferedReader br = Files.newBufferedReader(path, cs)) {

 String line;
 while ((line = br.readLine()) != null) {
 content.add(pattern.splitAsStream(line)
 .collect(Collectors.joining(";")));
 }
 }
 return content;
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[369]

Let's call this method with the & delimiter:

List<String> tokens = FileTokenizer.get(
 path, StandardCharsets.UTF_8, "&");

The result is as follows:

[Top|white\10/XXL;Swimsuit|black\5/L, Coat|red\11/M;Golden
Jacket|yellow\12/XL, Denim|Blue\22/M]

So far, the presented solutions obtain a list of articles by applying a single delimiter.
But sometimes, we need to apply more delimiters. For example, let's assume that we
want to obtain the following output (list):

[Top, white, 10, XXL, Swimsuit, black, 5, L, Coat, red, 11, M, Golden
Jacket, yellow, 12, XL, Denim, Blue, 22, M]

In order to obtain this list, we have to apply several delimiters (&, |, \, and /).
This can be accomplished by using String.split() and passing a regular
expression based on the logical OR operator (x|y) to it:

public static List<String> getWithMultipleDelimiters(
 Path path, Charset cs, String...delimiters) throws IOException {

 String[] escapedDelimiters = new String[delimiters.length];
 Arrays.setAll(escapedDelimiters, t -> Pattern.quote(delimiters[t]));
 String delimiterStr = String.join("|", escapedDelimiters);

 List<String> content = new ArrayList<>();

 try (BufferedReader br = Files.newBufferedReader(path, cs)) {

 String line;
 while ((line = br.readLine()) != null) {
 String[] values = line.split(delimiterStr);
 content.addAll(Arrays.asList(values));
 }
 }

 return content;
}

Let's call this method with our delimiters (&, |, \, and /) to obtain the required
result:

List<String> tokens = FileTokenizer.getWithMultipleDelimiters(
 path, StandardCharsets.UTF_8,
 new String[] {"&", "|", "\\", "/"});

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[370]

Ok; so far, so good! All of these solutions are based on String.split() and
Pattern.splitAsStream(). Another set of solutions can rely on the
StringTokenizer class (it doesn't excel at performance, so use it carefully). This
class can apply a delimiter (or more than one) to the given string and expose the two
main methods for controlling it, that is, hasMoreElements() and nextToken():

public static List<String> get(Path path,
 Charset cs, String delimiter) throws IOException {

 StringTokenizer st;
 List<String> content = new ArrayList<>();

 try (BufferedReader br = Files.newBufferedReader(path, cs)) {

 String line;
 while ((line = br.readLine()) != null) {
 st = new StringTokenizer(line, delimiter);
 while (st.hasMoreElements()) {
 content.add(st.nextToken());
 }
 }
 }

 return content;
}

It can be used in conjunction with Collectors as well:

public static List<String> get(Path path,
 Charset cs, String delimiter) throws IOException {

 List<String> content = new ArrayList<>();

 try (BufferedReader br = Files.newBufferedReader(path, cs)) {

 String line;
 while ((line = br.readLine()) != null) {
 content.addAll(Collections.list(
 new StringTokenizer(line, delimiter)).stream()
 .map(t -> (String) t)
 .collect(Collectors.toList()));
 }
 }

 return content;
}

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[371]

Multiple delimiters can be used if we separate them using //:

public static List<String> getWithMultipleDelimiters(
 Path path, Charset cs, String...delimiters) throws IOException {

 String delimiterStr = String.join("//", delimiters);
 StringTokenizer st;
 List<String> content = new ArrayList<>();

 try (BufferedReader br = Files.newBufferedReader(path, cs)) {

 String line;
 while ((line = br.readLine()) != null) {
 st = new StringTokenizer(line, delimiterStr);
 while (st.hasMoreElements()) {
 content.add(st.nextToken());
 }
 }
 }

 return content;
}

For better performance and regular expression support (that is, high
flexibility) it is advisable to rely on String.split() instead of
StringTokenizer. From the same category, consider the Working
with Scanner section as well.

147. Writing formatted output directly to a file
Let's suppose that we have 10 numbers (integers and doubles) and we want them to
be nicely formatted (have an indentation, alignment, and a number of decimals that
sustain readability and usefulness) in a file.

In our first attempt, we wrote them to the file like so (no formatting was applied):

Path path = Paths.get("noformatter.txt");

try (BufferedWriter bw = Files.newBufferedWriter(path,
 StandardCharsets.UTF_8, StandardOpenOption.CREATE,
 StandardOpenOption.WRITE)) {

 for (int i = 0; i < 10; i++) {
 bw.write("| " + intValues[i] + " | " + doubleValues[i] + " | ");
 bw.newLine();

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[372]

 }
}

The output of the preceding code is similar to what's shown on the left-hand side of
the following diagram:

However, we want to obtain the result that's shown on the right-hand side of the
preceding diagram. In order to solve this problem, we need to use
the String.format() method. This method allows us to specify the format rules as
a string that respects the following pattern:

%[flags][width][.precision]conversion-character

Now, let's take a look at what represents each component of this pattern:

[flags] is optional and consists of standard approaches for modifying the
output. Often, they are used for formatting integers and floating-point
numbers.
[width] is optional and sets the field width for our output (the minimum
number of characters written to the output).
[.precision] is optional and specifies the number of digits of precision
for floating-point values (or the length of a substring to extract from a
String).
conversion-character is mandatory and tells us how the argument will
be formatted. The most used conversion-characters are as follows:

s: Used for formatting strings
d: Used for formatting decimal integers
f: Used for formatting floating-point numbers
t: Used for formatting date/time values

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[373]

As a line separator, we can use %n.

With this knowledge of formatting rules, we can obtain what we want as follows
(%6s is used for the integers while %.3f is used for the doubles):

Path path = Paths.get("withformatter.txt");

try (BufferedWriter bw = Files.newBufferedWriter(path,
 StandardCharsets.UTF_8, StandardOpenOption.CREATE,
 StandardOpenOption.WRITE)) {

 for (int i = 0; i<10; i++) {
 bw.write(String.format("| %6s | %.3f |",
 intValues[i], doubleValues[i]));
 bw.newLine();
 }
}

Another solution can be provided via the Formatter class. This class is dedicated to
format strings and uses the same formatting rules as String.format(). It has a
format() method, which we can use to rewrite the preceding snippet of code:

Path path = Paths.get("withformatter.txt");

try (Formatter output = new Formatter(path.toFile())) {

 for (int i = 0; i < 10; i++) {
 output.format("| %6s | %.3f |%n", intValues[i], doubleValues[i]);
 }
}

How about formatting only the integer's numbers?

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[374]

Well, we can obtain this by applying a DecimalFormat and a string formatter, as
follows:

Path path = Paths.get("withformatter.txt");
DecimalFormat formatter = new DecimalFormat("###,### bytes");

try (Formatter output = new Formatter(path.toFile())) {

 for (int i = 0; i < 10; i++) {
 output.format("%12s%n", formatter.format(intValues[i]));
 }
}

148. Working with Scanner
Scanner exposes an API for parsing text from strings, files, the console, and so on.
Parsing is the process of tokenizing the given input and returning it as needed (for
example, integers, floats, doubles, and so on). By default, Scanner parses the given
input by using a white space (default delimiter) and exposes the tokens via a suite of
nextFoo() methods (for example, next(), nextLine(), nextInt(),
nextDouble(), and so on).

From the same category of problems, consider the Tokenizing
files section as well.

For example, let's assume that we have a file (doubles.txt) that contains double
numbers separated by spaces, as shown in the following illustration:

If we want to obtain this text as doubles, then we can read it and rely on a snippet of
spaghetti code to tokenize and convert it into doubles. Alternatively, we can rely on
Scanner and its nextDouble() method, as follows:

try (Scanner scanDoubles = new Scanner(
 Path.of("doubles.txt"), StandardCharsets.UTF_8)) {

 while (scanDoubles.hasNextDouble()) {

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[375]

 double number = scanDoubles.nextDouble();
 System.out.println(number);
 }
}

The output of the preceding code is as follows:

23.4556
1.23
...

However, a file may contain mixed information of different types. For example, the
file (people.txt) in the following illustration contains strings and integers that are
separated by different delimiters (a comma and a semicolon):

Scanner exposes a method called useDelimiter(). This method takes an argument
of the String or Pattern type in order to specify the delimiter(s) that should be
used as a regular expression:

try (Scanner scanPeople = new Scanner(Path.of("people.txt"),
 StandardCharsets.UTF_8).useDelimiter(";|,")) {

 while (scanPeople.hasNextLine()) {
 System.out.println("Name: " + scanPeople.next().trim());
 System.out.println("Surname: " + scanPeople.next());
 System.out.println("Age: " + scanPeople.nextInt());
 System.out.println("City: " + scanPeople.next());
 }
}

The output of using this method is as follows:

Name: Matt
Surname: Kyle
Age: 23
City: San Francisco
...

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[376]

Starting with JDK 9, Scanner exposes a new method called tokens(). This method
returns a stream of delimiter-separated tokens from Scanner. For example, we can
use it to parse the people.txt file and print it on the console, as follows:

try (Scanner scanPeople = new Scanner(Path.of("people.txt"),
 StandardCharsets.UTF_8).useDelimiter(";|,")) {

 scanPeople.tokens().forEach(t -> System.out.println(t.trim()));
}

The output of using the preceding method is as follows:

Matt
Kyle
23
San Francisco
...

Alternatively, we can join the tokens by space:

try (Scanner scanPeople = new Scanner(Path.of("people.txt"),
 StandardCharsets.UTF_8).useDelimiter(";|,")) {

 String result = scanPeople.tokens()
 .map(t -> t.trim())
 .collect(Collectors.joining(" "));
}

In the Searching in big files section, there is an example of how to use
this method to search for a certain piece of text in a file.

The output of using the preceding method is as follows:

Matt Kyle 23 San Francisco Darel Der 50 New York ...

In terms of the tokens() methods, JDK 9 also comes with a method
called findAll(). This is a very handy method for finding all the tokens that respect
a certain regular expression (provided as a String or Pattern). This method returns
a Stream<MatchResult> and can be used like so:

try (Scanner sc = new Scanner(Path.of("people.txt"))) {

 Pattern pattern = Pattern.compile("4[0-9]");

 List<String> ages = sc.findAll(pattern)

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[377]

 .map(MatchResult::group)
 .collect(Collectors.toList());

 System.out.println("Ages: " + ages);
}

The preceding code selects all the tokens that represent ages between 40 and 49 years
old, that is, 40, 43, and 43.

Scanner is a convenient approach to use if we wish to parse the input that's provided
in the console:

Scanner scanConsole = new Scanner(System.in);

String name = scanConsole.nextLine();
String surname = scanConsole.nextLine();
int age = scanConsole.nextInt();
// an int cannot include "\n" so we need
//the next line just to consume the "\n"
scanConsole.nextLine();
String city = scanConsole.nextLine();

Note that, for numeric inputs (read via nextInt(), nextFloat(),
and so on), we need to consume the newline character as well (this
occurs when we hit Enter). Basically, Scanner will not fetch this
character when parsing a number, and so it will go in the next token.
If we don't consume it by adding a nextLine() code line then, from
this point forward, the inputs will become unaligned and lead to an
exception of the InputMismatchException type or come to a
premature end.
The Scanner constructors that support charsets were introduced in
JDK 10.

Let's take a look at the difference between Scanner and BufferedReader.

Java I/O Paths, Files, Buffers, Scanning, and Formatting Chapter 6

[378]

Scanner versus BufferedReader
So, should we use Scanner or BufferedReader? Well, if we need to parse the file,
then Scanner is the way to go; otherwise, BufferedReader is more suitable. A head-
to-head comparison of them will reveal the following:

BufferedReader is faster than Scanner since it doesn't perform any
parsing operations.
BufferedReader excels when it comes to reading while Scanner excels
when it comes to parsing.
By default, BufferedReader uses a buffer of 8 KB, while Scanner uses a
buffer of 1 KB.
BufferedReader is a good fit for reading long strings, while Scanner is
better for short inputs.
BufferedReader is synchronized, but Scanner is not.
A Scanner can use a BufferedReader, while the opposite is not possible.
This is shown in the following code:

try (Scanner scanDoubles = new Scanner(Files.newBufferedReader(
 Path.of("doubles.txt"), StandardCharsets.UTF_8))) {
 ...
}

Summary
We've reached the end of this chapter, where we covered various I/O-specific
problems. From manipulating, walking, and watching paths to streaming files and
efficient ways of reading/writing text and binary files, we have covered a lot.

Download the applications from this chapter to view the results and additional
details.

7
Java Reflection Classes,
Interfaces, Constructors,

Methods, and Fields
This chapter includes 17 problems that involve the Java Reflection API. From classical
topics such as inspecting and instantiating Java artifacts (for example, modules,
packages, classes, interfaces, superclasses, constructors, methods, annotations, and
arrays) to synthetic and bridge constructs or nest-based access control (JDK 11), this
chapter provides solid coverage of the Java Reflection API. By the end of this chapter,
the Java Reflection API will have no secrets left unturned, and you will be ready to
show your colleagues what reflection can do.

Problems
Use the following problems to test your Java Reflection API programming prowess. I
strongly encourage you to give each problem a try before you turn to the solutions
and download the example programs:

Inspecting packages: Write several examples for inspecting Java packages149.
(for example, names, a list of classes, and so on).
Inspecting classes and superclasses: Write several examples for inspecting150.
classes and superclasses (for example, get Class via the class name,
modifiers, implemented interfaces, constructors, methods, and fields).
Instantiating via a reflected constructor: Write a program that creates151.
instances via reflection.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[380]

Getting the annotation of a receiver type: Write a program that gets the152.
annotation on a receiver type.
Getting synthetic and bridge constructs: Write a program that gets153.
synthetic and bridge constructs via reflection.
Checking the variable number of arguments: Write a program that checks154.
whether a method gets a variable number of arguments.
Checking default methods: Write a program that checks whether a method155.
is default.
Nest-based access control via reflection: Write a program that provides156.
access to nest-based constructs via reflection.
Reflection for getters and setters: Write several examples that invoke157.
getters and setters via reflection. Additionally, write a program that
generates getters and setters via reflection.
Reflecting annotations: Write several examples of fetching different kinds158.
of annotations via reflection.
Invoking an instance method: Write a program that invokes an instance159.
method via reflection.
Getting static methods: Write a program that groups the static160.
methods of the given class and invokes one of them via reflection.
Getting generic types of methods, fields, and exceptions: Write a program161.
that fetches the generic types of the given methods, fields, and exceptions
via reflection.
Getting public and private fields: Write a program that fetches the public162.
and private fields of the given class via reflection.
Working with arrays: Write several examples for working with arrays via163.
reflection.
Inspecting modules: Write several examples for inspecting Java 9 modules164.
via reflection.
Dynamic proxies: Write a program that relies on dynamic proxies for165.
counting the number of invocations of the methods of the given interfaces.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[381]

Solutions
The following sections describe the solutions to the preceding problems. Remember
that there usually isn't a single correct way to solve a particular problem. Also,
remember that the explanations that are shown here only include the most interesting
and important details that are needed to solve the problems. You can download the
example solutions to view additional details and experiment with the programs
from https:/​/​github. ​com/ ​PacktPublishing/ ​Java- ​Coding- ​Problems.

149. Inspecting packages
The java.lang.Package class is our main focus when we need to obtain
information about a specific package. Using this class, we can find out the package's
name, the vendor that implemented this package, its title, the version of the package,
and so on.

This class is commonly used to find the name of a package that contains a certain
class. For example, the package name of the Integer class can be easily obtained as
follows:

Class clazz = Class.forName("java.lang.Integer");
Package packageOfClazz = clazz.getPackage();

// java.lang
String packageNameOfClazz = packageOfClazz.getName();

Now, let's find the package name of the File class:

File file = new File(".");
Package packageOfFile = file.getClass().getPackage();

// java.io
String packageNameOfFile = packageOfFile.getName();

If we are trying to find the package name of the current class, then
we can rely on this.getClass().getPackage().getName().
This works in a non-static context.

But if all we want is to quickly list all the packages of the current class loader, then we
can rely on the getPackages() method, as follows:

Package[] packages = Package.getPackages();

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[382]

Based on the getPackages() method, we can list all the packages defined by the
caller's class loader, as well as its ancestors, which start with a given prefix, as
follows:

public static List<String> fetchPackagesByPrefix(String prefix) {

 return Arrays.stream(Package.getPackages())
 .map(Package::getName)
 .filter(n -> n.startsWith(prefix))
 .collect(Collectors.toList());
}

If this method lives in a utility class named Packages, then we can call it as follows:

List<String> packagesSamePrefix
 = Packages.fetchPackagesByPrefix("java.util");

You will see output similar to the following:

java.util.function, java.util.jar, java.util.concurrent.locks,
java.util.spi, java.util.logging, ...

Sometimes, we just want to list all the classes of a package in the system class loader.
Let's see how we can do this.

Getting the classes of a package
For example, we may want to list the classes from one of the packages of the current
application (for example, the modern.challenge package) or the classes from one of
the packages from our compile-time libraries (for example, commons-
lang-2.4.jar).

Classes are wrapped in packages that can be archived in JARs, though they don't
have to be. In order to cover both cases, we need to discover whether the given
package lives in a JAR or not. We can do this by loading the resource via
ClassLoader.getSystemClassLoader().getResource(package_path) and
checking the returned URL of the resource. If the package doesn't live in a JAR, then a
resource will be a URL starting with the file: scheme, as in the following example
(we are using modern.challenge):

file:/D:/Java%20Modern%20Challenge/Code/Chapter%207/Inspect%20packages
/build/classes/modern/challenge

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[383]

But if the package is inside a JAR (for example,
org.apache.commons.lang3.builder), then the URL will start with the jar:
scheme, as in the following example:

jar:file:/D:/.../commons-
lang3-3.9.jar!/org/apache/commons/lang3/builder

If we take into consideration that a resource of a package from a JAR starts with the
jar: prefix, then we can write a method to distinguish between them, as follows:

private static final String JAR_PREFIX = "jar:";

public static List<Class<?>> fetchClassesFromPackage(
 String packageName) throws URISyntaxException, IOException {

 List<Class<?>> classes = new ArrayList<>();
 String packagePath = packageName.replace('.', '/');

 URL resource = ClassLoader
 .getSystemClassLoader().getResource(packagePath);

 if (resource != null) {
 if (resource.toString().startsWith(JAR_PREFIX)) {
 classes.addAll(fetchClassesFromJar(resource, packageName));
 } else {
 File file = new File(resource.toURI());
 classes.addAll(fetchClassesFromDirectory(file, packageName));
 }
 } else {
 throw new RuntimeException("Resource not found for package: "
 + packageName);
 }

 return classes;
}

So, if the given package is in a JAR, then we call another helper method,
fetchClassesFromJar(); otherwise, we call this helper method,
fetchClassesFromDirectory(). As their names suggest, these helpers know how
to extract the classes of the given package from a JAR or from a directory.

Mainly, these two methods are just some snippets of spaghetti code that are meant to
identify the files that have the .class extension. Each class is passed through
Class.forName() to ensure that it is returned as Class, not as String. Both
methods are available in the code bundled with this book.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[384]

How about listing the classes from packages that are not in the system class loader,
for example, a package from an external JAR? A convenient way to accomplish this
relies on URLClassLoader. This class is used to load classes and resources from a
search path of URLs that refer to both JAR files and directories. We will deal only
with JARs, but it is pretty straightforward to do this for directories as well.

So, based on the given path, we need to fetch all the JARs and return them as URL[]
(this array is needed to define URLClassLoader). For example, we can rely on
the Files.find() method to traverse the given path and extract all the JARs, like so:

public static URL[] fetchJarsUrlsFromClasspath(Path classpath)
 throws IOException {

 List<URL> urlsOfJars = new ArrayList<>();
 List<File> jarFiles = Files.find(
 classpath,
 Integer.MAX_VALUE,
 (path, attr) -> !attr.isDirectory() &&
 path.toString().toLowerCase().endsWith(JAR_EXTENSION))
 .map(Path::toFile)
 .collect(Collectors.toList());

 for (File jarFile: jarFiles) {

 try {
 urlsOfJars.add(jarFile.toURI().toURL());
 } catch (MalformedURLException e) {
 logger.log(Level.SEVERE, "Bad URL for{0} {1}",
 new Object[] {
 jarFile, e
 });
 }
 }

 return urlsOfJars.toArray(URL[]::new);
}

Notice that we are scanning all the subdirectories, starting with the given path. Of
course, this is a design decision and it is easy to parameterize the depth of searching.
For now, let's fetch the JARs from the tomcat8/lib folder (there is no need to install
Tomcat especially for this; just use any other local directory of JARs and do the
proper modifications):

URL[] urls = Packages.fetchJarsUrlsFromClasspath(
 Path.of("D:/tomcat8/lib"));

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[385]

Now, we can instantiate URLClassLoader:

URLClassLoader urlClassLoader = new URLClassLoader(
 urls, Thread.currentThread().getContextClassLoader());

This will construct a new URLClassLoader object for the given URLs and will use
the current class loader for delegation (the second argument can be null as well).
Our URL[] points only to JARs, but as a rule of thumb, any jar: scheme URL is
assumed to refer to a JAR file, and any file: scheme URL that ends with / is
assumed to refer to a directory.

One of the JARs that's present in the tomcat8/lib folder is called tomcat-
jdbc.jar. In this JAR, there is a package called org.apache.tomcat.jdbc.pool.
Let's list the classes of this package:

List<Class<?>> classes = Packages.fetchClassesFromPackage(
 "org.apache.tomcat.jdbc.pool", urlClassLoader);

The fetchClassesFromPackage() method is a helper that simply scans the
URL[] array of URLClassLoader and fetches the classes that are in the given
package. Its source code is available with the code bundled with this book.

Inspecting packages inside modules
If we go with Java 9 modularity, then our packages will live inside modules. For
example, if we have a class called Manager in a package called com.management in a
module called org.tournament, then we can fetch all the packages of this module
like so:

Manager mgt = new Manager();
Set<String> packages = mgt.getClass().getModule().getPackages();

In addition, if we want to create a class, then we need the following
Class.forName() flavor:

Class<?> clazz = Class.forName(mgt.getClass()
 .getModule(), "com.management.Manager");

Keep in mind that each module is represented on disk as a directory with the same
name. For example, the org.tournament module is on disk a folder with this name.
Moreover, each module is mapped as a separate JAR with this name (for example,
org.tournament.jar). By having these coordinates in mind, it is pretty
straightforward to adapt the code from this section so that it lists all the classes of a
given package of a given module.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[386]

150. Inspecting classes
By using the Java Reflection API, we can examine the details of a class—an object's
class name, modifiers, constructors, methods, fields, implemented interfaces, and so
on.

Let's assume that we have the following Pair class:

public final class Pair<L, R> extends Tuple implements Comparable {

 final L left;
 final R right;

 public Pair(L left, R right) {
 this.left = left;
 this.right = right;
 }

 public class Entry<L, R> {}
 ...
}

Let's also assume that we have an instance of it:

Pair pair = new Pair(1, 1);

Now, let's use reflection to get the name of the Pair class.

Get the name of the Pair class via an instance
By having an instance (an object) of Pair, we can find out the name of its class by
calling the getClass() method, as well as Class.getName(), getSimpleName(),
and getCanonicalName(), as shown in the following example:

Class<?> clazz = pair.getClass();

// modern.challenge.Pair
System.out.println("Name: " + clazz.getName());

// Pair
System.out.println("Simple name: " + clazz.getSimpleName());

// modern.challenge.Pair
System.out.println("Canonical name: " + clazz.getCanonicalName());

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[387]

An anonymous class doesn't have simple and canonical names.

Notice that getSimpleName() returns the unqualified class name. Alternatively, we
can obtain the class as follows:

Class<Pair> clazz = Pair.class;
Class<?> clazz = Class.forName("modern.challenge.Pair");

Getting the Pair class modifiers
In order to get the modifiers (public, protected, private, final, static,
abstract, and interface) of a class, we can call the Class.getModifiers()
method. This method returns an int value representing each modifier as a flag bit.
For decoding the result, we rely on the Modifier class, as follows:

int modifiers = clazz.getModifiers();

System.out.println("Is public? "
 + Modifier.isPublic(modifiers)); // true
System.out.println("Is final? "
 + Modifier.isFinal(modifiers)); // true
System.out.println("Is abstract? "
 + Modifier.isAbstract(modifiers)); // false

Getting the Pair class implemented interfaces
In order to obtain the interfaces that are directly implemented by a class or interface
represented by an object, we simply call Class.getInterfaces(). This method
returns an array. Since the Pair class implements a single interface (Comparable),
the returned array will contain a single element:

Class<?>[] interfaces = clazz.getInterfaces();

// interface java.lang.Comparable
System.out.println("Interfaces: " + Arrays.toString(interfaces));

// Comparable
System.out.println("Interface simple name: "
 + interfaces[0].getSimpleName());

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[388]

Getting the Pair class constructors
The public constructors of a class can be obtained via
the Class.getConstructors() class. The returned result is Constructor<?>[]:

Constructor<?>[] constructors = clazz.getConstructors();

// public modern.challenge.Pair(java.lang.Object,java.lang.Object)
System.out.println("Constructors: " + Arrays.toString(constructors));

For fetching all the declared constructors (for example, private and
protected constructors), call getDeclaredConstructors().
When searching for a certain constructor, call getConstructor
(Class<?>... parameterTypes) or getDeclaredConstructor
(Class<?>... parameterTypes).

Getting the Pair class fields
All the fields of a class are accessible via the Class.getDeclaredFields() method.
This method returns an array of Field:

Field[] fields = clazz.getDeclaredFields();

// final java.lang.Object modern.challenge.Pair.left
// final java.lang.Object modern.challenge.Pair.right
System.out.println("Fields: " + Arrays.toString(fields));

For fetching the actual name of the fields, we can easily provide a helper method:

public static List<String> getFieldNames(Field[] fields) {

 return Arrays.stream(fields)
 .map(Field::getName)
 .collect(Collectors.toList());
}

Now, we only receive the names of the fields:

List<String> fieldsName = getFieldNames(fields);

// left, right
System.out.println("Fields names: " + fieldsName);

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[389]

Getting the value of a field can be done via a general method named Object
get(Object obj) and via a set of getFoo() methods (consider documentation for
details). The obj represents a static or instance field. For example, let's assume
the ProcedureOutputs class that have has a private field named
callableStatement which is of type CallableStatement. Let's use Field.get()
method to access this field for checking if the CallableStatement is closed:

ProcedureOutputs procedureOutputs
 = storedProcedure.unwrap(ProcedureOutputs.class);

Field csField = procedureOutputs.getClass()
 .getDeclaredField("callableStatement");
csField.setAccessible(true);

CallableStatement cs
 = (CallableStatement) csField.get(procedureOutputs);

System.out.println("Is closed? " + cs.isClosed());

For fetching only the public fields, call getFields(). For
searching for a certain field, call getField​(String fieldName) or
getDeclaredField​(String name).

Getting the Pair class methods
The public methods of a class are accessible via the Class.getMethods() method.
This method returns an array of Method:

Method[] methods = clazz.getMethods();
// public boolean modern.challenge.Pair.equals(java.lang.Object)
// public int modern.challenge.Pair.hashCode()
// public int modern.challenge.Pair.compareTo(java.lang.Object)
// ...
System.out.println("Methods: " + Arrays.toString(methods));

For fetching the actual name of the methods, we can quickly provide a helper
method:

public static List<String> getMethodNames(Method[] methods) {

 return Arrays.stream(methods)
 .map(Method::getName)
 .collect(Collectors.toList());
}

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[390]

Now, we only retrieve the names of the methods:

List<String> methodsName = getMethodNames(methods);

// equals, hashCode, compareTo, wait, wait,
// wait, toString, getClass, notify, notifyAll
System.out.println("Methods names: " + methodsName);

For fetching all the declared methods (for example, private and
protected), call getDeclaredMethods(). For searching for a
certain method, call getMethod​(String name, Class<?>...
parameterTypes) or getDeclaredMethod​(String name,
Class<?>... parameterTypes).

Getting the Pair class module
If we go with JDK 9 modularity, then our classes will live inside modules. The Pair
class is not in a module, but we can easily get the module of a class via JDK
9's Class.getModule() method (if the class is not in a module, then this method
returns null):

// null, since Pair is not in a Module
Module module = clazz.getModule();

Getting the Pair class superclass
The Pair class extends the Tuple class; therefore, the Tuple class is a superclass of
Pair. We can obtain it via the Class.getSuperclass() method, as follows:

Class<?> superClass = clazz.getSuperclass();
// modern.challenge.Tuple
System.out.println("Superclass: " + superClass.getName());

Getting the name of a certain type
Starting with JDK 8, we can get an informative string for the name of a certain type.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[391]

This method returns the same string as one or more of getName(),
getSimpleName(), or getCanonicalName():

For primitives, it returns the same for all three methods:

System.out.println("Type: " + int.class.getTypeName()); // int

For Pair, it returns the same thing as getName() and
getCanonicalName():

// modern.challenge.Pair
System.out.println("Type name: " + clazz.getTypeName());

For inner classes (like Entry is for Pair), it returns the same thing as
getName():

// modern.challenge.Pair$Entry
System.out.println("Type name: "
 + Pair.Entry.class.getTypeName());

For an anonymous class, it returns the same thing as getName():

Thread thread = new Thread() {
 public void run() {
 System.out.println("Child Thread");
 }
};

// modern.challenge.Main$1
System.out.println("Anonymous class type name: "
 + thread.getClass().getTypeName());

For arrays, it returns the same thing as getCanonicalName():

Pair[] pairs = new Pair[10];
// modern.challenge.Pair[]
System.out.println("Array type name: "
 + pairs.getClass().getTypeName());

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[392]

Getting a string that describes the class
Starting with JDK 8, we can obtain a quick description of a class (containing
modifiers, name, types parameters, and so on) via the Class.toGenericString()
method.

Let's take a look at several examples:

// public final class modern.challenge.Pair<L,R>
System.out.println("Description of Pair: "
 + clazz.toGenericString());

// public abstract interface java.lang.Runnable
System.out.println("Description of Runnable: "
 + Runnable.class.toGenericString());

// public abstract interface java.util.Map<K,V>
System.out.println("Description of Map: "
 + Map.class.toGenericString());

Getting the type descriptor string for a class
Starting with JDK 12, we can obtain the type descriptor of a class as a String object
via the Class.descriptorString() method:

// Lmodern/challenge/Pair;
System.out.println("Type descriptor of Pair: "
 + clazz.descriptorString());

// Ljava/lang/String;
System.out.println("Type descriptor of String: "
 + String.class.descriptorString());

Getting the component type of an array
For arrays only, JDK 12 provides the Class<?> componentType() method. This
method returns the component type of the array, as shown in the following two
examples:

Pair[] pairs = new Pair[10];
String[] strings = new String[] {"1", "2", "3"};

// class modern.challenge.Pair
System.out.println("Component type of Pair[]: "
 + pairs.getClass().componentType());

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[393]

// class java.lang.String
System.out.println("Component type of String[]: "
 + strings.getClass().componentType());

Getting a class for an array type whose component
type is described by Pair
Starting with JDK 12, we can get Class for an array type whose component type is
described by the given class via Class.arrayType():

Class<?> arrayClazz = clazz.arrayType();

// modern.challenge.Pair<L,R>[]
System.out.println("Array type: " + arrayClazz.toGenericString());

151. Instantiating via a reflected constructor
We can instantiate a class via Constructor.newInstance() using the Java
Reflection API.

Let's consider the following class, which has four constructors:

public class Car {

 private int id;
 private String name;
 private Color color;

 public Car() {}

 public Car(int id, String name) {
 this.id = id;
 this.name = name;
 }

 public Car(int id, Color color) {
 this.id = id;
 this.color = color;
 }

 public Car(int id, String name, Color color) {
 this.id = id;
 this.name = name;
 this.color = color;

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[394]

 }

 // getters and setters omitted for brevity
}

A Car instance can be created via one of these four constructors. The Constructor
class exposes a method that takes the types of the parameters of a constructor and
returns a Constructor object that reflects the matched constructor. This method is
called getConstructor​(Class<?>... parameterTypes).

Let's call each of the preceding constructors:

Class<Car> clazz = Car.class;

Constructor<Car> emptyCnstr
 = clazz.getConstructor();

Constructor<Car> idNameCnstr
 = clazz.getConstructor(int.class, String.class);

Constructor<Car> idColorCnstr
 = clazz.getConstructor(int.class, Color.class);

Constructor<Car> idNameColorCnstr
 = clazz.getConstructor(int.class, String.class, Color.class);

Furthermore, Constructor.newInstance​(Object... initargs) can return an
instance of Car that corresponds with the invoked constructor:

Car carViaEmptyCnstr = emptyCnstr.newInstance();

Car carViaIdNameCnstr = idNameCnstr.newInstance(1, "Dacia");

Car carViaIdColorCnstr = idColorCnstr
 .newInstance(1, new Color(0, 0, 0));

Car carViaIdNameColorCnstr = idNameColorCnstr
 .newInstance(1, "Dacia", new Color(0, 0, 0));

Now, is time to see how we can instantiate a private constructor via reflection.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[395]

Instantiating a class via a private constructor
The Java Reflection API can be used to instantiate a class via its private constructor
as well. For example, let's suppose that we have a utility class called Cars. Following
best practices, we will define this class as final and with a private constructor to
not allow instances:

public final class Cars {

 private Cars() {}
 // static members
}

Fetching this constructor can be accomplished via
Class.getDeclaredConstructor(), as follows:

Class<Cars> carsClass = Cars.class;
Constructor<Cars> emptyCarsCnstr = carsClass.getDeclaredConstructor();

Calling newInstance() at this instance will throw IllegalAccessException since
the invoked constructor has private access. However, Java Reflection allows us to
modify the access level via the flag method, Constructor.setAccessible(). This
time, the instantiation works as expected:

emptyCarsCnstr.setAccessible(true);
Cars carsViaEmptyCnstr = emptyCarsCnstr.newInstance();

In order to block this approach, it is advisable to throw an error from a private
constructor, as follows:

public final class Cars {

 private Cars() {
 throw new AssertionError("Cannot be instantiated");
 }

 // static members
}

This time, the instantiation attempt will fail with AssertionError.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[396]

Instantiating a class from a JAR
Let's suppose that we have the Guava JAR in the D:/Java Modern
Challenge/Code/lib/ folder, and we want to create an instance of
CountingInputStream and read one byte from a file.

First, we define a URL[] array for the Guava JAR, as follows:

URL[] classLoaderUrls = new URL[] {
 new URL(
 "file:///D:/Java Modern Challenge/Code/lib/guava-16.0.1.jar")
};

Then, we will define URLClassLoader for this URL[] array:

URLClassLoader urlClassLoader = new URLClassLoader(classLoaderUrls);

Next, we will load the target class (CountingInputStream is a class that counts the
number of bytes that are read from InputStream):

Class<?> cisClass = urlClassLoader.loadClass(
 "com.google.common.io.CountingInputStream");

Once the target class has been loaded, we can fetch its constructor
(CountingInputStream has a single constructor that wraps the given
InputStream):

Constructor<?> constructor
 = cisClass.getConstructor(InputStream.class);

Furthermore, we can create an instance of CountingInputStream via this
constructor:

Object instance = constructor.newInstance(
 new FileInputStream ​(Path.of("test.txt").toFile()));

In order to ensure that the returned instance is operational, let's call two of its
methods (the read() method reads a single byte at once, while the getCount()
method returns the number of read bytes):

Method readMethod = cisClass.getMethod("read");
Method countMethod = cisClass.getMethod("getCount");

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[397]

Next, let's read a single byte and see what getCount() returns:

readMethod.invoke(instance);
Object readBytes = countMethod.invoke(instance);
System.out.println("Read bytes (should be 1): " + readBytes); // 1

Useful snippets of code
As a bonus, let's look at several snippets of code that are commonly needed when
working with reflection and constructors.

First, let's fetch the number of available constructors:

Class<Car> clazz = Car.class;
Constructor<?>[] cnstrs = clazz.getConstructors();
System.out.println("Car class has "
 + cnstrs.length + " constructors"); // 4

Now, let's see how many parameters have each of these four constructors:

for (Constructor<?> cnstr : cnstrs) {
 int paramCount = cnstr.getParameterCount();
 System.out.println("\nConstructor with "
 + paramCount + " parameters");
}

In order to get details about each parameter of a constructor, we can call
Constructor.getParameters(). This method returns an array of Parameter (this
class was added in JDK 8 and it provides a comprehensive list of methods for
dissecting a parameter):

for (Constructor<?> cnstr : cnstrs) {
 Parameter[] params = cnstr.getParameters();
 ...
}

If we just need to know the types of the parameters, then
Constructor.getParameterTypes() will do the job:

for (Constructor<?> cnstr : cnstrs) {
 Class<?>[] typesOfParams = cnstr.getParameterTypes();
 ...
}

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[398]

152. Getting the annotation of a receiver type
Starting with JDK 8, we can use explicit receiver parameters. Mainly, this means that
we can declare an instance method that takes a parameter of the enclosing type with
the this Java keyword.

Via explicit receiver parameters, we can attach type annotations to this. For example,
let's assume that we have the following annotation:

@Target({ElementType.TYPE_USE})
@Retention(RetentionPolicy.RUNTIME)
public @interface Ripe {}

Let's use it to annotate this in the eat() method of the Melon class:

public class Melon {
 ...
 public void eat(@Ripe Melon this) {}
 ...
}

In other words, we can only call the eat() method if the instance of Melon represents
a ripe melon:

Melon melon = new Melon("Gac", 2000);

// works only if the melon is ripe
melon.eat();

Getting the annotation on an explicit receiver parameter using reflection can be
accomplished via JDK 8 with
the java.lang.reflect.Executable.getAnnotatedReceiverType() method.
This method is available in the Constructor and Method classes as well, and so we
can use it like so:

Class<Melon> clazz = Melon.class;
Method eatMethod = clazz.getDeclaredMethod("eat");

AnnotatedType annotatedType = eatMethod.getAnnotatedReceiverType();

// modern.challenge.Melon
System.out.println("Type: " + annotatedType.getType().getTypeName());

// [@modern.challenge.Ripe()]
System.out.println("Annotations: "
 + Arrays.toString(annotatedType.getAnnotations()));

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[399]

// [interface java.lang.reflect.AnnotatedType]
System.out.println("Class implementing interfaces: "
 + Arrays.toString(annotatedType.getClass().getInterfaces()));

AnnotatedType annotatedOwnerType
 = annotatedType.getAnnotatedOwnerType();

// null
System.out.println("\nAnnotated owner type: " + annotatedOwnerType);

153. Getting synthetic and bridge constructs
By using synthetic constructs, we can understand almost any construct that's added by
the compiler. More precisely, conforming to the Java language specification: any
constructs introduced by a Java compiler that do not have a corresponding construct in the
source code must be marked as synthetic, except for default constructors, the class
initialization method, and the values and valueOf() methods of the Enum class.

There are different kinds of synthetic constructs (for example, fields, methods, and
constructors), but let's take a look at an example of a synthetic field. Let's assume that
we have the following class:

public class Melon {
 ...
 public class Slice {}
 ...
}

Notice that we have an inner class called Slice. When the code is compiled, the
compiler will alter this class by adding a synthetic field that's meant to references the
top-level class. This synthetic field facilities access to the enclosing class members from
a nested class.

In order to check the presence of this synthetic field, let's fetch all the declared fields
and count them:

Class<Melon.Slice> clazzSlice = Melon.Slice.class;
Field[] fields = clazzSlice.getDeclaredFields();

// 1
System.out.println("Number of fields: " + fields.length);

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[400]

Even if we didn't explicitly declare any fields, notice that one field has been reported.
Let's see whether it is synthetic and take a look at its name:

// true
System.out.println("Is synthetic: " + fields[0].isSynthetic());

// this$0
System.out.println("Name: " + fields[0].getName());

Similar to this example, we can check whether a method or a
constructor is synthetic via the Method.isSynthetic() and
Constructor.isSynthetic() methods.

Now, let's talk about bridge methods. These methods are also synthetic, and their goal
is to handle the type-erasure of generics.

Consider the following Melon class:

public class Melon implements Comparator<Melon> {

 @Override
 public int compare(Melon m1, Melon m2) {
 return Integer.compare(m1.getWeight(), m2.getWeight());
 }
 ...
}

Here, we implement the Comparator interface and override the compare() method.
Moreover, we explicitly specified that the compare() method takes two Melon
instances. The compiler will proceed to perform type-erasure and create a new method
that takes two objects, as follows:

public int compare(Object m1, Object m2) {
 return compare((Melon) m1, (Melon) m2);
}

This method is known as a synthetic bridge method. We can't see it, but the Java
Reflection API can:

Class<Melon> clazz = Melon.class;
Method[] methods = clazz.getDeclaredMethods();
Method compareBridge = Arrays.asList(methods).stream()
 .filter(m -> m.isSynthetic() && m.isBridge())
 .findFirst()
 .orElseThrow();

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[401]

// public int modern.challenge.Melon.compare(
// java.lang.Object, java.lang.Object)
System.out.println(compareBridge);

154. Checking the variable number of
arguments
In Java, a method can receive a variable number of arguments if its signature contains
an argument of the varargs type.

For example, the plantation() method takes a variable number of arguments, for
example, Seed... seeds:

public class Melon {
 ...
 public void plantation(String type, Seed...seeds) {}
 ...
}

Now, the Java Reflection API can tell whether this method supports a variable
number of arguments via the Method.isVarArgs() method, as follows:

Class<Melon> clazz = Melon.class;
Method[] methods = clazz.getDeclaredMethods();

for (Method method: methods) {
 System.out.println("Method name: " + method.getName()
 + " varargs? " + method.isVarArgs());
}

You will receive output similar to the following:

Method name: plantation, varargs? true
Method name: getWeight, varargs? false
Method name: toString, varargs? false
Method name: getType, varargs? false

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[402]

155. Checking default methods
Java 8 has enriched the concept of interfaces with default methods. These methods
are written inside interfaces and have a default implementation. For example, the
Slicer interface has a default method called slice():

public interface Slicer {

 public void type();

 default void slice() {
 System.out.println("slice");
 }
}

Now, any implementation of Slicer must implement the type() method and,
optionally, can override the slice() method or rely on the default implementation.

The Java Reflection API can identify a default method via
the Method.isDefault() flag method:

Class<Slicer> clazz = Slicer.class;
Method[] methods = clazz.getDeclaredMethods();

for (Method method: methods) {
 System.out.println("Method name: " + method.getName()
 + ", is default? " + method.isDefault());
}

We will receive the following output:

Method name: type, is default? false
Method name: slice, is default? true

156. Nest-based access control via reflection
Among the features of JDK 11, we have several hotspots (changes at bytecode level).
One of these hotspots is known as JEP 181, or nest-based access control (nests).
Basically, the nest term defines a new access control context that allows classes that are
logically part of the same code entity, but which are compiled with distinct class files, to access
each other's private members without the need for compilers to insert accessibility-broadening
bridge methods.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[403]

So, in other words, nests allow nested classes to be compiled to different class files
that belong to the same enclosing class. These are then allowed to access each other's
private classes without the use of synthetic/bridge methods.

Let's consider the following code:

public class Car {

 private String type = "Dacia";

 public class Engine {

 private String power = "80 hp";

 public void addEngine() {
 System.out.println("Add engine of " + power
 + " to car of type " + type);
 }
 }
}

Let's run javap (the Java class file disassembler tool that allows us to analyze the
bytecode) for Car.class in JDK 10. The following screenshot highlights the
important part of this code:

As we can see, to access the enclosing class field, Car.type, from
the Engine.addEngine() method, Java has altered the code and added a
bridge package-private method known as access$000(). Mainly, this is
synthetically generated and can be seen via reflection using the
Method.isSynthetic() and Method.isBridge() methods.

Even if we see (or perceive) the Car (outer) and Engine (nested) classes as being in
the same class, they are compiled to different files (Car.class and
Car$Engine.class). Conforming to this statement, our expectations imply that the
outer and the nested classes can access each other's private members.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[404]

But being in separate files, this is not possible. In order to sustain our expectations,
Java adds the synthetic bridge package-private method, access$000().

However, Java 11 introduces the nests access control context, which provides support
for private access within outer and nested classes. This time, the outer and nested
classes are linked to two attributes and they form a nest (we say that they are
nestmates). Mainly, nested classes are linked to the NestMembers attribute, while the
outer class is linked to the NestHost attribute. No extra synthetic method is
generated.

In the following screenshot, we can see javap being executed in JDK 11 for
Car.class (notice the NestMembers attribute):

The following screenshot shows the javap output in JDK 11 for
Car$Engine.class (notice the NestHost attribute):

Access via the Reflection API
Without nest-based access control, reflection capabilities are also limited. For
example, before JDK 11, the following snippet of code would throw
IllegalAccessException:

Car newCar = new Car();
Engine engine = newCar.new Engine();

Field powerField = Engine.class.getDeclaredField("power");
powerField.set(engine, power);

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[405]

We can allow access by explicitly calling powerField.setAccessible(true):

...
Field powerField = Engine.class.getDeclaredField("power");
powerField.setAccessible(true);
powerField.set(engine, power);
...

Starting with JDK 11, there is no need to call setAccessible().

Moreover, JDK 11 comes with three methods that enrich the Java Reflection API with
support for nests. These methods are Class.getNestHost(),
Class.getNestMembers(), and Class.isNestmateOf().

Let's consider the following Melon class with several nested classes (Slice, Peeler,
and Juicer):

public class Melon {
 ...
 public class Slice {
 public class Peeler {}
 }

 public class Juicer {}
 ...
}

Now, let's define a Class for each of them:

Class<Melon> clazzMelon = Melon.class;
Class<Melon.Slice> clazzSlice = Melon.Slice.class;
Class<Melon.Juicer> clazzJuicer = Melon.Juicer.class;
Class<Melon.Slice.Peeler> clazzPeeler = Melon.Slice.Peeler.class;

In order to see NestHost of each class, we need to call Class.getNestHost():

// class modern.challenge.Melon
Class<?> nestClazzOfMelon = clazzMelon.getNestHost();

// class modern.challenge.Melon
Class<?> nestClazzOfSlice = clazzSlice.getNestHost();

// class modern.challenge.Melon
Class<?> nestClazzOfPeeler = clazzPeeler.getNestHost();

// class modern.challenge.Melon
Class<?> nestClazzOfJuicer = clazzJuicer.getNestHost();

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[406]

Two things should be highlighted here. First, note that NestHost of Melon is Melon
itself. Second, note that NestHost of Peeler is Melon, not Slice. Since Peeler is an
inner class of Slice, we may think that its NestHost is Slice, but this assumption is
not true.

Now, let's list NestMembers of each class:

Class<?>[] nestMembersOfMelon = clazzMelon.getNestMembers();
Class<?>[] nestMembersOfSlice = clazzSlice.getNestMembers();
Class<?>[] nestMembersOfJuicer = clazzJuicer.getNestMembers();
Class<?>[] nestMembersOfPeeler = clazzPeeler.getNestMembers();

All of them will return same NestMembers:

[class modern.challenge.Melon, class modern.challenge.Melon$Juicer,
class modern.challenge.Melon$Slice, class
modern.challenge.Melon$Slice$Peeler]

Finally, let's check nestmates:

boolean melonIsNestmateOfSlice
 = clazzMelon.isNestmateOf(clazzSlice); // true

boolean melonIsNestmateOfJuicer
 = clazzMelon.isNestmateOf(clazzJuicer); // true

boolean melonIsNestmateOfPeeler
 = clazzMelon.isNestmateOf(clazzPeeler); // true

boolean sliceIsNestmateOfJuicer
 = clazzSlice.isNestmateOf(clazzJuicer); // true

boolean sliceIsNestmateOfPeeler
 = clazzSlice.isNestmateOf(clazzPeeler); // true

boolean juicerIsNestmateOfPeeler
 = clazzJuicer.isNestmateOf(clazzPeeler); // true

157. Reflection for getters and setters
Just as a quick reminder, getters and setters are methods (also known as accessors)
that are used for accessing the fields of a class (for example, private fields).

First, let's see how we can fetch the existing getters and setters. Later on, we will try to
generate the missing getters and setters via reflection.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[407]

Fetching getters and setters
Mainly, there are several solutions for obtaining the getters and setters of a class via
reflection. Let's assume that we want to fetch the getters and setters of the following
Melon class:

public class Melon {

 private String type;
 private int weight;
 private boolean ripe;
 ...

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

 public int getWeight() {
 return weight;
 }

 public void setWeight(int weight) {
 this.weight = weight;
 }

 public boolean isRipe() {
 return ripe;
 }

 public void setRipe(boolean ripe) {
 this.ripe = ripe;
 }
 ...
}

Let's start with a solution that gets all the declared methods of a class via reflection
(for example, via Class.getDeclaredMethods()). Now, loop Method[] and filter
it by constraints that are specific to getters and setters (for example, start with
the get/set prefix, return void or a certain type, and so on).

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[408]

Another solution is getting all the declared fields of a class via reflection (for example,
via Class.getDeclaredFields()). Now, loop Field[] and try to obtain the
getters and setters via Class.getDeclaredMethod() by passing the name of the
field (prefixed with get/set/is and the first letter capitalized) and the type of the
field (in the case of setters) to it.

Finally, a more elegant solution will rely on the PropertyDescriptor and
Introspector APIs. These APIs are available in the java.beans.* package and are
dedicated to working with JavaBeans.

Many of the features that are exposed by these two classes rely on
reflection behind the scene.

The PropertyDescriptor class can return the method that's used for reading a
JavaBean property via getReadMethod(). Moreover, it can return the method that's
used for writing a JavaBean property via getWriteMethod(). Relying on these two
methods, we can fetch the getters and setters of the Melon class, as follows:

for (PropertyDescriptor pd:
 Introspector.getBeanInfo(Melon.class).getPropertyDescriptors()) {

 if (pd.getReadMethod() != null && !"class".equals(pd.getName())) {
 System.out.println(pd.getReadMethod());
 }

 if (pd.getWriteMethod() != null && !"class".equals(pd.getName())) {
 System.out.println(pd.getWriteMethod());
 }
}

The output is as follows:

public boolean modern.challenge.Melon.isRipe()
public void modern.challenge.Melon.setRipe(boolean)
public java.lang.String modern.challenge.Melon.getType()
public void modern.challenge.Melon.setType(java.lang.String)
public int modern.challenge.Melon.getWeight()
public void modern.challenge.Melon.setWeight(int)

Now, let's assume that we have the following Melon instance:

Melon melon = new Melon("Gac", 1000);

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[409]

Here, we want to call the getType() getter:

// the returned type is Gac
Object type = new PropertyDescriptor("type",
 Melon.class).getReadMethod().invoke(melon);

Now, let's call the setWeight() setter:

// set weight of Gac to 2000
new PropertyDescriptor("weight", Melon.class)
 .getWriteMethod().invoke(melon, 2000);

Calling for an inexistent property will cause IntrospectionException:

try {
 Object shape = new PropertyDescriptor("shape",
 Melon.class).getReadMethod().invoke(melon);
 System.out.println("Melon shape: " + shape);
} catch (IntrospectionException e) {
 System.out.println("Property not found: " + e);
}

Generating getters and setters
Let's assume that Melon has three fields (type, weight, and ripe) and defines only a
getter for type and a setter for ripe:

public class Melon {

 private String type;
 private int weight;
 private boolean ripe;
 ...

 public String getType() {
 return type;
 }

 public void setRipe(boolean ripe) {
 this.ripe = ripe;
 }
 ...
}

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[410]

In order to generate the missing getters and setters, we start by identifying them. The
following solution loops the declared fields of the given class and assumes that a foo
field doesn't have a getter if the following apply:

There is no get/isFoo() method
The return type is not the same as the field type
The number of arguments is not 0

For each missing getter, this solution adds in a map an entry containing the field
name and type:

private static Map<String, Class<?>>
 fetchMissingGetters(Class<?> clazz) {

 Map<String, Class<?>> getters = new HashMap<>();
 Field[] fields = clazz.getDeclaredFields();
 String[] names = new String[fields.length];
 Class<?>[] types = new Class<?>[fields.length];

 Arrays.setAll(names, i -> fields[i].getName());
 Arrays.setAll(types, i -> fields[i].getType());

 for (int i = 0; i < names.length; i++) {
 String getterAccessor = fetchIsOrGet(names[i], types[i]);

 try {
 Method getter = clazz.getDeclaredMethod(getterAccessor);
 Class<?> returnType = getter.getReturnType();

 if (!returnType.equals(types[i]) ||
 getter.getParameterCount() != 0) {
 getters.put(names[i], types[i]);
 }
 } catch (NoSuchMethodException ex) {
 getters.put(names[i], types[i]);
 // log exception
 }
 }

 return getters;
}

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[411]

Further, the solution loops the declared fields of the given class and assume that a
foo field doesn't have a setter if the following apply:

The field is not final
There is no setFoo() method
The method returns void
The method has a single parameter
The parameter type is the same as the field type
If the parameter name is present, it should be the same as the name of the
field

For each missing setter, this solution adds an entry containing the field name and
type in a map:

private static Map<String, Class<?>>
 fetchMissingSetters(Class<?> clazz) {

 Map<String, Class<?>> setters = new HashMap<>();
 Field[] fields = clazz.getDeclaredFields();
 String[] names = new String[fields.length];
 Class<?>[] types = new Class<?>[fields.length];

 Arrays.setAll(names, i -> fields[i].getName());
 Arrays.setAll(types, i -> fields[i].getType());

 for (int i = 0; i < names.length; i++) {
 Field field = fields[i];
 boolean finalField = !Modifier.isFinal(field.getModifiers());

 if (finalField) {
 String setterAccessor = fetchSet(names[i]);

 try {
 Method setter = clazz.getDeclaredMethod(
 setterAccessor, types[i]);

 if (setter.getParameterCount() != 1 ||
 !setter.getReturnType().equals(void.class)) {

 setters.put(names[i], types[i]);
 continue;
 }

 Parameter parameter = setter.getParameters()[0];
 if ((parameter.isNamePresent() &&

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[412]

 !parameter.getName().equals(names[i])) ||
 !parameter.getType().equals(types[i])) {
 setters.put(names[i], types[i]);
 }
 } catch (NoSuchMethodException ex) {
 setters.put(names[i], types[i]);
 // log exception
 }
 }
 }

 return setters;
}

Well, so far, we know what fields don't have getters and setters. Their names and
types are stored in a map. Let's loop the map and generate the getters:

public static StringBuilder generateGetters(Class<?> clazz) {

 StringBuilder getterBuilder = new StringBuilder();
 Map<String, Class<?>> accessors = fetchMissingGetters(clazz);

 for (Entry<String, Class<?>> accessor: accessors.entrySet()) {
 Class<?> type = accessor.getValue();
 String field = accessor.getKey();
 String getter = fetchIsOrGet(field, type);

 getterBuilder.append("\npublic ")
 .append(type.getSimpleName()).append(" ")
 .append(getter)
 .append("() {\n")
 .append("\treturn ")
 .append(field)
 .append(";\n")
 .append("}\n");
 }

 return getterBuilder;
}

And let's generate the setters:

public static StringBuilder generateSetters(Class<?> clazz) {

 StringBuilder setterBuilder = new StringBuilder();
 Map<String, Class<?>> accessors = fetchMissingSetters(clazz);

 for (Entry<String, Class<?>> accessor: accessors.entrySet()) {

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[413]

 Class<?> type = accessor.getValue();
 String field = accessor.getKey();
 String setter = fetchSet(field);

 setterBuilder.append("\npublic void ")
 .append(setter)
 .append("(").append(type.getSimpleName()).append(" ")
 .append(field).append(") {\n")
 .append("\tthis.")
 .append(field).append(" = ")
 .append(field)
 .append(";\n")
 .append("}\n");
 }

 return setterBuilder;
}

The preceding solution relies on three simple helpers listed in the following. The code
is straightforward:

private static String fetchIsOrGet(String name, Class<?> type) {
 return "boolean".equalsIgnoreCase(type.getSimpleName()) ?
 "is" + uppercase(name) : "get" + uppercase(name);
}

private static String fetchSet(String name) {
 return "set" + uppercase(name);
}

private static String uppercase(String name) {
 return name.substring(0, 1).toUpperCase() + name.substring(1);
}

Now, let's call it for the Melon class:

Class<?> clazz = Melon.class;
StringBuilder getters = generateGetters(clazz);
StringBuilder setters = generateSetters(clazz);

The output will reveal the following generated getters and setters:

public int getWeight() {
 return weight;
}

public boolean isRipe() {
 return ripe;

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[414]

}

public void setWeight(int weight) {
 this.weight = weight;
}

public void setType(String type) {
 this.type = type;
}

158. Reflecting annotations
Java annotations have got a lot of attention from the Java Reflection API. Let's see
several solutions for inspecting several kinds of annotations (for example, package,
class, and method).

Mainly, all major Reflection API classes that represent artifacts that support
annotation (for example, Package, Constructor, Class, Method, and Field) reveal
a set of common methods for working with annotations. Common methods include:

getAnnotations(): Return all annotations specific to a certain artifact
getDeclaredAnnotations(): Return all annotations declared directly to
a certain artifact
getAnnotation(): Return an annotation by type
getDeclaredAnnotation(): Return an annotation by type declared
directly to a certain artifact (JDK 1.8)
getDeclaredAnnotationsByType(): Return all annotations by type
declared directly to a certain artifact (JDK 1.8)
isAnnotationPresent(): Return true if an annotation for the specified
type is found on the given artifact

getAnnotatedReceiverType() was discussed earlier in the Get
annotation on receiver type section.

In the next sections, let's talk about inspecting annotations of packages, classes,
methods, and so on.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[415]

Inspecting package annotations
Annotations specific to packages are added in package-info.java as in the
following screenshot. Here, the modern.challenge package was annotated with the
@Packt annotation:

A convenient solution to inspect the annotations of a package starts from one of its
classes. For example, if, in this package (modern.challenge), we have the Melon
class, then we can obtain all annotations of this package as follows:

Class<Melon> clazz = Melon.class;
Annotation[] pckgAnnotations = clazz.getPackage().getAnnotations();

Annotation[] printed via Arrays.toString() reveals a single result:

[@modern.challenge.Packt()]

Inspecting class annotations
The Melon class has a single annotation, @Fruit:

But we can fetch all of them via getAnnotations():

Class<Melon> clazz = Melon.class;
Annotation[] clazzAnnotations = clazz.getAnnotations();

The returned array printed via Arrays.toString() reveals a single result:

[@modern.challenge.Fruit(name="melon", value="delicious")]

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[416]

In order to access the name and value attributes of an annotation, we can cast it as
follows:

Fruit fruitAnnotation = (Fruit) clazzAnnotations[0];
System.out.println("@Fruit name: " + fruitAnnotation.name());
System.out.println("@Fruit value: " + fruitAnnotation.value());

Or we can use the getDeclaredAnnotation() method to fetch the right type
directly:

Fruit fruitAnnotation = clazz.getDeclaredAnnotation(Fruit.class);

Inspecting methods annotations
Let's inspect the @Ripe annotation of the eat() method from the Melon class:

First, let's fetch all the declared annotations, and afterward, let's resume to @Ripe:

Class<Melon> clazz = Melon.class;
Method methodEat = clazz.getDeclaredMethod("eat");
Annotation[] methodAnnotations = methodEat.getDeclaredAnnotations();

The returned array printed via Arrays.toString() reveals a single result:

[@modern.challenge.Ripe(value=true)]

And let's cast methodAnnotations[0] to Ripe:

Ripe ripeAnnotation = (Ripe) methodAnnotations[0];
System.out.println("@Ripe value: " + ripeAnnotation.value());

Or we can use the getDeclaredAnnotation() method to fetch the right type
directly:

Ripe ripeAnnotation = methodEat.getDeclaredAnnotation(Ripe.class);

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[417]

Inspecting annotations of the thrown exceptions
For inspecting the annotations of the thrown exceptions, we need to call the
getAnnotatedExceptionTypes() method:

This method returns the thrown exceptions types included those that are annotated:

Class<Melon> clazz = Melon.class;
Method methodEat = clazz.getDeclaredMethod("eat");
AnnotatedType[] exceptionsTypes
 = methodEat.getAnnotatedExceptionTypes();

The returned array printed via Arrays.toString() reveals a single result:

[@modern.challenge.Runtime() java.lang.IllegalStateException]

Extracting the first exception type can be accomplished as follows:

// class java.lang.IllegalStateException
System.out.println("First exception type: "
 + exceptionsTypes[0].getType());

Extracting the annotations of the first exception type can be done as follows:

// [@modern.challenge.Runtime()]
System.out.println("Annotations of the first exception type: "
 + Arrays.toString(exceptionsTypes[0].getAnnotations()));

Inspecting annotations of the return type
For inspecting the annotations of a method return, we need to call the
getAnnotatedReturnType() method:

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[418]

This method returns the annotated return type of the given method:

Class<Melon> clazz = Melon.class;
Method methodSeeds = clazz.getDeclaredMethod("seeds");
AnnotatedType returnType = methodSeeds.getAnnotatedReturnType();

// java.util.List<modern.challenge.Seed>
System.out.println("Return type: "
 + returnType.getType().getTypeName());

// [@modern.challenge.Shape(value="oval")]
System.out.println("Annotations of the return type: "
 + Arrays.toString(returnType.getAnnotations()));

Inspecting annotations of the method's parameters
Having a method, we can inspect the annotations of its parameters by calling
getParameterAnnotations():

This method returns a matrix (array of arrays) containing the annotations on the
formal parameters, in declaration order:

Class<Melon> clazz = Melon.class;
Method methodSlice = clazz.getDeclaredMethod("slice", int.class);
Annotation[][] paramAnnotations
 = methodSlice.getParameterAnnotations();

Fetching each parameter type with its annotations (in this case, we have an int
parameter with two annotations) can be accomplished via getParameterTypes().
Since this method maintains the declaration order as well, we can extract some
information, as follows:

Class<?>[] parameterTypes = methodSlice.getParameterTypes();

int i = 0;
for (Annotation[] annotations: paramAnnotations) {
 Class parameterType = parameterTypes[i++];
 System.out.println("Parameter: " + parameterType.getName());

 for (Annotation annotation: annotations) {
 System.out.println("Annotation: " + annotation);
 System.out.println("Annotation name: "

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[419]

 + annotation.annotationType().getSimpleName());
 }
}

And, the output should be as follows:

Parameter type: int
Annotation: @modern.challenge.Ripe(value=true)
Annotation name: Ripe
Annotation: @modern.challenge.Shape(value="square")
Annotation name: Shape

Inspecting annotations of fields
Having a field, we can fetch its annotations via getDeclaredAnnotations():

Here it is the code:

Class<Melon> clazz = Melon.class;
Field weightField = clazz.getDeclaredField("weight");
Annotation[] fieldAnnotations = weightField.getDeclaredAnnotations();

Getting the value of the @Unit annotation can be done as follows:

Unit unitFieldAnnotation = (Unit) fieldAnnotations[0];
System.out.println("@Unit value: " + unitFieldAnnotation.value());

Or, use the getDeclaredAnnotation() method to fetch the right type directly:

Unit unitFieldAnnotation
 = weightField.getDeclaredAnnotation(Unit.class);

Inspecting annotations of the superclass
For inspecting the annotations of the superclass, we need to call the
getAnnotatedSuperclass() method:

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[420]

This method returns the superclass type that is annotated:

Class<Melon> clazz = Melon.class;
AnnotatedType superclassType = clazz.getAnnotatedSuperclass();

And let's get some information as well:

// modern.challenge.Cucurbitaceae
 System.out.println("Superclass type: "
 + superclassType.getType().getTypeName());

 // [@modern.challenge.Family()]
 System.out.println("Annotations: "
 + Arrays.toString(superclassType.getDeclaredAnnotations()));

 System.out.println("@Family annotation present: "
 + superclassType.isAnnotationPresent(Family.class)); // true

Inspecting annotations of interfaces
For inspecting the annotations of the implemented interfaces, we need to call the
getAnnotatedInterfaces() method:

This method returns the interfaces types that are annotated:

Class<Melon> clazz = Melon.class;
AnnotatedType[] interfacesTypes = clazz.getAnnotatedInterfaces();

The returned array printed via Arrays.toString() reveals a single result:

[@modern.challenge.ByWeight() java.lang.Comparable]

Extracting the first interface type can be accomplished as follows:

// interface java.lang.Comparable
System.out.println("First interface type: "
 + interfacesTypes[0].getType());

Moreover, extracting the annotations of the first interface type can be done as follows:

// [@modern.challenge.ByWeight()]
System.out.println("Annotations of the first exception type: "
 + Arrays.toString(interfacesTypes[0].getAnnotations()));

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[421]

Get annotations by type
Having multiple annotations of the same type on certain components, we can fetch all
of them via getAnnotationsByType(). For a class, we can do it as follows:

Class<Melon> clazz = Melon.class;
Fruit[] clazzFruitAnnotations
 = clazz.getAnnotationsByType(Fruit.class);

Get a declared annotation
Trying to fetch by type a single annotation declared directly on a certain artifact can
be done as shown in the following example:

Class<Melon> clazz = Melon.class;
Method methodEat = clazz.getDeclaredMethod("eat");
Ripe methodRipeAnnotation
 = methodEat.getDeclaredAnnotation(Ripe.class);

159. Invoking an instance method
Let's assume that we have the following Melon class:

public class Melon {
 ...
 public Melon() {}

 public List<Melon> cultivate(
 String type, Seed seed, int noOfSeeds) {

 System.out.println("The cultivate() method was invoked ...");

 return Collections.nCopies(noOfSeeds, new Melon("Gac", 5));
 }
 ...
}

Our goal is to invoke the cultivate() method and obtain the return via the Java
Reflection API.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[422]

First, let's fetch the cultivate() method as a Method via
Method.getDeclaredMethod(). All we have to do is pass the name of the method
(in this case, cultivate()) and the right types of parameters (String, Seed, and
int) to getDeclaredMethod(). Second argument of getDeclaredMethod() is a
varargs of Class<?> type, therefore, it can be empty for methods with no
parameters or contain the list of parameters types as in the following example:

Method cultivateMethod = Melon.class.getDeclaredMethod(
 "cultivate", String.class, Seed.class, int.class);

Then, let's obtain an instance of the Melon class. We want to invoke an instance
method; therefore, we need an instance. Relying on the empty constructor of Melon
and the Java Reflection API, we can do it as follows:

Melon instanceMelon = Melon.class
 .getDeclaredConstructor().newInstance();

Finally, we focus on the Method.invoke() method. Mainly, we need to pass to this
method the instance used for calling the cultivate() method and some values for
the parameters:

List<Melon> cultivatedMelons = (List<Melon>) cultivateMethod.invoke(
 instanceMelon, "Gac", new Seed(), 10);

The success of invocation is revealed by the following message:

The cultivate() method was invoked ...

Moreover, if we print the return of invocation via System.out.println(), then we
get the following result:

[Gac(5g), Gac(5g), Gac(5g), ...]

We've just cultivated 10 gacs via reflection.

160. Getting static methods
Let's assume that we have the following Melon class:

public class Melon {
 ...
 public void eat() {}

 public void weighsIn() {}

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[423]

 public static void cultivate(Seed seeds) {
 System.out.println("The cultivate() method was invoked ...");
 }

 public static void peel(Slice slice) {
 System.out.println("The peel() method was invoked ...");
 }

 // getters, setters, toString() omitted for brevity
}

This class has two static methods—cultivate() and peel(). Let's fetch these
two methods in List<Method>.

The solution to this problem has two main steps:

Fetch all the available methods of the given class1.
Filter those that contain the static modifier via the2.
Modifier.isStatic() method

In code, it looks like this:

List<Method> staticMethods = new ArrayList<>();

Class<Melon> clazz = Melon.class;
Method[] methods = clazz.getDeclaredMethods();

for (Method method: methods) {

 if (Modifier.isStatic(method.getModifiers())) {
 staticMethods.add(method);
 }
}

The result of printing the list via System.out.println() is as follows:

[public static void
 modern.challenge.Melon.peel(modern.challenge.Slice),

 public static void
 modern.challenge.Melon.cultivate(modern.challenge.Seed)]

One step further, and we may want to call one of these two methods.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[424]

For example, let's call the peel() method (notice that we pass null instead of an
instance of Melon since a static method doesn't need an instance):

Method method = clazz.getMethod("peel", Slice.class);
method.invoke(null, new Slice());

The output signals that the peel() method was successfully invoked:

The peel() method was invoked ...

161. Getting generic types of method, fields,
and exceptions
Let's assume that we have the following Melon class (listed are only the parts relevant
to this problem):

public class Melon<E extends Exception>
 extends Fruit<String, Seed> implements Comparable<Integer> {

 ...
 private List<Slice> slices;
 ...

 public List<Slice> slice() throws E {
 ...
 }

 public Map<String, Integer> asMap(List<Melon> melons) {
 ...
 }
 ...
}

The Melon class contains several generic types associated with different artifacts.
Mainly, the generic types of super classes, interfaces, classes, methods, and fields are
ParameterizedType instances. For each ParameterizedType, we need to fetch the
actual type of arguments via ParameterizedType.getActualTypeArguments().
The Type[] returned by this method can be iterated to extract information about each
argument, as follows:

public static void printGenerics(Type genericType) {

 if (genericType instanceof ParameterizedType) {
 ParameterizedType type = (ParameterizedType) genericType;

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[425]

 Type[] typeOfArguments = type.getActualTypeArguments();

 for (Type typeOfArgument: typeOfArguments) {
 Class classTypeOfArgument = (Class) typeOfArgument;
 System.out.println("Class of type argument: "
 + classTypeOfArgument);

 System.out.println("Simple name of type argument: "
 + classTypeOfArgument.getSimpleName());
 }
 }
}

Now, let's see how we can deal with generics of methods.

