Java Coding
Problems

Anghel Leonard

Java Coding Problems

Improve your Java Programming skills by solving
real-world coding challenges

Anghel Leonard

BIRMINGHAM - MUMBAI

Java Coding Problems

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri

Content Development Editor: Zeeyan Pinheiro
Senior Editor: Afshaan Khan

Technical Editor: Pradeep Sahu

Copy Editor: Safis Editing

Project Coordinator: Prajakta Naik
Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Aparna Bhagat

First published: September 2019
Production reference: 1200919

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78980-141-5

www.packt.com

http://www.packt.com

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

¢ Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt .com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Anghel Leonard is a Chief Technology Strategist with more than 20 years of
experience in the Java ecosystem. In his daily work, he is focused on architecting and
developing Java distributed applications that empower robust architectures, clean
code, and high performance. He is also passionate about coaching, mentoring, and
technical leadership.

He is the author of several books, videos, and dozens of articles related to Java
technologies.

About the reviewers

Cristian Stancalau has an MSc and BSc in computer science and engineering from
Babes-Bolyai University, where he has contributed as an assistant lecturer since 2018.
Currently, he works as chief software architect, focused on enterprise code review at
DevFactory.

Previously, he co-founded and lead a video technology start-up as technical director.
Cristian has proven mentoring and teaching expertise in both the commercial and
academic sectors, advising on Java technologies and product architecture.

I would like to thank Anghel Leonard for the honor of entrusting me to perform the
technical review for Java Coding Problems. Reading it was a real pleasure for me
and I am sure it will also be for his readers.

Vishnu Govindrao Kulkarni is an enthusiastic freelancer solutions provider (with
Fortune Consulting). He has a wide range of experience in various domains, with 8
years of experience working with full-stack Java, Java Spring, Spring Boot, the
Hibernate REST API, and Oracle. He has also had the opportunity to work with
several organizations to build enterprise solutions using Java and Java frameworks.
Today, he continues to design and develop solutions while closely working with
clients to help them derive value from these solutions.

Previously, he worked as the technical reviewer for the book Java Fundamentals for
Packt Publishing.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Chapter 1: Strings, Numbers, and Math 8
Problems 8
Solutions 11
1. Counting duplicate characters 11
What about Unicode characters? 12

2. Finding the first non-repeated character 14

3. Reversing letters and words 17

4. Checking whether a string contains only digits 18

5. Counting vowels and consonants 19

6. Counting the occurrences of a certain character 21

7. Converting a string into an int, long, float, or double 23

8. Removing white spaces from a string 24

9. Joining multiple strings with a delimiter 24

10. Generating all permutations 26

11. Checking whether a string is a palindrome 28

12. Removing duplicate characters 30

13. Removing a given character 32

14. Finding the character with the most appearances 33

15. Sorting an array of strings by length 36

16. Checking that a string contains a substring 37

17. Counting substring occurrences in a string 38

18. Checking whether two strings are anagrams 40

19. Declaring multiline strings (text blocks) 41
20. Concatenating the same string n times 43
21. Removing leading and trailing spaces 45
22. Finding the longest common prefix 45
23. Applying indentation 47
24. Transforming strings 49
25. Computing the minimum and maximum of two numbers 50
26. Summing two large int/long values and operation overflow 51
27. String as an unsigned number in the radix 52
28. Converting into a number by an unsigned conversion 53
29. Comparing two unsigned numbers 54
30. Division and modulo of unsigned values 55
31. double/float is a finite floating-point value 56
32. Applying logical AND/OR/XOR to two boolean expressions 57
33. Converting Biglnteger into a primitive type 58
34. Converting long into int 59

Table of Contents

35. Computing the floor of a division and modulus
36. Next floating-point value
37. Multiplying two large int/long values and operation overflow
38. Fused Multiply Add
39. Compact number formatting
Formatting
Parsing
Summary

Chapter 2: Objects, Immutability, and Switch Expressions
Problems
Solutions
40. Checking null references in functional style and imperative code
41. Checking null references and throwing customized
NullPointerException
42. Checking null references and throwing the specified exception
43. Checking null references and returning non-null default references
44. Checking the index in the range from 0 to length
45. Checking the subrange in the range from 0 to length
46. equals() and hashCode()
47. Immutable objects in a nutshell
48. Immutable string
Pros of string immutability
String constant pool or cached pool
Security
Thread safety
Hash code caching
Class loading
Cons of string immutability
String cannot be extended
Sensitive data in memory for a long time
OutOfMemoryError
Is String completely immutable?
49. Writing an immutable class
50. Passing/returning mutable objects to/from an immutable class
51. Writing an immutable class via the Builder pattern
52. Avoiding bad data in immutable objects
53. Cloning objects
Manual cloning
Cloning via clone()
Cloning via a constructor
Cloning via the Cloning library
Cloning via serialization
Cloning via JSON
54. Overriding toString()
55. Switch expressions
56. Multiple case labels
57. Statement blocks

60
61
62
64
65
65
68

69

70
70
72
72

75
77
79
80
83
85
91
91
92
92
94
94
94
94
95
95
95
95
95
96
97

100

103

105

105

106

107

108

109

110

110

112

115

116

[ii]

Table of Contents

Summary

Chapter 3: Working with Date and Time
Problems
Solutions

58.

63. Defining a period of time using date-based values and a duration

Converting a string to date and time
Before JDK 8
Starting with JDK 8

. Formatting date and time

. Getting the current date/time without time/date
. LocalDateTime from LocalDate and LocalTime
. Machine time via an Instant class

Converting String to Instant
Adding or subtracting time to/from Instant
Comparing Instant objects

Converting between Instant and LocalDateTime, ZonedDateTime, and

OffsetDateTime

of time using time-based values

64.
65.

66.

73.

Period of time using date-based values
Duration of time using time-based values
Getting date and time units

Adding and subtracting to/from date-time
Working with Date

Working with LocalDateTime

Getting all time zones with UTC and GMT
Before JDK 8

Starting with JDK 8

. Getting local date-time in all available time zones

Before JDK 8
Starting with JDK 8

. Displaying date-time information about a flight
. Converting a Unix timestamp to date-time

. Finding the first/last day of the month

. Defining/extracting zone offsets

Before JDK 8
Starting with JDK 8

. Converting between Date and Temporal

Date — Instant

Date — LocalDate

Date — DateLocalTime
Date — ZonedDateTime
Date — OffsetDateTime
Date — LocalTime

Date — OffsetTime

Iterating a range of dates
Before JDK 8

Starting with JDK 8

[iii]

117

118
118
120
120
120
120
124
128
128
129
130
130
130

131

132
132
134
137
138
139
139
140
140
140
142
142
143
144
145
146
149
150
150
151
152
153
154
154
155
155
156
156
156
157

Table of Contents

Starting with JDK 9 157
74. Calculating age 158
Before JDK 8 158
Starting with JDK 8 158
75. Start and end of a day 159
76. Difference between two dates 162
Before JDK 8 162
Starting with JDK 8 162
77. Implementing a chess clock 164
Summary 169
Chapter 4: Type Inference 170
Problems 170
Solutions 172
78. Simple var example 172
79. Using var with primitive types 175
80. Using var and implicit type casting to sustain the code's

maintainability 176
81. Explicit downcast or better avoid var 178

82. Avoid using var if the called names don't contain enough type
information for humans 179
83. Combining LVTI and programming to the interface technique 180
84. Combining LVTI and the diamond operator 181
85. Assigning an array to var 183
86. Using LVTI in compound declarations 184
87. LVTI and variable scope 184
88. LVTI and the ternary operator 186
89. LVTI and for loops 187
90. LVTI and streams 188
91. Using LVTI to break up nested/large chains of expressions 189
92. LVTI and the method return and argument types 190
93. LVTI and anonymous classes 191
94. LVTI can be final and effectively final 192
95. LVTI and lambdas 193

96. LVTI and null initializers, instance variables, and catch blocks
variables 194
Try-with-resource 195
97. LVTI and generic types, T 195
98. LVTI, wildcards, covariants, and contravariants 196
LVTI and wildcards 197
LVTI and covariants/contravariants 197
Summary 198
Chapter 5: Arrays, Collections, and Data Structures 199
Problems 199
Solutions 201
99. Sorting an array 201

[iv]

Table of Contents

JDK built-in solutions 201
Other sorting algorithms 204
Bubble sort 204
Insertion sort 206
Counting sort 209

Heap sort 210

100. Finding an element in an array 215
Check only for the presence 215
Check only for the first index 219
101. Checking whether two arrays are equal or mismatches 220
Checking whether two arrays are equal 221
Checking whether two arrays contain a mismatch 222
102. Comparing two arrays lexicographically 224
103. Creating a Stream from an array 227
104. Minimum, maximum, and average of an array 228
Computing maximum and minimum 228
Computing average 231
105. Reversing an array 232
106. Filling and setting an array 233
107. Next Greater Element 236
108. Changing array size 237
109. Creating unmodifiable/immutable collections 238
Problem 1 (Collections.unmodifiableList()) 239
Problem 2 (Arrays.asList()) 240
Problem 3 (Collections.unmodifiableList() and static block) 240
Problem 4 (List.of()) 241
Problem 5 (immutable) 242
110. Mapping a default value 245
111. Computing whether absent/present in a map 246
Example 1 (computelfPresent()) 246
Example 2 (computelfAbsent()) 247
Example 3 (compute()) 249
Example 4 (merge()) 250
Example 5 (putlfAbsent()) 251
112. Removal from a Map 252
113. Replacing entries from a Map 253
114. Comparing two maps 255
115. Sorting a Map 256
Sorting by key via TreeMap and natural ordering 257
Sorting by key and value via Stream and Comparator 257
Sorting by key and value via List 258
116. Copying HashMap 259
117. Merging two maps 260
118. Removing all elements of a collection that match a predicate 262
Removing via an iterator 263
Removing via Collection.removelf() 263
Removing via Stream 263
Separating elements via Collectors.partitioningBy() 264
119. Converting a collection into an array 265

[v]

Table of Contents

120. Filtering a Collection by a List 265

121. Replacing elements of a List 267

122. Thread-safe collections, stacks, and queues 269

Concurrent collections 269

Thread-safe lists 269

Thread-safe set 270

Thread-safe map 270

Thread-safe queue backed by an array 271

Thread-safe queue based on linked nodes 272

Thread-safe priority queue 272

Thread-safe delay queue 272

Thread-safe transfer queue 273

Thread-safe synchronous queue 273

Thread-safe stack 273

Synchronized collections 274

Concurrent versus synchronized collections 274

123. Breadth-first search 275

124. Trie 277

Inserting in a Trie 279

Finding in a Trie 280

Deleting from a Trie 281

125. Tuple 282

126. Union Find 284

Implementing the find operation 287

Implementing the union operation 287

127. Fenwick Tree or Binary Indexed Tree 289

128. Bloom filter 293

Summary 296
Chapter 6: Java I/O Paths, Files, Buffers, Scanning, and

Formatting 297

Problems 297

Solutions 299

129. Creating file paths 299

Creating a path relative to the file store root 300

Creating a path relative to the current folder 301

Creating an absolute path 301

Creating a path using shortcuts 302

130. Converting file paths 303

131. Joining file paths 305

132. Constructing a path between two locations 306

133. Comparing file paths 307

Path.equals() 308

Paths representing the same file/folder 308

Lexicographical comparison 309

Partial comparing 309

134. Walking paths 309

Trivial traversal of a folder 310

Searching for a file by name 312

[vi]

Table of Contents

Deleting a folder
Copying a folder
JDK 8, Files.walk()
135. Watching paths
Watching a folder for changes
136. Streaming a file's content
137. Searching for files/folders in a file tree
138. Reading/writing text files efficiently
Reading text files in memory
Writing text files
139. Reading/writing binary files efficiently
Reading binary files into memory
Writing binary files
140. Searching in big files
Solution based on BufferedReader
Solution based on Files.readAllLines()
Solution based on Files.lines()
Solution based on Scanner
Solution based on MappedByteBuffer
141. Reading a JSON/CSYV file as an object
Read/write a JSON file as an object
Using JSON-B
Using Jackson
Using Gson
Reading a CSV file as an object
142. Working with temporary files/folders
Creating a temporary folder/file
Deleting a temporary folder/file via shutdown-hook
Deleting a temporary folder/file via deleteOnExit()
Deleting a temporary file via DELETE_ON_CLOSE
143. Filtering files
Filtering via Files.newDirectoryStream()
Filtering via FilenameFilter
Filtering via FileFilter
144. Discovering mismatches between two files
145. Circular byte buffer
146. Tokenizing files
147. Writing formatted output directly to a file
148. Working with Scanner
Scanner versus BufferedReader

Summary

Chapter 7: Java Reflection Classes, Interfaces, Constructors,
Methods, and Fields

Problems

Solutions

149. Inspecting packages
Getting the classes of a package

314
315
318
319
320
323
324
326
331
332
333
336
337
338
339
339
340
340
341
342
342
343
344
346
346
347
348
349
350
351
352
352
355
355
356
358
366
371
374
378

378

379
379
381

381
382

[vii]

Table of Contents

Inspecting packages inside modules

150. Inspecting classes
Get the name of the Pair class via an instance
Getting the Pair class modifiers
Getting the Pair class implemented interfaces
Getting the Pair class constructors
Getting the Pair class fields
Getting the Pair class methods
Getting the Pair class module
Getting the Pair class superclass
Getting the name of a certain type
Getting a string that describes the class
Getting the type descriptor string for a class
Getting the component type of an array

Getting a class for an array type whose component type is described by

Pair
151. Instantiating via a reflected constructor
Instantiating a class via a private constructor
Instantiating a class from a JAR
Useful snippets of code
152. Getting the annotation of a receiver type
153. Getting synthetic and bridge constructs
154. Checking the variable number of arguments
155. Checking default methods
156. Nest-based access control via reflection
Access via the Reflection API
157. Reflection for getters and setters
Fetching getters and setters
Generating getters and setters
158. Reflecting annotations
Inspecting package annotations
Inspecting class annotations
Inspecting methods annotations
Inspecting annotations of the thrown exceptions
Inspecting annotations of the return type
Inspecting annotations of the method's parameters
Inspecting annotations of fields
Inspecting annotations of the superclass
Inspecting annotations of interfaces
Get annotations by type
Get a declared annotation
159. Invoking an instance method
160. Getting static methods
161. Getting generic types of method, fields, and exceptions
Generics of methods
Generics of fields
Generics of a superclass
Generics of interfaces
Generics of exceptions

385
386
386
387
387
388
388
389
390
390
390
392
392
392

393
393
395
396
397
398
399
401
402
402
404
406
407
409
414
415
415
416
417
417
418
419
419
420
421
421
421
422
424
425
426
426
427
427

[viii]

Table of Contents

162. Getting public and private fields 428
163. Working with arrays 429
164. Inspecting modules 430
165. Dynamic proxies 432
Implementing a dynamic proxy 433
Summary 436
Chapter 8: Functional Style Programming - Fundamentals and
Design Patterns 437
Problems 437
Solutions 438
166. Writing functional interfaces 438
Day 1 (filtering melons by their type) 439
Day 2 (filtering melons of a certain weight) 440
Day 3 (filtering melons by type and weight) 440
Day 4 (pushing the behavior as a parameter) 441
Day 5 (implementing another 100 filters) 443
Day 6 (anonymous classes can be written as lambdas) 444
Day 7 (abstracting the List type) 445
167. Lambdas in a nutshell 447
168. Implementing the Execute Around pattern 448
169. Implementing the Factory pattern 450
170. Implementing the Strategy pattern 452
171. Implementing the Template Method pattern 454
172. Implementing the Observer pattern 456
173. Implementing the Loan pattern 459
174. Implementing the Decorator pattern 462
175. Implementing the Cascaded Builder pattern 466
176. Implementing the Command pattern 467
Summary 471
Chapter 9: Functional Style Programming - a Deep Dive 472
Problems 472
Solutions 474
177. Testing high-order functions 474
Testing a method that takes a lambda as a parameter 474
Testing a method that returns a functional interface 475
178. Testing methods that use lambdas 476
179. Debugging lambdas 478
180. Filtering the non-zero elements of a stream 482
181. Infinite streams, takeWhile(), and dropWhile() 484
Infinite sequential ordered stream 485
Unlimited stream of pseudorandom values 487
Infinite sequential unordered stream 489
Take while a predicate returns true 489
Drop while a predicate returns true 491
182. Mapping the elements of a stream 493

[ix]

Table of Contents

Using Stream.map() 494
Using Stream.flatMap() 497
183. Finding elements in a stream 500
findAny 501
findFirst 501
184. Matching elements in a stream 503
185. Sum, max, and min in a stream 504
The sum(), min(), and max() terminal operations 505
Reducing 506
186. Collecting the result of a stream 509
187. Joining the results of a stream 513
188. Summarization collectors 514
Summing 514
Averaging 516
Counting 517
Maximum and minimum 517
Getting all 518
189. Grouping 518
Single-level grouping 519
Multilevel grouping 526
190. Partitioning 528
191. Filtering, flattening, and mapping collectors 531
filtering() 532
mapping() 533
flatMapping() 534
192. Teeing 535
193. Writing a custom collector 538
The supplier — Supplier<A> supplier(); 541
Accumulating elements — BiConsumer<A, T> accumulator(); 541
Applying the final transformation — Function<A, R> finisher(); 542
Parallelizing the collector — BinaryOperator<A> combiner(); 542
Returning the final result — Function<A, R> finisher(); 543
Characteristics — Set<Characteristics> characteristics(); 543
Testing time 543
Custom collecting via collect() 544
194. Method reference 545
Method reference to a static method 545
Method reference to an instance method 546
Method reference to a constructor 547
195. Parallel processing of streams 547
Spliterators 551
Writing a custom Spliterator 553
196. Null-safe streams 554
197. Composing functions, predicates, and comparators 556
Composing predicates 556
Composing comparators 558
Composing functions 560
198. Default methods 562

[x]

Table of Contents

Summary 563
Chapter 10: Concurrency - Thread Pools, Callables, and
Synchronizers 564

Problems 564

Solutions 566

199. Thread life cycle states 566
The NEW state 567
The RUNNABLE state 567
The BLOCKED state 568
The WAITING state 570
The TIMED_WAITING state 571
The TERMINATED state 572

200. Object- versus class-level locking 573
Locking at the object level 573
Lock at the class level 574
Good to know 575

201. Thread pools in Java 576
Executor 576
ExecutorService 577
ScheduledExecutorService 579
Thread pools via Executors 580

202. Thread pool with a single thread 581
Producer waits for the consumer to be available 582
Producer doesn't wait for the consumer to be available 588

203. Thread pool with a fixed number of threads 589

204. Cached and scheduled thread pools 591

205. Work-stealing thread pool 598
A large number of small tasks 601
A small number of time-consuming tasks 603

206. Callable and Future 604
Canceling a Future 609

207. Invoking multiple Callable tasks 610

208. Latches 613

209. Barrier 616

210. Exchanger 621

211. Semaphores 624

212. Phasers 628

Summary 633
Chapter 11: Concurrency - Deep Dive 634

Problems 634

Solutions 635

213. Interruptible methods 636
214. Fork/join framework 639
Computing the sum via RecursiveTask 641
Computing Fibonacci via RecursiveAction 643
Using CountedCompleter 645

[xil]

Table of Contents

215
216

. Fork/join framework and compareAndSetForkJoinTaskTag()
. CompletableFuture

Running asynchronous task and return void

Running an asynchronous task and returning a result

Running an asynchronous task and returning a result via an explicit

thread pool

Attaching a callback that processes the result of an asynchronous task
and returns a result

Attaching a callback that processes the result of an asynchronous task
and returns void

Attaching a callback that runs after an asynchronous task and returns
void

Handling exceptions of an asynchronous task via exceptionally()

JDK 12 exceptionallyCompose()

217

218
219
220

221

Handling exceptions of an asynchronous task via handle()
Explicitly complete a CompletableFuture

. Combining multiple CompletableFuture instances
Combining via thenCompose()

Combining via thenCombine()

Combining via allOf()

Combining via anyOf()

. Optimizing busy waiting

. Task Cancellation

. ThreadLocal

Per-thread instances

Per-thread context

. Atomic variables

Adders and accumulators

222
223
224
225
Summ

Chapter 1

. ReentrantLock

. ReentrantReadWriteLock

. StampedLock

. Deadlock (dining philosophers)
ary

2: Optional

Problems
Solutions

226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.

Initializing Optional

Optional.get() and missing value

Returning an already-constructed default value
Returning a non-existent default value
Throwing NoSuchElementException

Optional and null references

Consuming a present Optional class

Returning a present Optional class or another one
Chaining lambdas via orElseFoo()

Do not use Optional just for getting a value

Do not use Optional for fields

648
651
652
653

653

654

656

657
658
664
665
667
668
668
670
671
672
674
675
677
677
680
682
685
687
690
693
697

701

702
702
704
705
705
706
707
708
709
710
712
712
715
715

[xii]

Table of Contents

237. Do not use Optional in constructor args 716
238. Do not use Optional in setter args 718
239. Do not use Optional in method args 719
240. Do not use Optional to return empty or null collections or arrays 721
241. Avoiding Optional in collections 722
242. Confusing of() with ofNullable() 724
243. Optional<T> versus Optionalint 725
244. Asserting equality of Optionals 726
245. Transforming values via Map() and flatMap() 727
246. Filter values via Optional.filter() 729
247. Chaining the Optional and Stream APIs 730
248. Optional and identity-sensitive operations 731
249. Returning a boolean if the Optional class is empty 733
Summary 734
Chapter 13: The HTTP Client and WebSocket APIs 735
Problems 735
Solutions 737
250. HTTP/2 737
251. Triggering an asynchronous GET request 738
Query parameter builder 740
252. Setting a proxy 741
253. Setting/getting headers 741
Setting request headers 741
Getting request/response headers 743
254, Specifying the HTTP method 744
255. Setting a request body 745
Creating a body from a string 746
Creating a body from InputStream 746
Creating a body from a byte array 747
Creating a body from a file 747
256. Setting connection authentication 747
257. Setting a timeout 749
258. Setting the redirect policy 749
259. Sending sync and async requests 750
Sending a request synchronously 751
Sending a request asynchronously 751
Sending multiple requests concurrently 752
260. Handling cookies 753
261. Getting response information 754
262. Handling response body types 755
Handling a response body as a string 755
Handling a response body as a file 756
Handling a response body as a byte array 756
Handling a response body as an input stream 756
Handling a response body as a stream of strings 757
263. Getting, updating, and saving a JSON 757

[xiii]

Table of Contents

JSON response to User 759

Updated User to JSON request 759

New User to JSON request 760

264. Compression 760

265. Handling form data 762

266. Downloading a resource 763

267. Uploading with multipart 764

268. HTTP/2 server push 767

269. WebSocket 771
Summary 773
Other Books You May Enjoy 774
Index 777

[xiv]

Preface

The super-fast evolution of the JDK between versions 8 and 12 has increased the
learning curve of modern Java, therefore has increased the time needed for placing
developers in the Plateau of Productivity. Its new features and concepts can be
adopted to solve a variety of modern-day problems. This book enables you to adopt
an objective approach to common problems by explaining the correct practices and
decisions with respect to complexity, performance, readability, and more.

Java Coding Problems will help you complete your daily tasks and meet deadlines. You
can count on the 300+ applications containing 1,000+ examples in this book to cover
the common and fundamental areas of interest: strings, numbers, arrays, collections,
data structures, date and time, immutability, type inference, Optional, Java I/O, Java
Reflection, functional programming, concurrency and the HTTP Client API. Put your
skills on steroids with problems that have been carefully crafted to highlight and
cover the core knowledge that is accessed in daily work. In other words (no matter if
your task is easy, medium or complex) having this knowledge under your tool belt is
a must, not an option.

By the end of this book, you will have gained a strong understanding of Java concepts
and have the confidence to develop and choose the right solutions to your problems.

Who this book is for

Java Coding Problems is especially useful for beginners and intermediate Java
developers. However, the problems looked at here are encountered in the daily work
of any Java developer.

The required technical background is quite thin. Mainly, you should be a Java fan and
have good skills and intuition in following a piece of Java code.

Preface

What this book covers

Chapter 1, Strings, Numbers, and Math, includes 39 problems that involve strings,
numbers, and mathematical operations. The chapter starts with a bunch of classical
problems for strings such as counting duplicates, reversing a string, and removing
white spaces. The chapter continues with problems dedicated to numbers and
mathematical operations such as summing two large numbers, operation overflow,
comparing two unsigned numbers, computing the floor of a division and a modulus,
and much more. Each problem is passed through several solutions, including Java 8
functional style. Moreover, the chapter covers problems that futures added in JDK 9,
10, 11, and 12.

Chapter 2, Objects, Immutability, and Switch Expressions, includes 18 problems that
involve objects, immutability, and switch expressions. The chapter starts with
several problems about dealing with null references. It continues with problems
regarding checking indexes, equals () and hashCode (), and immutability (for
example, writing immutable classes and passing/returning mutable objects from
immutable classes). The last part of the chapter deals with cloning objects and JDK 12
switch expressions.

Chapter 3, Working with Date and Time, includes 20 problems that involve date and
time. These problems are meant to cover a wide range of topics (converting,
formatting, adding, subtracting, defining periods/durations, computing, and so on)
via Date, Calendar, LocalDate, LocalTime, LocalDateTime, ZoneDateTime,
OffsetDateTime, OffsetTime, Instant, and so on. By the end of this chapter, you
will have no problems shaping date and time to conform to your application's needs.

Chapter 4, Type Inference, includes 21 problems that involve JEP 286, Java Local
Variable Type Inference (LVTI), or the var type. These problems have been
carefully crafted to reveal the best practices and common mistakes involved in using
var. By the end of this chapter, you will have everything you need to know about
var to push it in production.

Chapter 5, Arrays, Collections, and Data Structures, includes 30 problems that involve
arrays, collections, and several data structures. The aim is to provide solutions to a
category of problems encountered in a wide range of applications, such as sorting,
finding, comparing, ordering, reversing, filling, merging, copying, replacing, and so
on. The provided solutions are implemented in Java 8-12 and they can be used as the
base for solving other related problems as well. By the end of this chapter, you will
have a solid base of knowledge that's useful for solving a lot of problems that involve
arrays, collections, and data structures.

[2]

Preface

Chapter 6, Java I/O Paths, Files, Buffers, Scanning, and Formatting, includes 20 problems
that involve Java I/O for files. From manipulating, walking, and watching paths to
streaming files and efficient ways for reading/writing text and binary files, we will
cover problems that are a must in the arsenal of any Java developer. With the skills
gained from this chapter, you will be able to tackle most of the common problems
that involve Java I/O files.

Chapter 7, Java Reflection Classes, Interfaces, Constructors, Methods, and Fields, includes
17 problems that involve the Java Reflection API. From classical topics, such as
inspecting and instantiating Java artifacts (for example, modules, packages, classes,
interfaces, super-classes, constructors, methods, annotations, arrays, and so on), to
synthetic and bridge constructs or nest-based access control (JDK 11), this chapter
provides solid coverage of the Java Reflection API.

Chapter 8, Functional Style Programming — Fundamentals and Design Patterns, includes
11 problems that involve Java functional programming. The chapter starts with a
problem designed to acquaint you completely with functional interfaces. It continues
with a suite of design patterns from GoF interpreted in Java functional style.

Chapter 9, Functional Style Programming — Deep Dive, includes 22 problems that
involve Java functional programming. Here, we focus on several problems that
involve classical operations encountered in streams (for example, filters, and maps),
and we discuss infinite streams, null-safe streams, and default methods. A
comprehensive list of problems covers grouping, partitioning, and collectors,
including the JDK 12 teeing () collector and the matter of writing a custom collector.
In addition, takeWhile (), dropWhile (), composing functions, predicates and
comparators, testing and debugging lambdas, and other cool topics are discussed as
well.

Chapter 10, Concurrency — Thread Pools, Callables, and Synchronizers, includes 14
problems that involve Java concurrency. This chapter starts with several fundamental
problems about the thread life cycle and object-/class-level locking. It continues with a
bunch of problems about thread pools in Java, including JDK 8 work-stealing thread
pools. Afterward, we have problems dedicated to Callable and Future. Next, we
dedicate several problems to Java synchronizers (for example, barrier, semaphore,
and exchanger). By the end of this chapter, you should be familiar with the main
coordinates of Java concurrency and be ready to continue with a set of advanced
problems.

[31]

Preface

Chapter 11, Concurrency —Deep Dive, includes 13 problems that involve Java
concurrency. This chapter covers problems about fork/join frameworks,
CompletableFuture, ReentrantLock, ReentrantReadWriteLock, StampedLock,
atomic variables, task cancelation, interruptible methods, thread-local locks, and
deadlocks. Completing this chapter will guarantee the achievement of the
considerable amount of concurrency knowledge needed by any Java developer.

Chapter 12, Optional, includes 24 problems meant to draw several rules for working
with Optional. The problems and solutions presented in this section are based on
the Brian Goetz' (Java's language architect) definition—Optional is intended to provide a
limited mechanism for library method return types where there needed to be a clear way to
represent no result, and using null for such was overwhelmingly likely to cause errors. But
where there are rules, there are exceptions as well. Therefore, do not conclude that the
rules (or practices) presented here should be followed (or avoided) at all costs. Like
always, the solution depends on the problem.

Chapter 13, HTTP Client and WebSocket APIs, includes 20 problems meant to cover the
HTTP Client and WebSocket APIs. Remember HttpUrlConnection? Well, JDK 11
comes with the HTTP Client API as a reinvention of Ht t pUrlConnection. The HTTP
Client APl is easy to use and supports HTTP/2 (default) and HTTP/1.1. For backward
compatibility, the HTTP Client API will automatically downgrade from HTTP/2 to
HTTP 1.1 when the server doesn't support HTTP/2. Moreover, the HTTP Client API
supports synchronous and asynchronous programming models and relies on streams
to transfer data (reactive streams). It also supports the WebSocket protocol used in
real-time web applications to provide client-server communication with low message
overhead.

To get the most out of this book

You should have fundamental knowledge about the Java language. You should
install the following:

¢ An IDE (recommended, but not a must, is Apache NetBeans 11.x: https://
netbeans.apache.org/)

¢ JDK 12 and Maven 3.3.x

¢ Additional third-party libraries will need to be installed at the right
moment (nothing special)

[4]

https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/
https://netbeans.apache.org/

Preface

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Java-Coding-Problems. In case there's an update to the code, it will
be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https://static.packt-cdn.com/downloads/
9781789801415_ColorImages.pdf.

Code in action

To see the code being executed please visit the following link: http://bit.1ly/
2kSgFKE.

[5]

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789801415_ColorImages.pdf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf
http://bit.ly/2kSgFKf

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLSs, user input, and Twitter handles.
Here is an example: "If the current character exists in the Map instance, then simply
increase its occurrences by 1 with (character, occurrences+1)."

A block of code is set as follows:

public Map<Character, Integer> countDuplicateCharacters (String str) {

Map<Character, Integer> result = new HashMap<>();
// or use for(char ch: str.toCharArray()) { ... }
for (int i = 0; i<str.length(); i++) {
char ch = str.charAt (i);
result.compute (ch, (k, v) -> (v == null) ? 1 : ++v);

}

return result;

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

for (int i = 0; 1 < str.length(); i++) {
int cp = str.codePointAt (i);
String ch = String.valueOf (Character.toChars(cp));
if (Character.charCount (cp) == 2) { // 2 means a surrogate pair
i++;
}
}

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "In Java, the logical AND operator is represented as &&, the

logical OR operator is represented as | |, and the logical XOR operator is represented
as M\."

[6]

Preface

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata,

selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt .com.

[7]

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

Strings, Numbers, and Math

This chapter includes 39 problems that involve strings, numbers, and mathematical
operations. We will start by looking at a bunch of classical problems for strings such
as counting duplicates, reversing a string, and removing white spaces. Then, we will
look at problems dedicated to numbers and mathematical operations such as
summing two large numbers and operation overflow, comparing two unsigned
numbers, and computing the floor of a division and modulus. Each problem is passed
through several solutions, including Java 8's functional style. Moreover, we will be
covering problems that concern JDK 9, 10, 11, and 12.

By the end of this chapter, you will know how to use a bunch of techniques so that
you can manipulate strings and apply, adapt, and adjust them to many other
problems. You will also know how to solve mathematical corner cases that may lead
to weird and unpredictable results.

Problems

Use the following problems to test your string manipulation and mathematical corner
case programming prowess. I strongly encourage you to give each problem a try
before you turn to the solutions and download the example programs:

1. Counting duplicate characters: Write a program that counts duplicate
characters from a given string.

2. Finding the first non-repeated character: Write a program that returns the
first non-repeated character from a given string.

3. Reversing letters and words: Write a program that reverses the letters of
each word and a program that reverses the letters of each word and the
words themselves.

4. Checking whether a string contains only digits: Write a program that
checks whether the given string contains only digits.

Strings, Numbers, and Math Chapter 1

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Counting vowels and consonants: Write a program that counts the
number of vowels and consonants in a given string. Do this for the English
language, which has five vowels (a, €, i, 0, and u).

Counting occurrences of a certain character: Write a program that counts
the occurrences of a certain character in a given string.

Converting Stringinto int, long, float, or double: Write a program
that converts the given St ring object (representing a number) into int,
long, float, or double.

. Removing white spaces from a string: Write a program that removes all

white spaces from the given string.

Joining multiple strings with a delimiter: Write a program that joins the
given strings by the given delimiter.

Generating all permutations: Write a program that generates all of the
permutations of a given string.

Checking whether a string is a palindrome: Write a program that
determines whether the given string is a palindrome or not.

Removing duplicate characters: Write a program that removes the
duplicate characters from the given string.

Removing given characters: Write a program that removes the given
character from the given string.

Finding the character with the most appearances: Write a program that
finds the character with the most appearances in the given string.

Sorting an array of strings by length: Write a program that sorts by the
length of the given array of strings.

Checking that a string contains a substring: Write a program that checks
whether the given string contains the given substring.

Counting substring occurrences a string: Write a program that counts the
occurrences of a given string in another given string.

Checking whether two strings are anagrams: Write a program that checks
whether two strings are anagrams. Consider that an anagram of a string is
a permutation of this string by ignoring capitalization and white spaces.
Declaring multiline strings (text blocks): Write a program that declares
multiline strings or text blocks.

Concatenating the same string n times: Write a program that concatenates
the same string a given number of times.

Removing leading and trailing spaces: Write a program that removes the
leading and trailing spaces of the given string.

[91]

Strings, Numbers, and Math Chapter 1

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

Finding the longest common prefix: Write a program that finds the longest
common prefix of given strings.

Applying indentation: Write several snippets of code to apply indentation
to the given text.

Transforming strings: Write several snippets of code to transform a string
into another string.

Computing the minimum and maximum of two numbers: Write a
program that returns the minimum and maximum of two numbers.
Summing two large int/long numbers and operation overflow: Write a
program that sums two large int/long numbers and throws an arithmetic
exception in the case of an operation overflow.

String as an unsigned number in the radix: Write a program that parses
the given string into an unsigned number (int or long) in the given radix.
Converting into a number by an unsigned conversion: Write a program
that converts a given int number into 1ong by an unsigned conversion.
Comparing two unsigned numbers: Write a program that compares the
given two numbers as unsigned.

Division and modulo of unsigned values: Write a program that computes
the division and modulo of the given unsigned value.

double/float is a finite floating-point value: Write a program that
determines whether the given double/float value is a finite floating-point
value.

Applying logical AND/OR/XOR to two boolean expressions: Write a
program that applies the logical AND/OR/XOR to two boolean expressions.
Converting BigInteger into a primitive type: Write a program that
extracts the primitive type value from the given BigInteger.

Converting long into int: Write a program that converts long into int.
Computing the floor of a division and modulus: Write a program that
computes the floor division and the floor modulus of the given dividend
(x) and divisor (y).

Next floating-point value: Write a program that returns the next floating-
point adjacent to the given float/double value in the direction of positive
and negative infinity.

Multiplying two large int/long values and operation overflow: Write a
program that multiplies two large int/long values and throws an
arithmetic exception in the case of operation overflow.

[10]

Strings, Numbers, and Math Chapter 1

38. Fused Multiply Add (FMA): Write a program that takes three
float/double values (g, b, ¢) and computes a * b + ¢ in an efficient way.

39. Compact number formatting: Write a program that formats the number
1,000,000 to 1M (US locale) and to 1 mln (Italian locale). In addition, parse
1M and 1 mIn from a string into a number.

Solutions

The following sections describe solutions to the preceding problems. Remember that
there usually isn't a single correct way to solve a particular problem. Also, remember
that the explanations shown here only include the most interesting and important
details needed to solve the problems. You can download the example solutions to see
additional details and experiment with the programs from https://github.com/
PacktPublishing/Java-Coding-Problems.

1. Counting duplicate characters

The solution to counting the characters in a string (including special characters such
as #, $, and %) implies taking each character and comparing them with the rest.
During the comparison, the counting state is maintained via a numeric counter that's
increased by one each time the current character is found.

There are two solutions to this problem.

The first solution iterates the string characters and uses Map to store the characters as
keys and the number of occurrences as values. If the current character was never
added to Map, then add it as (character, 1).If the current character exists in Map,
then simply increase its occurrences by 1, for example, (character,
occurrences+1). This is shown in the following code:

public Map<Character, Integer> countDuplicateCharacters (String str) {

Map<Character, Integer> result = new HashMap<>();
// or use for(char ch: str.toCharArray()) { ... }
for (int i1 = 0; i<str.length(); i++) {
char ch = str.charAt (i);
result.compute (ch, (k, v) -> (v == null) ? 1 : ++v);

}

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Strings, Numbers, and Math Chapter 1

return result;

}

Another solution relies on Java 8's stream feature. This solution has three steps. The
first two steps are meant to transform the given string into St ream<Character>,
while the last step is responsible for grouping and counting the characters. Here are
the steps:

1. Call the string.chars () method on the original string. This will
return IntStream. This IntStream contains an integer representation of
the characters from the given string.

2. Transform IntStream into a stream of characters via the mapToOb7 ()
method (convert the integer representation into the human-friendly
character form).

3. Finally, group the characters (Collectors.groupingBy ()) and count
them (Collectors.counting()).

The following snippet of code glues these three steps into a single method:

public Map<Character, Long> countDuplicateCharacters(String str) {

Map<Character, Long> result = str.chars/()
.mapToObj (c —> (char) c)
.collect (Collectors.groupingBy(c -> ¢, Collectors.counting()));

return result;

}

What about Unicode characters?

We are pretty familiar with ASCII characters. We have unprintable control codes
between 0-31, printable characters between 32-127, and extended ASCII codes
between 128-255. But what about Unicode characters? Consider this section for each
problem that requires that we manipulate Unicode characters.

So, in a nutshell, early Unicode versions contained characters with values less than
65,535 (OXFFFF). Java represents these characters using the 16-bit char data type.
Calling charAt (i) works as expected as long as i doesn't exceed 65,535. But over
time, Unicode has added more characters and the maximum value has reached
1,114,111 (Ox10FFFF). These characters don't fit into 16 bits, and so 32-bit values
(known as code points) were considered for the UTF-32 encoding scheme.

[12]

Strings, Numbers, and Math Chapter 1

Unfortunately, Java doesn't support UTF-32! Nevertheless, Unicode has come up with
a solution for still using 16 bits to represent these characters. This solution implies the
following;:

e 16-bit high surrogates: 1,024 values (U+D800 to U+DBEFF)
e 16-bit low surrogates: 1,024 values (U+DC00 to U+DFFF)

Now, a high surrogate followed by a low surrogate defines what is known as a
surrogate pair. Surrogate pairs are used to represent values between 65,536 (0x10000)
and 1,114,111 (Ox10FFFF). So, certain characters, known as Unicode supplementary
characters, are represented as Unicode surrogate pairs (a one-character (symbol) fits
in the space of a pair of characters) that are merged into a single code point. Java takes
advantage of this representation and exposes it via a suite of methods such as
codePointAt (), codePoints (), codePointCount (),

and of fsetByCodePoints () (take a look at the Java documentation for details).
Calling codePointAt () instead of charAt (), codePoints () instead of

chars (), and so on helps us to write solutions that cover ASCII and Unicode
characters as well.

For example, the well-known two hearts symbol is a Unicode surrogate pair that can
be represented as a char [] containing two values: \uD83D and \uDC95. The code
point of this symbol is 128149. To obtain a St ring object from this code point, call
String str = String.valueof(Character.tochars(128149)).Counﬁngthe
code points in str can be done by calling str.codePointCount (0,
str.length()), which returns 1 even if the st r length is 2. Calling
str.codePointAt (0) returns 128149 and calling str.codePointAt (1)

returns 56469. Calling Character.toChars (128149) returns 2 since two characters
are needed to represent this code point being a Unicode surrogate pair. For ASCII and
Unicode 16- bit characters, it will return 1.

So, if we try to rewrite the first solution (that iterates the string characters and
uses Map to store the characters as keys and the number of occurrences as values) to
support ASCII and Unicode (including surrogate pairs), we obtain the following code:

public static Map<String, Integer>
countDuplicateCharacters (String str) {

Map<String, Integer> result = new HashMap<>();

for (int i = 0; i < str.length(); i++) {
int cp = str.codePointAt (i);
String ch = String.valueOf (Character.toChars (cp));
if (Character.charCount (cp) == 2) { // 2 means a surrogate pair

[13]

Strings, Numbers, and Math Chapter 1

it++;
}

result.compute (ch, (k, v) -> (v == null) ? 1 : ++v);

}

return result;

}

The highlighted code can be written as follows, as well:

String ch = String.valueOf (Character.toChars (str.codePointAt (i)));

if (i < str.length() - 1 && str.codePointCount (i, 1 + 2) == 1) {
i++;

}

Finally, trying to rewrite the Java 8 functional style solution to cover Unicode
surrogate pairs can be done as follows:

public static Map<String, Long> countDuplicateCharacters(String str) {

Map<String, Long> result = str.codePoints/()
.mapToObj (c —-> String.valueOf (Character.toChars(c)))
.collect (Collectors.groupingBy(c -> c, Collectors.counting()));

return result;

}

For third-party library support, please consider
Guava: Multiset<String>.

Some of the following problems will provide solutions that cover ASCII, 16-bit
Unicode, and Unicode surrogate pairs as well. They have been chosen arbitrarily, and
so, by relying on these solutions, you can easily write solutions for problems that
don't provide such a solution.

2. Finding the first non-repeated character

There are different solutions to finding the first non-repeated character in a string.
Mainly, the problem can be solved in a single traversal of the string or in more
complete/partial traversals.