Generics of methods
For example, let's get the generic return types for the slice() and asMap()
methods. This can be accomplished via the Method.getGenericReturnType()
method as follows:

Class<Melon> clazz = Melon.class;

Method sliceMethod = clazz.getDeclaredMethod("slice");
Method asMapMethod = clazz.getDeclaredMethod("asMap", List.class);

Type sliceReturnType = sliceMethod.getGenericReturnType();
Type asMapReturnType = asMapMethod.getGenericReturnType();

Now, calling printGenerics(sliceReturnType) will output the following:

Class of type argument: class modern.challenge.Slice
Simple name of type argument: Slice

And, calling printGenerics(asMapReturnType) will output the following:

Class of type argument: class java.lang.String
Simple name of type argument: String

Class of type argument: class java.lang.Integer
Simple name of type argument: Integer

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[426]

Generic parameters of methods can be obtained via
Method.getGenericParameterTypes(), as follows:

Type[] asMapParamTypes = asMapMethod.getGenericParameterTypes();

Further, we call printGenerics() for each Type (each generic parameter):

for (Type paramType: asMapParamTypes) {
 printGenerics(paramType);
}

Following is the output (there is a single generic parameter, List<Melon>):

Class of type argument: class modern.challenge.Melon
Simple name of type argument: Melon

Generics of fields
In the case of fields (for example, slices), generics can be fetched via
Field.getGenericType(), as follows:

Field slicesField = clazz.getDeclaredField("slices");
Type slicesType = slicesField.getGenericType();

Calling printGenerics(slicesType) will output the following:

Class of type argument: class modern.challenge.Slice
Simple name of type argument: Slice

Generics of a superclass
Getting the generics of a superclass can be accomplished by calling the
getGenericSuperclass() method of the current class:

Type superclassType = clazz.getGenericSuperclass();

Calling printGenerics(superclassType) will output the following:

Class of type argument: class java.lang.String
Simple name of type argument: String

Class of type argument: class modern.challenge.Seed
Simple name of type argument: Seed

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[427]

Generics of interfaces
Getting the generics of implemented interfaces can be accomplished by calling the
getGenericInterfaces() method of the current class:

Type[] interfacesTypes = clazz.getGenericInterfaces();

Further, we call printGenerics() for each Type. Following is the output (there is a
single interface, Comparable<Integer>):

Class of type argument: class java.lang.Integer
Simple name of type argument: Integer

Generics of exceptions
Generic types of exceptions are materialized in instances of TypeVariable or
ParameterizedType. This time, the helper method for extracting and printing
information about generics based on TypeVariable can be written as follows:

public static void printGenericsOfExceptions(Type genericType) {

 if (genericType instanceof TypeVariable) {
 TypeVariable typeVariable = (TypeVariable) genericType;
 GenericDeclaration genericDeclaration
 = typeVariable.getGenericDeclaration();

 System.out.println("Generic declaration: " + genericDeclaration);

 System.out.println("Bounds: ");
 for (Type type: typeVariable.getBounds()) {
 System.out.println(type);
 }
 }
}

Having this helper, we can pass to it the exceptions thrown by a method via
getGenericExceptionTypes(). If an exception type is a type variable
(TypeVariable) or a parameterized type (ParameterizedType), it is created.
Otherwise, it is resolved:

Type[] exceptionsTypes = sliceMethod.getGenericExceptionTypes();

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[428]

Further, we call the printGenerics() for each Type:

for (Type paramType: exceptionsTypes) {
 printGenericsOfExceptions(paramType);
}

The output will be as follows:

Generic declaration: class modern.challenge.Melon
Bounds: class java.lang.Exception

Most probably, printing the extracted information about generics
will not be useful, therefore, feel free to adapt the preceding helpers
based on your needs. For example, collect the information and
return it as List, Map, and so on.

162. Getting public and private fields
The solution to this problem relies on the Modifier.isPublic() and
Modifier.isPrivate() methods.

Let's assume the following Melon class has two public fields and two private
fields:

public class Melon {

 private String type;
 private int weight;

 public Peeler peeler;
 public Juicer juicer;
 ...
}

First, we need to fetch the Field[] array corresponding to this class via the
getDeclaredFields() method:

Class<Melon> clazz = Melon.class;
Field[] fields = clazz.getDeclaredFields();

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[429]

Field[] contains all the four fields from earlier. Further, let's iterate this array and
let's apply Modifier.isPublic() and Modifier.isPrivate() flag methods to
each Field:

List<Field> publicFields = new ArrayList<>();
List<Field> privateFields = new ArrayList<>();

for (Field field: fields) {
 if (Modifier.isPublic(field.getModifiers())) {
 publicFields.add(field);
 }

 if (Modifier.isPrivate(field.getModifiers())) {
 privateFields.add(field);
 }
}

The publicFields list contains only public fields, and the privateFields list
contains only private fields. If we quickly print these two lists via
System.out.println(), then the output will be as follows:

Public fields:
[public modern.challenge.Peeler modern.challenge.Melon.peeler,
public modern.challenge.Juicer modern.challenge.Melon.juicer]

Private fields:
[private java.lang.String modern.challenge.Melon.type,
private int modern.challenge.Melon.weight]

163. Working with arrays
The Java Reflection API comes with a class dedicated to working with arrays. This
class is named java.lang.reflect.Array.

For example, the following snippet of code creates an array of int. The first
parameter tells what type each element in the array should be of. The second
parameter represents the length of the array. Therefore, an array of 10 integers can be
defined via Array.newInstance() as follows:

int[] arrayOfInt = (int[]) Array.newInstance(int.class, 10);

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[430]

Using Java Reflection, we can alter the content of an array. There is a general set()
method and a bunch of setFoo() methods (for example, setInt(),
and setFloat()). Setting the value at index 0 to 100 can be done as follows:

Array.setInt(arrayOfInt, 0, 100);

Fetching a value from an array can be accomplished via the get() and getFoo()
methods (these methods get the array and the index as arguments and return the
value from the specified index):

int valueIndex0 = Array.getInt(arrayOfInt, 0);

Getting the Class of an array can be done as follows:

Class<?> stringClass = String[].class;
Class<?> clazz = arrayOfInt.getClass();

And we can extract the type of the array via getComponentType():

// int
Class<?> typeInt = clazz.getComponentType();

// java.lang.String
Class<?> typeString = stringClass.getComponentType();

164. Inspecting modules
Java 9 has added the concept of modules via the Java Platform Module System.
Basically, a module is a set of packages managed by that module (for example, the
module decides which packages are visible outside the module).

An application with two modules can be shaped as in the following screenshot:

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[431]

There are two modules—org.player and org.tournament. The org.player
module requires the org.tournament module, and the org.tournament module
exports the com.management package.

Java Reflection API represents a module via the java.lang.Module class (in the
java.base module). Via the Java Reflection API, we can extract information or
modify a module.

For start, we can obtain a Module instance as in the following two examples:

Module playerModule = Player.class.getModule();
Module managerModule = Manager.class.getModule();

The name of a module can be obtained via the Module.getName() method:

// org.player
System.out.println("Class 'Player' is in module: "
 + playerModule.getName());

// org.tournament
System.out.println("Class 'Manager' is in module: "
 + managerModule.getName());

Having a Module instance, we can call several methods for getting different
information. For example, we can find out whether a module is named or it has
exported or opened a certain package:

boolean playerModuleIsNamed = playerModule.isNamed(); // true
boolean managerModuleIsNamed = managerModule.isNamed(); // true

boolean playerModulePnExported
 = playerModule.isExported("com.members"); // false
boolean managerModulePnExported
 = managerModule.isExported("com.management"); // true

boolean playerModulePnOpen
 = playerModule.isOpen("com.members"); // false
boolean managerModulePnOpen
 = managerModule.isOpen("com.management"); // false

Beside getting information, the Module class allows us to alter a module. For
example, the org.player module doesn't export the com.members package to the
org.tournament module. We can check this quickly:

boolean before = playerModule.isExported(
 "com.members", managerModule); // false

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[432]

But we can alter this via reflection. We can perform this export via
the Module.addExports() method (in the same category we have addOpens(),
addReads(), and addUses()):

playerModule.addExports("com.members", managerModule);

Now, let's check again:

boolean after = playerModule.isExported(
 "com.members", managerModule); // true

A module also takes advantages of its own descriptor. The ModuleDescriptor class
can be used as the starting point for working with a module:

ModuleDescriptor descriptorPlayerModule
 = playerModule.getDescriptor();

For example, we can fetch the packages of a module as follows:

Set<String> pcks = descriptorPlayerModule.packages();

165. Dynamic proxies
Dynamic proxies can be used to support the implementation of different functionalities
that are part of the Cross Cutting-Concerns (CCC) category. CCC are those concerns
that represent ancillary functionalities of the core functionalities, such as database
connection management, transaction management (for example, Spring
@Transactional), security, and logging.

More precisely, Java Reflection comes with a class named
java.lang.reflect.Proxy, the main purpose of which is to provide support for
creating dynamic implementations of interfaces at runtime. Proxy reflects on the
concrete interface's implementation at runtime.

We can think of Proxy as a front-wrapper that pass our invocations to the right
methods. Optionally, Proxy can interfere in the process before delegating the
invocation.

Dynamic proxies rely on a single class (InvocationHandler) with a single method
(invoke()) as in the following diagram:

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[433]

If we depict the flow from this diagram, then we obtain the following steps:

The actors call the needed methods through the exposed dynamic proxy (for1.
example, if we want to call the List.add() method, we will do it through
a dynamic proxy, not directly)

The dynamic proxy will dispatch the invocation to an instance of an2.
InvocationHandler implementation (each proxy instance has an
associated invocation handler)

The dispatched invocation will hit the invoke() method as a triad3.
containing the proxy object, the method to invoke (as a Method instance)
and an array of arguments for this method

The InvocationHandler will run additional optional functionalities (for4.
example, CCC) and will invoke the corresponding method

The InvocationHandler will return the result of invocation as an object5.

If we try to resume this flow, then we can say that a dynamic proxy sustains
invocations of multiple methods of arbitrary classes via a single class
(InvocationHandler) with a single method (invoke()).

Implementing a dynamic proxy
For example, let's write a dynamic proxy that counts the number of invocations of
the methods of List.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[434]

A dynamic proxy is created via the Proxy.newProxyInstance() method. The
newProxyInstance() methods takes three parameters:

ClassLoader: This is used to load the dynamic proxy class
Class<?>[]: This is the array of interfaces to implement
InvocationHandler: This is the invocation handler to dispatch method
invocations to

Check out this example:

List<String> listProxy = (List<String>) Proxy.newProxyInstance(
 List.class.getClassLoader(), new Class[] {
 List.class}, invocationHandler);

This snippet of code returns a dynamic implementation of the List interface. Further,
all invocations via this proxy will be dispatched to the invocationHandler instance.

Mainly, a skeleton of an InvocationHandler implementation looks as follows:

public class DummyInvocationHandler implements InvocationHandler {

 @Override
 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 ...
 }
}

Since we want to count the number of invocations of the methods of List, we should
store all methods signatures and the number of invocations for each of them. This can
be accomplished via Map initialized in the constructor of
CountingInvocationHandler as follows (this is our InvocationHandler
implementation, and invocationHandler is an instance of it):

public class CountingInvocationHandler implements InvocationHandler {

 private final Map<String, Integer> counter = new HashMap<>();
 private final Object targetObject;

 public CountingInvocationHandler(Object targetObject) {
 this.targetObject = targetObject;

 for (Method method:targetObject.getClass().getDeclaredMethods()) {
 this.counter.put(method.getName()
 + Arrays.toString(method.getParameterTypes()), 0);
 }

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[435]

 }
 ...
}

The targetObject field holds the implementation of the List interface (in this case,
ArrayList).

And we create a CountingInvocationHandler instance as follows:

CountingInvocationHandler invocationHandler
 = new CountingInvocationHandler(new ArrayList<>());

The invoke() method simply counts the invocations and invokes Method with the
specified arguments:

@Override
public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {

 Object resultOfInvocation = method.invoke(targetObject, args);
 counter.computeIfPresent(method.getName()
 + Arrays.toString(method.getParameterTypes()), (k, v) -> ++v);

 return resultOfInvocation;
}

Finally, we expose a method that returns the number of invocations for the given
method:

public Map<String, Integer> countOf(String methodName) {

 Map<String, Integer> result = counter.entrySet().stream()
 .filter(e -> e.getKey().startsWith(methodName + "["))
 .filter(e -> e.getValue() != 0)
 .collect(Collectors.toMap(Entry::getKey, Entry::getValue));

 return result;
}

The code bundled to this book glues these snippets of code in a class named
CountingInvocationHandler.

Java Reflection Classes, Interfaces, Constructors, Methods, and Fields Chapter 7

[436]

At this moment, we can use listProxy to call several methods, as follows:

listProxy.add("Adda");
listProxy.add("Mark");
listProxy.add("John");
listProxy.remove("Adda");
listProxy.add("Marcel");
listProxy.remove("Mark");
listProxy.add(0, "Akiuy");

And let's see how many times we invoked the add() and remove() methods:

// {add[class java.lang.Object]=4, add[int, class java.lang.Object]=1}
invocationHandler.countOf("add");

// {remove[class java.lang.Object]=2}
invocationHandler.countOf("remove");

Since the add() method has been invoked via two of its signatures,
the resulted Map contains two entries.

Summary
This was the last problem of this chapter. Hopefully, we have finished this
comprehensive traversal of the Java Reflection API. We have covered in detail
problems regarding classes, interfaces, constructors, methods, fields, annotations, and
so on.

Download the applications from this chapter to see the results and to see additional
details.

8
Functional Style

Programming - Fundamentals
and Design Patterns

This chapter includes 11 problems that involve Java functional-style programming.
We will start with a problem that's meant to provide a complete journey from 0 to
functional interfaces. Then, we will continue by looking at a suite of design patterns
from GoF that we will interpret in Java functional style.

By the end of this chapter, you should be familiar with functional-style programming
and ready to continue with a set of problems that allow us to deep dive into this topic.
You should be able to use a bunch of commonly used design patterns written in
functional-style and have a very good understanding of how to evolve code to take
advantage of functional interfaces.

Problems
Use the following problems to test your functional style programming prowess. I
strongly encourage you to give each problem a try before you turn to the solutions
and download the example programs:

Writing functional interfaces: Write a program to define the road from 0 to166.
a functional interface via a set of meaningful examples.
Lambdas in a nutshell: Explain what a lambda expression is.167.
Implementing the Execute Around pattern: Write a program that168.
represents an implementation of the Execute Around pattern based on
lambdas.

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[438]

Implementing the Factory pattern: Write a program that represents an169.
implementation of the Factory pattern based on lambdas.
Implementing the Strategy pattern: Write a program that represents an170.
implementation of the Strategy pattern based on lambdas.
Implementing the Template Method pattern: Write a program that171.
represents an implementation of the Template Method pattern based on
lambdas.
Implementing the Observer pattern: Write a program that represents an172.
implementation of the Observer pattern based on lambdas.
Implementing the Loan pattern: Write a program that represents an173.
implementation of the Loan pattern based on lambdas.
Implementing the Decorator pattern: Write a program that represents an174.
implementation of the Decorator pattern based on lambdas.
Implementing the Cascaded Builder pattern: Write a program that175.
represents an implementation of the Cascaded Builder pattern based on
lambdas.
Implementing the Command pattern: Write a program that represents an176.
implementation of the Command pattern based on lambdas.

Solutions
The following sections describe solutions to the preceding problems. Remember that
there usually isn't a single correct way to solve a particular problem. Also, remember
that the explanations that are shown here only include the most interesting and
important details that are needed to solve these problems. You can download the
example solutions to view additional details and experiment with the programs
from https:/​/​github. ​com/ ​PacktPublishing/ ​Java- ​Coding- ​Problems.

166. Writing functional interfaces
In this solution, we will highlight the purpose and usability of a functional interface
in comparison with several alternatives. We will look at how to evolve the code from
its basic and rigid implementation to a flexible implementation based on a functional
interface. For this, let's consider the following Melon class:

public class Melon {

 private final String type;

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[439]

 private final int weight;
 private final String origin;

 public Melon(String type, int weight, String origin) {
 this.type = type;
 this.weight = weight;
 this.origin = origin;
 }

 // getters, toString(), and so on omitted for brevity
}

Let's assume that we have a client – let's call him Mark – who wants to start up a
melon-selling business. We shaped the preceding class based on his description. His
main goal is to have an inventory application that will sustain his ideas and decisions,
so an application needs to be created that must grow based on business requirements
and evolution. We'll take a look at the time that's needed to develop this application
on a daily basis in the following sections.

Day 1 (filtering melons by their type)
One day, Mark asked us to provide a feature for filtering melons by their type. As a
result, we created a utility class named Filters and implemented a static method
that takes a list of melons and the type to filter on as arguments.

The resulting method is pretty straightforward:

public static List<Melon> filterByType(
 List<Melon> melons, String type) {

 List<Melon> result = new ArrayList<>();

 for (Melon melon: melons) {
 if (melon != null && type.equalsIgnoreCase(melon.getType())) {
 result.add(melon);
 }
 }

 return result;
}

Done! Now, we can easily filter melons by type, as shown in the following example:

List<Melon> bailans = Filters.filterByType(melons, "Bailan");

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[440]

Day 2 (filtering melons of a certain weight)
While Mark was satisfied with the result, he requested another filter to obtain melons
of a certain weight (for example, all the melons that are 1,200 grams). We've just
implemented a filter like this for melon types, and so we can come up with a new
static method for melons of a certain weight, as follows:

public static List<Melon> filterByWeight(
 List<Melon> melons, int weight) {

 List<Melon> result = new ArrayList<>();

 for (Melon melon: melons) {
 if (melon != null && melon.getWeight() == weight) {
 result.add(melon);
 }
 }

 return result;
}

This is similar to filterByType(), except it has a different condition/filter. As
developers, we are starting to understand that, if we continue like this, then the
Filters class will end up with a lot of methods that simply repeat the code and use
a different condition. We are very close to a boilerplate code case here.

Day 3 (filtering melons by type and weight)
Things are getting even worse. Mark has now asked us to add a new filter that filters
melons by type and weight, and he needs this quickly. However, the quickest
implementation is the ugliest. Check it out:

public static List<Melon> filterByTypeAndWeight(
 List<Melon> melons, String type, int weight) {
 List<Melon> result = new ArrayList<>();

 for (Melon melon: melons) {
 if (melon != null && type.equalsIgnoreCase(melon.getType())
 && melon.getWeight() == weight) {
 result.add(melon);
 }
 }

 return result;
}

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[441]

In our context, this is unacceptable. If we add a new filter criterion here, the code will
become hard to maintain as well as prone to errors.

Day 4 (pushing the behavior as a parameter)
Meeting time! We cannot continue to add more filters like this; filtering with every
attribute we can think of will end up in a huge Filters class that has big, complex
methods with too many parameters and tons of boilerplate code.

The main problem is that we have different behaviors wrapped in boilerplate code. So,
it will be nice to write the boilerplate code only once and push the behavior as a
parameter. This way, we can shape any selection condition/criteria as behavior and
juggle them as desired. The code will become more clear, flexible, easy to maintain,
and have fewer parameters.

This is known as Behavior Parameterization, which is illustrated in the following
diagram (the left-hand side shows what we have now; the right-hand side shows
what we want):

If we think of each selection condition/criteria as a behavior, then it is pretty intuitive
to think of each behavior as an implementation of an interface. Basically, all these
behaviors have something in common – a selection condition/criteria and a return of
the boolean type (this is known as a predicate). In the context of an interface, this is a
contract that can be written as follows:

public interface MelonPredicate {
 boolean test(Melon melon);
}

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[442]

Furthermore, we can write different implementations of MelonPredicate. For
example, filtering the Gac melons can be written like this:

public class GacMelonPredicate implements MelonPredicate {
 @Override
 public boolean test(Melon melon) {
 return "gac".equalsIgnoreCase(melon.getType());
 }
}

Alternatively, filtering all the melons that are heavier than 5,000g can be written:

public class HugeMelonPredicate implements MelonPredicate {
 @Override
 public boolean test(Melon melon) {
 return melon.getWeight() > 5000;
 }
}

This technique has a name – the Strategy design pattern. According to GoF, this can
"Define a family of algorithms, encapsulate each one, and make them interchangeable. The
strategy pattern lets the algorithm vary independently from client to client."

So, the main idea is to dynamically select the behavior of an algorithm at runtime.
The MelonPredicate interface unifies all the algorithms dedicated to selecting
melons, and each implementation of it is a strategy.

At the moment, we have the strategies, but we don't have any method that receives a
MelonPredicate parameter. We need a filterMelons() method, as shown in the
following diagram:

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[443]

So, we need a single parameter and multiple behaviors. Let's look at the source code
for filterMelons():

public static List<Melon> filterMelons(
 List<Melon> melons, MelonPredicate predicate) {

 List<Melon> result = new ArrayList<>();

 for (Melon melon: melons) {
 if (melon != null && predicate.test(melon)) {
 result.add(melon);
 }
 }

 return result;
}

This is much better! We can reuse this method with different behaviors as follows
(here, we pass GacMelonPredicate and HugeMelonPredicate):

List<Melon> gacs = Filters.filterMelons(
 melons, new GacMelonPredicate());

List<Melon> huge = Filters.filterMelons(
 melons, new HugeMelonPredicate());

Day 5 (implementing another 100 filters)
Mark has asked us to implement another 100 filters. This time, we have the flexibility
and the support to accomplish this task, but we still need to write 100 strategies or
classes for implementing the MelonPredicate for each selection criteria. Moreover,
we have to create instances of these strategies and pass them to the filterMelons()
method.

This means a lot of code and time. In order to save both, we can rely on Java
anonymous classes. In other words, having classes with no names that are declared
and instantiated at the same time will result in something like this:

List<Melon> europeans = Filters.filterMelons(
 melons, new MelonPredicate() {
 @Override
 public boolean test(Melon melon) {
 return "europe".equalsIgnoreCase(melon.getOrigin());
 }
});

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[444]

There is some progress being made here, but this is not very significant because we
still need to write a lot of code. Check the highlighted code in the following diagram
(this code repeats for each implemented behavior):

Here, the code is not friendly. Anonymous classes seem complex and they somehow
look incomplete and weird, especially to novices.

Day 6 (anonymous classes can be written as
lambdas)
A new day, a new idea! Any smart IDE can show us the road ahead. For example, the
NetBeans IDE will discretely warn us that this anonymous class can be written as a
lambda expression.

This is shown in the following screenshot:

The message is crystal clear – This anonymous inner class creation can be turned
into a lambda expression. Here, make the transformation by hand or let the IDE do it
for us.

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[445]

The result will look like this:

List<Melon> europeansLambda = Filters.filterMelons(
 melons, m -> "europe".equalsIgnoreCase(m.getOrigin()));

This is much better! Java 8 lambda expressions did a great job this time. Now, we can
write Mark's filters in a more flexible, fast, clean, readable, and maintainable manner.

Day 7 (abstracting the List type)
Mark comes up with some good news the next day – he will extend his business and
sell other fruits as well as melons. This is cool, but our predicate only supports Melon
instances.

So, how should we proceed to support other fruits too? How many other fruits? What
if Mark decides to start selling another category of products, such as vegetables? We
cannot simply create a predicate for each of them. This will take us back to the start.

The obvious solution is to abstract the List type. We start this by defining a new
interface, and this time name it Predicate (remove Melon from the name):

@FunctionalInterface
public interface Predicate<T> {
 boolean test(T t);
}

Next, we rewrite the filterMelons() method and rename it as filter():

public static <T> List<T> filter(
 List<T> list, Predicate<T> predicate) {

 List<T> result = new ArrayList<>();

 for (T t: list) {
 if (t != null && predicate.test(t)) {
 result.add(t);
 }
 }

 return result;
}

Now, we can write filters for Melon:

List<Melon> watermelons = Filters.filter(
 melons, (Melon m) -> "Watermelon".equalsIgnoreCase(m.getType()));

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[446]

We can also do the same for numbers:

List<Integer> numbers = Arrays.asList(1, 13, 15, 2, 67);
List<Integer> smallThan10 = Filters
 .filter(numbers, (Integer i) -> i < 10);

Take a step back and look at where we started and where we are now. The difference
is huge thanks to Java 8 functional interfaces and lambda expressions. Have you
noticed the @FunctionalInterface annotation on the Predicate interface? Well,
that is an informative annotation type that's used to mark a functional interface. It is
useful for an error to occur if the marked interface is not functional.

Conceptually, a functional interface has exactly one abstract method. Moreover, the
Predicate interface that we've defined already exists in Java 8 as
the java.util.function.Predicate interface. The java.util.function
package contains 40+ such interfaces. Consequently, before defining a new one, it is
advisable to check this package's content. Most of the time, the six standard built-in
functional interfaces will do the job. These are listed as follows:

Predicate<T>

Consumer<T>

Supplier<T>

Function<T, R>

UnaryOperator<T>

BinaryOperator<T>

Functional interfaces and lambda expressions make a great team. Lambda
expressions support the implementation of the abstract method of a functional
interface directly inline. Basically, the entire expression is perceived as an instance of
a concrete implementation of the functional interface, as demonstrated in the
following code:

Predicate<Melon> predicate = (Melon m)
 -> "Watermelon".equalsIgnoreCase(m.getType());

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[447]

167. Lambdas in a nutshell
Dissecting a lambda expression will reveal three main parts, as shown in the
following diagram:

The following is a description of each part of a lambda expression:

On the left-hand side of the arrow, we have the parameters of this lambda
that are used in the lambda body. These are the parameters of the
FilenameFilter.accept​(File folder, String fileName) method.
On the right-hand of the arrow, we have the lambda body, which in this
case checks if the folder in which the file was found can be read and if the
file name ends with the .pdf suffix.
The arrow is just a separator of the lambda's parameters and body.

The anonymous class version of this lambda is as follows:

FilenameFilter filter = new FilenameFilter() {
 @Override
 public boolean accept(File folder, String fileName) {
 return folder.canRead() && fileName.endsWith(".pdf");
 }
};

Now, if we look at the lambda and the anonymous version of it, then we can conclude
that a lambda expression is a concise anonymous function that can be passed as an
argument to a method or kept in a variable. We can conclude that a lambda
expression can be described according to the four words shown in the following
diagram:

Lambdas sustain Behavior Parameterization and that is a big plus (check the previous
problem for a detailed explanation of this). Finally, keep in mind that lambdas can be
used only in the context of a functional interface.

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[448]

168. Implementing the Execute Around pattern
The Execute Around pattern tries to eliminate the boilerplate code that surrounds
specific tasks. For example, the tasks specific to a file need to be surrounded by code
for the purpose of opening and closing the file.

Mainly, the Execute Around pattern is useful in scenarios that imply tasks that take
place inside a resource open-close lifespan. For example, let's assume that we have a
Scanner and that our first task consists of reading a double value from a file:

try (Scanner scanner = new Scanner(
 Path.of("doubles.txt"), StandardCharsets.UTF_8)) {

 if (scanner.hasNextDouble()) {
 double value = scanner.nextDouble();
 }
}

Later on, another task consists of printing all double values:

try (Scanner scanner = new Scanner(
 Path.of("doubles.txt"), StandardCharsets.UTF_8)) {
 while (scanner.hasNextDouble()) {
 System.out.println(scanner.nextDouble());
 }
}

The following diagram highlights the boilerplate code that surrounds these two tasks:

In order to avoid this boilerplate code, the Execute Around pattern relies on Behavior
Parameterization (further detailed in the Writing functional interfaces section). The

steps that are needed to accomplish this are as follows:

The first step is to define a functional interface that matches the Scanner1.
-> double signature, which may throw an IOException:

@FunctionalInterface
public interface ScannerDoubleFunction {
 double readDouble(Scanner scanner) throws IOException;
}

Declaring the functional interface is just half of the solution.

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[449]

So far, we can write a lambda of the Scanner -> double type, but we2.
need a method that receives it and executes it. For this, let's consider the
following method in the Doubles utility class:

public static double read(ScannerDoubleFunction snf)
 throws IOException {

 try (Scanner scanner = new Scanner(
 Path.of("doubles.txt"), StandardCharsets.UTF_8)) {

 return snf.readDouble(scanner);
 }
}

The lambda that's passed to the read() method is executed inside the body
of this method. When we pass the lambda, we provide an implementation
of the abstract method known as readDouble() directly inline. Mainly,
this is perceived as an instance of the functional interface,
ScannerDoubleFunction, and so we can call the readDouble() method
to obtain the desired result.

Now, we can simply pass our tasks as lambdas and reuse the read()3.
method. For example, our tasks can be wrapped in two static methods,
as shown here (this practice is needed to obtain clean code and avoid big
lambdas):

private static double getFirst(Scanner scanner) {
 if (scanner.hasNextDouble()) {
 return scanner.nextDouble();
 }

 return Double.NaN;
}

private static double sumAll(Scanner scanner) {
 double sum = 0.0d;
 while (scanner.hasNextDouble()) {

 sum += scanner.nextDouble();
 }

 return sum;
}

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[450]

Having these two tasks as examples, we can write other tasks as well. Let's4.
pass them to the read() method:

double singleDouble
 = Doubles.read((Scanner sc) -> getFirst(sc));
double sumAllDoubles
 = Doubles.read((Scanner sc) -> sumAll(sc));

The Execute Around pattern is quite useful for eliminating the boilerplate code that's
specific for opening and closing resources (I/O operations).

169. Implementing the Factory pattern
In a nutshell, the Factory pattern allows us to create several kinds of objects without
exposing the instantiation process to the caller. This way, we can hide the complex
and/or sensitive process of creating objects and expose an intuitive and easy-to-use
factory of objects to the caller.

In a classic implementation, the Factory pattern relies on an intern switch(), as
shown in the following example:

public static Fruit newInstance(Class<?> clazz) {
 switch (clazz.getSimpleName()) {
 case "Gac":
 return new Gac();
 case "Hemi":
 return new Hemi();
 case "Cantaloupe":
 return new Cantaloupe();
 default:
 throw new IllegalArgumentException(
 "Invalid clazz argument: " + clazz);
 }
}

Here, Gac, Hemi, and Cantaloupe are implementing the same Fruit interface and
have an empty constructor. If this method lives in a utility class named
MelonFactory, we can call it as follows:

Gac gac = (Gac) MelonFactory.newInstance(Gac.class);

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[451]

However, Java 8 functional-style allows us to refer to constructors using the method
references technique. This means that we can define a Supplier<Fruit> to refer to
the Gac empty constructor, as follows:

Supplier<Fruit> gac = Gac::new;

How about Hemi, Cantaloupe, and so on? Well, we can simply put all of them in a
Map (notice that no melon type is instantiated here; these are just lazy method
references):

private static final Map<String, Supplier<Fruit>> MELONS
 = Map.of("Gac", Gac::new, "Hemi", Hemi::new,
 "Cantaloupe", Cantaloupe::new);

Furthermore, we can rewrite the newInstance() method to use this map:

public static Fruit newInstance(Class<?> clazz) {

 Supplier<Fruit> supplier = MELONS.get(clazz.getSimpleName());

 if (supplier == null) {
 throw new IllegalArgumentException(
 "Invalid clazz argument: " + clazz);
 }

 return supplier.get();
 }

The caller code doesn't need any further modifications:

Gac gac = (Gac) MelonFactory.newInstance(Gac.class);

However, obviously, constructors are not always empty. For example, the following
Melon class exposes a single constructor with three arguments:

public class Melon implements Fruit {

 private final String type;
 private final int weight;
 private final String color;

 public Melon(String type, int weight, String color) {
 this.type = type;
 this.weight = weight;
 this.color = color;
 }
}

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[452]

Creating an instance of this class cannot be obtained via an empty constructor. But if
we define a functional interface that supports three arguments and a return, then we
are back on track:

@FunctionalInterface
public interface TriFunction<T, U, V, R> {
 R apply(T t, U u, V v);
}

This time, the following statement will try to fetch a constructor with three arguments
of the String, Integer, and String types:

private static final
 TriFunction<String, Integer, String, Melon> MELON = Melon::new;

The newInstance() method, which was made especially for the Melon class is:

public static Fruit newInstance(
 String name, int weight, String color) {
 return MELON.apply(name, weight, name);
}

A Melon instance can be created as follows:

Melon melon = (Melon) MelonFactory.newInstance("Gac", 2000, "red");

Done! Now, we have a factory of Melon via functional interfaces.

170. Implementing the Strategy pattern
The classic Strategy pattern is pretty straightforward. It consists of an interface that
represents a family of algorithms (strategies) and several implementations of this
interface (each implementation is a strategy).

For example, the following interface unifies the strategies for removing characters
from the given string:

public interface RemoveStrategy {
 String execute(String s);
}

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[453]

First, we will define a strategy for removing numeric values from a string:

public class NumberRemover implements RemoveStrategy {
 @Override
 public String execute(String s) {
 return s.replaceAll("\\d", "");
 }
}

Then, we will define a strategy for removing white spaces from a string:

public class WhitespacesRemover implements RemoveStrategy {
 @Override
 public String execute(String s) {
 return s.replaceAll("\\s", "");
 }
}

Finally, let's define a utility class that acts as the entry point for strategies:

public final class Remover {

 private Remover() {
 throw new AssertionError("Cannot be instantiated");
 }

 public static String remove(String s, RemoveStrategy strategy) {
 return strategy.execute(s);
 }
}

This is a simple and classical Strategy pattern implementation. If we want to remove
numeric values from a string, we can do this as follows:

String text = "This is a text from 20 April 2050";
String noNr = Remover.remove(text, new NumberRemover());

But do we actually need the NumberRemover and WhitespacesRemover classes? Do
we need to write similar classes for further strategies? Obviously, the answer is no.

Check out our interface one more time:

@FunctionalInterface
public interface RemoveStrategy {
 String execute(String s);
}

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[454]

We've just added the @FunctionalInterface hint because the RemoveStrategy
interface defines a single abstract method, and so it is a functional interface.

What can we use in the context of a functional interface? Well, the obvious answer is
lambdas. Moreover, what can a lambda do for us in this scenario? It can remove
the boilerplate code (in this case, the classes representing the strategies) and
encapsulate the strategy in its body:

String noNr = Remover.remove(text, s -> s.replaceAll("\\d", ""));
String noWs = Remover.remove(text, s -> s.replaceAll("\\s", ""));

So, this is what the Strategy pattern looks like via lambdas.

171. Implementing the Template Method
pattern
The Template Method is a classical design pattern from GoF that allows us to write a
skeleton of an algorithm in a method and defer certain steps of this algorithm to the
client subclasses.

For example, making a pizza involves three main steps – preparing the dough,
adding toppings, and baking the pizza. While the first and last step can be considered
the same (fixed steps) for all pizzas, the second step is different for each type of pizza
(variable step).

If we put this in code via the Template Method pattern, then we obtain something
like the following (the make() method represents the template method and contains
the fixed and variable steps in a well-defined order):

public abstract class PizzaMaker {

 public void make(Pizza pizza) {
 makeDough(pizza);
 addTopIngredients(pizza);
 bake(pizza);
 }

 private void makeDough(Pizza pizza) {
 System.out.println("Make dough");
 }

 private void bake(Pizza pizza) {
 System.out.println("Bake the pizza");

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[455]

 }

 public abstract void addTopIngredients(Pizza pizza);
}

The fixed steps have default implementations while the variable step is represented
by an abstract method called addTopIngredients(). This method is
implemented by subclasses of this class. For example, a Neapolitan pizza will be
abstracted as follows:

public class NeapolitanPizza extends PizzaMaker {

 @Override
 public void addTopIngredients(Pizza p) {
 System.out.println("Add: fresh mozzarella, tomatoes,
 basil leaves, oregano, and olive oil ");
 }
}

On the other hand, a Greek pizza will be as follows:

public class GreekPizza extends PizzaMaker {

 @Override
 public void addTopIngredients(Pizza p) {
 System.out.println("Add: sauce and cheese");
 }
}

So, each type of pizza requires a new class that overrides the addTopIngredients()
method. In the end, we can make a pizza like so:

Pizza nPizza = new Pizza();
PizzaMaker nMaker = new NeapolitanPizza();
nMaker.make(nPizza);

The drawback of this approach consists of boilerplate code and verbosity. However,
we can tackle this drawback via lambdas. We can represent the variable steps of the
Template Method as lambdas expressions. Depending on the case, we have to choose
the proper functional interfaces. In our case, we can rely on a Consumer, as follows:

public class PizzaLambda {

 public void make(Pizza pizza, Consumer<Pizza> addTopIngredients) {
 makeDough(pizza);
 addTopIngredients.accept(pizza);
 bake(pizza);

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[456]

 }

 private void makeDough(Pizza p) {
 System.out.println("Make dough");
 }

 private void bake(Pizza p) {
 System.out.println("Bake the pizza");
 }
}

This time, there is no need to define subclasses (no need to have NeapolitanPizza,
GreekPizza, or others). We just pass the variable step via a lambda expression. Let's
make a Sicilian pizza:

Pizza sPizza = new Pizza();
new PizzaLambda().make(sPizza, (Pizza p)
 -> System.out.println("Add: bits of tomato, onion,
 anchovies, and herbs "));

Done! No more boilerplate code is needed. The lambda solution has seriously
improved the solution.

172. Implementing the Observer pattern
In a nutshell, the Observer pattern relies on an object (known as the subject) that
automatically notifies its subscribers (known as observers) when certain events
happen.

For example, the fire station headquarters can be the subject, and the local fire stations
can be the observers. When a fire has started, the fire station headquarters notifies all
local fire stations and sends them the address where the fire is taking place.
Each observer analyzes the received address and, depending on different
criteria, decides whether to extinguish the fire or not.

All the local fire stations are grouped via an interface called FireObserver. This
method defines a single abstract method that is invoked by the fire station
headquarters (subject):

public interface FireObserver {
 void fire(String address);
}

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[457]

Each local fire station (observer) implements this interface and decides whether to
extinguish the fire or not in the fire() implementation. Here, we have three local
stations (Brookhaven, Vinings, and Decatur):

public class BrookhavenFireStation implements FireObserver {

 @Override
 public void fire(String address) {
 if (address.contains("Brookhaven")) {
 System.out.println(
 "Brookhaven fire station will go to this fire");
 }
 }
}

public class ViningsFireStation implements FireObserver {
 // same code as above for ViningsFireStation
}

public class DecaturFireStation implements FireObserver {
 // same code as above for DecaturFireStation
}

Half of the job is done! Now, we need to register these observers to be notified by
the subject. In other words, each local fire station needs to be registered as
an observer to the fire station headquarters (subject). For this, we declare another
interface that defines the subject contract for registering and notifying its observers:

public interface FireStationRegister {
 void registerFireStation(FireObserver fo);
 void notifyFireStations(String address);
}

Finally, we can write the fire station headquarters (subject):

public class FireStation implements FireStationRegister {

 private final List<FireObserver> fireObservers = new ArrayList<>();

 @Override
 public void registerFireStation(FireObserver fo) {
 if (fo != null) {
 fireObservers.add(fo);
 }
 }

 @Override

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[458]

 public void notifyFireStations(String address) {
 if (address != null) {
 for (FireObserver fireObserver: fireObservers) {
 fireObserver.fire(address);
 }
 }
 }
}

Now, let's register our three local stations (observers) to the fire station headquarters
(subject):

FireStation fireStation = new FireStation();
fireStation.registerFireStation(new BrookhavenFireStation());
fireStation.registerFireStation(new DecaturFireStation());
fireStation.registerFireStation(new ViningsFireStation());

Now, when a fire occurs, the fire station headquarters will notify all registered local
fire stations:

fireStation.notifyFireStations(
 "Fire alert: WestHaven At Vinings 5901 Suffex Green Ln Atlanta");

The Observer pattern was successfully implemented there.

This is another classical case of boilerplate code. Each local fire station needs a new
class and implementation of the fire() method.

However, lambdas can help us again! Check out the FireObserver interface. It has a
single abstract method; therefore, this is a functional interface:

@FunctionalInterface
public interface FireObserver {
 void fire(String address);
}

This functional interface is an argument of the Fire.registerFireStation()
method. In this context, we can pass a lambda to this method instead of a new
instance of a local fire station. The lambda will contain the behavior in its body;
therefore, we can delete the local station classes and rely on lambdas, as follows:

fireStation.registerFireStation((String address) -> {
 if (address.contains("Brookhaven")) {
 System.out.println(
 "Brookhaven fire station will go to this fire");
 }
});

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[459]

fireStation.registerFireStation((String address) -> {
 if (address.contains("Vinings")) {
 System.out.println("Vinings fire station will go to this fire");
 }
});

fireStation.registerFireStation((String address) -> {
 if (address.contains("Decatur")) {
 System.out.println("Decatur fire station will go to this fire");
 }
});

Done! No more boilerplate code.

173. Implementing the Loan pattern
In this problem, we will talk about implementing the Loan pattern. Let's assume that
we have a file containing three numbers (let's say, doubles), and each number is a
coefficient of a formula. For example, the numbers x, y, and z are the coefficients of
the following two formulas: x+y-z and x-y*sqrt(z). In the same manner, we can write
other formulas as well.

At this point, we have enough experience to recognize that this scenario sounds like a
good fit for Behavior Parameterization. This time, we don't define a custom functional
interface, and we use a built-in functional interface called Function<T, R>. This
functional interface represents a function that accepts one argument and produces a
result. The signature of its abstract method is R apply(T t).

This functional interface becomes an argument of a static method that's meant to
implement the Loan pattern. Let's place this method in a class called Formula:

public class Formula {
 ...
 public static double compute(
 Function<Formula, Double> f) throws IOException {
 ...
 }
}

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[460]

Notice that the compute() method accepts lambdas of the Formula -> Double type
while it is declared in the Formula class. Let's reveal the entire source code of
compute():

public static double compute(
 Function<Formula, Double> f) throws IOException {

 Formula formula = new Formula();
 double result = 0.0 d;

 try {
 result = f.apply(formula);
 } finally {
 formula.close();
 }

 return result;
}

There are three points that should be highlighted here. First, when we create a new
instance of Formula, we actually open a new Scanner to our file (check the private
constructor of this class):

public class Formula {

 private final Scanner scanner;
 private double result;

 private Formula() throws IOException {
 result = 0.0 d;

 scanner = new Scanner(
 Path.of("doubles.txt"), StandardCharsets.UTF_8);
 }
 ...
}

Second, when we execute the lambda, we are actually calling a chain of instance
methods of Formula that perform the computation (apply the formula). Each of these
methods returns the current instance. The instance methods that should be called are
defined in the body of the lambda expression.

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[461]

We only need the following computations, but more can be added:

public Formula add() {
 if (scanner.hasNextDouble()) {
 result += scanner.nextDouble();
 }

 return this;
}

public Formula minus() {
 if (scanner.hasNextDouble()) {
 result -= scanner.nextDouble();
 }

 return this;
}

public Formula multiplyWithSqrt() {
 if (scanner.hasNextDouble()) {
 result *= Math.sqrt(scanner.nextDouble());
 }

 return this;
}

Since the result of the computation (the formula) is a double, we need to provide a
Terminal method that returns the final result:

public double result() {
 return result;
}

Finally, we close the Scanner and reset the result. This takes place in the private
close() method:

private void close() {
 try (scanner) {
 result = 0.0 d;
 }
}

These pieces have been glued into the code bundled with this book under a class
named Formula.

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[462]

Now, do you remember our formulas? We had x+y-z and x-y*sqrt(z). The first one can
be written as follows:

double xPlusYMinusZ = Formula.compute((sc)
 -> sc.add().add().minus().result());

The second formula can be written as follows:

double xMinusYMultiplySqrtZ = Formula.compute((sc)
 -> sc.add().minus().multiplyWithSqrt().result());

Notice that we can focus on our formulas and we don't need to bother with opening
and closing the file. Moreover, the fluent API allows us to shape any formula and it is
very easy to enrich it with more operations.

174. Implementing the Decorator pattern
The Decorator pattern prefers composition over inheritance; therefore, it is an elegant
alternative to the subclassing technique. With this, we mainly start from a base object
and add additional features in a dynamic fashion.

For example, we can use this pattern to decorate a cake. The decoration process
doesn't change the cake itself – it just adds some nuts, cream, fruit, and so on.

The following diagram illustrates what we will implement:

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[463]

First, we create an interface called Cake:

public interface Cake {
 String decorate();
}

Then, we implement this interface via BaseCake:

public class BaseCake implements Cake {

 @Override
 public String decorate() {
 return "Base cake ";
 }
}

Afterward, we create an abstract CakeDecorator class for this Cake. The main goal
of this class is to call the decorate() method of the given Cake:

public class CakeDecorator implements Cake {

 private final Cake cake;

 public CakeDecorator(Cake cake) {
 this.cake = cake;
 }

 @Override
 public String decorate() {
 return cake.decorate();
 }
}

Next, we focus on writing our decorators.

Each decorator extends CakeDecorator and alters the decorate() method to add
the corresponding decoration.

For example, the Nuts decorator looks like this:

public class Nuts extends CakeDecorator {

 public Nuts(Cake cake) {
 super(cake);
 }

 @Override
 public String decorate() {

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[464]

 return super.decorate() + decorateWithNuts();
 }

 private String decorateWithNuts() {
 return "with Nuts ";
 }
}

For brevity purposes, we skip the Cream decorator. However, it is pretty
straightforward to intuit that this decorator is mostly the same as Nuts.

So, again, we have some boilerplate code.

Now, we can create a Cake decorated with nuts and cream, as follows:

Cake cake = new Nuts(new Cream(new BaseCake()));
// Base cake with Cream with Nuts

System.out.println(cake.decorate());

So, this is a classical implementation of the Decorator pattern. Now, let's take a look at
the lambda-based implementation, which drastically reduces this code. This is
especially the case when we have a significant number of decorators.

This time, we transform the Cake interface into a class, as follows:

public class Cake {

 private final String decorations;

 public Cake(String decorations) {
 this.decorations = decorations;
 }

 public Cake decorate(String decoration) {
 return new Cake(getDecorations() + decoration);
 }

 public String getDecorations() {
 return decorations;
 }
}

The climax here is the decorate() method. Mainly, this method applies the given
decoration next to the existing decorations and returns a new Cake.

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[465]

As another example, let's consider the java.awt.Color class, which has a method
named brighter(). This method creates a new Color that is a brighter version of
the current Color. Similarly, the decorate() method creates a new Cake that is a
more decorated version of the current Cake.

Furthermore, there is no need to write decorators as separate classes. We will rely on
lambdas to pass the decorators to the CakeDecorator:

public class CakeDecorator {

 private Function<Cake, Cake> decorator;

 public CakeDecorator(Function<Cake, Cake>... decorations) {
 reduceDecorations(decorations);
 }

 public Cake decorate(Cake cake) {
 return decorator.apply(cake);
 }

 private void reduceDecorations(
 Function<Cake, Cake>... decorations) {

 decorator = Stream.of(decorations)
 .reduce(Function.identity(), Function::andThen);
 }
}

Mainly, this class accomplishes two things:

In the constructor, it calls the reduceDecorations() method. This
method will chain the array of the passed Function via
the Stream.reduce() and Function.andThen() methods. The result is a
single Function composed from the array of the given Function.
When the apply() method of the composed Function is called from the
decorate() method, it will apply the chain of given functions one by one.
Since each Function in the given array is a decorator, the composed
Function will apply each decorator one by one.

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[466]

Let's create a Cake decorated with nuts and cream:

CakeDecorator nutsAndCream = new CakeDecorator(
 (Cake c) -> c.decorate(" with Nuts"),
 (Cake c) -> c.decorate(" with Cream"));

Cake cake = nutsAndCream.decorate(new Cake("Base cake"));

// Base cake with Nuts with Cream
System.out.println(cake.getDecorations());

Done! Consider running the code bundled with this book to check the output.

175. Implementing the Cascaded Builder
pattern
We already talked about this pattern in Chapter 2, Objects, Immutability, and Switch
Expressions, in the Writing an immutable class via the Builder pattern section. It is
advisable to treat this problem, just as a quick reminder of the Builder pattern.

Having the classic Builder under our tool belt, let's suppose that we want to write a
class for delivering parcels. Mainly, we want to set the receiver's first name, last
name, address, and parcel content and then deliver the parcel.

We can accomplish this via the Builder pattern and lambdas, as follows:

public final class Delivery {

 public Delivery firstname(String firstname) {
 System.out.println(firstname);

 return this;
 }

 //similar for lastname, address and content

 public static void deliver(Consumer<Delivery> parcel) {
 Delivery delivery = new Delivery();
 parcel.accept(delivery);

 System.out.println("\nDone ...");
 }
}

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[467]

For delivering a parcel, we simply use a lambda:

Delivery.deliver(d -> d.firstname("Mark")
 .lastname("Kyilt")
 .address("25 Street, New York")
 .content("10 books"));

Obviously, using lambdas is facilitated by the Consumer<Delivery> argument.

176. Implementing the Command pattern
In a nutshell, the Command pattern is used in scenarios where a command is
wrapped in an object. This object can be passed around without being aware of the
command itself or the receiver of the command.

A classic implementation of this pattern consists of several classes. In our scenario, we
have the following:

The Command interface is responsible for executing a certain action (in this
case, the possible actions are move, copy, and delete). The concrete
implementations of this interface are CopyCommand, MoveCommand, and
DeleteCommand.
The IODevice interface defines the supported actions (move(), copy(),
and delete()). The HardDisk class is a concrete implementation of
IODevice and represents the receiver.
The Sequence class is the invoker of the commands, and it knows how to
execute a given command. The invoker can act in different ways, but in this
case, we simply record the commands and execute them in a batch when
the runSequence() is called.

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[468]

The Command pattern can be represented by the following diagram:

So, the HardDisk implements the actions that are given in the IODevice interface. As
a receiver, the HardDisk is responsible for running the actual action when the
execute() method of a certain command is called. The source code for IODevice is
as follows:

public interface IODevice {
 void copy();
 void delete();
 void move();
}

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[469]

The HardDisk is the concrete implementation of IODevice:

public class HardDisk implements IODevice {

 @Override
 public void copy() {
 System.out.println("Copying ...");
 }

 @Override
 public void delete() {
 System.out.println("Deleting ...");
 }

 @Override
 public void move() {
 System.out.println("Moving ...");
 }
}

All concrete command classes implement the Command interface:

public interface Command {
 public void execute();
}

public class DeleteCommand implements Command {

 private final IODevice action;

 public DeleteCommand(IODevice action) {
 this.action = action;
 }

 @Override
 public void execute() {
 action.delete()
 }
}

In the same manner, we have implemented CopyCommand and MoveCommand and
skipped these for brevity purposes.

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[470]

Furthermore, the Sequence class acts as the invoker class. The invoker knows how to
execute the given command, but it doesn't have any clue about the command's
implementation (it only knows the command's interface). Here, we record the
commands in a List and execute those commands in a batch when the
runSequence() method is called:

public class Sequence {

 private final List<Command> commands = new ArrayList<>();

 public void recordSequence(Command cmd) {
 commands.add(cmd);
 }

 public void runSequence() {
 commands.forEach(Command::execute);
 }

 public void clearSequence() {
 commands.clear();
 }
}

Now, let's see it at work. Let's execute a batch of actions on HardDisk:

HardDisk hd = new HardDisk();
Sequence sequence = new Sequence();
sequence.recordSequence(new CopyCommand(hd));
sequence.recordSequence(new DeleteCommand(hd));
sequence.recordSequence(new MoveCommand(hd));
sequence.recordSequence(new DeleteCommand(hd));
sequence.runSequence();

Obviously, we have a lot of boilerplate code here. Check out the classes of commands.
Do we actually need all of these classes? Well, if we realize that the Command interface
is actually a functional interface, then we can remove its implementations and
provide the behaviors via lambdas (the command classes are just blocks of behavior,
and so they can be expressed via lambdas), as follows:

HardDisk hd = new HardDisk();
Sequence sequence = new Sequence();
sequence.recordSequence(hd::copy);
sequence.recordSequence(hd::delete);
sequence.recordSequence(hd::move);
sequence.recordSequence(hd::delete);
sequence.runSequence();

Functional Style Programming - Fundamentals and Design Patterns Chapter 8

[471]

Summary
We have now reached the end of this chapter. Using lambdas to reduce or even
eliminate the boilerplate code is a technique that can be used in other design patterns
and scenarios as well. Having the knowledge you've accumulated so far should
provide you with a solid base for adapting your cases accordingly.

Download the applications from this chapter to view the results and additional
details.

9
Functional Style

Programming - a Deep Dive
This chapter includes 22 problems that involve Java functional-style programming.
Here, we will focus on several problems that involve classical operations that are
encountered in streams (such as, filter and map), and discuss infinite streams, null-
safe streams, and default methods. This comprehensive list of problems will cover
grouping, partitioning, and collectors, including the JDK 12 teeing() collector and
writing a custom collector. In addition, takeWhile(), dropWhile(), composing
functions, predicates and comparators, testing and debugging lambdas, and other
cool topics will be discussed as well.

Once you've covered this and the previous chapter, you will be ready to unleash
functional-style programming on your production applications. The following
problems will prepare you for a wide range of use cases, including corner cases or
pitfalls.

Problems
Use the following problems to test your functional style programming prowess. I
strongly encourage you to give each problem a try before you turn to the solutions
and download the example programs:

Testing high-order functions: Write several unit tests for testing so-called177.
high-order functions.
Testing methods that use lambdas: Write several unit tests for testing178.
methods that use lambdas.
Debugging lambdas: Provide a technique for debugging lambdas.179.
Filtering the non-zero elements of a stream: Write a stream pipeline that180.
filters the non-zero elements of a stream.

Functional Style Programming - a Deep Dive Chapter 9

[473]

Infinite streams, takeWhile(), and dropWhile(): Write several snippets181.
of code that work with infinite streams. In addition, write several examples
of working with the takeWhile() and dropWhile() APIs.
Mapping a stream: Write several examples of mapping a stream via map()182.
and flatMap().
Finding different elements in a stream: Write a program for finding183.
different elements in a stream.
Matching different elements in a stream: Write a program for matching184.
different elements in a stream.
Sum, max, and min in a stream: Write a program for computing the sum,185.
max, and min of the given stream via primitive specializations of Stream
and Stream.reduce().
Collecting the results of a stream: Write several snippets of code for186.
collecting the results of a stream in a list, map, and set.
Joining the results of a stream: Write several snippets of code for joining187.
the results of a stream into a String.
Summarization collectors: Write several snippets of code to reveal the188.
usage of summarization collectors.
Grouping: Write snippets of code for working with groupingBy()189.
collectors.
Partitioning: Write several snippets of code for working with190.
partitioningBy() collectors.
Filtering, flattening, and mapping collectors: Write several snippets of191.
code for exemplifying the usage of filtering, flattening, and mapping
collectors.
Teeing: Write several examples that merge the results of two collectors192.
(JDK 12 and Collectors.teeing()).
Writing a custom collector: Write a program that represents a custom193.
collector.
Method reference: Write an example of method reference.194.
Parallel processing of streams: Provide a brief overview of the parallel195.
processing of streams. Provide at least one example each for
parallelStream(), parallel(), and spliterator().
Null-safe streams: Write a program that returns a null-safe stream from an196.
element or a collection of elements.
Composing functions, predicates, and comparators: Write several197.
examples for composing functions, predicates, and comparators.
Default methods: Write an interface that contains a default method.198.

Functional Style Programming - a Deep Dive Chapter 9

[474]

Solutions
The following sections describe the solutions to the preceding problems. Remember
that there usually isn't a single correct way to solve a particular problem. Also,
remember that the explanations shown here only include the most interesting and
important details that are needed to solve the problems. You can download the
example solutions to view additional details and experiment with the programs
from https:/​/​github. ​com/ ​PacktPublishing/ ​Java- ​Coding- ​Problems.

177. Testing high-order functions
A high-order function is a term that's used to characterize a function that returns a
function or takes a function as a parameter.

Based on this statement, testing a high-order function in the context of lambdas
should cover two main cases:

Testing a method that takes a lambda as a parameter
Testing a method that returns a functional interface

We'll learn about these two tests in the upcoming sections.

Testing a method that takes a lambda as a
parameter
Testing a method that takes a lambda as a parameter can be accomplished by passing
different lambdas to this method. For example, let's assume that we have the
following functional interface:

@FunctionalInterface
public interface Replacer<String> {
 String replace(String s);
}

Let's also assume that we have a method that takes lambdas of the String ->
String type, as follows:

public static List<String> replace(
 List<String> list, Replacer<String> r) {

 List<String> result = new ArrayList<>();
 for (String s: list) {

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Functional Style Programming - a Deep Dive Chapter 9

[475]

 result.add(r.replace(s));
 }

 return result;
}

Now, let's write a JUnit test for this method using two lambdas:

@Test
public void testReplacer() throws Exception {

 List<String> names = Arrays.asList(
 "Ann a 15", "Mir el 28", "D oru 33");

 List<String> resultWs = replace(
 names, (String s) -> s.replaceAll("\\s", ""));
 List<String> resultNr = replace(
 names, (String s) -> s.replaceAll("\\d", ""));

 assertEquals(Arrays.asList(
 "Anna15", "Mirel28", "Doru33"), resultWs);
 assertEquals(Arrays.asList(
 "Ann a ", "Mir el ", "D oru "), resultNr);
}

Testing a method that returns a functional interface
On the other hand, testing a method that returns a functional interface can be
interpreted as testing the behavior of that functional interface. Let's consider the
following method:

public static Function<String, String> reduceStrings(
 Function<String, String> ...functions) {

 Function<String, String> function = Stream.of(functions)
 .reduce(Function.identity(), Function::andThen);

 return function;
}

Now, we can test the behavior of the returned Function<String, String> as
follows:

@Test
public void testReduceStrings() throws Exception {

 Function<String, String> f1 = (String s) -> s.toUpperCase();

Functional Style Programming - a Deep Dive Chapter 9

[476]

 Function<String, String> f2 = (String s) -> s.concat(" DONE");

 Function<String, String> f = reduceStrings(f1, f2);

 assertEquals("TEST DONE", f.apply("test"));
}

178. Testing methods that use lambdas
Let's start by testing a lambda that is not wrapped in a method. For example, the
following lambda is associated with a field (for being reused), and we want to test its
logic:

public static final Function<String, String> firstAndLastChar
 = (String s) -> String.valueOf(s.charAt(0))
 + String.valueOf(s.charAt(s.length() - 1));

Let's take into account that a lambda generates an instance of a functional interface;
then, we can test the behavior of that instance as follows:

@Test
public void testFirstAndLastChar() throws Exception {

 String text = "Lambda";
 String result = firstAndLastChar.apply(text);
 assertEquals("La", result);
}

Another solution consists of wrapping the lambda in a method call
and writing unit tests for the method call.

Often, the lambdas are used inside methods. For most cases, testing the method that
contains the lambda is acceptable, but there are cases when we want to test the
lambda itself. A solution to this problem consists of three main steps:

Extracting the lambda in a static method1.
Replacing the lambda with a method reference2.
Testing this static method3.

Functional Style Programming - a Deep Dive Chapter 9

[477]

For example, let's consider the following method:

public List<String> rndStringFromStrings(List<String> strs) {

 return strs.stream()
 .map(str -> {
 Random rnd = new Random();
 int nr = rnd.nextInt(str.length());
 String ch = String.valueOf(str.charAt(nr));

 return ch;
 })
 .collect(Collectors.toList());
}

Our goal is to test the lambda from this method:

str -> {
 Random rnd = new Random();
 int nr = rnd.nextInt(str.length());
 String ch = String.valueOf(str.charAt(nr));

 return ch;
})

So, let's apply the preceding three steps:

Let's extract this lambda in a static method:1.

public static String extractCharacter(String str) {

 Random rnd = new Random();
 int nr = rnd.nextInt(str.length());
 String chAsStr = String.valueOf(str.charAt(nr));

 return chAsStr;
}

Let's replace the lambda with the corresponding method reference:2.

public List<String> rndStringFromStrings(List<String> strs) {

 return strs.stream()
 .map(StringOperations::extractCharacter)
 .collect(Collectors.toList());
}

Functional Style Programming - a Deep Dive Chapter 9

[478]

Let's test the static method (which is the lambda):3.

@Test
public void testRndStringFromStrings() throws Exception {

 String str1 = "Some";
 String str2 = "random";
 String str3 = "text";

 String result1 = extractCharacter(str1);
 String result2 = extractCharacter(str2);
 String result3 = extractCharacter(str3);

 assertEquals(result1.length(), 1);
 assertEquals(result2.length(), 1);
 assertEquals(result3.length(), 1);
 assertThat(str1, containsString(result1));
 assertThat(str2, containsString(result2));
 assertThat(str3, containsString(result3));
}

It is advisable to avoid lambdas that have more than one line of
code. Therefore, by following the preceding technique, the lambdas
become easy to test.

179. Debugging lambdas
There are at least three solutions when it comes to debugging lambdas:

Inspect a stack trace
Logging
Rely on IDE support (for example, NetBeans, Eclipse, and IntelliJ IDEA
support debugging lambdas out of the box or provide plugins for it)

Let's focus on the first two since relying on an IDE is a very large and specific topic
that isn't in the scope of this book.

Functional Style Programming - a Deep Dive Chapter 9

[479]

Inspecting the stack trace of a failure that happened inside a lambda or a stream
pipeline can be pretty puzzling. Let's consider the following snippet of code:

List<String> names = Arrays.asList("anna", "bob", null, "mary");

names.stream()
 .map(s -> s.toUpperCase())
 .collect(Collectors.toList());

Since the third element from this list is null, we will get a NullPointerException,
and the whole sequence of calls that defines the stream pipeline is exposed, as in the
following screenshot:

The highlighted line tells us that this NullPointerException has occurred inside a
lambda expression named lambda$main$5. This name was made up by the compiler
since lambdas don't have names. Moreover, we don't know which element was null.

So, we can conclude that a stack trace that reports a failure inside a lambda or stream
pipeline is not very intuitive.

Alternatively, we can try to log the output. This will help us debug a pipeline of
operations in a stream. This can be accomplished via the forEach() method:

List<String> list = List.of("anna", "bob",
 "christian", "carmen", "rick", "carla");

list.stream()
 .filter(s -> s.startsWith("c"))
 .map(String::toUpperCase)
 .sorted()
 .forEach(System.out::println);

Functional Style Programming - a Deep Dive Chapter 9

[480]

This will give us the following output:

CARLA
CARMEN
CHRISTIAN

In some cases, this technique can be useful. Of course, we have to keep in mind that
forEach() is a terminal operation, and so the stream will be consumed. Since a
stream can only be consumed once, this can be an issue.

Moreover, if we add a null value to the list, then the output will become confusing
again.

A better alternative consists of relying on the peek() method. This is an intermediate
operation that executes a certain action on the current element and forwards the
element to the next operation in the pipeline. The following diagram shows the
peek() operation at work:

Let's see it in code form:

System.out.println("After:");

names.stream()
 .peek(p -> System.out.println("\tstream(): " + p))
 .filter(s -> s.startsWith("c"))
 .peek(p -> System.out.println("\tfilter(): " + p))
 .map(String::toUpperCase)
 .peek(p -> System.out.println("\tmap(): " + p))
 .sorted()
 .peek(p -> System.out.println("\tsorted(): " + p))
 .collect(Collectors.toList());

Functional Style Programming - a Deep Dive Chapter 9

[481]

The following is an example of the output we may receive:

Now, let's intentionally add a null value to the list and run it again:

List<String> names = Arrays.asList("anna", "bob",
 "christian", null, "carmen", "rick", "carla");

The following output was obtained after adding a null value to the list:

This time, we can see that a null value occurred after applying stream(). Since
stream() is the first operation, we can easily figure out that the error resides in the
list content.

Functional Style Programming - a Deep Dive Chapter 9

[482]

180. Filtering the non-zero elements of a
stream
In Chapter 8, Functional Style Programming – Fundamentals and Design Patterns, in
the Writing functional interfaces section, we defined a filter() method based on a
functional interface named Predicate. The Java Stream API already has such a
method, and the functional interface is called java.util.function.Predicate.

Let's assume that we have the following List of integers:

List<Integer> ints = Arrays.asList(1, 2, -4, 0, 2, 0, -1, 14, 0, -1);

Streaming this list and extracting only non-zero elements can be accomplished as
follows:

List<Integer> result = ints.stream()
 .filter(i -> i != 0)
 .collect(Collectors.toList());

The resulting list will contain the following elements: 1, 2, -4, 2, -1, 14, -1

The following diagram shows how filter() works internally:

Notice that, for several common operations, the Java Stream API already provides out
of the box intermediate operations. Hence, there is no need to provide a Predicate.
Some of these operations are as follows:

distinct(): Removes duplicates from the stream
skip(n): Discards the first n elements
limit(s): Truncates the stream to be no longer than s in length

Functional Style Programming - a Deep Dive Chapter 9

[483]

sorted(): Sorts the stream according to the natural order
sorted(Comparator<? super T> comparator): Sorts the stream
according to the given Comparator

Let's add these operations and a filter() to an example. We will filter zeros, filter
duplicates, skip 1 value, truncate the remaining stream to two elements, and sort
them by their natural order:

List<Integer> result = ints.stream()
 .filter(i -> i != 0)
 .distinct()
 .skip(1)
 .limit(2)
 .sorted()
 .collect(Collectors.toList());

The resulting list will contain the following two elements: -4 and 2.

The following diagram shows how this stream pipeline works internally:

Functional Style Programming - a Deep Dive Chapter 9

[484]

When the filter() operation needs a complex/compound or long condition, then it
is advisable to extract it in an ancillary static method and rely on method references.
Therefore, avoid something like this:

List<Integer> result = ints.stream()
 .filter(value -> value > 0 && value < 10 && value % 2 == 0)
 .collect(Collectors.toList());

You should prefer something like this (Numbers is the class containing the ancillary
method):

List<Integer> result = ints.stream()
 .filter(Numbers::evenBetween0And10)
 .collect(Collectors.toList());

private static boolean evenBetween0And10(int value) {
 return value > 0 && value < 10 && value % 2 == 0;
}

181. Infinite streams, takeWhile(), and
dropWhile()
In the first part of this problem, we will talk about infinite streams. In the second part,
we will talk about the takeWhile() and dropWhile() APIs.

An infinite stream is a stream that creates data indefinitely. Because streams are lazy,
they can be infinite. More precisely, creating an infinite stream is accomplished as an
intermediate operation, and so no data is created until a terminal operation of the
pipeline is executed.

For example, the following code will theoretically run forever. This behavior is
triggered by the forEach() terminal operation and caused by a missing constraint or
limitation:

Stream.iterate(1, i -> i + 1)
 .forEach(System.out::println);

The Java Stream API allows us to create and manipulate an infinite stream in several
ways, as you will see shortly.

Functional Style Programming - a Deep Dive Chapter 9

[485]

Moreover, a Stream can be ordered or unordered, depending on the defined encounter
order. Whether or not a stream has an encounter order depends on the source of data
and the intermediate operations. For example, a Stream that has a List as its source
is ordered because List has an intrinsic ordering. On the other hand, a Stream that
has a Set as its source is unordered because Set doesn't guarantee order. Some
intermediate operations (for example, sorted()) may impose an order to an
unordered Stream, while some terminal operations (for example, forEach()) may
ignore the encounter order.

Commonly, the performance of sequential streams is insignificantly
affected by ordering, but depending on the applied operations, the
performance of parallel streams may be significantly affected by the
presence of an ordered Stream.

Don't confuse Collection.stream().forEach() with Collection.forEach().
While Collection.forEach() can keep order by relying on the collection's iterator
(if any), the Collection.stream().forEach() order undefined. For example,
iterating a List several times via list.forEach() processes the elements in
insertion order, while list.parallelStream().forEach() produces a different
result at each run. As a rule of thumb, if a stream is not needed, then iterate over a
collection via Collection.forEach().

We can turn an ordered stream into an unordered stream via
BaseStream.unordered(), as shown in the following example:

List<Integer> list
 = Arrays.asList(1, 4, 20, 15, 2, 17, 5, 22, 31, 16);

Stream<Integer> unorderedStream = list.stream()
 .unordered();

Infinite sequential ordered stream
An infinite sequential ordered stream can be obtained via Stream.iterate​(T
seed, UnaryOperator<T> f). The resulting stream starts from the specified seed
and continues by applying the f function to the previous element (for example,
the n element is f(n-1)).

For example, a stream of integers of type 1, 2, 3, ..., n can be created as follows:

Stream<Integer> infStream = Stream.iterate(1, i -> i + 1);

Functional Style Programming - a Deep Dive Chapter 9

[486]

Furthermore, we can use this stream for a variety of purposes. For example, let's use it
to fetch a list of the first 10 even integers:

List<Integer> result = infStream
 .filter(i -> i % 2 == 0)
 .limit(10)
 .collect(Collectors.toList());

The List content will be as follows (notice that the infinite stream will create the
elements 1, 2, 3, ..., 20, but only the following elements are matching our filter until
the limit of 10 elements is reached):

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Notice the presence of the limit() intermediate operation. Its
presence is mandatory; otherwise, the code will run indefinitely. We
must explicitly discard the stream; in other words, we must
explicitly specify how many elements that match our filter should be
collected in the final list. Once the limit has been reached, the
infinite stream is discarded.