[14]

Strings, Numbers, and Math Chapter 1

In the single traversal approach, we populate an array that's meant to store the
indexes of all of the characters that appear exactly once in the string. With this array,
simply return the smallest index containing a non-repeated character:

private static final int EXTENDED_ASCII_CODES = 256;
public char firstNonRepeatedCharacter (String str) |
int[] flags = new int [EXTENDED_ASCII_CODES];

for (int i = 0; i < flags.length; i++) {

flags[i] = -1;
}
for (int i = 0; 1 < str.length(); i++) {
char ch = str.charAt (i);
if (flags[ch] == -1) {
flags([ch] = i;
} else {
flags([ch] = -2;

}
}

int position = Integer.MAX_VALUE;

for (int 1 =
if (flags|[i
position

}

>= 0) |

0; 1 < EXTENDED_ASCII_CODES; i++) {
]
= Math.min (position, flags[i]);

}

return position == Integer.MAX VALUE ?
Character .MIN_VALUE : str.charAt (position);
}

This solution assumes that every character from the string is part of the extended
ASCII table (256 codes). Having codes greater than 256 requires us to increase the size
Ofthearnqlaccordhqﬂy(http://www.alansofficespace.com/unicode/unicd99.htm)
The solution will work as long as the array size is not extended beyond the largest
value of the char type, which is Character.MAX_VALUE, that is, 65,535. On the other
hand, Character.MAX_CODE_POINT returns the maximum value of a Unicode code
point, 1,114,111. To cover this range, we need another implementation based on
codePointAt () and codePoints ().

[15]

http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm
http://www.alansofficespace.com/unicode/unicd99.htm

Strings, Numbers, and Math Chapter 1

Thanks to the single traversal approach, this is pretty fast. Another solution consists
of looping the string for each character and counting the number of occurrences.
Every second occurrence (duplicate) simply breaks the loop, jumps to the next
character, and repeats the algorithm. If the end of the string is reached, then it returns
the current character as the first non-repeatable character. This solution is available in
the code bundled with this book.

Another solution that's presented here relies on LinkedHashMap. This Java map is an
insertion-order map (it maintains the order in which the keys were inserted into the
map) and is very convenient for this solution. LinkedHashMap is populated with
characters as keys and the number of occurrences as values. Once LinkedHashMap is
complete, it will return the first key that has a value equal to 1. Thanks to the
insertion-order feature, this is the first non-repeatable character in the string:

public char firstNonRepeatedCharacter (String str) {

Map<Character, Integer> chars = new LinkedHashMap<>();

// or use for(char ch: str.toCharArray()) { ... }

for (int 1 = 0; i < str.length(); i++) |
char ch = str.charAt (i);
chars.compute (ch, (k, v) -> (v == null) ? 1 : ++v);

}

for (Map.Entry<Character, Integer> entry: chars.entrySet()) {
if (entry.getValue() == 1) {

return entry.getKey();
}
}

return Character.MIN_VALUE;
}

In the code bundled with this book, the aforementioned solution has been written in
Java 8 functional style. Moreover, the functional style solution for supporting ASCII,
16-bit Unicode, and Unicode surrogate pairs is as follows:

public static String firstNonRepeatedCharacter (String str) {
Map<Integer, Long> chs = str.codePoints/()
.mapToObj (cp —> cp)
.collect (Collectors.groupingBy (Function.identity (),

LinkedHashMap: :new, Collectors.counting()));

int cp = chs.entrySet () .stream()

[16]

Strings, Numbers, and Math Chapter 1

.filter(e -> e.getValue() == 1L)

.findFirst ()

.map (Map.Entry: :getKey)

.orElse (Integer.valueOf (Character .MIN_VALUE)) ;

return String.valueOf (Character.toChars(cp));

}

To understand this code in more detail, please consider the What about Unicode
characters? subsection of the Counting duplicate characters section.

3. Reversing letters and words

First, let's reverse only the letters of each word. The solution to this problem can
exploit the st ringBuilder class. The first step consists of splitting the string into an
array of words using a white space as the delimiter (Spring.split (" ")).
Furthermore, we reverse each word using the corresponding ASCII codes and
append the result to StringBuilder. First, we split the given string by space. Then,
we loop the obtained array of words and reverse each word by fetching each
character via charAt () in reverse order:

private static final String WHITESPACE = " "
public String reverseWords (String str) {

String[] words = str.split (WHITESPACE) ;
StringBuilder reversedString = new StringBuilder();

for (String word: words) {
StringBuilder reverseWord = new StringBuilder();

for (int i = word.length() - 1; i >= 0; i--) {
reverseWord. append (word.charAt (i));
reversedString.append (reverseWord) .append (WHITESPACE) ;
return reversedString.toString();
t

Obtaining the same result in Java 8 functional style can be done as follows:

private static final Pattern PATTERN = Pattern.compile (" +");

[17]

Strings, Numbers, and Math Chapter 1

public static String reverseWords (String str) {

return PATTERN.splitAsStream(str)
.map (w —> new StringBuilder (w) .reverse())
.collect (Collectors.joining (" "));

}

Notice that the preceding two methods return a string containing the letters of each
word reversed, but the words themselves are in the same initial order. Now, let's
consider another method that reverses the letters of each word and the words
themselves. Thanks to the built-in StringBuilder.reverse () method, this is very
easy to accomplish:

public String reverse(String str) {

return new StringBuilder (str).reverse().toString();

}

For third-party library support, please consider the Apache
Commons Lang, StringUtils.reverse ().

4. Checking whether a string contains only
digits

The solution to this problem relies on

the Character.isDigit () or String.matches () method.

The solution relying on Character.isDigit () is pretty simple and fast—loop the
string characters and break the loop if this method returns false:

public static boolean containsOnlyDigits (String str) {

for (int 1 = 0; i < str.length(); i++) |
if (!Character.isDigit(str.charAt(i))) A
return false;
}
}

return true;

}

[18]

Strings, Numbers, and Math Chapter 1

In Java 8 functional style, the preceding code can be rewritten using anyMatch () :

public static boolean containsOnlyDigits (String str) {

return !str.chars/()
.anyMatch (n —-> !Character.isDigit (n));
}

Another solution relies on String.matches (). This method returns a
boolean value indicating whether or not this string matches the given regular
expression:

public static boolean containsOnlyDigits (String str) {

return str.matches ("[0-9]+");

}

Notice that Java 8 functional style and regular expression-based solutions are usually
slow, so if speed is a requirement, then it's better to rely on the first solution using
Character.isDigit ().

Avoid solving this problem via parselInt () or parseLong (). First
of all, it's bad practice to catch NumberFormatException and take
business logic decisions in the catch block. Second, these methods
verify whether the string is a valid number, not whether it contains
only digits (for example, -4 is valid).

For third-party library support, please consider the Apache
Commons Lang, StringUtils.isNumeric ().

5. Counting vowels and consonants

The following code is for English, but depending on how many languages you are
covering, the number of vowels and consonants may differ and the code should be
adjusted accordingly.

The first solution to this problem requires traversing the string characters and doing
the following:

1. We need to check whether the current character is a vowel (this is
convenient since we only have five pure vowels in English; other languages
have more vowels, but the number is still small).

2. If the current character is not a vowel, then check whether it sits between
'a' and 'z' (this means that the current character is a consonant).

[19]

Strings, Numbers, and Math Chapter 1

Notice that, initially, the given St ring object is transformed into lowercase. This is
useful to avoid comparisons with uppercase characters. For example, the comparison
is accomplished only against 'a' instead of 'A' and 'a".

The code for this solution is as follows:

private static final Set<Character> allVowels
= new HashSet (Arrays.asList('a', 'e', 'i', 'o', 'u'));

public static Pair<Integer, Integer>
countVowelsAndConsonants (String str) |

str = str.toLowerCase();
int vowels = 0;
int consonants = 0;

for (int 1 = 0; i < str.length(); i++) |

char ch = str.charAt (i);

if (allVowels.contains(ch)) |
vowels++;

} else if ((ch >= 'a' && ch <= 'z")) |
consonants++;

}

return Pair.of (vowels, consonants);

}
In Java 8 functional style, this code can be rewritten using chars () and filter ():

private static final Set<Character> allVowels
= new HashSet (Arrays.aslList('a', 'e', 'i', 'o', 'u"));

public static Pair<Long, Long> countVowelsAndConsonants (String str) {
str = str.toLowerCase () ;
long vowels = str.chars|()
.filter(c -> allVowels.contains ((char) c))
.count () ;
long consonants = str.chars/()
.filter(c -> l!allVowels.contains ((char) c))
.filter(ch -> (ch >= 'a' && ch<= 'z"))

.count () ;

return Pair.of (vowels, consonants);

[20]

Strings, Numbers, and Math Chapter 1

The given string is filtered accordingly and the count () terminal operation returns
the result. Relying on partitioningBy () will reduce the code, as follows:

Map<Boolean, Long> result = str.chars()
.mapToObj (c —-> (char) c)
.filter(ch -> (ch >= 'a' && ch <= 'z"'"))
.collect (partitioningBy (c -> allVowels.contains(c), counting()));

return Pair.of (result.get (true), result.get (false));

Done! Now, let's see how we can count occurrences of a certain character in a string.

6. Counting the occurrences of a certain
character

A simple solution to this problem consists of the following two steps:

1. Replace every occurrence of the character in the given string with " "
(basically, this is like removing all of the occurrences of this character in the
given string).

2. Subtract the length of the string that was obtained in the first step from the
length of the initial string.

The code for this method is as follows:

public static int countOccurrencesOfACertainCharacter (
String str, char ch) {

return str.length() - str.replace(String.valueOf(ch), "").length();
}

The following solution covers Unicode surrogate pairs as well:

public static int countOccurrencesOfACertainCharacter (
String str, String ch) {

if (ch.codePointCount (0, ch.length()) > 1) {
// there is more than 1 Unicode character in the given String
return -1;

}

int result = str.length() - str.replace(ch, "").length();

// if ch.length() return 2 then this is a Unicode surrogate pair

[21]

Strings, Numbers, and Math Chapter 1

return ch.length() == 2 ? result / 2 : result;
}

Another easy to implement and fast solution consists of looping the string characters
(a single traversal) and comparing each character with the given character. Increase
the counter by one for every match:

public static int countOccurrencesOfACertainCharacter (
String str, char ch) {

int count = 0;

for (int 1 = 0; i < str.length(); i++) |
if (str.charAt (i) == ch) {
count++;
}
}

return count;

}

The solution that covers the Unicode surrogate pairs is in the code that's bundled
with this book. In Java 8 functional style, one solution consists of using filter () or
reduce (). For example, using filter () will result in the following code:

public static long countOccurrencesOfACertainCharacter (
String str, char ch) {

return str.chars()
.filter(c -=> ¢ == ch)
.count () ;

}

The solution that covers the Unicode surrogate pairs is in the code that's bundled
with this book.

For third-party library support, please consider Apache Commons
Lang, stringUtils.countMatches (), Spring Framework,
StringUtils.countOccurrencesOf (), and Guava,
CharMatcher.is () .countIn().

[22]

Strings, Numbers, and Math Chapter 1

7. Converting a string into an int, long, float,
or double

Let's consider the following strings (negatives can be used as well):

private static final String TO_INT = "453";

private static final String TO_LONG = "45234223233";
private static final String TO_FLOAT = "45.823F";
private static final String TO_DOUBLE = "13.83423D";

A proper solution for converting String into int, long, float, or double consists
of using the following Java methods of the Integer, Long, Float, and Double
classes—parselInt (), parseLong (), parseFloat (), and parseDouble ():

int toInt = Integer.parselnt (TO_INT);

long tolLong = Long.parselLong (TO_LONG) ;

float toFloat = Float.parseFloat (TO_FLOAT) ;
double toDouble = Double.parseDouble (TO_DOUBLE) ;

Converting String into an Integer, Long, Float, or Double object can be
accomplished via the following Java methods—Integer.valueOf (),
Long.valueOf (), Float.valueOf (), and Double.valueOf ():

Integer toInt = Integer.valueOf (TO_INT);
Long toLong = Long.valueOf (TO_LONG) ;

Float toFloat = Float.valueOf (TO_FLOAT);
Double toDouble = Double.valueOf (TO_DOUBLE) ;

When a string cannot be converted successfully, Java throws
a NumberFormatException exception. The following code speaks for itself:

private static final String WRONG_NUMBER = "452w";

try {
Integer toIntWrongl = Integer.valueOf (WRONG_NUMBER) ;
} catch (NumberFormatException e) {
System.err.println(e);
// handle exception

try {
int toIntWrong2 = Integer.parselnt (WRONG_NUMBER) ;
} catch (NumberFormatException e) {
System.err.println(e);
// handle exception

[23]

Strings, Numbers, and Math Chapter 1

For third-party library support, please consider Apache Commons
BeanUtils: IntegerConverter, LongConverter,
FloatConverter, and DoubleConverter

8. Removing white spaces from a string

The solution to this problem consists of using the String.replaceall () method
with the \'s regular expression. Mainly, \s removes all white spaces, including the
non-visible ones, such as \t, \n, and \r:

public static String removeWhitespaces (String str) {
return str.replaceAll ("\\s",

}

"ll);

Starting with JDK 11, string.isBlank () checks whether the string
is empty or contains only white space code points. For third-party
library support, please consider Apache Commons

Lang, StringUtils.deleteWhitespace (), and the Spring
Framework, StringUtils.trimAllWhitespace ().

9. Joining multiple strings with a delimiter

There are several solutions that fit well and solve this problem. Before Java 8, a
convenient approach relied on StringBuilder, as follows:

public static String joinByDelimiter (char delimiter, String...args) {

StringBuilder result = new StringBuilder();

int 1 = 0;

for (i = 0; 1 < args.length - 1; i++) {
result.append(args[i]) .append(delimiter);

}

result.append(args[i]);

return result.toString();

}

Starting with Java 8, there are at least three more solutions to this problem. One of
these solutions relies on the St ringJoiner utility class. This class can be used to
construct a sequence of characters separated by a delimiter (for example, a comma).

[24]

Strings, Numbers, and Math Chapter 1

It supports an optional prefix and suffix as well (ignored here):

public static String joinByDelimiter (char delimiter, String...args) {
StringJoiner joiner = new StringJoiner (String.valueOf (delimiter));

for (String arg: args) {
joiner.add (arqg);

return joiner.toString();

}

Another solution relies on the String. join () method. This method was introduced
in Java 8 and comes in two flavors:

String join(CharSequence delimiter, CharSequence... elems)
String join (CharSequence delimiter,
Iterable<? extends CharSequence> elems)

An example of joining several strings delimited by a space is as follows:

String result = String.join(" ", "how", "are", "you"); // how are you
Going further, Java 8 streams and Collectors.joining () can be useful as well:

public static String joinByDelimiter (char delimiter, String...args) {
return Arrays.stream(args, 0, args.length)
.collect (Collectors.joining(String.valueOf (delimiter)));

Pay attention to concatenating strings via the += operator, and

the concat () and String.format () methods. These can be used
to join several strings, but they are prone to performance penalties.
For example, the following code relies on += and is much slower
than relying on StringBuilder:

String str = "";
for(int i = 0; 1 < 1_000_000; i++) {
str += "x";

+=is appended to a string and reconstructs a new string, and that
costs time.

For third-party library support, please consider Apache Commons
Lang, stringUtils.join(), and Guava, Joiner

[25]

Strings, Numbers, and Math Chapter 1

10. Generating all permutations

Problems that involve permutations commonly involve recursivity as well. Basically,

recursivity is defined as a process where some initial state is given and each successive

state is defined in terms of the preceding state.

In our case, the state can be materialized by the letters of the given string. The initial
state contains the initial string and each successive state can be computed by the
following formula—each letter of the string will become the first letter of the string
(swap positions) and then permute all of the remaining letters using a recursive call.
While non-recursive or other recursive solutions exist, this is a classical solution to
this problem.

Representing this solution for a string, ABC, can be done like so (notice how
permutations are done):

Swap A with A l ! Swap A with C
— —_—
/ Swap BW|th A T
Ais fixed Jz/ B is fixed \/ Cis ﬂxehﬁ
Swap BW|th B Swapﬂwlth c SwapAthA SwapAth c Swap Bwnh B Swap B with A
AB is fixed AC is fixed BA is fixed BC is fixed CB is fixed CA is fixed

Coding this algorithm will result in something like the following:

public static void permuteAndPrint (String str) {

permuteAndPrint ("", str);

}

private static void permuteAndPrint (String prefix, String str) {

int n = str.length();

if (n == 0) {

System.out.print (prefix + " ");
} else {

for (int i = 0; i < n; i++) {

permuteAndPrint (prefix + str.charAt (i),
str.substring(i + 1, n) + str.substring(0, 1i));

[26]

Strings, Numbers, and Math Chapter 1

}

Initially, the prefix should be an empty string, "". At each iteration, the prefix will
concatenate (fix) the next letter from the string. The remaining letters are passed
through the method again.

Let's suppose that this method lives in a utility class named Strings. You can call it
like so:

Strings.permuteAndStore ("ABC") ;
This will produce the following output:

ABC ACB BCA BAC CAB CBA

Notice that this solution prints the result on the screen. Storing the result implies
adding set to the implementation. It is preferable to use Set since it eliminates
duplicates:

public static Set<String> permuteAndStore (String str) {
return permuteAndStore("", str);
private static Set<String>
permuteAndStore (String prefix, String str) {

Set<String> permutations = new HashSet<>();
int n = str.length();

if (n == 0) {
permutations.add (prefix);
} else {
for (int i = 0; i < n; i++) |
permutations.addAll (permuteAndStore (prefix + str.charAt (i),
str.substring(i + 1, n) + str.substring(0, 1i)));

return permutations;

[27]

Strings, Numbers, and Math Chapter 1

For example, if the passed string is TEST, then set will cause the following output
(these are all unique permutations):

ETST SETT TEST TTSE STTE STET TETS TSTE TSET TTES ESTT ETTS

Using List instead of set will result in the following output (notice the duplicates):

TEST TETS TSTE TSET TTES TTSE ESTT ESTT ETTS ETST ETST ETTS STTE STET
STET STTE SETT SETT TTES TTSE TEST TETS TSTE TSET

There are 24 permutations. It is easy to determine the number of resulted
permutations by computing the n factorial (n!). For n=4 (length of the string), 4/ =1 x 2
x 3 x 4 =24. When expressed in recursive style, this is n! =n x (n-1)!.

Since n! results in high numbers extremely fast (example, 10! =
3628800), it is advisable to avoid storing the results. For a 10-
character string such as HELICOPTER, there are 3,628,800

permutations!

Trying to implement this solution in Java 8 functional style will result in something
like the following;:

private static void permuteAndPrintStream(String prefix, String str) {

int n = str.length();

if (n == 0) {
System.out.print (prefix + " ");
} else {
IntStream.range (0, n)
.parallel ()

.forEach(i —-> permuteAndPrintStream(prefix + str.charAt (i),
str.substring(i + 1, n) + str.substring(0, 1i)));

}

As a bonus, a solution that returns St ream<String> is available in the code bundled
with this book.

11. Checking whether a string is a palindrome

Just as a quick reminder, a palindrome (whether a string or a number) looks
unchanged when it's reversed. This means that processing (reading) a palindrome can
be done from both directions and the same result will be obtained (for example, the
word madam is a palindrome, while the word madame is not).

[28]

Strings, Numbers, and Math Chapter 1

An easy to implement solution consists of comparing the letters of the given string in
a meet-in-the-middle approach. Basically, this solution compares the first character with
the last one, the second character with the last by one, and so on until the middle of
the string is reached. The implementation relies on the while statement:

public static boolean isPalindrome (String str) {

int left = 0;
int right = str.length() - 1;

while (right > left) {
if (str.charAt (left) != str.charAt (right)) {
return false;

}

left++;
right-—;
}

return true;

}

Rewriting the preceding solution in a more concise approach will consist of relying on
a for statement instead of a while statement, as follows:

public static boolean isPalindrome (String str) {
int n = str.length();

for (int 1 = 0; 1 < n / 2; i++) {
if (str.charAt (i) != str.charAt(n - i - 1)) {
return false;
}
}

return true;

}
But can this solution be reduced to a single line of code? The answer is yes.

The Java API provides the StringBuilder class, which uses the reverse () method.
As its name suggests, the reverse () method returns the reverse given string. In the
case of a palindrome, the given string should be equal to the reverse version of it:

public static boolean isPalindrome (String str) {

return str.equals(new StringBuilder (str).reverse().toString());

}

[29]

Strings, Numbers, and Math Chapter 1

In Java 8 functional style, there is a single line of code for this as well. Simply define
IntStream ranging from 0 to half of the given string and use the noneMatch () short-
circuiting terminal operation with a predicate that compares the letters by following
the meet-in-the-middle approach:

public static boolean isPalindrome (String str) {

return IntStream.range (0, str.length() / 2)
.noneMatch (p -> str.charAt (p) !=
str.charAt (str.length() - p - 1));

}

Now, let's talk about removing duplicate characters from the given string.

12. Removing duplicate characters

Let's start with a solution to this problem that relies on StringBuilder. Mainly, the
solution should loop the characters of the given string and construct a new string
containing unique characters (it is not possible to simply remove characters from the
given string since, in Java, a string is immutable).

The StringBuilder class exposes a method named indexOf (), which returns the
index within the given string of the first occurrence of the specified substring (in our
case, the specified character). So, a potential solution to this problem would be to loop
the characters of the given string and add them one by one in St ringBuilder every
time the indexOf () method that's applied to the current character returns -1 (this
negative means that St ringBuilder doesn't contain the current character):

public static String removeDuplicates (String str) |

char[] chArray = str.toCharArray(); // or, use charAt (i)
StringBuilder sb = new StringBuilder();

for (char ch : chArray) {
if (sb.indexOf (String.valueOf (ch)) == -1) {
sb.append(ch) ;
}
}

return sb.toString();

[30]

Strings, Numbers, and Math Chapter 1

The next solution relies on a collaboration between HashSet and StringBuilder.
Mainly, HashSet ensures that duplicates are eliminated, while StringBuilder
stores the resulting string. If HashSet .add () returns true, then we add the character
in StringBuilder as well:

public static String removeDuplicates (String str) {

char[] chArray = str.toCharArray();
StringBuilder sb = new StringBuilder();
Set<Character> chHashSet = new HashSet<>();

for (char c: chArray) {
if (chHashSet.add(c))
sb.append(c) ;
}
}

return sb.toString();

{

}

The solutions we've presented so far use the toCharArray () method to convert the
given string into char []. Alternatively, both solutions can use
str.charAt (position) as well.