But let's assume that we don't want the list of the first 10 even integers, and we
actually want the list of even integers until 10 (or any other limit). Starting with JDK
9, we can shape this behavior via a new flavor of Stream.iterate(). This flavor
allows us to embed a hasNext predicate directly into the stream declaration
(iterate​(T seed, Predicate<? super T> hasNext, UnaryOperator<T>
next)). The stream terminates as soon as the hasNext predicate returns false:

Stream<Integer> infStream = Stream.iterate(
 1, i -> i <= 10, i -> i + 1);

This time, we can remove the limit() intermediate operation since our
hasNext predicate imposes the limit of 10 elements:

List<Integer> result = infStream
 .filter(i -> i % 2 == 0)
 .collect(Collectors.toList());

The resulting List is as follows (conforming to our hasNext predicate, the infinite
stream creates the elements 1, 2, 3, ..., 10, but only the following five elements match
our stream filter):

2, 4, 6, 8, 10

Functional Style Programming - a Deep Dive Chapter 9

[487]

Of course, we can combine this flavor of Stream.iterate() and limit() to shape
more complex scenarios. For example, the following stream will create new element
until the have next predicate, i -> i <= 10. Since we are using random values, the
moment when the hasNext predicate will return false is nondeterministic:

Stream<Integer> infStream = Stream.iterate(
 1, i -> i <= 10, i -> i + i % 2 == 0
 ? new Random().nextInt(20) : -1 * new Random().nextInt(10));

One possible output for this stream is as follows:

1, -5, -4, -7, -4, -2, -8, -8, ..., 3, 0, 4, -7, -6, 10, ...

Now, the following pipeline will collect a maximum of 25 numbers that were created
via infStream:

List<Integer> result = infStream
 .limit(25)
 .collect(Collectors.toList());

Now, the infinite stream can be discarded from two places. If the hasNext predicate
returns false until we collect 25 elements, then we remain with the collected
elements at that moment (less than 25). If the hasNext predicate doesn't return false
until we collect 25 elements, then the limit() operation will discard the rest of the
stream.

Unlimited stream of pseudorandom values
If we want to create unlimited streams of pseudorandom values, we can rely on the
methods of Random, such as ints(), longs(), and doubles(). For example, an
unlimited stream of pseudorandom integer values can be declared as follows (the
generated integers will be in the [1, 100] range):

IntStream rndInfStream = new Random().ints(1, 100);

Trying to fetch a list of 10 even pseudorandom integer values can rely on this stream:

List<Integer> result = rndInfStream
 .filter(i -> i % 2 == 0)
 .limit(10)
 .boxed()
 .collect(Collectors.toList());

Functional Style Programming - a Deep Dive Chapter 9

[488]

One possible output is as follows:

8, 24, 82, 42, 90, 18, 26, 96, 86, 86

This time, it is harder to say how many numbers were actually generated until the
aforementioned list is collected.

Another flavor of ints() is ints​(long streamSize, int
randomNumberOrigin, int randomNumberBound). The first argument allows us
to specify how many pseudorandom values should be generated. For example, the
following stream will generate exactly 10 values in the range of [1, 100]:

IntStream rndInfStream = new Random().ints(10, 1, 100);

We can fetch the even values from these 10, as follows:

List<Integer> result = rndInfStream
 .filter(i -> i % 2 == 0)
 .boxed()
 .collect(Collectors.toList());

One possible output is as follows:

80, 28, 60, 54

We can use this example as a base for generating random strings of a fixed length, as
follows:

IntStream rndInfStream = new Random().ints(20, 48, 126);
String result = rndInfStream
 .mapToObj(n -> String.valueOf((char) n))
 .collect(Collectors.joining());

One possible output is as follows:

AIW?F1obl3KPKMItqY8>

Stream.ints() comes with two more flavors: one that doesn't take
any argument (an unlimited stream of integers) and another that
takes a single argument representing the number of values that
should be generated, that is, ints​(long streamSize).

Functional Style Programming - a Deep Dive Chapter 9

[489]

Infinite sequential unordered stream
In order to create an infinite sequential unordered stream, we can rely on
Stream.generate​(Supplier<? extends T> s). In this case, each element is
generated by the provided Supplier. This is suitable for generating constant
streams, streams of random elements, and so on.

For example, let's assume that we have a simple helper that generates passwords of
eight characters:

private static String randomPassword() {

 String chars = "abcd0123!@#$";

 return new SecureRandom().ints(8, 0, chars.length())
 .mapToObj(i -> String.valueOf(chars.charAt(i)))
 .collect(Collectors.joining());
}

Furthermore, we want to define an infinite sequential unordered stream that returns
random passwords (Main is the class that contains the preceding helper):

Supplier<String> passwordSupplier = Main::randomPassword;
Stream<String> passwordStream = Stream.generate(passwordSupplier);

At this point, passwordStream can create passwords indefinitely. But let's create 10
such passwords:

List<String> result = passwordStream
 .limit(10)
 .collect(Collectors.toList());

One possible output is as follows:

213c1b1c, 2badc$21, d33321d$, @a0dc323, 3!1aa!dc, 0a3##@3!, $!b2#1d@,
0@0#dd$#, cb$12d2@, d2@@cc@d

Take while a predicate returns true
One of the most useful methods that was added to the Stream class, starting with
JDK 9, was takeWhile ​(Predicate<? super T> predicate). This method comes
with two different behaviors, as follows:

If the stream is ordered, it returns a stream consisting of the longest prefix of
elements taken from this stream that match the given predicate.

Functional Style Programming - a Deep Dive Chapter 9

[490]

If the stream is unordered, and some (but not all) of the elements of this
stream match the given predicate, then the behavior of this operation is
nondeterministic; it is free to take any subset of matching elements (which
includes the empty set).

In the case of an ordered Stream, the longest prefix of elements is a contiguous
sequence of elements of the stream that match with the given predicate.

Note that takeWhile() will discard the remaining stream once the
given predicate returns false.

For example, fetching a list of 10 integers can be done as follows:

List<Integer> result = IntStream
 .iterate(1, i -> i + 1)
 .takeWhile(i -> i <= 10)
 .boxed()
 .collect(Collectors.toList());

This will give us the following output:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Alternatively, we could fetch a List of random even integers until the first generated
value is less than 50:

List<Integer> result = new Random().ints(1, 100)
 .filter(i -> i % 2 == 0)
 .takeWhile(i -> i >= 50)
 .boxed()
 .collect(Collectors.toList());

We can even join the predicates in takeWhile():

List<Integer> result = new Random().ints(1, 100)
 .takeWhile(i -> i % 2 == 0 && i >= 50)
 .boxed()
 .collect(Collectors.toList());

One possible output can be obtained as follows (it can be empty as well):

64, 76, 54, 68

How about fetching a List of random passwords until the first generated password
doesn't contain the ! character?

Functional Style Programming - a Deep Dive Chapter 9

[491]

Well, based on the helper we listed earlier, we can do this like so:

List<String> result = Stream.generate(Main::randomPassword)
 .takeWhile(s -> s.contains("!"))
 .collect(Collectors.toList());

One possible output can be obtained as follows (it can be empty as well):

0!dac!3c, 2!$!b2ac, 1d12ba1!

Now, let's assume that we have an unordered stream of integers. The following
snippet of code takes a subset of elements that are less than or equal to 10:

Set<Integer> setOfInts = new HashSet<>(
 Arrays.asList(1, 4, 3, 52, 9, 40, 5, 2, 31, 8));

List<Integer> result = setOfInts.stream()
 .takeWhile(i -> i<= 10)
 .collect(Collectors.toList());

One possible output is as follows (remember that, for an unordered stream, the result
is nondeterministic):

1, 3, 4

Drop while a predicate returns true
Starting with JDK 9, we also have the Stream.dropWhile​(Predicate<? super T>
predicate) method. This method is the opposite of takeWhile(). Instead of taking
elements until the given predicate returns false, this method drops the elements
until the given element returns false and includes the rest of the elements in the
returned stream:

If the stream is ordered, it returns a stream consisting of the remaining
elements of this stream after dropping the longest prefix of elements that
match the given predicate.
If the stream is unordered, and some (but not all) of the elements of this
stream match the given predicate, then the behavior of this operation is
nondeterministic; it is free to drop any subset of matching elements (which
includes the empty set).

In the case of an ordered Stream, the longest prefix of elements is a contiguous
sequence of elements of the stream that match the given predicate.

Functional Style Programming - a Deep Dive Chapter 9

[492]

For example, let's collect 5 integers after dropping the first 10:

List<Integer> result = IntStream
 .iterate(1, i -> i + 1)
 .dropWhile(i -> i <= 10)
 .limit(5)
 .boxed()
 .collect(Collectors.toList());

This will always give the following output:

11, 12, 13, 14, 15

Alternatively, we can fetch a List of five random even integers greater than 50 (at
least, this is what we may think the code does):

List<Integer> result = new Random().ints(1, 100)
 .filter(i -> i % 2 == 0)
 .dropWhile(i -> i < 50)
 .limit(5)
 .boxed()
 .collect(Collectors.toList());

One possible output is as follows:

78, 16, 4, 94, 26

But why is 16 and 4 there? They are even, but not greater than 50! Well, they are there
because they came after the first element, which failed the predicate. Mainly, we are
dropping values while they are smaller than 50 (dropWhile(i -> i < 50)). The 78
value will fail this predicate, so dropWhile ends its job. Furthermore, all the
generated elements are included in the result until limit(5) takes action.

Let's look at another similar trap. Let's fetch a List of five random passwords
containing the ! character (at least, this is what we may think the code does):

List<String> result = Stream.generate(Main::randomPassword)
 .dropWhile(s -> !s.contains("!"))
 .limit(5)
 .collect(Collectors.toList());

One possible output is as follows:

bab2!3dd, c2@$1acc, $c1c@cb@, !b21$cdc, #b103c21

Functional Style Programming - a Deep Dive Chapter 9

[493]

Again, we can see passwords that don't contain the ! character.
The bab2!3dd password will fail our predicate and will end up in the final result
(List). The four generated passwords are added to the result without being
influenced by dropWhile().

Now, let's assume that we have an unordered stream of integers. The following
snippet of code drops a subset of elements that are less than or equal to 10 and keeps
the rest:

Set<Integer> setOfInts = new HashSet<>(
 Arrays.asList(5, 42, 3, 2, 11, 1, 6, 55, 9, 7));

List<Integer> result = setOfInts.stream()
 .dropWhile(i -> i <= 10)
 .collect(Collectors.toList());

One possible output is as follows (remember that, for an unordered stream, the result
is nondeterministic):

55, 7, 9, 42, 11

If all the elements match the given predicate, then takeWhile() takes and
dropWhile() drops all elements (it doesn't matter if the stream is ordered or
unordered). On the other hand, if none of the elements match the given predicate,
then takeWhile() takes nothing (returns an empty stream) and dropWhile() drops
nothing (returns the stream).

Avoid using take/dropWhile() in the context of parallel streams
since they are expensive operations, especially for ordered streams.
If it is suitable for the case, then just remove the ordering constraint
via BaseStream.unordered().

182. Mapping the elements of a stream
Mapping the elements of a stream is an intermediate operation that's used for
transforming these elements into a new version of them by applying the given function
to each element and accumulating the results in a new Stream (for example,
transforming a Stream<String> into a Stream<Integer>, or transforming a
Stream<String> into another Stream<String>, and so on).

Functional Style Programming - a Deep Dive Chapter 9

[494]

Using Stream.map()
Basically, we call Stream.map​(Function<? super T,​? extends R> mapper) to
apply the mapper function on each element of the stream. The result is a new Stream.
It doesn't modify the source Stream.

Let's assume that we have the following Melon class:

public class Melon {

 private String type;
 private int weight;

 // constructors, getters, setters, equals(),
 // hashCode(), toString() omitted for brevity
}

We also need to assume that we have List<Melon>:

List<Melon> melons = Arrays.asList(new Melon("Gac", 2000),
 new Melon("Hemi", 1600), new Melon("Gac", 3000),
 new Melon("Apollo", 2000), new Melon("Horned", 1700));

Furthermore, we want to extract only the names of the melons in another list,
List<String>.

For this task, we can rely on map(), as follows:

List<String> melonNames = melons.stream()
 .map(Melon::getType)
 .collect(Collectors.toList());

The output will contain the following types of melons:

Gac, Hemi, Gac, Apollo, Horned

Functional Style Programming - a Deep Dive Chapter 9

[495]

The following diagram depicts how map() works for this example:

So, the map() method gets a Stream<Melon> and outputs a Stream<String>. Each
Melon passes through the map() method, and this method extracts the melon's type
(which is a String) and stores it in another Stream.

Similarly, we can extract the weights of melons. Since weights are integers, the map()
method will return a Stream<Integer>:

List<Integer> melonWeights = melons.stream()
 .map(Melon::getWeight)
 .collect(Collectors.toList());

The output will contain the following weights:

2000, 1600, 3000, 2000, 1700

Beside map(), the Stream class also provides flavors for primitives
such as mapToInt(), mapToLong(), and mapToDouble(). These
methods return the int primitive specialization of Stream
(IntStream), the long primitive specialization of
Stream (LongStream) and the double primitive specialization of
Stream (StreamDouble).

While map() can map the elements of a Stream to a new Stream via a Function, do
not conclude that we can do the following:

List<Melon> lighterMelons = melons.stream()
 .map(m -> m.setWeight(m.getWeight() - 500))
 .collect(Collectors.toList());

Functional Style Programming - a Deep Dive Chapter 9

[496]

This will not work/compile because the setWeight() method returns void. In order
to make it work, we need to return Melon, but this means we have to add some
perfunctory code (for example, return):

List<Melon> lighterMelons = melons.stream()
 .map(m -> {
 m.setWeight(m.getWeight() - 500);

 return m;
 })
 .collect(Collectors.toList());

What do you think about the peek() temptation? Well, peek() stands for look, but
don't touch, but it can be used to mutate state, as follows:

List<Melon> lighterMelons = melons.stream()
 .peek(m -> m.setWeight(m.getWeight() - 500))
 .collect(Collectors.toList());

The output will contain the following melons (this looks good):

Gac(1500g), Hemi(1100g), Gac(2500g), Apollo(1500g), Horned(1200g)

This is more clear than using map(). Calling setWeight() is a clear signal that we
plan to mutate state, but the documentation specifies that the Consumer that's passed
to peek() should be a non-interfering action (doesn't modify the data source of the
stream).

For sequential streams (such as the preceding one), breaking this expectation can be
kept under control without side effects; however, for parallel stream pipelines, the
problem may become more complicated.

The action may be called at whatever time and in whatever thread the element is
made available by the upstream operation, so if the action modifies the shared state, it
is responsible for providing the required synchronization.

As a rule of thumb, think twice before using peek() to mutate the state. Also, be
aware that this practice is a debate that falls under the bad practice or even anti-
pattern umbrella.

Functional Style Programming - a Deep Dive Chapter 9

[497]

Using Stream.flatMap()
As we just saw, map() knows how to wrap a sequence of elements in a Stream.

This means that map() can produce streams such as Stream<String[]>,
Stream<List<String>>, Stream<Set<String>>, or even Stream<Stream<R>>.

But the problem is that these kinds of streams cannot be manipulated successfully (or,
as we expected) by stream operations such as sum(), distinct(), filter(), and so
on.

For example, let's consider the following array of Melon:

Melon[][] melonsArray = {
 {new Melon("Gac", 2000), new Melon("Hemi", 1600)},
 {new Melon("Gac", 2000), new Melon("Apollo", 2000)},
 {new Melon("Horned", 1700), new Melon("Hemi", 1600)}
};

We can take this array and wrap it in a stream via Arrays.stream(), as shown in
the following snippet of code:

Stream<Melon[]> streamOfMelonsArray = Arrays.stream(melonsArray);

There are many other ways of obtaining a Stream of arrays. For
example, if we have a string, s, then map(s -> s.split("")) will
return a Stream<String[]>.

Now, we may think that obtaining the distinct Melon instances it is enough to call
distinct(), as follows:

streamOfMelonsArray
 .distinct()
 .collect(Collectors.toList());

But this is not going to work because distinct() will not look for a distinct Melon;
instead, it will look for a distinct array Melon[] because this is what we have in the
stream.

Functional Style Programming - a Deep Dive Chapter 9

[498]

Moreover, the result that was returned in this case is of the Stream<Melon[]> type,
not of the Stream<Melon> type. The final result will collect Stream<Melon[]> in
List<Melon[]>.

How we can fix this problem?

We may consider applying Arrays.stream() in order to convert the Melon[] into a
Stream<Melon>:

streamOfMelonsArray
 .map(Arrays::stream) // Stream<Stream<Melon>>
 .distinct()
 .collect(Collectors.toList());

Again, map() will not do what we might think it will do.

First, calling Arrays.stream() will return a Stream<Melon> from each of the given
Melon[]. However, map() returns a Stream of elements, and so it will wrap the
results of applying Arrays.stream() into a Stream. It will end up in a
Stream<Stream<Melon>>.

So, this time, distinct() tries to detect distinct Stream<Melon> elements:

Functional Style Programming - a Deep Dive Chapter 9

[499]

In order to fix this problem, we must rely on flatMap(). The following diagram
depicts how flatMap() works internally:

Unlike map(), this method returns a stream by flattening all the separated streams.
So, all the arrays will end up in the same stream:

streamOfMelonsArray
 .flatMap(Arrays::stream) // Stream<Melon>
 .distinct()
 .collect(Collectors.toList());

The output will contain distinct melons according to
the Melon.equals() implementation:

Gac(2000g), Hemi(1600g), Apollo(2000g), Horned(1700g)

Now, let's try another problem, starting with a List<List<String>>, as follows:

List<List<String>> melonLists = Arrays.asList(
 Arrays.asList("Gac", "Cantaloupe"),
 Arrays.asList("Hemi", "Gac", "Apollo"),
 Arrays.asList("Gac", "Hemi", "Cantaloupe"),
 Arrays.asList("Apollo"),
 Arrays.asList("Horned", "Hemi"),
 Arrays.asList("Hemi"));

Functional Style Programming - a Deep Dive Chapter 9

[500]

We try to obtain the distinct names of melons from this list. If wrapping an array into
a stream can be done via Arrays.stream(), for a collection, we have
Collection.stream(). Therefore, the first attempt may look as follows:

melonLists.stream()
 .map(Collection::stream)
 .distinct();

But based on the previous problem, we already know that this will not work because
map() will return Stream<Stream<String>>.

The solution is provided by flatMap(), as follows:

List<String> distinctNames = melonLists.stream()
 .flatMap(Collection::stream)
 .distinct()
 .collect(Collectors.toList());

The output is as follows:

Gac, Cantaloupe, Hemi, Apollo, Horned

Beside flatMap(), the Stream class also provides flavors for
primitives such as flatMapToInt(), flatMapToLong(), and
flatMapToDouble(). These methods return the int primitive
specialization of Stream (IntStream), the long primitive
specialization of Stream (LongStream), and the double primitive
specialization of Stream (StreamDouble).

183. Finding elements in a stream
Besides using filter(), which allows us to filter elements of a stream by a predicate,
we can find an element in a stream via anyFirst() and findFirst().

Let's assume that we have the following list wrapped in a stream:

List<String> melons = Arrays.asList(
 "Gac", "Cantaloupe", "Hemi", "Gac", "Gac",
 "Hemi", "Cantaloupe", "Horned", "Hemi", "Hemi");

Functional Style Programming - a Deep Dive Chapter 9

[501]

findAny
The findAny() method returns an arbitrary (nondeterministic) element from the
stream. For example, the following snippet of code will return an element from the
preceding list:

Optional<String> anyMelon = melons.stream()
 .findAny();

if (!anyMelon.isEmpty()) {
 System.out.println("Any melon: " + anyMelon.get());
} else {
 System.out.println("No melon was found");
}

Notice that there is no guarantee that it will return the same element
at each execution. This statement is true especially in the case of
parallelizing the stream.

We can combine findAny() with other operations as well. Here's an example:

String anyApollo = melons.stream()
 .filter(m -> m.equals("Apollo"))
 .findAny()
 .orElse("nope");

This time, the result will be nope. There is no Apollo in the list, and so the filter()
operation will produce an empty stream. Furthermore, findAny() will return an
empty stream as well, so orElse() will return the final result as the specified string,
nope.

findFirst
If findAny() returns any element, findFirst() returns the first element from the
stream. Obviously, this method is useful when we are interested only in the first
element of a stream (for example, the winner of a contest should be the first element
in a sorted list of competitors).

Functional Style Programming - a Deep Dive Chapter 9

[502]

Nevertheless, if the stream has no encounter order, then any element
may be returned. According to the documentation, streams may or
may not have a defined encounter order. It depends on the source and
intermediate operations. The same rule applies in parallelism as well.

For now, let's assume that we want the first melon in the list:

Optional<String> firstMelon = melons.stream()
 .findFirst();

if (!firstMelon.isEmpty()) {
 System.out.println("First melon: " + firstMelon.get());
} else {
 System.out.println("No melon was found");
}

The output will be as follows:

First melon: Gac

We can combine findFirst() with other operations as well. Here's an example:

String firstApollo = melons.stream()
 .filter(m -> m.equals("Apollo"))
 .findFirst()
 .orElse("nope");

This time, the result will be nope since the filter() will produce an empty stream.

The following is another problem with integers (just follow the right-hand comments
to quickly discover the flow):

List<Integer> ints = Arrays.asList(4, 8, 4, 5, 5, 7);

int result = ints.stream()
 .map(x -> x * x - 1) // 23, 63, 23, 24, 24, 48
 .filter(x -> x % 2 == 0) // 24, 24, 48
 .findFirst() // 24
 .orElse(-1);

Functional Style Programming - a Deep Dive Chapter 9

[503]

184. Matching elements in a stream
To match certain elements in a Stream, we can rely on the following methods:

anyMatch()

noneMatch()

allMatch()

All of these methods take a Predicate as an argument and fetch a boolean result
against it.

These three operations rely on the short-circuiting technique. In other
words, these methods may return until we process the entire stream.
For example, if allMatch() matches false (evaluates the given
Predicate as false), then there is no reason to continue. The final
result is false.

Let's assume that we have the following list wrapped in a stream:

List<String> melons = Arrays.asList(
 "Gac", "Cantaloupe", "Hemi", "Gac", "Gac", "Hemi",
 "Cantaloupe", "Horned", "Hemi", "Hemi");

Now, let's try to answer the following questions:

Does an element match the Gac string? Let's see that in the following code:

boolean isAnyGac = melons.stream()
 .anyMatch(m -> m.equals("Gac")); // true

Does an element match the Apollo string? Let's see that in the following
code:

boolean isAnyApollo = melons.stream()
 .anyMatch(m -> m.equals("Apollo")); // false

Functional Style Programming - a Deep Dive Chapter 9

[504]

As a general question – is there an element in the stream that matches the given
predicate?

Do no elements match the Gac string? Let's see that in the following code:

boolean isNoneGac = melons.stream()
 .noneMatch(m -> m.equals("Gac")); // false

Do no elements match the Apollo string? Let's see that in the following
code:

boolean isNoneApollo = melons.stream()
 .noneMatch(m -> m.equals("Apollo")); // true

As a general question – are there no elements in the stream that match the given
predicate?

Do all the elements match the Gac string? Let's see that in the following
code:

boolean areAllGac = melons.stream()
 .allMatch(m -> m.equals("Gac")); // false

Are all the elements larger than 2? Let's see that in the following code:

boolean areAllLargerThan2 = melons.stream()
 .allMatch(m -> m.length() > 2);

As a general question—do all the elements in the stream match the given predicate?

185. Sum, max, and min in a stream
Let's assume that we have the following Melon class:

public class Melon {

 private String type;
 private int weight;

 // constructors, getters, setters, equals(),
 // hashCode(), toString() omitted for brevity
}

Functional Style Programming - a Deep Dive Chapter 9

[505]

Let's also assume that we have the following list of Melon wrapped in a stream:

List<Melon> melons = Arrays.asList(new Melon("Gac", 2000),
 new Melon("Hemi", 1600), new Melon("Gac", 3000),
 new Melon("Apollo", 2000), new Melon("Horned", 1700));

Let's work on the Melon class using the sum(), min(), and max() terminal
operations.

The sum(), min(), and max() terminal operations
Now, let's combine the elements of this stream to express the following queries:

How can we calculate the total weight of melons (sum())?
What is the heaviest melon (max())?
What is the lightest melon (min())?

In order to calculate the total weight of melons, we need to sum up all the weights.
For primitive specializations of Stream (IntStream, LongStream, and so on), the
Java Stream API exposes a terminal operation named sum(). As its name suggests,
this method sums up the elements of the stream:

int total = melons.stream()
 .mapToInt(Melon::getWeight)
 .sum();

After sum(), we also have the max() and min() terminal operations. Obviously,
max() returns the maximum value of the stream, while min() is its opposite:

int max = melons.stream()
 .mapToInt(Melon::getWeight)
 .max()
 .orElse(-1);

int min = melons.stream()
 .mapToInt(Melon::getWeight)
 .min()
 .orElse(-1);

Functional Style Programming - a Deep Dive Chapter 9

[506]

The max() and min() operations return an OptionalInt (such
as OptionalLong). If the maximum or minimum cannot be
calculated (for example, in the case of an empty stream) then we
choose to return -1. Since we are working with weights, and with
positive numbers by their nature, returning -1 makes sense. But
don't take this as a rule. Depending on the case, another value
should be returned, or maybe using orElseGet()/orElseThrow()
would be better.

For non-primitive specializations, check out the Summarization collectors section of this
chapter.

Let's learn about reducing in the next section.

Reducing
sum(), max(), and min() are known as special cases of reduction. By reduction, we
mean an abstraction based on two main statements:

Take an initial value (T)
Take a BinaryOperator<T> to combine two elements and produce a new
value

Reductions can be accomplished via a terminal operation named reduce(), which
follows this abstraction and defines two signatures (the second one doesn't use an
initial value):

T reduce​(T identity, BinaryOperator<T> accumulator)
Optional<T> reduce​(BinaryOperator<T> accumulator)

With that being said, we can rely on the reduce() terminal operation to compute the
sum of the elements, as follows (the initial value is 0, and the lambda is (m1, m2) ->
m1 + m2)):

int total = melons.stream()
 .map(Melon::getWeight)
 .reduce(0, (m1, m2) -> m1 + m2);

Functional Style Programming - a Deep Dive Chapter 9

[507]

The following diagram depicts how the reduce() operation works:

So, how does the reduce() operation work?

Let's take a look at the following steps to figure this out:

First, 0 is used as the first parameter of the lambda (m1), and 2,000 is1.
consumed from the stream and used as the second parameter (m2). 0 +
2000 produces 2000, and this becomes the new accumulated value.
Then, the lambda is called again with the accumulated value and the next2.
element of the stream, 1,600, which produces the new accumulated value,
3,600.
Moving forward, the lambda is called again with the accumulated value3.
and the next element, 3,000, which produces 6,600.
If we step forward again, the lambda is called again with the accumulated4.
value and the next element, 2,000, which produces 8,600.
Finally, the lambda is called with 8,600 and the last element of the stream,5.
1,700, which produces the final value, 10,300.

Functional Style Programming - a Deep Dive Chapter 9

[508]

The maximum and minimum can be calculated as well:

int max = melons.stream()
 .map(Melon::getWeight)
 .reduce(Integer::max)
 .orElse(-1);

int min = melons.stream()
 .map(Melon::getWeight)
 .reduce(Integer::min)
 .orElse(-1);

The advantage of using reduce() is that we can easily change the computation by
simply passing another lambda. For example, we can quickly replace the sum with
the product, as shown in the following example:

List<Double> numbers = Arrays.asList(1.0d, 5.0d, 8.0d, 10.0d);

double total = numbers.stream()
 .reduce(1.0 d, (x1, x2) -> x1 * x2);

Nevertheless, pay attention to cases that can lead to unwanted results. For example, if
we want to compute the harmonic mean of the given numbers then there is not an out
of the box special case of reduction, and so we can only rely on reduce(), as follows:

List<Double> numbers = Arrays.asList(1.0d, 5.0d, 8.0d, 10.0d);

The harmonic mean formula is as follows:

In our case, n is the size of the list and H is 2.80701. Using a naive reduce() function
will look as follows:

double hm = numbers.size() / numbers.stream()
 .reduce((x1, x2) -> (1.0d / x1 + 1.0d / x2))
 .orElseThrow();

This will produce 3.49809.

Functional Style Programming - a Deep Dive Chapter 9

[509]

This explanation relies on how we have expressed the calculation. In the first step, we
calculate 1.0/1.0 + 1.0/5.0 = 1.2. Then, we may expect to do 1.2 + 1.0/1.8, but actually,
the calculation is 1.0/1.2 + 1.0/1.8. Obviously, this is not what we want.

We can fix this by using mapToDouble(), as follows:

double hm = numbers.size() / numbers.stream()
 .mapToDouble(x -> 1.0d / x)
 .reduce((x1, x2) -> (x1 + x2))
 .orElseThrow();

This will produce the expected result, that is, 2.80701.

186. Collecting the result of a stream
Let's assume that we have the following Melon class:

public class Melon {

 private String type;
 private int weight;

 // constructors, getters, setters, equals(),
 // hashCode(), toString() omitted for brevity
}

Let's also assume that we have the List of Melon:

List<Melon> melons = Arrays.asList(new Melon("Crenshaw", 2000),
 new Melon("Hemi", 1600), new Melon("Gac", 3000),
 new Melon("Apollo", 2000), new Melon("Horned", 1700),
 new Melon("Gac", 3000), new Melon("Cantaloupe", 2600));

Typically, a stream pipeline ends up with a summary of the elements in the stream. In
other words, we need to collect the results in a data structure such as List, Set,
or Map (and their companions).

For accomplishing this task, we can rely on the Stream.collect​(Collector<?
super T,​A,​R> collector) method. This method gets a single argument
representing a java.util.stream.Collector or a user-defined Collector.

Functional Style Programming - a Deep Dive Chapter 9

[510]

The most famous collectors include the following:

toList()

toSet()

toMap()

toCollection()

Their names speak for themselves. Let's take a look at several examples:

Filter melons that are heavier than 1,000 g and collect the result in a List
via toList() and toCollection():

List<Integer> resultToList = melons.stream()
 .map(Melon::getWeight)
 .filter(x -> x >= 1000)
 .collect(Collectors.toList());

List<Integer> resultToList = melons.stream()
 .map(Melon::getWeight)
 .filter(x -> x >= 1000)
 .collect(Collectors.toCollection(ArrayList::new));

The argument of the toCollection() method is a Supplier that provides
a new empty Collection into which the results will be inserted.

Filter melons that are heavier than 1,000 g and collect the result without
duplicates in a Set via toSet() and toCollection():

Set<Integer> resultToSet = melons.stream()
 .map(Melon::getWeight)
 .filter(x -> x >= 1000)
 .collect(Collectors.toSet());

Set<Integer> resultToSet = melons.stream()
 .map(Melon::getWeight)
 .filter(x -> x >= 1000)
 .collect(Collectors.toCollection(HashSet::new));

Functional Style Programming - a Deep Dive Chapter 9

[511]

Filter melons that are heavier than 1,000 grams, collect the result without
duplicates, and sort into ascending order in a Set via toCollection():

Set<Integer> resultToSet = melons.stream()
 .map(Melon::getWeight)
 .filter(x -> x >= 1000)
 .collect(Collectors.toCollection(TreeSet::new));

Filter a distinct Melon and collect the result in a Map<String, Integer>
via toMap():

Map<String, Integer> resultToMap = melons.stream()
 .distinct()
 .collect(Collectors.toMap(Melon::getType,
 Melon::getWeight));

The two arguments of the toMap() method represent a mapping function
that's used to produce keys and their respective values (this is prone to
the java.lang.IllegalStateException duplicate key exception if two
Melon have the same key).

Filter a distinct Melon and collect the result in a Map<Integer, Integer>
via toMap() using random keys (prone to
the java.lang.IllegalStateException duplicate key if two identical
keys are generated):

Map<Integer, Integer> resultToMap = melons.stream()
 .distinct()
 .map(x -> Map.entry(
 new Random().nextInt(Integer.MAX_VALUE), x.getWeight()))
 .collect(Collectors.toMap(Entry::getKey, Entry::getValue));

Collect a Melon in a map via toMap() and avoid the potential
java.lang.IllegalStateException duplicate key by choosing the
existing (old) value in case of a key collision:

Map<String, Integer> resultToMap = melons.stream()
 .collect(Collectors.toMap(Melon::getType, Melon::getWeight,
 (oldValue, newValue) -> oldValue));

Functional Style Programming - a Deep Dive Chapter 9

[512]

The last argument of the toMap() method is a merge function and is used
to resolve collisions between values associated with the same key, as
supplied to Map.merge(Object, Object, BiFunction).

Obviously, choosing the new value can be done with (oldValue,
newValue) -> newValue:

Put the preceding example into a sorted Map (for example, by weight):

Map<String, Integer> resultToMap = melons.stream()
 .sorted(Comparator.comparingInt(Melon::getWeight))
 .collect(Collectors.toMap(Melon::getType, Melon::getWeight,
 (oldValue, newValue) -> oldValue,
 LinkedHashMap::new));

The last argument of this toMap() flavor represents a Supplier that
provides a new empty Map into which the results will be inserted. In this
example, this Supplier is needed to preserve the order after sorting. Since
HashMap doesn't guarantee the order of insertion, we need to rely on
LinkedHashMap.

Collect the word frequency count via toMap():

String str = "Lorem Ipsum is simply
 Ipsum Lorem not simply Ipsum";

Map<String, Integer> mapOfWords = Stream.of(str)
 .map(w -> w.split("\\s+"))
 .flatMap(Arrays::stream)
 .collect(Collectors.toMap(
 w -> w.toLowerCase(), w -> 1, Integer::sum));

Beside toList(), toMap(), and toSet(), the Collectors class
also exposes collectors to unmodifiable and concurrent collections
such as toUnmodifiableList(), toConcurrentMap(), and so on.

Functional Style Programming - a Deep Dive Chapter 9

[513]

187. Joining the results of a stream
Let's assume that we have the following Melon class:

public class Melon {

 private String type;
 private int weight;

 // constructors, getters, setters, equals(),
 // hashCode(), toString() omitted for brevity
}

Let's also assume that we have the List of Melon:

List<Melon> melons = Arrays.asList(new Melon("Crenshaw", 2000),
 new Melon("Hemi", 1600), new Melon("Gac", 3000),
 new Melon("Apollo", 2000), new Melon("Horned", 1700),
 new Melon("Gac", 3000), new Melon("Cantaloupe", 2600));

In the previous problem, we talked about the Stream API that's built
into Collectors. In this category, we also have Collectors.joining(). The goal
of these collectors is to concatenate the elements of a stream into a String in the
encounter order. Optionally, these collectors can use a delimiter, a prefix, and a suffix,
and so the most comprehensive joining() flavor is String joining
(CharSequence delimiter, CharSequence prefix, CharSequence suffix).

But if all we want is to concatenate the names of melons without a delimiter, then this
is the way to go (just for fun, let's sort and remove the duplicates as well):

String melonNames = melons.stream()
 .map(Melon::getType)
 .distinct()
 .sorted()
 .collect(Collectors.joining());

We will receive the following output:

ApolloCantaloupeCrenshawGacHemiHorned

A nicer solution consists of adding a delimiter, for example, a comma and a space:

String melonNames = melons.stream()
 ...
 .collect(Collectors.joining(", "));

Functional Style Programming - a Deep Dive Chapter 9

[514]

We will receive the following output:

Apollo, Cantaloupe, Crenshaw, Gac, Hemi, Horned

We can also enrich the output with a prefix and suffix:

String melonNames = melons.stream()
 ...
 .collect(Collectors.joining(", ",
 "Available melons: ", " Thank you!"));

We will receive the following output:

Available melons: Apollo, Cantaloupe, Crenshaw, Gac, Hemi, Horned
Thank you!

188. Summarization collectors
Let's assume that we have the well-known Melon class (that uses type and weight)
and List of Melon:

List<Melon> melons = Arrays.asList(new Melon("Crenshaw", 2000),
 new Melon("Hemi", 1600), new Melon("Gac", 3000),
 new Melon("Apollo", 2000), new Melon("Horned", 1700),
 new Melon("Gac", 3000), new Melon("Cantaloupe", 2600));

The Java Stream API groups the count, sum, min, average, and max operations
under the term summarization. The methods dedicated to performing summarization
operations are found in the Collectors class.

We'll take a look at all of these operations in the following sections.

Summing
Let's assume that we want to sum all the weights of melons. We did this in the Sum,
max, and min in a stream section via primitive specializations of Stream. Now, let's do
it via the summingInt​(ToIntFunction<? super T> mapper) collector:

int sumWeightsGrams = melons.stream()
 .collect(Collectors.summingInt(Melon::getWeight));

Functional Style Programming - a Deep Dive Chapter 9

[515]

So, Collectors.summingInt() is a factory method that takes a function that's
capable of mapping an object into an int that has to be summed as an argument. A
collector is returned that performs the summarization via the collect() method. The
following diagram depicts how summingInt() works:

While traversing the stream, each weight (Melon::getWeight) is mapped to its
number, and this number is added to an accumulator, starting from the initial value,
that is, 0.

After summingInt(), we have summingLong() and summingDouble(). How do we
sum up the weights of melons in kilograms? This can be accomplished via
summingDouble(), as follows:

double sumWeightsKg = melons.stream()
 .collect(Collectors.summingDouble(
 m -> (double) m.getWeight() / 1000.0d));

If we just need the result in kilograms, we can still perform the sum in grams, as
follows:

double sumWeightsKg = melons.stream()
 .collect(Collectors.summingInt(Melon::getWeight)) / 1000.0d;

Functional Style Programming - a Deep Dive Chapter 9

[516]

Since summarizations are actually reductions, the Collectors class provides a
reducing() method as well. Obviously, this method has a more general utilization,
allowing us to provide all kinds of lambdas via its three flavors:

reducing​(BinaryOperator<T> op)
reducing​(T identity, BinaryOperator<T> op)
reducing​(U identity, Function<? super T,​? extends U>
mapper, BinaryOperator<U> op)

The arguments of reducing() are pretty straightforward. We have the identity
value for the reduction (as well as the value that is returned when there are no input
elements), a mapping function to apply to each input value, and a function that's used
to reduce the mapped values.

For example, let's rewrite the preceding snippet of code via reducing(). Notice that
we start the sum from 0, convert it from grams into kilograms via a mapping
function, and reduce the values (the resulted kilograms) via a lambda:

double sumWeightsKg = melons.stream()
 .collect(Collectors.reducing(0.0,
 m -> (double) m.getWeight() / 1000.0d, (m1, m2) -> m1 + m2));

Alternatively, we can simply convert to kilograms at the end:

double sumWeightsKg = melons.stream()
 .collect(Collectors.reducing(0,
 m -> m.getWeight(), (m1, m2) -> m1 + m2)) / 1000.0d;

Rely on reducing() whenever there is no suitable built-in solution.
Think of reducing() as a generalized summarization.

Averaging
How about computing the average weight of a melon?

For this, we have Collectors.averagingInt(), averagingLong(), and
averagingDouble():

double avgWeights = melons.stream()
 .collect(Collectors.averagingInt(Melon::getWeight));

Functional Style Programming - a Deep Dive Chapter 9

[517]

Counting
Counting the number of words in a piece of text is a common problem that can be
solved by count():

String str = "Lorem Ipsum is simply dummy text ...";

long numberOfWords = Stream.of(str)
 .map(w -> w.split("\\s+"))
 .flatMap(Arrays::stream)
 .filter(w -> w.trim().length() != 0)
 .count();

But let's see how many Melon weighing 3,000 there are in our stream:

long nrOfMelon = melons.stream()
 .filter(m -> m.getWeight() == 3000)
 .count();

We can use the collector that's returned by the counting() factory method:

long nrOfMelon = melons.stream()
 .filter(m -> m.getWeight() == 3000)
 .collect(Collectors.counting());

We can also use the clumsy approach of using reducing():

long nrOfMelon = melons.stream()
 .filter(m -> m.getWeight() == 3000)
 .collect(Collectors.reducing(0L, m -> 1L, Long::sum));

Maximum and minimum
In the Sum, max, and min in a stream section, we already computed the minimum and
maximum value via the min() and max() methods. This time, let's compute the
heaviest and the lightest Melon via the Collectors.maxBy() and
Collectors.minBy() collectors. These collectors take a Comparator as an
argument to compare the elements in the stream and return an Optional (this
Optional will be empty if the stream is empty):

Comparator<Melon> byWeight = Comparator.comparing(Melon::getWeight);

Melon heaviestMelon = melons.stream()
 .collect(Collectors.maxBy(byWeight))
 .orElseThrow();

Functional Style Programming - a Deep Dive Chapter 9

[518]

Melon lightestMelon = melons.stream()
 .collect(Collectors.minBy(byWeight))
 .orElseThrow();

In this case, if the stream is empty, we just throw NoSuchElementException.

Getting all
Is there a way to obtain the count, sum, average, min, and max in a single unitary
operation?

Yes, there is! Whenever we need two or more of these operations, we can rely on
Collectors.summarizingInt​(), summarizingLong(), and
summarizingDouble(). These methods wrap these operations in
IntSummaryStatistics, LongSummaryStatistics,
and DoubleSummaryStatistics, respectively, as follows:

IntSummaryStatistics melonWeightsStatistics = melons
 .stream().collect(Collectors.summarizingInt(Melon::getWeight));

Printing this object produces the following output:

IntSummaryStatistics{count=7, sum=15900, min=1600,
average=2271.428571, max=3000}

For each of these operations, we have dedicated getters:

int max = melonWeightsStatistics.getMax()

We're all done! Now, let's talk about grouping elements of a stream.

189. Grouping
Let's assume that we have the following Melon class and List of Melon:

public class Melon {

 enum Sugar {
 LOW, MEDIUM, HIGH, UNKNOWN
 }

 private final String type;
 private final int weight;
 private final Sugar sugar;

Functional Style Programming - a Deep Dive Chapter 9

[519]

 // constructors, getters, setters, equals(),
 // hashCode(), toString() omitted for brevity
}

List<Melon> melons = Arrays.asList(
 new Melon("Crenshaw", 1200),
 new Melon("Gac", 3000), new Melon("Hemi", 2600),
 new Melon("Hemi", 1600), new Melon("Gac", 1200),
 new Melon("Apollo", 2600), new Melon("Horned", 1700),
 new Melon("Gac", 3000), new Melon("Hemi", 2600)
);

The Java Stream API exposes the same functionality as the SQL GROUP BY clause via
Collectors.groupingBy().

While the SQL GROUP BY clause works on database tables,
Collectors.groupingBy() works on elements of streams.

In other words, the groupingBy() methods are capable of grouping elements with
certain distinguishing characteristics. Before streams and functional-style
programming (Java 8), such tasks were applied to collections via a bunch of spaghetti
code that was cumbersome, verbose, and error-prone. Starting with Java 8, we have
grouping collectors.

Let's take a look at single-level grouping and multilevel grouping in the next section.
We will start with single-level grouping.

Single-level grouping
All grouping collectors have a classification function (the function that classifies the
elements of the stream into different groups). Mainly, this is an instance of the
Function<T, R> functional interface.

Each element of the stream (of the T type) is passed through this function, and the
return will be a classifier object (of the R type). All the returned R types represent the
keys (K) of a Map<K, V>, and each group is a value in this Map<K, V>.

Functional Style Programming - a Deep Dive Chapter 9

[520]

In other words, the key (K) is the value returned by the classification function, and the
value (V) is a list of elements in the stream that have this classified value (K). So, the
final result is of the Map<K, List<T>> type.

Let's look at an example to bring some light to this brain-teasing explanation. This
example relies on the simplest flavor of groupingBy(), that is, groupingBy
(Function<? super T,​? extends K> classifier).

So, let's group Melon by type:

Map<String, List<Melon>> byTypeInList = melons.stream()
 .collect(groupingBy(Melon::getType));

The output will be as follows:

{
 Crenshaw = [Crenshaw(1200 g)],
 Apollo = [Apollo(2600 g)],
 Gac = [Gac(3000 g), Gac(1200 g), Gac(3000 g)],
 Hemi = [Hemi(2600 g), Hemi(1600 g), Hemi(2600 g)],
 Horned = [Horned(1700 g)]
}

We can also group Melon by weight:

Map<Integer, List<Melon>> byWeightInList = melons.stream()
 .collect(groupingBy(Melon::getWeight));

The output will be as follows:

{
 1600 = [Hemi(1600 g)],
 1200 = [Crenshaw(1200 g), Gac(1200 g)],
 1700 = [Horned(1700 g)],
 2600 = [Hemi(2600 g), Apollo(2600 g), Hemi(2600 g)],
 3000 = [Gac(3000 g), Gac(3000 g)]
}

Functional Style Programming - a Deep Dive Chapter 9

[521]

This grouping is shown in the following diagram. More precisely, this is a snapshot of
the moment when Gac(1200 g) passes through the classification function
(Melon::getWeight):

So, in the melon-classification example, a key is the weight of Melon, and its value is a
list containing all the Melon objects of that weight.

The classification function can be a method reference or any other
lambda.

One issue with the preceding approach is the presence of unwanted duplicates. This
happens because the values are collected in a List (for example,
3000=[Gac(3000g), Gac(3000g)). But we can fix this by relying on another flavor
of groupingBy(), that is, groupingBy​(Function<? super T,​? extends K>
classifier, Collector<? super T,​A,​D> downstream).

Functional Style Programming - a Deep Dive Chapter 9

[522]

This time, we can specify the desired downstream collector as the second argument.
So, besides the classification function, we have a downstream collector as well.

If we wish to reject duplicates, we can use Collectors.toSet(), as follows:

Map<String, Set<Melon>> byTypeInSet = melons.stream()
 .collect(groupingBy(Melon::getType, toSet()));

The output is as follows:

{
 Crenshaw = [Crenshaw(1200 g)],
 Apollo = [Apollo(2600 g)],
 Gac = [Gac(1200 g), Gac(3000 g)],
 Hemi = [Hemi(2600 g), Hemi(1600 g)],
 Horned = [Horned(1700 g)]
}

We can also do this by weight:

Map<Integer, Set<Melon>> byWeightInSet = melons.stream()
 .collect(groupingBy(Melon::getWeight, toSet()));

The output will be as follows:

{
 1600 = [Hemi(1600 g)],
 1200 = [Gac(1200 g), Crenshaw(1200 g)],
 1700 = [Horned(1700 g)],
 2600 = [Hemi(2600 g), Apollo(2600 g)],
 3000 = [Gac(3000 g)]
}

Of course, in this case, distinct() can be used as well:

Map<String, List<Melon>> byTypeInList = melons.stream()
 .distinct()
 .collect(groupingBy(Melon::getType));

The same goes for doing this by weight:

Map<Integer, List<Melon>> byWeightInList = melons.stream()
 .distinct()
 .collect(groupingBy(Melon::getWeight));

Functional Style Programming - a Deep Dive Chapter 9

[523]

Well, there are no more duplicates, but the results are not ordered. It would be nice to
have this map ordered by keys, so the default HashMap is not very useful. If we could
specify a TreeMap instead of the default HashMap, then the problem will be solved.
We can do this via another flavor of groupingBy(), that is, groupingBy
(Function<? super T,​? extends K> classifier, Supplier<M>
mapFactory, Collector<? super T,​A,​D> downstream).

The second argument of this flavor allows us to provide a Supplier object that
provides a new empty Map into which the results will be inserted:

Map<Integer, Set<Melon>> byWeightInSetOrdered = melons.stream()
 .collect(groupingBy(Melon::getWeight, TreeMap::new, toSet()));

Now, the output is ordered:

{
 1200 = [Gac(1200 g), Crenshaw(1200 g)],
 1600 = [Hemi(1600 g)],
 1700 = [Horned(1700 g)],
 2600 = [Hemi(2600 g), Apollo(2600 g)],
 3000 = [Gac(3000 g)]
}

We can also have a List<Integer> containing the weights of 100 melons:

List<Integer> allWeights = new ArrayList<>(100);

We want to split this list into 10 lists of 10 weights each. Basically, we can obtain this
via grouping, as follows (we can apply parallelStream() as well):

final AtomicInteger count = new AtomicInteger();
Collection<List<Integer>> chunkWeights = allWeights.stream()
 .collect(Collectors.groupingBy(c -> count.getAndIncrement() / 10))
 .values();

Now, let's tackle another issue. By default, Stream<Melon> is divided into a suite of
List<Melon>. But what can we do to divide Stream<Melon> into a suite of
List<String>, where each list is holding only the types of melons, not the Melon
instances?

Functional Style Programming - a Deep Dive Chapter 9

[524]

Well, transforming elements of a stream is commonly the job of map(). But inside
groupingBy(), this is the job of Collectors.mapping() (more details can be found
in the Filtering, flattening, and mapping collectors section of this chapter):

Map<Integer, Set<String>> byWeightInSetOrdered = melons.stream()
 .collect(groupingBy(Melon::getWeight, TreeMap::new,
 mapping(Melon::getType, toSet())));

This time, the output is exactly what we wanted:

{
 1200 = [Crenshaw, Gac],
 1600 = [Hemi],
 1700 = [Horned],
 2600 = [Apollo, Hemi],
 3000 = [Gac]
}

Ok, so far, so good! Now, let's focus on the fact that two of the three flavors of
groupingBy() accept a collector as an argument (for example, toSet()). This can be
any collector. For example, we may want to group melons by types and count them.
For this, Collectors.counting() is very helpful (more details can be found in
the Summarization collectors section):

Map<String, Long> typesCount = melons.stream()
 .collect(groupingBy(Melon::getType, counting()));

The output will be as follows:

{Crenshaw=1, Apollo=1, Gac=3, Hemi=3, Horned=1}

We can also do this by weight:

Map<Integer, Long> weightsCount = melons.stream()
 .collect(groupingBy(Melon::getWeight, counting()));

The output will be as follows:

{1600=1, 1200=2, 1700=1, 2600=3, 3000=2}

Can we group the lightest and heaviest melons by type? Of course we can! We can do
this via Collectors.minBy() and maxBy(), which were presented in
the Summarization collectors section:

Map<String, Optional<Melon>> minMelonByType = melons.stream()
 .collect(groupingBy(Melon::getType,
 minBy(comparingInt(Melon::getWeight))));

Functional Style Programming - a Deep Dive Chapter 9

[525]

The output will be as follows (notice that minBy() returns an Optional):

{
 Crenshaw = Optional[Crenshaw(1200 g)],
 Apollo = Optional[Apollo(2600 g)],
 Gac = Optional[Gac(1200 g)],
 Hemi = Optional[Hemi(1600 g)],
 Horned = Optional[Horned(1700 g)]
}

We can also do this via maxMelonByType():

Map<String, Optional<Melon>> maxMelonByType = melons.stream()
 .collect(groupingBy(Melon::getType,
 maxBy(comparingInt(Melon::getWeight))));

The output will be as follows (notice that maxBy() returns an Optional):

{
 Crenshaw = Optional[Crenshaw(1200 g)],
 Apollo = Optional[Apollo(2600 g)],
 Gac = Optional[Gac(3000 g)],
 Hemi = Optional[Hemi(2600 g)],
 Horned = Optional[Horned(1700 g)]
}

The minBy() and maxBy() collectors take a Comparator as an
argument. In these examples, we have used the built-in
Comparator.comparingInt​() function. Starting with JDK 8, the
java.util.Comparator class was enriched with several new
comparators, including the thenComparing() flavors for chaining
comparators.

The issue here is represented by the optionals that should be removed. More
generally, this category of issues continues to adapt the result returned by a collector
to a different type.

Well, especially for these kinds of tasks, we have the collectingAndThen
(Collector<T,​A,​R> downstream, Function<R,​RR> finisher) factory
method. This method takes a function that will be applied to the final result of the
downstream collector (finisher). It can be used as follows:

Map<String, Integer> minMelonByType = melons.stream()
 .collect(groupingBy(Melon::getType,
 collectingAndThen(minBy(comparingInt(Melon::getWeight)),
 m -> m.orElseThrow().getWeight())));

Functional Style Programming - a Deep Dive Chapter 9

[526]

The output will be as follows:

{Crenshaw=1200, Apollo=2600, Gac=1200, Hemi=1600, Horned=1700}

We can also use maxMelonByType():

Map<String, Integer> maxMelonByType = melons.stream()
 .collect(groupingBy(Melon::getType,
 collectingAndThen(maxBy(comparingInt(Melon::getWeight)),
 m -> m.orElseThrow().getWeight())));

The output will be as follows:

{Crenshaw=1200, Apollo=2600, Gac=3000, Hemi=2600, Horned=1700}

We may also want to group melons by type in Map<String, Melon[]>. Again, we
can rely on collectingAndThen() for this, as follows:

Map<String, Melon[]> byTypeArray = melons.stream()
 .collect(groupingBy(Melon::getType, collectingAndThen(
 Collectors.toList(), l -> l.toArray(Melon[]::new))));

Alternatively, we can create a generic collector and call it, as follows:

private static <T> Collector<T, ? , T[]>
 toArray(IntFunction<T[]> func) {

 return Collectors.collectingAndThen(
 Collectors.toList(), l -> l.toArray(func.apply(l.size())));
}

Map<String, Melon[]> byTypeArray = melons.stream()
 .collect(groupingBy(Melon::getType, toArray(Melon[]::new)));

Multilevel grouping
Earlier, we mentioned that two of three flavors of groupingBy() take another
collector as an argument. Moreover, we said that this can be any collector. By any
collector, we mean groupingBy() as well.

By passing groupingBy() to groupingBy(), we can achieve n-levels of grouping or
multilevel grouping. Mainly, we have n-levels of classification functions.

Functional Style Programming - a Deep Dive Chapter 9

[527]

Let's consider the following list of Melon:

List<Melon> melonsSugar = Arrays.asList(
 new Melon("Crenshaw", 1200, HIGH),
 new Melon("Gac", 3000, LOW), new Melon("Hemi", 2600, HIGH),
 new Melon("Hemi", 1600), new Melon("Gac", 1200, LOW),
 new Melon("Cantaloupe", 2600, MEDIUM),
 new Melon("Cantaloupe", 3600, MEDIUM),
 new Melon("Apollo", 2600, MEDIUM), new Melon("Horned", 1200, HIGH),
 new Melon("Gac", 3000, LOW), new Melon("Hemi", 2600, HIGH));

So, each Melon has a type, a weight, and an indicator of sugar level. First, we want to
group melons by the sugar indicator (LOW, MEDIUM, HIGH, or UNKNOWN (default)).
Furthermore, we want to group melons by weight. This can be accomplished via two
levels of grouping, as follows:

Map<Sugar, Map<Integer, Set<String>>> bySugarAndWeight =
melonsSugar.stream()
 .collect(groupingBy(Melon::getSugar,
 groupingBy(Melon::getWeight, TreeMap::new,
 mapping(Melon::getType, toSet()))));

The output is as follows:

{
 MEDIUM = {
 2600 = [Apollo, Cantaloupe], 3600 = [Cantaloupe]
 },
 HIGH = {
 1200 = [Crenshaw, Horned], 2600 = [Hemi]
 },
 UNKNOWN = {
 1600 = [Hemi]
 },
 LOW = {
 1200 = [Gac], 3000 = [Gac]
 }
}

We can now say that Crenshaw and Horned weigh 1,200 g and have a high
percentage of sugar. We also have Hemi at 2,600 g with a high percentage of sugar.

Functional Style Programming - a Deep Dive Chapter 9

[528]

We can even represent our data in a table, as shown in the following diagram:

Now, let's learn about partitioning.

190. Partitioning
Partitioning is a type of grouping that relies on a Predicate to divide a stream into
two groups (a group for true and a group for false). The group for true stores the
elements of the stream that have passed the predicate, while the group of false
stores the rest of the elements (the elements that fail the predicate).

This Predicate represents the classification function of partitioning and is known as
the partitioning function. Since the Predicate is evaluated to a boolean value, the
partitioning operation returns a Map<Boolean, V>.

Let's assume that we have the following Melon class and List of Melon:

public class Melon {

 private final String type;
 private int weight;

 // constructors, getters, setters, equals(),
 // hashCode(), toString() omitted for brevity
}

List<Melon> melons = Arrays.asList(new Melon("Crenshaw", 1200),
 new Melon("Gac", 3000), new Melon("Hemi", 2600),
 new Melon("Hemi", 1600), new Melon("Gac", 1200),
 new Melon("Apollo", 2600), new Melon("Horned", 1700),
 new Melon("Gac", 3000), new Melon("Hemi", 2600));

Functional Style Programming - a Deep Dive Chapter 9

[529]

Partitioning is done via Collectors.partitioningBy ​(). This method comes in
two flavors, and one of them receives a single argument, that is, partitioningBy
(Predicate<? super T> predicate).

For example, partitioning melons by a weight of 2,000 g with duplicates can be done
as follows:

Map<Boolean, List<Melon>> byWeight = melons.stream()
 .collect(partitioningBy(m -> m.getWeight() > 2000));

The output will be as follows:

{
 false=[Crenshaw(1200g),Hemi(1600g), Gac(1200g),Horned(1700g)],
 true=[Gac(3000g),Hemi(2600g),Apollo(2600g), Gac(3000g),Hemi(2600g)]
}

The advantage of partitioning over filtering consists of the fact that
partitioning keeps both lists of the stream elements.

The following diagram depicts how partitioningBy() works internally:

Functional Style Programming - a Deep Dive Chapter 9

[530]

If we want to reject duplicates, then we can rely on other flavors of
partitioningBy(), such as partitioningBy​(Predicate<? super T>
predicate, Collector<? super T,​A,​D> downstream). The second argument
allows us to specify another Collector for implementing the downstream reduction:

Map<Boolean, Set<Melon>> byWeight = melons.stream()
 .collect(partitioningBy(m -> m.getWeight() > 2000, toSet()));

The output will not contain duplicates:

{
 false=[Horned(1700g), Gac(1200g), Crenshaw(1200g), Hemi(1600g)],
 true=[Gac(3000g), Hemi(2600g), Apollo(2600g)]
}

Of course, in this case, distinct() will do the job as well:

Map<Boolean, List<Melon>> byWeight = melons.stream()
 .distinct()
 .collect(partitioningBy(m -> m.getWeight() > 2000));

Other collectors can be used as well. For example, we can count the elements from
each of these two groups via counting():

Map<Boolean, Long> byWeightAndCount = melons.stream()
 .collect(partitioningBy(m -> m.getWeight() > 2000, counting()));

The output will be as follows:

{false=4, true=5}

We can also count the elements without duplicates:

Map<Boolean, Long> byWeight = melons.stream()
 .distinct()
 .collect(partitioningBy(m -> m.getWeight() > 2000, counting()));

This time, the output will be as follows:

{false=4, true=3}

Functional Style Programming - a Deep Dive Chapter 9

[531]

Finally, partitioningBy() can be combined with collectingAndThen(), which
we introduced in the Grouping section. For example, let's partition the melons by
weight of 2,000 g and keep only the heaviest from each partition:

Map<Boolean, Melon> byWeightMax = melons.stream()
 .collect(partitioningBy(m -> m.getWeight() > 2000,
 collectingAndThen(maxBy(comparingInt(Melon::getWeight)),
 Optional::get)));

The output will be as follows:

{false=Horned(1700g), true=Gac(3000g)}

191. Filtering, flattening, and mapping
collectors
Let's assume that we have the following Melon class and List of Melon:

public class Melon {

 private final String type;
 private final int weight;
 private final List<String> pests;

 // constructors, getters, setters, equals(),
 // hashCode(), toString() omitted for brevity
}

List<Melon> melons = Arrays.asList(new Melon("Crenshaw", 2000),
 new Melon("Hemi", 1600), new Melon("Gac", 3000),
 new Melon("Hemi", 2000), new Melon("Crenshaw", 1700),
 new Melon("Gac", 3000), new Melon("Hemi", 2600));

The Java Stream API provides filtering(), flatMapping(), and mapping(),
especially for use in multi-level reductions (such as the downstream of
groupingBy() or partitioningBy()).

Conceptually, the goal of filtering() is the same as filter(), the goal of
flatMapping() is the same as flatMap(), and the goal of mapping() is the as
map().

Functional Style Programming - a Deep Dive Chapter 9

[532]

filtering()
User problem: I want to take all the melons that are heavier than 2,000 g and group them by
their type. For each type, add them to the proper container (there is a container for each type –
just check the container's labels).

By using filtering ​(Predicate<? super T> predicate, Collector<? super
T,​A,​R> downstream), we apply a predicate to each element of the current collector
and accumulate the output in the downstream collector.

So, to group the melons that are heavier than 2,000 g by type, we can write the
following stream pipeline:

Map<String, Set<Melon>> melonsFiltering = melons.stream()
 .collect(groupingBy(Melon::getType,
 filtering(m -> m.getWeight() > 2000, toSet())));

The output will be as follows (each Set<Melon> is a container):

{Crenshaw=[], Gac=[Gac(3000g)], Hemi=[Hemi(2600g)]}

Notice that there is no Crenshaw heavier than 2,000 g, so filtering() has mapped
this type to an empty set (container). Now, let's rewrite this via filter():

Map<String, Set<Melon>> melonsFiltering = melons.stream()
 .filter(m -> m.getWeight() > 2000)
 .collect(groupingBy(Melon::getType, toSet()));

Because filter() doesn't perform mappings for elements that fail its predicate, the
output will look as follows:

{Gac=[Gac(3000g)], Hemi=[Hemi(2600g)]}

User problem: This time, I am interested only in the melons of the Hemi type. There are two
containers: one for Hemi melons lighter than (or equal to) 2,000 g and one for Hemi melons
heavier than 2,000 g.

Filtering can be used with partitioningBy() as well. To partition melons heavier
than 2,000 g and filter them by a certain type (in this case, Hemi), we have the
following:

Map<Boolean, Set<Melon>> melonsFiltering = melons.stream()
 .collect(partitioningBy(m -> m.getWeight() > 2000,
 filtering(m -> m.getType().equals("Hemi"), toSet())));

Functional Style Programming - a Deep Dive Chapter 9

[533]

The output is as follows:

{false=[Hemi(1600g), Hemi(2000g)], true=[Hemi(2600g)]}

Applying filter() will lead to the same result:

Map<Boolean, Set<Melon>> melonsFiltering = melons.stream()
 .filter(m -> m.getType().equals("Hemi"))
 .collect(partitioningBy(m -> m.getWeight() > 2000, toSet()));

The output is as follows:

{false=[Hemi(1600g), Hemi(2000g)], true=[Hemi(2600g)]}

mapping()
User problem: For each type of melon, I want the list of weights in ascending order.

By using mapping ​(Function<? super T,​? extends U> mapper, Collector<?
super U,​A,​R> downstream), we can apply a mapping function to each element of
the current collector and accumulate the output in the downstream collector.

For example, for grouping the weights of melons by type, we can write the following
snippet of code:

Map<String, TreeSet<Integer>> melonsMapping = melons.stream()
 .collect(groupingBy(Melon::getType,
 mapping(Melon::getWeight, toCollection(TreeSet::new))));

The output will be as follows:

{Crenshaw=[1700, 2000], Gac=[3000], Hemi=[1600, 2000, 2600]}

User problem: I want two lists. One should contain the melon types lighter than (or equal to)
2,000 g and the other one should contain the rest of the types.

Partitioning melons that are heavier than 2,000 g and collecting only their types can
be done as follows:

Map<Boolean, Set<String>> melonsMapping = melons.stream()
 .collect(partitioningBy(m -> m.getWeight() > 2000,
 mapping(Melon::getType, toSet())));

The output is as follows:

{false=[Crenshaw, Hemi], true=[Gac, Hemi]}

Functional Style Programming - a Deep Dive Chapter 9

[534]

flatMapping()
For a quick reminder about flattening a stream, it is advisable to read the Map a stream
section.

Now, let's assume that we have the following list of Melon (notice that we've added
the names of pests as well):

List<Melon> melonsGrown = Arrays.asList(
 new Melon("Honeydew", 5600,
 Arrays.asList("Spider Mites", "Melon Aphids", "Squash Bugs")),
 new Melon("Crenshaw", 2000,
 Arrays.asList("Pickleworms")),
 new Melon("Crenshaw", 1000,
 Arrays.asList("Cucumber Beetles", "Melon Aphids")),
 new Melon("Gac", 4000,
 Arrays.asList("Spider Mites", "Cucumber Beetles")),
 new Melon("Gac", 1000,
 Arrays.asList("Squash Bugs", "Squash Vine Borers")));

User problem: For each type of melon, I want a list of their pests.

So, let's group melons by type and collect their pests. Each melon has none, one, or
multiple pests, and so we expect an output of the Map<String,
List<String>> type. The first attempt will rely on mapping():

Map<String, List<List<String>>> pests = melonsGrown.stream()
 .collect(groupingBy(Melon::getType,
 mapping(m -> m.getPests(), toList())));

Obviously, this is not a good approach since the returned type is Map<String,
List<List<String>>>.

Another naive approach that relies on mapping is as follows:

Map<String, List<List<String>>> pests = melonsGrown.stream()
 .collect(groupingBy(Melon::getType,
 mapping(m -> m.getPests().stream(), toList())));

Obviously, this is not a good approach either since the returned type is Map<String,
List<Stream<String>>>.

Functional Style Programming - a Deep Dive Chapter 9

[535]

It's time to introduce flatMapping(). By using flatMapping​(Function<? super
T,​? extends Stream<? extends U>> mapper, Collector<? super U,​A,​R>
downstream), we apply the flatMapping function to each element of the current
collector and accumulate the output in the downstream collector:

Map<String, Set<String>> pestsFlatMapping = melonsGrown.stream()
 .collect(groupingBy(Melon::getType,
 flatMapping(m -> m.getPests().stream(), toSet())));

This time, the type looks fine and the output is as follows:

{
 Crenshaw = [Cucumber Beetles, Pickleworms, Melon Aphids],
 Gac = [Cucumber Beetles, Squash Bugs, Spider Mites,
 Squash Vine Borers],
 Honeydew = [Squash Bugs, Spider Mites, Melon Aphids]
}

User problem: I want two lists. One should contain the pests of melons lighter than 2,000 g,
and the other should contain the pests of the rest of melons.

Partitioning melons heavier than 2,000 g and collecting the pests can be done as
follows:

Map<Boolean, Set<String>> pestsFlatMapping = melonsGrown.stream()
 .collect(partitioningBy(m -> m.getWeight() > 2000,
 flatMapping(m -> m.getPests().stream(), toSet())));

The output is as follows:

{
 false = [Cucumber Beetles, Squash Bugs, Pickleworms, Melon Aphids,
 Squash Vine Borers],
 true = [Squash Bugs, Cucumber Beetles, Spider Mites, Melon Aphids]
}

192. Teeing
Starting with JDK 12, we can merge the results of two collectors via
Collectors.teeing():

public static <T,​R1,​R2,​R> Collector<T,​?,​R> teeing
(Collector<? super T,​?,​R1> downstream1, Collector<? super
T,​?,​R2> downstream2, BiFunction<? super R1,​? super R2,​R>
merger):

Functional Style Programming - a Deep Dive Chapter 9

[536]

The result is a Collector that is a composite of two passed downstream collectors.
Every element that's passed to the resulting collector is processed by both
downstream collectors, and then their results are merged into the final result using
the specified BiFunction.

Let's take a look at a classical problem. The following class simply stores the number
of elements in a stream of integers and their sum:

public class CountSum {

 private final Long count;
 private final Integer sum;

 public CountSum(Long count, Integer sum) {
 this.count = count;
 this.sum = sum;
 }
 ...
}

We can obtain this information via teeing(), as follows:

CountSum countsum = Stream.of(2, 11, 1, 5, 7, 8, 12)
 .collect(Collectors.teeing(
 counting(),
 summingInt(e -> e),
 CountSum::new));

Functional Style Programming - a Deep Dive Chapter 9

[537]

Here, we have applied two collectors to each element from the stream (counting()
and summingInt()) and the results have been merged in an instance of CountSum:

CountSum{count=7, sum=46}

Let's take a look at another problem. This time, the MinMax class stores the minimum
and maximum of a stream of integers:

public class MinMax {

 private final Integer min;
 private final Integer max;

 public MinMax(Integer min, Integer max) {
 this.min = min;
 this.max = max;
 }
 ...
}

Now, we can obtain this information like so:

MinMax minmax = Stream.of(2, 11, 1, 5, 7, 8, 12)
 .collect(Collectors.teeing(
 minBy(Comparator.naturalOrder()),
 maxBy(Comparator.naturalOrder()),
 (Optional<Integer> a, Optional<Integer> b)
 -> new MinMax(a.orElse(Integer.MIN_VALUE),
 b.orElse(Integer.MAX_VALUE))));

Here, we have applied two collectors to each element from the stream (minBy() and
maxBy()) and the results have been merged in an instance of MinMax:

MinMax{min=1, max=12}

Finally, let's consider the following Melon class and List of Melon:

public class Melon {

 private final String type;
 private final int weight;

 public Melon(String type, int weight) {
 this.type = type;
 this.weight = weight;
 }
 ...
}

Functional Style Programming - a Deep Dive Chapter 9

[538]

List<Melon> melons = Arrays.asList(new Melon("Crenshaw", 1200),
 new Melon("Gac", 3000), new Melon("Hemi", 2600),
 new Melon("Hemi", 1600), new Melon("Gac", 1200),
 new Melon("Apollo", 2600), new Melon("Horned", 1700),
 new Melon("Gac", 3000), new Melon("Hemi", 2600));

The aim here is to compute the total weight of these melons and list their weights. We
can map this as follows:

public class WeightsAndTotal {

 private final int totalWeight;
 private final List<Integer> weights;

 public WeightsAndTotal(int totalWeight, List<Integer> weights) {
 this.totalWeight = totalWeight;
 this.weights = weights;
 }
 ...
}

The solution to this problem relies on Collectors.teeing(), as follows:

WeightsAndTotal weightsAndTotal = melons.stream()
 .collect(Collectors.teeing(
 summingInt(Melon::getWeight),
 mapping(m -> m.getWeight(), toList()),
 WeightsAndTotal::new));

This time, we have applied the summingInt() and mapping() collectors. The output
is as follows:

WeightsAndTotal {
 totalWeight = 19500,
 weights = [1200, 3000, 2600, 1600, 1200, 2600, 1700, 3000, 2600]
}

193. Writing a custom collector
Let's assume that we have the following Melon class and List of Melon:

public class Melon {

 private final String type;
 private final int weight;
 private final List<String> grown;

Functional Style Programming - a Deep Dive Chapter 9

[539]

 // constructors, getters, setters, equals(),
 // hashCode(), toString() omitted for brevity
}

List<Melon> melons = Arrays.asList(new Melon("Crenshaw", 1200),
 new Melon("Gac", 3000), new Melon("Hemi", 2600),
 new Melon("Hemi", 1600), new Melon("Gac", 1200),
 new Melon("Apollo", 2600), new Melon("Horned", 1700),
 new Melon("Gac", 3000), new Melon("Hemi", 2600));

In the Partitioning section, we saw how to use the partitioningBy() collector to
partition melons that weigh 2,000 g with duplicates:

Map<Boolean, List<Melon>> byWeight = melons.stream()
 .collect(partitioningBy(m -> m.getWeight() > 2000));

Now, let's see if we can achieve the same result via a dedicated custom collector.

Let's begin by saying that writing a custom collector is not a day-to-day task, but it
may be useful to know how to do it. The built-in Java Collector interface looks as
follows:

public interface Collector<T, A, R> {
 Supplier<A> supplier();
 BiConsumer<A, T> accumulator();
 BinaryOperator<A> combiner();
 Function<A, R> finisher();
 Set<Characteristics> characteristics();
 ...
}

To write a custom collector, it is very important to know that T, A, and R represent the
following:

T represents the type of elements from the Stream (elements that will be
collected).
A represents the type of object that was used during the collection process
known as the accumulator, which is used to accumulate the stream elements
in a mutable result container.
R represents the type of the object after the collection process (the final
result).

Functional Style Programming - a Deep Dive Chapter 9

[540]

A collector may return the accumulator itself as the final result or may perform an
optional transformation on the accumulator to obtain the final result (perform an
optional final transformation from the intermediate accumulation type, A,to the final
result type, R).

In terms of our problem, we know that T is Melon, A is Map<Boolean,
List<Melon>>, and R is Map<Boolean, List<Melon>>. This collector returns the
accumulator itself as the final result via Function.identity(). That being said, we
can start our custom collector as follows:

public class MelonCollector implements
 Collector<Melon, Map<Boolean, List<Melon>>,
 Map<Boolean, List<Melon>>> {
 ...
}

So, a Collector is specified by four functions. These functions are working together
to accumulate entries into a mutable result container, and optionally perform a final
transformation on the result. They are as follows:

Creating a new empty mutable result container (supplier())
Incorporating a new data element into the mutable result container
(accumulator())
Combining two mutable result containers into one (combiner())
Performing an optional final transformation on the mutable result
container to obtain the final result (finisher())

In addition, the behavior of the collector is defined in the last method,
characteristics(). Set<Characteristics> may contain the following four
values:

UNORDERED: The order of accumulating/collecting elements is not
important for the final result.
CONCURRENT: The elements of the stream can be accumulated by multiple
threads in a concurrent fashion (in the end, the collector can perform a
parallel reduction of the stream. The containers resulting from the parallel
processing of the stream are combined in a single result container. The
source of data should be unordered by its nature or the UNORDERED flag
should be present.
IDENTITY_FINISH: Indicates that the accumulator itself is the final result
(basically, we can cast A to R); in this case, the finisher() is not called.

Functional Style Programming - a Deep Dive Chapter 9

[541]

The supplier – Supplier<A> supplier();
The job of supplier() is to return (at every call) a Supplier of an empty mutable
result container.

In our case, the result container is of the Map<Boolean, List<Melon>> type, and
so supplier() can be implemented as follows:

@Override
public Supplier<Map<Boolean, List<Melon>>> supplier() {

 return () -> {
 return new HashMap<Boolean, List<Melon>> () {
 {
 put(true, new ArrayList<>());
 put(false, new ArrayList<>());
 }
 };
 };
}

In parallel execution, this method may be called multiple times.

Accumulating elements – BiConsumer<A, T>
accumulator();
The accumulator() method returns the function that performs the reduction
operation. This is BiConsumer, which is an operation that accepts two input
arguments and returns no result. The first input argument is the current result
container (being the result of the reduction so far), and the second input argument is
the current element from the stream. This function modifies the result container itself
by accumulating the traversed element or an effect of traversing this element. In our
case, accumulator() adds the currently traversed element to one of the two
ArrayLists:

@Override
public BiConsumer<Map<Boolean, List<Melon>>, Melon> accumulator() {

 return (var acc, var melon) -> {
 acc.get(melon.getWeight() > 2000).add(melon);
 };
}

Functional Style Programming - a Deep Dive Chapter 9

[542]

Applying the final transformation – Function<A, R>
finisher();
The finisher() method returns a function that is applied at the end of the
accumulation process. When this method is invoked, there are no more stream
elements to traverse. All of the elements will be accumulated transformed from the
intermediate accumulation type, A, to the final result type, R. If no transformation is
needed, then we can return the intermediate result (the accumulator itself):

@Override
public Function<Map<Boolean, List<Melon>>,
 Map<Boolean, List<Melon>>> finisher() {

 return Function.identity();
}

Parallelizing the collector – BinaryOperator<A>
combiner();
If the stream is processed in parallel, then different threads (accumulators) will
produce partial result containers. In the end, these partial results must be merged in a
single one. This is exactly what combiner() does. In this case, the combiner()
method needs to merge two maps by adding all the values from the two lists of the
second Map to the corresponding lists in the first Map:

@Override
public BinaryOperator<Map<Boolean, List<Melon>>> combiner() {

 return (var map, var addMap) -> {
 map.get(true).addAll(addMap.get(true));
 map.get(false).addAll(addMap.get(false));

 return map;
 };
}

Functional Style Programming - a Deep Dive Chapter 9

[543]

Returning the final result – Function<A, R>
finisher();
The final result is computed in the finisher() method. In this case, we simply
return Function.identity() since the accumulator doesn't require any further
transformation:

@Override
public Function<Map<Boolean, List<Melon>>,
 Map<Boolean, List<Melon>>> finisher() {

 return Function.identity();
}

Characteristics – Set<Characteristics>
characteristics();
Finally, we indicate that our collector is IDENTITY_FINISH and CONCURRENT:

@Override
public Set<Characteristics> characteristics() {
 return Set.of(IDENTITY_FINISH, CONCURRENT);
}

The code that's bundled with this book glues all the pieces of the puzzle together in a
class named MelonCollector.

Testing time
MelonCollector can be used via the new keyword, as follows:

Map<Boolean, List<Melon>> melons2000 = melons.stream()
 .collect(new MelonCollector());

We will receive the following output:

{
 false = [Crenshaw(1200 g),Hemi(1600 g),Gac(1200 g),Horned(1700 g)],
 true = [Gac(3000 g),Hemi(2600 g),Apollo(2600 g),
 Gac(3000 g),Hemi(2600 g)]
}

Functional Style Programming - a Deep Dive Chapter 9

[544]

We can also use it via parallelStream():

Map<Boolean, List<Melon>> melons2000 = melons.parallelStream()
 .collect(new MelonCollector());

If we use the combiner() method, then the output may look as follows:

{false = [], true = [Hemi(2600g)]}
 ForkJoinPool.commonPool - worker - 7
...
{false = [Horned(1700g)], true = []}
 ForkJoinPool.commonPool - worker - 15
{false = [Crenshaw(1200g)], true = [Gac(3000g)]}
 ForkJoinPool.commonPool - worker - 9
...
{false = [Crenshaw(1200g), Hemi(1600g), Gac(1200g), Horned(1700g)],
true = [Gac(3000g), Hemi(2600g), Apollo(2600g),
 Gac(3000g), Hemi(2600g)]}

Custom collecting via collect()
In the case of an IDENTITY_FINISH collection operation, there is at least one more
solution for obtaining a custom collector. This solution is facilitated by the following
method:

<R> R collect ​(Supplier<R> supplier, BiConsumer<R, ​? super T>
accumulator, BiConsumer<R, ​R> combiner)

This flavor of collect() is a great fit as long as we deal with an IDENTITY_FINISH
collection operation and we can provide a supplier, accumulator, and combiner.

Let's take a look at some examples:

List<String> numbersList = Stream.of("One", "Two", "Three")
 .collect(ArrayList::new, ArrayList::add,
 ArrayList::addAll);

Deque<String> numbersDeque = Stream.of("One", "Two", "Three")
 .collect(ArrayDeque::new, ArrayDeque::add,
 ArrayDeque::addAll);

String numbersString = Stream.of("One", "Two", "Three")
 .collect(StringBuilder::new, StringBuilder::append,
 StringBuilder::append).toString();

Functional Style Programming - a Deep Dive Chapter 9

[545]

You can use these examples to identify more JDK classes whose signatures are well-
suited for use with method references as arguments to collect().

194. Method reference
Let's assume that we have the following Melon class and List of Melon:

public class Melon {

 private final String type;
 private int weight;

 public static int growing100g(Melon melon) {
 melon.setWeight(melon.getWeight() + 100);

 return melon.getWeight();
 }

 // constructors, getters, setters, equals(),
 // hashCode(), toString() omitted for brevity
}

List<Melon> melons = Arrays.asList(
 new Melon("Crenshaw", 1200), new Melon("Gac", 3000),
 new Melon("Hemi", 2600), new Melon("Hemi", 1600));

In a nutshell, method references are shortcuts for lambda expressions.

Mainly, method reference is a technique that's used to call a method by name rather
than by a description of how to call it. The main benefit is readability.

A method reference is written by placing the target reference before the delimiter, ::,
and the name of the method is provided after it.

We'll take a look at all four kinds of method references in the upcoming sections.

Method reference to a static method
We can group each Melon from the aforementioned list that's 100 g via the static
method called growing100g():

No method reference:

melons.forEach(m -> Melon.growing100g(m));

Functional Style Programming - a Deep Dive Chapter 9

[546]

Method reference:

melons.forEach(Melon::growing100g);

Method reference to an instance method
Let's assume that we are defining the following Comparator for Melon:

public class MelonComparator implements Comparator {

 @Override
 public int compare(Object m1, Object m2) {
 return Integer.compare(((Melon) m1).getWeight(),
 ((Melon) m2).getWeight());
 }
}

Now, we can refer to it as follows:

No method reference:

MelonComparator mc = new MelonComparator();

List<Melon> sorted = melons.stream()
 .sorted((Melon m1, Melon m2) -> mc.compare(m1, m2))
 .collect(Collectors.toList());

Method reference:

List<Melon> sorted = melons.stream()
 .sorted(mc::compare)
 .collect(Collectors.toList());

Of course, we can call Integer.compare() directly as well:

No method reference:

List<Integer> sorted = melons.stream()
 .map(m -> m.getWeight())
 .sorted((m1, m2) -> Integer.compare(m1, m2))
 .collect(Collectors.toList());

Functional Style Programming - a Deep Dive Chapter 9

[547]

Method reference:

List<Integer> sorted = melons.stream()
 .map(m -> m.getWeight())
 .sorted(Integer::compare)
 .collect(Collectors.toList());

Method reference to a constructor
Referring a constructor can be done via the new keyword, as follows:

BiFunction<String, Integer, Melon> melonFactory = Melon::new;
Melon hemi1300 = melonFactory.apply("Hemi", 1300);

More details and examples about method reference to a constructor are available in
the Implementing the factory pattern section in the previous chapter.

195. Parallel processing of streams
In a nutshell, parallel processing a stream refers to a process that consists of three
steps:

Splitting the elements of a stream into multiple chunks1.
Processing each chunk in a separate thread2.
Joining the results of processing in a single result3.

These three steps take place behind the scenes via the default ForkJoinPool method
as we discussed in Chapter 10, Concurrency – Thread Pools, Callables, and Synchronizers
and Chapter 11, Concurrency – Deep Dive.

As a rule of thumb, parallel processing can be applied only to stateless (the state of an
element doesn't affect another element), non-interfering (the data source is not
affected), and associative (the result is not affected by the order of operands)
operations.

Functional Style Programming - a Deep Dive Chapter 9

[548]

Let's assume that our problem is to sum the elements of a list of doubles:

Random rnd = new Random();
List<Double> numbers = new ArrayList<>();

for (int i = 0; i < 1 _000_000; i++) {
 numbers.add(rnd.nextDouble());
}

We can also do this directly as a stream:

DoubleStream.generate(() -> rnd.nextDouble()).limit(1_000_000)

In a sequential approach, we can do this as follows:

double result = numbers.stream()
 .reduce((a, b) -> a + b).orElse(-1d);

This operation will probably take place on a single core behind the scenes (even if our
machine has more cores), as shown in the following diagram:

This problem is a good candidate for leverage parallelization, and so we can call
parallelStream() instead of stream(), as follows:

double result = numbers.parallelStream()
 .reduce((a, b) -> a + b).orElse(-1d);

Once we call parallelStream(), Java will take action and process the stream using
multiple threads. Parallelization can be done via the parallel() method as well:

double result = numbers.stream()
 .parallel()
 .reduce((a, b) -> a + b).orElse(-1d);

Functional Style Programming - a Deep Dive Chapter 9

[549]

This time, the processing takes place via a fork/join, as shown in the following
diagram (there is one thread for each available core):

In the context of reduce(), parallelization can be depicted as follows:

Functional Style Programming - a Deep Dive Chapter 9

[550]

By default, the Java ForkJoinPool will try to fetch as many threads as available
processors like so:

int noOfProcessors = Runtime.getRuntime().availableProcessors();

We can affect the number of threads globally (all the parallel streams will use it) as
follows:

System.setProperty(
 "java.util.concurrent.ForkJoinPool.common.parallelism", "10");

Alternatively, we can affect the number of threads for a single parallel stream as
follows:

ForkJoinPool customThreadPool = new ForkJoinPool(5);

double result = customThreadPool.submit(
 () -> numbers.parallelStream()
 .reduce((a, b) -> a + b)).get().orElse(-1d);

Affecting the number of threads is an important decision to make. Trying to
determine the optimal number of threads depending on the environment is not an
easy task and, in most scenarios, the default setting (number of threads = number of
processors) is the most suitable.

Even if the problem is a good candidate for leverage parallelization,
it doesn't mean that parallel processing is a silver bullet. Deciding to
go with parallel processing or not should be a decision that's made
after benchmarking and comparing sequential versus parallel
processing. Most commonly, parallel processing acts better in the
case of huge datasets.

Do not fall into the trap of thinking that a larger number of threads results in faster
processing. Avoid something like the following (these numbers are just indicators for
a machine with 8 cores):

5 threads (~40 ms)
20 threads (~50 ms)
100 threads (~70 ms)
1000 threads (~ 250 ms)

Functional Style Programming - a Deep Dive Chapter 9

[551]

Spliterators
A Java Spliterator interface (also known as a splittable iterator) is an interface that's
used to traverse the elements of a source (for example, a collection or stream) in
parallel. This interface defines the following methods:

public interface Spliterator<T> {
 boolean tryAdvance(Consumer<? super T> action);
 Spliterator<T> trySplit();
 long estimateSize();
 int characteristics();
}

Let's consider a simple list of 10 integers:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

We can obtain a Spliterator interface for this list like so:

Spliterator<Integer> s1 = numbers.spliterator();

We can also do the same from a stream:

Spliterator<Integer> s1 = numbers.stream().spliterator();

In order to advance to (traverse) the first element, we need to call the tryAdvance()
method, as follows:

s1.tryAdvance(e
 -> System.out.println("Advancing to the
 first element of s1: " + e));

We will receive the following output:

Advancing to the first element of s1: 1

Spliterator can try to estimate the number of elements left to traverse via the
estimateSize() method, as follows:

System.out.println("\nEstimated size of s1: " + s1.estimateSize());

We will receive the following output (we've traversed one element; there are nine to
go):

Estimated size of s1: 9

Functional Style Programming - a Deep Dive Chapter 9

[552]

We can split this into two via a Spliterator interface using the trySplit()
method. The result will be another Spliterator interface:

Spliterator<Integer> s2 = s1.trySplit();

Checking the number of elements reveals the effect of trySplit():

System.out.println("Estimated size s1: " + s1.estimateSize());
System.out.println("Estimated size s2: " + s2.estimateSize());

We will receive the following output:

Estimated size s1: 5
Estimated size s2: 4

Trying to print all the elements from s1 and s2 can be accomplished using
forEachRemaining(), as follows:

s1.forEachRemaining(System.out::println); // 6, 7, 8, 9, 10
s2.forEachRemaining(System.out::println); // 2, 3, 4, 5

A Spliterator interface defines a suite of constants for its
characteristics – CONCURRENT (4096), DISTINCT (1), IMMUTABLE (1024), NONNULL
(256), ORDERED (16), SIZED (64), SORTED (4), and SUBSIZED (16384).

We can print the characteristics via the characteristics() method as follows:

System.out.println(s1.characteristics()); // 16464
System.out.println(s2.characteristics()); // 16464

It is simpler to test whether a certain characteristic is presented using
hasCharacteristics():

if (s1.hasCharacteristics(Spliterator.ORDERED)) {
 System.out.println("ORDERED");
}

if (s1.hasCharacteristics(Spliterator.SIZED)) {
 System.out.println("SIZED");
}

Functional Style Programming - a Deep Dive Chapter 9

[553]

Writing a custom Spliterator
Obviously, writing a custom Spliterator is not a daily task, but let's assume that
we are working on a project that, for some reason, requires us to process strings that
contain ideographic characters (CJKV (short for Chinese, Japanese, Korean, and
Vietnamese)) and non-ideographic characters. We want to process these strings in
parallel. This mandates that we split them into characters only at positions
representing ideographic characters.

Obviously, the default Spliterator will not perform as we want it to, and so we
may need to write a custom Spliterator. For this, we have to implement the
Spliterator interface and provide an implementation of a few methods. The
implementation is available in the code that's been bundled with this book. Consider
opening the IdeographicSpliterator source code and keeping it close by while
reading the rest of this section.

The climax of the implementation is in the trySplit() method. Here, we are trying
to split the current string in half and continue to traverse it until we find an
ideographic character. For checking purposes, we've just added the following line:

System.out.println("Split successfully at character: "
 + str.charAt(splitPosition));

Now, let's consider a string containing ideographic characters:

String str = "Character Information Development and Maintenance "

 + "Project for e-Government MojiJoho-Kiban Project";

Now, let's create a parallel stream for this string and force
IdeographicSpliterator to do its job:

Spliterator<Character> spliterator = new IdeographicSpliterator(str);
Stream<Character> stream = StreamSupport.stream(spliterator, true);

// force spliterator to do its job
stream.collect(Collectors.toList());

One possible output will reveal that the split takes place only at positions containing
ideographic characters:

Split successfully at character:

Split successfully at character:

Functional Style Programming - a Deep Dive Chapter 9

[554]

196. Null-safe streams
The problem with creating a Stream of an element that may or may not be null can
be solved using Optional.ofNullable() or, even better via JDK 9,
Stream.ofNullable():

static <T> Stream<T> ofNullable​(T t)

This method gets a single element (T) and returns a sequential Stream containing this
single element (Stream<T>); otherwise, it returns an empty Stream if it's not null.

For example, we can write a helper method that wraps the call to
Stream.ofNullable() as follows:

public static <T> Stream<T> elementAsStream(T element) {
 return Stream.ofNullable(element);
}

If this method lives in a utility class named AsStreams, then we can perform several
calls, as follows:

// 0
System.out.println("Null element: "
 + AsStreams.elementAsStream(null).count());

// 1
System.out.println("Non null element: "
 + AsStreams.elementAsStream("Hello world").count());

Notice that when we pass null, we get an empty stream (the count() method
returns 0)!

If our element is a collection, then things become more interesting. For example, let's
assume that we have the following list (notice that this list contains some
null values):

List<Integer> ints = Arrays.asList(5, null, 6, null, 1, 2);

Now, let's write a helper method that returns a Stream<T>, where T is a collection:

public static <T> Stream<T> collectionAsStreamWithNulls(
 Collection<T> element) {
 return Stream.ofNullable(element).flatMap(Collection::stream);
}

Functional Style Programming - a Deep Dive Chapter 9

[555]

If we call this method with null, then we obtain an empty stream:

// 0
System.out.println("Null collection: "
 + AsStreams.collectionAsStreamWithNulls(null).count());

Now, if we call it with our list, ints, then we obtain a Stream<Integer>:

// 6
System.out.println("Non-null collection with nulls: "
 + AsStreams.collectionAsStreamWithNulls(ints).count());

Notice that the stream has six elements (all the elements from the underlying list)—5,
null, 6, null, 1, and 2.

If we know that the collection itself is not null, but it may contain null values, then
we can write another helper method, as follows:

public static <T> Stream<T> collectionAsStreamWithoutNulls(
 Collection<T> collection) {

 return collection.stream().flatMap(e -> Stream.ofNullable(e));
}

This time, if the collection itself is null, then the code will throw an
NullPointerException. However, if we pass our list to it, then the result will be a
Stream<Integer> without null values:

// 4
System.out.println("Non-null collection without nulls: "
 + AsStreams.collectionAsStreamWithoutNulls(ints).count());

The returned stream has only four elements—5, 6, 1, and 2.

Finally, if the collection itself may be null and may contain null values, then the
following helper will do the job and return a null-safe stream:

public static <T> Stream<T> collectionAsStream(
 Collection<T> collection) {

 return Stream.ofNullable(collection)
 .flatMap(Collection::stream)
 .flatMap(Stream::ofNullable);
}

Functional Style Programming - a Deep Dive Chapter 9

[556]

If we pass null, then we get an empty stream:

// 0
System.out.println(
 "Null collection or non-null collection with nulls: "
 + AsStreams.collectionAsStream(null).count());

If we pass our list, we get a Stream<Integer> stream without null values:

// 4
System.out.println(
 "Null collection or non-null collection with nulls: "
 + AsStreams.collectionAsStream(ints).count());

197. Composing functions, predicates, and
comparators
Composing (or chaining) functions, predicates, and comparators allows us to write
compound criteria that should be applied in unison.

Composing predicates
Let's assume that we have the following Melon class and List of Melon:

public class Melon {

 private final String type;
 private final int weight;

 // constructors, getters, setters, equals(),
 // hashCode(), toString() omitted for brevity
}

List<Melon> melons = Arrays.asList(new Melon("Gac", 2000),
 new Melon("Horned", 1600), new Melon("Apollo", 3000),
 new Melon("Gac", 3000), new Melon("Hemi", 1600));

The Predicate interface comes with three methods that take a Predicate and uses
it to obtain an enriched Predicate. These methods are and(), or(), and negate().

Functional Style Programming - a Deep Dive Chapter 9

[557]

For example, let's assume that we want to filter the melons that are heavier than 2,000
g. For this, we can write a Predicate, as follows:

Predicate<Melon> p2000 = m -> m.getWeight() > 2000;

Now, let's assume that we want to enrich this Predicate to filter only melons that
respect p2000 and are of the Gac or Apollo type. For this, we can use the and() and
or() methods, as follows:

Predicate<Melon> p2000GacApollo
 = p2000.and(m -> m.getType().equals("Gac"))
 .or(m -> m.getType().equals("Apollo"));

This is interpreted from left to rights as a && (b || c), where we have the
following:

a is m -> m.getWeight() > 2000
b is m -> m.getType().equals("Gac")
c is m -> m.getType().equals("Apollo")

Obviously, we can add more criteria in the same manner.

Let's pass this Predicate to filter():

// Apollo(3000g), Gac(3000g)
List<Melon> result = melons.stream()
 .filter(p2000GacApollo)
 .collect(Collectors.toList());

Now, let's assume that our problem requires that we obtain the negation of the
aforementioned compound predicate. It is cumbersome to rewrite this predicate as !a
&& !b && !c or any other counterpart expression. A better solution is to call the
negate() method, as follows:

Predicate<Melon> restOf = p2000GacApollo.negate();

Let's pass it to filter():

// Gac(2000g), Horned(1600g), Hemi(1600g)
List<Melon> result = melons.stream()
 .filter(restOf)
 .collect(Collectors.toList());

Functional Style Programming - a Deep Dive Chapter 9

[558]

Starting with JDK 11, we can negate a Predicate that's passed as an argument to the
not() method. For example, let's filter all the melons that are lighter than (or equal
to) 2,000 g using not():

Predicate<Melon> pNot2000 = Predicate.not(m -> m.getWeight() > 2000);

// Gac(2000g), Horned(1600g), Hemi(1600g)
List<Melon> result = melons.stream()
 .filter(pNot2000)
 .collect(Collectors.toList());

Composing comparators
Let's consider the same Melon class and List of Melon from the preceding section.

Now, let's sort this List of Melon by weight using Comparator.comparing():

Comparator<Melon> byWeight = Comparator.comparing(Melon::getWeight);

// Horned(1600g), Hemi(1600g), Gac(2000g), Apollo(3000g), Gac(3000g)
List<Melon> sortedMelons = melons.stream()
 .sorted(byWeight)
 .collect(Collectors.toList());

We can sort the list by type as well:

Comparator<Melon> byType = Comparator.comparing(Melon::getType);

// Apollo(3000g), Gac(2000g), Gac(3000g), Hemi(1600g), Horned(1600g)
List<Melon> sortedMelons = melons.stream()
 .sorted(byType)
 .collect(Collectors.toList());

To reverse the sorting order, simply call reversed():

Comparator<Melon> byWeight
 = Comparator.comparing(Melon::getWeight).reversed();

So far, so good!

Functional Style Programming - a Deep Dive Chapter 9

[559]

Now, let's assume that we want to sort the list by weight and type. In other words,
when two melons have the same weight (for example, Horned (1600g),
Hemi(1600g)) they should be sorted by type (for example, Hemi(1600g),
Horned(1600g)). A naive approach will look as follows:

// Apollo(3000g), Gac(2000g), Gac(3000g), Hemi(1600g), Horned(1600g)
List<Melon> sortedMelons = melons.stream()
 .sorted(byWeight)
 .sorted(byType)
 .collect(Collectors.toList());

Obviously, the result is not what we expected. This is happening because the
comparators have not been applied to the same list. The byWeight comparator is
applied to the original list, while the byType comparator is applied to the output of
byWeight. Basically, byType cancels the effect of byWeight.

The solution comes from the Comparator.thenComparing() method. This method
allows us to chain comparators:

Comparator<Melon> byWeightAndType
 = Comparator.comparing(Melon::getWeight)
 .thenComparing(Melon::getType);

// Hemi(1600g), Horned(1600g), Gac(2000g), Apollo(3000g), Gac(3000g)
List<Melon> sortedMelons = melons.stream()
 .sorted(byWeightAndType)
 .collect(Collectors.toList());

This flavor of thenComparing() takes a Function as an argument. This Function
is used to extract the Comparable sort key. The returned Comparator is applied only
when the previous Comparator has found two equal objects.

Another flavor of thenComparing() gets a Comparator:

Comparator<Melon> byWeightAndType =
Comparator.comparing(Melon::getWeight)
 .thenComparing(Comparator.comparing(Melon::getType));

Finally, let's consider the following List of Melon:

List<Melon> melons = Arrays.asList(new Melon("Gac", 2000),
 new Melon("Horned", 1600), new Melon("Apollo", 3000),
 new Melon("Gac", 3000), new Melon("hemi", 1600));

Functional Style Programming - a Deep Dive Chapter 9

[560]

We intentionally added a mistake to the last Melon. Its type is lowercase this time. If
we apply the byWeightAndType comparator, then the output will be as follows:

Horned(1600g), hemi(1600g), ...

Being a lexicographic-order comparator, byWeightAndType will place Horned before
hemi. So, it will be useful to sort by type in a case-insensitive manner. An elegant
solution to this problem will rely on another flavor of thenComparing() , which
allows us to pass a Function and Comparator as arguments. The Function that is
passed extracts the Comparable sort key, and the given Comparator is used to
compare this sort key:

Comparator<Melon> byWeightAndType =
Comparator.comparing(Melon::getWeight)
 .thenComparing(Melon::getType, String.CASE_INSENSITIVE_ORDER);

This time, the result will be as follows (we are back on track):

hemi(1600g), Horned(1600g),...

For int, long, and double, we have comparingInt(),
comparingLong(), comparingDouble(),
thenComparingInt(), thenComparingLong(), and
thenComparingDouble(). The comparing() and
thenComparing() methods come with the same flavors.

Composing functions
Lambda expressions that are represented via the Function interface can be
composed via the Function.andThen() and Function.compose() methods.

andThen​(Function<? super R,​? extends V> after) returns a composed
Function that does the following:

Applies this function to its input
Applies the after function to the result

Let's take a look at an example of this:

Function<Double, Double> f = x -> x * 2;
Function<Double, Double> g = x -> Math.pow(x, 2);
Function<Double, Double> gf = f.andThen(g);
double resultgf = gf.apply(4d); // 64.0

Functional Style Programming - a Deep Dive Chapter 9

[561]

In this example, the f function is applied to its input (4). The result of applying f is 8
(f(4) = 4 * 2). This result is the input of the second function, g. The result of
applying g is 64 (g(8) = Math.pow(8, 2)). The following diagram depicts the flow
for four inputs – 1, 2, 3, and 4:

So, this is like g(f(x)). The opposite, f(g(x)), can be shaped using
Function.compose(). The returned composed function applies the before function to
its input, and then applies this function to the result:

double resultfg = fg.apply(4d); // 32.0

In this example, the g function is applied to its input (4). The result of applying g is 16
(g(4) = Math.pow(4, 2)). This result is the input of the second function, f. The
result of applying f is 32 (f(16) = 16 * 2). The following diagram depicts the flow
for four inputs – 1, 2, 3, and 4:

Functional Style Programming - a Deep Dive Chapter 9

[562]

Based on the same principles, we can develop an application for editing an article by
composing the addIntroduction(), addBody(), and addConclusion() methods.
Please take a look at the code that's bundled with this book to see an implementation
of this.

We can write other pipelines as well by simply juggling this with the composition
process.

198. Default methods
Default methods were added to Java 8. Their main goal is to provide support for
interfaces so that they can evolve beyond an abstract contract (contain only abstract
methods). This facility is very useful for people that write libraries and want to evolve
APIs in a compatible way. Via default methods, an interface can be enriched without
disrupting existing implementations.

A default method is implemented directly in the interface and is recognized by the
default keyword.

For example, the following interface defines an abstract method called area() and a
default method called perimeter():

public interface Polygon {

 public double area();

 default double perimeter(double...segments) {
 return Arrays.stream(segments)
 .sum();
 }
}

Since the perimeter of all common polygons (for example, squares) is the sum of the
edges, we can implement it here. On the other hand, the area formula differs from
polygon to polygon, and so a default implementation will not be very useful.

Now, let's define a Square class that implements Polygon. Its goal is to express the
area of a square via the perimeter:

public class Square implements Polygon {

 private final double edge;

 public Square(double edge) {

Functional Style Programming - a Deep Dive Chapter 9

[563]

 this.edge = edge;
 }

 @Override
 public double area() {
 return Math.pow(perimeter(edge, edge, edge, edge) / 4, 2);
 }
}

Other polygons (for example, rectangles and triangles) can implement Polygon and
express the area based on the perimeter that's computed via the default
implementation.

However, in certain cases, we may need to override the default implementation of a
default method. For example, the Square class may override the perimeter()
method, as follows:

@Override
public double perimeter(double...segments) {
 return segments[0] * 4;
}

We can call it as follows:

@Override
public double area() {
 return Math.pow(perimeter(edge) / 4, 2);
}

Summary
Our job's done! This chapter covered infinite streams, null-safe streams, and default
methods. A comprehensive list of problems covered grouping, partitioning, and
collectors, including the JDK 12 teeing() collector and writing a custom collector. In
addition, takeWhile(), dropWhile(), composing functions, predicates and
comparators, testing and debugging lambdas, and other cool topics were covered as
well.

Download the applications from this chapter to view the results and additional
details.

10
Concurrency - Thread Pools,
Callables, and Synchronizers

This chapter includes 14 problems that involve Java concurrency. We will start with
several fundamental problems about thread life cycles and object- and class-level
locking. We then continue with a bunch of problems about thread pools in Java
including the JDK 8 work-stealing thread pool. After that, we have problems
dedicated to Callable and Future. Then, we dedicate several problems to Java
synchronizers (for example, barrier, semaphore, and exchanger). By the end of this
chapter, you should be familiar with the main coordinates of Java concurrency and be
ready to continue with a set of advanced problems.

Problems
Use the following problems to test your concurrency programming prowess. I
strongly encourage you to give each problem a try before you turn to the solutions
and download the example programs:

Thread life cycle states: Write several programs that capture each life cycle199.
state of a thread.
Object- versus class-level locking: Write several examples that exemplify200.
object- versus class-level locking via thread synchronization.
Thread pools in Java: Provide a brief overview of thread pools in Java.201.
Thread pool with a single thread: Write a program that simulates an202.
assembly line for checking and packing up bulbs using two workers.
Thread pool with a fixed number of threads: Write a program that203.
simulates an assembly line for checking and packing up bulbs using
multiple workers.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[565]

Cached and scheduled thread pools: Write a program that simulates an204.
assembly line for checking and packing up bulbs using workers as needed
(for example, adapt the number of packers (increase or decrease) to ingest
the incoming flux produced by the checker).
Work-stealing thread pool: Write a program that relies on a work-stealing205.
thread pool. More precisely, write a program that simulates an assembly
line for checking and packing up bulbs as follows: checking takes place
during the day, and packing takes place at night. The checking process
results in a queue of 15 million bulbs every day.
Callable and Future: Write a program that simulates an assembly line206.
for checking and packing up bulbs using Callable and Future.
Invoking multiple Callable tasks: Write a program that simulates an207.
assembly line for checking and packing up bulbs as follows: checking takes
place during the day, and packing takes place at night. The checking
process results in a queue of 100 bulbs every day. The packing process
should pack and return all the bulbs at once. In other words, we should
submit all Callable tasks and wait for all of them to complete.
Latches: Write a program that relies on CountDownLatch to simulate the208.
process of starting a server. The server is considered started after its
internal services have started. Services can be started concurrently and are
independent of each other.
Barriers: Write a program that relies on CyclicBarrier to simulate the209.
process of starting a server. The server is considered started after its
internal services have started. Services can be prepared for start
concurrently (this is time-consuming), but they run interdependently –
therefore, once they are ready to start, they must be started all at once.
Exchangers: Write a program that simulates using Exchanger, an210.
assembly line for checking and packing up bulbs using two workers. A
worker (the checker) is checking bulbs and adding them in a basket. When
the basket is full, the worker gives it to the other worker (the packer) from
whom they receive an empty basket. The process repeats until the assembly
line stops.
Semaphores: Write a program that simulates using one Semaphore per211.
day at the barbershop. Mainly, our barbershop can serve a maximum of
three people at a time (it has only three seats). When a person arrives at the
barbershop, they try to take a seat. After they are served by a barber, the
person releases the seat. If a person arrives at the barbershop when all three
seats are taken, they must wait for a certain amount of time. If this time
elapses and no seats have been freed, they will leave the barbershop.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[566]

Phasers: Write a program that relies on Phaser to simulate the process of212.
starting a server in three phases. The server is considered started after its
five internal services have started. At the first phase, we need to
concurrently start three services. At the second phase, we need to
concurrently start two more two services (these can be started only if the
first three are already running). At phase three, the server performs a final
check-in and is considered started.

Solutions
The following sections describe solutions to the preceding problems. Remember that
there usually isn't just one correct way to solve a particular problem. Also, remember
that the explanations shown here include only the most interesting and important
details needed to solve the problems. Download the example solutions to see
additional details and to experiment with the programs at https:/ ​/​github. ​com/
PacktPublishing/ ​Java- ​Coding- ​Problems.

199. Thread life cycle states
The states of a Java thread are expressed via the Thread.State enumeration. The
possible states of a Java thread are shown in the following diagram:

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[567]

The different lifecycle states are as follows:

The NEW state
The RUNNABLE state
The BLOCKED state
The WAITING state
The TIMED_WAITING state
The TERMINATED state

Let's learn about all the different states in the following sections.

The NEW state
A Java thread is in the NEW state if it is created but not started (the thread
constructor creates threads in the NEW state). This is its state until the start()
method is invoked. The code bundled with this book contains several snippets of
code that reveal this state via different construction techniques, including lambdas.
For brevity, the following is just one of these constructions:

public class NewThread {

 public void newThread() {
 Thread t = new Thread(() -> {});
 System.out.println("NewThread: " + t.getState()); // NEW
 }
}

NewThread nt = new NewThread();
nt.newThread();

The RUNNABLE state
The transition from NEW to RUNNABLE is obtained by calling the start() method.
In this state, a thread can be running or ready to run. When it is ready to run, a thread
is waiting for the JVM thread-scheduler to allocate the needed resources and time to
run to it. As soon as the processor is available, the thread-scheduler will run the
thread.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[568]

The following snippet of code should print RUNNABLE, since we print the state of
the thread after calling start(). But because of thread-scheduler internal
mechanisms, this is not guaranteed:

public class RunnableThread {

 public void runnableThread() {
 Thread t = new Thread(() -> {});
 t.start();

 // RUNNABLE
 System.out.println("RunnableThread : " + t.getState());
 }
}

RunnableThread rt = new RunnableThread();
rt.runnableThread();

The BLOCKED state
When a thread is trying to execute I/O tasks or synchronized blocks, it may enter into
the BLOCKED state. For example, if a thread, t1, tries to enter into a synchronized
block of code that is already being accessed by another thread, t2, then t1 is kept in
the BLOCKED state until it can acquire the lock.

This scenario is shaped in the following snippet of code:

Create two threads: t1 and t2.1.
Start t1 via the start() method:2.

t1 will execute the run() method and will acquire the lock for1.
the synchronized method, syncMethod().
The syncMethod() will keep t1 inside forever, since it has an2.
infinite loop.

After two seconds (arbitrary time), start t2 via the start() method:3.
t2 will execute the run() code and will end up in the1.
BLOCKED state since it cannot acquire the lock of
syncMethod().

The code snippet is as follows:

public class BlockedThread {

 public void blockedThread() {

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[569]

 Thread t1 = new Thread(new SyncCode());
 Thread t2 = new Thread(new SyncCode());

 t1.start();
 Thread.sleep(2000);
 t2.start();
 Thread.sleep(2000);

 System.out.println("BlockedThread t1: "
 + t1.getState() + "(" + t1.getName() + ")");
 System.out.println("BlockedThread t2: "
 + t2.getState() + "(" + t2.getName() + ")");

 System.exit(0);
 }

 private static class SyncCode implements Runnable {

 @Override
 public void run() {
 System.out.println("Thread " + Thread.currentThread().getName()
 + " is in run() method");
 syncMethod();
 }

 public static synchronized void syncMethod() {
 System.out.println("Thread " + Thread.currentThread().getName()
 + " is in syncMethod() method");

 while (true) {
 // t1 will stay here forever, therefore t2 is blocked
 }
 }
 }
}

BlockedThread bt = new BlockedThread();
bt.blockedThread();

Here is a possible output (the names of threads may differ from here):

Thread Thread-0 is in run() method
Thread Thread-0 is in syncMethod() method
Thread Thread-1 is in run() method
BlockedThread t1: RUNNABLE(Thread-0)
BlockedThread t2: BLOCKED(Thread-1)

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[570]

The WAITING state
A thread, t1, that waits (without a timeout period) for another thread, t2, to finish is
in the WAITING state.

This scenario is shaped in the following snippet of code:

Create a thread: t1.1.
Start t1 via the start() method.2.
In the run() method of t1:3.

Create another thread: t2.1.
Start t2 via the start() method.2.
While t2 is running, call t2.join()—since t2 needs to join t13.
(or, in other words, t1 needs to wait for t2 to die), t1 is in the
WAITING state.

In the run() method of t2, t2 prints the state of t1, which should be4.
WAITING (while printing the t1 state, t2 is running, therefore t1 is
waiting).

The code snippet is as follows:

public class WaitingThread {

 public void waitingThread() {
 new Thread(() -> {
 Thread t1 = Thread.currentThread();
 Thread t2 = new Thread(() -> {

 Thread.sleep(2000);
 System.out.println("WaitingThread t1: "
 + t1.getState()); // WAITING
 });

 t2.start();

 t2.join();

 }).start();
 }
}

WaitingThread wt = new WaitingThread();
wt.waitingThread();

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[571]

The TIMED_WAITING state
A thread, t1, that waits for an explicit period of time for another thread, t2, to finish
is in the TIMED_WAITING state.

This scenario is shaped in the following snippet of code:

Create a thread: t1.1.
Start t1 via the start() method.2.
In the run() method of t1, add a sleep time of two seconds (arbitrary3.
time).
While t1 is running, the main thread prints the t1 state—the state should4.
be TIMED_WAITING since t1 is in a sleep() that will expire after two
seconds.

The code snippet is as follows:

public class TimedWaitingThread {

 public void timedWaitingThread() {
 Thread t = new Thread(() -> {
 Thread.sleep(2000);
 });

 t.start();

 Thread.sleep(500);

 System.out.println("TimedWaitingThread t: "
 + t.getState()); // TIMED_WAITING
 }
}

TimedWaitingThread twt = new TimedWaitingThread();
twt.timedWaitingThread();

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[572]

The TERMINATED state
A thread that successfully finishes its job or is abnormally interrupted is in the
TERMINATE state. This is very simple to simulate, as in the following snippet of
code (the main thread of the application prints the state of the thread, t—when this is
happening, the thread, t, has done its job):

public class TerminatedThread {

 public void terminatedThread() {
 Thread t = new Thread(() -> {});
 t.start();

 Thread.sleep(1000);

 System.out.println("TerminatedThread t: "
 + t.getState()); // TERMINATED
 }
}

TerminatedThread tt = new TerminatedThread();
tt.terminatedThread();

In order to write thread-safe classes, we can consider the following techniques:

Have no state (classes with no instance and static variables)
Have state, but don't share it (for example, use instance variables via
Runnable, ThreadLocal, and so on)
Have state, but an immutable state
Use message-passing (for example, as Akka framework)
Use synchronized blocks
Use volatile variables
Use data structures from the java.util.concurrent package
Use synchronizers (for example, CountDownLatch and Barrier)
Use locks from the java.util.concurrent.locks package

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[573]

200. Object- versus class-level locking
In Java, a block of code marked as synchronized can be executed by a single thread
at a time. Since Java is a multi-threaded environment (it supports concurrency), it
needs a synchronization mechanism to avoid issues specific to concurrent
environments (for example, deadlocks and memory consistency).

A thread can achieve locks at the object level or at the class level.

Locking at the object level
Locking at object level can be achieved by marking a non-static block of code or
non-static method (the lock object for that method's object) with synchronized. In
the following examples, only one thread at a time will be allowed to execute the
synchronized method/block on the given instance of the class:

Synchronized method case:

public class ClassOll {
 public synchronized void methodOll() {
 ...
 }
}

Synchronized block of code:

public class ClassOll {
 public void methodOll() {
 synchronized(this) {
 ...
 }
 }
}

Another synchronized block of code:

public class ClassOll {

 private final Object ollLock = new Object();
 public void methodOll() {
 synchronized(ollLock) {
 ...
 }
 }
}

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[574]

Lock at the class level
In order to protect static data, locking at the class level can be achieved by
marking a static method/block or acquiring a lock on the .class reference with
synchronized. In the following examples, only one thread of one of the available
instances at runtime will be allowed to execute the synchronized block at a time:

synchronized static method:

public class ClassCll {

 public synchronized static void methodCll() {
 ...
 }
}

Synchronized block and lock on .class:

public class ClassCll {

 public void method() {
 synchronized(ClassCll.class) {
 ...
 }
 }
}

Synchronized block of code and lock on some other static object:

public class ClassCll {

 private final static Object aLock = new Object();

 public void method() {
 synchronized(aLock) {
 ...
 }
 }
}

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[575]

Good to know
Here are some common cases that imply synchronizations:

Two threads can execute concurrently a synchronized static method
and a non-static method of the same class (see the OllAndCll class of
the P200_ObjectVsClassLevelLocking app). This works because the
threads acquire locks on different objects.

Two threads cannot concurrently execute two different synchronized
static methods (or the same synchronized static method) of the
same class (check the TwoCll class of
the P200_ObjectVsClassLevelLocking application). This does not
work because the first thread acquires a class-level lock. The following
combinations will output, staticMethod1(): Thread-0, therefore, only
one static synchronized method is executed by only one thread:

TwoCll instance1 = new TwoCll();
TwoCll instance2 = new TwoCll();

Two threads, two instances:

new Thread(() -> {
 instance1.staticMethod1();
}).start();

new Thread(() -> {
 instance2.staticMethod2();
}).start();

Two threads, one instance:

new Thread(() -> {
 instance1.staticMethod1();
}).start();

new Thread(() -> {
 instance1.staticMethod2();
}).start();

Two threads can concurrently execute non-synchronized, synchronized
static, and synchronized non-static methods (check
the OllCllAndNoLock class of the
P200_ObjectVsClassLevelLocking application).

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[576]

It is safe to call a synchronized method from another synchronized
method of the same class that requires the same lock. This works because
synchronized is re-entrant (as long as it is the same lock, the lock acquired
for the first method is used in the second method as well). Check
the TwoSyncs class of
the P200_ObjectVsClassLevelLocking application.

As a rule of thumb, the synchronized keyword can be used only
with static/non-static methods (not constructors)/code blocks.
Avoid synchronizing non-final fields and String literals
(instances of String created via new are OK).

201. Thread pools in Java
A thread pool is a collection of threads that can be used to execute tasks. A thread
pool is responsible for managing the creation, allocation, and life cycles of its threads
and contributing to better performance. Now, let's talk about executors.

Executor
In the java.util.concurrent package, there are a bunch of interfaces dedicated to
executing tasks. The simplest one is named Executor. This interface exposes a single
method named execute​(Runnable command). Here is an example of executing a
single task using this method:

public class SimpleExecutor implements Executor {

 @Override
 public void execute(Runnable r) {
 (new Thread(r)).start();
 }
}

SimpleExecutor se = new SimpleExecutor();

se.execute(() -> {
 System.out.println("Simple task executed via Executor interface");
});

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[577]

ExecutorService
A more complex and comprehensive interface that provides many additional
methods is ExecutorService. This is an enriched version of Executor. Java comes
with a fully-fledged implementation of ExecutorService, named
ThreadPoolExecutor. This is a thread pool that can be instantiated with a bunch of
arguments, as follows:

ThreadPoolExecutor ​(
 int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory,
 RejectedExecutionHandler handler)

Here is a short description of each of the arguments instantiated in the preceding
code:

corePoolSize: The number of threads to keep in the pool, even if they are
idle (unless allowCoreThreadTimeOut is set)
maximumPoolSize: The maximum number of allowed threads
keepAliveTime: When this time has elapsed, the idle threads will be
removed from the pool (these are idle threads that exceed corePoolSize)
unit: The time unit for the keepAliveTime argument
workQueue: A queue for holding the instances of Runnable (only the
Runnable tasks submitted by the execute() method) before they are
executed
threadFactory: This factory is used when the executor creates a new
thread
handler: When ThreadPoolExecutor cannot execute a Runnable due to
saturation, this is when the thread bounds and queue capacities are full (for
example, workQueue has a fixed size and maximumPoolSize is set as
well)—it gives the control and decision to this handler

In order to optimize the pool size, we need to collect the following information:

Number of CPUs (Runtime.getRuntime().availableProcessors())
Target CPU utilization (in range, [0, 1])

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[578]

Wait time (W)
Compute time (C)

The following formula helps us to determine the optimal size of the pool:

Number of threads
 = Number of CPUs * Target CPU utilization * (1 + W/C)

As a rule of thumb, for compute-intensive tasks (usually small
tasks), it can be a good idea to benchmark the thread pool with the
number of threads equal with to number of processors or number of
processors + 1 (to prevent potential pauses). For time-consuming
and blocking tasks (for example, I/O), a larger pool is better since
threads will not be available for scheduling at a high rate. Also, pay
attention to interferences with other pools (for example, database
connections pools, and socket connection pools).

Let's see an example of ThreadPoolExecutor:

public class SimpleThreadPoolExecutor implements Runnable {

 private final int taskId;

 public SimpleThreadPoolExecutor(int taskId) {
 this.taskId = taskId;
 }

 @Override
 public void run() {
 Thread.sleep(2000);
 System.out.println("Executing task " + taskId
 + " via " + Thread.currentThread().getName());
 }

 public static void main(String[] args) {

 BlockingQueue<Runnable> queue = new LinkedBlockingQueue<>(5);
 final AtomicInteger counter = new AtomicInteger();

 ThreadFactory threadFactory = (Runnable r) -> {
 System.out.println("Creating a new Cool-Thread-"
 + counter.incrementAndGet());

 return new Thread(r, "Cool-Thread-" + counter.get());
 };

 RejectedExecutionHandler rejectedHandler

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[579]

 = (Runnable r, ThreadPoolExecutor executor) -> {
 if (r instanceof SimpleThreadPoolExecutor) {
 SimpleThreadPoolExecutor task=(SimpleThreadPoolExecutor) r;
 System.out.println("Rejecting task " + task.taskId);
 }
 };

 ThreadPoolExecutor executor = new ThreadPoolExecutor(10, 20, 1,
 TimeUnit.SECONDS, queue, threadFactory, rejectedHandler);

 for (int i = 0; i < 50; i++) {
 executor.execute(new SimpleThreadPoolExecutor(i));
 }

 executor.shutdown();
 executor.awaitTermination(
 Integer.MAX_VALUE, TimeUnit.MILLISECONDS);
 }
}

The main() method fires 50 instances of Runnable. Each Runnable sleeps for two
seconds and prints a message. The work queue is limited to five instances
of Runnable—the core threads to 10, the maximum number of threads to 20, and the
idle timeout to one second. A possible output will look as follows:

Creating a new Cool-Thread-1
...
Creating a new Cool-Thread-20
Rejecting task 25
...
Rejecting task 49
Executing task 22 via Cool-Thread-18
...
Executing task 12 via Cool-Thread-2

ScheduledExecutorService
ScheduledExecutorService is an ExecutorService that can schedule tasks for
execution after a given delay, or execute periodically. Here, we have methods such as
schedule(), scheduleAtFixedRate(), and scheduleWithFixedDelay​(). While
schedule() is used for one-shot tasks, scheduleAtFixedRate() and
scheduleWithFixedDelay() are used for periodic tasks.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[580]

Thread pools via Executors
One step further, and we introduce the helper class, Executors. This class exposes
several types of thread pools using the following methods:

newSingleThreadExecutor(): This is a thread pool that manages only
one thread with an unbounded queue, which only executes one task at a
time:

ExecutorService executor
 = Executors.newSingleThreadExecutor();

newCachedThreadPool(): This is a thread pool that creates new threads
and removes idle threads (after 60 seconds) as they are needed; the core
pool size is 0 and the maximum pool size is Integer.MAX_VALUE (this
thread pool expands when demand increases and contracts when demand
decreases):

ExecutorService executor = Executors.newCachedThreadPool();

newFixedThreadPool(): This is a thread pool with a fixed number of
threads and an unbounded queue, which creates the effect of an infinite
timeout (the core pool size and the maximum pool size are equal to the
specified size):

ExecutorService executor = Executors.newFixedThreadPool(5);

newWorkStealingThreadPool(): This a thread pool based on a work-
stealing algorithm (it acts as a layer over a fork/join framework):

ExecutorService executor = Executors.newWorkStealingPool();

newScheduledThreadPool(): A thread pool that can schedule commands
to run after a given delay, or to execute periodically (we can specify the
core pool size):

ScheduledExecutorService executor
 = Executors.newScheduledThreadPool(5);

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[581]

202. Thread pool with a single thread
In order to show how a thread pool with a single thread works, let's assume that we
want to write a program that simulates an assembly line (or a conveyor) for checking
and packing up bulbs using two workers.

By checking, we understand that the worker tests if the bulb lights up or not. By
packing, we understand that the worker takes the verified bulb and put it in a box.
This kind of process is very common in almost any factory.

The two workers are as follows:

A so-called producer (or checker) that is responsible for testing each bulb to
see if the bulb lights up or not
A so-called consumer (or packer) that is responsible for packing each
checked bulb into a box

This kind of problem is a perfect fit for the producer-consumer design pattern shown
in the following diagram:

Most commonly, in this pattern, the producer and consumer communicate via a
queue (the producer enqueues data, and the consumer dequeues data). This queue is
known as the data buffer. Of course, depending on the process design, other data
structures can play the role of data buffer as well.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[582]

Now, let's see how we can implement this pattern if the producer waits for the
consumer to be available.

Later on, we will implement this pattern for a producer that doesn't wait for a
consumer.

Producer waits for the consumer to be available
When the assembly line starts, the producer will check the incoming bulbs one by
one, while the consumer will pack them (one bulb into each box). This flow repeats
until the assembly line stops.

The following diagram is a graphical representation of this flow between the
producer and the consumer:

We can consider the assembly line a helper of our factory, therefore it can be
implemented as a helper or utility class (of course, it can be easily switched to a non-
static implementation as well, so feel free to do the switch if it makes more sense
for your cases):

public final class AssemblyLine {

 private AssemblyLine() {
 throw new AssertionError("There is a single assembly line!");
 }
 ...
}

Of course, there are many ways to implement this scenario, but we are interested in
using the Java ExecutorService, more
precisely Executors.newSingleThreadExecutor(). An Executor that uses a
single worker thread operating off of an unbounded queue is created by this method.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[583]

We have only two workers, so we can use two instances of Executor (an Executor
will power up the producer, and another one will power up the consumer). So, the
producer will be a thread, and the consumer will be another thread:

private static ExecutorService producerService;
private static ExecutorService consumerService;

Since the producer and the consumer are good friends, they decide to work based on
a simple scenario:

The producer will check a bulb and pass it to the consumer only if the
consumer is not busy (if the consumer is busy, the producer will wait a
while until the consumer is free)
The producer will not check the next bulb until they manage to pass the
current bulb to the consumer
The consumer will pack each incoming bulb as soon as possible

This scenario works well for TransferQueue or SynchronousQueue, which carries
out a process very similar to the aforementioned scenario. Let's use TransferQueue.
This is a BlockingQueue in which the producers may wait for the consumers to
receive elements. BlockingQueue implementations are thread-safe:

private static final TransferQueue<String> queue
 = new LinkedTransferQueue<>();

The workflow between producer and consumer is of the First In First Out type
(FIFO: the first bulb checked is the first bulb packed) therefore
LinkedTransferQueue can be a good choice.

Once the assembly line starts, the producer will continuously check bulbs, therefore
we can implement it as a class as follows:

private static final int MAX_PROD_TIME_MS = 5 * 1000;
private static final int MAX_CONS_TIME_MS = 7 * 1000;
private static final int TIMEOUT_MS = MAX_CONS_TIME_MS + 1000;
private static final Random rnd = new Random();
private static volatile boolean runningProducer;
...
private static class Producer implements Runnable {

 @Override
 public void run() {
 while (runningProducer) {
 try {
 String bulb = "bulb-" + rnd.nextInt(1000);

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[584]

 Thread.sleep(rnd.nextInt(MAX_PROD_TIME_MS));

 boolean transfered = queue.tryTransfer(bulb,
 TIMEOUT_MS, TimeUnit.MILLISECONDS);

 if (transfered) {
 logger.info(() -> "Checked: " + bulb);
 }
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 break;
 }
 }
 }
}

So, the producer transfers a checked bulb to the consumer via the tryTransfer()
method. If it is possible to transfer the elements to a consumer before the timeout
elapses, this method will do so.

Avoid using the transfer() method, which may block the thread
indefinitely.

In order to simulate the time spent by the producer checking a bulb, the
corresponding thread will sleep a random number of seconds between 0 and 5 (5
seconds is the maximum time needed to check a bulb). If the consumer is not
available after this time, more time will be spent (in tryTransfer()) until the
consumer is available or the timeout elapses.

On the other hand, the consumer is implemented using another class, as follows:

private static volatile boolean runningConsumer;
...
private static class Consumer implements Runnable {

 @Override
 public void run() {
 while (runningConsumer) {
 try {
 String bulb = queue.poll(
 MAX_PROD_TIME_MS, TimeUnit.MILLISECONDS);

 if (bulb != null) {
 Thread.sleep(rnd.nextInt(MAX_CONS_TIME_MS));

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[585]

 logger.info(() -> "Packed: " + bulb);
 }
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 break;
 }
 }
 }
}

The consumer may take a bulb from the producer via the queue.take() method.
This method retrieves and removes the head of this queue, waiting, if necessary, until
a bulb becomes available. Or it may call the poll() method, in which the head of the
queue is retrieved and removed, or if this queue is empty it returns null. But neither
of these two is right for us. If the producer is not available, the consumer may remain
stuck in the take() method. On the other hand, if the queue is empty (the producer
is checking the current bulb right now), the poll() method will be called again and
again very quickly, causing a dummy repetition. The solution to this is poll​(long
timeout, TimeUnit unit). This method retrieves and removes the head of this
queue and waits up to the specified wait time, if required, for a bulb to become
available. It will return null only if the queue is empty after the waiting time has
elapsed.

In order to simulate the time the consumer spends packing a bulb, the corresponding
thread will sleep a random number of seconds between 0 and 7 (7 seconds is the
maximum time needed for packing a bulb).

Starting the producer and the consumer is a very simple task accomplished in a
method named startAssemblyLine(), as follows:

public static void startAssemblyLine() {

 if (runningProducer || runningConsumer) {
 logger.info("Assembly line is already running ...");
 return;
 }

 logger.info("\n\nStarting assembly line ...");
 logger.info(() -> "Remaining bulbs from previous run: \n"
 + queue + "\n\n");

 runningProducer = true;
 producerService = Executors.newSingleThreadExecutor();
 producerService.execute(producer);

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[586]

 runningConsumer = true;
 consumerService = Executors.newSingleThreadExecutor();
 consumerService.execute(consumer);
}

Stopping the assembly line is a delicate process that can be tackled via different
scenarios. Mainly, when the assembly line is stopped, the producer should check the
current bulb as the last bulb and the consumer must pack it. It is possible that the
producer will have to wait for the consumer to pack their current bulb before they can
transfer the last bulb; further, the consumer must pack this bulb as well.

In order to follow this scenario, we stop the producer first and the consumer second:

public static void stopAssemblyLine() {

 logger.info("Stopping assembly line ...");

 boolean isProducerDown = shutdownProducer();
 boolean isConsumerDown = shutdownConsumer();

 if (!isProducerDown || !isConsumerDown) {
 logger.severe("Something abnormal happened during
 shutting down the assembling line!");

 System.exit(0);
 }

 logger.info("Assembling line was successfully stopped!");
}

private static boolean shutdownProducer() {
 runningProducer = false;
 return shutdownExecutor(producerService);
}

private static boolean shutdownConsumer() {
 runningConsumer = false;
 return shutdownExecutor(consumerService);
}

Finally, we give enough time to the producer and consumer to stop normally
(without the interruption of threads). This takes place in the shutdownExecutor()
method, as follows:

private static boolean shutdownExecutor(ExecutorService executor) {

 executor.shutdown();

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[587]

 try {
 if (!executor.awaitTermination(TIMEOUT_MS * 2,
 TimeUnit.MILLISECONDS)) {
 executor.shutdownNow();
 return executor.awaitTermination(TIMEOUT_MS * 2,
 TimeUnit.MILLISECONDS);
 }

 return true;
 } catch (InterruptedException ex) {
 executor.shutdownNow();
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 }

 return false;
}

The first thing that we do is set the runningProducer static variable to false.
This will break while(runningProducer), therefore this will be the last bulb
checked. Further, we initiate the shutdown procedure for the producer.

In the case of a consumer, the first thing that we do is set
the runningConsumer static variable to false. This will
break while(runningConsumer), therefore this will be the last bulb packed.
Further, we initiate the shutdown procedure for the consumer.

Let's see a possible execution of the assembly line (run it for 10 seconds):

AssemblyLine.startAssemblyLine();
Thread.sleep(10 * 1000);
AssemblyLine.stopAssemblyLine();

A possible output will be as follows:

Starting assembly line ...
...
[2019-04-14 07:39:40] [INFO] Checked: bulb-89
[2019-04-14 07:39:43] [INFO] Packed: bulb-89
...
Stopping assembly line ...
...
[2019-04-14 07:39:53] [INFO] Packed: bulb-322
Assembling line was successfully stopped!

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[588]

Generally speaking, if it takes a lot of time to stop the assembly line
(it acts as if it were blocked), then there's probably an unbalanced
rate between the number of producers and consumers and/or
between the production and consumption times. You may need to
add or subtract producers or consumers.

Producer doesn't wait for the consumer to be
available
If the producer can check bulbs faster than the consumer can pack them, then most
probably they will decide to have the following workflow:

The producer will check bulbs one by one and push them in a queue
The consumer will poll from the queue and pack the bulbs

Since the consumer is slower than the producer, the queue will hold checked but
unpacked bulbs (we may assume that there is a low chance to have an empty queue).
In the following diagram, we have the producer, the consumer, and the queue used
for storing checked but unpacked bulbs:

In order to shape this scenario, we can rely on ConcurrentLinkedQueue (or
LinkedBlockingQueue). This is an unbounded thread-safe queue based on linked
nodes:

private static final Queue<String> queue
 = new ConcurrentLinkedQueue<>();

In order to push a bulb in the queue, the producer calls the offer() method:

queue.offer(bulb);

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[589]

On the other hand, the consumer processes bulbs from the queue using the poll()
method (since the consumer is slower than the producer, it should be a rare case
when poll() will return null):

String bulb = queue.poll();

Let's start the assembly line for the first time for 10 seconds. This will output the
following:

Starting assembly line ...
...
[2019-04-14 07:44:58] [INFO] Checked: bulb-827
[2019-04-14 07:44:59] [INFO] Checked: bulb-257
[2019-04-14 07:44:59] [INFO] Packed: bulb-827
...
Stopping assembly line ...
...
[2019-04-14 07:45:08] [INFO] Checked: bulb-369
[2019-04-14 07:45:09] [INFO] Packed: bulb-690
...
Assembling line was successfully stopped!

At this point, the assembly line is stopped, and in the queue, we have the following
(these bulbs have been checked, but not packed):

[bulb-968, bulb-782, bulb-627, bulb-886, ...]

We restart the assembly line and check the highlighted lines, which reveal that the
consumer resumes its job from where they'd stopped:

Starting assembly line ...
[2019-04-14 07:45:12] [INFO] Packed: bulb-968
[2019-04-14 07:45:12] [INFO] Checked: bulb-812
[2019-04-14 07:45:12] [INFO] Checked: bulb-470
[2019-04-14 07:45:14] [INFO] Packed: bulb-782
[2019-04-14 07:45:15] [INFO] Checked: bulb-601
[2019-04-14 07:45:16] [INFO] Packed: bulb-627
...

203. Thread pool with a fixed number of
threads
This problem reiterates the scenario from the Thread pool with a single thread section.
This time, the assembly line uses three producers and two consumers, as in the
following diagram:

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[590]

We can rely on Executors.newFixedThreadPool​(int nThreads) to simulate the
fixed number of producers and consumers. We allocate one thread per producer
(respectively, consumer), therefore the code is pretty simple:

private static final int PRODUCERS = 3;
private static final int CONSUMERS = 2;
private static final Producer producer = new Producer();
private static final Consumer consumer = new Consumer();
private static ExecutorService producerService;
private static ExecutorService consumerService;
...
producerService = Executors.newFixedThreadPool(PRODUCERS);
for (int i = 0; i < PRODUCERS; i++) {
 producerService.execute(producer);
}

consumerService = Executors.newFixedThreadPool(CONSUMERS);
for (int i = 0; i < CONSUMERS; i++) {
 consumerService.execute(consumer);
}

The queue in which the producers can add the checked bulbs can be of
the LinkedTransferQueue or ConcurrentLinkedQueue type, and so on.

The complete source code based on LinkedTransferQueue and
ConcurrentLinkedQueue can be found in the code bundled with this book.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[591]

204. Cached and scheduled thread pools
This problem reiterates the scenario from the Thread pool with a single thread section.
This time, we assume that the producer (more than one producer can be used as well)
checks a bulb in no more than one second. Moreover, a consumer (packer) needs a
maximum of 10 seconds to pack a bulb. The producer and consumer times can be
shaped as follows:

private static final int MAX_PROD_TIME_MS = 1 * 1000;
private static final int MAX_CONS_TIME_MS = 10 * 1000;

Obviously, in these conditions, one consumer cannot face the incoming flux. The
queue used for storing bulbs until they are packed will continuously increase. The
producer will add to this queue much faster than the consumer can poll. Therefore,
more consumers are needed, as in the following diagram:

Since there is a single producer, we can rely on
Executors.newSingleThreadExecutor():

private static volatile boolean runningProducer;
private static ExecutorService producerService;
private static final Producer producer = new Producer();
...
public static void startAssemblyLine() {
 ...
 runningProducer = true;
 producerService = Executors.newSingleThreadExecutor();
 producerService.execute(producer);
 ...
}

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[592]

The Producer is almost the same as in the previous problems except for the
extraProdTime variable:

private static int extraProdTime;
private static final Random rnd = new Random();
...
private static class Producer implements Runnable {

 @Override
 public void run() {
 while (runningProducer) {
 try {
 String bulb = "bulb-" + rnd.nextInt(1000);
 Thread.sleep(rnd.nextInt(MAX_PROD_TIME_MS) + extraProdTime);
 queue.offer(bulb);

 logger.info(() -> "Checked: " + bulb);
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 break;
 }
 }
 }
}

The extraProdTime variable is initially 0. This will be needed when we slow down
the producer:

Thread.sleep(rnd.nextInt(MAX_PROD_TIME_MS) + extraProdTime);

After running at a high speed for a while, the producer will get tired and will need
more time to check each bulb. If the producer slows down the production rate, the
number of consumers should be decreased too.

When the producer runs at a high speed, we will need more consumers (packers). But
how many? Using a fixed number of consumers (newFixedThreadPool()) will raise
at least two drawbacks:

If the producer slows down at some moment, some consumers will remain
without work and will simply stick around
If the producer becomes even more efficient, more consumers are needed to
face the incoming flux

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[593]

Basically, we should be able to vary the number of consumers depending on producer
efficiency.

For these kinds of jobs, we have Executors.newCachedThreadPool​(). A cached
thread pool will reuse the existing threads and will create new ones as needed (we
can add more consumers). Threads are terminated and removed from the cache if
they have not been used for 60 seconds (we can remove consumers).

Let's start with a single active consumer:

private static volatile boolean runningConsumer;
private static final AtomicInteger
 nrOfConsumers = new AtomicInteger();
private static final ThreadGroup threadGroup
 = new ThreadGroup("consumers");
private static final Consumer consumer = new Consumer();
private static ExecutorService consumerService;
...
public static void startAssemblyLine() {
 ...
 runningConsumer = true;
 consumerService = Executors
 .newCachedThreadPool((Runnable r) -> new Thread(threadGroup, r));
 nrOfConsumers.incrementAndGet();
 consumerService.execute(consumer);
 ...
}

Because we want to be able to see how many threads (consumers) are active at one
moment, we add them in a ThreadGroup via a custom ThreadFactory:

consumerService = Executors
 .newCachedThreadPool((Runnable r) -> new Thread(threadGroup, r));

Later, we will be able to fetch the number of active consumers using the following
code:

threadGroup.activeCount();

Knowing the number of active consumers is a good indicator that can be combined
with the current size of the bulb queue for determining whether more consumers are
needed.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[594]

The consumer implementation is listed as follows:

private static class Consumer implements Runnable {

 @Override
 public void run() {

 while (runningConsumer && queue.size() > 0
 || nrOfConsumers.get() == 1) {
 try {
 String bulb = queue.poll(MAX_PROD_TIME_MS
 + extraProdTime, TimeUnit.MILLISECONDS);

 if (bulb != null) {
 Thread.sleep(rnd.nextInt(MAX_CONS_TIME_MS));
 logger.info(() -> "Packed: " + bulb + " by consumer: "
 + Thread.currentThread().getName());
 }
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 break;
 }
 }

 nrOfConsumers.decrementAndGet();
 logger.warning(() -> "### Thread " +
 Thread.currentThread().getName()
 + " is going back to the pool in 60 seconds for now!");
 }
}

Assuming that the assembly line is running, a consumer will continue to pack bulbs
as long as the queue is not empty or they are the only consumer left (we can't have 0
consumers). We can interpret that an empty queue means too many consumers are
there. So, when a consumer sees that the queue is empty and they are not the only
working consumer, they become idle (in 60 seconds, they will be automatically
removed from the cached thread pool).