The third solution relies on Java 8 functional style:

public static String removeDuplicates (String str) {

return Arrays.aslList (str.split("")) .stream()
.distinct ()
.collect (Collectors.joining());

}

First, the solution converts the given string into Stream<String>, where each entry
is actually a single character. Furthermore, the solution applies the stateful
intermediate operation, distinct (). This operation will eliminate duplicates from
the stream, so it returns a stream without duplicates. Finally, the solution calls

the collect () terminal operation and relies on Collectors. joining (), which
simply concatenates the characters into a string in the encounter order.

[31]

Strings, Numbers, and Math Chapter 1

13. Removing a given character

A solution that relies on JDK support can exploit the St ring.replaceAll ()

method. This method replaces each substring (in our case, each character) of the given
string that matches the given regular expression (in our case, the regular expression is
the character itself) with the given replacement (in our case, the replacement is an
empty string, ""):

public static String removeCharacter (String str, char ch) {

"ll);

return str.replaceAll (Pattern.quote (String.valueOf (ch)),
}

Notice that the regular expression is wrapped in the Pattern.quote () method. This
is needed to escape special characters suchas<, (, [{, \,~ - =% L 1,1 1) 2%+,
and >. Mainly, this method returns a literal pattern string for the specified string.

Now, let's take a look at a solution that avoids regular expressions. This time, the
solution relies on St ringBuilder. Basically, the solution loops the characters of the
given string and compares each character with the character to remove. Each time the
current character is different from the character to remove, the current character is
appended in StringBuilder:

public static String removeCharacter (String str, char ch) {

StringBuilder sb = new StringBuilder();
char[] chArray = str.toCharArray();

for (char c¢ : chArray) {
if (c != ch) {
sb.append (c) ;
}
}

return sb.toString();

}
Finally, let's focus on a Java 8 functional style approach. This is a four-step approach:

1. Convert the string into IntStream via the String.chars () method
2. Filter IntStream to eliminate duplicates

3. Map the resulted IntStreamto Stream<String>

4. Join the strings from this stream and collect them as a single string

[32]

Strings, Numbers, and Math Chapter 1

The code for this solution can be written as follows:

public static String removeCharacter (String str, char ch) {

return str.chars ()
.filter(c -> ¢ != ch)
.mapToObj (¢ —-> String.valueOf ((char) c))
.collect (Collectors.joining());

}

Alternatively, if we want to remove a Unicode surrogate pair, then we can rely on
codePointAt () and codePoints (), as shown in the following implementation:

public static String removeCharacter (String str, String ch) {
int codePoint = ch.codePointAt (0);

return str.codePoints ()
.filter(c —> ¢ != codePoint)
.mapToObj (c —> String.valueOf (Character.toChars(c)))
.collect (Collectors.joining());

For third-party library support, please consider Apache Commons
Lang, StringUtils.remove ().

Now, let's talk about how to find the character with the most appearances.

14. Finding the character with the most
appearances

A pretty straightforward solution relies on HashMap. This solution consists of three
steps:

1. First, loop the characters of the given string and put the pairs of the key-
value in HashMap where the key is the current character and the value is
the current number of occurrences

2. Second, compute the maximum value in HashMap (for example, using
Collections.max ()) representing the maximum number of occurrences

3. Finally, get the character that has the maximum number of occurrences by
looping the HashMap entry set

[33]

Strings, Numbers, and Math Chapter 1

The utility method returns Pair<Character, Integer> containing the character
with the most appearances and the number of appearances (notice that the white

spaces are ignored). If you don't prefer to have this extra class, that is, Pair, then just
rely on Map.Entry<K, V>:

public static Pair<Character, Integer> maxOccurenceCharacter (
String str) |

Map<Character, Integer> counter = new HashMap<>();
char[] chStr = str.toCharArray();

for (int i = 0; i < chStr.length; i++) {

char currentCh = chStr[il];
if (!Character.isWhitespace (currentCh)) { // ignore spaces
Integer noCh = counter.get (currentCh);
if (noCh == null) {
counter.put (currentCh, 1);
} else {

counter.put (currentCh, ++noCh);

int maxOccurrences = Collections.max (counter.values());
char maxCharacter = Character.MIN_VALUE;

for (Entry<Character, Integer> entry: counter.entrySet()) {
if (entry.getValue () == maxOccurrences) {
maxCharacter = entry.getKey();

return Pair.of (maxCharacter, maxOccurrences) ;

}

If using HashMap looks cumbersome, then another solution (that's a little faster)
consists of relying on the ASCII codes. This solution starts with an empty array of 256
indexes (256 is the maximum number of extended ASCII table codes; more
information can be found in the Finding the first non-repeated character section).
Furthermore, this solution loops the characters of the given string and keeps track of
the number of appearances for each character by increasing the corresponding index

in this array:

private static final int EXTENDED_ASCII_CODES = 256;

public static Pair<Character, Integer> maxOccurenceCharacter (

[34]

Strings, Numbers, and Math Chapter 1

String str) |

int maxOccurrences = -1;

char maxCharacter = Character.MIN_VALUE;

char[] chStr = str.toCharArray();

int[] asciiCodes = new int [EXTENDED_ASCII_CODES];

for (int i = 0; i < chStr.length; i++) {
char currentCh = chStr[il];
if (!Character.isWhitespace (currentCh)) { // ignoring space
int code = (int) currentCh;
asciiCodes[code] ++;
if (asciiCodes[code] > maxOccurrences) {
maxOccurrences = asciiCodes[code];
maxCharacter = currentCh;

return Pair.of (maxCharacter, maxOccurrences) ;

}

The last solution we will discuss here relies on Java 8 functional style:

public static Pair<Character, Long>
maxOccurenceCharacter (String str) {

return str.chars()

.filter (¢ -> Character.isWhitespace(c) == false) // ignoring space
.mapToObj (c —-> (char) c)
.collect (groupingBy(c -> c, counting()))
.entrySet ()
.stream/()
.max (comparingByValue ())
.map(p —> Pair.of (p.getKey (), p.getValue()))
.orElse (Pair.of (Character.MIN_VALUE, -1L));

}

To start, this solution collects distinct characters as keys in Map, along with their
number of occurrences as values. Furthermore, it uses the Java

8 Map.Entry.comparingByValue () and max () terminal operations to determine
the entry in the map with the highest value (highest number of occurrences). Since
max () is a terminal operation, the solution may return
Optional<Entry<Character, Long>>, but this solution adds an extra step and
maps this entry to Pair<Character, Long>.

[35]

Strings, Numbers, and Math Chapter 1

15. Sorting an array of strings by length

The first thing that comes to mind when sorting is the use of a comparator.

In this case, the solution should compare lengths of strings, and so the integers are
returned by calling String.length () for each string in the given array. So, if the
integers are sorted (ascending or descending), then the strings will be sorted.

The Java Arrays class already provides a sort () method that takes the array to sort
and a comparator. In this case, Comparator<string> should do the job.

Before Java 7, code that implemented a comparator relied on the
compareTo () method. Common usage of this method was to

compute a difference of the x1-x2 type, but this computation may
lead to overflows. This makes compareTo () rather tedious. Starting

with Java 7, Integer.compare () is the way to go (no overflow

risks).

The following is a method that sorts the given array by relying on
the Arrays.sort () method:

public static void sortArrayByLength (String[] strs, Sort direction) {
if (direction.equals (Sort.ASC)) {
Arrays.sort (strs, (String sl1, String s2)
-> Integer.compare(sl.length(), s2.length()));

} else {
Arrays.sort (strs, (String sl1, String s2)
-> (-1) * Integer.compare(sl.length(), s2.length()));

Each wrapper of a primitive numeric type has a compare () method.

Starting with Java 8, the Comparator interface was enriched with a significant
number of useful methods. One of these methods is comparingInt (), which takes a
function that extracts an int sort key from the generic type and returns a
Comparator<T> value that compares it with that sort key. Another useful method

is reversed (), which reverses the current Comparator value.

[36]

Strings, Numbers, and Math Chapter 1

Based on these two methods, we can empower Arrays.sort () as follows:

public static void sortArrayByLength(String[] strs, Sort direction) {
if (direction.equals(Sort.ASC)) {
Arrays.sort (strs, Comparator.comparingInt (String::length));
} else {
Arrays.sort (strs,
Comparator.comparingInt (String::length) .reversed());

Comparators can be chained with the thenComparing () method.

The solutions we've presented here return void, which means that they sort the given
array. To return a new sorted array and not alter the given array, we can use Java 8
functional style, as shown in the following snippet of code:

public static String[] sortArrayByLength (String[] strs,
Sort direction) {

if (direction.equals (Sort.ASC)) {
return Arrays.stream(strs)
.sorted (Comparator.comparingInt (String::length))
.toArray (String[]: :new);
} else {
return Arrays.stream(strs)
.sorted (Comparator.comparingInt (String::length) .reversed())
.toArray (String[]: :new);

}

So, the code creates a stream from the given array, sorts it via the sorted () stateful
intermediate operation, and collects the result in another array.

16. Checking that a string contains a
substring

A very simple, one line of code solution relies on the String.contains () method.

[37]

Strings, Numbers, and Math Chapter 1

This method returns a boolean value indicating whether the given substring is
present in the string or not:

String text = "hello world!";
String subtext = "orl";

// pay attention that this will return true for subtext=""
boolean contains = text.contains (subtext);

Alternatively, a solution can be implemented by relying on String.indexOf ()
(or String.lastIndexOf ()), as follows:

public static boolean contains (String text, String subtext) {

return text.indexOf (subtext) != -1; // or lastIndexOf ()
}

Another solution can be implemented based on a regular expression, as follows:
public static boolean contains (String text, String subtext) {

return text.matches (" (?1i).*" + Pattern.quote (subtext) + ".*");

}

Notice that the regular expression is wrapped in the Pattern.quote () method. This
is needed to escape special characters such as <([{\"-=$!1]})?*+.> in the given
substring.

For third-party library support, please consider Apache Commons
Lang, StringUtils.containsIgnoreCase ().

17. Counting substring occurrences in a string

Counting the number of occurrences of a string in another string is a problem that can
have at least two interpretations:

e 11in 111 occurs 1 time
e 11in 111 occurs 2 times

[38]

Strings, Numbers, and Math Chapter 1

In the first case (11 in 111 occurs 1 time), the solution can rely on

the String.indexOf () method. One of the flavors of this method allows us to
obtain the index within this string of the first occurrence of the specified substring,
starting at the specified index (or -1, if there is no such occurrence). Based on this
method, the solution can simply traverse the given string and count the given
substring occurrences. The traversal starts from position 0 and continues until the
substring is not found:

public static int countStringInString(String string, String toFind) {
int position = 0;

int count = 0;
int n = toFind.length();

while ((position = string.indexOf (toFind, position)) != -1) {
position = position + nj;
count++;

return count;

}

Alternatively, the solution can use the String.split () method. Basically, the
solution can split the given string using the given substring as a delimiter. The length
of the resulting String[] array should be equal to the number of expected
occurrences:

public static int countStringInString(String string, String toFind) {
int result = string.split (Pattern.quote(toFind), -1).length - 1;

return result < 0 ? 0 : result;

}

In the second case (11 in 111 occurs 2 times), the solution can rely on the Pattern and
Matcher classes in a simple implementation, as follows:

public static int countStringInString(String string, String toFind) {

Pattern pattern = Pattern.compile (Pattern.quote (toFind)) ;
Matcher matcher = pattern.matcher (string);

int position = 0;
int count = 0;

while (matcher.find(position)) {

[39]

Strings, Numbers, and Math Chapter 1

position = matcher.start () + 1;
count++;

}

return count;

}

Nice! Let's continue with another problem with strings.

18. Checking whether two strings are
anagrams

Two strings that have the same characters, but that are in a different order, are
anagrams. Some definitions impose that anagrams are case-insensitive and/or that
white spaces (blanks) should be ignored.

So, independent of the applied algorithm, the solution must convert the given string
into lowercase and remove white spaces (blanks). Besides that, the first solution we
mentioned sorts the arrays via Arrays.sort () and will check their equality via
Arrays.equals ().

Once they are sorted, if they are anagrams, they will be equal (the following diagram
shows two words that are anagrams):

[H] IeDIlllo].ste hilefi§ifo
[ofelnfLil | = [cleln] 1T}/

anagrams

This solution (including its Java 8 functional style version) is available in the code
bundled with this book. The main drawback of these two solutions is represented by
the sorting part. The following solution eliminates this step and relies on an empty
array (initially containing only 0) of 256 indexes (extended ASCII table codes of
characters—more information can be found in the Finding the first non-repeated
character section).

[40]

Strings, Numbers, and Math Chapter 1

The algorithm is pretty simple:

e For each character from the first string, this solution increases the value in
this array corresponding to the ASCII code by 1

e For each character from the second string, this solution decreases the value
in this array corresponding to the ASCII code by 1

The code is as follows:
private static final int EXTENDED_ASCII_CODES = 256;
é;glic static boolean isAnagram(String strl, String str2) {
int [] chCounts = new int [EXTENDED_ASCII_CODES];

char[] chStrl = strl.replaceAll ("\\s",
"") .toLowerCase () .toCharArray ()

O
char[] chStr2 = str2.replaceAll ("\\s",
"") .toLowerCase () .toCharArray () ;
if (chStrl.length != chStr2.length) {
return false;

}

for (int i = 0; i < chStrl.length; i++) {
chCounts|[chStrl[i]]++;
chCounts|[chStr2[i]]--;

}

for (int i = 0; i1 < chCounts.length; i++) {
if (chCounts[i] != 0) {
return false;
}
}

return true;

}

At the end of this traversal, if the given strings are anagrams, then this array contains
only 0.

19. Declaring multiline strings (text blocks)

At the time of writing this book, JDK 12 had a proposal for adding multiline strings
known as JEP 326: Raw String Literals. But this was dropped at the last minute.

[41]

Strings, Numbers, and Math Chapter 1

Starting with JDK 13, the idea was reconsidered and, unlike the declined raw string
literals, text blocks are surrounded by three double quotes, """, as follows:

String text = """My high school,

the Illinois Mathematics and Science Academny,
showed me that anything is possible

and that you're never too young to think big.""";

Text blocks can be very useful for writing multiline SQL statements,
using polyglot languages, and so on. More details can be found
at https://openijdk.java.net/jeps/355.

Nevertheless, there are several surrogate solutions that can be used before JDK 13.
These solutions have a common point—the use of the line separator:

private static final String LS = System.lineSeparator();

Starting with JDK 8, a solution may rely on String.join (), as follows:

String text = String.join (LS,
"My high school, ",
"the Illinois Mathematics and Science Acadeny,",
"showed me that anything is possible ",

"and that you're never too young to think big.");

Before JDK 8, an elegant solution may have relied on st ringBuilder. This solution
is available in the code bundled with this book.

While the preceding solutions are good fits for a relatively large number of strings,
the following two are okay if we just have a few strings. The first one uses the
+ operator:

String text = "My high school, " + LS +
"the Illinois Mathematics and Science Academy," + LS +
"showed me that anything is possible " + LS +
"and that you're never too young to think big.";

The second one uses String.format ():

String text = String.format ("%s" + LS + "%s" + LS + "%s" + LS + "&%s",
"My high school, ",
"the Illinois Mathematics and Science Acadeny,",
"showed me that anything is possible ",

"and that you're never too young to think big.");

[42]

https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355

Strings, Numbers, and Math Chapter 1

How can we process each line of a multiline string? Well, a quick
approach requires JDK 11, which comes with the String.lines ()
method. This method splits the given string via a line separator
(which supports \n, \r, and \r\n) and transforms it into
Stream<String>. Alternatively, the String.split () method can
be used as well (this is available starting with JDK 1.4). If the
number of strings becomes significant, it is advised to put them in a
file and read/process them one by one (for example, via

the getResourceAsStream () method). Other approaches rely

on StringWriter or BufferedWriter.newLine ().

For third-party library support, please consider Apache Commons
Lang, StringUtils.join (), Guava, Joiner, and the custom
annotation, @Multiline.

20. Concatenating the same string n times

Before JDK 11, a solution could be quickly provided via StringBuilder, as follows:
public static String concatRepeat (String str, int n) {
StringBuilder sb = new StringBuilder (str.length() * n);
for (int i = 1; i <= n; i++) {
sb.append(str);

}

return sb.toString();

}

Starting with JDK 11, the solution relies on the String. repeat (int count)
method. This method returns a string resulting from concatenating this string count
times. Behind the scenes, this method uses System.arraycopy (), which makes this
very fast:

String result = "hello".repeat (5);
Other solutions that can fit well in different scenarios are listed as follows:
e Followingisa String.join ()-based solution:

String result = String.join("", Collections.nCopies (5, TEXT));

[43]

Strings, Numbers, and Math Chapter 1

e Following is a Stream.generate () -based solution:
String result = Stream.generate(() —-> TEXT)
.limit (5)

.collect (joining());

e Followingis a String. format ()-based solution:

String result = String.format ("%0" + 5 + "d", 0)
.replace("0", TEXT);

e Following is a char[] based solution:
String result = new String(new char[5]) .replace("\0", TEXT);

For third-party library support, please consider Apache Commons
Lang, StringUtils.repeat (), and Guava, Strings.repeat ().

To check whether a string is a sequence of the same substring, rely on the following
method:

public static boolean hasOnlySubstrings (String str) {
StringBuilder sb = new StringBuilder();

for (int i = 0; i < str.length() / 2; i++) {
sb.append(str.charAt (i));
String resultStr = str.replaceAll (sb.toString(), "");
if (resultStr.length() == 0) {
return true;

}

return false;

}

The solution loops half of the given string and progressively replaces it with "", a
substring build, by appending the original string in St ringBuilder, character by
character. If these replacements result in an empty string, it means that the given
string is a sequence of the same substring.

[44]

Strings, Numbers, and Math Chapter 1

21. Removing leading and trailing spaces

The quickest solution to this problem probably relies on the String.trim() method.
This method is capable of removing all leading and trailing spaces, that is, any
character whose code point is less than or equal to U+0020 or 32 (the space character):

String text = "\n \n\n hello \t \n \r";
String trimmed = text.trim();

The preceding snippet of code will work as expected. The trimmed string will

be hello. This only works because all of the white spaces that are being used are less
than U+0020 or 32 (the space character). There are 25 characters (https://en.
wikipedia.org/wiki/Whitespace_character#Unicode)deﬁnedE$XNhﬁeSpacesand
trim() covers only a part of them (in short, trim () is not Unicode aware). Let's
consider the following string:

char space = '\u2002';
String text = space + "\n \n\n hello \t \n \r" + space;

\u2002 is another type of white space that t rim () doesn't recognize (\u2002 is
above \u0020). This means that, in such cases, t rim () will not work as expected.
Starting with JDK 11, this problem has a solution named strip (). This method
extends the power of trim () into the land of Unicode:

String stripped = text.strip();
This time, all of the leading and trailing white spaces are removed.

Moreover, JDK 11 comes with two flavors of strip () for removing
only the leading (stripLeading ()) or only the trailing
(stripTrailing()) white spaces. The trim () method doesn't
have these flavors.

22. Finding the longest common prefix
Let's consider the following array of strings:

String[] texts = {"abc", "abcd", "abcde", "ab", "abcd", "abcdef"};

Now, let's put these strings one below the other, as follows:

abc
abcd
abcde

[45]

https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode
https://en.wikipedia.org/wiki/Whitespace_character#Unicode

Strings, Numbers, and Math Chapter 1

ab
abcd
abcdef

A simple comparison of these strings reveals that ab is the longest common

prefix. Now, let's dive into a solution for solving this problem. The solution that
we've presented here relies on a straightforward comparison. This solution takes the
first string from the array and compares each of its characters in the rest of the strings.
The algorithm stops if either of the following happens:

¢ The length of the first string is greater than the length of any of the other
strings

e The current character of the first string is not the same as the current
character of any of the other strings

If the algorithm forcibly stops because of one of the preceding scenarios, then the
longest common prefix is the substring from 0 to the index of the current character
from the first string. Otherwise, the longest common prefix is the first string from the
array. The code for this solution is as follows:

public static String longestCommonPrefix (String[] strs) {
if (strs.length == 1) {
return strs[0];

}

int firstLen = strs[0].length();

for (int prefixlLen = 0; prefixlLen < firstLen; prefixLen++) {
char ch = strs[0].charAt (prefixLlen);
for (int i = 1; 1 < strs.length; i++) {
if (prefixlen >= strs[i].length()
|| strs[i].charAt (prefixlLen) != ch) {

return strs[i].substring (0, prefixlLen);

}

return strs[0];

}

Other solutions to this problem use well-known algorithms such as Binary Search or
Trie. In the source code that accompanies this book, there is a solution based on
Binary Search as well.

[46]

Strings, Numbers, and Math Chapter 1

23. Applying indentation

Starting with JDK 12, we can indent text via the String.indent (int n) method.