Do not confuse nrOfConsumers with threadGroup.activeCount(). The
nrOfConsumers variable stores the number of consumers (threads) who pack bulbs
right now, while threadGroup.activeCount() represents all active consumers
(threads) including those that are not working right now (idle) and are just waiting to
be reused or dispatched from the cache.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[595]

Now, in a real case, a supervisor will monitor the assembly line and when they notice
that the current number of consumers cannot face the incoming influx, they will call
more consumers to join (a maximum of 50 consumers are allowed). Moreover, when
they notice that some consumers are just sticking around, they will dispatch them to
other jobs. The following diagram is a graphical representation of this scenario:

For testing purposes, our
supervisor, newSingleThreadScheduledExecutor(), will be a single-threaded
executor that can schedule the given commands to run after a specified delay. It may
also execute the commands periodically:

private static final int MAX_NUMBER_OF_CONSUMERS = 50;
private static final int MAX_QUEUE_SIZE_ALLOWED = 5;
private static final int MONITOR_QUEUE_INITIAL_DELAY_MS = 5000;
private static final int MONITOR_QUEUE_RATE_MS = 3000;
private static ScheduledExecutorService monitorService;
...
private static void monitorQueueSize() {

 monitorService = Executors.newSingleThreadScheduledExecutor();

 monitorService.scheduleAtFixedRate(() -> {
 if (queue.size() > MAX_QUEUE_SIZE_ALLOWED
 && threadGroup.activeCount() < MAX_NUMBER_OF_CONSUMERS) {
 logger.warning("### Adding a new consumer (command) ...");

 nrOfConsumers.incrementAndGet();
 consumerService.execute(consumer);
 }

 logger.warning(() -> "### Bulbs in queue: " + queue.size()
 + " | Active threads: " + threadGroup.activeCount()

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[596]

 + " | Consumers: " + nrOfConsumers.get()
 + " | Idle: " + (threadGroup.activeCount()
 - nrOfConsumers.get()));
 }, MONITOR_QUEUE_INITIAL_DELAY_MS, MONITOR_QUEUE_RATE_MS,
 TimeUnit.MILLISECONDS);
}

We rely on scheduleAtFixedRate() to monitor the assembly line every three
seconds with an initial delay of five seconds. So, in every three seconds, the
supervisor checks the bulb queue size. If there are more than five bulbs in the queue
and fewer than 50 consumers, the supervisor requests a new consumer to join the
assembly line. If the queue contains five or fewer bulbs or there are already 50
consumers, the supervisor doesn't take any action.

If we start the assembly line now, we can see how the number of consumers increases
until the queue size is fewer than six. A possible snapshot will be as follows:

Starting assembly line ...
[11:53:20] [INFO] Checked: bulb-488
...
[11:53:24] [WARNING] ### Adding a new consumer (command) ...
[11:53:24] [WARNING] ### Bulbs in queue: 7
 | Active threads: 2
 | Consumers: 2
 | Idle: 0
[11:53:25] [INFO] Checked: bulb-738
...
[11:53:36] [WARNING] ### Bulbs in queue: 23
 | Active threads: 6
 | Consumers: 6
 | Idle: 0
...

When there are more threads than needed, some of them become idle. If for 60
seconds they don't receive a job, they are removed from the cache. If a job occurs
when there is no idle thread, a new thread will be created. This process is repeated
constantly until we notice a balance in the assembly line. After a while, things start to
calm down and the proper number of consumers will be in a small range (small
fluctuations). This happens because the producer outputs at a random speed
bounded up by a maximum of one second.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[597]

After a while (for example, after 20 seconds), let's slow down the producer by four
seconds (so, a bulb can be checked in a maximum of five seconds now):

private static final int SLOW_DOWN_PRODUCER_MS = 20 * 1000;
private static final int EXTRA_TIME_MS = 4 * 1000;

This can be done using another newSingleThreadScheduledExecutor(), as
follows:

private static void slowdownProducer() {

 slowdownerService = Executors.newSingleThreadScheduledExecutor();

 slowdownerService.schedule(() -> {
 logger.warning("### Slow down producer ...");
 extraProdTime = EXTRA_TIME_MS;
 }, SLOW_DOWN_PRODUCER_MS, TimeUnit.MILLISECONDS);
}

This will happen only once, 20 seconds after starting the assembly line. Since the
producer speed was decreased by four seconds, there is no need to have the same
number of consumers to maintain a queue maximum of five bulbs.

This is revealed in the output, as shown (notice that, at some moments, there is only
one consumer needed to handle the queue):

...
[11:53:36] [WARNING] ### Bulbs in queue: 23
 | Active threads: 6
 | Consumers: 6
 | Idle: 0
...
[11:53:39] [WARNING] ### Slow down producer ...
...
[11:53:56] [WARNING] ### Thread Thread-5 is going
 back to the pool in 60 seconds for now!
[11:53:56] [INFO] Packed: bulb-346 by consumer: Thread-2
...
[11:54:36] [WARNING] ### Bulbs in queue: 1
 | Active threads: 12
 | Consumers: 1
 | Idle: 11
...
[11:55:48] [WARNING] ### Bulbs in queue: 3
 | Active threads: 1
 | Consumers: 1
 | Idle: 0

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[598]

...
Assembling line was successfully stopped!

Starting the supervisor takes place after starting the assembly line:

public static void startAssemblyLine() {
 ...
 monitorQueueSize();
 slowdownProducer();
}

The complete application is available in the code bundled with this book.

When using cached-thread pools, pay attention to the number of
threads created to accommodate the number of submitted tasks.
While for single-thread and fixed-thread pools, we control the
number of created threads, a cached-pool can decide to create too
many threads. Basically, creating threads uncontrollably may run
out of resources quickly. So, in systems that are vulnerable to
overload, it's better to rely on fixed-thread pools.

205. Work-stealing thread pool
Let's focus on the packing process, which should be implemented via a work-stealing
thread pool. To start, let's discuss what a work-stealing thread pool is, and let's do it
via a comparison with a classic thread pool. The following diagram depicts how a
classic thread pool works:

So, a thread pool relies on an internal inbound queue to store tasks. Each thread must
dequeue a task and execute it. This is suitable for cases when the tasks are time-
consuming and their number is relatively low. On the other hand, if these tasks are
many and are small (they require a small amount of time to be executed), there will
be a lot of contentions as well. This is not good, and even if this is a lock-free queue
the problem is not entirely solved.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[599]

In order to reduce contentions and increase performance, a thread pool can rely on a
work-stealing algorithm and a queue per thread. In this case, there is a central
inbound queue for all tasks, and an extra queue (known as the local task queue) for
each thread (worker thread), as in the following diagram:

So, each thread will dequeue tasks from the central queue and enqueue them in their
own queue. Each thread has its own local queue of tasks. Further, when a thread
wants to process a task, it simply dequeues a task from its own local queue. As long
as its local queue is not empty, the thread will continue to process the tasks from it
without bothering other threads (no contentions with other threads). When its local
queue is empty (as in the case of Thread 2 in the preceding diagram), it tries to steal
(via a working-stealing algorithm) tasks from local queues that belong to other
threads (for example, Thread 2 steals tasks from Thread 3). If it doesn't find anything
to steal, it accesses the shared central inbound queue.

Each local queue is actually a deque (short for double-ended queue), therefore it can
be accessed efficiently from both ends. The thread sees its deque as a stack, meaning
that it will enqueue (add new tasks) and dequeue (take tasks for processing) from
only one end. On the other hand, when a thread tries to steal from the queue of
another thread, it will access the other end (for example, Thread 2 steals from Thread
3 queue from the other end). So, tasks are processed from one end and stolen from the
other end.

If two threads try to steal from the same local queue then there is contention, but
normally this should be insignificant.

What we've just described is the fork/join framework introduced in JDK 7 and
exemplified in the The fork/join framework section. Starting with JDK 8, the Executors
class was enriched with a work-stealing thread pool using the number of available
processors as its target parallelism level. This is available
via Executors.newWorkStealingPool() and
Executors.newWorkStealingPool​(int parallelism).

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[600]

Let's see the source code of this thread pool:

public static ExecutorService newWorkStealingPool() {

 return new ForkJoinPool(Runtime.getRuntime().availableProcessors(),
 ForkJoinPool.defaultForkJoinWorkerThreadFactory,
 null, true);
}

So, internally, this thread pool instantiates ForkJoinPool via the following
constructor:

public ForkJoinPool ​(int parallelism,
 ForkJoinPool.ForkJoinWorkerThreadFactory factory,
 Thread.UncaughtExceptionHandler handler,
 boolean asyncMode)

We have the parallelism level set to availableProcessors(), the default thread
factory for returning new threads, Thread.UncaughtExceptionHandler, passed as
null, and asyncMode set to true. Setting asyncMode to true means that it
empowers the local First In First Out (FIFO) scheduling mode for tasks that are
forked and never joined. This mode may be more suitable than the default one
(locally stack-based) in programs that rely on worker threads to process only event-
style asynchronous tasks.

Nevertheless, don't forget that the local task queue and work-stealing algorithm are
empowered only if the worker threads schedule new tasks in their own local queues.
Otherwise, ForkJoinPool is just a ThreadPoolExecutor with extra overhead.

When we work directly with ForkJoinPool, we can instruct tasks to explicitly
schedule new tasks during execution using ForkJoinTask (typically, via
RecursiveTask or RecursiveAction).

But since newWorkStealingPool() is a higher level of abstraction for
ForkJoinPool, we cannot instruct tasks to explicitly schedule new tasks during
execution. Therefore, newWorkStealingPool() will decide internally how to
work based on the tasks that we pass. We can try a comparison between
newWorkStealingPool(), newCachedThreadPool(), and
newFixedThreadPool(), and see how they perform in two scenarios:

For a large number of small tasks
For a small number of time-consuming tasks

Let's take a look at the solutions for both these scenarios in the next sections.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[601]

A large number of small tasks
Since the producers (checkers) and consumer (packers) don't work at the same time,
we can easily fill up a queue with 15,000,000 bulbs via a trivial for loop (we are not
very interested in this part of the assembly line). This is shown in the following code
snippet:

private static final Random rnd = new Random();
private static final int MAX_PROD_BULBS = 15_000_000;
private static final BlockingQueue<String> queue
 = new LinkedBlockingQueue<>();
...
private static void simulatingProducers() {
 logger.info("Simulating the job of the producers overnight ...");
 logger.info(() -> "The producers checked "
 + MAX_PROD_BULBS + " bulbs ...");

 for (int i = 0; i < MAX_PROD_BULBS; i++) {
 queue.offer("bulb-" + rnd.nextInt(1000));
 }
}

Further, let's create a default work-stealing thread pool:

private static ExecutorService consumerService
 = Executors.newWorkStealingPool();

For comparison, we will also use the following thread pools:

A cached thread pool:

private static ExecutorService consumerService
 = Executors.newCachedThreadPool();

A fixed thread pool using the number of available processors as the
number of threads (the number of processors is used by the default work-
stealing thread pool as the parallelism level):

private static final Consumer consumer = new Consumer();
private static final int PROCESSORS
 = Runtime.getRuntime().availableProcessors();
private static ExecutorService consumerService
 = Executors.newFixedThreadPool(PROCESSORS);

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[602]

And, let's start 15,000,000 small tasks:

for (int i = 0; i < queueSize; i++) {
 consumerService.execute(consumer);
}

The Consumer wraps a simple queue.poll() operation, therefore it should run
pretty fast, as shown in the following snippet:

private static class Consumer implements Runnable {

 @Override
 public void run() {
 String bulb = queue.poll();

 if (bulb != null) {
 // nothing
 }
 }
}

The following graph represents the collected data for 10 runs:

Even if this is not a professional benchmark, we can see that the work-stealing thread
pool has obtained the best results, while the cached thread poll has the worse results.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[603]

A small number of time-consuming tasks
Instead of filling a queue with 15,000,000 bulbs, let's fill 15 queues with 1,000,000
bulbs each:

private static final int MAX_PROD_BULBS = 15 _000_000;
private static final int CHUNK_BULBS = 1 _000_000;
private static final Random rnd = new Random();
private static final Queue<BlockingQueue<String>> chunks
 = new LinkedBlockingQueue<>();
...
private static Queue<BlockingQueue<String>> simulatingProducers() {
 logger.info("Simulating the job of the producers overnight ...");
 logger.info(() -> "The producers checked "
 + MAX_PROD_BULBS + " bulbs ...");

 int counter = 0;
 while (counter < MAX_PROD_BULBS) {
 BlockingQueue chunk = new LinkedBlockingQueue<>(CHUNK_BULBS);

 for (int i = 0; i < CHUNK_BULBS; i++) {
 chunk.offer("bulb-" + rnd.nextInt(1000));
 }

 chunks.offer(chunk);
 counter += CHUNK_BULBS;
 }

 return chunks;
}

And, let's fire up 15 tasks using the following code:

while (!chunks.isEmpty()) {
 Consumer consumer = new Consumer(chunks.poll());
 consumerService.execute(consumer);
}

Each Consumer loops 1,000,000 bulbs using this code:

private static class Consumer implements Runnable {

 private final BlockingQueue<String> bulbs;

 public Consumer(BlockingQueue<String> bulbs) {
 this.bulbs = bulbs;
 }

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[604]

 @Override
 public void run() {
 while (!bulbs.isEmpty()) {
 String bulb = bulbs.poll();

 if (bulb != null) {}
 }
 }
}

The following graph represents the collected data for 10 runs:

This time, it looks like the work-stealing thread pool worked as a regular thread pool.

206. Callable and Future
This problem reiterates the scenario from the Thread pool with a single thread section.
We want a single producer and consumer that follow this scenario:

An automatic system sends a request to the producer, saying, check this bulb1.
and if it is ok then return it to me, otherwise tell me what went wrong with this
bulb.
The automatic system waits for the producer to check the bulb.2.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[605]

When the automatic system receives the checked bulb, it is then passed3.
further to the consumer (packer) and repeats the process.
If a bulb has a defect, the producer throws an exception4.
(DefectBulbException) and the automatic system will inspect the cause
of the problem.

This scenario is depicted in the following diagram:

In order to shape this scenario, the producer should be able to return a result and
throw an exception. Since our producer is a Runnable, it can't do either of these. But
Java defines an interface that is named Callable. This is a functional interface with a
method named call(). In contrast to the run() method of Runnable, the call()
method can return a result and even throw an exception, V call() throws
Exception.

This means that the producer (checker) can be written as follows:

private static volatile boolean runningProducer;
private static final int MAX_PROD_TIME_MS = 5 * 1000;
private static final Random rnd = new Random();
...
private static class Producer implements Callable {

 private final String bulb;

 private Producer(String bulb) {
 this.bulb = bulb;
 }

 @Override
 public String call()

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[606]

 throws DefectBulbException, InterruptedException {

 if (runningProducer) {
 Thread.sleep(rnd.nextInt(MAX_PROD_TIME_MS));

 if (rnd.nextInt(100) < 5) {
 throw new DefectBulbException("Defect: " + bulb);
 } else {
 logger.info(() -> "Checked: " + bulb);
 }

 return bulb;
 }

 return "";
 }
}

The executor service can submit a task to a Callable via the submit() method, but
it doesn't know when the result of the submitted task will be available.
Therefore, Callable immediately returns a special type named, Future. The result
of an asynchronous computation is represented by a Future—via Future we can
fetch the result of the task when it is available. Conceptually speaking, we can think
of a Future as a JavaScript promise, or as a result of a computation that will be done
at a later point in time. Now, let's create a Producer and submit it to a Callable:

String bulb = "bulb-" + rnd.nextInt(1000);
Producer producer = new Producer(bulb);

Future<String> bulbFuture = producerService.submit(producer);
// this line executes immediately

Since the Callable immediately returns a Future, we can perform other tasks while
waiting for the result of the submitted task (the isDone() flag method returns true
if this task is completed):

while (!future.isDone()) {
 System.out.println("Do something else ...");
}

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[607]

Retrieving the result of Future can be done using the blocking
method, Future.get(). This method blocks until the result is available or the
specified timeout elapsed (if the result is not available before the timeout, a
TimeoutException is thrown):

String checkedBulb = bulbFuture.get(
 MAX_PROD_TIME_MS + 1000, TimeUnit.MILLISECONDS);

// this line executes only after the result is available

Once the result is available, we can pass it to Consumer and submit another task
to Producer. This cycle repeats as long as the consumer and the producer are
running. The code for this is as follows:

private static void automaticSystem() {

 while (runningProducer && runningConsumer) {
 String bulb = "bulb-" + rnd.nextInt(1000);

 Producer producer = new Producer(bulb);
 Future<String> bulbFuture = producerService.submit(producer);
 ...
 String checkedBulb = bulbFuture.get(
 MAX_PROD_TIME_MS + 1000, TimeUnit.MILLISECONDS);

 Consumer consumer = new Consumer(checkedBulb);
 if (runningConsumer) {
 consumerService.execute(consumer);
 }
 }
 ...
}

The Consumer is still a Runnable, therefore it cannot return a result or throw an
exception:

private static final int MAX_CONS_TIME_MS = 3 * 1000;
...
private static class Consumer implements Runnable {

 private final String bulb;

 private Consumer(String bulb) {
 this.bulb = bulb;
 }

 @Override

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[608]

 public void run() {
 if (runningConsumer) {
 try {
 Thread.sleep(rnd.nextInt(MAX_CONS_TIME_MS));
 logger.info(() -> "Packed: " + bulb);
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 }
 }
 }
}

Finally, we need to start the automatic system. The code for this is as follows:

public static void startAssemblyLine() {
 ...
 runningProducer = true;
 consumerService = Executors.newSingleThreadExecutor();

 runningConsumer = true;
 producerService = Executors.newSingleThreadExecutor();

 new Thread(() -> {
 automaticSystem();
 }).start();
}

Notice that we don't want to block the main thread, therefore we start the automatic
system in a new thread. This way the main thread can control the start-stop process of
the assembly line.

Let's run the assembly line for several minutes to collect some output:

Starting assembly line ...
[08:38:41] [INFO] Checked: bulb-879
...
[08:38:52] [SEVERE] Exception: DefectBulbException: Defect: bulb-553
[08:38:53] [INFO] Packed: bulb-305
...

OK, the job is done! Let's tackle the final topic here.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[609]

Canceling a Future
A Future can be canceled. This is accomplished using the cancel​(boolean
mayInterruptIfRunning) method. If we pass it as true, the thread that executes
the task is interrupted, otherwise, the thread may complete the task. This method
returns true if the task was successfully canceled, otherwise it returns false
(typically, because it has already completed normally). Here is a simple example that
cancels a task if it takes more than one second to run:

long startTime = System.currentTimeMillis();

Future<String> future = executorService.submit(() -> {
 Thread.sleep(3000);

 return "Task completed";
});

while (!future.isDone()) {
 System.out.println("Task is in progress ...");
 Thread.sleep(100);

 long elapsedTime = (System.currentTimeMillis() - startTime);

 if (elapsedTime > 1000) {
 future.cancel(true);
 }
}

The isCancelled() method will return true if the task was canceled before it
completes normally:

System.out.println("Task was cancelled: " + future.isCancelled()
 + "\nTask is done: " + future.isDone());

The output will be as follows:

Task is in progress ...
Task is in progress ...
...
Task was cancelled: true
Task is done: true

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[610]

Here are some bonus examples:

Using Callable and lambdas:

Future<String> future = executorService.submit(() -> {
 return "Hello to you!";
});

Getting a Callable that returns null via Executors.callable
(Runnable task):

Callable<Object> callable = Executors.callable(() -> {
 System.out.println("Hello to you!");
});

Future<Object> future = executorService.submit(callable);

Getting a Callable that returns a result (T) via Executors.callable
(Runnable task, T result):

Callable<String> callable = Executors.callable(() -> {
 System.out.println("Hello to you!");
}, "Hi");

Future<String> future = executorService.submit(callable);

207. Invoking multiple Callable tasks
Since the producers (checkers) don't work at the same time with the consumers
(packers), we can just simulate their work via a for that adds 100 checked bulbs in a
queue:

private static final BlockingQueue<String> queue
 = new LinkedBlockingQueue<>();
...
private static void simulatingProducers() {

 for (int i = 0; i < MAX_PROD_BULBS; i++) {
 queue.offer("bulb-" + rnd.nextInt(1000));
 }
}

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[611]

Now, the consumers must pack each bulb and return it. This means that the
Consumer is a Callable:

private static class Consumer implements Callable {

 @Override
 public String call() throws InterruptedException {
 String bulb = queue.poll();

 Thread.sleep(100);

 if (bulb != null) {
 logger.info(() -> "Packed: " + bulb + " by consumer: "
 + Thread.currentThread().getName());

 return bulb;
 }

 return "";
 }
}

But remember that we should submit all Callable tasks and wait for all of them to
complete. This can be achieved via the ExecutorService.invokeAll() method.
This method takes a collection of tasks (Collection<? extends Callable<T>>)
and returns a list of instances of Future (List<Future<T>>) as an argument. Any
call to Future.get() will be blocked until all the instances of Future are complete.

So, first we create a list of 100 tasks:

private static final Consumer consumer = new Consumer();
...
List<Callable<String>> tasks = new ArrayList<>();
for (int i = 0; i < queue.size(); i++) {
 tasks.add(consumer);
}

Further, we execute all these tasks and get the list of Future:

private static ExecutorService consumerService
 = Executors.newWorkStealingPool();
...
List<Future<String>> futures = consumerService.invokeAll(tasks);

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[612]

Finally, we process (in this case, display) the results:

for (Future<String> future: futures) {
 String bulb = future.get();
 logger.info(() -> "Future done: " + bulb);
}

Notice that the first call to the future.get() statement blocks until all the instances
of Future are complete. This will lead to the following output:

[12:06:41] [INFO] Packed: bulb-595 by consumer: ForkJoinPool-1-
worker-9
...
[12:06:42] [INFO] Packed: bulb-478 by consumer: ForkJoinPool-1-
worker-15
[12:06:43] [INFO] Future done: bulb-595
...

Sometimes, we want to submit several tasks and wait for any one of them to
complete. This can be achieved via ExecutorService.invokeAny(). Exactly
like invokeAll(), this method gets as an argument a collection of tasks
(Collection<? extends Callable<T>>). But it returns the result of the fastest
task (not a Future) and cancels all other tasks that have not completed yet, for
example:

String bulb = consumerService.invokeAny(tasks);

If you don't want to wait for all Future to finish, proceed as follows:

int queueSize = queue.size();
List<Future<String>> futures = new ArrayList<>();
for (int i = 0; i < queueSize; i++) {
 futures.add(consumerService.submit(consumer));
}

for (Future<String> future: futures) {
 String bulb = future.get();
 logger.info(() -> "Future done: " + bulb);
}

This will not block until all tasks are done. Take a look at the following output
sample:

[12:08:56] [INFO] Packed: bulb-894 by consumer: ForkJoinPool-1-
worker-7
[12:08:56] [INFO] Future done: bulb-894
[12:08:56] [INFO] Packed: bulb-953 by consumer: ForkJoinPool-1-

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[613]

worker-5
...

208. Latches
A latch is a Java synchronizer that allows one or more threads to wait until a bunch of
events in other threads has completed. It starts from a given counter (commonly
representing the number of events that should be waited), and each event that
completes is responsible for decrementing the counter. When the counter reaches zero
all the waiting threads can pass through. This is the terminal state of a latch. A latch
cannot be reset or reused, so the waited events can happen only once. The following
diagram shows, in four steps, how a latch with three threads works:

In API terms, a latch is implemented using
java.util.concurrent.CountDownLatch.

 The initial counter is set in the CountDownLatch constructor as an integer. For
example, a CountDownLatch with a counter equal to 3 can be defined as follows:

CountDownLatch latch = new CountDownLatch(3);

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[614]

All threads that call the await() method will be blocked until the counter reaches
zero. So, a thread that wants to be blocked until the latch reaches the terminal state
will call await(). Each event that completes can call the countDown() method. This
method decrements the counter with one value. Until the counter becomes zero, the
threads that called await() are still blocked.

A latch can be used for a wide range of problems. For now, let's focus on our problem
that should simulate the process of starting a server. The server is considered started
after its internal services have started. Services can be started concurrently and are
independent of each other. Starting a server is a process that takes a while and
requires us to start all the underlying services of that server. Therefore, the thread
that finalizes and validates the server start should wait until all server services
(events) have started in other threads. If we assume that we have three services, we
can write a ServerService class as follows:

public class ServerInstance implements Runnable {

 private static final Logger logger =
 Logger.getLogger(ServerInstance.class.getName());

 private final CountDownLatch latch = new CountDownLatch(3);

 @Override
 public void run() {
 logger.info("The server is getting ready to start ");
 logger.info("Starting services ...\n");

 long starting = System.currentTimeMillis();

 Thread service1 = new Thread(
 new ServerService(latch, "HTTP Listeners"));
 Thread service2 = new Thread(
 new ServerService(latch, "JMX"));
 Thread service3 = new Thread(
 new ServerService(latch, "Connectors"));

 service1.start();
 service2.start();
 service3.start();

 try {
 latch.await();
 logger.info(() -> "Server has successfully started in "
 + (System.currentTimeMillis() - starting) / 1000
 + " seconds");
 } catch (InterruptedException ex) {

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[615]

 Thread.currentThread().interrupt();
 // log ex
 }
 }
}

First, we define a CountDownLatch with a counter of three. Second, we start the
services in three different threads. Finally, we block this thread via await(). Now,
the following class simulates the starting process of services via random sleep:

public class ServerService implements Runnable {

 private static final Logger logger =
 Logger.getLogger(ServerService.class.getName());

 private final String serviceName;
 private final CountDownLatch latch;
 private final Random rnd = new Random();

 public ServerService(CountDownLatch latch, String serviceName) {
 this.latch = latch;
 this.serviceName = serviceName;
 }

 @Override
 public void run() {

 int startingIn = rnd.nextInt(10) * 1000;

 try {
 logger.info(() -> "Starting service '" + serviceName + "' ...");

 Thread.sleep(startingIn);

 logger.info(() -> "Service '" + serviceName
 + "' has successfully started in "
 + startingIn / 1000 + " seconds");

 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 // log ex
 } finally {
 latch.countDown();

 logger.info(() -> "Service '" + serviceName + "' running ...");
 }
 }
}

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[616]

Each service that started successfully (or failed) will decrement the latch via
countDown(). Once the counter reaches zero, the server is considered started. Let's
call it:

Thread server = new Thread(new ServerInstance());
server.start();

Here is a possible output:

[08:49:17] [INFO] The server is getting ready to start

[08:49:17] [INFO] Starting services ...
[08:49:17] [INFO] Starting service 'JMX' ...
[08:49:17] [INFO] Starting service 'Connectors' ...
[08:49:17] [INFO] Starting service 'HTTP Listeners' ...

[08:49:22] [INFO] Service 'HTTP Listeners' started in 5 seconds
[08:49:22] [INFO] Service 'HTTP Listeners' running ...
[08:49:25] [INFO] Service 'JMX' started in 8 seconds
[08:49:25] [INFO] Service 'JMX' running ...
[08:49:26] [INFO] Service 'Connectors' started in 9 seconds
[08:49:26] [INFO] Service 'Connectors' running ...

[08:49:26] [INFO] Server has successfully started in 9 seconds

In order to avoid indefinite waiting, the CountDownLatch class has
an await() flavor that accepts a timeout, await​(long timeout,
TimeUnit unit). If the waiting time elapses before the count
reaches zero, this method returns false.

209. Barrier
A barrier is a Java synchronizer that allows a group of threads (known as parties) to
reach a common barrier point. Basically, a group of threads waits for each other to
meet at the barrier. It is like a bunch of friends who decide on a meeting point, and
when all of them get this point, they go farther together. They won't leave the meeting
point until all of them have arrived or until they feel they've been waiting too long.

This synchronizer works well for problems that rely on a task that can be divided into
subtasks. Each subtask runs in a different thread and waits for the rest of the threads.
When all the threads complete, they combine their results in a single result.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[617]

This following diagram shows an example of a barrier flow with three threads:

In API terms, a barrier is implemented using
java.util.concurrent.CyclicBarrier.

A CyclicBarrier can be constructed via two constructors:

One of them allows us to specify the number of parties (this is an integer)
The other one allows us to add an action that should take place after all
parties are at the barrier (this is a Runnable)

This action takes place when all threads in the party arrive, but before the release of
any threads.

When a thread is ready to wait at the barrier, it simply calls the await() method.
This method can wait indefinitely or until the specified timeout (if the specified
timeout elapses or the thread is interrupted, this thread is released with a
TimeoutException; the barrier is considered broken, and all the waiting threads at
the barrier are released with a BrokenBarrierException). We can find out how
many parties are required to trip this barrier via the getParties() method and how
many are currently waiting at the barrier via the getNumberWaiting() method.

The await() method returns an integer that represents the arrival
index of the current thread, where the index getParties()— 1 or 0
indicates the first or the last to arrive, respectively.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[618]

Let's assume that we want to start a server. The server is considered started after its
internal services have started. Services can be prepared for start concurrently (this is
time-consuming), but they run interdependently, therefore, once they are ready to
start, they must be started all at once.

So, each service can be prepared to start in a separate thread. Once it is ready to start,
the thread will wait at the barrier for the rest of the services. When all of them are
ready to start, they cross the barrier and start running. Let's consider three services,
so CyclicBarrier can be defined as follows:

Runnable barrierAction
 = () -> logger.info("Services are ready to start ...");

CyclicBarrier barrier = new CyclicBarrier(3, barrierAction);

And, let's prepare the services via three threads:

public class ServerInstance implements Runnable {

 private static final Logger logger
 = Logger.getLogger(ServerInstance.class.getName());

 private final Runnable barrierAction
 = () -> logger.info("Services are ready to start ...");

 private final CyclicBarrier barrier
 = new CyclicBarrier(3, barrierAction);

 @Override
 public void run() {
 logger.info("The server is getting ready to start ");
 logger.info("Starting services ...\n");

 long starting = System.currentTimeMillis();

 Thread service1 = new Thread(
 new ServerService(barrier, "HTTP Listeners"));
 Thread service2 = new Thread(
 new ServerService(barrier, "JMX"));
 Thread service3 = new Thread(
 new ServerService(barrier, "Connectors"));

 service1.start();
 service2.start();
 service3.start();

 try {

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[619]

 service1.join();
 service2.join();
 service3.join();

 logger.info(() -> "Server has successfully started in "
 + (System.currentTimeMillis() - starting) / 1000
 + " seconds");
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 }
 }
}

The ServerService is responsible for preparing each service to start and blocking it
at the barrier via await():

public class ServerService implements Runnable {

 private static final Logger logger =
 Logger.getLogger(ServerService.class.getName());

 private final String serviceName;
 private final CyclicBarrier barrier;
 private final Random rnd = new Random();

 public ServerService(CyclicBarrier barrier, String serviceName) {
 this.barrier = barrier;
 this.serviceName = serviceName;
 }

 @Override
 public void run() {

 int startingIn = rnd.nextInt(10) * 1000;

 try {
 logger.info(() -> "Preparing service '"
 + serviceName + "' ...");

 Thread.sleep(startingIn);
 logger.info(() -> "Service '" + serviceName
 + "' was prepared in " + startingIn / 1000
 + " seconds (waiting for remaining services)");

 barrier.await();

 logger.info(() -> "The service '" + serviceName

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[620]

 + "' is running ...");
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 } catch (BrokenBarrierException ex) {
 logger.severe(() -> "Exception ... barrier is broken! " + ex);
 }
 }
}

Now, let's run it:

Thread server = new Thread(new ServerInstance());
server.start();

Here is a possible output (notice how the threads have been released to cross the
barrier):

[10:38:34] [INFO] The server is getting ready to start

[10:38:34] [INFO] Starting services ...
[10:38:34] [INFO] Preparing service 'Connectors' ...
[10:38:34] [INFO] Preparing service 'JMX' ...
[10:38:34] [INFO] Preparing service 'HTTP Listeners' ...

[10:38:35] [INFO] Service 'HTTP Listeners' was prepared in 1 seconds
 (waiting for remaining services)
[10:38:36] [INFO] Service 'JMX' was prepared in 2 seconds
 (waiting for remaining services)
[10:38:38] [INFO] Service 'Connectors' was prepared in 4 seconds
 (waiting for remaining services)

[10:38:38] [INFO] Services are ready to start ...

[10:38:38] [INFO] The service 'Connectors' is running ...
[10:38:38] [INFO] The service 'HTTP Listeners' is running ...
[10:38:38] [INFO] The service 'JMX' is running ...

[10:38:38] [INFO] Server has successfully started in 4 seconds

A CyclicBarrier is cyclic because it can be reset and reused. For
this, call the reset() method after all threads waiting at the barrier
are released, otherwise BrokenBarrierException will be thrown.

A barrier that is in a broken state will cause the isBroken() flag
method to return true.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[621]

210. Exchanger
An exchanger is a Java synchronizer that allows two threads to exchange objects at an
exchange or synchronization point.

Mainly, this kind of synchronizer acts as a barrier. Two threads wait for each other at
a barrier. They exchange an object and continue their usual tasks when both arrive.

The following diagram depicts in four steps the flow of an exchanger:

In API terms, this synchronizer is exposed by java.util.concurrent.Exchanger.

An Exchanger can be created via an empty constructor and exposes two
exchange() methods:

One that gets only the object that it will offer
One that gets a timeout (before another thread enters the exchange, if the
specified waiting time elapses, a TimeoutException will be thrown).

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[622]

Remember our assembly line for bulbs? Well, let's assume that the producer (checker)
adds the checked bulbs into a basket (for example, List<String>). When the basket
is full, the producer exchanges it with the consumer (the packer) for an empty basket
(for example, another List<String>). The process repeats as long as the assembly
line is running.

The following diagram represents this flow:

So, first we need the Exchanger:

private static final int BASKET_CAPACITY = 5;
...
private static final Exchanger<List<String>> exchanger
 = new Exchanger<>();

The producer fills up the basket and waits at the exchanging point for the consumer:

private static final int MAX_PROD_TIME_MS = 2 * 1000;
private static final Random rnd = new Random();
private static volatile boolean runningProducer;
...
private static class Producer implements Runnable {

 private List<String> basket = new ArrayList<>(BASKET_CAPACITY);

 @Override
 public void run() {

 while (runningProducer) {
 try {
 for (int i = 0; i < BASKET_CAPACITY; i++) {

 String bulb = "bulb-" + rnd.nextInt(1000);
 Thread.sleep(rnd.nextInt(MAX_PROD_TIME_MS));

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[623]

 basket.add(bulb);

 logger.info(() -> "Checked and added in the basket: "
 + bulb);
 }

 logger.info("Producer: Waiting to exchange baskets ...");

 basket = exchanger.exchange(basket);
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 break;
 }
 }
 }
}

On the other hand, the consumer waits at the exchanging point to receive the basket
full of bulbs from the producer and gives an empty one in exchange. Further, while
the producer fills up the basket again, the consumer packs the bulbs from the received
basket. When they are finished, they will go to the exchange point again to wait for
another full basket. So, Consumer can be written as follows:

private static final int MAX_CONS_TIME_MS = 5 * 1000;
private static final Random rnd = new Random();
private static volatile boolean runningConsumer;
...
private static class Consumer implements Runnable {

 private List<String> basket = new ArrayList<>(BASKET_CAPACITY);

 @Override
 public void run() {

 while (runningConsumer) {
 try {
 logger.info("Consumer: Waiting to exchange baskets ...");
 basket = exchanger.exchange(basket);
 logger.info(() -> "Consumer: Received the following bulbs: "
 + basket);

 for (String bulb: basket) {
 if (bulb != null) {
 Thread.sleep(rnd.nextInt(MAX_CONS_TIME_MS));
 logger.info(() -> "Packed from basket: " + bulb);
 }

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[624]

 }

 basket.clear();
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 break;
 }
 }
 }
}

The rest of the code was omitted for brevity.

Now, let's see a possible output:

Starting assembly line ...
[13:23:13] [INFO] Consumer: Waiting to exchange baskets ...
[13:23:15] [INFO] Checked and added in the basket: bulb-606
...
[13:23:18] [INFO] Producer: Waiting to exchange baskets ...
[13:23:18] [INFO] Consumer: Received the following bulbs:
[bulb-606, bulb-251, bulb-102, bulb-454, bulb-280]
[13:23:19] [INFO] Checked and added in the basket: bulb-16
...
[13:23:21] [INFO] Packed from basket: bulb-606
...

211. Semaphores
A semaphore is a Java synchronizer that allows us to control the number of threads
that can access a resource at any one time. Conceptually, this synchronizer manages a
bunch of permits (for example, similar to tokens). A thread that needs access to the
resource must acquire a permit from the synchronizer. After the thread finishes its job
with the resource, it must release the permit by returning it to the semaphore so that
another thread can acquire it. A thread can acquire a permit immediately (if a permit
is free), can wait for a certain amount of time, or can wait until a permit becomes free.
Moreover, a thread can acquire and release more than one permit at a time, and a
thread can release a permit even if it did not acquire one. This will add a permit to the
semaphore; therefore a semaphore can start with one number of permits and die with
another.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[625]

In API terms, this synchronizer is represented by
java.util.concurrent.Semaphore.

Creating a Semaphore is as easy as calling one of its two constructors:

public Semaphore​(int permits)
public Semaphore​(int permits, boolean fair)

A fair Semaphore guarantees FIFO granting of permits under contention.

Acquiring a permit can be accomplished using the acquire() method. The process
can be represented by the following bullets:

Without arguments, this method will acquire a permit from this
semaphore, blocking until one is available, or the thread is interrupted
To acquire more than one permit, use acquire​(int permits)
To try to acquire a permit and return a flag value immediately, use
tryAcquire() or tryAcquire​(int permits)
To acquire a permit by waiting for one to become available within the
given waiting time (and the current thread has not been interrupted), use
tryAcquire​(int permits, long timeout, TimeUnit unit)
To acquire a permit from this semaphore, blocking until one is available
can be obtained via acquireUninterruptibly() and
acquireUninterruptibly(int permits)

To release a permit, use release()

Now, in our scenario, a barbershop has three seats and serves the customers in a FIFO
manner. A customer tries for five seconds to take a seat. In the end, it releases the
acquired seat. Check out the following code to see how a seat can be acquired and
released:

public class Barbershop {

 private static final Logger logger =
 Logger.getLogger(Barbershop.class.getName());

 private final Semaphore seats;

 public Barbershop(int seatsCount) {
 this.seats = new Semaphore(seatsCount, true);
 }

 public boolean acquireSeat(int customerId) {

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[626]

 logger.info(() -> "Customer #" + customerId
 + " is trying to get a seat");

 try {
 boolean acquired = seats.tryAcquire(
 5 * 1000, TimeUnit.MILLISECONDS);

 if (!acquired) {
 logger.info(() -> "Customer #" + customerId
 + " has left the barbershop");

 return false;
 }

 logger.info(() -> "Customer #" + customerId + " got a seat");

 return true;
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 }

 return false;
 }

 public void releaseSeat(int customerId) {
 logger.info(() -> "Customer #" + customerId
 + " has released a seat");
 seats.release();
 }
}

If no seat has been freed in these five seconds, the person leaves the barber shop. On
the other hand, a customer that succeeds in taking a seat is served by a barber (this
will take a random number of seconds between 0 and 10). Finally, the customer
releases the seat. In code lines, this can be written as follows:

public class BarbershopCustomer implements Runnable {

 private static final Logger logger =
 Logger.getLogger(BarbershopCustomer.class.getName());
 private static final Random rnd = new Random();

 private final Barbershop barbershop;
 private final int customerId;

 public BarbershopCustomer(Barbershop barbershop, int customerId) {
 this.barbershop = barbershop;

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[627]

 this.customerId = customerId;
 }

 @Override
 public void run() {

 boolean acquired = barbershop.acquireSeat(customerId);

 if (acquired) {
 try {
 Thread.sleep(rnd.nextInt(10 * 1000));
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 } finally {
 barbershop.releaseSeat(customerId);
 }
 } else {
 Thread.currentThread().interrupt();
 }
 }
}

Let's bring 10 customers to our barbershop:

Barbershop bs = new Barbershop(3);

for (int i = 1; i <= 10; i++) {
 BarbershopCustomer bc = new BarbershopCustomer(bs, i);
 new Thread(bc).start();
}

Here is a snapshot of a possible output:

[16:36:17] [INFO] Customer #10 is trying to get a seat
[16:36:17] [INFO] Customer #5 is trying to get a seat
[16:36:17] [INFO] Customer #7 is trying to get a seat
[16:36:17] [INFO] Customer #5 got a seat
[16:36:17] [INFO] Customer #10 got a seat
[16:36:19] [INFO] Customer #10 has released a seat
...

A permit is not acquired on a thread basis.

This means that the T1 thread can acquire a permit from a
Semaphore and the T2 thread can release it. Of course, the
developer is responsible for managing the process.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[628]

212. Phasers
A phaser is a flexible Java synchronizer that combines the functionalities of
CyclicBarrier and CountDownLatch in the following context:

A phaser is made of one or multiple phases that act as barriers for a
dynamic number of parties (threads).
During a phaser lifespan, the number of synchronized parties (threads) can
be modified dynamically. We can register/deregister parties.
The currently-registered parties must wait in the current phase (barrier)
before going to the next step of execution (next phase)—as in the case
of CyclicBarrier.
Each phase of a phaser can be identified via an associated number/index
starting from 0. The first phase is 0, the next phase is 1, the next phase is 2,
and so on until Integer.MAX_VALUE.
A phaser can have three types of parties in any of its phases: registered,
arrived (these are registered parties waiting at the current phase/barrier),
and unarrived (these are registered parties on the way to the current phase).
There are three types of dynamic counters for parties: a counter for
registered parties, a counter for arrived parties, and a counter for unarrived
parties. When all parties arrive at the current phase (the number of
registered parties is equal to the number of arrived parties), the phaser will
advance to the next phase.
Optionally, we can execute an action (snippet of code) right before
advancing to the next phase (when all the parties arrive at the
phase/barrier).
A phaser has a termination state. Counts of registered parties are
unaffected by termination, but after termination, all synchronization
methods immediately return without waiting to advance to another phase.
Similarly, attempts to register upon termination have no effect.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[629]

In the following diagram, we can see a phaser with four registered parties in phase 0,
and three registered parties in phase 1. We also have some API flavors that are
discussed further:

Commonly, by parties, we understand threads (one party = one
thread), but a phaser doesn't perform an association between a party
and a specific thread. A phaser just counts and manages the number
of registered and deregistered parties.

In API terms, this synchronizer is represented by java.util.concurrent.Phaser.

A Phaser can be created with zero parties, an explicit number of parties via an empty
constructor, or a constructor that takes an integer argument, Phaser​(int parties).
A Phaser can also have a parent specified via Phaser​(Phaser parent) or Phaser
(Phaser parent, int parties). It's common to start a Phaser with a single
party, known as the controller or control-party. Usually, this party lives the longest
during the Phaser lifespan.

A party can be registered any time via the register() method (in the preceding
diagram, between phase 0 and phase 1, we register T5 and T6). We can also register a
bulk of parties via bulkRegister​(int parties). A registered party can be
deregistered without waiting for other parties via arriveAndDeregister(). This
method allows a party to arrive at the current barrier (Phaser) and deregisters it
without waiting for other parties to arrive (in the preceding diagram, the T4, T3, and
T2 parties are deregistered one by one). Each deregistered party decreases the
number of registered parties by one.

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[630]

In order to arrive at the current phase (barrier) and wait for other parties to arrive, we
need to call the arriveAndAwaitAdvance() method. This method blocks until all
registered parties arrive at the current phase. All parties will advance to the next
phase of this Phaser once the last registered party arrives at the current phase.

Optionally, when all registered parties arrive at the current phase, we can run a
specific action by overriding the onAdvance() method, onAdvance​(int phase,
int registeredParties). This method returns a boolean value which is true if
we want to trigger the termination of Phaser. In addition, we can force the
termination via forceTermination(), and we can test it via the flag method,
isTerminated(). Overriding the onAdvance() method requires us to extend the
Phaser class (usually, via an anonymous class).

At this moment, we should have enough details to solve our problem. So, we have to
simulate the start process of a server in three phases of a Phaser. The server is
considered started and running after its five internal services have started. In the first
phase, we need to concurrently start three services. In the second phase, we need to
concurrently start two more services (these can be started only if the first three are
already running). In phase three, the server performs a final check-in and is
considered started and running.

So, the thread (party) that manages the server-starting process can be considered the
thread that controls the rest of the threads (parties). This means that we can create the
Phaser and register this control thread (or, controller) via the Phaser constructor:

public class ServerInstance implements Runnable {

 private static final Logger logger =
 Logger.getLogger(ServerInstance.class.getName());

 private final Phaser phaser = new Phaser(1) {

 @Override
 protected boolean onAdvance(int phase, int registeredParties) {
 logger.warning(() -> "Phase:" + phase
 + " Registered parties: " + registeredParties);

 return registeredParties == 0;
 }
 };
 ...
}

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[631]

Using an anonymous class, we create this Phaser object and override its
onAdvance() method to define an action that has two main purposes:

Print a quick status of the current phase and number of registered parties
If there are no more registered parties, trigger the Phaser termination

This method will be called for every phase when all the currently-registered parties
arrive at the current barrier (current phase).

The threads that manage the server's services need to start these services and to
deregister themselves from the Phaser. So, each service is started in a separate thread
that will deregister at the end of its job via arriveAndDeregister(). For this, we
can use the following Runnable:

public class ServerService implements Runnable {

 private static final Logger logger =
 Logger.getLogger(ServerService.class.getName());

 private final String serviceName;
 private final Phaser phaser;
 private final Random rnd = new Random();

 public ServerService(Phaser phaser, String serviceName) {
 this.phaser = phaser;
 this.serviceName = serviceName;
 this.phaser.register();
 }

 @Override
 public void run() {

 int startingIn = rnd.nextInt(10) * 1000;

 try {
 logger.info(() -> "Starting service '" + serviceName + "' ...");
 Thread.sleep(startingIn);
 logger.info(() -> "Service '" + serviceName
 + "' was started in " + startingIn / 1000
 + " seconds (waiting for remaining services)");
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 } finally {
 phaser.arriveAndDeregister();
 }

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[632]

 }
}

Now, the control thread can trigger the start process for service1, service2, and
service3. This process is shaped in the following method:

private void startFirstThreeServices() {

 Thread service1 = new Thread(
 new ServerService(phaser, "HTTP Listeners"));
 Thread service2 = new Thread(
 new ServerService(phaser, "JMX"));
 Thread service3 = new Thread(
 new ServerService(phaser, "Connectors"));

 service1.start();
 service2.start();
 service3.start();

 phaser.arriveAndAwaitAdvance(); // phase 0
}

Notice that, at the end of this method, we call phaser.arriveAndAwaitAdvance().
This is the control-party that waits for the rest of the registered parties to arrive. The
rest of the registered parties (service1, service2, and service3) are deregistered
one by one until the control-party is the only one left in Phaser. At this point, it's
time to advance to the next phase. So, the control-party is the only one that advances
to the next phase.

Similar to this implementation, the control thread can trigger the start process for
service4 and service5. This process is shaped in the following method:

private void startNextTwoServices() {

 Thread service4 = new Thread(
 new ServerService(phaser, "Virtual Hosts"));
 Thread service5 = new Thread(
 new ServerService(phaser, "Ports"));

 service4.start();
 service5.start();

 phaser.arriveAndAwaitAdvance(); // phase 1
}

Concurrency - Thread Pools, Callables, and Synchronizers Chapter 10

[633]

Finally, after these five services are started, the control thread performs one last check
that was implemented in the following method as a dummy Thread.sleep().
Notice that, at the end of this action, the control thread that has started the server
deregistered itself from the Phaser. When this happens, it means there are no more
registered parties and the Phaser is terminated as a result of returning true from the
onAdvance() method:

private void finalCheckIn() {

 try {
 logger.info("Finalizing process (should take 2 seconds) ...");
 Thread.sleep(2000);
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 } finally {
 phaser.arriveAndDeregister(); // phase 2
 }
}

The job of the control thread is to call the preceding three methods in the proper
order. The rest of the code consists of some logs; therefore it was skipped for brevity.
The complete source code of this problem is bundled with this book.

At any time, we can find out the number of registered parties via
getRegisteredParties(), the number of arrived parties via
getArrivedParties(), and the number of unarrived parties via
getUnarrivedParties(). You might also want to check the
arrive(), awaitAdvance​(int phase), and
awaitAdvanceInterruptibly​(int phase) methods.

Summary
This chapter outlined the main coordinates of Java concurrency and should prepare
you for the next chapter. We covered several fundamental problems about thread life
cycles, object- and class-level locking, thread pools, and Callable and Future.

Download the applications from this chapter to see the results and to check out some
additional details.

11
Concurrency - Deep Dive

This chapter includes 13 problems that involve Java concurrency, covering areas such
as the fork/join framework, CompletableFuture, ReentrantLock,
ReentrantReadWriteLock, StampedLock, atomic variables, tasks cancellation,
interruptible methods, thread-local, and deadlocks. Concurrency is one of the
required topics for any developer and can't be ignored at a job interview. That's why
this chapter and the last one are so important. On finishing this chapter, you'll have a
considerable understanding of concurrency, which every Java developer needs.

Problems
Use the following problems to test your concurrency programming prowess. I
strongly encourage you to give each problem a try before you turn to the solutions
and download the example programs:

Interruptible methods: Write a program that exemplifies the best approach213.
for dealing with an interruptible method.
Fork/join framework: Write a program that relies on the fork/join214.
framework to sum the elements of a list. Write a program that relies on the
fork/join framework to compute the Fibonacci number at a given position
(for example, F12 = 144). In addition, write a program that exemplifies the
usage of CountedCompleter.
Fork/join framework and compareAndSetForkJoinTaskTag(): Write a215.
program that applies the fork/join framework to a suite of interdependent
tasks that should be executed only once (for example, task D depends on
task C and task B, but task C depends on task B as well; therefore, task B must
be executed only once, not twice).

Concurrency - Deep Dive Chapter 11

[635]

CompletableFuture: Write several snippets of code to exemplify216.
asynchronous code via CompletableFuture.
Combining multiple CompletableFuture objects: Write several snippets217.
of code to exemplify different solutions for combining multiple
CompletableFuture objects together.
Optimizing busy waiting: Write a proof of concept to exemplify the218.
optimization of a busy waiting technique via onSpinWait().
Task cancellation: Write a proof of concept that exemplifies the usage of a219.
volatile variable for holding the cancellation state of a process.
ThreadLocal: Write a proof of concept that exemplifies the usage of220.
ThreadLocal.
Atomic variables: Write a program that counts the integers from 1 to221.
1,000,000 using a multithreaded application (Runnable).
ReentrantLock: Write a program that increments the integers from 1 to222.
1,000,000 using ReentrantLock.
ReentrantReadWriteLock: Write a program that simulates the223.
orchestration of a read-write process via ReentrantReadWriteLock.
StampedLock: Write a program that simulates the orchestration of a read-224.
write process via StampedLock.
Deadlock (dining philosophers): Write a program that reveals and solves225.
the deadlock (circular wait or deadly embrace) that may occur in the famous
dining philosophers problem.

Solutions
The following sections describe solutions to the preceding problems. Remember that
there usually isn't a single correct way to solve a particular problem. Also, remember
that the explanations shown here include only the most interesting and important
details needed to solve the problems. Download the example solutions to see
additional details and to experiment with the programs at https:/ ​/​github. ​com/
PacktPublishing/ ​Java- ​Coding- ​Problems.

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Concurrency - Deep Dive Chapter 11

[636]

213. Interruptible methods
By an interruptible method, we mean a blocking method that may throw
InterruptedException, for example, Thread.sleep(), BlockingQueue.take(),
BlockingQueue.poll(long timeout, TimeUnit unit), and so on. A blocking
thread is usually in a BLOCKED, WAITING, or TIMED_WAITING state, and, if it is
interrupted, then the method tries to throw InterruptedException as soon as
possible.

Since InterruptedException is a checked exception, we must catch it and/or throw
it. In other words, if our method calls a method that throws
InterruptedException, then we must be prepared to deal with this exception. If
we can throw it (propagate the exception to the caller), then it is not our job anymore.
The caller has to deal with it further. So, let's focus on the case when we must catch it.
Such a case can occur when our code is run inside Runnable, which cannot throw an
exception.

Let's start with a simple example. Trying to get an element from BlockingQueue via
poll(long timeout, TimeUnit unit) can be written as follows:

try {
 queue.poll(3000, TimeUnit.MILLISECONDS);
} catch (InterruptedException ex) {
 ...
 logger.info(() -> "Thread is interrupted? "
 + Thread.currentThread().isInterrupted());
}

Attempting to poll an element from the queue can result in InterruptedException.
There is a window of 3,000 milliseconds in which the thread can be interrupted. In
case of an interruption (for example, Thread.interrupt()), we may be tempted to
think that calling Thread.currentThread().isInterrupted() in the catch block
will return true. After all, we are in an InterruptedException catch block, so it
makes sense to believe this. Actually, it will return false, and the answer is in the
source code of the poll(long timeout, TimeUnit unit) method listed as
follows:

1: public E poll(long timeout, TimeUnit unit)
 throws InterruptedException {
2: E e = xfer(null, false, TIMED, unit.toNanos(timeout));
3: if (e != null || !Thread.interrupted())
4: return e;
5: throw new InterruptedException();
6: }

Concurrency - Deep Dive Chapter 11

[637]

More precisely, the answer is in line 3. If the thread was interrupted then
Thread.interrupted() will return true and will lead to line 5 (throw new
InterruptedException()). But beside testing, if the current thread was
interrupted, Thread.interrupted() clears the interrupted status of the thread.
Check out the following succession of calls for an interrupted thread:

Thread.currentThread().isInterrupted(); // true
Thread.interrupted() // true
Thread.currentThread().isInterrupted(); // false
Thread.interrupted() // false

Notice that Thread.currentThread().isInterrupted() tests whether this thread
has been interrupted without affecting the interrupted status.

Now, let's get back to our case. So, we know that the thread was interrupted since we
caught InterruptedException, but the interrupted status was cleared by
Thread.interrupted(). This means also that the caller of our code will not be
aware of the interruption.

It is our responsibility to be good citizens and restore the interrupt by calling the
interrupt() method. This way, the caller of our code can see that an interrupt was
issued and act accordingly. The correct code could be as follows:

try {
 queue.poll(3000, TimeUnit.MILLISECONDS);
} catch (InterruptedException ex) {
 ...
 Thread.currentThread().interrupt(); // restore interrupt
}

As a rule of thumb, after catching InterruptedException, do not
forget to restore the interrupt by calling
Thread.currentThread().interrupt().

Let's tackle a problem that highlights the case of forgetting to restore the interrupt.
Let's assume a Runnable that runs as long as the current thread is not interrupted
(for example, while (!Thread.currentThread().isInterrupted()) { ...
}).

At each iteration, if the current thread interrupted status is false, then we try to get
an element from BlockingQueue.

Concurrency - Deep Dive Chapter 11

[638]

The following code is the implementation:

Thread thread = new Thread(() -> {

 // some dummy queue
 TransferQueue<String> queue = new LinkedTransferQueue<>();

 while (!Thread.currentThread().isInterrupted()) {
 try {
 logger.info(() -> "For 3 seconds the thread "
 + Thread.currentThread().getName()
 + " will try to poll an element from queue ...");

 queue.poll(3000, TimeUnit.MILLISECONDS);
 } catch (InterruptedException ex) {
 logger.severe(() -> "InterruptedException! The thread "
 + Thread.currentThread().getName() + " was interrupted!");
 Thread.currentThread().interrupt();
 }
 }

 logger.info(() -> "The execution was stopped!");
});

As a caller (another thread), we start the above thread, sleep for 1.5 seconds, just to
give time to this thread to enter in the poll() method, and we interrupt it. This is
shown in the following code:

thread.start();
Thread.sleep(1500);
thread.interrupt();

This will lead to InterruptedException.

The exception is logged and the interrupt is restored.

At the next step, while evaluates Thread.currentThread().isInterrupted() to
false and exits.

As a result, the output will be as follows:

[18:02:43] [INFO] For 3 seconds the thread Thread-0
 will try to poll an element from queue ...

[18:02:44] [SEVERE] InterruptedException!
 The thread Thread-0 was interrupted!

[18:02:45] [INFO] The execution was stopped!

Concurrency - Deep Dive Chapter 11

[639]

Now, let's comment on the line that restores the interrupt:

...
} catch (InterruptedException ex) {
 logger.severe(() -> "InterruptedException! The thread "
 + Thread.currentThread().getName() + " was interrupted!");

 // notice that the below line is commented
 // Thread.currentThread().interrupt();
}
...

This time, the while block will run forever since its guarding condition is always
evaluated to true.

The code cannot act on the interruption, so the output will be as follows:

[18:05:47] [INFO] For 3 seconds the thread Thread-0
 will try to poll an element from queue ...

[18:05:48] [SEVERE] InterruptedException!
 The thread Thread-0 was interrupted!

[18:05:48] [INFO] For 3 seconds the thread Thread-0
 will try to poll an element from queue ...
...

As a rule of thumb, the only acceptable case when we can swallow
an interrupt (not restore the interrupt) is when we can control the
entire call stack (for example, extend Thread).

Otherwise, catching InterruptedException should contain
Thread.currentThread().interrupt() as well.

214. Fork/join framework
We've already had an introduction to the fork/join framework in the Work-stealing
thread pool section.

Mainly, the fork/join framework is meant to take a big task (typically, by big we
understand a large volume of data) and recursively split (fork) it into smaller tasks
(subtasks) that can be performed in parallel. In the end, after all the subtasks have
been completed, their results are combined (joined) in a single result.

Concurrency - Deep Dive Chapter 11

[640]

The following diagram is a visual representation of a fork-join flow:

In API terms, a fork/join can be created via
java.util.concurrent.ForkJoinPool.

Before JDK 8, the recommended approach relied on a public static variable as
follows:

public static ForkJoinPool forkJoinPool = new ForkJoinPool();

Starting with JDK 8, we can do it as follows:

ForkJoinPool forkJoinPool = ForkJoinPool.commonPool();

Both approaches avoid the unpleasant situation of having too many pool threads on a
single JVM, caused by the parallel operations that created their own pools.

Concurrency - Deep Dive Chapter 11

[641]

For a custom ForkJoinPool, rely on the constructors of this class.
JDK 9 has added the most comprehensive one so far (details are
available in the documentation).

A ForkJoinPool object manipulates tasks. The base type of task executed
in ForkJoinPool is ForkJoinTask<V>. More precisely, the following tasks are
executed:

RecursiveAction for the void tasks
RecursiveTask<V> for tasks that return a value
CountedCompleter<T> for tasks that need to remember the pending task
count

All three types of tasks have an abstract method named compute() in which the
task's logic is shaped.

Submitting tasks to ForkJoinPool can be accomplished via the following:

execute() and submit()
invoke() for forking the task and waiting for the result
invokeAll() for forking a bunch of tasks (for example, a collection)
fork() for arranging to asynchronously execute this task in the pool, and
join() for returning the result of the computation when it is done

Let's start with a problem solved via RecursiveTask.

Computing the sum via RecursiveTask
To demonstrate the forking behavior of the framework, let's assume that we have a
list of numbers and we want to compute the sum of these numbers. For this, we
recursively split (fork) this list as long as it is larger than the specified THRESHOLD
using the createSubtasks() method. Each task is added
into List<SumRecursiveTask>. In the end, this list is submitted to ForkJoinPool
via the invokeAll​(Collection<T> tasks) method. This is done using the
following code:

public class SumRecursiveTask extends RecursiveTask<Integer> {

 private static final Logger logger
 = Logger.getLogger(SumRecursiveTask.class.getName());

Concurrency - Deep Dive Chapter 11

[642]

 private static final int THRESHOLD = 10;

 private final List<Integer> worklist;

 public SumRecursiveTask(List<Integer> worklist) {
 this.worklist = worklist;
 }

 @Override
 protected Integer compute() {
 if (worklist.size() <= THRESHOLD) {
 return partialSum(worklist);
 }

 return ForkJoinTask.invokeAll(createSubtasks())
 .stream()
 .mapToInt(ForkJoinTask::join)
 .sum();
 }

 private List<SumRecursiveTask> createSubtasks() {

 List<SumRecursiveTask> subtasks = new ArrayList<>();
 int size = worklist.size();

 List<Integer> worklistLeft
 = worklist.subList(0, (size + 1) / 2);
 List<Integer> worklistRight
 = worklist.subList((size + 1) / 2, size);

 subtasks.add(new SumRecursiveTask(worklistLeft));
 subtasks.add(new SumRecursiveTask(worklistRight));

 return subtasks;
 }

 private Integer partialSum(List<Integer> worklist) {

 int sum = worklist.stream()
 .mapToInt(e -> e)
 .sum();

 logger.info(() -> "Partial sum: " + worklist + " = "
 + sum + "\tThread: " + Thread.currentThread().getName());

 return sum;
 }
}

Concurrency - Deep Dive Chapter 11

[643]

In order to test it, we need a list and ForkJoinPool as follows:

ForkJoinPool forkJoinPool = ForkJoinPool.commonPool();

Random rnd = new Random();
List<Integer> list = new ArrayList<>();

for (int i = 0; i < 200; i++) {
 list.add(1 + rnd.nextInt(10));
}

SumRecursiveTask sumRecursiveTask = new SumRecursiveTask(list);
Integer sumAll = forkJoinPool.invoke(sumRecursiveTask);

logger.info(() -> "Final sum: " + sumAll);

A possible output will be the following:

...
[15:17:06] Partial sum: [1, 3, 6, 6, 2, 5, 9] = 32
ForkJoinPool.commonPool-worker-9
...
[15:17:06] Partial sum: [1, 9, 9, 8, 9, 5] = 41
ForkJoinPool.commonPool-worker-7
[15:17:06] Final sum: 1084

Computing Fibonacci via RecursiveAction
Commonly denoted as Fn, the Fibonacci numbers are a sequence that respects the
following formula:

F0=0, F1 = 1, ... Fn = Fn-1 + Fn-2 (n > 1)

A snapshot of Fibonacci numbers is:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

The implementation of Fibonacci numbers via RecursiveAction can be
accomplished as follows:

public class FibonacciRecursiveAction extends RecursiveAction {

 private static final Logger logger =
 Logger.getLogger(FibonacciRecursiveAction.class.getName());
 private static final long THRESHOLD = 5;

Concurrency - Deep Dive Chapter 11

[644]

 private long nr;

 public FibonacciRecursiveAction(long nr) {
 this.nr = nr;
 }

 @Override
 protected void compute() {

 final long n = nr;

 if (n <= THRESHOLD) {
 nr = fibonacci(n);
 } else {
 nr = ForkJoinTask.invokeAll(createSubtasks(n))
 .stream()
 .mapToLong(x -> x.fibonacciNumber())
 .sum();
 }
 }

 private List<FibonacciRecursiveAction> createSubtasks(long n) {

 List<FibonacciRecursiveAction> subtasks = new ArrayList<>();

 FibonacciRecursiveAction fibonacciMinusOne
 = new FibonacciRecursiveAction(n - 1);
 FibonacciRecursiveAction fibonacciMinusTwo
 = new FibonacciRecursiveAction(n - 2);

 subtasks.add(fibonacciMinusOne);
 subtasks.add(fibonacciMinusTwo);

 return subtasks;
 }

 private long fibonacci(long n) {
 logger.info(() -> "Number: " + n
 + " Thread: " + Thread.currentThread().getName());

 if (n <= 1) {
 return n;
 }

 return fibonacci(n - 1) + fibonacci(n - 2);
 }

 public long fibonacciNumber() {

Concurrency - Deep Dive Chapter 11

[645]

 return nr;
 }
}

In order to test it, we need the following ForkJoinPool object:

ForkJoinPool forkJoinPool = ForkJoinPool.commonPool();

FibonacciRecursiveAction fibonacciRecursiveAction
 = new FibonacciRecursiveAction(12);
forkJoinPool.invoke(fibonacciRecursiveAction);

logger.info(() -> "Fibonacci: "
 + fibonacciRecursiveAction.fibonacciNumber());

The output for F12 is as follows:

[15:40:46] Number: 5 Thread: ForkJoinPool.commonPool-worker-3
[15:40:46] Number: 5 Thread: ForkJoinPool.commonPool-worker-13
[15:40:46] Number: 4 Thread: ForkJoinPool.commonPool-worker-3
[15:40:46] Number: 4 Thread: ForkJoinPool.commonPool-worker-9
...
[15:40:49] Number: 0 Thread: ForkJoinPool.commonPool-worker-7
[15:40:49] Fibonacci: 144

Using CountedCompleter
CountedCompleter is a type of ForkJoinTask added in JDK 8.

The job of CountedCompleter is to remember the pending task count (nothing less,
nothing more). We can set the pending count via setPendingCount() or increment
it with an explicit delta via addToPendingCount​(int delta). Commonly, we call
these methods right before forking (for example, if we fork twice, then we call
addToPendingCount(2) or setPendingCount(2), depending on the case).

In the compute() method, we decrease the pending count via tryComplete() or
propagateCompletion(). When the tryComplete() method is called, with a
pending count of zero, or the unconditional complete() method is called, the
onCompletion() method is called. The propagateCompletion() method is similar
with tryComplete(), but it doesn't call onCompletion().

Concurrency - Deep Dive Chapter 11

[646]

CountedCompleter can optionally return a computed value. For this, we have to
override the getRawResult() method to return a value.

The following code sums up all the values of a list via CountedCompleter:

public class SumCountedCompleter extends CountedCompleter<Long> {

 private static final Logger logger
 = Logger.getLogger(SumCountedCompleter.class.getName());
 private static final int THRESHOLD = 10;
 private static final LongAdder sumAll = new LongAdder();

 private final List<Integer> worklist;

 public SumCountedCompleter(
 CountedCompleter<Long> c, List<Integer> worklist) {
 super(c);
 this.worklist = worklist;
 }

 @Override
 public void compute() {
 if (worklist.size() <= THRESHOLD) {
 partialSum(worklist);
 } else {
 int size = worklist.size();

 List<Integer> worklistLeft
 = worklist.subList(0, (size + 1) / 2);
 List<Integer> worklistRight
 = worklist.subList((size + 1) / 2, size);

 addToPendingCount(2);
 SumCountedCompleter leftTask
 = new SumCountedCompleter(this, worklistLeft);
 SumCountedCompleter rightTask
 = new SumCountedCompleter(this, worklistRight);

 leftTask.fork();
 rightTask.fork();
 }

 tryComplete();
 }

 @Override
 public void onCompletion(CountedCompleter<?> caller) {
 logger.info(() -> "Thread complete: "

Concurrency - Deep Dive Chapter 11

[647]

 + Thread.currentThread().getName());
 }

 @Override
 public Long getRawResult() {
 return sumAll.sum();
 }

 private Integer partialSum(List<Integer> worklist) {
 int sum = worklist.stream()
 .mapToInt(e -> e)
 .sum();

 sumAll.add(sum);

 logger.info(() -> "Partial sum: " + worklist + " = "
 + sum + "\tThread: " + Thread.currentThread().getName());

 return sum;
 }
}

Now, let's see a potential call and output:

ForkJoinPool forkJoinPool = ForkJoinPool.commonPool();
Random rnd = new Random();
List<Integer> list = new ArrayList<>();

for (int i = 0; i < 200; i++) {
 list.add(1 + rnd.nextInt(10));
}

SumCountedCompleter sumCountedCompleter
 = new SumCountedCompleter(null, list);
forkJoinPool.invoke(sumCountedCompleter);

logger.info(() -> "Done! Result: "
 + sumCountedCompleter.getRawResult());

The output will be as follows:

[11:11:07] Partial sum: [7, 7, 8, 5, 6, 10] = 43
 ForkJoinPool.commonPool-worker-7
[11:11:07] Partial sum: [9, 1, 1, 6, 1, 2] = 20
 ForkJoinPool.commonPool-worker-3
...
[11:11:07] Thread complete: ForkJoinPool.commonPool-worker-15
[11:11:07] Done! Result: 1159

Concurrency - Deep Dive Chapter 11

[648]

215. Fork/join framework and
compareAndSetForkJoinTaskTag()
Now, that we are familiar with the fork/join framework, let's see another problem.
This time let's assume that we have a suite of ForkJoinTask objects that are
interdependent. The following diagram can be considered a use case:

Here is the description of the preceding diagram:

TaskD has three dependencies: TaskA, TaskB, and TaskC.
TaskC has two dependencies: TaskA and TaskB.
TaskB has one dependency: TaskA.
TaskA has no dependencies.

In code lines, we will shape it as follows:

ForkJoinPool forkJoinPool = ForkJoinPool.commonPool();

Task taskA = new Task("Task-A", new Adder(1));

Task taskB = new Task("Task-B", new Adder(2), taskA);

Task taskC = new Task("Task-C", new Adder(3), taskA, taskB);

Task taskD = new Task("Task-D", new Adder(4), taskA, taskB, taskC);

forkJoinPool.invoke(taskD);

Concurrency - Deep Dive Chapter 11

[649]

An Adder is a simple Callable that should be executed only once for each task (so,
once for TaskD, TaskC, TaskB, and TaskA). The Adder is initiated in the following
code:

private static class Adder implements Callable {

 private static final AtomicInteger result = new AtomicInteger();

 private Integer nr;

 public Adder(Integer nr) {
 this.nr = nr;
 }

 @Override
 public Integer call() {
 logger.info(() -> "Adding number: " + nr
 + " by thread:" + Thread.currentThread().getName());

 return result.addAndGet(nr);
 }
}

We already know how to use the fork/join framework for tasks with acyclic and/or
non-repeatable (or we don't care that they repeat) completion dependencies. But if we
implement it this way then Callable will be called more than once per task. For
example, TaskA appears as a dependency for three other tasks, so Callable will be
invoked three times. We want it only once.

A very handy feature of ForkJoinPool added in JDK 8 consists of atomically tagging
with a short value:

short getForkJoinTaskTag(): Returns the tag for this task.
short setForkJoinTaskTag​(short newValue): Atomically sets the tag
value for this task and returns the old value.
boolean compareAndSetForkJoinTaskTag​(short expect, short
update): Returns true if the current value was equal to expect and was
changed to update.

Concurrency - Deep Dive Chapter 11

[650]

In other words, compareAndSetForkJoinTaskTag() allows us to tag a task as
VISITED. Once it is tagged as VISITED, it will not be executed. Let's see it in the
following code lines:

public class Task<Integer> extends RecursiveTask<Integer> {

 private static final Logger logger
 = Logger.getLogger(Task.class.getName());
 private static final short UNVISITED = 0;
 private static final short VISITED = 1;

 private Set<Task<Integer>> dependencies = new HashSet<>();

 private final String name;
 private final Callable<Integer> callable;

 public Task(String name, Callable<Integer> callable,
 Task<Integer> ...dependencies) {
 this.name = name;
 this.callable = callable;
 this.dependencies = Set.of(dependencies);
 }

 @Override
 protected Integer compute() {
 dependencies.stream()
 .filter((task) -> (task.updateTaskAsVisited()))
 .forEachOrdered((task) -> {
 logger.info(() -> "Tagged: " + task + "("
 + task.getForkJoinTaskTag() + ")");

 task.fork();
 });

 for (Task task: dependencies) {
 task.join();
 }

 try {
 return callable.call();
 } catch (Exception ex) {
 logger.severe(() -> "Exception: " + ex);
 }

 return null;
 }

 public boolean updateTaskAsVisited() {

Concurrency - Deep Dive Chapter 11

[651]

 return compareAndSetForkJoinTaskTag(UNVISITED, VISITED);
 }

 @Override
 public String toString() {
 return name + " | dependencies=" + dependencies + "}";
 }
}

And, a possible output could be the following:

[10:30:53] [INFO] Tagged: Task-B(1)
[10:30:53] [INFO] Tagged: Task-C(1)
[10:30:53] [INFO] Tagged: Task-A(1)
[10:30:53] [INFO] Adding number: 1
 by thread:ForkJoinPool.commonPool-worker-3
[10:30:53] [INFO] Adding number: 2
 by thread:ForkJoinPool.commonPool-worker-3
[10:30:53] [INFO] Adding number: 3
 by thread:ForkJoinPool.commonPool-worker-5
[10:30:53] [INFO] Adding number: 4
 by thread:main
[10:30:53] [INFO] Result: 10

216. CompletableFuture
JDK 8 has made a significant step forward in the world of asynchronous
programming by enhancing Future with CompletableFuture. The main limitations
of Future are:

It cannot be explicitly complete.
It doesn't support callbacks for performing actions on the result.
They cannot be chained or combined for obtaining complex asynchronous
pipelines.
It doesn't provide exception handling.

A CompletableFuture doesn't have these limitations. A simple, but useless
CompletableFuture can be written as follows:

CompletableFuture<Integer> completableFuture
 = new CompletableFuture<>();

Concurrency - Deep Dive Chapter 11

[652]

The result can be obtained via the blocking get() method:

completableFuture.get();

In addition to this, let's see several examples of running asynchronous tasks in the
context of an e-commerce platform. We add these examples in a helper class
named CustomerAsyncs.

Running asynchronous task and return void
User problem: Print a certain customer order.

Since printing is a process that doesn't need to return a result, this is a job for
runAsync(). This method can run a task asynchronously and doesn't return a result.
In other words, it takes a Runnable object and returns CompletableFuture<Void>;
this is shown in the following code:

public static void printOrder() {

 CompletableFuture<Void> cfPrintOrder
 = CompletableFuture.runAsync(new Runnable() {

 @Override
 public void run() {
 logger.info(() -> "Order is printed by: "
 + Thread.currentThread().getName());
 Thread.sleep(500);
 }
 });

 cfPrintOrder.get(); // block until the order is printed
 logger.info("Customer order was printed ...\n");
}

Or, we can write it using a lambda:

public static void printOrder() {

 CompletableFuture<Void> cfPrintOrder
 = CompletableFuture.runAsync(() -> {

 logger.info(() -> "Order is printed by: "
 + Thread.currentThread().getName());
 Thread.sleep(500);
 });

Concurrency - Deep Dive Chapter 11

[653]

 cfPrintOrder.get(); // block until the order is printed
 logger.info("Customer order was printed ...\n");
}

Running an asynchronous task and returning a
result
User problem: Fetch the order summary of a certain customer.

This time, the asynchronous task must return a result, and so runAsync() is not
useful. This is a job for supplyAsync(). It takes Supplier<T> and returns
CompletableFuture<T>. T is the type of the result obtained from this supplier via
the get() method. In code lines, we can solve this problem as follows:

public static void fetchOrderSummary() {

 CompletableFuture<String> cfOrderSummary
 = CompletableFuture.supplyAsync(() -> {

 logger.info(() -> "Fetch order summary by: "
 + Thread.currentThread().getName());
 Thread.sleep(500);

 return "Order Summary #93443";
 });

 // wait for summary to be available, this is blocking
 String summary = cfOrderSummary.get();
 logger.info(() -> "Order summary: " + summary + "\n");
}

Running an asynchronous task and returning a
result via an explicit thread pool
User problem: Fetch the order summary of a certain customer.

By default, as in the preceding examples, the asynchronous tasks are executed in
threads obtained from the global ForkJoinPool.commonPool(). By simply
logging Thread.currentThread().getName(), we see something as
ForkJoinPool.commonPool-worker-3.

Concurrency - Deep Dive Chapter 11

[654]

But we can also use an explicit Executor custom thread pool. All
the CompletableFuture methods that are capable of running asynchronous tasks
provide a flavor that takes Executor.

Here is an example of using a single thread pool:

public static void fetchOrderSummaryExecutor() {

 ExecutorService executor = Executors.newSingleThreadExecutor();

 CompletableFuture<String> cfOrderSummary
 = CompletableFuture.supplyAsync(() -> {

 logger.info(() -> "Fetch order summary by: "
 + Thread.currentThread().getName());
 Thread.sleep(500);

 return "Order Summary #91022";
 }, executor);

 // wait for summary to be available, this is blocking
 String summary = cfOrderSummary.get();
 logger.info(() -> "Order summary: " + summary + "\n");
 executor.shutdownNow();
}

Attaching a callback that processes the result of an
asynchronous task and returns a result
User problem: Fetch the order invoice of a certain customer and, afterward, compute the total
and sign it.

Relying on blocking get() is not very useful for such problems. What we need is a
callback method that will be automatically called when the result of
CompletableFuture is available.

So, we don't want to wait for the result. When the invoice is ready (this is the result
of CompletableFuture), a callback method should compute the total value, and,
afterward, another callback should sign it. This can be achieved via the thenApply()
method.

Concurrency - Deep Dive Chapter 11

[655]

The thenApply() method is useful for processing and transforming the result
of CompletableFuture when it arrives. It takes Function<T, R> as an argument.
Let's see it at work:

public static void fetchInvoiceTotalSign() {

 CompletableFuture<String> cfFetchInvoice
 = CompletableFuture.supplyAsync(() -> {

 logger.info(() -> "Fetch invoice by: "
 + Thread.currentThread().getName());
 Thread.sleep(500);

 return "Invoice #3344";
 });

 CompletableFuture<String> cfTotalSign = cfFetchInvoice
 .thenApply(o -> o + " Total: $145")
 .thenApply(o -> o + " Signed");

 String result = cfTotalSign.get();
 logger.info(() -> "Invoice: " + result + "\n");
}

Or, we can chain it as follows:

public static void fetchInvoiceTotalSign() {

 CompletableFuture<String> cfTotalSign
 = CompletableFuture.supplyAsync(() -> {

 logger.info(() -> "Fetch invoice by: "
 + Thread.currentThread().getName());
 Thread.sleep(500);

 return "Invoice #3344";
 }).thenApply(o -> o + " Total: $145")
 .thenApply(o -> o + " Signed");

 String result = cfTotalSign.get();
 logger.info(() -> "Invoice: " + result + "\n");
}

Check also applyToEither() and applyToEitherAsync(). When
either this or the other given stage completes in a normal way, these
two methods return a new completion stage that is executed with
the result as an argument to the supplied function.

Concurrency - Deep Dive Chapter 11

[656]

Attaching a callback that processes the result of an
asynchronous task and returns void
User problem: Fetch the order of a certain customer and print it.

Typically, a callback that doesn't return a result acts as a terminal action of an
asynchronous pipeline.

This behavior can be obtained via the thenAccept() method. It takes Consumer<T>
and returns CompletableFuture<Void>. This method can process and transform
the result of CompletableFuture, but doesn't return a result. So, it can take an order,
which is the result of CompletableFuture, and print it as shown in the following
snippet of code:

public static void fetchAndPrintOrder() {

 CompletableFuture<String> cfFetchOrder
 = CompletableFuture.supplyAsync(() -> {

 logger.info(() -> "Fetch order by: "
 + Thread.currentThread().getName());
 Thread.sleep(500);

 return "Order #1024";
 });

 CompletableFuture<Void> cfPrintOrder = cfFetchOrder.thenAccept(
 o -> logger.info(() -> "Printing order " + o +
 " by: " + Thread.currentThread().getName()));

 cfPrintOrder.get();
 logger.info("Order was fetched and printed \n");
}

Or, it can be more compact as follows:

public static void fetchAndPrintOrder() {

 CompletableFuture<Void> cfFetchAndPrintOrder
 = CompletableFuture.supplyAsync(() -> {

 logger.info(() -> "Fetch order by: "
 + Thread.currentThread().getName());
 Thread.sleep(500);

 return "Order #1024";

Concurrency - Deep Dive Chapter 11

[657]

 }).thenAccept(
 o -> logger.info(() -> "Printing order " + o + " by: "
 + Thread.currentThread().getName()));

 cfFetchAndPrintOrder.get();
 logger.info("Order was fetched and printed \n");
}

Check also acceptEither() and acceptEitherAsync().

Attaching a callback that runs after an
asynchronous task and returns void
User problem: Deliver an order and notify the customer.

Notifying the customer should be accomplished after delivering the order. This is just
an SMS of the Dear customer, your order has been delivered today type, so the notification
task doesn't need to know anything about the order. These kinds of tasks can be
accomplished by thenRun(). This method takes Runnable and returns
CompletableFuture<Void>. Let's see it at work:

public static void deliverOrderNotifyCustomer() {

 CompletableFuture<Void> cfDeliverOrder
 = CompletableFuture.runAsync(() -> {

 logger.info(() -> "Order was delivered by: "
 + Thread.currentThread().getName());
 Thread.sleep(500);
 });

 CompletableFuture<Void> cfNotifyCustomer
 = cfDeliverOrder.thenRun(() -> logger.info(
 () -> "Dear customer, your order has been delivered today by:"
 + Thread.currentThread().getName()));

 cfNotifyCustomer.get();
 logger.info(() -> "Order was delivered
 and customer was notified \n");
}

Concurrency - Deep Dive Chapter 11

[658]

For further parallelization, thenApply(), thenAccept(), and
thenRun() are accompanied by thenApplyAsync(),
thenAcceptAsync(), and thenRunAsync(). Each of these can rely
on the global ForkJoinPool.commonPool() or a custom thread
pool (Executor). While thenApply/Accept/Run() are executed in
the same thread as the CompletableFuture task was executed
before (or in the main thread),
thenApplyAsync/AcceptAsync/RunAsync() may be executed in a
different thread (from ForkJoinPool.commonPool() or a custom
thread pool (Executor)).

Handling exceptions of an asynchronous task via
exceptionally()
User problem: Compute the total of an order. If something goes wrong, then throw an
IllegalStateException.

The following screenshots exemplify how exceptions are propagated in an
asynchronous pipeline; the code in rectangles is not executed when an exception
occurs at the point:

Concurrency - Deep Dive Chapter 11

[659]

The following screenshot shows the exceptions in thenApply() and thenAccept():

So, in supplyAsync(), if an exception occurs, then none of the following callbacks
will be called. Moreover, the future will be resolved with this exception. The same
rule applies for each callback. If the exception occurs in the first thenApply(), then
the following thenApply() and thenAccept() will not be called.

If our attempt to computing the total of order ends up in an
IllegalStateException, then we can rely on the exceptionally() callback
which gives us a chance to recover. This method takes a Function<Throwable,​?
extends T> and returns a CompletionStage<T>, therefore, a
CompletableFuture. Let's see it at work:

public static void fetchOrderTotalException() {

 CompletableFuture<Integer> cfTotalOrder
 = CompletableFuture.supplyAsync(() -> {

 logger.info(() -> "Compute total: "
 + Thread.currentThread().getName());

 int surrogate = new Random().nextInt(1000);
 if (surrogate < 500) {
 throw new IllegalStateException(
 "Invoice service is not responding");
 }

 return 1000;
 }).exceptionally(ex -> {
 logger.severe(() -> "Exception: " + ex
 + " Thread: " + Thread.currentThread().getName());

Concurrency - Deep Dive Chapter 11

[660]

 return 0;
 });

 int result = cfTotalOrder.get();
 logger.info(() -> "Total: " + result + "\n");
}

In case of exception, the output will be as follows:

Compute total: ForkJoinPool.commonPool-worker-3
Exception: java.lang.IllegalStateException: Invoice service
 is not responding Thread: ForkJoinPool.commonPool-worker-3
Total: 0

Let's take a look at another problem.

User problem: Fetch an invoice, compute the total, and sign. If something goes wrong then
throw IllegalStateException and stop the process.

If we fetch the invoice using supplyAsync(), compute the total using thenApply()
and sign using another thenApply(), then we may think that the right
implementation is as follows:

public static void fetchInvoiceTotalSignChainOfException()
throws InterruptedException, ExecutionException {

 CompletableFuture<String> cfFetchInvoice
 = CompletableFuture.supplyAsync(() -> {

 logger.info(() -> "Fetch invoice by: "
 + Thread.currentThread().getName());

 int surrogate = new Random().nextInt(1000);
 if (surrogate < 500) {
 throw new IllegalStateException(
 "Invoice service is not responding");
 }

 return "Invoice #3344";
 }).exceptionally(ex -> {
 logger.severe(() -> "Exception: " + ex
 + " Thread: " + Thread.currentThread().getName());

 return "[Invoice-Exception]";
 }).thenApply(o -> {
 logger.info(() -> "Compute total by: "
 + Thread.currentThread().getName());

Concurrency - Deep Dive Chapter 11

[661]

 int surrogate = new Random().nextInt(1000);
 if (surrogate < 500) {
 throw new IllegalStateException(
 "Total service is not responding");
 }

 return o + " Total: $145";
 }).exceptionally(ex -> {
 logger.severe(() -> "Exception: " + ex
 + " Thread: " + Thread.currentThread().getName());

 return "[Total-Exception]";
 }).thenApply(o -> {
 logger.info(() -> "Sign invoice by: "
 + Thread.currentThread().getName());

 int surrogate = new Random().nextInt(1000);
 if (surrogate < 500) {
 throw new IllegalStateException(
 "Signing service is not responding");
 }

 return o + " Signed";
 }).exceptionally(ex -> {
 logger.severe(() -> "Exception: " + ex
 + " Thread: " + Thread.currentThread().getName());

 return "[Sign-Exception]";
 });

 String result = cfFetchInvoice.get();
 logger.info(() -> "Result: " + result + "\n");
}

Well, the issue here is that we may face an output as follows:

[INFO] Fetch invoice by: ForkJoinPool.commonPool-worker-3
[SEVERE] Exception: java.lang.IllegalStateException: Invoice service
 is not responding Thread: ForkJoinPool.commonPool-worker-3
[INFO] Compute total by: ForkJoinPool.commonPool-worker-3
[INFO] Sign invoice by: ForkJoinPool.commonPool-worker-3
[SEVERE] Exception: java.lang.IllegalStateException: Signing service
 is not responding Thread: ForkJoinPool.commonPool-worker-3
[INFO] Result: [Sign-Exception]

Concurrency - Deep Dive Chapter 11

[662]

Even if the invoice couldn't be fetched, we would continue to compute the total and
sign it. Obviously, this doesn't make sense. If the invoice cannot be fetched, or the
total cannot be computed, then we expect to abort the process. While this
implementation can be a good fit when we can recover and continue, it is definitely
no good for our scenario. For our scenario, the following implementation is needed:

public static void fetchInvoiceTotalSignException()
throws InterruptedException, ExecutionException {

 CompletableFuture<String> cfFetchInvoice
 = CompletableFuture.supplyAsync(() -> {

 logger.info(() -> "Fetch invoice by: "
 + Thread.currentThread().getName());

 int surrogate = new Random().nextInt(1000);
 if (surrogate < 500) {
 throw new IllegalStateException(
 "Invoice service is not responding");
 }

 return "Invoice #3344";
 }).thenApply(o -> {
 logger.info(() -> "Compute total by: "
 + Thread.currentThread().getName());

 int surrogate = new Random().nextInt(1000);
 if (surrogate < 500) {
 throw new IllegalStateException(
 "Total service is not responding");
 }

 return o + " Total: $145";
 }).thenApply(o -> {
 logger.info(() -> "Sign invoice by: "
 + Thread.currentThread().getName());

 int surrogate = new Random().nextInt(1000);
 if (surrogate < 500) {
 throw new IllegalStateException(
 "Signing service is not responding");
 }

 return o + " Signed";
 }).exceptionally(ex -> {
 logger.severe(() -> "Exception: " + ex
 + " Thread: " + Thread.currentThread().getName());

Concurrency - Deep Dive Chapter 11

[663]

 return "[No-Invoice-Exception]";
 });

 String result = cfFetchInvoice.get();
 logger.info(() -> "Result: " + result + "\n");
}

This time, an exception occurring in any of the implied CompletableFuture will
stop the process. Here is a possible output:

[INFO] Fetch invoice by: ForkJoinPool.commonPool-worker-3
[SEVERE] Exception: java.lang.IllegalStateException: Invoice service
 is not responding Thread: ForkJoinPool.commonPool-worker-3
[INFO] Result: [No-Invoice-Exception]

Starting with JDK 12, the exceptional cases can be further parallelized via
exceptionallyAsync() that can use the same thread as the code that caused the
exception or a thread from the given thread pool (Executor). Here is an example:

public static void fetchOrderTotalExceptionAsync() {

 ExecutorService executor = Executors.newSingleThreadExecutor();

 CompletableFuture<Integer> totalOrder
 = CompletableFuture.supplyAsync(() -> {

 logger.info(() -> "Compute total by: "
 + Thread.currentThread().getName());

 int surrogate = new Random().nextInt(1000);
 if (surrogate < 500) {
 throw new IllegalStateException(
 "Computing service is not responding");
 }

 return 1000;
 }).exceptionallyAsync(ex -> {
 logger.severe(() -> "Exception: " + ex
 + " Thread: " + Thread.currentThread().getName());

 return 0;
 }, executor);

 int result = totalOrder.get();
 logger.info(() -> "Total: " + result + "\n");
 executor.shutdownNow();
}

Concurrency - Deep Dive Chapter 11

[664]

The output reveals that the code that caused the exception was executed by a thread
named ForkJoinPool.commonPool-worker-3, while the exceptional code was
executed by a thread from the given thread pool named pool-1-thread-1:

Compute total by: ForkJoinPool.commonPool-worker-3
Exception: java.lang.IllegalStateException: Computing service is
 not responding Thread: pool-1-thread-1
Total: 0

JDK 12 exceptionallyCompose()
User problem: Fetch a printer IP via the printing service or fallback to the backup printer IP.
Or, generally speaking, when this stage completes exceptionally, it should be composed using
the results of the supplied function applied to this stage's exception.

We have CompletableFuture that fetches an IP of a printer managed by the
printing service. If the service is not responding then it throws an exception as
follows:

CompletableFuture<String> cfServicePrinterIp
 = CompletableFuture.supplyAsync(() -> {

 int surrogate = new Random().nextInt(1000);
 if (surrogate < 500) {
 throw new IllegalStateException(
 "Printing service is not responding");
 }

 return "192.168.1.0";
});

We also have CompletableFuture that fetches the IP of the backup printer:

CompletableFuture<String> cfBackupPrinterIp
 = CompletableFuture.supplyAsync(() -> {

 return "192.192.192.192";
});

Concurrency - Deep Dive Chapter 11

[665]

Now, if the printing service is not available, then we should rely on the backup
printer. This can be accomplished via the JDK 12 exceptionallyCompose() as
follows:

CompletableFuture<Void> printInvoice
 = cfServicePrinterIp.exceptionallyCompose(th -> {

 logger.severe(() -> "Exception: " + th
 + " Thread: " + Thread.currentThread().getName());

 return cfBackupPrinterIp;
}).thenAccept((ip) -> logger.info(() -> "Printing at: " + ip));

Calling printInvoice.get() may reveal one of the following results:

If the printing service is available:

[INFO] Printing at: 192.168.1.0

If the printing service is not available:

[SEVERE] Exception: java.util.concurrent.CompletionException ...
[INFO] Printing at: 192.192.192.192

For further parallelization, we can rely on exceptionallyComposeAsync().

Handling exceptions of an asynchronous task via
handle()
User problem: Compute the total of an order. If something goes wrong then throw
an IllegalStateException.

Sometimes we want to execute an exceptional block of code even if an exception did
not occur. Like the finally clause of a try-catch block. This is possible using the
handle() callback. This method is called whether or not an exception occurred, and
is somehow like a catch + finally. It takes a function used to compute the value of
the returned CompletionStage, BiFunction<? super T,​Throwable,​?
extends U> and returns CompletionStage<U> (U is the function's return type).

Let's see it at work:

public static void fetchOrderTotalHandle() {

 CompletableFuture<Integer> totalOrder

Concurrency - Deep Dive Chapter 11

[666]

 = CompletableFuture.supplyAsync(() -> {

 logger.info(() -> "Compute total by: "
 + Thread.currentThread().getName());

 int surrogate = new Random().nextInt(1000);
 if (surrogate < 500) {
 throw new IllegalStateException(
 "Computing service is not responding");
 }

 return 1000;
 }).handle((res, ex) -> {
 if (ex != null) {
 logger.severe(() -> "Exception: " + ex
 + " Thread: " + Thread.currentThread().getName());

 return 0;
 }

 if (res != null) {
 int vat = res * 24 / 100;
 res += vat;
 }

 return res;
 });

 int result = totalOrder.get();
 logger.info(() -> "Total: " + result + "\n");
}

Notice that res will be null; otherwise, the ex will be null if an exception occurs.

If we need to complete with an exception, then we can proceed via
completeExceptionally() as in the following example:

CompletableFuture<Integer> cf = new CompletableFuture<>();
...
cf.completeExceptionally(new RuntimeException("Ops!"));
...
cf.get(); // ExecutionException : RuntimeException

Canceling the execution and throwing CancellationException can be done via
the cancel() method:

CompletableFuture<Integer> cf = new CompletableFuture<>();
...

Concurrency - Deep Dive Chapter 11

[667]

// is not important if the argument is set to true or false
cf.cancel(true/false);
...
cf.get(); // CancellationException

Explicitly complete a CompletableFuture
A CompletableFuture can be explicitly completed using complete​(T value),
completeAsync​(Supplier<? extends T> supplier), and completeAsync
(Supplier<? extends T> supplier, Executor executor). T is the value
returned by get(). Here it is a method that creates CompletableFuture and returns
it immediately. Another thread is responsible for executing some tax computations
and completing the CompletableFuture with the corresponding result:

public static CompletableFuture<Integer> taxes() {

 CompletableFuture<Integer> completableFuture
 = new CompletableFuture<>();

 new Thread(() -> {
 int result = new Random().nextInt(100);
 Thread.sleep(10);

 completableFuture.complete(result);
 }).start();

 return completableFuture;
}

And, let's call this method:

logger.info("Computing taxes ...");

CompletableFuture<Integer> cfTaxes = CustomerAsyncs.taxes();

while (!cfTaxes.isDone()) {
 logger.info("Still computing ...");
}

int result = cfTaxes.get();
logger.info(() -> "Result: " + result);

A possible output will be the following:

[14:09:40] [INFO] Computing taxes ...
[14:09:40] [INFO] Still computing ...

Concurrency - Deep Dive Chapter 11

[668]

[14:09:40] [INFO] Still computing ...
...
[14:09:40] [INFO] Still computing ...
[14:09:40] [INFO] Result: 17

If we already know the result of CompletableFuture, then we can call
completedFuture​(U value) as in the following example:

CompletableFuture<String> completableFuture
 = CompletableFuture.completedFuture("How are you?");

String result = completableFuture.get();
logger.info(() -> "Result: " + result); // Result: How are you?

Also, check the documentation of whenComplete() and
whenCompleteAsync().

217. Combining multiple
CompletableFuture instances
In most cases, combining CompletableFuture instances can be accomplished using
the following:

thenCompose()

thenCombine()

allOf()

anyOf()

By combining CompletableFuture instances, we can shape complex asynchronous
solutions. This way, multiple CompletableFuture instances can combine their
powers for reaching a common goal.

Combining via thenCompose()
Let's assume that we have the following two CompletableFuture instances in a
helper class named CustomerAsyncs:

private static CompletableFuture<String>
 fetchOrder(String customerId) {

Concurrency - Deep Dive Chapter 11

[669]

 return CompletableFuture.supplyAsync(() -> {
 return "Order of " + customerId;
 });
}

private static CompletableFuture<Integer> computeTotal(String order) {

 return CompletableFuture.supplyAsync(() -> {
 return order.length() + new Random().nextInt(1000);
 });
}

Now, we want to fetch the order of a certain customer, and, once the order is
available, we want to compute the total of this order. This means that we need to call
fetchOrder() and afterward computeTotal(). We can do this via thenApply():

CompletableFuture<CompletableFuture<Integer>> cfTotal
 = fetchOrder(customerId).thenApply(o -> computeTotal(o));

int total = cfTotal.get().get();

Obviously, this is not a convenient solution since the result is of
the CompletableFuture<CompletableFuture<Integer>> type. In order to avoid
the nesting of CompletableFuture instances, we can rely on thenCompose() as
follows:

CompletableFuture<Integer> cfTotal
 = fetchOrder(customerId).thenCompose(o -> computeTotal(o));

int total = cfTotal.get();

// e.g., Total: 734
logger.info(() -> "Total: " + total);

Whenever we need to obtain a flattened result from a chain of
CompletableFuture instances, we can use thenCompose(). This
way we avoid nested examples of CompletableFuture instances.

Further parallelization can be obtained using thenComposeAsync().

Concurrency - Deep Dive Chapter 11

[670]

Combining via thenCombine()
While thenCompose() is useful to chain two dependent
CompletableFuture instances, thenCombine() is useful to chain two independent
instances of CompletableFuture. When both CompletableFuture
instances complete we can continue .

Let's assume that we have the following two CompletableFuture instances:

private static CompletableFuture<Integer> computeTotal(String order) {

 return CompletableFuture.supplyAsync(() -> {
 return order.length() + new Random().nextInt(1000);
 });
}

private static CompletableFuture<String> packProducts(String order) {

 return CompletableFuture.supplyAsync(() -> {
 return "Order: " + order
 + " | Product 1, Product 2, Product 3, ... ";
 });
}

In order to deliver a customer order, we need to compute the total (for emitting the
invoice) and pack the ordered products. These two actions can be accomplished in
parallel. In the end, we deliver the parcel containing the ordered products and the
invoice. Achieving this via thenCombine() can be done as follows:

CompletableFuture<String> cfParcel = computeTotal(order)
 .thenCombine(packProducts(order), (total, products) -> {
 return "Parcel-[" + products + " Invoice: $" + total + "]";
 });

String parcel = cfParcel.get();

// e.g. Delivering: Parcel-[Order: #332 | Product 1, Product 2,
// Product 3, ... Invoice: $314]
logger.info(() -> "Delivering: " + parcel);

The callback function given to thenCombine() will be invoked after both
CompletableFuture instances are complete.

Concurrency - Deep Dive Chapter 11

[671]

If all we need is to do something when two CompletableFuture instances complete
normally (this and another one) then we can rely on thenAcceptBoth(). This
method returns a new CompletableFuture that is executed with the two results as
arguments to the supplied action. The two results are this and the other given stage
(they must complete normally). Here is an example:

CompletableFuture<Void> voidResult = CompletableFuture
 .supplyAsync(() -> "Pick")
 .thenAcceptBoth(CompletableFuture.supplyAsync(() -> " me"),
 (pick, me) -> System.out.println(pick + me));

If the results of these two CompletableFuture instances are not needed, then
runAfterBoth() is much preferred.

Combining via allOf()
Let's assume that we want to download the following list of invoices:

List<String> invoices = Arrays.asList("#2334", "#122", "#55");

This can be seen as a bunch of independent tasks that can be accomplished in parallel,
so we can do it using CompletableFuture as follows:

public static CompletableFuture<String>
 downloadInvoices(String invoice) {

 return CompletableFuture.supplyAsync(() -> {
 logger.info(() -> "Downloading invoice: " + invoice);

 return "Downloaded invoice: " + invoice;
 });
}

CompletableFuture<String> [] cfInvoices = invoices.stream()
 .map(CustomerAsyncs::downloadInvoices)
 .toArray(CompletableFuture[]::new);

At this point, we have an array of CompletableFuture instances, and, therefore, an
array of asynchronous computations. Furthermore, we want to run all of them in
parallel. This can be accomplished using the allOf​(CompletableFuture<?>...
cfs) method. The result consists of a CompletableFuture<Void> as follows:

CompletableFuture<Void> cfDownloaded
 = CompletableFuture.allOf(cfInvoices);
cfDownloaded.get();

Concurrency - Deep Dive Chapter 11

[672]

Obviously, the result of allOf() is not very useful. What can we do
with CompletableFuture<Void>? There are definitely many problems when we
need the results of each computation involved in this parallelization, so we need a
solution for fetching the results instead of relying on CompletableFuture<Void>.

We can solve this problem via thenApply() as follows:

List<String> results = cfDownloaded.thenApply(e -> {
 List<String> downloaded = new ArrayList<>();

 for (CompletableFuture<String> cfInvoice: cfInvoices) {
 downloaded.add(cfInvoice.join());
 }

 return downloaded;
}).get();

The join() method is similar to get(), but, if the underlying
CompletableFuture completes exceptionally, it throws an
unchecked exception .

Since we are calling join() after all the involved CompletableFuture have
completed, there is no blocking point.

The returned List<String> contains the results obtained by calling the
downloadInvoices() method as follows:

Downloaded invoice: #2334

Downloaded invoice: #122

Downloaded invoice: #55

Combining via anyOf()
Let's assume that we want to organize a raffle for our customers:

List<String> customers = Arrays.asList(
 "#1", "#4", "#2", "#7", "#6", "#5"
);

Concurrency - Deep Dive Chapter 11

[673]

We can start to solve this problem by defining the following trivial method:

public static CompletableFuture<String> raffle(String customerId) {

 return CompletableFuture.supplyAsync(() -> {
 Thread.sleep(new Random().nextInt(5000));

 return customerId;
 });
}

Now, we can create an array of CompletableFuture<String> instances, as follows:

CompletableFuture<String>[] cfCustomers = customers.stream()
 .map(CustomerAsyncs::raffle)
 .toArray(CompletableFuture[]::new);

To find the winner of the raffle, we want to run cfCustomers in parallel, and the first
CompletableFuture that completes is the winner. Since the raffle() method
blocks for a random number of seconds, the winner will be randomly chosen. We are
not interested in the rest of the CompletableFuture instances, so they should be
completed immediately after the winner has been chosen.

This is a job for anyOf​(CompletableFuture<?>... cfs). It returns a new
CompletableFuture that is completed when any of the involved
CompletableFuture instances completes. Let's see it at work:

CompletableFuture<Object> cfWinner
 = CompletableFuture.anyOf(cfCustomers);

Object winner = cfWinner.get();

// e.g., Winner: #2
logger.info(() -> "Winner: " + winner);

Pay attention to scenarios that rely on CompletableFuture that
return results of different types. Since anyOf() returns
CompletableFuture<Object>, it is difficult to know
the CompletableFuture types that have completed first.

Concurrency - Deep Dive Chapter 11

[674]

218. Optimizing busy waiting
The busy waiting technique (also known as busy-looping or spinning) consists of a loop
that checks a condition (typically, a flag condition). For example, the following loop
waits for a service to start:

private volatile boolean serviceAvailable;
...
while (!serviceAvailable) {}

Java 9 introduced the Thread.onSpinWait() method. This is a hotspot that gives
the JVM a hint that the following code is in a spin loop:

while (!serviceAvailable) {
 Thread.onSpinWait();
}

Intel SSE2 PAUSE instruction is provided precisely for this reason.
For more details, see the Intel official documentation. Also have a
look at this link: https:/ ​/​software. ​intel. ​com/ ​en-​us/ ​articles/
benefitting- ​power- ​and- ​performance- ​sleep- ​loops.

If we add this while loop in a context, then we obtain the following class:

public class StartService implements Runnable {

 private volatile boolean serviceAvailable;

 @Override
 public void run() {
 System.out.println("Wait for service to be available ...");

 while (!serviceAvailable) {
 // Use a spin-wait hint (ask the processor to
 // optimize the resource)
 // This should perform better if the underlying
 // hardware supports the hint
 Thread.onSpinWait();
 }

 serviceRun();
 }

 public void serviceRun() {
 System.out.println("Service is running ...");
 }

https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops

Concurrency - Deep Dive Chapter 11

[675]

 public void setServiceAvailable(boolean serviceAvailable) {
 this.serviceAvailable = serviceAvailable;
 }
}

And, we can easily test it (do not expect to see the effect of onSpinWait()):

StartService startService = new StartService();
new Thread(startService).start();

Thread.sleep(5000);

startService.setServiceAvailable(true);

219. Task Cancellation
Cancellation is a common technique used for forcibly stopping or completing a task
that is currently running. A canceled task will not complete naturally. Cancellation
should have no effect on an already completed task. Think of it as a Cancel button of
a GUI.

Java doesn't provide a preemptive way for stopping a thread. Therefore for canceling
a task, a common practice is to rely on a loop that uses a flag condition. The task
responsibility is to check this flag periodically, and when it finds the flag set, then it
should stop as fast as possible. The following code is an example of this:

public class RandomList implements Runnable {
 private volatile boolean cancelled;
 private final List<Integer> randoms = new CopyOnWriteArrayList<>();
 private final Random rnd = new Random();

 @Override
 public void run() {
 while (!cancelled) {
 randoms.add(rnd.nextInt(100));
 }
 }

 public void cancel() {
 cancelled = true;
 }

 public List<Integer> getRandoms() {
 return randoms;
 }
}

Concurrency - Deep Dive Chapter 11

[676]

The focus here is on the canceled variable. Notice that this variable was declared as
volatile (also known as the lighter-weight synchronization mechanism). Being a
volatile variable, it is not cached by threads and operations on it are not reordered
in memory; therefore, a thread cannot see an old value. Any thread that reads a
volatile field will see the most recently written value. This is exactly what we need
in order to communicate the cancellation action to all running threads that are
interested in this action. The following diagram depicts how volatile and non-
volatile work:

Notice that the volatile variables are not a good fit for read-modify-write scenarios.
For such scenarios, we will rely on atomic variables (for example, AtomicBoolean,
AtomicInteger, AtomicReference, and so on).

Now, let's provide a simple snippet of code for canceling the task implemented in
RandomList:

RandomList rl = new RandomList();

ExecutorService executor = Executors.newFixedThreadPool(10);

for (int i = 0; i < 100; i++) {
 executor.execute(rl);
}

Thread.sleep(100);

rl.cancel();

System.out.println(rl.getRandoms());

Concurrency - Deep Dive Chapter 11

[677]

220. ThreadLocal
Java threads share the same memory, but sometimes we need to have dedicated
memory for each thread. Java provides ThreadLocal as an approach for storing and
retrieving values for each thread separately. A single instance of ThreadLocal can
store and retrieve values of multiple threads. If thread A stores the x value and thread
B stores the y value in the same instance of ThreadLocal then, later on, thread A
retrieves the x value and thread B retrieves the y value.

Java ThreadLocal is typically used in the following two scenarios:

For providing per-thread instances (thread-safety and memory efficiency)

For providing per-thread context

Let's take a look at problems for each scenario in the next sections.

Per-thread instances
Let's assume that we have a single-thread application that uses a global variable of
the StringBuilder type. In order to transform the application in a multithreaded
application, we have to deal with StringBuilder, which is not thread-safe.
Basically, we have several approaches such as synchronization and StringBuffer or
other approaches. However, we can use ThreadLocal as well. The main idea here is
to provide a separate StringBuilder to each thread. Using ThreadLocal, we can
do it as follows:

private static final ThreadLocal<StringBuilder>
 threadLocal = new ThreadLocal<>() {

 @Override
 protected StringBuilder initialValue() {
 return new StringBuilder("ThreadSafe ");
 }
};

Concurrency - Deep Dive Chapter 11

[678]

The current thread's initial value for this thread-local variable is set via the
initialValue() method. In Java 8, this can be re-written via withInitial() as
follows:

private static final ThreadLocal<StringBuilder> threadLocal
 = ThreadLocal.<StringBuilder> withInitial(() -> {

 return new StringBuilder("Thread-safe ");
});

Working with ThreadLocal is done using get() and set(). Every call of set()
stores the given value in a memory region that only the current thread has access to.
Later on, calling get() will retrieve the value from this region. In addition, once the
job is done, it is advisable to avoid memory leaks by calling the remove() or
set(null) methods on the ThreadLocal instance.

Let's see a ThreadLocal at work using a Runnable:

public class ThreadSafeStringBuilder implements Runnable {

 private static final Logger logger =
 Logger.getLogger(ThreadSafeStringBuilder.class.getName());
 private static final Random rnd = new Random();

 private static final ThreadLocal<StringBuilder> threadLocal
 = ThreadLocal.<StringBuilder> withInitial(() -> {

 return new StringBuilder("Thread-safe ");
 });

 @Override
 public void run() {
 logger.info(() -> "-> " + Thread.currentThread().getName()
 + " [" + threadLocal.get() + "]");

 Thread.sleep(rnd.nextInt(2000));

 // threadLocal.set(new StringBuilder(
 // Thread.currentThread().getName()));
 threadLocal.get().append(Thread.currentThread().getName());

 logger.info(() -> "-> " + Thread.currentThread().getName()
 + " [" + threadLocal.get() + "]");

 threadLocal.set(null);
 // threadLocal.remove();

Concurrency - Deep Dive Chapter 11

[679]

 logger.info(() -> "-> " + Thread.currentThread().getName()
 + " [" + threadLocal.get() + "]");
 }
}

And, let's test it using several threads:

ThreadSafeStringBuilder threadSafe = new ThreadSafeStringBuilder();

for (int i = 0; i < 3; i++) {
 new Thread(threadSafe, "thread-" + i).start();
}

The output reveals that each thread accesses its own StringBuilder:

[14:26:39] [INFO] -> thread-1 [Thread-safe]
[14:26:39] [INFO] -> thread-0 [Thread-safe]
[14:26:39] [INFO] -> thread-2 [Thread-safe]
[14:26:40] [INFO] -> thread-0 [Thread-safe thread-0]
[14:26:40] [INFO] -> thread-0 [null]
[14:26:41] [INFO] -> thread-1 [Thread-safe thread-1]
[14:26:41] [INFO] -> thread-1 [null]
[14:26:41] [INFO] -> thread-2 [Thread-safe thread-2]
[14:26:41] [INFO] -> thread-2 [null]

In scenarios such as the preceding one, ExecutorService can be
used as well.

Here is another snippet of code that provides a JDBC Connection to each thread:

private static final ThreadLocal<Connection> connections
 = ThreadLocal.<Connection> withInitial(() -> {

 try {
 return DriverManager.getConnection("jdbc:mysql://...");
 } catch (SQLException ex) {
 throw new RuntimeException("Connection acquisition failed!", ex);
 }
});

public static Connection getConnection() {
 return connections.get();
}

Concurrency - Deep Dive Chapter 11

[680]

Per-thread context
Let's assume that we have the following Order class:

public class Order {

 private final int customerId;

 public Order(int customerId) {
 this.customerId = customerId;
 }

 // getter and toString() omitted for brevity
}

And, we write CustomerOrder as follows:

public class CustomerOrder implements Runnable {

 private static final Logger logger
 = Logger.getLogger(CustomerOrder.class.getName());
 private static final Random rnd = new Random();

 private static final ThreadLocal<Order>
 customerOrder = new ThreadLocal<>();

 private final int customerId;

 public CustomerOrder(int customerId) {
 this.customerId = customerId;
 }

 @Override
 public void run() {
 logger.info(() -> "Given customer id: " + customerId
 + " | " + customerOrder.get()
 + " | " + Thread.currentThread().getName());

 customerOrder.set(new Order(customerId));

 try {
 Thread.sleep(rnd.nextInt(2000));
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 }

 logger.info(() -> "Given customer id: " + customerId

Concurrency - Deep Dive Chapter 11

[681]

 + " | " + customerOrder.get()
 + " | " + Thread.currentThread().getName());

 customerOrder.remove();
 }
}

For each customerId, we have a dedicated thread that we control:

CustomerOrder co1 = new CustomerOrder(1);
CustomerOrder co2 = new CustomerOrder(2);
CustomerOrder co3 = new CustomerOrder(3);

new Thread(co1).start();
new Thread(co2).start();
new Thread(co3).start();

So, each thread modifies a certain instance of CustomerOrder (there is a particular
thread for each instance).

The run() method fetches the order for the given customerId and stores it in the
ThreadLocal variable, using the set() method.

A possible output will be as follows:

[14:48:20] [INFO]
 Given customer id: 3 | null | Thread-2
[14:48:20] [INFO]
 Given customer id: 2 | null | Thread-1
[14:48:20] [INFO]
 Given customer id: 1 | null | Thread-0

[14:48:20] [INFO]
 Given customer id: 2 | Order{customerId=2} | Thread-1
[14:48:21] [INFO]
 Given customer id: 3 | Order{customerId=3} | Thread-2
[14:48:21] [INFO]
 Given customer id: 1 | Order{customerId=1} | Thread-0

In scenarios like the preceding one, avoid using ExecutorService. There is no
guarantee that each Runnable (of a given customerId) will be handled by the same
thread at every execution. This may lead to weird results.

Concurrency - Deep Dive Chapter 11

[682]

221. Atomic variables
A naive approach for counting all numbers from 1 to 1,000,000 via Runnable may
look as follows:

public class Incrementator implements Runnable {

 public [static] int count = 0;

 @Override
 public void run() {
 count++;
 }

 public int getCount() {
 return count;
 }
}

And, let's spin-up five threads that will increment the count variable concurrently:

Incrementator nonAtomicInc = new Incrementator();
ExecutorService executor = Executors.newFixedThreadPool(5);

for (int i = 0; i < 1 _000_000; i++) {
 executor.execute(nonAtomicInc);
}

But, if we run this code several times, we get different results as follows:

997776, 997122, 997681 ...

So, why don't we get the expected result, 1,000,000? The reason is because count++ is
not an atomic operation/action. It consists of three atomic bytecode instructions:

iload_1
iinc 1, 1
istore_1

During one thread, read the count value and increment it by one, and another thread
reads the older value leading to a wrong result. In a multi-threading application, the
scheduler can halt the execution of the current thread between each of these bytecode
instructions and start a new thread, which works on the same variable. We can fix
things via synchronization or, even better, via atomic variables.

Concurrency - Deep Dive Chapter 11

[683]

Atomic variable classes are available in java.util.concurrent.atomic. They are
wrapper classes that limit the scope of contention to a single variable; they are much
more lightweight than Java synchronization and are based on CAS (short for
Compare and Swap: modern CPUs support this technique in which it compares the
content of a given memory location with a given value and updates it to a new value
if the current value equals the expected value). Mainly, these are atomic compound
actions that affect a single value in a lock-free manner similar to volatile. The most
used atomic variables are the scalars:

AtomicInteger

AtomicLong

AtomicBoolean

AtomicReference

And, the following are for arrays:

AtomicIntegerArray

AtomicLongArray

AtomicReferenceArray

Let's rewrite our example via AtomicInteger:

public class AtomicIncrementator implements Runnable {

 public static AtomicInteger count = new AtomicInteger();

 @Override
 public void run() {
 count.incrementAndGet();
 }

 public int getCount() {
 return count.get();
 }
}

Notice that, instead of count++, we wrote count.incrementAndGet(). This is just
one of the methods provided by AtomicInteger. This method atomically increments
the variable and returns the new value. This time, the count will be 1,000,000.

Concurrency - Deep Dive Chapter 11

[684]

The following table contains several methods of AtomicInteger that are commonly
used. The left column contains the methods, while the right column contains the non-
atomic meaning:

AtomicInteger ai = new AtomicInteger(0); // atomic
int i = 0; // non-atomic

// and
int q = 5;
int r;

// and
int e = 0;
boolean b;

Atomic operation Non-atomic counterpart
r = ai.get(); r = i;

ai.set(q); i = q;

r = ai.incrementAndGet(); r = ++i;

r = ai.getAndIncrement(); r = i++;

r = ai.decrementAndGet(); r = --i;

r = ai.getAndDecrement(); r = i--;

r = ai.addAndGet(q); i = i + q; r = i;

r = ai.getAndAdd(q); r = i; i = i + q;

r = ai.getAndSet(q); r = i; i = q;

b = ai.compareAndSet(e, q);
if (i == e) { i = q;
return true; } else {
return false; }

Let's tackle several problems via atomic operations:

Update the elements of an array via updateAndGet​(IntUnaryOperator
updateFunction):

// [9, 16, 4, 25]
AtomicIntegerArray atomicArray
 = new AtomicIntegerArray(new int[] {3, 4, 2, 5});

for (int i = 0; i < atomicArray.length(); i++) {
 atomicArray.updateAndGet(i, elem -> elem * elem);
}

Concurrency - Deep Dive Chapter 11

[685]

Update a single integer via updateAndGet​(IntUnaryOperator
updateFunction):

// 15
AtomicInteger nr = new AtomicInteger(3);
int result = nr.updateAndGet(x -> 5 * x);

Update a single integer via accumulateAndGet​(int x,
IntBinaryOperator accumulatorFunction):

// 15
AtomicInteger nr = new AtomicInteger(3);
// x = 3, y = 5
int result = nr.accumulateAndGet(5, (x, y) -> x * y);

Update a single integer via addAndGet​(int delta):

// 7
AtomicInteger nr = new AtomicInteger(3);
int result = nr.addAndGet(4);

Update a single integer via compareAndSet​(int expectedValue, int
newValue):

// 5, true
AtomicInteger nr = new AtomicInteger(3);
boolean wasSet = nr.compareAndSet(3, 5);

Starting with JDK 9, atomic variable classes have been enriched with several methods
such as get/setPlain(), get/setOpaque(), getAcquire(), and their companions.
To gain an understanding of these methods, have a look at Using JDK 9 Memory Order
Modes by Doug Lea, available at http:/ ​/​gee. ​cs. ​oswego. ​edu/ ​dl/ ​html/ ​j9mm. ​html, at
the time of writing.

Adders and accumulators
Following the Java API documentation, in cases of multithreading applications that
update frequently but read less frequently, it is recommended to rely on LongAdder,
DoubleAdder, LongAccumulator, and DoubleAccumulator, instead of the
AtomicFoo classes. For such scenarios, these classes are designed to optimize the
usage of threads.

http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html

Concurrency - Deep Dive Chapter 11

[686]

This means that, instead of using AtomicInteger for counting the integers from 1 to
1,000,000, we can use LongAdder as follows:

public class AtomicAdder implements Runnable {

 public static LongAdder count = new LongAdder();

 @Override
 public void run() {

 count.add(1);
 }

 public long getCount() {

 return count.sum();
 }
}

Alternatively, we can use LongAccumulator as follows:

public class AtomicAccumulator implements Runnable {

 public static LongAccumulator count
 = new LongAccumulator(Long::sum, 0);

 @Override
 public void run() {

 count.accumulate(1);
 }

 public long getCount() {

 return count.get();
 }
}

The LongAdder and DoubleAdder are right for scenarios that imply additions
(operations specific to additions), while LongAccumulator and
DoubleAccumulator are right for scenarios that rely on a given function to combine
values.

Concurrency - Deep Dive Chapter 11

[687]

222. ReentrantLock
The Lock interface contains a set of locking operations that can be explicitly used to
fine-tune the locking process (it provides more control than intrinsic locking). Among
them, we have polled, unconditional, timed, and interruptible lock acquisition.
Basically, Lock exposes the futures of the synchronized keyword with additional
capabilities. The Lock interface is shown in the following code:

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long timeout, TimeUnit unit)
 throws InterruptedException;
 void unlock();
 Condition newCondition();
}

One of the implementations of Lock is ReentrantLock. A reentrant lock acts as
follows: when the thread enters for the first time into the lock, a hold count is set to
one. Before unlocking, the thread can re-enter the lock causing the hold count to be
incremented by one for each entry. Each unlock request decrements the hold count by
one, and, when the hold count is zero, the locked resource is opened.

Having the same coordinates as the synchronized keyword, ReentrantLock
follows the following idiom of implementation:

Lock / ReentrantLock lock = new ReentrantLock();
...
lock.lock();

try {
 ...
} finally {
 lock.unlock();
}

In the case of non-fair locks, the order in which threads are granted
access is unspecified. If the lock should be fair (give precedence to
the thread that has been waiting for the longest) then use the
ReentrantLock​(boolean fair) constructor.

Concurrency - Deep Dive Chapter 11

[688]

Summing up integers from 1 to 1,000,000 via ReentrantLock can be accomplished as
follows:

public class CounterWithLock {

 private static final Lock lock = new ReentrantLock();

 private static int count;

 public void counter() {
 lock.lock();

 try {
 count++;
 } finally {
 lock.unlock();
 }
 }
}

And, let's use it via several threads:

CounterWithLock counterWithLock = new CounterWithLock();
Runnable task = () -> {
 counterWithLock.counter();
};

ExecutorService executor = Executors.newFixedThreadPool(8);
for (int i = 0; i < 1 _000_000; i++) {
 executor.execute(task);
}

Done!

As a bonus, the following code represents an idiom for resolving problems based on
ReentrantLock.lockInterruptibly(). The code bundled to this book comes
with an example of using lockInterruptibly():

Lock / ReentrantLock lock = new ReentrantLock();
public void execute() throws InterruptedException {
 lock.lockInterruptibly();

 try {
 // do something
 } finally {
 lock.unlock();
 }
}

Concurrency - Deep Dive Chapter 11

[689]

If the thread holding this lock is interrupted then InterruptedException is thrown.
Using lock() instead of lockInterruptibly() will not be receptive to
interruption.

In addition, the following code represents an idiom for using
ReentrantLock.tryLock(long timeout, TimeUnit unit) throws

InterruptedException. The code bundled to this book comes with an example as
well:

Lock / ReentrantLock lock = new ReentrantLock();

public boolean execute() throws InterruptedException {

 if (!lock.tryLock(n, TimeUnit.SECONDS)) {
 return false;
 }

 try {
 // do something
 } finally {
 lock.unlock();
 }

 return true;
}

Note that tryLock() tries to acquire the lock for the specified time. If this time
elapses, then the thread will not acquire the lock. It doesn't retry automatically. If the
thread is interrupted during attempting to acquire the lock,
then InterruptedException will be thrown.

Finally, the code bundled to this book comes with an example of using
ReentrantLock.newCondition(). The idiom is in the next screenshot:

Concurrency - Deep Dive Chapter 11

[690]

223. ReentrantReadWriteLock
Typically, a read-write tandem (for example, read-write a file) should be
accomplished based on two statements:

Readers can read simultaneously as long as there are no writers (shared
pessimistic lock).

A single writer can write at a time (exclusive/pessimistic locking).

The following diagram depicts readers on the left-hand side and writers on the right-
hand side:

Concurrency - Deep Dive Chapter 11

[691]

Mainly, the following behavior is implemented by ReentrantReadWriteLock:

Provides pessimistic locking semantics for both locks (read and write lock).

If some readers hold the read lock and a writer wants the write lock, then
no more readers are allowed to acquire the read lock until the writer
released the write lock.

A writer can acquire the read lock, but a reader cannot acquire the write
lock.

In case of non-fair locks, the order in which threads are granted
access is unspecified. If the lock should be fair (give precedence to
the thread that has been waiting for the longest), then use the
ReentrantReadWriteLock​(boolean fair) constructor.

The idiom for using ReentrantReadWriteLock is shown as follows:

ReadWriteLock / ReentrantReadWriteLock lock
 = new ReentrantReadWriteLock();
...
lock.readLock() / writeLock().lock();
try {
 ...
} finally {
 lock.readLock() / writeLock().unlock();
}

The following code represents a ReentrantReadWriteLock usage case that reads
and writes an integer amount variable:

public class ReadWriteWithLock {

 private static final Logger logger
 = Logger.getLogger(ReadWriteWithLock.class.getName());
 private static final Random rnd = new Random();

 private static final ReentrantReadWriteLock lock
 = new ReentrantReadWriteLock(true);

 private static final Reader reader = new Reader();
 private static final Writer writer = new Writer();

 private static int amount;

Concurrency - Deep Dive Chapter 11

[692]

 private static class Reader implements Runnable {

 @Override
 public void run() {
 if (lock.isWriteLocked()) {
 logger.warning(() -> Thread.currentThread().getName()
 + " reports that the lock is hold by a writer ...");
 }

 lock.readLock().lock();

 try {
 logger.info(() -> "Read amount: " + amount
 + " by " + Thread.currentThread().getName());
 } finally {
 lock.readLock().unlock();
 }
 }
 }

 private static class Writer implements Runnable {

 @Override
 public void run() {
 lock.writeLock().lock();
 try {
 Thread.sleep(rnd.nextInt(2000));
 logger.info(() -> "Increase amount with 10 by "
 + Thread.currentThread().getName());

 amount += 10;
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 } finally {
 lock.writeLock().unlock();
 }
 }
 ...
 }

And, let's perform 10 reads and 10 writes with two readers and four writers:

ExecutorService readerService = Executors.newFixedThreadPool(2);
ExecutorService writerService = Executors.newFixedThreadPool(4);

for (int i = 0; i < 10; i++) {
 readerService.execute(reader);

Concurrency - Deep Dive Chapter 11

[693]

 writerService.execute(writer);
}

A possible output will be as follows:

[09:09:25] [INFO] Read amount: 0 by pool-1-thread-1
[09:09:25] [INFO] Read amount: 0 by pool-1-thread-2
[09:09:26] [INFO] Increase amount with 10 by pool-2-thread-1
[09:09:27] [INFO] Increase amount with 10 by pool-2-thread-2
[09:09:28] [INFO] Increase amount with 10 by pool-2-thread-4
[09:09:29] [INFO] Increase amount with 10 by pool-2-thread-3
[09:09:29] [INFO] Read amount: 40 by pool-1-thread-2
[09:09:29] [INFO] Read amount: 40 by pool-1-thread-1
[09:09:31] [INFO] Increase amount with 10 by pool-2-thread-1
...

Before deciding to rely on ReentrantReadWriteLock, please
consider that it may suffer from starvation (for example, when
writers are given priority, readers might be starved). Moreover, we
could not upgrade a read lock to a write lock (downgrading from
writer to reader is possible), and there is no support for optimistic
reads. If any of this matters for you then consider StampedLock,
which we will look at in the next problem.

224. StampedLock
In a nutshell, StampedLock performs better than ReentrantReadWriteLock and
supports optimistic reads. It is not like reentrant; therefore, it is prone to deadlocks.
Mainly, a lock acquisition returns a stamp (a long value) that it is used in the
finally block for unlocking. Each attempt to acquire a lock results in a new stamp,
and, if no lock is available, then it may block until available. In other words, if the
current thread is holding the lock, and attempts to acquire the lock again, it may
cause a deadlock.

The StampedLock read/write orchestration process is achieved via several methods
as follows:

readLock(): Non-exclusively acquires the lock, blocking if necessary, until
available. For a non-blocking attempt of acquiring the read lock, we have to
tryReadLock(). For timeout blocking, we have tryReadLock​(long
time, TimeUnit unit). The returned stamp is used in unlockRead().

Concurrency - Deep Dive Chapter 11

[694]

writeLock(): Exclusively acquires the lock, blocking if necessary until
available. For a non-blocking attempt to acquire the write lock, we have
tryWriteLock(). For timeout blocking, we have tryWriteLock​(long
time, TimeUnit unit). The returned stamp is used in unlockWrite().

tryOptimisticRead(): This is the method that adds a big plus to
StampedLock. This method returns a stamp that should be validated via
the validate​() flag method. If the lock is not currently held in write
mode, then the returned stamp is non-zero only.

The idioms for readLock() and writeLock() are pretty straightforward:

StampedLock lock = new StampedLock();
...
long stamp = lock.readLock() / writeLock();

try {
 ...
} finally {
 lock.unlockRead(stamp) / unlockWrite(stamp);
}

An attempt to give an idiom for tryOptimisticRead() can result in the following:

StampedLock lock = new StampedLock();

int x; // a writer-thread can modify x
...
long stamp = lock.tryOptimisticRead();
int thex = x;

if (!lock.validate(stamp)) {
 stamp = lock.readLock();

 try {
 thex = x;
 } finally {
 lock.unlockRead(stamp);
 }
}

return thex;

Concurrency - Deep Dive Chapter 11

[695]

In this idiom, notice that the initial value (x) is assigned to the thex variable after
getting the optimistic read lock. Then the validate() flag method is used to validate
that the stamped lock has not been exclusively acquired since the emittance of the
given stamp. If validate() returns false (equivalent with the fact that the write
lock is acquired by a thread after the optimistic lock is acquired), then the read lock is
acquired via the blocking readLock() and the value (x) is assigned again. Keep in
mind that, if there is any write lock, the read lock may block. Acquiring the
optimistic lock allows us to read the value(s) and then verify if there is any change in
these value(s). Only if there is, will we have to go through the blocking read lock.

The following code represents a StampedLock usage case that reads and writes an
integer amount variable. Basically, we reiterate the solution from the previous
problem via optimistic reads:

public class ReadWriteWithStampedLock {

 private static final Logger logger
 = Logger.getLogger(ReadWriteWithStampedLock.class.getName());
 private static final Random rnd = new Random();

 private static final StampedLock lock = new StampedLock();

 private static final OptimisticReader optimisticReader
 = new OptimisticReader();
 private static final Writer writer = new Writer();

 private static int amount;

 private static class OptimisticReader implements Runnable {

 @Override
 public void run() {
 long stamp = lock.tryOptimisticRead();

 // if the stamp for tryOptimisticRead() is not valid
 // then the thread attempts to acquire a read lock
 if (!lock.validate(stamp)) {
 stamp = lock.readLock();
 try {
 logger.info(() -> "Read amount (read lock): " + amount
 + " by " + Thread.currentThread().getName());
 } finally {
 lock.unlockRead(stamp);
 }
 } else {
 logger.info(() -> "Read amount (optimistic read): " + amount

Concurrency - Deep Dive Chapter 11

[696]

 + " by " + Thread.currentThread().getName());
 }
 }
 }

 private static class Writer implements Runnable {

 @Override
 public void run() {

 long stamp = lock.writeLock();

 try {
 Thread.sleep(rnd.nextInt(2000));
 logger.info(() -> "Increase amount with 10 by "
 + Thread.currentThread().getName());

 amount += 10;
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 } finally {
 lock.unlockWrite(stamp);
 }
 }
 }
 ...
}

And, let's perform 10 reads and 10 writes with two readers and four writers:

ExecutorService readerService = Executors.newFixedThreadPool(2);
ExecutorService writerService = Executors.newFixedThreadPool(4);

for (int i = 0; i < 10; i++) {
 readerService.execute(optimisticReader);
 writerService.execute(writer);
}

A possible output will be the following:

...
[12:12:07] [INFO] Increase amount with 10 by pool-2-thread-4
[12:12:07] [INFO] Read amount (read lock): 90 by pool-1-thread-2
[12:12:07] [INFO] Read amount (optimistic read): 90 by pool-1-thread-2
[12:12:07] [INFO] Increase amount with 10 by pool-2-thread-1
...

Concurrency - Deep Dive Chapter 11

[697]

Starting with JDK 10, we can query the type of a stamp using isWriteLockStamp(),
isReadLockStamp(), isLockStamp(), and isOptimisticReadStamp(). Based on
the type, we can decide the proper unlock method, for example, as follows:

if (StampedLock.isReadLockStamp(stamp))
 lock.unlockRead(stamp);
}

In the code bundled to this book, there is also an application for exemplifying the
tryConvertToWriteLock​() method. In addition, you may be interested in
developing applications that use tryConvertToReadLock​() and
tryConvertToOptimisticRead().

225. Deadlock (dining philosophers)
What is deadlock? A famous joke on the internet explains it as follows:

Interviewer: Explain to us deadlock and we'll hire you!

Me: Hire me and I'll explain it to you ...

A simple deadlock can be explained as an A thread holding the L lock and trying to
acquire the P lock, and, at the same time, there is a B thread holding the P lock and
trying to acquire the L lock. This kind of deadlock is known as circular wait. Java
doesn't have a deadlock detection and resolving mechanism (as databases have), and
so a deadlock can be very embarrassing for the application. A deadlock can
completely or partially block the application, can cause serious performance
penalties, weird behaviors, and so on. Typically, deadlocks are hard to debug, and the
only way to solve a deadlock consists of restarting the application and hoping for the
best.

The dining philosophers is a famous problem used for illustrating a deadlock. This
problem says that five philosophers are sitting around a table. Each of them alternates
thinking and eating. In order to eat, a philosopher needs two forks in his hands—the
fork from his left-hand side and the fork from his right-hand side. The difficulty is
imposed by the fact that there are only five forks. After eating, the philosopher puts
both forks back on the table, and they can then be picked up by another philosopher
who repeats the same cycle. When a philosopher is not eating, he/she is thinking. The
following diagram illustrates this scenario:

Concurrency - Deep Dive Chapter 11

[698]

The main task is to find a solution to this problem that allows the philosophers to
think and eat in such a way so as to avoid being starved to death.

In the code, we can consider each philosopher as a Runnable instance. Being
Runnable instances, we can execute them in separate threads. Each philosopher can
pick up two forks placed to his left and right. If we represent a fork as a String, then
we can use the following code:

public class Philosopher implements Runnable {

 private final String leftFork;
 private final String rightFork;

 public Philosopher(String leftFork, String rightFork) {
 this.leftFork = leftFork;
 this.rightFork = rightFork;
 }

 @Override
 public void run() {
 // implemented below
 }
}

So, a philosopher can pick up leftFork and rightFork. But since the philosophers
share these forks, a philosopher must acquire exclusive locks on these two forks.
Having an exclusive lock on leftFork and an exclusive lock on rightFork is
equivalent to having two forks in his hands. Having exclusive locks on leftFork and
rightFork is equivalent to the philosopher eating. Releasing both exclusive locks is
equivalent to the philosopher not eating and thinking.

Concurrency - Deep Dive Chapter 11

[699]

Locking can be achieved via the synchronized keyword as in the following run()
method:

@Override
public void run() {

 while (true) {
 logger.info(() -> Thread.currentThread().getName()
 + ": thinking");
 doIt();

 synchronized(leftFork) {
 logger.info(() -> Thread.currentThread().getName()
 + ": took the left fork (" + leftFork + ")");
 doIt();

 synchronized(rightFork) {
 logger.info(() -> Thread.currentThread().getName()
 + ": took the right fork (" + rightFork + ") and eating");
 doIt();

 logger.info(() -> Thread.currentThread().getName()
 + ": put the right fork (" + rightFork
 + ") on the table");
 doIt();
 }

 logger.info(() -> Thread.currentThread().getName()
 + ": put the left fork (" + leftFork
 + ") on the table and thinking");
 doIt();
 }
 }
}

A philosopher starts by thinking. After a while he is hungry, so he tries to pick up the
left and right forks. If successful he will eat for a while. Afterwards, he put the forks
on the table and continues to think until he is hungry again. Meanwhile, another
philosopher will eat.

The doIt() method simulates the involved actions (thinking, eating, picking, and
putting back the forks) via a random sleep. This can be seen in the code as follows:

private static void doIt() {
 try {
 Thread.sleep(rnd.nextInt(2000));
 } catch (InterruptedException ex) {

Concurrency - Deep Dive Chapter 11

[700]

 Thread.currentThread().interrupt();
 logger.severe(() -> "Exception: " + ex);
 }
}

Finally, we need forks and the philosophers, see the following code:

String[] forks = {
 "Fork-1", "Fork-2", "Fork-3", "Fork-4", "Fork-5"
};

Philosopher[] philosophers = {
 new Philosopher(forks[0], forks[1]),
 new Philosopher(forks[1], forks[2]),
 new Philosopher(forks[2], forks[3]),
 new Philosopher(forks[3], forks[4]),
 new Philosopher(forks[4], forks[0])
};

Each philosopher will run in a thread, as follows:

Thread threadPhilosopher1
 = new Thread(philosophers[0], "Philosopher-1");
...
Thread threadPhilosopher5
 = new Thread(philosophers[4], "Philosopher-5");

threadPhilosopher1.start();
...
threadPhilosopher5.start();

This implementation seems to be OK and may even work fine for a while. However,
sooner or later this implementation blocks with output as follows:

[17:29:21] [INFO] Philosopher-5: took the left fork (Fork-5)
...
// nothing happens

This is a deadlock! Each philosopher has his left fork in hand (exclusive lock on it)
and waits for the right fork to be on the table (the lock is to be released). Obviously,
this expectation cannot be satisfied, since there are only five forks and each
philosopher has one in his hands.

Concurrency - Deep Dive Chapter 11

[701]

In order to avoid this deadlock, there is a pretty simple solution. We just force one of
the philosophers to pick up the right fork first. After successfully picking the right
fork, he can try to pick the left one. In the code, this is a quick modification to the
following line:

// the original line
new Philosopher(forks[4], forks[0])

// the modified line that eliminates the deadlock
new Philosopher(forks[0], forks[4])

This time we can run the application without deadlocks.

Summary
Well, that's all! This chapter covered problems about the fork/join framework,
CompletableFuture, ReentrantLock, ReentrantReadWriteLock, StampedLock,
atomic variables, tasks cancellation, interruptible methods, thread-local, and
deadlocks.

Download the applications from this chapter to see the results and to see additional
details.

12
Optional

This chapter includes 24 problems meant to draw your attention to several rules for
working with Optional. The problems and solutions presented in this section are
based on the Java language architect Brian Goetz's definition:

"Optional is intended to provide a limited mechanism for library method return types where
there needed to be a clear way to represent no result, and using null for such was
overwhelmingly likely to cause errors."

But where there are rules, there are exceptions as well. Therefore, do not conclude
that the rules (or practices) presented here should be followed (or avoided) at all
costs. As always, it depends on the problem, and you have to evaluate the situation,
weighing up the pros and cons.

You may also like to check the CDI plugin (https:/ ​/​github. ​com/ ​Pscheidl/ ​FortEE)
for Java EE (Jakarta EE) developed by Pavel Pscheidl. This is a Jakarta EE/Java EE
fault-tolerance guard leveraging the Optional pattern. Its power lies in its simplicity.