Let's assume that we have the following St ring values:

String days = "Sunday\n"
+ "Monday\n"
"Tuesday\n"
"Wednesday\n"
"Thursday\n"
"Friday\n"
"Saturday";

+ + o+ o+ o+

Printing this st ring values with an indentation of 10 spaces can be done as follows:

System.out.print (days.indent (10));

The output will be as follows:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

Saturday

Now, let's try a cascade indentation:

List<String> days = Arrays.asList ("Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday");

for (int 1 = 0; 1 < days.size(); i++) |
System.out .print (days.get (i) .indent (1)) ;

[47]

Strings, Numbers, and Math Chapter 1
The output will be as follows:
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Now, let's indent depending on the length of the st ring value:
days.stream()
.forEachOrdered(d -> System.out.print (d.indent (d.length())));

The output will be as follows:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

Saturday

How about indenting a piece of HTML code? Let's see:

String html = "<html>";
String body = "<body>";
String h2 = "<h2>";

String text = "Hello world!";
String closeH2 = "</h2>";
String closeBody = "</body>";
String closeHtml = "</html>";

System.out.println (html.indent (0) + body.indent (4) + h2.indent (8)
+ text.indent (12) + closeH2.indent (8) + closeBody.indent (4)

+ closeHtml.indent (0));

[48]

Strings, Numbers, and Math Chapter 1

The output will be as follows:

<html>
<body>
<h2>
Hello world!
</h2>
</body>
</html>

24. Transforming strings

Let's assume that we have a string and we want to transform it into another string (for
example, transform it into upper case). We can do this by applying a function such as
Function<? super String, ? extends R>

In JDK 8, we can accomplish this via map (), as shown in the following two simple
examples:

// hello world
String resultMap = Stream.of ("hello")

.map(s -> s + " world")
.findFirst ()
.get ();

// GOOOOOOOOOOOO0000L ! GOOOOOOOOOOO0000OL !
String resultMap = Stream.of ("gooool! ")
.map (String: :toUpperCase)
(

.map(s —> s.repeat(2))

.map(s —> s.replaceAll ("O", "OOOO"))
.findFirst ()

.get ();

Starting with JDK 12, we can rely on a new method named transform (Function<?
super String, ? extends R> f).Let's rewrite the preceding snippets of code via
transform():

// hello world
String result = "hello".transform(s -> s + " world");

// GOOOOOOOOOOOO0000L! GOOOOOOOOOO0O0000O0L !

String result = "gooool! ".transform(String::toUpperCase)
.transform(s —-> s.repeat(2))
.transform(s —-> s.replaceAll ("O", "OOOO"));

[49]

Strings, Numbers, and Math Chapter 1

While map () is more general, transform() is dedicated to applying a function to a
string and returns the resulting string.

25. Computing the minimum and maximum of
two numbers

Before JDK 8, a possible solution would be to rely on the Math.min () and
Math.max () methods, as follows:

int i1 = -45;
int i2 = -15;
int min = Math.min (i1, 1i2);
int max = Math.max (i1, 1i2);

The Math class provides amin () and a max () method for each primitive numeric
type (int, long, f£loat, and double).

Starting with JDK 8, each wrapper class of primitive numeric types (Integer, Long,
Float, and Double) comes with dedicated min () and max () methods, and, behind
these methods, there are invocations of their correspondents from the Math class. See
the following example (this is a little bit more expressive):

double dil 0.023844D;

double d2 = 0.35468856D;

double min = Double.min (dl, d2);
double max = Double.max(dl, d2);

In a functional style context, a potential solution will rely on the BinaryOperator
functional interface. This interface comes with two methods, minBy () and maxBy ():

float f1 = 33.34F;

final float f2 = 33.213F;

float min = BinaryOperator.minBy (Float::compare) .apply (fl, £2);
float max = BinaryOperator.maxBy (Float::compare) .apply (fl, £2);

These two methods are capable of returning the minimum (respectively, the
maximum) of two elements according to the specified comparator.

[50]

Strings, Numbers, and Math Chapter 1

26. Summing two large int/long values and
operation overflow

Let's dive into the solution by starting with the + operator, as in the following
example:

int x = 2;
int y = 7;
int z = x +vy; // 9

This is a very simple approach and works fine for most of the computations that
involve int, long, float, and double.

Now, let's apply this operator on the following two large numbers (sum 2,147,483,647
with itself):

int x = Integer.MAX_ VALUE;
int y = Integer.MAX_ VALUE;
int z = x +vy; // -2

This time, z will be equal to -2, which is not the expected result, that is, 4,294,967,294.
Changing only the z type from int to long will not help. However, changing the
types of x and y from int to long as well will help:

long x = Integer.MAX_VALUE;
long y = Integer.MAX_VALUE;
long z = x + vy; // 4294967294

But the problem will reappear if, instead of Integer .MAX_VALUE, there is
Long.MAX_VALUE:

long x = Long.MAX_VALUE;
long y = Long.MAX_VALUE;
long z = x + vy; // -2

Starting with JDK 8, the + operator has been wrapped in a more expressive way by
each wrapper of a primitive numeric type. Therefore, the Integer, Long, Float, and
Double classes have a sum () method:

long z = Long.sum(); // -2

[51]

Strings, Numbers, and Math Chapter 1

Behind the scenes, the sum () methods uses the + operator as well, so they simply
produce the same result.

But also starting with JDK 8, the Math class was enriched with two addExact ()
methods. There is one addExact () for summing two int variables and one for
summing two long variables. These methods are very useful if the result is prone to
overflowing int or long, as shown in the preceding case. In such cases, these
methods throw ArithmeticException instead of returning a misleading result, as
in the following example:

int z = Math.addExact (x, y); // throw ArithmeticException

The code will throw an exception such as java.lang.ArithmeticException:
integer overflow. This is useful since it allows us to avoid introducing misleading
results in further computations (for example, earlier, -2 could silently enter further
computations).

In a functional style context, a potential solution will rely on the BinaryOperator
functional interface, as follows (simply define the operation of the two operands of
the same type):

BinaryOperator<Integer> operator = Math::addExact;
int z = operator.apply(x, Vy);

Besides addExact (), Math hasmultiplyExact (), substractExact (), and
negateExact (). Moreover, the well-known increment and decrement expressions,
i++ and i--, can be controlled for overflowing their domains via the
incrementExact () and decrementExact () methods (for example,
Math.incrementExact (i)). Notice that these methods are only available for int
and long.

When working with a large number, also focus on the BigInteger
(immutable arbitrary-precision integers) and BigDecimal
(immutable, arbitrary-precision signed decimal numbers) classes.

27. String as an unsigned number in the radix

The support for unsigned arithmetic was added to Java starting with version 8. The
Byte, Short, Integer, and Long classes were affected the most by this addition.

[52]

Strings, Numbers, and Math Chapter 1

In Java, strings representing positive numbers can be parsed as unsigned int and
long types via the parseUnsignedInt () and parseUnsignedLong () JDK 8
methods. For example, let's consider the following integer as a string:

String nri = "255500";

The solution to parsing it into an unsigned int value in the radix of 36 (the maximum
accepted radix) looks as follows:

int result = Integer.parseUnsignedInt (nri, Character.MAX_RADIX) ;

The first argument is the number, while the second is the radix. The radix should be
in the range [2, 36] or [Character .MIN_RADIX, Character.MAX RADIX].

Using a radix of 10 can be easily accomplished as follows (this method applies a radix
of 10 by default):

int result = Integer.parseUnsignedInt (nri);

Starting with JDK 9, parseUnsignedInt () has a new flavor. Besides the string and
the radix, this method accepts a range of the [beginIndex, endIndex] type. This

time, the parsing is accomplished in this range. For example, specifying the range [1,
3] can be done as follows:

int result = Integer.parseUnsignedInt (nri, 1, 4, Character.MAX_RADIX);

The parseUnsignedInt () method can parse strings that represent numbers greater
than Integer .MAX_VALUE (trying to accomplish this via Integer.parseInt () will
throw a java.lang.NumberFormatException exception):

// Integer.MAX_VALUE + 1 = 2147483647 + 1 = 2147483648
int maxValuePlusl = Integer.parseUnsignedInt ("2147483648");

The same set of methods exist for long numbers in the Long class
(for example, parseUnsignedLong ()).

28. Converting into a number by an unsigned
conversion

The problem requires that we convert the given signed int into 1ong via an unsigned
conversion. So, let's consider signed Integer.MIN_VALUE, which is -2,147,483,648.

[53]

Strings, Numbers, and Math Chapter 1

In JDK 8, by using the Integer.toUnsignedLong () method, the conversion will be
as follows (the result will be 2,147,483,648):

long result = Integer.toUnsignedLong (Integer.MIN_VALUE);

Here is another example that converts the signed short .MIN_VALUE and
Short .MAX_VALUE into unsigned integers:

int resultl = Short.toUnsignedInt (Short.MIN_VALUE) ;
int result2 = Short.toUnsignedInt (Short.MAX_ VALUE) ;

Other methods from the same category are Integer.toUnsignedString(),
Long.toUnsignedString (), Byte.toUnsignedInt (), Byte.toUnsignedLong(),
Short.toUnsignedInt (), and Short.toUnsignedLong ().

29. Comparing two unsigned numbers

Let's consider two signed integers, Integer .MIN_VALUE (-2,147,483,648) and
Integer.MAX_VALUE (2,147,483,647). Comparing these integers (signed values) will
result in -2,147,483,648 being smaller than 2,147,483,647:

// resultSigned is equal to -1 indicating that

// MIN_VALUE is smaller than MAX_VALUE

int resultSigned = Integer.compare (Integer.MIN_VALUE,
Integer.MAX_VALUE) ;

In JDK 8, these two integers can be compared as unsigned values via the
Integer.compareUnsigned () method (this is the equivalent of

Integer.compare () for unsigned values). Mainly, this method ignores the notion of
sign bit, and the left-most bit is considered the most significant bit. Under the unsigned
values umbrella, this method returns 0 if the compared numbers are equal, a value
less than 0 if the first unsigned value is smaller than the second, and a value greater
than 0 if the first unsigned value is greater than the second.

The following comparison returns 1, indicating that the unsigned value of
Integer .MIN_VALUE is greater than the unsigned value of Integer.MAX_VALUE:

// resultSigned is equal to 1 indicating that
// MIN_VALUE is greater than MAX_VALUE
int resultUnsigned
= Integer.compareUnsigned (Integer.MIN_VALUE, Integer.MAX_VALUE);

[54]

Strings, Numbers, and Math Chapter 1

The compareUnsigned () method is available in the Integer and
Long classes starting with JDK 8, and in the Byte and Short classes
starting with JDK 9.

30. Division and modulo of unsigned values

Computing the unsigned quotient and remainder that resulted from the division of
two unsigned values is supported by the JDK 8 unsigned arithmetic API via
the divideUnsigned () and remainderUnsigned () methods.

Let's consider the Interger .MIN_VALUE and Integer.MAX_VALUE signed numbers
and let's apply division and modulo. There's nothing new here:

// signed division
// -1

int divisionSignedMinMax

Integer.MIN_VALUE / Integer.MAX_VALUE;

// 0

int divisionSignedMaxMin

Integer.MAX_VALUE / Integer.MIN_VALUE;

// signed modulo
// -1
int moduloSignedMinMax = Integer.MIN_VALUE % Integer.MAX VALUE;

// 2147483647
int moduloSignedMaxMin = Integer.MAX_ VALUE % Integer.MIN_VALUE;

Now, let's treat Integer .MIN_VALUE and Integer.MAX_VALUE as unsigned values
and let's apply divideUnsigned () and remainderUnsigned():

// division unsigned

int divisionUnsignedMinMax = Integer.divideUnsigned (
Integer .MIN_VALUE, Integer.MAX_VALUE); // 1
int divisionUnsignedMaxMin = Integer.divideUnsigned (

Integer.MAX_VALUE, Integer.MIN_VALUE); // O

// modulo unsigned

int moduloUnsignedMinMax = Integer.remainderUnsigned (
Integer .MIN_VALUE, Integer.MAX_VALUE); // 1
int moduloUnsignedMaxMin = Integer.remainderUnsigned (

Integer .MAX_VALUE, Integer.MIN_VALUE); // 2147483647

[55]

Strings, Numbers, and Math Chapter 1

Notice their similarity to the comparison operation. Both operations, that is, unsigned
division and unsigned modulo, interpret all of the bits as value bits and ignore the sign
bit.

divideUnsigned()andremainderUnsigned()anapﬂmenthl
the Integer and Long classes, respectively.

31. double/float is a finite floating-point value

This problem arises from the fact that some floating-point methods and operations
produce Infinity or NaN as results instead of throwing an exception.

The solution to checking whether the given float/double is a finite floating-point
value relies on the following conditions—the absolute value of the given
float/double value must not exceed the largest positive finite value of

the float/double type:

// for float
Math.abs (f) <= Float.MAX_VALUE;

// for double
Math.abs (d) <= Double.MAX_ VALUE

Starting with Java 8, the preceding conditions were exposed via two dedicated flag-
methods, Float.isFinite () and Double.isFinite (). Therefore, the following
examples are valid test cases for finite floating-point values:

Float f1 = 4.5f;
boolean fl1f = Float.isFinite(fl); // f1

4.5, is finite

Float f2 = f1 / 0;
boolean f2f = Float.isFinite(f2); // f2

Infinity, is not finite

Float £3 = 0f / 0Of;
boolean f3f = Float.isFinite(£f3); // £3

NaN, is not finite

Double dl = 0.000333411333d;
boolean dlf = Double.isFinite(dl); // di

3.33411333E-4,1is finite

Double d2 = d1 / 0;
boolean d2f = Double.isFinite(d2); // d2 = Infinity, is not finite

[56]

Strings, Numbers, and Math Chapter 1

Double d3 = Double.POSITIVE_INFINITY * O;
boolean d3f = Double.isFinite(d3); // d3 = NaN, is not finite

These methods are handy in conditions such as the following:

if (Float.isFinite(dl)) {

// do a computation with dl finite floating-point value
} else {

// dl cannot enter in further computations

}

32. Applying logical AND/OR/XOR to two

boolean expressions
The truth table of elementary logic operations (AND, OR, and XOR) looks as follows:

X]Y|] AND OR XOR
=) e 0 e
o]l e 1 1
10 0 1 1
1]1 1 1 %]

In Java, the logical AND operator is represented as &&, the logical OR operator is
represented as | |, and the logical XOR operator is represented as *. Starting with
JDK 8, these operators are applied to two booleans and are wrapped in three static
methods—Boolean.logicalAnd (), Boolean.logicalOr (), and
Boolean.logicalXor ():

int s = 10;
int m 21;

// 1if (s > m && m < 50) { } else { }

if (Boolean.logicalAnd(s > m, m < 50)) {} else {}
// if (s >m || m < 50) { } else { }
if (Boolean.logicalOr(s > m, m < 50)) {} else {}

// if (s >m ~ m < 50) { } else { }
if (Boolean.logicalXor(s > m, m < 50)) {} else {}

[57]

Strings, Numbers, and Math Chapter 1

Using a combination of these methods is also possible:

if (Boolean.logicalAnd(
Boolean.logicalOr(s > m, m < 50),
Boolean.logicalOr(s <= m, m > 50))) {} else {}

33. Converting Biginteger into a primitive type

The BigInteger class is a very handy tool for representing immutable arbitrary-
precision integers.

This class also contains methods (originating from java.lang.Number) that are
useful for converting BigInteger into a primitive type such as byte, long,

or double. However, these methods can produce unexpected results and confusion.
For example, let's assume that we have BigInteger that wraps Long.MAX_VALUE:

BigInteger nr = BigInteger.valueOf (Long.MAX_ VALUE) ;

Let's convert this BigInteger into a primitive long via the
BigInteger.longValue () method:

long nrLong = nr.longValue();

So far, everything has worked as expected since the Long.MAX_VALUE is
9,223,372,036,854,775,807 and the nrLong primitive variable has exactly this value.

Now, let's try to convert this BigInteger class into a primitive int value via the
BigInteger.intValue () method:

int nrInt = nr.intValue();

This time, the nrInt primitive variable will have a value of -1 (the same result will
produce shortValue () and bytevalue ()). Conforming to the documentation, if the
value of BigInteger is too big to fit in the specified primitive type, only the low-
order n bits are returned (1 depends on the specified primitive type). But if the code is
not aware of this statement, then it will push values as -1 in further computations,
which will lead to confusion.

However, starting with JDK 8, a new set of methods was added. These methods are
dedicated to identifying the information that's lost during the conversion from
BigInteger into the specified primitive type. If a piece of lost information is
detected, ArithmeticException will be thrown. This way, the code signals that the
conversion has encountered some issues and prevents this unpleasant situation.

[58]

Strings, Numbers, and Math Chapter 1

These methods are 1ongvValueExact (), intValueExact (), shortValueExact (),
and byteValueExact ():

long nrExactLong = nr.longValueExact (); // works as expected
int nrExactInt = nr.intValueExact (); // throws ArithmeticException

Notice that intvValueExact () did not return -1 as intVvalue (). This time, the lost
information that was caused by the attempt of converting the largest 1ong value into
int was signaled via an exception of the ArithmeticException type.

34. Converting long into int

Converting a long value into an int value seems like an easy job. For example, a
potential solution can rely on casting the following:

long nr = Integer.MAX_ VALUE;
int intNrCast = (int) nr;

Alternatively, it can rely on Long. intValue (), as follows:
int intNrValue = Long.valueOf (nrLong) .intValue () ;

Both approaches work just fine. Now, let's suppose we have the following long
value:

long nrMaxLong = Long.MAX_ VALUE;

This time, both approaches will return -1. In order to avoid such results, it is advisable
torely on JDK 8, that is, Math.toIntExact (). This method gets an argument of

the long type and tries to convert it into int. If the obtained value overflows int,
then this method will throw ArithmeticException:

// throws ArithmeticException
int intNrMaxExact = Math.toIntExact (nrMaxLong) ;

Behind the scenes, toIntExact () relies on the ((int)value != value) condition.

[59]

Strings, Numbers, and Math Chapter 1

35. Computing the floor of a division and
modulus

Let's assume that we have the following division:

double z = (double)222/14;

This will initialize z with the result of this division, that is, 15.85, but our problem
requests the floor of this division, which is 15 (this is the largest integer value that is
less than or equal to the algebraic quotient). A solution to obtain this desired result
will consist of applying Math. floor (15.85), which is 15.

However, 222 and 14 are integers, and so this preceding division is written as follows:

int z = 222/14;

This time, z will be equal to 15, which is exactly the expected result (the / operator
returns the integer closest to zero). There is no need to apply Math. floor (z).
Moreover, if the divisor is 0, then 222/0 will throw ArithmeticException.

The conclusion so far is that the floor of a division for two integers that have the same
sign (both are positive or negative) can be obtained via the / operator.

Okay, so far, so good, but let's assume that we have the following two integers
(opposite signs; the dividend is negative and the divisor is positive, and vice versa):

double z = (double) -222/14;

This time, z will be equal to -15.85. Again, by applying Math.floor (z), the result
will be -16, which is correct (this is the largest integer value that is less than or equal
to the algebraic quotient).

Let's go over the same problem again with int:
int z = -222/14;

This time, z will be equal to -15. This is incorrect and Math. floor (z) will not help
us in this case since Math.floor (-15) is-15. So, this is a problem that should be
considered.

[60]

Strings, Numbers, and Math Chapter 1

From JDK 8 onward, all of these cases have been covered and exposed via the
Math.floorDiv () method. This method takes two integers representing the
dividend and the divisor as arguments and returns the largest (closest to positive
infinity) int value that is less than or equal to the algebraic quotient:

int x = -222;
int y = 14;

// x 1is the dividend, y is the divisor
int z = Math.floorDiv(x, y); // -16

The Math.floorDiv () method comes in three flavors: floorDiv (int x, int vy),
floorDiv (long x, int y),and floorDiv(long x, long vy).

After Math. floorDiv (), JDK 8 came with Math. floorMod (),
which returns the floor modulus of the given arguments. This is
computed as the result of x — (floorDiv(x, y) * y),andsoit
will return the same result as the % operator for arguments with the
same sign and a different result for arguments that don't have the
same sign.

Rounding up the result of dividing two positive integers (a/b) can be accomplished
quickly as follows:

long result = (a + b - 1) / b;

The following is one example of this (we have 4 /3 = 1.33 and we want 2):
long result = (4 + 3 - 1) / 3; // 2

The following is another example of this (we have 17 /7 = 2.42 and we want 3):
long result = (17 + 7 - 1) / 7; // 3

If the integers are not positive, then we can rely on Math.ceil ():

long result = (long) Math.ceil ((double) a/b);

36. Next floating-point value

Having an integer value such as 10 makes it very easy for us to obtain the next
integer-point value, such as 10+1 (in the direction of positive infinity) or 10-1 (in the
direction of negative infinity). Trying to achieve the same thing for f1loat or double
is not that easy as it is for integers.

[61]

Strings, Numbers, and Math Chapter 1

Starting with JDK 6, the Math class has been enriched with the nextAfter () method.
This method takes two arguments—the initial number (£1oat or double) and the
direction (Float/Double.NEGATIVE/POSITIVE_INFINITY)—and returns the next
floating-point value. Here, it is a flavor of this method to return the next-floating
point adjacent to 0.1 in the direction of negative infinity:

float £ = 0.1f;

// 0.099999994
float nextf = Math.nextAfter (f, Float.NEGATIVE_INFINITY);

Starting with JDK 8, the Math class has been enriched with two methods that act as
shortcuts for nextAfter () and are faster. These methods are nextDown () and
nextUp ():

float £ = 0.1f;

float nextdownf = Math.nextDown(f); // 0.099999994
float nextupf = Math.nextUp(f); // 0.10000001

double d = 0.1d;

double nextdownd = Math.nextDown (d); // 0.09999999999999999
double nextupd = Math.nextUp(d); // 0.10000000000000002

Therefore, nextAfter () in the direction of negative infinity is available via
Math.nextDown () and nextAfter (), while in the direction of positive infinity, this
is available via Math.nextUp ().