Problems
Use the following problems to test your Optional programming prowess. I strongly
encourage you to give each problem a try before you turn to the solutions and
download the example programs:

Initializing Optional: Write a program that exemplifies the right and226.
wrong approaches for initializing Optional.
Optional.get() and missing value: Write a program that exemplifies the227.
right and wrong usage of Optional.get().

https://github.com/Pscheidl/FortEE
https://github.com/Pscheidl/FortEE
https://github.com/Pscheidl/FortEE
https://github.com/Pscheidl/FortEE
https://github.com/Pscheidl/FortEE
https://github.com/Pscheidl/FortEE
https://github.com/Pscheidl/FortEE
https://github.com/Pscheidl/FortEE
https://github.com/Pscheidl/FortEE
https://github.com/Pscheidl/FortEE
https://github.com/Pscheidl/FortEE

Optional Chapter 12

[703]

Returning an already-constructed default value: Write a program that,228.
when no value is present, sets (or returns) an already-constructed default
value via the Optional.orElse() method.
Returning a non-existent default value: Write a program that, when no229.
value is present, sets (or returns) a non-existent default value via the
Optional.orElseGet() method.
Throwing NoSuchElementException: Write a program that, when no230.
value is present, throws an exception of
the NoSuchElementException type or another exception.
The Optional and null references: Write a program that exemplifies the231.
correct usage of Optional.orElse(null).
Consuming a present Optional class: Write a program that consumes a232.
present Optional class via ifPresent() and via ifPresentElse().
Returning a present Optional class or another one: Let's assume that we233.
have Optional. Write a program that relies on Optional.or() for
returning this Optional (if its value is present) or another Optional class
(if its value is not present).
Chaining lambdas via orElseFoo(): Write a program that exemplifies the234.
usage of orElse() and orElseFoo() for avoiding disrupting lambda
chains.
Do not use Optional just for getting a value: Exemplify the bad practice235.
of chaining the Optional methods with the single purpose of getting some
values.
Do not use Optional for fields: Exemplify the bad practice of declaring236.
fields of the Optional type.
Do not use Optional in constructor args: Exemplify the bad practice of237.
using Optional in constructors arguments.
Do not use Optional in setters args: Exemplify the bad practice of using238.
Optional in setter arguments.
Do not use Optional in methods args: Exemplify the bad practice of using239.
Optional in method arguments.
Do not use Optional to return empty or null collections or arrays:240.
Exemplify the bad practice of using Optional for returning the
empty/null collections or arrays.

Optional Chapter 12

[704]

Avoiding Optional in collections: Using Optional in collections can be a241.
design smell. Exemplify a typical use case and possible alternatives for
avoiding Optional in collections.
Confusing of() with ofNullable(): Exemplify the potential242.
consequences of confusing Optional.of() with ofNullable().
Optional<T> versus OptionalInt: Exemplify the usage of non-generic243.
OptionalInt instead of Optional<T>.
Asserting equality of Optional classes: Exemplify asserting the equality244.
of Optional classes.
Transforming values via map() and flatMap(): Write several snippets of245.
code for exemplifying the usage of Optional.map() and flatMap().
Filter values via Optional.filter(): Exemplify the usage of246.
Optional.filter() for rejecting wrapped values based on a predefined
rule.
Chaining the Optional and Stream APIs: Exemplify the usage of247.
Optional.stream() for chaining the Optional API with the Stream
API.
Optional and identity-sensitive operations: Write a snippet of code that248.
sustains the fact that identity-sensitive operations should be avoided in the
case of Optional.
Return boolean if Optional is empty: Write two snippets of code for 249.
exemplifying two solutions for returning boolean if the given
Optional class is empty.

Solutions
The following sections describe solutions to the preceding problems. Remember that
there usually isn't a single correct way to solve a particular problem. Also, remember
that the explanations shown here include only the most interesting and important
details needed to solve the problems. Download the example solutions to see
additional details and to experiment with the programs at https:/ ​/​github. ​com/
PacktPublishing/ ​Java- ​Coding- ​Problems.

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Optional Chapter 12

[705]

226. Initializing Optional
Initializing Optional should be done via Optional.empty() instead of null:

// Avoid
Optional<Book> book = null;

// Prefer
Optional<Book> book = Optional.empty();

Since Optional acts as a container (box), it is meaningless to initialize it with null.

227. Optional.get() and missing value
So, if we have decided to call Optional.get() to fetch the value wrapped
in Optional, then we shouldn't do it as follows:

Optional<Book> book = ...; // this is prone to be empty

// Avoid
// if "book" is empty then the following code will
// throw a java.util.NoSuchElementException
Book theBook = book.get();

In other words, before fetching the value via Optional.get(), we need to prove that
the value is present. A solution consists of calling isPresent() before calling get().
This way, we add a check that allows us to handle the missing value case:

Optional<Book> book = ...; // this is prone to be empty

// Prefer
if (book.isPresent()) {
 Book theBook = book.get();
 ... // do something with "theBook"
} else {
 ... // do something that does not call book.get()
}

Nevertheless, keep in mind that the isPresent()-get() team has a
bad reputation, and so use it with caution. Consider checking the
next problems, which provide alternatives to this team. Moreover, at
some point, Optional.get() is likely to be deprecated.

Optional Chapter 12

[706]

228. Returning an already-constructed default
value
Let's assume that we have a method that returns a result based on Optional.
If Optional is empty then the method returns a default value. If we consider the
previous problem, then a possible solution can be written as follows:

public static final String BOOK_STATUS = "UNKNOWN";
...
// Avoid
public String findStatus() {
 Optional<String> status = ...; // this is prone to be empty

 if (status.isPresent()) {
 return status.get();
 } else {
 return BOOK_STATUS;
 }
}

Well, this is not a bad solution, but is not very elegant. A more concise and elegant
solution will rely on the Optional.orElse() method. This method is useful for
replacing the isPresent()-get() pair when we want to set or return a default value
in case of an empty Optional class. The preceding snippet of code can be rewritten
as follows:

public static final String BOOK_STATUS = "UNKNOWN";
...
// Prefer
public String findStatus() {
 Optional<String> status = ...; // this is prone to be empty

 return status.orElse(BOOK_STATUS);
}

But keep in mind that orElse() is evaluated even when
the Optional class involved is not empty. In other words,
orElse() is evaluated even if its value is not used. Having said
that, it is advisable to rely on orElse() only when its argument is
an already-constructed value. That way, we mitigate a potential
performance penalty. The next problem addresses the case when
orElse() is not the correct choice.

Optional Chapter 12

[707]

229. Returning a non-existent default value
Let's assume that we have a method that returns a result based on an Optional class.
If this Optional class is empty then the method returns a computed value. The
computeStatus() method computes this value:

private String computeStatus() {
 // some code used to compute status
}

Now, a clumsy solution will rely on the isPresent()-get() pair, as follows:

// Avoid
public String findStatus() {
 Optional<String> status = ...; // this is prone to be empty

 if (status.isPresent()) {
 return status.get();
 } else {
 return computeStatus();
 }
}

Even if this solution is clumsy, it is still better than relying on the orElse() method,
as follows:

// Avoid
public String findStatus() {
 Optional<String> status = ...; // this is prone to be empty

 // computeStatus() is called even if "status" is not empty
 return status.orElse(computeStatus());
}

In this case, the preferred solution relies on the Optional.orElseGet() method.
The argument of this method is Supplier;, and so it is executed only when the
Optional value is not present. This is much better than orElse() since it saves us
from executing extra code that shouldn't be executed when the Optional value is
present. So, the preferred solution is as follows:

// Prefer
public String findStatus() {
 Optional<String> status = ...; // this is prone to be empty

 // computeStatus() is called only if "status" is empty
 return status.orElseGet(this::computeStatus);
}

Optional Chapter 12

[708]

230. Throwing NoSuchElementException
Sometimes, if Optional is empty, we want to throw an exception (for example,
NoSuchElementException). The clumsy solution to this problem is listed as follows:

// Avoid
public String findStatus() {

 Optional<String> status = ...; // this is prone to be empty

 if (status.isPresent()) {
 return status.get();
 } else {
 throw new NoSuchElementException("Status cannot be found");
 }
}

But a much more elegant solution will rely on the Optional.orElseThrow()
method. The signature of this method, orElseThrow(Supplier<? extends X>
exceptionSupplier), allows us to give the exception as follows (if the value is
present then orElseThrow() will return it):

// Prefer
public String findStatus() {

 Optional<String> status = ...; // this is prone to be empty

 return status.orElseThrow(
 () -> new NoSuchElementException("Status cannot be found"));
}

Or, another exception is, for example, IllegalStateException:

// Prefer
public String findStatus() {

 Optional<String> status = ...; // this is prone to be empty

 return status.orElseThrow(
 () -> new IllegalStateException("Status cannot be found"));
}

Optional Chapter 12

[709]

Starting with JDK 10, Optional was enriched with an orElseThrow() flavor
without arguments. This method implicitly throws NoSuchElementException:

// Prefer (JDK 10+)
public String findStatus() {

 Optional<String> status = ...; // this is prone to be empty

 return status.orElseThrow();
}

Nevertheless, be aware that throwing an unchecked exception without a meaningful
message in production is not good practice.

231. Optional and null references
It is possible to take advantage of orElse(null) by using a method that accepts
the null references in certain situations.

A candidate for this scenario is Method.invoke() from the Java Reflection API (see
Chapter 7, Java Reflection Classes, Interfaces, Constructors, Methods, and Fields).

The first argument of Method.invoke() represents the object instance on which this
particular method is to be invoked. If the method is static, the first argument
should be null, and so there is no need to have an instance of the object.

Let's assume that we have a class named Book and the helper method listed as
follows.

This method returns an empty Optional class (if the given method is static) or an
Optional class containing an instance of Book (if the given method is non-static):

private static Optional<Book> fetchBookInstance(Method method) {

 if (Modifier.isStatic(method.getModifiers())) {
 return Optional.empty();
 }

 return Optional.of(new Book());
}

Optional Chapter 12

[710]

Calling this method is pretty simple:

Method method = Book.class.getDeclaredMethod(...);

Optional<Book> bookInstance = fetchBookInstance(method);

Furthermore, if Optional is empty (meaning that the method is static), we need to
pass null to Method.invoke(); otherwise, we pass the Book instance. A clumsy
solution may rely on the isPresent()-get() pair, as follows:

// Avoid
if (bookInstance.isPresent()) {
 method.invoke(bookInstance.get());
} else {
 method.invoke(null);
}

But this is a perfect fit for Optional.orElse(null). The following code reduces the
solution to a single line of code:

// Prefer
method.invoke(bookInstance.orElse(null));

As a rule of thumb, we should use orElse(null) only when we
have Optional and we need a null reference. Otherwise, avoid
orElse(null).

232. Consuming a present Optional class
Sometimes, all we want is to consume a present Optional class. If Optional is not
present then nothing needs to be done. An unskillful solution will rely on the
isPresent()-get() pair, as follows:

// Avoid
public void displayStatus() {
 Optional<String> status = ...; // this is prone to be empty

 if (status.isPresent()) {
 System.out.println(status.get());
 }
}

Optional Chapter 12

[711]

A better solution relies on ifPresent(), which takes Consumer as an argument.
This is an alternative to the isPresent()-get() pair when we just need to consume
the present value. The code can be rewritten as follows:

// Prefer
public void displayStatus() {
 Optional<String> status = ...; // this is prone to be empty

 status.ifPresent(System.out::println);
}

But in other cases, if Optional is not present then we want to execute an empty-
based action. The solution based on the isPresent()-get() pair is as follows:

// Avoid
public void displayStatus() {
 Optional<String> status = ...; // this is prone to be empty

 if (status.isPresent()) {
 System.out.println(status.get());
 } else {
 System.out.println("Status not found ...");
 }
}

Again, this is not the best choice. Alternatively, we can count on
ifPresentOrElse(). This method has been available since JDK 9 and is similar to
the ifPresent() method; the only difference is that it covers the else branch as
well:

// Prefer
public void displayStatus() {
 Optional<String> status = ...; // this is prone to be empty

 status.ifPresentOrElse(System.out::println,
 () -> System.out.println("Status not found ..."));
}

Optional Chapter 12

[712]

233. Returning a present Optional class or
another one
Let's consider a method that returns an Optional class. Mainly, this method
computes an Optional class and, if it isn't empty, then it simply returns this
Optional class. Otherwise, if the computed Optional class is empty then we
execute some other action that also returns Optional class.

The isPresent()-get() pair can do it as follows (this should be avoided):

private final static String BOOK_STATUS = "UNKNOWN";
...
// Avoid
public Optional<String> findStatus() {
 Optional<String> status = ...; // this is prone to be empty

 if (status.isPresent()) {
 return status;
 } else {
 return Optional.of(BOOK_STATUS);
 }
}

Alternatively, we should avoid such constructions as follow:

return Optional.of(status.orElse(BOOK_STATUS));
return Optional.of(status.orElseGet(() -> (BOOK_STATUS)));

The best solution has been available since with JDK 9, and it consists of
the Optional.or() method. This method is capable of returning Optional
describing the value. Otherwise, it returns Optional produced by the given
Supplier function (the supplying function that produces Optional to be returned):

private final static String BOOK_STATUS = "UNKNOWN";
...
// Prefer
public Optional<String> findStatus() {
 Optional<String> status = ...; // this is prone to be empty

 return status.or(() -> Optional.of(BOOK_STATUS));
}

Optional Chapter 12

[713]

234. Chaining lambdas via orElseFoo()
Some operations specific to lambda expressions return Optional (for example,
findFirst(), findAny(), reduce(), and so on). Trying to address these
Optional classes via the isPresent()-get() pair is a cumbersome solution because
we have to break the chain of lambdas, add some conditional code via the if-else
blocks, and consider resuming the chain.

The following snippet of code shows this practice:

private static final String NOT_FOUND = "NOT FOUND";

List<Book> books...;
...
// Avoid
public String findFirstCheaperBook(int price) {

 Optional<Book> book = books.stream()
 .filter(b -> b.getPrice()<price)
 .findFirst();

 if (book.isPresent()) {
 return book.get().getName();
 } else {
 return NOT_FOUND;
 }
}

One step further and we may have something like the following:

// Avoid
public String findFirstCheaperBook(int price) {

 Optional<Book> book = books.stream()
 .filter(b -> b.getPrice()<price)
 .findFirst();

 return book.map(Book::getName)
 .orElse(NOT_FOUND);
}

Optional Chapter 12

[714]

Using orElse() instead of the isPresent()-get() pair is better. But it will be even
better if we use orElse() (and orElseFoo()) directly in the chain of lambdas and
avoid disrupted code:

private static final String NOT_FOUND = "NOT FOUND";
...
// Prefer
public String findFirstCheaperBook(int price) {

 return books.stream()
 .filter(b -> b.getPrice()<price)
 .findFirst()
 .map(Book::getName)
 .orElse(NOT_FOUND);
}

Let's have one more problem.

This time, we have an author of several books, and we want to check whether a
certain book was written by this author. If our author didn't write the given book,
then we want to throw NoSuchElementException.

A really bad solution to this will be as follows:

// Avoid
public void validateAuthorOfBook(Book book) {
 if (!author.isPresent() ||
 !author.get().getBooks().contains(book)) {
 throw new NoSuchElementException();
 }
}

On the other hand, using orElseThrow() can solve the problem very elegantly:

// Prefer
public void validateAuthorOfBook(Book book) {
 author.filter(a -> a.getBooks().contains(book))
 .orElseThrow();
}

Optional Chapter 12

[715]

235. Do not use Optional just for getting a
value
This problem gives the start of a suite of problems from the do not use category. The do
not use category tries to prevent the overuse of Optional and gives several rules that
can save us a lot of trouble. Nevertheless, rules have exceptions. Therefore, do not
conclude that the presented rules should be avoided at all costs. As always, it
depends on the problem.

In the case of Optional, a common scenario involves chaining its methods for the
single purpose of getting some value.

Avoid this practice and rely on simple and straightforward code. In other words,
avoid doing something like the following snippet of code:

public static final String BOOK_STATUS = "UNKNOWN";
...
// Avoid
public String findStatus() {
 // fetch a status prone to be null
 String status = ...;

 return Optional.ofNullable(status).orElse(BOOK_STATUS);
}

And use a simple if-else block or the ternary operator (for simple cases):

// Prefer
public String findStatus() {
 // fetch a status prone to be null
 String status = null;

 return status == null ? BOOK_STATUS : status;
}

236. Do not use Optional for fields
The do not use category continues with the following statement—Optional was not
intended to be used for fields and it doesn't implement Serializable.

Optional Chapter 12

[716]

The Optional class is definitively not intended to be used as a field of a JavaBean. So,
do not do this:

// Avoid
public class Book {

 [access_modifier][static][final]
 Optional<String> title;
 [access_modifier][static][final]
 Optional<String> subtitle = Optional.empty();
 ...
}

But do this:

// Prefer
public class Book {

 [access_modifier][static][final] String title;
 [access_modifier][static][final] String subtitle = "";
 ...
}

237. Do not use Optional in constructor args
The do not use category continues with another scenario that is against the intention of
using Optional. Keep in mind that Optional represents a container for objects;
therefore, Optional adds another level of abstraction. In other words, improper use
of Optional simply adds extra boilerplate code.

Check the following use case of Optional that shows this (this code violates the
previous Do not use Optional for fields section):

// Avoid
public class Book {

 // cannot be null
 private final String title;

 // optional field, cannot be null
 private final Optional<String> isbn;

 public Book(String title, Optional<String> isbn) {
 this.title = Objects.requireNonNull(title,
 () -> "Title cannot be null");

Optional Chapter 12

[717]

 if (isbn == null) {
 this.isbn = Optional.empty();
 } else {
 this.isbn = isbn;
 }

 // or
 this.isbn = Objects.requireNonNullElse(isbn, Optional.empty());
 }

 public String getTitle() {
 return title;
 }

 public Optional<String> getIsbn() {
 return isbn;
 }
}

We can fix this code by removing Optional from the fields and from the constructor
arguments, as follows:

// Prefer
public class Book {

 private final String title; // cannot be null
 private final String isbn; // can be null

 public Book(String title, String isbn) {
 this.title = Objects.requireNonNull(title,
 () -> "Title cannot be null");
 this.isbn = isbn;
 }

 public String getTitle() {
 return title;
 }

 public Optional<String> getIsbn() {
 return Optional.ofNullable(isbn);
 }
}

Optional Chapter 12

[718]

The getter of isbn returns Optional. But do not consider this example as a rule for
transforming all of your getters in this way. Some getters return collections or arrays,
and, in that case, they prefer returning empty collections/arrays instead of Optional.
Use this technique and keep in mind the statement of Brian Goetz (Java's language
architect):

"I think routinely using it as a return value for getters would definitely be over-
use."

- Brian Goetz

238. Do not use Optional in setter args
The do not use category continues with a very tempting scenario that consists of using
Optional in setter arguments. The following code should be avoided since it adds
extra boilerplate code and violates the Do not use Optional for fields section (check
the setIsbn() method):

// Avoid
public class Book {

 private Optional<String> isbn;

 public Optional<String> getIsbn() {
 return isbn;
 }

 public void setIsbn(Optional<String> isbn) {
 if (isbn == null) {
 this.isbn = Optional.empty();
 } else {
 this.isbn = isbn;
 }

 // or
 this.isbn = Objects.requireNonNullElse(isbn, Optional.empty());
 }
}

Optional Chapter 12

[719]

We can fix this code by removing Optional from the fields and from the setters'
arguments as follows:

// Prefer
public class Book {

 private String isbn;

 public Optional<String> getIsbn() {
 return Optional.ofNullable(isbn);
 }

 public void setIsbn(String isbn) {
 this.isbn = isbn;
 }
}

Commonly, this bad practice is used in JPA entities for persistent
properties (to map an entity attribute as Optional). However, using
Optional in domain model entities is possible.

239. Do not use Optional in method args
The do not use category continues with another common mistake of using Optional.
This time let's address the usage of Optional in method arguments.

Using Optional in method arguments is just another use case that may lead to code
that is unnecessarily complicated. Mainly, it is advisable to take responsibility for
null-checking arguments instead of trusting that the callers will create
Optional classes, especially empty Optional classes. This bad practice clutters the
code and is still prone to NullPointerException. The caller can still pass null. So
you have just turned back to checking null arguments.

Keep in mind that Optional is just another object (a container) and is not cheap.
Optional consumes four times the memory of a bare reference!

As a conclusion, think twice before doing something like the following:

// Avoid
public void renderBook(Format format,
 Optional<Renderer> renderer, Optional<String> size) {

 Objects.requireNonNull(format, "Format cannot be null");

Optional Chapter 12

[720]

 Renderer bookRenderer = renderer.orElseThrow(
 () -> new IllegalArgumentException("Renderer cannot be empty")
);

 String bookSize = size.orElseGet(() -> "125 x 200");
 ...
}

Check the following call of this method that creates the required Optional class. But,
obviously, passing null is possible as well and will result
in NullPointerException, but this means that you intentionally defeat the purpose
of Optional—don't think of polluting the preceding code with null checks for
the Optional parameters; that would be a really bad idea:

Book book = new Book();

// Avoid
book.renderBook(new Format(),
 Optional.of(new CoolRenderer()), Optional.empty());

// Avoid
// lead to NPE
book.renderBook(new Format(),
 Optional.of(new CoolRenderer()), null);

We can fix this code by removing Optional classes as follows:

// Prefer
public void renderBook(Format format,
 Renderer renderer, String size) {

 Objects.requireNonNull(format, "Format cannot be null");
 Objects.requireNonNull(renderer, "Renderer cannot be null");

 String bookSize = Objects.requireNonNullElseGet(
 size, () -> "125 x 200");
 ...
}

Optional Chapter 12

[721]

This time, the call of this method doesn't force the creation of Optional:

Book book = new Book();

// Prefer
book.renderBook(new Format(), new CoolRenderer(), null);

When a method can accept optional parameters, rely on old-school
method overloading, not on Optional.

240. Do not use Optional to return empty or
null collections or arrays
Furthermore, in the do not use category, let's tackle the usage of Optional as the
return type that wraps an empty or null collection or array.

Returning Optional that wraps an empty or null collection/array may be comprised
of a clean and lightweight code. Check out the following code that shows this:

// Avoid
public Optional<List<Book>> fetchBooksByYear(int year) {
 // fetching the books may return null
 List<Book> books = ...;

 return Optional.ofNullable(books);
}

Optional<List<Book>> books = author.fetchBooksByYear(2021);

// Avoid
public Optional<Book[]> fetchBooksByYear(int year) {
 // fetching the books may return null
 Book[] books = ...;

 return Optional.ofNullable(books);
}

Optional<Book[]> books = author.fetchBooksByYear(2021);

Optional Chapter 12

[722]

We can clean this code by removing the unnecessary Optional and then rely on
empty collections (for example, Collections.emptyList(), emptyMap(), and
emptySet()) and arrays (for example, new String[0]). This is the preferable
solution:

// Prefer
public List<Book> fetchBooksByYear(int year) {
 // fetching the books may return null
 List<Book> books = ...;

 return books == null ? Collections.emptyList() : books;
}

List<Book> books = author.fetchBooksByYear(2021);

// Prefer
public Book[] fetchBooksByYear(int year) {
 // fetching the books may return null
 Book[] books = ...;

 return books == null ? new Book[0] : books;
}

Book[] books = author.fetchBooksByYear(2021);

If you need to distinguish between a missing and an empty collection/array then
throw an exception for the missing.

241. Avoiding Optional in collections
Relying on Optional in collections can be a design smell. Take another 30 minutes to
re-evaluate the problem and discover better solutions.

The preceding statement is valid especially in the case of Map when the reason behind
this decision sounds like this—so, Map returns null if there is no mapping for a key
or if null is mapped to the key, so I cannot tell whether the key is not present or is a
missing value. I will wrap the values via Optional.ofNullable() and done!

But what will we decide further if Map of Optional<Foo> is populated with null
values, absent Optional values, or even Optional objects that contain something
else, but not Foo? Haven't we just nested the initial problem into one more layer?
How about the performance penalty? Optional is not cost free; it is just another
object that consumes memory and needs to be collected.

Optional Chapter 12

[723]

So, let's consider a solution that should be avoided:

private static final String NOT_FOUND = "NOT FOUND";
...
// Avoid
Map<String, Optional<String>> isbns = new HashMap<>();
isbns.put("Book1", Optional.ofNullable(null));
isbns.put("Book2", Optional.ofNullable("123-456-789"));
...
Optional<String> isbn = isbns.get("Book1");

if (isbn == null) {
 System.out.println("This key cannot be found");
} else {
 String unwrappedIsbn = isbn.orElse(NOT_FOUND);
 System.out.println("Key found, Value: " + unwrappedIsbn);
}

A better and elegant solution can rely on JDK 8, getOrDefault() as follows:

private static String get(Map<String, String> map, String key) {
 return map.getOrDefault(key, NOT_FOUND);
}

Map<String, String> isbns = new HashMap<>();
isbns.put("Book1", null);
isbns.put("Book2", "123-456-789");
...
String isbn1 = get(isbns, "Book1"); // null
String isbn2 = get(isbns, "Book2"); // 123-456-789
String isbn3 = get(isbns, "Book3"); // NOT FOUND

Other solutions can rely on the following:

The containsKey() method
Trivial implementation by extending HashMap
The JDK 8 computeIfAbsent() method
Apache Commons DefaultedMap

We can conclude that there are always better solutions than using Optional in
collections.

But the discussed use case from earlier is not the worst-case scenario. Here are two
more that must be avoided:

Map<Optional<String>, String> items = new HashMap<>();
Map<Optional<String>, Optional<String>> items = new HashMap<>();

Optional Chapter 12

[724]

242. Confusing of() with ofNullable()
Confusing or mistakenly using Optional.of() instead of
Optional.ofNullable(), or vice versa, can lead to weird behaviors and even
NullPointerException.

Optional.of(null) will throw NullPointerException, while
Optional.ofNullable(null) will result in Optional.empty.

Check the following failed attempt to write a snippet of code to avoid
NullPointerException:

// Avoid
public Optional<String> isbn(String bookId) {
 // the fetched "isbn" can be null for the given "bookId"
 String isbn = ...;

 return Optional.of(isbn); // this throws NPE if "isbn" is null :(
}

But, most probably, we actually wanted to use ofNullable(), as follows:

// Prefer
public Optional<String> isbn(String bookId) {
 // the fetched "isbn" can be null for the given "bookId"
 String isbn = ...;

 return Optional.ofNullable(isbn);
}

Using ofNullable() instead of of() is not a disaster, but it may cause some
confusion and bring no value. Check the following code:

// Avoid
// ofNullable() doesn't add any value
return Optional.ofNullable("123-456-789");

// Prefer
return Optional.of("123-456-789"); // no risk to NPE

Optional Chapter 12

[725]

Here is another problem. Let's assume that we want to convert an empty
String object into an empty Optional. We may think that the proper solution will
rely on of(), as follows:

// Avoid
Optional<String> result = Optional.of(str)
 .filter(not(String::isEmpty));

But remember that String can be null. This solution will work fine for empty or
non-empty strings, but not for the null strings. Therefore, ofNullable() gives us
the proper solution, as follows:

// Prefer
Optional<String> result = Optional.ofNullable(str)
 .filter(not(String::isEmpty));

243. Optional<T> versus OptionalInt
If there is no specific reason for using boxed primitives, then it is advisable to avoid
Optional<T> and rely on non-generic OptionalInt, OptionalLong, or
OptionalDouble type.

Boxing and unboxing are expensive operations that are prone to induce performance
penalties. In order to eliminate this risk, we can rely on OptionalInt,
OptionalLong, and OptionalDouble. These are wrappers for the int, long, and
double primitive types.

So, avoid the following (and similar) solutions:

// Avoid
Optional<Integer> priceInt = Optional.of(50);
Optional<Long> priceLong = Optional.of(50L);
Optional<Double> priceDouble = Optional.of(49.99d);

And prefer the following solutions:

// Prefer
// unwrap via getAsInt()
OptionalInt priceInt = OptionalInt.of(50);

// unwrap via getAsLong()
OptionalLong priceLong = OptionalLong.of(50L);

// unwrap via getAsDouble()
OptionalDouble priceDouble = OptionalDouble.of(49.99d);

Optional Chapter 12

[726]

244. Asserting equality of Optionals
Having two Optional objects in assertEquals() doesn't require unwrapped
values. This is applicable because Optional.equals() compares the wrapped
values, not the Optional objects. This is the source code of Optional.equals():

@Override
public boolean equals(Object obj) {

 if (this == obj) {
 return true;
 }

 if (!(obj instanceof Optional)) {
 return false;
 }

 Optional<?> other = (Optional<?>) obj;

 return Objects.equals(value, other.value);
}

Let's assume that we have two Optional objects:

Optional<String> actual = ...;
Optional<String> expected = ...;

// or
Optional actual = ...;
Optional expected = ...;

It is advisable to avoid a test written as follows:

// Avoid
@Test
public void givenOptionalsWhenTestEqualityThenTrue()
 throws Exception {

 assertEquals(expected.get(), actual.get());
}

If expected and/or actual is empty, then the get() method will cause an exception of
the NoSuchElementException type.

Optional Chapter 12

[727]

It is better to use the following test:

// Prefer
@Test
public void givenOptionalsWhenTestEqualityThenTrue()
 throws Exception {

 assertEquals(expected, actual);
}

245. Transforming values via Map() and
flatMap()
The Optional.map() and flatMap() methods are convenient for transforming an
Optional value.

The map() method applies the function argument to the value, then returns the result
wrapped in an Optional object. The flatMap() method applies the function
argument to the value and then returns the result directly.

Let's assume that we have Optional<String>, and we want to transform this
String from lowercase into uppercase. An uninspired solution can be written as
follows:

Optional<String> lowername = ...; // may be empty as well

// Avoid
Optional<String> uppername;

if (lowername.isPresent()) {
 uppername = Optional.of(lowername.get().toUpperCase());
} else {
 uppername = Optional.empty();
}

A more inspired solution (in a single line of code) will rely on Optional.map(), as
follows:

// Prefer
Optional<String> uppername = lowername.map(String::toUpperCase);

Optional Chapter 12

[728]

The map() method can be useful to avoid breaking a chain of lambdas as well. Let's
consider List<Book>, and we want to find the first book that's $50 cheaper and, if
such a book exists, change its title to uppercase. Again, an uninspired solution will be
as follows:

private static final String NOT_FOUND = "NOT FOUND";
List<Book> books = Arrays.asList();
...
// Avoid
Optional<Book> book = books.stream()
 .filter(b -> b.getPrice()<50)
 .findFirst();

String title;
if (book.isPresent()) {
 title = book.get().getTitle().toUpperCase();
} else {
 title = NOT_FOUND;
}

Relying on map(), we can do it via the following chain of lambdas:

// Prefer
String title = books.stream()
 .filter(b -> b.getPrice()<50)
 .findFirst()
 .map(Book::getTitle)
 .map(String::toUpperCase)
 .orElse(NOT_FOUND);

In the preceding example, the getTitle() method is a classical getter that returns
the title of the book as String. But let's modify this getter to return Optional:

public Optional<String> getTitle() {
 return ...;
}

This time, we cannot use map() because map(Book::getTitle) will
return Optional<Optional<String>> instead of Optional<String>. But if we
rely on flatMap(), then the return of it will not be wrapped in an additional
Optional object:

// Prefer
String title = books.stream()
 .filter(b -> b.getPrice()<50)
 .findFirst()
 .flatMap(Book::getTitle)

Optional Chapter 12

[729]

 .map(String::toUpperCase)
 .orElse(NOT_FOUND);

So, Optional.map() wraps the result of transformation in an Optional object. If
this result is Optional itself, then we obtain Optional<Optional<...>>. On the
other hand, flatMap() does not wrap the result within an additional Optional
object.

246. Filter values via Optional.filter()
Using Optional.filter() to accept or reject a wrapped value is a very convenient
approach since it can be accomplished without explicitly unwrapping the value. We
just pass a predicate (the condition) as an argument and get an Optional object (the
initial Optional object if the condition is met or an empty Optional object if the
condition is not met).

Let's consider the following uninspired approach for validating the length of a book
ISBN:

// Avoid
public boolean validateIsbnLength(Book book) {

 Optional<String> isbn = book.getIsbn();

 if (isbn.isPresent()) {
 return isbn.get().length() > 10;
 }

 return false;
}

The preceding solution relies on explicitly unwrapping the Optional value. But if we
rely on Optional.filter(), we can do it without this explicit unwrapping, as
follows:

// Prefer
public boolean validateIsbnLength(Book book) {

 Optional<String> isbn = book.getIsbn();

 return isbn.filter((i) -> i.length() > 10)
 .isPresent();
}

Optional Chapter 12

[730]

Optional.filter() is also useful for avoiding breaking lambda
chains.

247. Chaining the Optional and Stream APIs
Starting with JDK 9, we can refer to an Optional instance as Stream by applying
the Optional.stream() method.

This is quite useful when we have to chain the Optional and Stream APIs. The
Optional.stream() method returns a Stream of one element (the value
of Optional) or an empty Stream (if Optional has no value). Furthermore, we can
use all of the methods that are available in the Stream API.

Let's assume that we have a method for fetching books by ISBN (if no book matches
the given ISBN, then this method returns an empty Optional object):

public Optional<Book> fetchBookByIsbn(String isbn) {
 // fetching book by the given "isbn" can return null
 Book book = ...;

 return Optional.ofNullable(book);
}

In addition to this, we loop a List of ISBNs and return List of Book as follows (each
ISBN is passed through the fetchBookByIsbn() method):

// Avoid
public List<Book> fetchBooks(List<String> isbns) {

 return isbns.stream()
 .map(this::fetchBookByIsbn)
 .filter(Optional::isPresent)
 .map(Optional::get)
 .collect(toList());
}

The focus here is on the following two lines of code:

.filter(Optional::isPresent)

.map(Optional::get)

Optional Chapter 12

[731]

Since the fetchBookByIsbn() method can return empty Optional classes, we must
ensure that we eliminate them from the final result. For this, we call
Stream.filter() and apply the Optional.isPresent() function to each
Optional object returned by fetchBookByIsbn(). So, after filtering, we have only
Optional classes with present values. Furthermore, we apply the Stream.map()
method for unwrapping these Optional classes to Book. Finally, we collect the
Book objects in List.

But we can accomplish the same thing more elegantly using Optional.stream(), as
follows:

// Prefer
public List<Book> fetchBooksPrefer(List<String> isbns) {

 return isbns.stream()
 .map(this::fetchBookByIsbn)
 .flatMap(Optional::stream)
 .collect(toList());
}

Practically, in cases like these, we can use Optional.stream() to
replace filter() and map() with flatMap().

Calling Optional.stream() for each Optional<Book> returned by
fetchBookByIsbn() will result in Stream<Book> containing a single Book object or
nothing (an empty stream). If Optional<Book> doesn't contain a value (is empty),
then Stream<Book> is also empty. Relying on flatMap() instead of map() will
avoid a result of the Stream<Stream<Book>> type.

As a bonus, we can convert Optional into List as follows:

public static<T> List<T> optionalToList(Optional<T> optional) {
 return optional.stream().collect(toList());
}

248. Optional and identity-sensitive operations
Identity-sensitive operations include reference equality (==), identity hash-based, or
synchronization.

Optional Chapter 12

[732]

The Optional class is a value-based class such as LocalDateTime, therefore identity-
sensitive operations should be avoided.

For example, let's test the equality of two Optional classes via ==:

Book book = new Book();
Optional<Book> op1 = Optional.of(book);
Optional<Book> op2 = Optional.of(book);

// Avoid
// op1 == op2 => false, expected true
if (op1 == op2) {
 System.out.println("op1 is equal with op2, (via ==)");
} else {
 System.out.println("op1 is not equal with op2, (via ==)");
}

This will give the following output:

op1 is not equal with op2, (via ==)

Since op1 and op2 are not references to the same object, they are not equal so don't
conform with the== implementation.

To compare the values, we need to rely on equals(), as follows:

// Prefer
if (op1.equals(op2)) {
 System.out.println("op1 is equal with op2, (via equals())");
} else {
 System.out.println("op1 is not equal with op2, (via equals())");
}

This will give the following output:

op1 is equal with op2, (via equals())

In the context of the identity-sensitive operations, never do something like this
(think that Optional is a value-based class and such classes should not be used for
locking—for more details, see https:/ ​/​rules. ​sonarsource. ​com/ ​java/ ​tag/ ​java8/
RSPEC-​3436):

Optional<Book> book = Optional.of(new Book());
synchronized(book) {
 ...
}

https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436
https://rules.sonarsource.com/java/tag/java8/RSPEC-3436

Optional Chapter 12

[733]

249. Returning a boolean if the Optional class
is empty
Let's assume that we have the following simple method:

public static Optional<Cart> fetchCart(long userId) {
 // the shopping cart of the given "userId" can be null
 Cart cart = ...;

 return Optional.ofNullable(cart);
}

Now, we want to write a method named cartIsEmpty() that calls the
fetchCart() method and returns a flag that is true if the fetched cart is empty.
Before JDK 11, we could implement this method based on Optional.isPresent(),
as follows:

// Avoid (after JDK 11)
public static boolean cartIsEmpty(long id) {
 Optional<Cart> cart = fetchCart(id);

 return !cart.isPresent();
}

This solution works fine but is not very expressive. We check for emptiness via
presence, and we have to negate the isPresent() result.

Since JDK 11, the Optional class has been enriched with a new method
named isEmpty(). As its name suggests, this is a flag method that returns true if
the tested Optional class is empty. So, we can increase the expressiveness of our
solution as follows:

// Prefer (after JDK 11)
public static boolean cartIsEmpty(long id) {
 Optional<Cart> cart = fetchCart(id);

 return cart.isEmpty();
}

Optional Chapter 12

[734]

Summary
Done! This was the last problem of this chapter. At this point, you should have all of
the arguments needed for using Optional correctly.

Download the applications from this chapter to see the results and to see the
additional details.

13
The HTTP Client and

WebSocket APIs
This chapter includes 20 problems that are meant to cover the HTTP Client and
WebSocket APIs.

Do you remember HttpUrlConnection? Well, JDK 11 comes with the HTTP Client
API as a reinvention of HttpUrlConnection. The HTTP Client API is easy to use
and supports HTTP/2 (default) and HTTP/1.1. For backward compatibility, the HTTP
Client API will automatically downgrade from HTTP/2 to HTTP 1.1 when the server
doesn't support HTTP/2. Moreover, the HTTP Client API supports synchronous and
asynchronous programming models and relies on streams to transfer data (reactive
streams). It also supports the WebSocket protocol, which is used in real-time web
applications to provide client-server communication with low message overhead.

Problems
Use the following problems to test your HTTP Client and WebSocket API
programming prowess. I strongly encourage you to give each problem a try before
you turn to the solutions and download the example programs:

HTTP/2: Provide a brief overview of the HTTP/2 protocol250.
Triggering an asynchronous GET request: Write a program that uses the251.
HTTP Client API to trigger an asynchronous GET request and display the
response code and body.
Setting a proxy: Write a program that uses the HTTP Client API to set up a252.
connection via a proxy.
Setting/getting headers: Write a program that adds additional headers to253.
the request and gets the headers of the response.

The HTTP Client and WebSocket APIs Chapter 13

[736]

Specifying the HTTP method: Write a program that specifies the HTTP254.
method of a request (for example, GET, POST, PUT, and DELETE).
Setting the request body: Write a program that uses the HTTP Client API255.
to add a body to a request.
Setting connection authentication: Write a program that uses the HTTP256.
Client API to set up a connection authentication via username and
password.
Setting a timeout: Write a program that uses the HTTP Client API to set257.
the amount of time we want to wait for a response (timeout).
Setting the redirect policy: Write a program that uses the HTTP Client API258.
to automatically redirect if needed.
Sending sync and async requests: Write a program that sends the same259.
request in sync and async modes.
Handling cookies: Write a program that uses the HTTP Client API to set a260.
cookie handler.
Getting response information: Write a program that uses the HTTP Client261.
API to get information about the response (for example, URI, version,
headers, status code, body, and so on).
Handling response body types: Write several snippets of code to262.
exemplify how to handle common response body types via
HttpResponse.BodyHandlers.
Getting, updating, and saving a JSON: Write a program that uses the263.
HTTP Client API to get, update, and save a JSON.
Compression: Write a program that handles compressed responses (for264.
example, .gzip).
Handling form data: Write a program that uses the HTTP Client API to265.
submit a data form (application/x-www-form-urlencoded).
Downloading a resource: Write a program that uses the HTTP Client API266.
to download a resource.
Uploading with multipart: Write a program that uses the HTTP Client API267.
to upload a resource.
HTTP/2 server push: Write a program that exemplifies the HTTP/2 server268.
push feature via the HTTP Client API.
WebSocket: Write a program that opens a connection to a WebSocket269.
endpoint, collects data for 10 seconds, and closes the connection.

The HTTP Client and WebSocket APIs Chapter 13

[737]

Solutions
The following sections describe the solutions to the preceding problems. Remember
that there usually isn't a single correct way to solve a particular problem. Also,
remember that the explanations that are shown here only include the most interesting
and important details that are needed to solve the problems. You can download the
example solutions to view additional details and experiment with the programs
from https:/​/​github. ​com/ ​PacktPublishing/ ​Java- ​Coding- ​Problems.

250. HTTP/2
HTTP/2 is an efficient protocol that substantially and measurably improves the
HTTP/1.1 protocol.

As part of a bigger picture, HTTP/2 has two parts:

The framing layer: This is the HTTP/2 multiplexing core ability
The data layer: This contains the data (what we typically refer to as HTTP)

The following diagram depicts the communication in HTTP/1.1 (top) and HTTP/2
(bottom):

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

The HTTP Client and WebSocket APIs Chapter 13

[738]

HTTP/2 is widely adopted by servers and browsers, and it comes with the following
improvements over HTTP/1.1:

Binary protocol: Less readable by humans but more machine friendly, the
HTTP/2 framing layer is a binary framed protocol.
Multiplexing: This refers to interwoven requests and responses. Multiple
requests run at the same time on the same connection.
Server push: The server can decide to send additional resources to the
client.
Single connection to server: HTTP/2 uses a single communication line
(TCP connection) per origin (domain).
Header compression: HTTP/2 relies on HPACK compression to reduce
headers. This has a significant impact on redundant bytes.
Encrypted: Most of the data that's transferred over the wires is encrypted.

251. Triggering an asynchronous GET request
Triggering asynchronous GET request is a three-step job, as follows:

Create a new HttpClient object (java.net.http.HttpClient):1.

HttpClient client = HttpClient.newHttpClient();

Build an HttpRequest object (java.net.http.HttpRequest) and2.
specify the request (by default, this is a GET request):

HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

For setting the URI, we can call the
HttpRequest.newBuilder(URI) constructor or call the uri(URI)
method on the Builder instance (like we did previously).

Trigger the request and wait for the response3.
(java.net.http.HttpResponse). Being a synchronous request, the
application will block until the response is available:

HttpResponse<String> response
 = client.send(request, BodyHandlers.ofString());

The HTTP Client and WebSocket APIs Chapter 13

[739]

If we group these three steps and add the lines for displaying the response code
and body at the console, then we obtain the following code:

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

HttpResponse<String> response
 = client.send(request, BodyHandlers.ofString());

System.out.println("Status code: " + response.statusCode());
System.out.println("\n Body: " + response.body());

One possible output for the preceding code is as follows:

Status code: 200
Body:
{
 "data": {
 "id": 2,
 "email": "janet.weaver@reqres.in",
 "first_name": "Janet",
 "last_name": "Weaver",
 "avatar": "https://s3.amazonaws.com/..."
 }
}

By default, this request takes place using HTTP/2. However, we can explicitly set the
version via HttpRequest.Builder.version() as well. This method gets an
argument of the HttpClient.Version type, which is an enum data type that exposes
two constants: HTTP_2 and HTTP_1_1. The following is an example of explicitly
downgrading to HTTP/1.1:

HttpRequest request = HttpRequest.newBuilder()
 .version(HttpClient.Version.HTTP_1_1)
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

The default settings for HttpClient are as follows:

HTTP/2
No authenticator
No connection timeout
No cookie handler

The HTTP Client and WebSocket APIs Chapter 13

[740]

Default thread pool executor
Redirection policy of NEVER
Default proxy selector
Default SSL context

We'll take a look at the query parameter builder in the next section.

Query parameter builder
Working with URIs that contain query parameters implies encoding these
parameters. The Java built-in method for accomplishing this task is
URLEncoder.encode(). But concatenating and encoding several query parameters
leads to something similar to the following:

URI uri = URI.create("http://localhost:8080/books?name=" +
 URLEncoder.encode("Games & Fun!", StandardCharsets.UTF_8) +
 "&no=" + URLEncoder.encode("124#442#000", StandardCharsets.UTF_8) +
 "&price=" + URLEncoder.encode("$23.99", StandardCharsets.UTF_8)
);

When we have to work with a significant number of query parameters, this solution
is not very convenient. We can, however, try to write a helper method to hide the
URLEncoder.encode() method in a loop over a collection of query parameters, or
we can rely on a URI builder.

In Spring, the URI builder is
org.springframework.web.util.UriComponentsBuilder. The following code is
self-explanatory:

URI uri = UriComponentsBuilder.newInstance()
 .scheme("http")
 .host("localhost")
 .port(8080)
 .path("books")
 .queryParam("name", "Games & Fun!")
 .queryParam("no", "124#442#000")
 .queryParam("price", "$23.99")
 .build()
 .toUri();

In a non-Spring application, we can rely on a URI builder such as the urlbuilder
library (https:/ ​/ ​github. ​com/ ​mikaelhg/ ​urlbuilder). The code that's bundled with
this book contains an example of using this.

https://github.com/mikaelhg/urlbuilder
https://github.com/mikaelhg/urlbuilder
https://github.com/mikaelhg/urlbuilder
https://github.com/mikaelhg/urlbuilder
https://github.com/mikaelhg/urlbuilder
https://github.com/mikaelhg/urlbuilder
https://github.com/mikaelhg/urlbuilder
https://github.com/mikaelhg/urlbuilder
https://github.com/mikaelhg/urlbuilder
https://github.com/mikaelhg/urlbuilder
https://github.com/mikaelhg/urlbuilder

The HTTP Client and WebSocket APIs Chapter 13

[741]

252. Setting a proxy
To set up a proxy, we rely on the HttpClient.proxy() method of a Builder
method. The proxy() method gets an argument of the ProxySelector type, which
can be the system-wide proxy selector (via getDefault()) or the proxy selector
that's pointed to via its address (via InetSocketAddress).

Let's assume that we have a proxy at the proxy.host:80 address. We can set up this
proxy as follows:

HttpClient client = HttpClient.newBuilder()
 .proxy(ProxySelector.of(new InetSocketAddress("proxy.host", 80)))
 .build();

Alternatively, we can set up the system-wide proxy selector, as follows:

HttpClient client = HttpClient.newBuilder()
 .proxy(ProxySelector.getDefault())
 .build();

253. Setting/getting headers
HttpRequest and HttpResponse expose a suite of methods for working with
headers. We'll learn about these methods in the upcoming sections.

Setting request headers
The HttpRequest.Builder class uses three methods to set additional headers:

header​(String name, String value) and setHeader​(String
name, String value): These are used to add headers one by one, as
shown in the following code:

HttpRequest request = HttpRequest.newBuilder()
 .uri(...)
 ...
 .header("key_1", "value_1")
 .header("key_2", "value_2")
 ...
 .build();

HttpRequest request = HttpRequest.newBuilder()
 .uri(...)

The HTTP Client and WebSocket APIs Chapter 13

[742]

 ...
 .setHeader("key_1", "value_1")
 .setHeader("key_2", "value_2")
 ...
 .build();

The difference between header() and setHeader() is that the
former adds the specified header while the latter sets the specified
header. In other words, header() adds the given value to the list of
values for that name/key, while setHeader() overwrites any
previously set values for that name/key.

headers​(String... headers): This is used to add headers separated by
a comma, as shown in the following code:

HttpRequest request = HttpRequest.newBuilder()
 .uri(...)
 ...
 .headers("key_1", "value_1", "key_2",
 "value_2", "key_3", "value_3", ...)
 ...
 .build();

For example, the Content-Type: application/json and Referer:
https://reqres.in/ headers can be added to the request that's triggered by the
https://reqres.in/api/users/2 URI, as follows:

HttpRequest request = HttpRequest.newBuilder()
 .header("Content-Type", "application/json")
 .header("Referer", "https://reqres.in/")
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

You can also do the following:

HttpRequest request = HttpRequest.newBuilder()
 .setHeader("Content-Type", "application/json")
 .setHeader("Referer", "https://reqres.in/")
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

The HTTP Client and WebSocket APIs Chapter 13

[743]

Finally, you can do something like this:

HttpRequest request = HttpRequest.newBuilder()
 .headers("Content-Type", "application/json",
 "Referer", "https://reqres.in/")
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

Depending on the goal, all three methods can be combined in order to specify the
request headers.

Getting request/response headers
Getting the request headers can be done using the HttpRequest.headers()
method. A similar method exists in HttpResponse for getting the headers of the
response. Both methods return an HttpHeaders object.

Both of these methods can be used in the same way, so let's focus on getting the
response headers. We can get the headers like so:

HttpResponse<...> response ...
HttpHeaders allHeaders = response.headers();

Getting all of the values of a header can be done using HttpHeaders.allValues(),
as follows:

List<String> allValuesOfCacheControl
 = response.headers().allValues("Cache-Control");

Getting only the first value of a header can be done using
HttpHeaders.firstValue(), as follows:

Optional<String> firstValueOfCacheControl
 = response.headers().firstValue("Cache-Control");

If the returned value of a header is Long, then rely on
HttpHeaders.firstValueAsLong(). This method gets an
argument representing the name of the header and
returns Optional<Long>. If the value of the specified header
cannot be parsed as Long, then NumberFormatException will be
thrown.

The HTTP Client and WebSocket APIs Chapter 13

[744]

254. Specifying the HTTP method
We can indicate the HTTP method that's used by our request using the following
methods from HttpRequest.Builder:

GET(): This method sends the request using the HTTP GET method, as
shown in the following example:

HttpRequest requestGet = HttpRequest.newBuilder()
 .GET() // can be omitted since it is default
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

POST(): This method sends the request using the HTTP POST method, as
shown in the following example:

HttpRequest requestPost = HttpRequest.newBuilder()
 .header("Content-Type", "application/json")
 .POST(HttpRequest.BodyPublishers.ofString(
 "{\"name\": \"morpheus\",\"job\": \"leader\"}"))
 .uri(URI.create("https://reqres.in/api/users"))
 .build();

PUT(): This method sends the request using the HTTP PUT method, as
shown in the following example:

HttpRequest requestPut = HttpRequest.newBuilder()
 .header("Content-Type", "application/json")
 .PUT(HttpRequest.BodyPublishers.ofString(
 "{\"name\": \"morpheus\",\"job\": \"zion resident\"}"))
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

DELETE(): This method sends the request using the HTTP DELETE method,
as shown in the following example:

HttpRequest requestDelete = HttpRequest.newBuilder()
 .DELETE()
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

The client can handle all types of HTTP methods, not only the predefined methods
(GET, POST, PUT, and DELETE). To create a request with a different HTTP method, we
just need to call method().

The HTTP Client and WebSocket APIs Chapter 13

[745]

The following solution triggers an HTTP PATCH request:

HttpRequest requestPatch = HttpRequest.newBuilder()
 .header("Content-Type", "application/json")
 .method("PATCH", HttpRequest.BodyPublishers.ofString(
 "{\"name\": \"morpheus\",\"job\": \"zion resident\"}"))
 .uri(URI.create("https://reqres.in/api/users/1"))
 .build();

When no request body is required, we can rely on BodyPublishers.noBody(). The
following solution uses the noBody() method to trigger an HTTP HEAD request:

HttpRequest requestHead = HttpRequest.newBuilder()
 .method("HEAD", HttpRequest.BodyPublishers.noBody())
 .uri(URI.create("https://reqres.in/api/users/1"))
 .build();

In the case of multiple similar requests, we can rely on the copy() method to copy
the builder, as shown in the following snippet of code:

HttpRequest.Builder builder = HttpRequest.newBuilder()
 .uri(URI.create("..."));

HttpRequest request1 = builder.copy().setHeader("...", "...").build();
HttpRequest request2 = builder.copy().setHeader("...", "...").build();

255. Setting a request body
Setting a request body can be accomplished using HttpRequest.Builder.POST()
and HttpRequest.Builder.PUT() or by using method() (for example,
method("PATCH", HttpRequest.BodyPublisher)). POST() and PUT() take an
argument of the HttpRequest.BodyPublisher type. The API comes with several
implementations of this interface (BodyPublisher) in
the HttpRequest.BodyPublishers class, as follows:

BodyPublishers.ofString()

BodyPublishers.ofFile()

BodyPublishers.ofByteArray()

BodyPublishers.ofInputStream()

We'll take a look at these implementations in the following sections.

The HTTP Client and WebSocket APIs Chapter 13

[746]

Creating a body from a string
Creating a body from a string can be accomplished using
BodyPublishers.ofString(), as shown in the following snippet of code:

HttpRequest requestBody = HttpRequest.newBuilder()
 .header("Content-Type", "application/json")
 .POST(HttpRequest.BodyPublishers.ofString(
 "{\"name\": \"morpheus\",\"job\": \"leader\"}"))
 .uri(URI.create("https://reqres.in/api/users"))
 .build();

For specifying a charset call, use ofString(String s, Charset charset).

Creating a body from InputStream
Creating a body from InputStream can be accomplished using
BodyPublishers.ofInputStream(), as shown in the following snippet of code
(here, we rely on ByteArrayInputStream but, of course, any other InputStream is
suitable):

HttpRequest requestBodyOfInputStream = HttpRequest.newBuilder()
 .header("Content-Type", "application/json")
 .POST(HttpRequest.BodyPublishers.ofInputStream(()
 -> inputStream("user.json")))
 .uri(URI.create("https://reqres.in/api/users"))
 .build();

private static ByteArrayInputStream inputStream(String fileName) {

 try (ByteArrayInputStream inputStream = new ByteArrayInputStream(
 Files.readAllBytes(Path.of(fileName)))) {

 return inputStream;
 } catch (IOException ex) {
 throw new RuntimeException("File could not be read", ex);
 }
}

In order to take advantage of lazy creation, InputStream has to be passed
as Supplier.

The HTTP Client and WebSocket APIs Chapter 13

[747]

Creating a body from a byte array
Creating a body from a byte array can be accomplished using
BodyPublishers.ofByteArray(), as shown in the following snippet of code:

HttpRequest requestBodyOfByteArray = HttpRequest.newBuilder()
 .header("Content-Type", "application/json")
 .POST(HttpRequest.BodyPublishers.ofByteArray(
 Files.readAllBytes(Path.of("user.json"))))
 .uri(URI.create("https://reqres.in/api/users"))
 .build();

We can also send only a part of the byte array using ofByteArray(byte[] buf,
int offset, int length). Moreover, we can provide data from Iterable of byte
arrays using ofByteArrays(Iterable<byte[]> iter).

Creating a body from a file
Creating a body from a file can be accomplished using BodyPublishers.ofFile(),
as shown in the following snippet of code:

HttpRequest requestBodyOfFile = HttpRequest.newBuilder()
 .header("Content-Type", "application/json")
 .POST(HttpRequest.BodyPublishers.ofFile(Path.of("user.json")))
 .uri(URI.create("https://reqres.in/api/users"))
 .build();

256. Setting connection authentication
Typically, authentication to a server is accomplished using a username and password.
In code form, this can be done by using the Authenticator class (this negotiates the
credentials for HTTP authentication) and the PasswordAuthentication class (the
holder for the username and password) together, as follows:

HttpClient client = HttpClient.newBuilder()
 .authenticator(new Authenticator() {

 @Override
 protected PasswordAuthentication getPasswordAuthentication() {

 return new PasswordAuthentication(
 "username",
 "password".toCharArray());
 }

The HTTP Client and WebSocket APIs Chapter 13

[748]

 })
 .build();

Furthermore, the client can be used to send requests:

HttpRequest request = HttpRequest.newBuilder()
 ...
 .build();

HttpResponse<String> response
 = client.send(request, HttpResponse.BodyHandlers.ofString());

Authenticator supports different authentication schemes (for
example, basic or digest authentication).

Another solution consists of adding credentials in the header, as follows:

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .header("Authorization", basicAuth("username", "password"))
 ...
 .build();

HttpResponse<String> response
 = client.send(request, HttpResponse.BodyHandlers.ofString());

private static String basicAuth(String username, String password) {
 return "Basic " + Base64.getEncoder().encodeToString(
 (username + ":" + password).getBytes());
}

In the case of a Bearer authentication (HTTP bearer token), we do the following:

HttpRequest request = HttpRequest.newBuilder()
 .header("Authorization",
 "Bearer mT8JNMyWCG0D7waCHkyxo0Hm80YBqelv5SBL")
 .uri(URI.create("https://gorest.co.in/public-api/users"))
 .build();

We can also do this in the body of a POST request:

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .header("Content-Type", "application/json")

The HTTP Client and WebSocket APIs Chapter 13

[749]

 .POST(BodyPublishers.ofString("{\"email\":\"eve.holt@reqres.in\",
 \"password\":\"cityslicka\"}"))
 .uri(URI.create("https://reqres.in/api/login"))
 .build();

HttpResponse<String> response
 = client.send(request, HttpResponse.BodyHandlers.ofString());

Different requests can use different credentials. Moreover,
Authenticator provides a suite of methods (for example,
getRequestingSite()) that are useful if we wish to find out what
values should be provided. In production, the application should
not provide the credentials in plaintext, like they were in these
examples.

257. Setting a timeout
By default, a request has no timeout (infinite timeout). To set the amount of time we
want to wait for a response (timeout), we can call the
HttpRequest.Builder.timeout() method. This method gets an argument of
the Duration type, which can be used like so:

HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("https://reqres.in/api/users/2"))
 .timeout(Duration.of(5, ChronoUnit.MILLIS))
 .build();

If the specified timeout elapses,
then java.net.http.HttpConnectTimeoutException will be thrown.

258. Setting the redirect policy
When we try to access a resource that was moved to a different URI, the server will
return an HTTP status code in the range of 3xx, as well as information about the new
URI. Browsers are capable of automatically sending another request to the new
location when they receive a redirect response (301, 302, 303, 307, and 308).

The HTTP Client and WebSocket APIs Chapter 13

[750]

The HTTP Client API can automatically redirect to this new URI if we explicitly set
the redirect policy via followRedirects(), as follows:

HttpClient client = HttpClient.newBuilder()
 .followRedirects(HttpClient.Redirect.ALWAYS)
 .build();

To never redirect, just give the HttpClient.Redirect.NEVER constant to
followRedirects() (this is the default).

To always redirect, except from HTTPS URLs to HTTP URLs, just give the
HttpClient.Redirect.NORMAL constant to followRedirects().

When the redirect policy is not set to ALWAYS, the application is responsible for
handling redirects. Commonly, this is accomplished by reading the new address from
the HTTP Location header, as follows (the following code is only interested in
redirecting if the returned status code is 301 (moved permanently) or 308
(permanent redirect)):

int sc = response.statusCode();

if (sc == 301 || sc == 308) { // use an enum for HTTP response codes
 String newLocation = response.headers()
 .firstValue("Location").orElse("");

 // handle the redirection to newLocation
}

A redirect can be easily detected by comparing the request URI with the response
URI. If they are not the same, then a redirect occurs:

if (!request.uri().equals(response.uri())) {
 System.out.println("The request was redirected to: "
 + response.uri());
}

259. Sending sync and async requests
Sending a request to a server can be accomplished using the following two methods
from HttpClient:

send(): This method sends a request synchronously (this will block until
the response is available or a timeout occurs)
sendAsync(): This method sends a request asynchronously (non-blocking)

The HTTP Client and WebSocket APIs Chapter 13

[751]

We'll explain the different ways we can send a request in the next section.

Sending a request synchronously
We've already done this in the previous problems, and so we will just provide you
with a quick remainder, as follows:

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

HttpResponse<String> response
 = client.send(request, HttpResponse.BodyHandlers.ofString());

Sending a request asynchronously
In order to send requests asynchronously, the HTTP Client API relies on
CompletableFeature, as discussed in Chapter 11, Concurrency – Deep Dive, and the
sendAsync() method, as follows:

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

client.sendAsync(request, HttpResponse.BodyHandlers.ofString())
 .thenApply(HttpResponse::body)
 .exceptionally(e -> "Exception: " + e)
 .thenAccept(System.out::println)
 .get(30, TimeUnit.SECONDS); // or join()

Alternatively, let's assume that, while waiting for the response, we want to execute
other tasks as well:

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

CompletableFuture<String> response
 = client.sendAsync(request, HttpResponse.BodyHandlers.ofString())

The HTTP Client and WebSocket APIs Chapter 13

[752]

 .thenApply(HttpResponse::body)
 .exceptionally(e -> "Exception: " + e);

while (!response.isDone()) {
 Thread.sleep(50);
 System.out.println("Perform other tasks
 while waiting for the response ...");
}

String body = response.get(30, TimeUnit.SECONDS); // or join()
System.out.println("Body: " + body);

Sending multiple requests concurrently
How do we send multiple requests concurrently and wait for all of the responses to
be available?

As we know, CompletableFuture comes with the allOf() method (for more
details, please read Chapter 11, Concurrency – Deep Dive), which can execute tasks in
parallel and waits for all of them to complete. CompletableFuture<Void> is
returned.

The following code waits for the responses to four requests:

List<URI> uris = Arrays.asList(
 new URI("https://reqres.in/api/users/2"), // one user
 new URI("https://reqres.in/api/users?page=2"), // list of users
 new URI("https://reqres.in/api/unknown/2"), // list of resources
 new URI("https://reqres.in/api/users/23")); // user not found

HttpClient client = HttpClient.newHttpClient();

List<HttpRequest> requests = uris.stream()
 .map(HttpRequest::newBuilder)
 .map(reqBuilder -> reqBuilder.build())
 .collect(Collectors.toList());

CompletableFuture.allOf(requests.stream()
 .map(req -> client.sendAsync(
 req, HttpResponse.BodyHandlers.ofString())
 .thenApply((res) -> res.uri() + " | " + res.body() + "\n")
 .exceptionally(e -> "Exception: " + e)
 .thenAccept(System.out::println))
 .toArray(CompletableFuture<?>[]::new))
 .join();

The HTTP Client and WebSocket APIs Chapter 13

[753]

To collect the bodies of the responses (for example, in List<String>), consider the
WaitAllResponsesFetchBodiesInList class, which is available in the code that's
bundled with this book.

Using a custom Executor object can be accomplished as follows:

ExecutorService executor = Executors.newFixedThreadPool(5);

HttpClient client = HttpClient.newBuilder()
 .executor(executor)
 .build();

260. Handling cookies
By default, JDK 11's HTTP Client supports cookies, but there are instances where
built-in support is disabled. We can enable it as follows:

HttpClient client = HttpClient.newBuilder()
 .cookieHandler(new CookieManager())
 .build();

So, the HTTP Client API allows us to set a cookie handler using
the HttpClient.Builder.cookieHandler() method. This method gets an
argument of the CookieManager type.

The following solution sets CookieManager that doesn't accept cookies:

HttpClient client = HttpClient.newBuilder()
 .cookieHandler(new CookieManager(null, CookiePolicy.ACCEPT_NONE))
 .build();

For accepting cookies, set CookiePolicy to ALL (accept all cookies) or
ACCEPT_ORIGINAL_SERVER (accept cookies only from the original server).

The following solutions accept all cookies and display them in the console (if any
credentials are reported as invalid, then consider obtaining a new token from https:/
/​gorest.​co.​in/ ​rest- ​console. ​html):

CookieManager cm = new CookieManager();
cm.setCookiePolicy(CookiePolicy.ACCEPT_ALL);

HttpClient client = HttpClient.newBuilder()
 .cookieHandler(cm)
 .build();

https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html
https://gorest.co.in/rest-console.html

The HTTP Client and WebSocket APIs Chapter 13

[754]

HttpRequest request = HttpRequest.newBuilder()
 .header("Authorization",
 "Bearer mT8JNMyWCG0D7waCHkyxo0Hm80YBqelv5SBL")
 .uri(URI.create("https://gorest.co.in/public-api/users/1"))
 .build();

HttpResponse<String> response
 = client.send(request, HttpResponse.BodyHandlers.ofString());

System.out.println("Status code: " + response.statusCode());
System.out.println("\n Body: " + response.body());

CookieStore cookieStore = cm.getCookieStore();
System.out.println("\nCookies: " + cookieStore.getCookies());

Checking the set-cookie header can be done as follows:

Optional<String> setcookie
 = response.headers().firstValue("set-cookie");

261. Getting response information
In order to get information about the response, we can rely on the methods from the
HttpResponse class. The names of these methods are very intuitive; therefore, the
following snippet of code is self-explanatory:

...
HttpResponse<String> response
 = client.send(request, HttpResponse.BodyHandlers.ofString());

System.out.println("Version: " + response.version());
System.out.println("\nURI: " + response.uri());
System.out.println("\nStatus code: " + response.statusCode());
System.out.println("\nHeaders: " + response.headers());
System.out.println("\n Body: " + response.body());

Consider exploring the documentation to find more useful methods.

The HTTP Client and WebSocket APIs Chapter 13

[755]

262. Handling response body types
Handling response body types can be accomplished using
HttpResponse.BodyHandler. The API comes with several implementations of this
interface (BodyHandler) in the HttpResponse.BodyHandlers class, as follows:

BodyHandlers.ofByteArray()

BodyHandlers.ofFile()

BodyHandlers.ofString()

BodyHandlers.ofInputStream()

BodyHandlers.ofLines()

Considering the following request, let's look at several solutions for handling the
response body:

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

We'll look at how to handle different types of response bodies in the following
sections.

Handling a response body as a string
Handling a body response as a string can be accomplished using
BodyHandlers.ofString(), as shown in the following snippet of code:

HttpResponse<String> responseOfString
 = client.send(request, HttpResponse.BodyHandlers.ofString());

System.out.println("Status code: " + responseOfString.statusCode());
System.out.println("Body: " + responseOfString.body());

For specifying a charset, call ofString(String s, Charset charset).

The HTTP Client and WebSocket APIs Chapter 13

[756]

Handling a response body as a file
Handling a body response as a file can be accomplished using
BodyHandlers.ofFile(), as shown in the following snippet of code:

HttpResponse<Path> responseOfFile = client.send(
 request, HttpResponse.BodyHandlers.ofFile(
 Path.of("response.json")));

System.out.println("Status code: " + responseOfFile.statusCode());
System.out.println("Body: " + responseOfFile.body());

For specifying the open options, call ofFile(Path file, OpenOption...
openOptions).

Handling a response body as a byte array
Handling a body response as a byte array can be accomplished using
BodyHandlers.ofByteArray(), as shown in the following snippet of code:

HttpResponse<byte[]> responseOfByteArray = client.send(
 request, HttpResponse.BodyHandlers.ofByteArray());

System.out.println("Status code: "
 + responseOfByteArray.statusCode());
System.out.println("Body: "
 + new String(responseOfByteArray.body()));

For consuming the byte array, call
ofByteArrayConsumer(Consumer<Optional<byte[]>> consumer).

Handling a response body as an input stream
Handling a body response as InputStream can be accomplished using
BodyHandlers.ofInputStream(), as shown in the following snippet of code:

HttpResponse<InputStream> responseOfInputStream = client.send(
 request, HttpResponse.BodyHandlers.ofInputStream());

System.out.println("\nHttpResponse.BodyHandlers.ofInputStream():");
System.out.println("Status code: "
 + responseOfInputStream.statusCode());

byte[] allBytes;

The HTTP Client and WebSocket APIs Chapter 13

[757]

try (InputStream fromIs = responseOfInputStream.body()) {
 allBytes = fromIs.readAllBytes();
}

System.out.println("Body: "
 + new String(allBytes, StandardCharsets.UTF_8));

Handling a response body as a stream of strings
Handling a body response as a stream of strings can be accomplished using
BodyHandlers.ofLines(), as shown in the following snippet of code:

HttpResponse<Stream<String>> responseOfLines = client.send(
 request, HttpResponse.BodyHandlers.ofLines());

System.out.println("Status code: " + responseOfLines.statusCode());
System.out.println("Body: "
 + responseOfLines.body().collect(toList()));

263. Getting, updating, and saving a JSON
In the previous problems, we manipulated JSON data as plaintext (strings). The
HTTP Client API doesn't provide special or dedicated support for JSON data and
treats this kind of data as any other string.

Nevertheless, we are used to representing JSON data as Java objects (POJOs) and
relying on the conversion between JSON and Java when needed. We can write a
solution to our problem without involving the HTTP Client API. However, we can
also write a solution using a custom implementation of
HttpResponse.BodyHandler that relies on a JSON parser to convert the response
into Java objects. For example, we can rely on JSON-B (introduced in Chapter 6, Java
I/O Paths, Files, Buffers, Scanning, and Formatting).

Implementing the HttpResponse.BodyHandler interface implies overriding the
apply(HttpResponse.ResponseInfo responseInfo) method. Using this
method, we can take the bytes from the response and convert them into a Java object.
The code is as follows:

public class JsonBodyHandler<T>
 implements HttpResponse.BodyHandler<T> {

 private final Jsonb jsonb;
 private final Class<T> type;

The HTTP Client and WebSocket APIs Chapter 13

[758]

 private JsonBodyHandler(Jsonb jsonb, Class<T> type) {
 this.jsonb = jsonb;
 this.type = type;
 }

 public static <T> JsonBodyHandler<T>
 jsonBodyHandler(Class<T> type) {
 return jsonBodyHandler(JsonbBuilder.create(), type);
 }

 public static <T> JsonBodyHandler<T> jsonBodyHandler(
 Jsonb jsonb, Class<T> type) {
 return new JsonBodyHandler<>(jsonb, type);
 }

 @Override
 public HttpResponse.BodySubscriber<T> apply(
 HttpResponse.ResponseInfo responseInfo) {

 return BodySubscribers.mapping(BodySubscribers.ofByteArray(),
 byteArray -> this.jsonb.fromJson(
 new ByteArrayInputStream(byteArray), this.type));
 }
}

Let's assume that the JSON that we want to manipulate looks like the following (this
is the response from the server):

{
 "data": {
 "id": 2,
 "email": "janet.weaver@reqres.in",
 "first_name": "Janet",
 "last_name": "Weaver",
 "avatar": "https://s3.amazonaws.com/..."
 }
}

The Java objects for representing this JSON are as follows:

public class User {

 private Data data;
 private String updatedAt;

 // getters, setters and toString()
}

The HTTP Client and WebSocket APIs Chapter 13

[759]

public class Data {

 private Integer id;
 private String email;

 @JsonbProperty("first_name")
 private String firstName;

 @JsonbProperty("last_name")
 private String lastName;

 private String avatar;

 // getters, setters and toString()
}

Now, let's see how we can manipulate the JSON in requests and responses.