37. Multiplying two large int/long values and
operation overflow

Let's dive into the solution starting from the * operator, as shown in the following
example:

int x = 10;
int y = 5;
int z = x * y; // 50

This is a very simple approach and works fine for most of the computations that
involve int, long, float, and double as well.

[62]

Strings, Numbers, and Math Chapter 1

Now, let's apply this operator to the following two large numbers (multiply
2,147,483,647 with itself):

int x = Integer.MAX_ VALUE;
int y = Integer.MAX_ VALUE;
int z = x *vy; // 1

This time, z will be equal to 1, which is not the expected result, that is,
4,611,686,014,132,420,609. Changing only the z type from int to long will not help.
However, changing the types of x and y from int to long will:

long x = Integer.MAX_VALUE;
long y = Integer.MAX_VALUE;
long z = x * y; // 4611686014132420609

But the problem will reappear if we have Long.MAX_VALUE instead of
Integer .MAX_VALUE:

long x = Long.MAX_VALUE;
long y Long.MAX_VALUE;
long z x *vy; // 1

So, computations that overflow the domain and rely on the * operator will end up in
misleading results.

Instead of using these results in further computations, it is better to be informed on
time when an overflow operation occurred. JDK 8 comes with

the Math.multiplyExact () method. This method tries to multiply two integers. If
the result overflows, int will just throw ArithmeticException:

int x = Integer.MAX_VALUE;
int y = Integer.MAX_VALUE;
int z = Math.multiplyExact(x, y); // throw ArithmeticException

InJDK 8, Math.muliplyExact (int x, int y) returns int and
Math.muliplyExact (long x, long y) returns long.In]JDK?9,
Math.muliplyExact (long, int y) returning long was added as
well.

JDK 9 comes with Math.multiplyFull (int x, int y) returning long value. This
method is very useful for obtaining the exact mathematical product of two integers
as long, as follows:

int x Integer.MAX_VALUE;
int y Integer .MAX_VALUE;
long z = Math.multiplyFull(x, y); // 4611686014132420609

[63]

Strings, Numbers, and Math Chapter 1

Just for the record, JDK 9 also comes with a method named

Math.muliptlyHigh (long x, long y) returninga long. The long value
returned by this method represents the most significant 64 bits of the 128-bit product
of two 64-bit factors:

long x = Long.MAX_ VALUE;

long y = Long.MAX_VALUE;

// 9223372036854775807 * 9223372036854775807 = 4611686018427387903
long z = Math.multiplyHigh(x, vy);

In a functional style context, a potential solution will rely on the BinaryOperator
functional interface, as follows (simply define the operation of the two operands of
the same type):

int x = Integer.MAX_ VALUE;

int y = Integer.MAX_ VALUE;

BinaryOperator<Integer> operator = Math::multiplyExact;
int z = operator.apply(x, y); // throw ArithmeticException

For working with a large number, also focus on the BigInteger (immutable
arbitrary-precision integers) and BigDecimal (immutable, arbitrary-precision signed
decimal numbers) classes.

38. Fused Multiply Add

The mathematical computation (a * b) + c is heavily exploited in matrix
multiplications, which are frequently used in High-Performance Computing (HPC),
Al applications, machine learning, deep learning, neural networks, and so on.

The simplest way to implement this computation relies directly on the * and +
operators, as follows:

double x = 49.29d;
double y = -28.58d;
double z = 33.63d;
double g = (x * y) + z;

The main problem of this implementation consists of low accuracy and performance
caused by two rounding errors (one for the multiply operation and one for the
addition operation).

[64]

Strings, Numbers, and Math Chapter 1

But thanks to Intel AVX's instructions for performing SIMD operations and to JDK 9,
which added the Math. fma () method, this computation can be boosted. By relying
onMath. fma (), the rounding is done only once using the round to nearest even
rounding mode:

double fma = Math.fma(x, vy, 2z);

Notice that this improvement is available for modern Intel processors, so it is not
enough to just have JDK 9 in place.

39. Compact number formatting

Starting with JDK 12, a new class for compact number formatting was added. This
class is named java.text.CompactNumberFormat. The main goal of this class is to
extend the existing Java number formatting API with support for locale and
compaction.

A number can be formatted into a short style (for example, 1000 becomes 1K) or into a
long style (for example, 1000 becomes 1 thousand). These two styles were grouped in
the Style enum as SHORT and LONG.

Besides the CompactNumberFormat constructor, CompactNumberFormat can be
created via two static methods that are added to the NumberFormat class:

e The first is a compact number format for the default locale with
NumberFormat.Style.SHORT:

public static NumberFormat getCompactNumberInstance ()

¢ The second is a compact number format for the specified locale
with NumberFormat.Style:

public static NumberFormat getCompactNumberInstance (
Locale locale, NumberFormat.Style formatStyle)

Let's take a close look at formatting and parsing.

Formatting

By default, a number is formatted using RoundingMode . HALF_EVEN. However, we
can explicitly set the rounding mode via NumberFormat .setRoundingMode ().

[65]

Strings, Numbers, and Math Chapter 1

Trying to condense this information into a utility class named NumberFormatters
can be achieved as follows:

public static String forLocale(Locale locale, double number) {
return format (locale, Style.SHORT, null, number);

public static String forLocaleStyle(
Locale locale, Style style, double number) {
return format (locale, style, null, number);

public static String forLocaleStyleRound (
Locale locale, Style style, RoundingMode mode, double number) {
return format (locale, style, mode, number);

private static String format (
Locale locale, Style style, RoundingMode mode, double number) {
if (locale == null || style == null) {

return String.valueOf (number); // or use a default format

NumberFormat nf = NumberFormat.getCompactNumberInstance (locale,
style);

if (mode != null) {
nf.setRoundingMode (mode) ;

return nf.format (number) ;

}

Now, let's format the numbers 1000, 1000000, and 1000000000 with the US locale,
SHORT style, and default rounding mode:

// 1K
NumberFormatters.forLocaleStyle (Locale.US, Style.SHORT, 1_000);

// 1M
NumberFormatters.forLocaleStyle (Locale.US, Style.SHORT, 1_000_000);

[66]

Strings, Numbers, and Math

Chapter 1

// 1B
NumberFormatters.forLocaleStyle (Locale.US,
1_000_000_000);

We can do the same with the LONG style:

// lthousand
NumberFormatters.forLocaleStyle (Locale.US,

// 1million
NumberFormatters.forLocaleStyle (Locale.US,

// 1billion
NumberFormatters.forLocaleStyle (Locale.US,

We can also use the ITALIAN locale and SHORT style:

// 1.000

Style.

Style.

Style.

Style.

NumberFormatters.forLocaleStyle (Locale.ITALIAN,

1_000);

// 1 Mln

NumberFormatters.forLocaleStyle (Locale.ITALIAN,

1_000_000);

// 1 Mld

NumberFormatters.forLocaleStyle (Locale.ITALIAN,

1_.000_000_000);

Finally, we can also use the ITALIAN locale and LONG style:

// 1 mille

NumberFormatters.forLocaleStyle (Locale.ITALIAN,

1_000);

// 1 milione

NumberFormatters.forLocaleStyle (Locale.ITALIAN,

1_000_000);

// 1 miliardo

NumberFormatters.forLocaleStyle (Locale.ITALIAN,

1_000_000_000);

SHORT,

LONG, 1_000);

LONG, 1_000_000);

LONG, 1_000_000_000);

Style.SHORT,

Style.SHORT,

Style.SHORT,

Style.LONG,

Style.LONG,

Style.LONG,

Now, let's suppose that we have two numbers: 1200 and 1600.

[67]

Strings, Numbers, and Math Chapter 1

From the rounding mode's perspective, they will be rounded to 1000 and 2000,
respectively. The default rounding mode, HALF_EVEN, will round 1200 to 1000 and
1600 to 2000. But if we want 1200 to become 2000 and 1600 to become 1000, then we
need to explicitly set up the rounding mode as follows:

// 2000 (2 thousand)
NumberFormatters.forLocaleStyleRound (
Locale.US, Style.LONG, RoundingMode.UP, 1_200);

// 1000 (1 thousand)
NumberFormatters.forLocaleStyleRound (
Locale.US, Style.LONG, RoundingMode.DOWN, 1_600);

Parsing

Parsing is the reverse process of formatting. We have a given string and try to parse it
as a number. This can be accomplished via the NumberFormat . parse () method. By
default, parsing doesn't take advantage of grouping (for example, without grouping,
5,50 K is parsed as 5; with grouping, 5,50 K is parsed as 550000).

If we condense this information into a set of helper methods, then we obtain the
following output:

public static Number parselLocale(Locale locale, String number)
throws ParseException {

return parse(locale, Style.SHORT, false, number);
public static Number parselLocaleStyle (
Locale locale, Style style, String number) throws ParseException {
return parse(locale, style, false, number);
public static Number parseLocaleStyleRound (
Locale locale, Style style, boolean grouping, String number)
throws ParseException {
return parse(locale, style, grouping, number);
private static Number parse(

Locale locale, Style style, boolean grouping, String number)
throws ParseException {

[68]

Strings, Numbers, and Math Chapter 1

if (locale == null || style == null || number == null) {
throw new IllegalArgumentException (
"Locale/style/number cannot be null");

NumberFormat nf = NumberFormat.getCompactNumberInstance (locale,
style);
nf.setGroupingUsed (grouping) ;

return nf.parse (number) ;

}

Let's parse 5K and 5 thousand into 5000 without explicit grouping:

// 5000
NumberFormatters.parselLocaleStyle (Locale.US, Style.SHORT, "5K");

// 5000
NumberFormatters.parselocaleStyle (Locale.US, Style.LONG, "5
thousand") ;

Now, let's parse 5,50K and 5,50 thousand to 550000 with explicit grouping:

// 550000
NumberFormatters.parseLocaleStyleRound (
Locale.US, Style.SHORT, true, "5,50K");

// 550000
NumberFormatters.parseLocaleStyleRound (
Locale.US, Style.LONG, true, "5,50 thousand");

More tuning can be obtained via the setCurrency (), setParseIntegerOnly (),
setMaximumIntegerDigits (), setMinimumIntegerDigits (),
setMinimumFractionDigits (), and setMaximumFractionDigits () methods.

Summary

This chapter collected a bunch of the most common problems that involve strings and
numbers. Obviously, there are tons of such problems, and trying to cover all of them
is way beyond any book's scope. However, knowing how to solve the problems
presented in this chapter provides you with a solid base for solving many other
related problems by yourself.

Download the applications from this chapter to view the results and additional
details.

[69]

Objects, Immutability, and
Switch Expressions

This chapter includes 18 problems that involve objects, immutability, and switch
expressions. The chapter starts with several problems about dealing with null
references. It continues with problems regarding checking indexes, equals () and
hashCode (), and immutability (for example, writing immutable classes and
passing/returning mutable objects from immutable classes). The last part of the
chapter deals with cloning objects and the JDK 12 switch expressions. By the end of
this chapter, you will have a fundamental knowledge of objects and immutability.
Moreover, you will know how to deal with the new switch expressions. These are
valuable and non-optional bits of knowledge in any Java developer's arsenal.

Problems

Use the following problems to test your object, immutability, and switch expression
programming prowess. I strongly encourage you to give each problem a try before
you turn to the solutions and download the example programs:

40. Checking null references in functional style and imperative code: Write
a program that performs the null checks on the given references in a
functional style and imperative code.

41. Checking null references and throwing a customized
NullPointerException error: Write a program that performs the null
checks on the given references and throws NullPointerException with
custom messages.

42. Checking null references and throwing the specified exception
(example, I1legalArgumentException): Write a program that performs
the null checks on the given references and throws the specified exception.

Objects, Immutability, and Switch Expressions Chapter 2

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

Checking null references and returning non-null default

references: Write a program that performs the null checks on the given
reference, and if it is non-nul1, then return it; otherwise, return a non-null
default reference.

Checking the index in the range from 0 to length: Write a program that
checks whether the given index is between 0 (inclusive) and the given
length (exclusive). If the given index is out of the [0, given length] range,
then throw IndexOutOfBoundsException.

Checking the subrange in the range from 0 to length: Write a program
that checks whether the given subrange [given start, given end] is within the
bounds of the range from [0, given length]. If the given subrange is not in
the [0, given length] range, then throw IndexOutOfBoundsException.
equals () and hashCode () : Explain and exemplify how equals () and
hashCode () methods work in Java.

Immutable objects in a nutshell: Explain and exemplify what is an
immutable object in Java.

Immutable string: Explain why the string class is immutable.

Writing an immutable class: Write a program that represents an
immutable class.

Passing/returning mutable objects to/from an immutable class: Write a
program that passes and returns a mutable object to/from an immutable
class.

Writing an immutable class via the Builder pattern: Write a program that
represents an implementation of the Builder pattern in an immutable class.
Avoiding bad data in immutable objects: Write a program that prevents
bad data in immutable objects.

Cloning objects: Write a program that exemplifies shallow and deep
cloning techniques.

Overriding tostring () : Explain and exemplify practices for overriding
toString().

switch expressions: Provide a brief overview of the switch expressions in
JDK 12.

Multiple case labels: Write a snippet of code for exemplifying the JDK 12
switch with multiple case labels.

Statement blocks: Write a snippet of code for exemplifying the JDK 12
switch with case labels that point to a curly-braced block.

[71]

Objects, Immutability, and Switch Expressions Chapter 2

Solutions

The following sections describe solutions to each of the preceding problems.
Remember that there usually isn't a single correct way to solve a particular problem.
Also, remember that the explanations shown here include only the most interesting
and important details needed to solve the problems. Download the example solutions
to see additional details and to experiment with the programs at https://github.
com/PacktPublishing/Java-Coding-Problems.

40. Checking null references in functional
style and imperative code

Independent of functional style or imperative code, checking null references is a
common and recommended technique used for mitigating the occurrence of famous
NullPointerException exception. This kind of checking is heavily exploited for
method arguments to ensure that the passing references will not cause
NullPointerException or unexpected behavior.

For example, passing List<Integer> to a method may require at least two null
checks. First, the method should ensure that the list reference itself is not null.
Second, depending on how the list is used, the method should ensure that the list
does not contain null objects:

List<Integer> numbers
= Arrays.aslList (1, 2, null, 4, null, 16, 7, null);

This list is passed to the following method:
public static List<Integer> evenlIntegers (List<Integer> integers) {
if (integers == null) {

return Collections.EMPTY_LIST;
}

List<Integer> evens = new ArrayList<>();
for (Integer nr: integers) {
if (nr !'= null && nr $ 2 == 0) {

evens.add (nr) ;
}
}

return evens;

[72]

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Objects, Immutability, and Switch Expressions Chapter 2

Notice that the preceding code uses the classical checks relying on the == and !=
operators (integers==null, nr !=null). Starting with JDK §, the
java.util.Objects class contains two methods that wrap the null checks based
on these two operators: object == null was wrapped in Objects.isNull (), and
object != null was wrapped in Objects.nonNull ().

Based on these methods, the preceding code can be rewritten as follows:

public static List<Integer> evenlntegers (List<Integer> integers) {

if (Objects.isNull (integers)) {
return Collections.EMPTY_LIST;
}

List<Integer> evens = new ArrayList<>();

for (Integer nr: integers) {
if (Objects.nonNull(nr) && nr $ 2 == 0) {
evens.add(nr) ;

return evens;

}

Now, the code is somehow more expressive, but this is not the main usage of these
two methods. Actually, these two methods have been added for another purpose
(conforming to API notes)—to be used as predicates in the Java 8 functional style
code. In functional style code, the null checks can be accomplished as in the
following examples:

public static int sumIntegers (List<Integer> integers) {

if (integers == null) {
throw new IllegalArgumentException("List cannot be null");

}

return integers.stream()
.filter(i -> i !'= null)
.mapToInt (Integer::intValue) .sum();

}
public static boolean integersContainsNulls (List<Integer> integers) {

if (integers == null) {
return false;

[73]

Objects, Immutability, and Switch Expressions Chapter 2

}
return integers.stream()
.anyMatch (i => i == null);
}
It is quite obvious that i —> i != nullandi -> i == null are not expressed in

the same style with the surrounding code. Let's replace these snippets of code with
Objects.nonNull () and Objects.isNull ():

public static int sumIntegers (List<Integer> integers) {

if (integers == null) {
throw new IllegalArgumentException("List cannot be null");

return integers.stream()
.filter (Objects: :nonNull)
.mapToInt (Integer::intValue) .sum();

public static boolean integersContainsNulls (List<Integer> integers) {

if (integers == null) {
return false;

return integers.stream()
.anyMatch (Objects: :isNull) ;

}

Or, we can use the Objects.nonNull () and Objects.isNull () methods for
arguments as well:

public static int sumIntegers (List<Integer> integers) {
if (Objects.isNull (integers)) {

throw new IllegalArgumentException("List cannot be null");

return integers.stream()
.filter (Objects: :nonNull)
.mapToInt (Integer::intValue) .sum();

public static boolean integersContainsNulls (List<Integer> integers) {

if (Objects.isNull (integers)) {

[74]

Objects, Immutability, and Switch Expressions Chapter 2

return false;

return integers.stream()
.anyMatch (Objects: :isNull) ;
}

Awesome! So, by way of conclusion, the functional style code should rely on these
two methods whenever the null checks are needed, while in the imperative code, it
is a matter of preference.

41. Checking null references and throwing
customized NullPointerException

Checking null references and throwing NullPointerException with customized
messages can be accomplished using the following code (this code does these four
times, twice in the constructor and twice in the assignDriver () method):

public class Car {

private final String name;
private final Color color;

public Car (String name, Color color) {
if (name == null) {

throw new NullPointerException ("Car name cannot be null");

if (color == null) {
throw new NullPointerException("Car color cannot be null");

this.name = name;
this.color = color;

public void assignDriver (String license, Point location) {
if (license == null) {

throw new NullPointerException("License cannot be null");

if (location == null) {
throw new NullPointerException ("Location cannot be null");

[75]

Objects, Immutability, and Switch Expressions Chapter 2

}

So, this code solves the problem by combining the == operator and manual
instantiation of the Nul1PointerException class. Starting with JDK 7, this
combination of code was hidden in a stat ic method

named Objects.requireNonNull (). Via this method, the preceding code can be
rewritten in an expressive manner:

public class Car {

private final String name;
private final Color color;

public Car (String name, Color color) {

this.name = Objects.requireNonNull (name, "Car name cannot be
null");

this.color = Objects.requireNonNull (color, "Car color cannot be
null");

public void assignDriver (String license, Point location) {

Objects.requireNonNull (license, "License cannot be null");
Objects.requireNonNull (location, "Location cannot be null");
}
}

So, if the specified reference is null, then Objects.requireNonNull () will throw a
NullPointerException with the message provided. Otherwise, it returns the
checked reference.

In constructors, there is a typical approach to throw NullPointerException when
the references provided are null. But in methods (for example, assignDriver ()),
this is a controversial approach. Some developers will prefer to return an inoffensive
result or to throw I1llegalArgumentException. The next problem, checking null
references and throwing the specified exception (for example,
IllegalArgumentException), addresses the T1legalArgumentException
approach.

[76]

Objects, Immutability, and Switch Expressions Chapter 2

In JDK 7, there are the two Objects.requireNonNull () methods, the one used
previously, and another one that throws NullPointerException with a default
message, as in the following example:

this.name = Objects.requireNonNull (name) ;

Starting with JDK 8, there is one more Objects.requireNonNull (). This one wraps
the custom message of NullPointerException in Supplier. This means that the
message creation is postponed until the given reference is null (this means that using
the + operator for concatenating parts of the message is no longer an issue).

Here is an example:

this.name = Objects.requireNonNull (name, ()
—> "Car name cannot be null ... Consider one from " + carsList);

If this reference is not null, then the message is not created.

42. Checking null references and throwing the
specified exception

Of course, one solution entails relying directly on the == operator as follows:

if (name == null) {
throw new IllegalArgumentException ("Name cannot be null");

}

This problem cannot be solved via the methods of java.util.Objects since there is
no requireNonNullElseThrow () method. Throwing
IllegalArgumentException or another specified exception may require a set of
methods, as shown in following screenshot:

 requireNonNullElseThrow (T obj, X exception)

 requireNonNullElseThrowIAE (T cbj, String message)
0 requireNonNullElseThrowIAE (T cbj, Supplier<String> messageSupplier)

T
T
T
T

) requireNotNullElseThrow (T cbij, Supplier<? extends X> exceptionSupplier)

[77]

Objects, Immutability, and Switch Expressions Chapter 2

Let's focus on the requireNonNullElseThrowIAE () methods. These two methods
throw IllegalArgumentException with a custom message specified as String or
as Supplier (to avoid creation until null is evaluated to t rue):

public static <T> T requireNonNullElseThrowIAE (
T obj, String message) {

if (obj == null) {
throw new IllegalArgumentException (message);

return obj;

public static <T> T requireNonNullElseThrowIAE (T obj,
Supplier<String> messageSupplier) {

if (obj == null) {
throw new IllegalArgumentException (messageSupplier == null
? null : messageSupplier.get());

return obj;

}

So, throwing Il1legalArgumentException can be done via these two methods. But
they are not enough. For example, the code may need to

throw IllegalStateException, UnsupportedOperationException, and so on.
For such cases, the following methods are preferable:

public static <T, X extends Throwable> T requireNonNullElseThrow (
T obj, X exception) throws X {

if (obj == null) {
throw exception;

return obj;

public static <T, X extends Throwable> T requireNotNullElseThrow (
T obj, Supplier<<? extends X> exceptionSupplier) throws X {

if (obj !'= null) {
return obj;
} else {

throw exceptionSupplier.get();

[78]

Objects, Immutability, and Switch Expressions Chapter 2

}

Consider adding these methods to a helper class named MyObjects. Call these
methods as shown in the following example:

public Car (String name, Color color) {

this.name = MyObjects.requireNonNullElseThrow (name,

new UnsupportedOperationException ("Name cannot be set as null"));
this.color = MyObjects.requireNotNullElseThrow (color, () ->

new UnsupportedOperationException ("Color cannot be set as null"));

}

Furthermore, we can follow these examples to enrich MyObject s with other kinds of
exceptions as well.

43. Checking null references and returning
non-null default references

A solution to this problem can easily be provided via if-else (or the ternary
operator), as in the following example (as a variation, name, and color can be
declared as non-final and initialized with the default values at declaration):

public class Car {

private final String name;
private final Color color;
public Car (String name, Color color) {

if (name == null) {
this.name = "No name";
} else {
this.name = name;
}
if (color == null) {
this.color = new Color (0, 0, 0);
} else {
this.color = color;

}

[79]

Objects, Immutability, and Switch Expressions Chapter 2

However, starting with JDK 9, the preceding code can be simplified via two methods
from the Objects class. These methods are requireNonNullElse () and
requireNonNullElseGet (). Both of them take two arguments—the reference to
check for nullity, and the non-null default reference to return in case the checked
reference is null:

public class Car {

private final String name;
private final Color color;

public Car (String name, Color color) {
this.name = Objects.requireNonNullElse (name, "No name");
this.color = Objects.requireNonNullElseGet (color,
() —> new Color (0, 0, 0));

}

In the preceding example, these methods are used in a constructor, but they can be
used in methods as well.

44. Checking the index in the range from 0 to
length

To begin with, let's have a simple scenario to highlight this problem. This scenario
may materialize in the following simple class:

public class Function {
private final int x;
public Function (int x) {

this.x = x;

}
public int xMinusY (int y) {

return x - y;

}

public static int oneMinusY (int y) {

[80]

Objects, Immutability, and Switch Expressions Chapter 2

return 1 - y;
}

Notice that the preceding snippet of code doesn't assume any range restrictions over
x and y. Now, let's impose the following ranges (this is very common with
mathematical functions):

¢ x must be between 0 (inclusive) and 11 (exclusive), so x belongs to [0, 11].

e In the xMinusY () method, y must be between 0 (inclusive) and x
(exclusive), so y belongs to [0, x].

¢ In the oneMinusY () method, y must be between 0 (inclusive) and 16
(exclusive), so y belongs to [0, 16).

These ranges can be imposed in code via the i f statements, as follows:

public class Function {

private static final int X_UPPER_BOUND
private static final int Y_UPPER_BOUND
private final int x;

11;
16;

public Function (int x) {
if (x < 0 || x >= X_UPPER_BOUND) {
throw new IndexOutOfBoundsException("...");

}

this.x = x;

public int xMinusY (int y) {
if (y <0 [l y >= x) {
throw new IndexOutOfBoundsException("...");

}

return x — y;

public static int oneMinusY (int y) {

if (y < 0 || y >= Y_UPPER_BOUND) {
throw new IndexOutOfBoundsException("...");

}

[81]

Objects, Immutability, and Switch Expressions Chapter 2

return 1 - y;

}

Consider replacing IndexOutOfBoundsException with a more meaningful
exception (for example, extend IndexOutOfBoundsException and create a custom
exception of type, RangeOutOfBoundsException).

Starting with JDK 9, the code can be rewritten to use the Objects.checkIndex ()
method. This method verifies whether the given index is in the range [0, length] and
returns the given index in this range or throws IndexOutOfBoundsException:

public class Function {
private static final int X_UPPER_BOUND = 11;
private static final int Y_UPPER_BOUND = 16;
private final int x;

public Function (int x) {

this.x = Objects.checkIndex (x, X_UPPER_BOUND) ;

public int xMinusY (int y) {
Objects.checkIndex (y, Xx);

return x - y;

public static int oneMinusY (int y) {
Objects.checkIndex(y, Y_UPPER_BOUND) ;
return 1 - y;
}

For example, calling oneMinusY (), as shown in the next code snippet, will result
in IndexOutOfBoundsException since y can take values between [0, 16):

int result = Function.oneMinusY (20);

Now, let's go further and check the subrange in a range from 0 to the given length.

[82]

Objects, Immutability, and Switch Expressions Chapter 2

45. Checking the subrange in the range from 0
to length

Let's follow the same flow from the previous problem. So, this time, the Function
class will look as follows:

public class Function {
private final int n;
public Function (int n) {

this.n = n;

t
public int yMinusX(int x, int vy)
return y - X;
t
t

Notice that the preceding snippet of code doesn't assume any range restrictions over
%, y, and n. Now, let's impose the following ranges:

¢ n must be between 0 (inclusive) and 101 (exclusive), so n belongs to [0, 101].

e In the yMinusX () method, the range bounded by x and y, [x, y] must be a
subrange of [0, n].

These ranges can be imposed in code via the i f statements as follows:
public class Function {

private static final int N_UPPER_BOUND = 101;
private final int n;

public Function (int n) {
if (n < 0 || n >= N_UPPER_BOUND) {
throw new IndexOutOfBoundsException("...");

}

this.n = n;

}

public int yMinusX(int x, int y) {

[83]

Objects, Immutability, and Switch Expressions Chapter 2

if (x <0 || x>y || yv > n) {
throw new IndexOutOfBoundsException("...");

}

return y - X;
}
}

Based on the previous problem, the condition for n can be replaced with
Objects.checkIndex (). Moreover, the JDK 9 Objects class comes with a method
named checkFromToIndex (int start, int end, int length) that checks
whether the given subrange [given start, given end] is within the bounds of the range
from [0, given length]. So, this method can be applied to the yMinusx () method to
check that the range bounded by x and y, [x, y) is a subrange of [0, n]:

public class Function {

private static final int N_UPPER_BOUND = 101;
private final int nj;

public Function (int n) {

this.n = Objects.checkIndex (n, N_UPPER_BOUND) ;
}

public int yMinusX(int x, int y) {

Objects.checkFromToIndex (x, y, n);
return y - X;
}
}

For example, the following test will lead to IndexOutOfBoundsException since x is
greater than y:

Function f = new Function (50);
int r = f.yMinusX (30, 20);

Beside this method, 0Objects come with another

method named checkFromIndexSize (int start, int size,
int length). This method checks that the subrange [given start,
given start + given size] is in the range [0, given length].

[84]

Objects, Immutability, and Switch Expressions Chapter 2

46. equals() and hashCode()

The equals () and hashCode () methods are defined in java.lang.0Object. Since
Object is the superclass of all Java objects, these two methods are available for all
objects. Their main goal is to provide an easy, efficient, and robust solution for
comparing objects, and to determine whether they are equal. Without these methods
and their contracts, the solution relies on the big and cumbersome i f statements
meant to compare each field of an object.

When these methods are not overridden, Java will use their default implementations.
Unfortunately, the default implementation is not really serving the goal of
determining whether two objects have the same value. By default, equals () checks
identity. In other words, it considers that two objects are equal if, and only if, they are
represented by the same memory address (same object references), while

hashCode () returns an integer representation of the object memory address. This is a
native function known as the identity hash code.

For example, let's assume the following class:
public class Player {

private int id;
private String name;

public Player (int id, String name) {

this.id = id;
this.name = name;

}

Then, let's create two instances of this class containing the same information, and let's
compare them for equality:

Player pl = new Player (1, "Rafael Nadal");
Player p2 = new Player (1, "Rafael Nadal");

System.out.println(pl.equals(p2)); // false
System.out.println("pl hash code: " + pl.hashCode()); // 1809787067
System.out.println("p2 hash code: " + p2.hashCode()); // 157627094

[85]

Objects, Immutability, and Switch Expressions Chapter 2

Do not use the == operator for testing the equality of objects

(avoid if (p1 == p2)). The == operator compares whether the
references of two objects are pointing to the same object, whereas
equals () compares object values (as humans, this is what we care
about).

As a rule of thumb, if two variables hold the same reference, they
are identical, but if they reference the same value, they are equal.
What the same value means is defined by equals ().

For us, p1 and p2 are equal, but notice that equals () has returned false (thepl
and p2 instances have exactly the same field values, but they are stored at different
memory addresses). This means that relying on the default implementation of
equals () is not acceptable. The solution is to override this method, and for this it is
important to be aware of the equals () contract that imposes the following
statements:

¢ Reflexivity: An object is equal to itself, which means that p1.equals (p1)
must return true.

e Symmetry: pl.equals (p2) must return the same result (true/false) as
p2.equals (pl).

e Transitive: If p1.equals (p2) and p2.equals (p3), then also
pl.equals (p3).

¢ Consistent: Two equal objects must remain equal all the time unless one of
them is changed.

e Null returns false: All objects must be unequal to null.

So, in order to respect this contract, the equals () method of the Player class can be
overridden as follows:

@Override
public boolean equals (Object obj) |

if (this == obj) {
return true;

}

if (obj == null) {
return false;

}

if (getClass () != obj.getClass()) |
return false;

[86]

Objects, Immutability, and Switch Expressions Chapter 2

}

final Player other = (Player) obj;
if (this.id != other.id) {

return false;

}

if (!Objects.equals(this.name, other.name)) {
return false;

return true;

}
Now, let's perform the equality test again (this time, p1 is equal to p2):
System.out.println(pl.equals(p2)); // true

OK, so far so good! Now, let's add these two Player instances to a collection. For
example, let's add them to a HashSet (a Java collection that doesn't allow duplicates):

Set<Player> players = new HashSet<>();

players.add(pl);
players.add(p2);

Let's check the size of this HashSet and whether it contains p1:

System.out.println("pl hash code: " + pl.hashCode()); // 1809787067
System.out.println("p2 hash code: " + p2.hashCode()); // 157627094
System.out.println("Set size: " + players.size()); // 2
System.out.println("Set contains Rafael Nadal: "

+ players.contains (new Player (1, "Rafael Nadal"))); // false

Conforming to the preceding implementation of equals (), p1, and p2 are equal;
therefore, the HashSet size should be 1, not 2. Moreover, it should contain Rafael
Nadal. So, what happened?

Well, the general answer resides in how Java was created. It is easy to intuit that
equals () is not a fast method; therefore, lookups will face performance penalties
when a significant number of equality comparisons are needed. For example, this
adds a serious drawback in the case of lookups by specific values in collections (for
example, HashSet, HashMap, and HashTable), since it may require a large number of
equality comparisons.

[87]

Objects, Immutability, and Switch Expressions Chapter 2

Based on this statement, Java tried to reduce equality comparisons by adding buckets.
A bucket is a hash-based container that groups equal objects. This means that equal
objects should return the same hash code, while unequal objects should return
different hash codes (if two unequal objects have the same hash code, then this is a
hash collision, and the objects will go in the same bucket). So, Java compares the hash
codes, and only if these are the same for two different object references (not for the
same object references) does it proceed further and call equals (). Basically, this
accelerates the lookups in collections.

But what happened in our case? Let's see it step by step:

e When p1 is created, Java will assign to it a hash code based on the p1
memory address.

e When p1 is added to set, Java will link a new bucket to the p1 hash code.

e When p2 is created, Java will assign to it a hash code based on the p2
memory address.

e When p2 is added to Set, Java will link a new bucket to the p2 hash code
(when this happens, it looks like HashSet is not working as expected and it
allows duplicates).

e When players.contains (new Player (1, "Rafael Nadal")) is
executed, a new player, p3, is created with a new hash code based on the
p3 memory address.

¢ So, in the frame of contains (), testing p1 and p3, respectively, p2 and
p3, for equality involves checking their hash codes, and since the p1 hash
code is different from the p3 hash code, and the p2 hash code is different
from the p3 hash code, the comparisons stop without evaluating equals ()
and this means that Hashset doesn't contain the object (p3)

In order to get back on track, the code must override the hashCode () method as well.
The hashCode () contract imposes the following;:

¢ Two equal objects conforming to equals () must return the same hash
code.

e Two objects with the same hash code are not mandatory equals.

¢ Aslong as the object remains unchanged, hashCode () must return the
same value.

[881]

Objects, Immutability, and Switch Expressions Chapter 2

As a rule of thumb, in order to respect the equals () and hashCode () contracts,
follow two golden rules:

e When equals () is overridden, hashCode () must be overridden as well,
and vice versa.
¢ Use the same identifying attributes for both methods in the same order.

For the Player class, hashCode () can be overridden as follows:

@Override
public int hashCode () {

int hash = 7;
hash = 79 * hash + this.id;
hash = 79 * hash + Objects.hashCode (this.name);

return hash;

}

Now, let's execute another test (this time, it works as expected):

System.out.println("pl hash code: " + pl.hashCode()); // —-322171805
System.out.println("p2 hash code: " + p2.hashCode()); // —-322171805
System.out.println("Set size: " + players.size()); // 1
System.out.println("Set contains Rafael Nadal: "

+ players.contains (new Player (1, "Rafael Nadal"))); // true

Now, let's enumerate some of the common mistakes of working with equals () and
hashCode ():

* You override equals () and forget to override hashCode () or vice versa
(override both or none).
* You use the == operator instead of equals () for comparing object values.
¢ In equals (), you omit one or more of the following:
o Start by adding the self-check (1f (this == obj)...).
e Since no instance should be equal to null, continue by
adding null-check (1 f (obj == null)...).
¢ Ensure that the instance is what we are expecting (use
getClass () or instanceof).
e Finally, after these corner-cases, add field comparisons.

[891]

Objects, Immutability, and Switch Expressions Chapter 2

* You violate equals () symmetry via inheritance. Assume a class A and a
class B extending A and adding a new field. The B class overrides the
equals () implementation inherited from A, and this implementation is
added to the new field. Relying on instanceof will reveal
that b.equals (a) will return false (as expected), but a.equals (b) will
return t rue (not expected), so therefore symmetry is broken. Relying on
slice comparison will not work since this breaks transitivity and reflexivity.
Fixing the problem means relying on getClass () instead of instanceof
(via getClass (), instances of the type and its subtypes cannot be equal),
or better relying on composition instead of inheritance as in the application
bundled to this book (P46_vViolateEqualsViaSymmetry).

¢ You return a constant from hashCode () instead of a unique hash code per
object.

Since JDK 7, the Objects class has come with several helpers for dealing with object
equality and hash codes, as follows:

® Objects.equals (Object a, Object b): Tests whether the a object is
equal to the b object.

® Objects.deepEquals (Object a, Object b): Useful for testing
whether two objects are equal (if they are arrays, the test is performed via
Arrays.deepEquals ()).

® Objects.hash (Object ... values): Generates a hash code for a
sequence of input values.

Ensure that equals () and hashCode () respect the Java SE

contracts via the Equalsverifier library (https://
mvnrepository.com/artifact/nl.jgno.equalsverifier/

equalsverifier).

Rely on the Lombok library to generate hashCode () and equals ()
from the fields of your object (https://projectlombok.org/). But
pay attention to the special case of combining Lombok with JPA
entities.

[90]

https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://mvnrepository.com/artifact/nl.jqno.equalsverifier/equalsverifier
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/
https://projectlombok.org/

Objects, Immutability, and Switch Expressions Chapter 2

47. Immutable objects in a nutshell

An immutable object is an object that cannot be changed (its state is fixed) once it is
created.

In Java, the following applies:

e Primitive types are immutable.

e The famous Java St ring class is immutable (other classes are immutable as
well, for example, Pattern, and LocalDate)

¢ Arrays are not immutable.
e Collections can be mutable, unmodifiable, or immutable.

An unmodifiable collection is not automatically immutable. It depends on which
objects are stored in the collection. If the stored objects are mutable, then the
collection is mutable and unmodifiable. But if the stored objects are immutable, then
the collection is effectively immutable.

Immutable objects are useful in concurrent (multithread) applications and streams.
Since immutable objects cannot be changed, they are impassible to concurrency issues
and they don't risk being corrupted or inconsistent.

One of the main concerns of using immutable objects is related to the penalties of
creating new objects, instead of managing the state of a mutable object. But keep in
mind that immutable objects take advantage of special treatment during garbage
collection. Moreover, they are not prone to concurrency issues and eliminate the code
needed for managing the state of the mutable objects. The code necessary to manage
the state of mutable objects is prone to be slower than the creation of new objects.

Looking at the following problems will allow us to dive deeper into object
immutability in Java.

48. Immutable string

Every programming language has a way of representing strings. As primitive types,
strings are part of the predefined types, and they are used in almost every type of
Java application.

[91]

Objects, Immutability, and Switch Expressions Chapter 2

In Java, strings are not represented by a primitive type like int, long, and float.
They are represented by a reference type named String. Almost any Java application
uses strings, for example, the main () method of a Java application gets as an
argument an array of the String type.

The notoriety of string and its wide range of applications means we should know it
in detail. Besides knowing how to declare and manipulate strings (for example,
reverse, and capitalize) developers should understand why this class was designed in
a special or different way. More precisely, why is St ring immutable? Or maybe this
question has a better resonance formulated like this—what are the pros and cons of
String being immutable?

Pros of string immutability

Let's take a look at some of the pros of string immutability in the next section.

String constant pool or cached pool

One of the reasons in favor of string immutability is represented by the string
constant pool (SCP) or cached pool. In order to understand this statement, let's dive a
little bit into how the St ring class works internally.

The SCP is a special area in memory (not the normal heap memory) used for the
storage of string literals. Let's assume the following three st ring variables:

String x = "book";
String y = "book";
String z = "book";

How many string objects have been created? It is tempting to say three, but actually
Java creates only one String object with the "book™ value. The idea is that
everything between quotes is considered as a string literal, and Java stores string
literals in this special area of memory called the SCP, by following an algorithm like
this (this algorithm is known as string interning):

e When a string literal is created (for example, String x = "book"), Java
inspects the SCP to see whether this string literal exists.

e If the string literal is not found in the SCP, then a new string object for the
string literal is created in the SCP and the corresponding variable, x, will
point to it.

[92]

Objects, Immutability, and Switch Expressions Chapter 2

e If the string literal is found in the SCP (for example, String y = "book",
String z = "book™"), then the new variable will point to the String
object (basically, all variables that have the same value will point to the
same String object):

String x = "book" String x = "book" String y = "book" String z = "book"
| |
l |
v
Ilbookll Ilbookll
SCP SCP

But x should be "cook™ and not "book™", so let's replace "b" with "c"—x =
x.replace ("b", "c");

While x should be "cook™, y and z should remain unchanged. This behavior is

provided by immutability. Java will create a new object and will perform the change
on it as follows:

String x = "book" String y = "book" String z = "book" String x = "cook" Stringy = "book" String ‘z = "book"
|

| | \
"book" "cook" "book"
SCP SCP

So, string immutability permits the caching of string literals, which allows
applications to use a large number of string literals with a minimum impact on the
heap memory and garbage collector. In a mutable context, a modification of a string
literal may lead to corrupted variables.

Do not create a string as String x = new String("book"). This
is not a string literal; this is a St ring instance (built via a
constructor) that will go in the normal memory heap instead of the
SCP. A string created in the normal heap memory can point to the
SCP by explicitly calling the string.intern () method

as x.intern().

[93]

Objects, Immutability, and Switch Expressions Chapter 2

Security

Another benefit of string immutability is its security aspect. Commonly, a lot of
sensitive information (usernames, passwords, URLs, ports, databases, socket
connections, parameters, properties, and so on) are represented and passed around as
strings. By having this information immutable, the code becomes secure to a wide
range of security threats (for example, modifying the references accidentally or
deliberately).

Thread safety

Imagine an application using thousands of mutable St ring objects and dealing with
thread-safety code. Fortunately, in this case, our imagined scenario will not become a
reality, thanks to immutability. Any immutable object is thread-safe by its nature.
This means that strings can be shared and manipulated by multiple threads, with no
risk of corruption and inconsistency.

Hash code caching

The equals() and hashCode() section discussed equals () and hashCode (). Hash codes
should be calculated every time they are involved in hashing specific activities (for
example, searching an element in a collection). Since St ring is immutable, every
string has an immutable hash code that can be cached and reused as it cannot be
changed after string creation. This means that hash codes of strings can be used from
the cache instead of recalculating them at each usage. For example, HashMap hashes
its keys for different operations (for example, put (), get ()), and if these keys are of
the st ring type, then hash codes will be reused from the cache instead of
recalculating them.

Class loading

A typical approach for loading a class in memory relies on calling

the Class.forName (String className) method. Notice the String argument
representing the class name. Thanks to string immutability, the class name cannot be
changed during the loading process. However, if St ring is mutable, then imagine
loading class A (for example, Class. forName ("A")), and, during the loading
process, its name will get changed to BadA. Now, the BadA objects can do bad things!

[94]

Objects, Immutability, and Switch Expressions Chapter 2

Cons of string immutability

Let's take a look at some of the cons of string immutability in the next section.

String cannot be extended

An immutable class should be declared final to avoid extensibility. However,
developers need to extend the String class in order to add more features, and this
limitation can be considered a drawback of immutability.

Nevertheless, developers can write utility classes (for example, Apache Commons
Lang, stringUtils, Spring Framework, StringUtils, Guava, and strings) to
provide extra features and simply pass strings as arguments to the methods of these
classes.

Sensitive data in memory for a long time

Sensitive data in strings (for example, passwords) may reside in memory (in SCP) for
a long time. Being a cache, the SCP takes advantage of special treatment from the
garbage collector. More precisely, the SCP is not visited by the garbage collector with
the same frequency (cycles) as other memory zones. As a consequence of this special
treatment, sensitive data is kept in the SCP for a long time, and can be prone to
unwanted usages.

In order to avoid this potential drawback, it is advisable to store sensitive data (for
example, passwords) in char[] instead of String.

OutOfMemoryError

The SCP is a small memory zone in comparison with others and can be filled pretty
quickly. Storing too many string literals in the SCP will lead to OutOfMemoryError.