JSON response to User
The following solution triggers a GET request and converts the returned JSON
response into User:

Jsonb jsonb = JsonbBuilder.create();
HttpClient client = HttpClient.newHttpClient();

HttpRequest requestGet = HttpRequest.newBuilder()
 .uri(URI.create("https://reqres.in/api/users/2"))
 .build();

HttpResponse<User> responseGet = client.send(
 requestGet, JsonBodyHandler.jsonBodyHandler(jsonb, User.class));

User user = responseGet.body();

Updated User to JSON request
The following solution updates the email address of the user we fetched in the
preceding subsection:

user.getData().setEmail("newemail@gmail.com");

HttpRequest requestPut = HttpRequest.newBuilder()
 .header("Content-Type", "application/json")
 .uri(URI.create("https://reqres.in/api/users"))

The HTTP Client and WebSocket APIs Chapter 13

[760]

 .PUT(HttpRequest.BodyPublishers.ofString(jsonb.toJson(user)))
 .build();

HttpResponse<User> responsePut = client.send(
 requestPut, JsonBodyHandler.jsonBodyHandler(jsonb, User.class));

User updatedUser = responsePut.body();

New User to JSON request
The following solution creates a new user (the response status code should be 201):

Data data = new Data();
data.setId(10);
data.setFirstName("John");
data.setLastName("Year");
data.setAvatar("https://johnyear.com/jy.png");

User newUser = new User();
newUser.setData(data);

HttpRequest requestPost = HttpRequest.newBuilder()
 .header("Content-Type", "application/json")
 .uri(URI.create("https://reqres.in/api/users"))
 .POST(HttpRequest.BodyPublishers.ofString(jsonb.toJson(user)))
 .build();

HttpResponse<Void> responsePost = client.send(
 requestPost, HttpResponse.BodyHandlers.discarding());

int sc = responsePost.statusCode(); // 201

Note that we ignore any response body via
HttpResponse.BodyHandlers.discarding().

264. Compression
Enabling .gzip compression on the server is a common practice that's meant to
significantly improve the site's load time. But JDK 11's HTTP Client API doesn't take
advantage of .gzip compression. In other words, the HTTP Client API doesn't
require compressed responses and doesn't know how to deal with such responses.

The HTTP Client and WebSocket APIs Chapter 13

[761]

To request compressed responses, we have to send the Accept-Encoding header
with the .gzip value. This header is not added by the HTTP Client API, so we will
add it as follows:

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .header("Accept-Encoding", "gzip")
 .uri(URI.create("https://davidwalsh.name"))
 .build();

This is just half of the job. So far, if the gzip encoding is enabled on the server, then
we will receive a compressed response. To detect whether the response is compressed
or not, we have to check the Encoding header, as follows:

HttpResponse<InputStream> response = client.send(
 request, HttpResponse.BodyHandlers.ofInputStream());

String encoding = response.headers()
 .firstValue("Content-Encoding").orElse("");

if ("gzip".equals(encoding)) {
 String gzipAsString = gZipToString(response.body());
 System.out.println(gzipAsString);
} else {
 String isAsString = isToString(response.body());
 System.out.println(isAsString);
}

The gZipToString() method is a helper method that takes InputStream and treats
it as GZIPInputStream. In other words, this method reads the bytes from the given
input stream and uses them to create a string:

public static String gzipToString(InputStream gzip)
 throws IOException {

 byte[] allBytes;
 try (InputStream fromIs = new GZIPInputStream(gzip)) {
 allBytes = fromIs.readAllBytes();
 }

 return new String(allBytes, StandardCharsets.UTF_8);
}

The HTTP Client and WebSocket APIs Chapter 13

[762]

If the response is not compressed, then isToString() is the helper method that we
need:

public static String isToString(InputStream is) throws IOException {

 byte[] allBytes;
 try (InputStream fromIs = is) {
 allBytes = fromIs.readAllBytes();
 }

 return new String(allBytes, StandardCharsets.UTF_8);
}

265. Handling form data
JDK 11's HTTP Client API doesn't come with built-in support for triggering POST
requests with x-www-form-urlencoded. The solution to this problem is to rely on a
custom BodyPublisher class.

Writing a custom BodyPublisher class is pretty simple if we consider the following:

Data is represented as key-value pairs
Each pair is a key = value type
Pairs are separated via the & character
Keys and values should be properly encoded

Since data is represented as key-value pairs, it's very convenient to store in Map.
Furthermore, we just loop this Map and apply the preceding information, as follows:

public class FormBodyPublisher {

 public static HttpRequest.BodyPublisher ofForm(
 Map<Object, Object> data) {

 StringBuilder body = new StringBuilder();

 for (Object dataKey: data.keySet()) {
 if (body.length() > 0) {
 body.append("&");
 }

 body.append(encode(dataKey))
 .append("=")
 .append(encode(data.get(dataKey)));

The HTTP Client and WebSocket APIs Chapter 13

[763]

 }

 return HttpRequest.BodyPublishers.ofString(body.toString());
 }

 private static String encode(Object obj) {
 return URLEncoder.encode(obj.toString(), StandardCharsets.UTF_8);
 }
}

Relying on this solution, a POST (x-www-form-urlencoded) request can be triggered
as follows:

Map<Object, Object> data = new HashMap<>();
data.put("firstname", "John");
data.put("lastname", "Year");
data.put("age", 54);
data.put("avatar", "https://avatars.com/johnyear");

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .header("Content-Type", "application/x-www-form-urlencoded")
 .uri(URI.create("http://jkorpela.fi/cgi-bin/echo.cgi"))
 .POST(FormBodyPublisher.ofForm(data))
 .build();

HttpResponse<String> response = client.send(
 request, HttpResponse.BodyHandlers.ofString());

In this case, the response is just an echo of the sent data. Depending on the server's
response, the application needs to deal with it, as shown in the Handling response body
types section.

266. Downloading a resource
As we saw in the Setting a request body and Handling response body types sections, the
HTTP Client API can send and receive text and binary data (for example, images,
videos, and so on).

Downloading a file relies on the following two coordinates:

Sending a GET request
Handling the received bytes (for example, via BodyHandlers.ofFile())

The HTTP Client and WebSocket APIs Chapter 13

[764]

The following code downloads hibernate-core-5.4.2.Final.jar from the
Maven repository in the project classpath:

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("http://.../hibernate-core-5.4.2.Final.jar"))
 .build();

HttpResponse<Path> response
 = client.send(request, HttpResponse.BodyHandlers.ofFile(
 Path.of("hibernate-core-5.4.2.Final.jar")));

If the resource to download is delivered via the Content-Disposition HTTP
header, which is of the Content-Disposition attachment;
filename="..." type, then we can rely on BodyHandlers.ofFileDownload(), as
in the following example:

import static java.nio.file.StandardOpenOption.CREATE;
...
HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("http://...downloadfile.php
 ?file=Hello.txt&cd=attachment+filename"))
 .build();

HttpResponse<Path> response = client.send(request,
 HttpResponse.BodyHandlers.ofFileDownload(Path.of(
 System.getProperty("user.dir")), CREATE));

More files that can be tested are available here: http:/ ​/​demo. ​borland. ​com/​testsite/
download_​testpage. ​php.

267. Uploading with multipart
As we saw in the Setting a request body section, we can send a file (text or binary) to the
server via BodyPublishers.ofFile() and a POST request.

But sending a classical upload request may involve a multipart form POST with
Content-Type as multipart/form-data.

http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php
http://demo.borland.com/testsite/download_testpage.php

The HTTP Client and WebSocket APIs Chapter 13

[765]

In this case, the request body is made of parts that are delimited by a boundary, as
shown in the following illustration (--779d334bbfa... is the boundary):

However, JDK 11's HTTP Client API doesn't provide built-in support for building this
kind of request body. Nevertheless, by following the preceding screenshot, we can
define a custom BodyPublisher as follows:

public class MultipartBodyPublisher {

 private static final String LINE_SEPARATOR = System.lineSeparator();

 public static HttpRequest.BodyPublisher ofMultipart(
 Map<Object, Object> data, String boundary) throws IOException {

 final byte[] separator = ("--" + boundary +
 LINE_SEPARATOR + "Content-Disposition: form-data;
 name = ").getBytes(StandardCharsets.UTF_8);

 final List<byte[] > body = new ArrayList<>();

 for (Object dataKey: data.keySet()) {

 body.add(separator);
 Object dataValue = data.get(dataKey);

 if (dataValue instanceof Path) {
 Path path = (Path) dataValue;
 String mimeType = fetchMimeType(path);

 body.add(("\"" + dataKey + "\"; filename=\"" +

The HTTP Client and WebSocket APIs Chapter 13

[766]

 path.getFileName() + "\"" + LINE_SEPARATOR +
 "Content-Type: " + mimeType + LINE_SEPARATOR +
 LINE_SEPARATOR).getBytes(StandardCharsets.UTF_8));

 body.add(Files.readAllBytes(path));
 body.add(LINE_SEPARATOR.getBytes(StandardCharsets.UTF_8));
 } else {
 body.add(("\"" + dataKey + "\"" + LINE_SEPARATOR +
 LINE_SEPARATOR + dataValue + LINE_SEPARATOR)
 .getBytes(StandardCharsets.UTF_8));
 }
 }

 body.add(("--" + boundary
 + "--").getBytes(StandardCharsets.UTF_8));

 return HttpRequest.BodyPublishers.ofByteArrays(body);
 }

 private static String fetchMimeType(
 Path filenamePath) throws IOException {

 String mimeType = Files.probeContentType(filenamePath);

 if (mimeType == null) {
 throw new IOException("Mime type could not be fetched");
 }

 return mimeType;
 }
 }

Now, we can create a multipart request, as follows (we try to upload a text file
called LoremIpsum.txt to a server that simply sent back the raw form data):

Map<Object, Object> data = new LinkedHashMap<>();
data.put("author", "Lorem Ipsum Generator");
data.put("filefield", Path.of("LoremIpsum.txt"));

String boundary = UUID.randomUUID().toString().replaceAll("-", "");

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .header("Content-Type", "multipart/form-data;boundary=" + boundary)
 .POST(MultipartBodyPublisher.ofMultipart(data, boundary))
 .uri(URI.create("http://jkorpela.fi/cgi-bin/echoraw.cgi"))
 .build();

The HTTP Client and WebSocket APIs Chapter 13

[767]

HttpResponse<String> response = client.send(
 request, HttpResponse.BodyHandlers.ofString());

The response should be similar to the following (the boundary is just a random UUID):

--7ea7a8311ada4804ab11d29bcdedcc55
Content-Disposition: form-data; name="author"
Lorem Ipsum Generator
--7ea7a8311ada4804ab11d29bcdedcc55
Content-Disposition: form-data; name="filefield";
filename="LoremIpsum.txt"
Content-Type: text/plain
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.
--7ea7a8311ada4804ab11d29bcdedcc55--

268. HTTP/2 server push
Besides multiplexing, another powerful feature of HTTP/2 is its server push capability.

Mainly, in the traditional approach (HTTP/1.1), a browser triggers a request for
getting an HTML page and parses the received markup to identify the referenced
resources (for example, JS, CSS, images, and so on). To fetch these resources, the
browser sends additional requests (one request for each referenced resource). On the
other hand, HTTP/2 sends the HTML page and the referenced resources without
explicit requests from the browser. So, the browser requests the HTML page and
receives the page and everything else that's needed for displaying the page.

The HTTP Client API supports this HTTP/2 feature via the PushPromiseHandler
interface. The implementation of this interface must be given as the third argument of
the send() or sendAsync() method.

PushPromiseHandler relies on three coordinates, as follows:

The initiating client send request (initiatingRequest)
The synthetic push request (pushPromiseRequest)
The acceptor function, which must be successfully invoked to accept the
push promise (acceptor)

A push promise is accepted by invoking the given acceptor function. The acceptor
function must be passed a non-null BodyHandler, which is used to handle the
promise's response body. The acceptor function will return a CompletableFuture
instance that completes the promise's response.

The HTTP Client and WebSocket APIs Chapter 13

[768]

Based on this information, let's look at an implementation of PushPromiseHandler:

private static final List<CompletableFuture<Void>>
 asyncPushRequests = new CopyOnWriteArrayList<>();
...
private static HttpResponse.PushPromiseHandler<String>
 pushPromiseHandler() {

 return (HttpRequest initiatingRequest,
 HttpRequest pushPromiseRequest,
 Function<HttpResponse.BodyHandler<String> ,
 CompletableFuture<HttpResponse<String>>> acceptor) -> {
 CompletableFuture<Void> pushcf =
 acceptor.apply(HttpResponse.BodyHandlers.ofString())
 .thenApply(HttpResponse::body)
 .thenAccept((b) -> System.out.println(
 "\nPushed resource body:\n " + b));

 asyncPushRequests.add(pushcf);

 System.out.println("\nJust got promise push number: " +
 asyncPushRequests.size());
 System.out.println("\nInitial push request: " +
 initiatingRequest.uri());
 System.out.println("Initial push headers: " +
 initiatingRequest.headers());
 System.out.println("Promise push request: " +
 pushPromiseRequest.uri());
 System.out.println("Promise push headers: " +
 pushPromiseRequest.headers());
 };
 }

Now, let's trigger a request and pass this PushPromiseHandler to sendAsync():

HttpClient client = HttpClient.newHttpClient();

HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("https://http2.golang.org/serverpush"))
 .build();

client.sendAsync(request,
 HttpResponse.BodyHandlers.ofString(), pushPromiseHandler())
 .thenApply(HttpResponse::body)
 .thenAccept((b) -> System.out.println("\nMain resource:\n" + b))
 .join();

asyncPushRequests.forEach(CompletableFuture::join);

The HTTP Client and WebSocket APIs Chapter 13

[769]

System.out.println("\nFetched a total of " +
 asyncPushRequests.size() + " push requests");

If we want to return a push promise handler that accumulates push promises, and
their responses, into the given map, then we can rely on
the PushPromiseHandler.of() method, as follows:

private static final ConcurrentMap<HttpRequest,
 CompletableFuture<HttpResponse<String>>> promisesMap
 = new ConcurrentHashMap<>();

private static final Function<HttpRequest,
 HttpResponse.BodyHandler<String>> promiseHandler
 = (HttpRequest req) -> HttpResponse.BodyHandlers.ofString();

public static void main(String[] args)
 throws IOException, InterruptedException {

 HttpClient client = HttpClient.newHttpClient();

 HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("https://http2.golang.org/serverpush"))
 .build();

 client.sendAsync(request,
 HttpResponse.BodyHandlers.ofString(), pushPromiseHandler())
 .thenApply(HttpResponse::body)
 .thenAccept((b) -> System.out.println("\nMain resource:\n" + b))
 .join();

 System.out.println("\nPush promises map size: " +
 promisesMap.size() + "\n");

 promisesMap.entrySet().forEach((entry) -> {
 System.out.println("Request = " + entry.getKey() +
 ", \nResponse = " + entry.getValue().join().body());
 });
}

private static HttpResponse.PushPromiseHandler<String>
 pushPromiseHandler() {

 return HttpResponse.PushPromiseHandler
 .of(promiseHandler, promisesMap);
 }

The HTTP Client and WebSocket APIs Chapter 13

[770]

In both solutions of the preceding solutions, we have used a BodyHandler of
the String type via ofString(). This is not very useful if the server pushes binary
data as well (for example, images). So, if we are dealing with binary data, we need to
switch to BodyHandler of the byte[] type via ofByteArray(). Alternatively, we
can send the pushed resources to disk via ofFile(), as shown in the following
solution, which is an adapted version of the preceding solution:

private static final ConcurrentMap<HttpRequest,
 CompletableFuture<HttpResponse<Path>>>
 promisesMap = new ConcurrentHashMap<>();

private static final Function<HttpRequest,
 HttpResponse.BodyHandler<Path>> promiseHandler
 = (HttpRequest req) -> HttpResponse.BodyHandlers.ofFile(
 Paths.get(req.uri().getPath()).getFileName());

public static void main(String[] args)
 throws IOException, InterruptedException {

 HttpClient client = HttpClient.newHttpClient();

 HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create("https://http2.golang.org/serverpush"))
 .build();

 client.sendAsync(request, HttpResponse.BodyHandlers.ofFile(
 Path.of("index.html")), pushPromiseHandler())
 .thenApply(HttpResponse::body)
 .thenAccept((b) -> System.out.println("\nMain resource:\n" + b))
 .join();

 System.out.println("\nPush promises map size: " +
 promisesMap.size() + "\n");

 promisesMap.entrySet().forEach((entry) -> {
 System.out.println("Request = " + entry.getKey() +
 ", \nResponse = " + entry.getValue().join().body());
 });
}

private static HttpResponse.PushPromiseHandler<Path>
 pushPromiseHandler() {

 return HttpResponse.PushPromiseHandler
 .of(promiseHandler, promisesMap);
 }

The HTTP Client and WebSocket APIs Chapter 13

[771]

The preceding code should save the pushed resources in the application classpath, as
shown in the following screenshot:

269. WebSocket
The HTTP Client supports the WebSocket protocol. In API terms, the core of the
implementation is the java.net.http.WebSocket interface. This interface exposes
a suite of methods for handling WebSocket communication.

Building a WebSocket instance asynchronously can be accomplished via
HttpClient.newWebSocketBuilder().buildAsync().

For example, we can connect to the well known Meetup RSVP WebSocket endpoint
(ws://stream.meetup.com/2/rsvps), as follows:

HttpClient client = HttpClient.newHttpClient();

WebSocket webSocket = client.newWebSocketBuilder()
 .buildAsync(URI.create("ws://stream.meetup.com/2/rsvps"),
 wsListener).get(10, TimeUnit.SECONDS);

By its nature, the WebSocket protocol is bidirectional. In order to send data, we can
rely on sendText(), sendBinary(), sendPing(), and sendPong(). The Meetup
RSVP doesn't process the messages that we send but, just for fun, we can send a text
message, as follows:

webSocket.sendText("I am an Meetup RSVP fan", true);

The boolean argument is used to mark the end of the message. If this invocation
doesn't complete, the message passes false.

The HTTP Client and WebSocket APIs Chapter 13

[772]

To close the connection, we need to use sendClose(), as follows:

webSocket.sendClose(WebSocket.NORMAL_CLOSURE, "ok");

Finally, we need to write the WebSocket.Listener that will process the incoming
messages. This is an interface that contains a bunch of methods with default
implementations. The following code simply overrides onOpen(), onText(), and
onClose(). Gluing the WebSocket listener and the preceding code will result in the
following application:

public class Main {

 public static void main(String[] args) throws
 InterruptedException, ExecutionException, TimeoutException {

 Listener wsListener = new Listener() {

 @Override
 public CompletionStage<?> onText(WebSocket webSocket,
 CharSequence data, boolean last) {
 System.out.println("Received data: " + data);

 return Listener.super.onText(webSocket, data, last);
 }

 @Override
 public void onOpen(WebSocket webSocket) {
 System.out.println("Connection is open ...");
 Listener.super.onOpen(webSocket);
 }

 @Override
 public CompletionStage<? > onClose(WebSocket webSocket,
 int statusCode, String reason) {
 System.out.println("Closing connection: " +
 statusCode + " " + reason);

 return Listener.super.onClose(webSocket, statusCode, reason);
 }
 };

 HttpClient client = HttpClient.newHttpClient();

 WebSocket webSocket = client.newWebSocketBuilder()
 .buildAsync(URI.create(
 "ws://stream.meetup.com/2/rsvps"), wsListener)
 .get(10, TimeUnit.SECONDS);

The HTTP Client and WebSocket APIs Chapter 13

[773]

 TimeUnit.SECONDS.sleep(10);

 webSocket.sendClose(WebSocket.NORMAL_CLOSURE, "ok");
 }
}

This application will run for 10 seconds and will produce output similar to the
following:

Connection is open ...

Received data:
{"visibility":"public","response":"yes","guests":0,"member":{"member_i
d":267133566,"photo":"https:\/\/secure.meetupstatic.com\/photos\/membe
r\/8\/7\/8\/a\/thumb_282154698.jpeg","member_name":"SANDRA
MARTINEZ"},"rsvp_id":1781366945...

Received data:
{"visibility":"public","response":"yes","guests":1,"member":{"member_i
d":51797722,...
...

After 10 seconds, the application is disconnected from the WebSocket endpoint.

Summary
Our job is done! This was the last problem in this chapter. Now, we have reached the
end of this book. It looks like the new HTTP Client and WebSocket APIs are pretty
cool. They come with substantial flexibility and versatility, they are pretty intuitive,
and they manage to successfully hide a lot of painful details that we don't want to
deal with during development.

Download the applications from this chapter to view the results and additional
details.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learn Java 12 Programming
Nick Samoylov

ISBN: 978-1-78995-705-1

Learn and apply object-oriented principles
Gain insights into data structures and understand how they are used in
Java
Explore multithreaded, asynchronous, functional, and reactive
programming
Add a user-friendly graphic interface to your application
Find out what streams are and how they can help in data processing
Discover the importance of microservices and use them to make your apps
robust and scalable
Explore Java design patterns and best practices to solve everyday problems
Learn techniques and idioms for writing high-quality Java code

https://www.packtpub.com/in/application-development/learn-java-12-programming

Other Books You May Enjoy

[775]

Java 11 and 12 - New Features
Mala Gupta

ISBN: 978-1-78913-327-1

Study type interference and how to work with the var type
Understand Class-Data Sharing, its benefits, and limitations
Discover platform options to reduce your application’s launch time
Improve application performance by switching garbage collectors
Get up to date with the new Java release cadence
Define and assess decision criteria for migrating to a new version of Java

https://www.packtpub.com/application-development/java-11-and-12-new-features

Other Books You May Enjoy

[776]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

A
absolute path
 creating 301
accessors 406
accumulator() method 541
age
 calculating 158
 calculating, with Calendar 158
 calculating, with Period class 158
 calculating, with SimpleDateFormat 158
annotation
 obtaining, of receiver type 398
array
 assigning, to var 183
 average value, computing 228, 231, 232
 collection, converting into 265
 component type, obtaining 392
 element, finding 215
 equal, checking 220, 221, 222
 filling 234, 235
 JDK built-in solutions 201, 202, 203
 lexicographic comparison 224, 225, 226
 maximum value, computing 228, 229, 230
 minimum value, computing 228, 229, 230
 mismatch, checking 220, 222, 223
 reversing 232, 233
 setting 234, 235
 size, changing 237, 238
 solutions 201
 sorting 201
 sorting algorithms 204
 sorting, of string by length 36, 37
 stream, creating 227, 228
 testing, problems used 199, 200
 working with 429
Arrays.asList() method 240

asynchronous GET request
 triggering 738, 739, 740
atomic variables
 about 682, 683, 684, 685
 accumulators 685, 686
 adders 685, 686

B
bad data
 avoiding, in immutable objects 103, 105
barrier 616, 617, 619, 620
Behavior Parameterization 441
big files
 occurrence of string, searching in 338
 solution, based on Files.lines() 340
 solution, searching based on BufferedReader

339

 solution, searching based on
Files.readAllLines() 339

 solution, searching based on
MappedByteBuffer 341, 342

 solution, searching based on Scanner 340
BigInteger
 converting, into primitive type 58
binary files
 reading, efficiently 333, 334, 335
 reading, into memory 336
 writing 337, 338
 writing, efficiently 333, 334, 335
Binary Indexed Tree (BIT) 289, 290, 291, 292,

293

Binary Search 46
Bloom filter 293, 294, 295
boolean
 returning, if Optional class is empty 733
breadth-first search (BFS)
 about 275, 276, 277

[778]

 algorithm 276, 277
 pseudo-code 275
bridge constructs
 obtaining 399, 400
bubble sort algorithm 204, 205, 206
BufferedReader
 versus Scanner 378
Builder pattern
 immutable class, writing via 100
busy waiting technique
 optimizing 674, 675
byte buffer
 implementing 358, 359, 360, 361, 362, 363,

364, 366

C
Callable 604, 605, 606, 607, 608
Callable tasks
 invoking 610, 611, 612
Cascaded Builder pattern
 implementing 466, 467
character
 removing 32, 33
characteristics() method 543
chess clock
 implementing 164, 165, 166, 168, 169
Chinese, Japanese, Korean, and Vietnamese

(CJKV) 553
circular wait 697
class annotations
 inspecting 415
class-level locking
 about 574
 versus object-level locking 573
clone()
 objects, cloning via 106
Cloning library
 objects, cloning via 108
 reference link 260
collection
 converting, into array 265
 filtering, by List 265, 266, 267
 solutions 201
 testing, problems used 199, 200
Collections.unmodifiableList() method 239,

240, 242, 243, 244
combiner() method 542
Command pattern
 implementing 467, 468, 470
compact number
 formatting 65, 67, 68
 parsing 68, 69
comparators
 composing 558, 559, 560
Compare and Swap (CAS) 683
compareAndSetForkJoinTaskTag() 648, 649,

650, 651
comparisons
 counting 20
CompletableFuture
 about 651
 asynchronous task, running and results

returning 653
 asynchronous task, running and results

returning via explicit thread pool 653
 asynchronous task, running and void

returning 652
 callback, attaching that process result of

asynchronous task and return result 654,
655

 callback, attaching that processes result of
asynchronous task and returns void 656

 callback, attaching that runs after
asynchronous task and returns void 657

 exceptions, handling of asynchronous task via
exceptionally() 658, 659, 660, 661, 663,
664

 exceptions, handling of asynchronous task via
handle() 665, 666

 explicitly, completing 667, 668
 JDK 12 exceptionallyCompose() 664, 665
 merging 668
 merging, via allOf() 671, 672
 merging, via anyOf() 672, 673
 merging, via thenCombine() 670, 671
 merging, via thenCompose() 668, 669
compression 760, 761
concurrency
 issues 634, 635
 solutions 635

[779]

connection authentication
 setting 747, 748
consonants
 counting 19, 21
constructor
 objects, cloning via 107
contravariants
 replacing, with Local Variable Type Inference

(LVTI) 197, 198
cookies
 handling 753, 754
CountedCompleter
 using 645, 647
counting sort algorithm 209, 210
covariants
 replacing, with Local Variable Type Inference

(LVTI) 197, 198
Cross Cutting-Concerns (CCC) 432
CSV file
 reading, as object 342, 346, 347
custom collector
 via collect() 544
 writing 538, 540
custom Spliterator
 writing 553

D
data structures
 solutions 201
 testing, problems used 199, 200
date and time, testing problems
 reference link 120
date and time
 formatting 124, 125, 126, 127
 obtaining, via LocalDate 128
 obtaining, via LocalTime 128
 obtaining, without date or time 128
 string, converting to 120
 string, converting with DateFormat class 120
 string, converting with DateTimeFormatter

class 120, 121, 122, 124
 testing, problems used 118, 120
 units, obtaining 137, 138
Date object
 converting, to DateLocalTime 154

 converting, to Instant 152, 153
 converting, to LocalDate 153
 converting, to LocalTime 155
 converting, to OffsetDateTime 155
 converting, to OffsetTime 156
 converting, to Temporal 151
 converting, to ZonedDateTime 154
date-based values
 used, for defining period of time 132
date-time information
 displaying, of flight 144, 145
 representing, via Calendar class 162
 representing, via java.util.Date class 162
 representing, via Temporal 162, 163, 164
date-time
 Date object, working with 139
 LocalDateTime, working with 139, 140
 time, adding to 138
 time, subtracting from 138
 Unix timestamp, converting to 145, 146
dates
 defining, as LocalDate class 157
 difference, computing between 162
 range, iterating 156
 range, iterating with

LocalDate.datesUntil(LocalDate
endExclusive) method 157

 ranges, iterating, with Calendar class 156
deadlock 697, 698, 699, 700
declared annotation
 obtaining 421
Decorator pattern
 implementing 462, 463, 464, 465, 466
default methods 562, 563
default value
 mapping 245
delimiter
 string, joining with 24, 25
digital tree 277
division
 floor, computing 60, 61
 of unsigned values 55
double/float 56
dropWhile() 484, 485
dropWhile​(Predicate) methods

[780]

 using 491, 492, 493
duplicate characters
 counting 11, 12
 removing 30, 31
duration class 134
duration, of time
 defining, with time-based values 132, 134,

135, 136, 137
dynamic proxies
 about 432, 433
 implementing 433, 435, 436

E
element
 finding, in array 215
 first index, checking 219, 220
 matching, in stream 503, 504
 presence, checking 215, 216, 217, 218
 removing, of collection 262
 removing, via Collection.removeIf() 263
 removing, via iterator 263
 removing, via Stream 263, 264
 replacing, of List 267, 268
 separating, via Collectors.partitioningBy()

264

elements, grouping of stream
 about 518
 multilevel grouping 526, 527, 528
 single-level grouping 519, 520, 521, 522,

523, 524, 525, 526
elements, mapping of stream
 about 493
 Stream.flatMap(), using 497, 498, 499, 500
 Stream.map(), using 494, 495, 496
elements, searching in stream
 about 500
 findAny() method, using 501
 findFirst(), using 501, 502
end of day
 searching 159, 160, 161
equals() method 85, 86, 87, 89, 90
exceptions
 generic, obtaining 424, 427, 428
exchanger 621, 622, 623, 624
Execute Around pattern

 implementing 448, 450

F
Factory pattern
 implementing 450, 451, 452
Fenwick Tree (FT) 289, 290, 291, 292, 293
Fibonacci
 computing, via RecursiveAction 643, 645
fields
 annotations, inspecting 419
 generic, obtaining 424, 426
file paths
 comparing 307
 comparing, with Path.equals() 308
 constructing, between two locations 306, 307
 converting 303, 304, 305
 creating 299, 300
 creating, to current folder 301
 creating, to file store root 300
 creating, with shortcuts 302, 303
 joining 305, 306
 lexicographical comparison 309
 partial comparing 309
 representing, same file/folder 308
file's content
 streaming 323
files
 filtering 352
 filtering, via FileFilter 355
 filtering, via FilenameFilter 355
 filtering, via Files.newDirectoryStream() 352,

353, 354
 formatted output, writing 371, 372, 373
 mismatches, discovering 356, 357
 searching, in file trees 324, 325, 326
 tokenizing 366, 367, 368, 369, 370, 371
FileVisitor
 methods 310
filtering()
 using 532, 533
find operation
 implementing 287
finisher() method 542, 543
first day of month
 finding 149

[781]

 searching 146
First In First Out (FIFO) 271, 583
first non-repeated character
 searching 14, 15, 16, 17
flatMapping()
 using 534, 535
folders
 searching, in file tree 326
 searching, in file trees 324, 325
fork/join framework 639, 640, 641, 648, 649,

650, 651
form data
 handling 762, 763
format patterns 124
functional interfaces
 anonymous classes, written as lambdas 444
 behavior, pushing as parameter 441, 442,

443

 filters, implementing 443
 List type, abstracting 445, 446
 melons, filtering by type 439, 440
 melons, filtering by weight 440
 melons, filtering of certain weight 440
 writing 438
functional-style code
 null references, checking in 72, 73, 75
functional-style programming
 issues 472, 473
 solutions 438, 474
functions
 composing 560, 562
Fused Multiply Add 64, 65
Future
 about 604, 605, 606, 607, 608
 canceling 609, 610

G
Gang of Four (GoF) 100
getters
 fetching 407, 408, 409
 generating 409, 411, 412, 413
GMT
 about 140
 used, for obtaining time zones 140
Gson

 using 346

H
hashCode() method 85, 86, 87, 89, 90
HashMap
 copying 259, 260
headers
 obtaining 741
 setting 741
heap sort algorithm 210, 211, 213, 214
high-order functions
 method, testing that returns a functional

interface 475
 method, testing that takes lambda as a

parameter 474, 475
 testing 474
High-Performance Computing (HPC) 64
HTTP Client
 issues 735, 736
 solutions 737
HTTP method
 specifying 744, 745
HTTP/2 737, 738
HTTP/2 server push 767, 768, 770, 771

I
identity-sensitive operations 731, 732
immutable class
 mutable objects, passing to 97, 99, 100
 mutable objects, returning from 97, 99, 100
 writing 96
 writing, via Builder pattern 100
immutable collections
 about 240
 Arrays.asList() method 240
 Collections.unmodifiableList() method 240,

242, 243, 244
 creating 238, 239
 List.of() method 241, 242, 243, 244
 static block 241
immutable objects
 about 91
 bad data, avoiding in 103, 105
imperative code
 null references, checking in 72, 73, 75

[782]

indentation
 applying 47, 48
index
 checking, in range from 0 to length 80, 81,

82

infinite sequential ordered stream
 obtaining 485, 486, 487
infinite sequential unordered stream
 creating 489
infinite streams 484, 485
insertion sort algorithm 206, 207, 208
instance method
 invoking 421, 422
Instant class
 about 129
 used, for generating timestamps of machine

time 129
Instant objects
 comparing 130
Instant
 converting, to LocalDateTime 131
 converting, to OffsetDateTime 131
 converting, to ZonedDateTime 131
 string, converting to 130
 time, adding to 130
 time, subtracting from 130
int value
 long value, converting into 59
 multiplying 62, 64
 summing 51, 52
interfaces
 annotations, inspecting 420
 generic, obtaining 427
interruptible methods 636, 637, 638, 639

J
Jackson
 using 344, 345
JAR
 class, instantiating from 396, 397
Java concurrency
 issues 564, 565
 solutions 566
Java I/O
 issues 297, 298

 solutions 299
Java Reflection API, solutions
 annotation, obtaining of receiver type 398
 bridge constructs, obtaining 399, 400
 classes, inspecting 386
 default methods, checking 402
 for getters 406
 for setters 406
 nest-based access control (nests) via 402,

403, 404, 406
 packages, inspecting 381, 382
 synthetic constructs, obtaining 399, 400
 used, for instantiating class via reflected

constructor 393, 394
 variable number, checking of arguments 401
Java Reflection API
 annotations 414
 annotations, inspecting of fields 419
 annotations, inspecting of interfaces 420
 annotations, inspecting of method's

parameters 418
 annotations, inspecting of return type 417
 annotations, inspecting of superclass 419
 annotations, inspecting of thrown exceptions

417

 annotations, obtaining by type 421
 class annotations, inspecting 415
 declared annotation, obtaining 421
 dynamic proxies 432, 433
 instance method, invoking 421, 422
 methods annotations, inspecting 416
 modules, inspecting 430, 431
 package annotations, inspecting 415
 private fields, obtaining 428
 problem 379, 380
 public fields, obtaining 428
 snippets, of code 397
 solutions 381
 static methods, obtaining 422, 424
 used, for instantiating class from JAR 396,

397

 used, for instantiating class via private
constructor 395

 used, for obtaining class of array type whose
component type is described by Pair 393

[783]

 used, for obtaining component type of array
392

 used, for obtaining name of certain type 390
 used, for obtaining Pair class constructors

388

 used, for obtaining Pair class fields 388
 used, for obtaining Pair class implemented

interfaces 387
 used, for obtaining Pair class methods 389
 used, for obtaining Pair class modifiers 387
 used, for obtaining Pair class module 390
 used, for obtaining Pair class super-class

390

 used, for obtaining strings that describe class
392

 used, for obtaining type descriptor string for
class 392

 using, for obtaining name of Pair class via
instance 386

 working, with arrays 429
Java thread, lifecycle states
 about 566, 567
 BLOCKED state 568, 569
 NEW state 567
 RUNNABLE state 567
 TERMINATED state 572
 TIMED_WAITING state 571
 WAITING state 570
Java, built-in concurrent collection
 about 269
 synchronized collection 274
 thread-safe delay queue 272
 thread-safe lists 269
 thread-safe map 270
 thread-safe priority queue 272
 thread-safe queue, backed by array 271
 thread-safe queue, on linked nodes 272
 thread-safe set 270
 thread-safe stack 273
 thread-safe synchronous queue 273
 thread-safe transfer queue 273
 versus Java built-in synchronized collection

274

JDK 8
 using 120
JDK 9 157

JDK built-in solutions 201, 202, 203
JSON file
 reading, as object 342, 343
 writing, as object 342, 343
JSON request
 new user 760
 updated user 759
JSON-B
 using 343, 344
JSON
 objects, cloning via 110
 obtaining 757
 response, to user 759
 saving 757
 updating 757

L
lambdas
 about 447
 chaining, via orElseFoo() 713, 714
 debugging 478, 479, 480, 481
 Local Variable Type Inference (LVTI), using

with 193, 194
 used, for testing methods 476, 477
last day of month
 searching 146, 148, 149
Last In First Out (LIFO) 185, 273
latches 613, 615, 616
Least Significant Bit (LSB) 289
letters
 reversing 17, 18
List.of() method 241, 242, 243, 244
List
 collection, filtering 265, 266, 267
 element, replacing 267, 268
Loan pattern
 implementing 459, 460, 461, 462
local date-time
 obtaining, in all time zones 142
 obtaining, via Date empty constructor 142
 obtaining, via ZonedDateTime.now() method

143

Local Variable Type Inference (LVTI)
 about 170
 argument types 190, 191

[784]

 avoid, using with catch block variables 195
 avoid, using with instance variables 194
 avoid, using with null initializers 194
 avoiding 178
 avoiding, if called names don't contain enough

type information for humans 179, 180
 combining, with diamond operator 181, 182
 combining, with generic types T 195, 196
 combining, with implicit type casting to sustain

code maintainability 176, 177, 178
 combining, with programming to interface

technique 180, 181
 effectively final 192, 193
 examples 172, 173, 174
 method return types 190, 191
 try-with-resource 195
 used, for replacing contravariants 197, 198
 used, for replacing covariants 197, 198
 used, for replacing wildcards 197
 using, for anonymous classes 191, 192
 using, for loops 187, 188
 using, in compound declarations 184
 using, to break up nested/large chains of

expressions 189, 190
 using, with lambdas 193, 194
 using, with primitive types 175, 176
 using, with streams 188
 using, with ternary operator 186, 187
 using, with variable scope 184, 185
LocalDate
 used, for obtaining LocalDateTime class 128,

129

LocalDateTime class
 obtaining, from LocalDate 128, 129
 obtaining, from LocalTime 128, 129
LocalTime
 used, for obtaining LocalDateTime class 128,

129

logical AND
 applying, to two booleans 57
logical OR
 applying, to two booleans 57
logical XOR
 applying, to two booleans 57
long value

 converting, into int value 59
 multiplying 62, 64
 summing 51, 52
longest common prefix
 searching 45, 46

M
machine time
 timestamps, generating via Instant class 129
map
 absent/present, computing 246
 comparing 255, 256
 compute() 249, 250
 computeIfAbsent() 247, 248
 computeIfPresent() 246, 247
 entries, replacing 253, 254
 merge() 250, 251
 merging 260, 261, 262
 natural ordering 257
 putIfAbsent() 251, 252
 removal 252, 253
 sorting 256, 257
 sorting, by key via Comparator 257, 258
 sorting, by key via List 258
 sorting, by key via Stream 257, 258
 sorting, by key via TreeMap 257
 sorting, by value via Comparator 257, 258
 sorting, by value via List 258
 sorting, by value via Stream 257, 258
mapping()
 using 533
max() methods
 computing, of numbers 50
 terminal operations 505
method references
 about 545
 to constructor 547
 to instance method 546
 to static method 545
method's parameters
 annotations, inspecting 418
methods annotations
 inspecting 416
methods
 generic, obtaining 424, 425, 426

[785]

 testing, with lambdas 476, 477
min() methods
 computing, of numbers 50
 in stream 504
 terminal operations 505
modules
 inspecting 430, 431
modulo
 of unsigned values 55
modulus
 floor, computing 60, 61
multi-line strings
 declaring 41, 42
multipart
 file, uploading with 764, 765, 766
multiple case labels 115
multiple requests concurrently
 sending 752, 753
mutable objects
 passing, to immutable class 97, 99, 100
 returning, from immutable class 97, 99, 100

N
nest-based access control (nests)
 via Java Reflection API 402, 403, 404, 406
Next Greater Element (NGE) 236, 237
next integer-point value 61, 62
non-zero elements
 filtering, of stream 482, 483, 484
null references
 about 709, 710
 checking, and returning non-null default

references 79, 80
 checking, and throwing customized

NullPointerException 75, 76, 77
 checking, and throwing specified exception

77, 78, 79
 checking, in functional-style code 72, 73, 74
 checking, in imperative code 72, 73, 74
null-safe streams 554, 555, 556
numbers
 max, computing 50
 min, computing 50

O
object-level locking
 about 573
 versus class-level locking 573
objects
 cloning 105
 cloning, via clone() 106
 cloning, via Cloning library 108
 cloning, via constructor 107
 cloning, via JSON 110
 cloning, via serialization 109
 manual cloning 105
Observer pattern
 implementing 456, 457, 458
observers 456
ofNullable()
 Optional.of(), confusing with 724, 725
operation overflow
 multiplying 62, 64
 summing 51, 52
Optional T
 versus OptionalInt 725
Optional value
 transforming, via flatMap() 727, 728
 transforming, via Map() 727, 728
Optional.filter()
 using, filtering values 729
Optional.of()
 confusing, with ofNullable() 724, 725
Optional
 about 709, 710, 731, 732
 already-constructed default value, returning

706

 avoiding 715, 716, 718, 719, 721, 722
 avoiding, in collections 722, 723
 boolean, returning 733
 chaining 730, 731
 equality, asserting 726, 727
 initializing 705
 issues 702, 703, 704
 missing value 705
 non-existent default value, returning 707
 NoSuchElementException, throwing 708
optional
 NoSuchElementException, throwing 709

[786]

Optional
 Optional.get() 705
 solution 704
OptionalInt
 versus Optional T 725
orElseFoo()
 lambdas, chaining via 713, 714

P
package annotations
 inspecting 415
packages
 classes, obtaining 382, 383, 385
 inspecting 381, 382
 inspecting, inside modules 385
Pair class constructors
 obtaining 388
Pair class fields
 obtaining 388
Pair class implemented interfaces
 obtaining 387
Pair class methods
 obtaining 389
Pair class modifiers
 obtaining 387
Pair class module
 obtaining 390
Pair class super-class
 obtaining 390
Pair class
 name, obtaining via instance 386
partitioning 528, 529, 530, 531
Path.equals()
 used, for comparing file paths 308
Period class 133
period of time
 defining, with date-based values 132, 133,

134

permutations
 generating 26, 27, 28
phasers 628, 629, 630
Plain Old Java Object (POJO) 110
predicates
 about 441
 composing 556, 557

present Optional class
 consuming 710, 711
 returning 712
private constructor
 class, instantiating via 395
proxy
 setting 741
pseudorandom values
 unlimited streams, creating 487

Q
query parameters builder 740

R
range
 iterating, of dates 156
RecursiveAction
 Fibonacci, computing via 643, 645
RecursiveTask
 sum, computing via 641, 643
redirect policy
 setting 749, 750
reduction 506, 507, 508, 509
ReentrantLock 687, 688, 689
ReentrantReadWriteLock 690, 691, 692
reflected constructor
 class, instantiating via 393, 394
request body
 creating, from byte array 747
 creating, from file 747
 creating, from InputStream 746
 creating, from string 746
 setting 745
request headers
 obtaining 743
 setting 741, 742
request
 sending, asynchronously 750, 751
 sending, synchronously 751
resource
 downloading 763, 764
response body types
 handling 755
 handling, as byte array 756
 handling, as file 756

[787]

 handling, as input stream 756
 handling, as stream of strings 757
 handling, as string 755
response headers
 obtaining 743
response information
 obtaining 754
return type
 annotations, inspecting 417

S
Scanner
 versus BufferedReader 378
 working with 374, 375, 376, 377
semaphore 624, 625, 626, 627
serialization
 objects, cloning via 109
setters
 fetching 407, 408, 409
 generating 409, 411, 412, 413
shortcuts
 used, for creating file paths 302, 303
sorting algorithms
 about 204
 bubble sort algorithm 204, 205, 206
 counting sort algorithm 209, 210
 heap sort algorithm 210, 211, 213, 214
 insertion sort algorithm 206, 207, 208
Spliterator 551, 552
StampedLock 693, 694, 695, 696, 697
start of day
 searching 159, 160, 161
statement blocks 116
static block 241
static methods
 obtaining 422, 424
Strategy design pattern 442
Strategy pattern
 implementing 452, 453, 454
Stream APIs
 chaining 730, 731
stream
 creating, from array 227, 228
 elements, matching 503, 504
 max() 505

 min() 505
 non-zero elements, filtering of 482, 483, 484
 parallel processing 547, 548, 549, 550
 result, collecting 509, 510, 511, 512
 result, joining 513, 514
 sum() 505
string constant pool (SCP) 92
string immutability
 about 91, 92
 cons 95
 pros 92, 93, 94
string interning 92
string
 anagrams, checking 40, 41
 array, sorting by length 36, 37
 certain character, occurrences counting 21,

22

 character, removing 32, 33
 character, searching with most appearances

33, 34, 35
 checking, that contains substring 37, 38
 concatenating 43, 44
 consonants, counting 19, 20, 21
 converting, into double 23
 converting, into float 23
 converting, into int 23
 converting, into long 23
 converting, to date and time 120
 digits, checking 18, 19
 duplicate characters, counting 11, 12
 duplicate characters, removing 30, 31
 first non-repeatable character, searching 17
 first non-repeated character, searching 14,

15, 16
 indentation, applying 47, 48
 issues 8, 9, 10, 11
 joining, with delimiter 24, 25
 leading spaces, removing 45
 letters, reversing 17, 18
 longest common prefix, searching 45, 46
 palindrome, checking 28, 30
 permutations, generating 26, 27, 28
 solutions 11
 substring, occurrences counting 38, 39
 trailing spaces, removing 45

[788]

 transforming 49, 50
 using, as unsigned arithmetic in radix 52
 vowels, counting 19, 20, 21
 white spaces, removing 24
 words, reversing 17, 18
subject 456
subrange
 checking, in range from 0 to length 83, 84
substring
 occurrences, counting in string 38, 39
sum()
 computing, via RecursiveTask 641, 643
 in stream 504
 terminal operations 505
summarization collectors
 about 514
 averaging 516
 counting 517
 maximum 517
 minimum 517
 summing 514, 515, 516
superclass
 annotations, inspecting 419
 generic, obtaining 426
supplier() method 541
surrogate pair 13
switch expressions 112, 113, 114
synchronizations
 cases 575, 576
synthetic constructs
 using 399, 400

T
takeWhile() 484, 485
takeWhile​(Predicate) methods
 using 489, 490, 491
task cancellation technique
 using 675, 676
teeing 535, 537, 538
Template Method pattern
 implementing 454, 455, 456
Temporal
 converting, to Date object 151
temporary files/folders
 creating 348, 349

 deleting, via DELETE_ON_CLOSE 351
 deleting, via deleteOnExit() 350
 deleting, via shutdown-hook 349
 working with 347, 348
text files
 reading, efficiently 326, 327, 328, 330
 reading, in memory 331
 writing 332, 333
 writing, efficiently 326, 327, 328, 330
thread pool, in Java
 about 576
 Executor 576
 ExecutorService 577, 579
 ScheduledExecutorService 579
 via Executors 580
thread pool, with single thread
 about 581, 582
 producer, not checking for consumer

availability 588, 589
 producer, waiting for consumer availability

582, 583, 584, 585, 586, 587
thread pools
 cached 591, 592, 593, 595, 596, 597, 598
 scheduled 591, 592, 593, 595, 596, 597,

598

 with fixed, number of threads 589, 590
thread-safe collection 269
thread-safe queue 269
thread-safe stack 269
ThreadLocal
 about 677
 per-thread context 680, 681
 per-thread instances 677, 678, 679
thrown exceptions
 annotations, inspecting 417
time zones
 local date-time, obtaining in 142
 obtaining, by extraction of offset 140
 obtaining, with GMT 140
 obtaining, with Java date-time API 140, 141,

142

 obtaining, with UTC 140
time-based values
 used, for defining duration of time 132
time

 testing 543, 544
timeout
 setting 749
toString()
 overriding 110, 111, 112
Trie
 about 46, 277
 basic structure 279
 building 282
 deleting 281, 282
 finding 280
 inserting 279
 node 278
tuple
 about 282, 283, 284
 method 283
type inference
 issues 170, 171
 solutions 172

U
Unicode characters 12, 13, 14
Uniform Resource Identifier (URI) 300
Union Find algorithm
 about 284, 285, 286
 find operation, implementing 287
 union operation, implementing 287, 288
union operation
 implementing 287, 288
Unix timestamp
 converting, to date-time 145, 146
unlimited streams
 creating, of pseudorandom values 487, 488
unmodifiable collections
 Arrays.asList() method 240
 Collections.unmodifiableList() method 239,

240, 241, 242, 243, 244
 creating 238, 239
 List.of() method 241, 242, 243, 244
 static block 241
unsigned conversion
 signed int, converting into long 53
unsigned numbers
 comparing 54
unsigned values

 division 55
 modulo 55
UTC
 about 140
 used, for obtaining time zones 140

V
var
 array, assigning 183
vowels
 counting 19, 20, 21

W
walking paths
 about 309
 file, searching by name 312, 313, 314
 Files.walk() 318
 folder, copying 315, 316, 317
 folder, deleting 314
 JDK 8 318
 trivial traversal, of folder 310, 311
watching paths
 about 319, 320
 folder, modifying 320, 321, 322, 323
WebSocket API
 issues 735, 736
 solutions 737
WebSocket protocol 771, 772, 773
wildcards
 replacing, with Local Variable Type Inference

(LVTI) 197
words
 reversing 17, 18
work-stealing thread pool
 about 598, 599, 600
 large number, of small tasks 601, 602
 time-consuming tasks, small number 603,

604

Z
zone offsets
 extracting 149
 extracting, via java.time.ZoneId 150, 151
 extracting, via java.time.ZoneOffset 150, 151
 extracting, via TimeZone.getRawOffset() 150

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Strings, Numbers, and Math
	Problems
	Solutions
	1. Counting duplicate characters
	What about Unicode characters?

	2. Finding the first non-repeated character
	3. Reversing letters and words
	4. Checking whether a string contains only digits
	5. Counting vowels and consonants
	6. Counting the occurrences of a certain character
	7. Converting a string into an int, long, float, or double
	8. Removing white spaces from a string
	9. Joining multiple strings with a delimiter
	10. Generating all permutations
	11. Checking whether a string is a palindrome
	12. Removing duplicate characters
	13. Removing a given character
	14. Finding the character with the most appearances
	15. Sorting an array of strings by length
	16. Checking that a string contains a substring
	17. Counting substring occurrences in a string
	18. Checking whether two strings are anagrams
	19. Declaring multiline strings (text blocks)
	20. Concatenating the same string n times
	21. Removing leading and trailing spaces
	22. Finding the longest common prefix
	23. Applying indentation
	24. Transforming strings
	25. Computing the minimum and maximum of two numbers
	26. Summing two large int/long values and operation overflow
	27. String as an unsigned number in the radix
	28. Converting into a number by an unsigned conversion
	29. Comparing two unsigned numbers
	30. Division and modulo of unsigned values
	31. double/float is a finite floating-point value
	32. Applying logical AND/OR/XOR to two boolean expressions
	33. Converting BigInteger into a primitive type
	34. Converting long into int
	35. Computing the floor of a division and modulus
	36. Next floating-point value
	37. Multiplying two large int/long values and operation overflow
	38. Fused Multiply Add
	39. Compact number formatting
	Formatting
	Parsing

	Summary

	Chapter 2: Objects, Immutability, and Switch Expressions
	Problems
	Solutions
	40. Checking null references in functional style and imperative code
	41. Checking null references and throwing customized NullPointerException
	42. Checking null references and throwing the specified exception
	43. Checking null references and returning non-null default references
	44. Checking the index in the range from 0 to length
	45. Checking the subrange in the range from 0 to length
	46. equals() and hashCode()
	47. Immutable objects in a nutshell
	48. Immutable string
	Pros of string immutability
	String constant pool or cached pool
	Security
	Thread safety
	Hash code caching
	Class loading

	Cons of string immutability
	String cannot be extended
	Sensitive data in memory for a long time
	OutOfMemoryError

	Is String completely immutable?

	49. Writing an immutable class
	50. Passing/returning mutable objects to/from an immutable class
	51. Writing an immutable class via the Builder pattern
	52. Avoiding bad data in immutable objects
	53. Cloning objects
	Manual cloning
	Cloning via clone()
	Cloning via a constructor
	Cloning via the Cloning library
	Cloning via serialization
	Cloning via JSON

	54. Overriding toString()
	55. Switch expressions
	56. Multiple case labels
	57. Statement blocks

	Summary

	Chapter 3: Working with Date and Time
	Problems
	Solutions
	58. Converting a string to date and time
	Before JDK 8
	Starting with JDK 8

	59. Formatting date and time
	60. Getting the current date/time without time/date
	61. LocalDateTime from LocalDate and LocalTime
	62. Machine time via an Instant class
	Converting String to Instant
	Adding or subtracting time to/from Instant
	Comparing Instant objects
	Converting between Instant and LocalDateTime, ZonedDateTime, and OffsetDateTime

	63. Defining a period of time using date-based values and a duration of time using time-based values
	Period of time using date-based values
	Duration of time using time-based values

	64. Getting date and time units
	65. Adding and subtracting to/from date-time
	Working with Date
	Working with LocalDateTime

	66. Getting all time zones with UTC and GMT
	Before JDK 8
	Starting with JDK 8

	67. Getting local date-time in all available time zones
	Before JDK 8
	Starting with JDK 8

	68. Displaying date-time information about a flight
	69. Converting a Unix timestamp to date-time
	70. Finding the first/last day of the month
	71. Defining/extracting zone offsets
	Before JDK 8
	Starting with JDK 8

	72. Converting between Date and Temporal
	Date – Instant
	Date – LocalDate
	Date – DateLocalTime
	Date – ZonedDateTime
	Date – OffsetDateTime
	Date – LocalTime
	Date – OffsetTime

	73. Iterating a range of dates
	Before JDK 8
	Starting with JDK 8
	Starting with JDK 9

	74. Calculating age
	Before JDK 8
	Starting with JDK 8

	75. Start and end of a day
	76. Difference between two dates
	Before JDK 8
	Starting with JDK 8

	77. Implementing a chess clock

	Summary

	Chapter 4: Type Inference
	Problems
	Solutions
	78. Simple var example
	79. Using var with primitive types
	80. Using var and implicit type casting to sustain the code's maintainability
	81. Explicit downcast or better avoid var
	82. Avoid using var if the called names don't contain enough type information for humans
	83. Combining LVTI and programming to the interface technique
	84. Combining LVTI and the diamond operator
	85. Assigning an array to var
	86. Using LVTI in compound declarations
	87. LVTI and variable scope
	88. LVTI and the ternary operator
	89. LVTI and for loops
	90. LVTI and streams
	91. Using LVTI to break up nested/large chains of expressions
	92. LVTI and the method return and argument types
	93. LVTI and anonymous classes
	94. LVTI can be final and effectively final
	95. LVTI and lambdas
	96. LVTI and null initializers, instance variables, and catch blocks variables
	Try-with-resource

	97. LVTI and generic types, T
	98. LVTI, wildcards, covariants, and contravariants
	LVTI and wildcards
	LVTI and covariants/contravariants

	Summary

	Chapter 5: Arrays, Collections, and Data Structures
	Problems
	Solutions
	99. Sorting an array
	JDK built-in solutions
	Other sorting algorithms
	Bubble sort
	Insertion sort
	Counting sort
	Heap sort

	100. Finding an element in an array
	Check only for the presence
	Check only for the first index

	101. Checking whether two arrays are equal or mismatches
	Checking whether two arrays are equal
	Checking whether two arrays contain a mismatch

	102. Comparing two arrays lexicographically
	103. Creating a Stream from an array
	104. Minimum, maximum, and average of an array
	Computing maximum and minimum
	Computing average

	105. Reversing an array
	106. Filling and setting an array
	107. Next Greater Element
	108. Changing array size
	109. Creating unmodifiable/immutable collections
	Problem 1 (Collections.unmodifiableList())
	Problem 2 (Arrays.asList())
	Problem 3 (Collections.unmodifiableList() and static block)
	Problem 4 (List.of())
	Problem 5 (immutable)

	110. Mapping a default value
	111. Computing whether absent/present in a map
	Example 1 (computeIfPresent())
	Example 2 (computeIfAbsent())
	Example 3 (compute())
	Example 4 (merge())
	Example 5 (putIfAbsent())

	112. Removal from a Map
	113. Replacing entries from a Map
	114. Comparing two maps
	115. Sorting a Map
	Sorting by key via TreeMap and natural ordering
	Sorting by key and value via Stream and Comparator
	Sorting by key and value via List

	116. Copying HashMap
	117. Merging two maps
	118. Removing all elements of a collection that match a predicate
	Removing via an iterator
	Removing via Collection.removeIf()
	Removing via Stream
	Separating elements via Collectors.partitioningBy()

	119. Converting a collection into an array
	120. Filtering a Collection by a List
	121. Replacing elements of a List
	122. Thread-safe collections, stacks, and queues
	Concurrent collections
	Thread-safe lists
	Thread-safe set
	Thread-safe map
	Thread-safe queue backed by an array
	Thread-safe queue based on linked nodes
	Thread-safe priority queue
	Thread-safe delay queue
	Thread-safe transfer queue
	Thread-safe synchronous queue
	Thread-safe stack
	Synchronized collections

	Concurrent versus synchronized collections

	123. Breadth-first search
	124. Trie
	Inserting in a Trie
	Finding in a Trie
	Deleting from a Trie

	125. Tuple
	126. Union Find
	Implementing the find operation
	Implementing the union operation

	127. Fenwick Tree or Binary Indexed Tree
	128. Bloom filter

	Summary

	Chapter 6: Java I/O Paths, Files, Buffers, Scanning, and Formatting
	Problems
	Solutions
	129. Creating file paths
	Creating a path relative to the file store root
	Creating a path relative to the current folder
	Creating an absolute path
	Creating a path using shortcuts

	130. Converting file paths
	131. Joining file paths
	132. Constructing a path between two locations
	133. Comparing file paths
	Path.equals()
	Paths representing the same file/folder
	Lexicographical comparison
	Partial comparing

	134. Walking paths
	Trivial traversal of a folder
	Searching for a file by name
	Deleting a folder
	Copying a folder
	JDK 8, Files.walk()

	135. Watching paths
	Watching a folder for changes

	136. Streaming a file's content
	137. Searching for files/folders in a file tree
	138. Reading/writing text files efficiently
	Reading text files in memory
	Writing text files

	139. Reading/writing binary files efficiently
	Reading binary files into memory
	Writing binary files

	140. Searching in big files
	Solution based on BufferedReader
	Solution based on Files.readAllLines()
	Solution based on Files.lines()
	Solution based on Scanner
	Solution based on MappedByteBuffer

	141. Reading a JSON/CSV file as an object
	Read/write a JSON file as an object
	Using JSON-B
	Using Jackson
	Using Gson

	Reading a CSV file as an object

	142. Working with temporary files/folders
	Creating a temporary folder/file
	Deleting a temporary folder/file via shutdown-hook
	Deleting a temporary folder/file via deleteOnExit()
	Deleting a temporary file via DELETE_ON_CLOSE

	143. Filtering files
	Filtering via Files.newDirectoryStream()
	Filtering via FilenameFilter
	Filtering via FileFilter

	144. Discovering mismatches between two files
	145. Circular byte buffer
	146. Tokenizing files
	147. Writing formatted output directly to a file
	148. Working with Scanner
	Scanner versus BufferedReader

	Summary

	Chapter 7: Java Reflection Classes, Interfaces, Constructors, Methods, and Fields
	Problems
	Solutions
	149. Inspecting packages
	Getting the classes of a package
	Inspecting packages inside modules

	150. Inspecting classes
	Get the name of the Pair class via an instance
	Getting the Pair class modifiers
	Getting the Pair class implemented interfaces
	Getting the Pair class constructors
	Getting the Pair class fields
	Getting the Pair class methods
	Getting the Pair class module
	Getting the Pair class superclass
	Getting the name of a certain type
	Getting a string that describes the class
	Getting the type descriptor string for a class
	Getting the component type of an array
	Getting a class for an array type whose component type is described by Pair

	151. Instantiating via a reflected constructor
	Instantiating a class via a private constructor
	Instantiating a class from a JAR
	Useful snippets of code

	152. Getting the annotation of a receiver type
	153. Getting synthetic and bridge constructs
	154. Checking the variable number of arguments
	155. Checking default methods
	156. Nest-based access control via reflection
	Access via the Reflection API

	157. Reflection for getters and setters
	Fetching getters and setters
	Generating getters and setters

	158. Reflecting annotations
	Inspecting package annotations
	Inspecting class annotations
	Inspecting methods annotations
	Inspecting annotations of the thrown exceptions
	Inspecting annotations of the return type
	Inspecting annotations of the method's parameters
	Inspecting annotations of fields
	Inspecting annotations of the superclass
	Inspecting annotations of interfaces
	Get annotations by type
	Get a declared annotation

	159. Invoking an instance method
	160. Getting static methods
	161. Getting generic types of method, fields, and exceptions
	Generics of methods
	Generics of fields
	Generics of a superclass
	Generics of interfaces
	Generics of exceptions

	162. Getting public and private fields
	163. Working with arrays
	164. Inspecting modules
	165. Dynamic proxies
	Implementing a dynamic proxy

	Summary

	Chapter 8: Functional Style Programming - Fundamentals and Design Patterns
	Problems
	Solutions
	166. Writing functional interfaces
	Day 1 (filtering melons by their type)
	Day 2 (filtering melons of a certain weight)
	Day 3 (filtering melons by type and weight)
	Day 4 (pushing the behavior as a parameter)
	Day 5 (implementing another 100 filters)
	Day 6 (anonymous classes can be written as lambdas)
	Day 7 (abstracting the List type)

	167. Lambdas in a nutshell
	168. Implementing the Execute Around pattern
	169. Implementing the Factory pattern
	170. Implementing the Strategy pattern
	171. Implementing the Template Method pattern
	172. Implementing the Observer pattern
	173. Implementing the Loan pattern
	174. Implementing the Decorator pattern
	175. Implementing the Cascaded Builder pattern
	176. Implementing the Command pattern

	Summary

	Chapter 9: Functional Style Programming - a Deep Dive
	Problems
	Solutions
	177. Testing high-order functions
	Testing a method that takes a lambda as a parameter
	Testing a method that returns a functional interface

	178. Testing methods that use lambdas
	179. Debugging lambdas
	180. Filtering the non-zero elements of a stream
	181. Infinite streams, takeWhile(), and dropWhile()
	Infinite sequential ordered stream
	Unlimited stream of pseudorandom values
	Infinite sequential unordered stream
	Take while a predicate returns true
	Drop while a predicate returns true

	182. Mapping the elements of a stream
	Using Stream.map()
	Using Stream.flatMap()

	183. Finding elements in a stream
	findAny
	findFirst

	184. Matching elements in a stream
	185. Sum, max, and min in a stream
	The sum(), min(), and max() terminal operations
	Reducing

	186. Collecting the result of a stream
	187. Joining the results of a stream
	188. Summarization collectors
	Summing
	Averaging
	Counting
	Maximum and minimum
	Getting all

	189. Grouping
	Single-level grouping
	Multilevel grouping

	190. Partitioning
	191. Filtering, flattening, and mapping collectors
	filtering()
	mapping()
	flatMapping()

	192. Teeing
	193. Writing a custom collector
	The supplier – Supplier<A> supplier();
	Accumulating elements – BiConsumer<A, T> accumulator();
	Applying the final transformation – Function<A, R> finisher();
	Parallelizing the collector – BinaryOperator<A> combiner();
	Returning the final result – Function<A, R> finisher();
	Characteristics – Set<Characteristics> characteristics();
	Testing time
	Custom collecting via collect()

	194. Method reference
	Method reference to a static method
	Method reference to an instance method
	Method reference to a constructor

	195. Parallel processing of streams
	Spliterators
	Writing a custom Spliterator

	196. Null-safe streams
	197. Composing functions, predicates, and comparators
	Composing predicates
	Composing comparators
	Composing functions

	198. Default methods

	Summary

	Chapter 10: Concurrency - Thread Pools, Callables, and Synchronizers
	Problems
	Solutions
	199. Thread life cycle states
	The NEW state
	The RUNNABLE state
	The BLOCKED state
	The WAITING state
	The TIMED_WAITING state
	The TERMINATED state

	200. Object- versus class-level locking
	Locking at the object level
	Lock at the class level
	Good to know

	201. Thread pools in Java
	Executor
	ExecutorService
	ScheduledExecutorService
	Thread pools via Executors

	202. Thread pool with a single thread
	Producer waits for the consumer to be available
	Producer doesn't wait for the consumer to be available

	203. Thread pool with a fixed number of threads
	204. Cached and scheduled thread pools
	205. Work-stealing thread pool
	A large number of small tasks
	A small number of time-consuming tasks

	206. Callable and Future
	Canceling a Future

	207. Invoking multiple Callable tasks
	208. Latches
	209. Barrier
	210. Exchanger
	211. Semaphores
	212. Phasers

	Summary

	Chapter 11: Concurrency - Deep Dive
	Problems
	Solutions
	213. Interruptible methods
	214. Fork/join framework
	Computing the sum via RecursiveTask
	Computing Fibonacci via RecursiveAction
	Using CountedCompleter

	215. Fork/join framework and compareAndSetForkJoinTaskTag()
	216. CompletableFuture
	Running asynchronous task and return void
	Running an asynchronous task and returning a result
	Running an asynchronous task and returning a result via an explicit thread pool
	Attaching a callback that processes the result of an asynchronous task and returns a result
	Attaching a callback that processes the result of an asynchronous task and returns void
	Attaching a callback that runs after an asynchronous task and returns void
	Handling exceptions of an asynchronous task via exceptionally()
	JDK 12 exceptionallyCompose()
	Handling exceptions of an asynchronous task via handle()
	Explicitly complete a CompletableFuture

	217. Combining multiple CompletableFuture instances
	Combining via thenCompose()
	Combining via thenCombine()
	Combining via allOf()
	Combining via anyOf()

	218. Optimizing busy waiting
	219. Task Cancellation
	220. ThreadLocal
	Per-thread instances
	Per-thread context

	221. Atomic variables
	Adders and accumulators

	222. ReentrantLock
	223. ReentrantReadWriteLock
	224. StampedLock
	225. Deadlock (dining philosophers)

	Summary

	Chapter 12: Optional
	Problems
	Solutions
	226. Initializing Optional
	227. Optional.get() and missing value
	228. Returning an already-constructed default value
	229. Returning a non-existent default value
	230. Throwing NoSuchElementException
	231. Optional and null references
	232. Consuming a present Optional class
	233. Returning a present Optional class or another one
	234. Chaining lambdas via orElseFoo()
	235. Do not use Optional just for getting a value
	236. Do not use Optional for fields
	237. Do not use Optional in constructor args
	238. Do not use Optional in setter args
	239. Do not use Optional in method args
	240. Do not use Optional to return empty or null collections or arrays
	241. Avoiding Optional in collections
	242. Confusing of() with ofNullable()
	243. Optional<T> versus OptionalInt
	244. Asserting equality of Optionals
	245. Transforming values via Map() and flatMap()
	246. Filter values via Optional.filter()
	247. Chaining the Optional and Stream APIs
	248. Optional and identity-sensitive operations
	249. Returning a boolean if the Optional class is empty

	Summary

	Chapter 13: The HTTP Client and WebSocket APIs
	Problems
	Solutions
	250. HTTP/2
	251. Triggering an asynchronous GET request
	Query parameter builder

	252. Setting a proxy
	253. Setting/getting headers
	Setting request headers
	Getting request/response headers

	254. Specifying the HTTP method
	255. Setting a request body
	Creating a body from a string
	Creating a body from InputStream
	Creating a body from a byte array
	Creating a body from a file

	256. Setting connection authentication
	257. Setting a timeout
	258. Setting the redirect policy
	259. Sending sync and async requests
	Sending a request synchronously
	Sending a request asynchronously
	Sending multiple requests concurrently

	260. Handling cookies
	261. Getting response information
	262. Handling response body types
	Handling a response body as a string
	Handling a response body as a file
	Handling a response body as a byte array
	Handling a response body as an input stream
	Handling a response body as a stream of strings

	263. Getting, updating, and saving a JSON
	JSON response to User
	Updated User to JSON request
	New User to JSON request

	264. Compression
	265. Handling form data
	266. Downloading a resource
	267. Uploading with multipart
	268. HTTP/2 server push
	269. WebSocket

	Summary

	Other Books You May Enjoy
	Index