Is String completely immutable?

Well, behind the scenes, String uses private final char[] to store each
character of the string. By using the Java Reflection API, in JDK 8, the following code
will modify this char [] (the same code in JDK 11 will

throw java.lang.ClassCastException):

String user = "guest";
System.out.println("User is of type: " + user);

[95]

Objects, Immutability, and Switch Expressions Chapter 2

Class<String> type = String.class;
Field field = type.getDeclaredField("value");
field.setAccessible (true);

char[] chars = (char[]) field.get (user);
chars[0] = 'a';

chars[1] = 'd';

chars[2] = 'm';

chars[3] = 'i"';

chars[4] = 'n';

System.out.println ("User is of type: " + user);

So, in JDK 8, st ring is effectively immutable, but not completely.

49. Writing an immutable class

An immutable class must respect several requirements, such as the following;:

e The class should be marked as £inal to suppress extensibility (other
classes cannot extend this class; therefore, they cannot override methods)

¢ All fields should be declared private and final (they are not visible in
other classes, and they are initialized only once in the constructor of this
class)

¢ The class should contain a parameterized public constructor (or a
private constructor and factory methods for creating instances) that
initializes the fields

¢ The class should provide getters for fields

¢ The class should not expose setters

For example, the following Point class is immutable since it successfully passes the
preceding checklist:

public final class Point {

private final double x;
private final double y;

public Point (double x, double y) {
this.x = x;
this.y = y;

}

[96]

Objects, Immutability, and Switch Expressions Chapter 2

public double getX() {
return x;

}

public double getY() {
return y;
}
}

If the immutable class should manipulate mutable objects, consider the following
problems.

50. Passing/returning mutable objects to/from
an immutable class

Passing mutable objects to an immutable class can break down immutability. Let's
consider the following mutable class:

public class Radius {

private int start;
private int end;

public int getStart () |
return start;

}

public void setStart (int start) {
this.start = start;

}

public int getEnd () {
return end;

}

public void setEnd(int end) {
this.end = end;

}

[971]

Objects, Immutability, and Switch Expressions Chapter 2

Then, let's pass an instance of this class to an immutable class named, Point. At first
glance, the Point class can be written as follows:

public final class Point {
private final double x;
private final double y;

private final Radius radius;

public Point (double x, double y, Radius radius) {

this.x = x;
this.y = y;
this.radius = radius;

public double getX() {
return x;

public double getY() {
return y;

public Radius getRadius () {
return radius;

}

Is this class still immutable? The answer is—no. The Point class is not immutable
anymore because its state can be changed as in the following example:

Radius r = new Radius();
r.setStart (0);
r.setEnd (120);

Point p = new Point (1.23, 4.12, r);

System.out.println("Radius start: " + p.getRadius().getStart()); // O
r.setStart (5);
System.out.println("Radius start: " + p.getRadius().getStart()); // 5

[98]

Objects, Immutability, and Switch Expressions Chapter 2

Notice that calling p.getRadius () .getStart () returned two different results;
therefore, the state of p has been changed, so Point is no longer immutable. A
solution to this problem is cloning the Radius object and storing the clone as the field
of Point:

public final class Point {

private final double x;
private final double y;
private final Radius radius;

public Point (double x, double y, Radius radius) {
this.x = x;
this.y = y;

Radius clone = new Radius();
clone.setStart (radius.getStart ());
clone.setEnd(radius.getEnd());

this.radius = clone;

}

public double getX() {
return Xx;

}

public double getY() {
return y;

}

public Radius getRadius () {
return radius;
}
}

This time, the Point class immutability level has increased (calling r.setStart (5)
will not affect the radius field since this field is a clone of r). But the Point class is
not completely immutable because there is one more problem to solve—returning
mutable objects from an immutable class can break down immutability. Check the
following code that breaks down the immutability of Point:

Radius r = new Radius();

r.setStart (0);

r.setEnd(120);

Point p = new Point (1.23, 4.12, r);

[991]

Objects, Immutability, and Switch Expressions Chapter 2

System.out.println("Radius start: " + p.getRadius().getStart()); // O
p.getRadius () .setStart (5);
System.out.println("Radius start: " + p.getRadius().getStart()); // 5

Again, calling p.getRadius () .getStart () returned two different results;
therefore, the state of p has been changed. The solution consists of modifying the
getRadius () method to return a clone of the radius field, as follows:

public Radius getRadius () {

Radius clone = new Radius();
clone.setStart (this.radius.getStart ());
clone.setEnd(this.radius.getEnd());

return clone;

Now, the Point class is immutable again. Problem solved!

Before choosing the cloning technique/tool, in certain cases, it is
advisable to take your time and analyze/learn different possibilities
available in Java and third-party libraries (for example, check

the Cloning objects section in this chapter). For shallow copies, the
preceding technique can be the proper choice, but for deep copies,
the code may need to rely on different approaches such as copy
constructor, the Cloneable interface, or external libraries (for
example, Apache Commons Lang ObjectUtils, JSON serialization
with Gson or Jackson, or any others).

51. Writing an immutable class via the Builder
pattern

When a class (immutable or mutable) has too many fields, it requires a constructor
with many arguments. When some of those fields are required and others are
optional, this class will need several constructors to cover all the possible
combinations. This becomes cumbersome for the developer and for the user of the
class. This is where the Builder pattern comes to the rescue.

According to the Gang of Four (GoF)—the Builder pattern separates the construction of a
complex object from its representation so that the same construction process can create
different representations.

[100]

Objects, Immutability, and Switch Expressions

The Builder pattern can be implemented as a separate class or as an inner static
class. Let's focus on the second case. The User class has three required fields
(nickname, password, and created) and three optional fields (email, firstname,

and lastname).

Now, an immutable User class relying on the Builder pattern will appear as follows:

public final class User {

private final String nickname;
private final String password;
private final String firstname;
private final String lastname;
private final String email;
private final Date created;

private User (UserBuilder builder) {
this.nickname = builder.nickname;
this.password = builder.password;
this.created = builder.created;
this.firstname = builder.firstname;
this.lastname = builder.lastname;
this.email = builder.email;

public static UserBuilder getBuilder (
String nickname, String password) {
return new User.UserBuilder (nickname,

public static final class UserBuilder {

private final String nickname;
private final String password;
private final Date created;
private String email;

private String firstname;
private String lastname;

password) ;

public UserBuilder (String nickname, String password)

this.nickname = nickname;
this.password = password;
this.created = new Date();

public UserBuilder firstName (String firstname) {

this.firstname = firstname;

[101]

Objects, Immutability, and Switch Expressions Chapter 2

return this;

public UserBuilder lastName (String lastname) {
this.lastname = lastname;
return this;

public UserBuilder email (String email) {
this.email = email;
return this;

public User build() {
return new User (this);

public String getNickname () {
return nickname;

public String getPassword() {
return password;

public String getFirstname () {
return firstname;

public String getLastname () {
return lastname;

public String getEmail () {
return email;

public Date getCreated() {
return new Date (created.getTime());

}

Here are some usage examples:

import static modern.challenge.User.getBuilder;

// user with nickname and password

[102]

Objects, Immutability, and Switch Expressions Chapter 2

User userl = getBuilder ("marin21", "h3jju9887h") .build();

// user with nickname, password and email
User user2 = getBuilder ("ionk", "44fef22")
.email ("ion@gmail.com")
.build();

// user with nickname, password, email, firstname and lastname
User user3 = getBuilder ("monika", "klooi0988")

.email ("monika@gmail.com")

.firstName ("Monika")

.lastName ("Ghuenter")

.build();

52. Avoiding bad data in immutable objects

Bad data is any data that has a negative impact on the immutable object (for example,
corrupted data). Most probably, this data comes from user inputs or from external
data sources that are not under our direct control. In such cases, bad data can hit the
immutable object, and the worst part is that there is no fix for it. An immutable object
cannot be changed after creation; therefore, bad data will live happily as long as the
object lives.

The solution to this problem is to validate all data that enters in an immutable object
against a comprehensive set of constraints.

There are different ways of performing validation, from custom validation to built-in
solutions. Validation can be performed outside or inside the immutable object class,
depending on the application design. For example, if the immutable object is built via
the Builder pattern, then the validation can be performed in the builder class.

JSR 380 is a specification of the Java API for bean validation (Java SE/EE) that can be
used for validation via annotations. Hibernate Validator is the reference
implementation of the validation API, and it can be easily provided as a Maven
dependency in the pom. xm1 file (check the source code bundled to this book).

Furthermore, we rely on dedicated annotations to provide the needed constraints (for
example, @NotNull, @Min, @Max, @Size, and @Email). In the following example, the
constraints are added to the builder class as follows:

public static final class UserBuilder {

@NotNull (message = "cannot be null")

[103]

Objects, Immutability, and Switch Expressions Chapter 2

@Size(min = 3, max = 20, message = "must be between 3 and 20
characters")
private final String nickname;

@NotNull (message = "cannot be null")
@Size (min = 6, max = 50, message = "must be between 6 and 50
characters")

private final String password;

@Size(min = 3, max = 20, message = "must be between 3 and 20
characters")

private String firstname;

@Size(min = 3, max = 20, message = "must be between 3 and 20
characters")

private String lastname;

@Email (message = "must be valid")
private String email;

private final Date created;

public UserBuilder (String nickname, String password) {

this.nickname = nickname;
this.password = password;
this.created = new Date();

Finally, the validation process is triggered from code via the validator API (this is
needed in Java SE only). If the data that enters the builder class is invalid, then the
immutable object is not created (don't call the build () method):

User user;
Validator validator
= Validation.buildDefaultValidatorFactory () .getValidator () ;

User.UserBuilder userBuilder
= new User.UserBuilder ("monika", "klooi0988")
.email ("monika@gmail.com")
.firstName ("Monika") .lastName ("Gunther") ;

final Set<ConstraintViolation<User.UserBuilder>> violations
= validator.validate (userBuilder);
if (violations.isEmpty()) {
user = userBuilder.build();
System.out.println ("User successfully created on: "
+ user.getCreated());

[104]

Objects, Immutability, and Switch Expressions Chapter 2

} else {
printConstraintViolations ("UserBuilder Violations: ", wviolations);

}

This way, the bad data cannot touch an immutable object. If there is no builder class,
then the constraints can be added directly at the field level in the immutable object.
The preceding solution simply displays the potential violations on the console, but,
depending on the situation, the solution may perform different actions (for example,
throw specific exceptions).

53. Cloning objects

Cloning objects is not a daily task, but it is important to do it properly. Mainly,
cloning objects refers to creating copies of objects. There are two main types of
copies—shallow copies (copy as little as possible) and deep copies (copy everything).

Let's assume the following class:

public class Point {

private double x;
private double y;

public Point () {}

public Point (double x, double y) {
this.x = x;
this.y = y;

}

// getters and setters
}

So, we have a point of type (x, y) mapped in a class. Now, let's perform some cloning.

Manual cloning

A quick approach consists of adding a method that copies the current Point to a new
Point manually (this is a shallow copy):

public Point clonePoint () {
Point point = new Point ();
point.setX (this.x)
point.setY (this.y)

’
’

[105]

Objects, Immutability, and Switch Expressions Chapter 2

return point;

}

The code here is pretty simple. Just create a new instance of Point and populate its
fields with the fields of the current Point. The returned Point is a shallow copy
(since Point doesn't depend on other objects, a deep copy will be exactly the same) of
the current Point:

Point point = new Point(...);
Point clone = point.clonePoint ();

Cloning via clone()

The Object class contains a method named clone (). This method is useful for
creating shallow copies (it can be used for deep copies as well). In order to use it, a
class should follow the given steps:

¢ Implement the Cloneable interface (if this interface is not implemented,
then CloneNot SupportedException will be thrown).

e QOverride the clone () method (Object.clone () is protected).

e Call super.clone().

The Cloneable interface doesn't contain any methods. It is just a signal for JVM that
this object can be cloned. Once this interface is implemented, the code needs to
override the Object .clone () method. This is needed because Object .clone () is
protected, and, in order to call it via super, the code needs to override this method.
This can be a serious drawback if clone () is added to a child class since all
superclasses should define a c1one () method in order to avoid the failure of

the super.clone () chain invocation.

Moreover, Object.clone () doesn't rely on a constructor invocation, and so the
developer cannot control the object construction:

public class Point implements Cloneable {

private double x;
private double y;

public Point () {}
public Point (double x, double y) {

this.x = x;
this.y = y;

[106]

Objects, Immutability, and Switch Expressions

Chapter 2

}

@Override

public Point clone() throws CloneNotSupportedException {

return (Point) super.clone();

// getters and setters

Creating a clone can be done as follows:

Point point = new Point(...);
Point clone = point.clone();

Cloning via a constructor

This cloning technique requires you to enrich the class with a constructor that takes a
single argument representing an instance of the class that will be used to create the

clone.

Let's see it in code:

public class Point {

}

private double x;
private double y;

public Point () {}
public Point (double x, double vy)

this.x = x;
this.y = y;

public Point (Point another) {
this.x = another.x;
this.y = another.y;

// getters and setters

Creating a clone can be done as follows:

Point point

new Point(...);

Point clone = new Point (point);

{

[107]

Objects, Immutability, and Switch Expressions Chapter 2

Cloning via the Cloning library

A deep copy is needed when an object depends on another object. Performing a deep
copy means copying the object, including its chain of dependencies. For example, let's
assume that Point has a field of the Radius type:

public class Radius {

private int start;
private int end;

// getters and setters
}

public class Point {
private double x;
private double y;

private Radius radius;

public Point (double x, double y, Radius radius) {

this.x = x;
this.y = y;
this.radius = radius;

}

// getters and setters
}

Performing a shallow copy of Point will create a copy of x and y, but will not create
a copy of the radius object. This means that modifications that affect the radius
object will be reflected in the clone as well. It's time for a deep copy.

A cumbersome solution will involve adapting the shallow copy techniques
previously presented to support a deep copy. Fortunately, there are a few solutions
that can be applied out of the box, and one of them is the Cloning library (https://

github.com/kostaskougios/cloningﬁ

import com.rits.cloning.Cloner;

Point point = new Point(...);

Cloner cloner = new Cloner();
Point clone = cloner.deepClone (point);

[108]

https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning

Objects, Immutability, and Switch Expressions Chapter 2

The code is self-explanatory. Notice that the Cloning library comes with several other
goodies as well, as can be seen in the following screenshot:

® deepClone (T ©) T

O deepCloneDontClonelInstances (T o, Object... dontCloneThess) T
O fastCloneOrNewInstance (Class<T>) T
O shallowClone (T o) T
O copyPropertiesOfInheritedClass (T src, E dest) void
OdontClone (Class<?>...) void
OdontClonelInstanceQf (Class<?>... C) void
Oegquals (Okject okij) boclean
OgetClass() Class<?>
O getDumpCloned () IDumpCleoned

Cloning via serialization

This technique requires serializable objects (implement java.io.Serializable).
Basically, the object is serialized (writeObject ()) and deserialized (readObject ())
in a new object. A helper method able to accomplish this is listed as follows:

private static <T> T cloneThroughSerialization(T t) {

try {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(baos);
oos.writeObject (t);

ByteArrayInputStream bais
= new ByteArrayInputStream(baos.toByteArray());
ObjectInputStream ois = new ObjectInputStream(bais);

return (T) ois.readObject();

} catch (IOException | ClassNotFoundException ex) {
// log exception
return t;

}

So, the object is serialized in ObjectOutputStream and deserialized
in ObjectInputStream. Cloning an object via this method can be accomplished as
follows:

Point point = new Point (...);
Point clone = cloneThroughSerialization (point);

[109]

Objects, Immutability, and Switch Expressions Chapter 2

A built-in solution based on serialization is provided by Apache Commons Lang, via
SerializationUtils. Among its methods, this class provides a method named
clone () that can be used as follows:

Point point = new Point(...);
Point clone = SerializationUtils.clone (point);

Cloning via JSON

Almost any JSON library in Java can serialize any Plain Old Java Object (POJO)
without any extra configuration/mapping required. Having a JSON library in the
project (and many projects have) can save us from adding an extra library to provide
deep cloning. Mainly, the solution can leverage the existing JSON library to get the
same effect.

The following is an example using the Gson library:
private static <T> T cloneThroughdson(T t) {

Gson gson = new Gson{();
String json = gson.todson(t);

return (T) gson.fromJson(json, t.getClass());

}

Point point new Point(...);
Point clone = cloneThroughdJdson (point) ;

In addition to this, there is always the option of writing your own library dedicated to
cloning objects.

54. Overriding toString()

The tosString () method is defined in java.lang.0Object, and the JDK comes with
a default implementation of it. This default implementation is automatically used for
all objects that are the subject of print (), println(), printf (), debugging during
development, logging, informative messages in exceptions, and so on.

[110]

Objects, Immutability, and Switch Expressions Chapter 2

Unfortunately, the string representation of an object returned by the default
implementation is not very informative. For example, let's consider the following
User class:

public class User {
private final String nickname;
private final String password;
private final String firstname;
private final String lastname;
private final String email;
private final Date created;

// constructor and getters skipped for brevity

}

Now, let's create an instance of this class, and let's print it on the console:

User user = new User ("sparg2l", "kkd454ffc",
"Leopold", "Mark", "markl@yahoo.com");

System.out.println (user);

The output of this print1n () method will be something like the following:

unsigned hash code
class name in hexadecimal

|
modern.challenge.User | @ | 15db9742

The solution for avoiding outputs as in the preceding screenshot consists of
overriding the tostring () method. For example, let's override it to expose the user
details, as follows:

@Override
public String toString() {
return "User{" + "nickname=" + nickname + ", password=" + password
+ ", firstname=" + firstname + ", lastname=" + lastname
+ ", email=" + email + ", created=" + created + '}';

}

This time, print1n () will reveal the following output:

User |
nickname = sparg2l, password = kkd454ffc,
firstname = Leopold, lastname = Mark,

email = markl@yahoo.com, created = Fri Feb 22 10: 49: 32 EET 2019

[111]

Objects, Immutability, and Switch Expressions Chapter 2

This is much more informative than the previous output.

But, remember that toString () is automatically called for different purposes. For
example, logging can be as follows:

logger.log(Level.INFO, "This user rocks: {0}", user);

Here, the user password will hit the log, and this may represent a problem. Exposing
log-sensitive data, such as passwords, accounts, and secret IPs, in an application is
definitely a bad practice.

Therefore, pay extra attention to carefully selecting the information that goes in
toString (), since this information may end up in places where it can be maliciously
exploited. In our case, the password should not be part of toString():

@Override
public String toString() {
return "User{" + "nickname=" + nickname
+ ", firstname=" + firstname + ", lastname=" + lastname
+ ", email=" + email + ", created=" + created + '}';

}

Commonly, toString () is a method generated via an IDE. So, pay attention to
which fields you select before the IDE generates the code for you.

55. Switch expressions

Before we have a brief overview of the switch expressions introduced in JDK 12, let's
see a typical old-school example wrapped in a method:

private static Player createPlayer (PlayerTypes playerType) A
switch (playerType) A

case TENNIS:
return new TennisPlayer();
case FOOTBALL:
return new FootballPlayer();
case SNOOKER:
return new SnookerPlayer();
case UNKNOWN:
throw new UnknownPlayerException ("Player type is unknown");

default:
throw new IllegalArgumentException (
"Invalid player type: " + playerType);

[112]

Objects, Immutability, and Switch Expressions Chapter 2

}
If we forget about default, then the code will not compile.

Obviously, the preceding example is acceptable. In the worst-case scenario, we can
add a spurious variable (for example, player), some cluttering break statements,
and get no complaints if default is missing. So, the following code is an old-school,
extremely ugly switch:

private static Player createPlayerSwitch(PlayerTypes playerType) {
Player player = null;

switch (playerType) {

case TENNIS:
player = new TennisPlayer();
break;

case FOOTBALL:
player = new FootballPlayer();
break;

case SNOOKER:
player = new SnookerPlayer();
break;

case UNKNOWN:
throw new UnknownPlayerException (

"Player type is unknown");

default:
throw new IllegalArgumentException (
"Invalid player type: " + playerType);

return player;

}

If we forget about default, then there will be no complaints from the compiler side.
In this case, a missing default case may resultin a null player.

However, since JDK 12, we have been able to rely on the switch expressions. Before
JDK 12, switch was a statement, a construct meant to control the flow (for example,
as an 1if statement) without representing the result. On the other hand, an expression
is evaluated to a result. Therefore, a switch expression can have a result.

[113]

Objects, Immutability, and Switch Expressions Chapter 2

The preceding switch expression can be written in the style of JDK 12 as follows:

private static Player createPlayer (PlayerTypes playerType) {

return switch (playerType) {
case TENNIS ->
new TennisPlayer();
case FOOTBALL ->
new FootballPlayer();
case SNOOKER ->
new SnookerPlayer () ;
case UNKNOWN ->
throw new UnknownPlayerException (
"Player type is unknown");
// default is not mandatory

default ->
throw new IllegalArgumentException (
"Invalid player type: " + playerType);

}i
}

This time, default is not mandatory. We can skip it.

The JDK 12 switch is smart enough to signal if switch doesn't cover all possible
input values. This is very useful in the case of Java enum values. The JDK 12 switch
can detect whether all the enum values are covered, and doesn't force a useless
default if they aren't. For example, if we remove default and add a new entry

to PlayerTypes enum (for example, GOLF), then the compiler will signal it via a
message, as in the following screenshot (this is from NetBeans):

57 the switch expression does not cover all pessible input values

58 (Alt-Enter shows hints) tePlayer(PlayerTypes playerType) {
[T return switch (playerType) {

60 case TENNIS->

6l new TennisPlayer () ;

Notice that between the label and execution, we've replaced the colon with an arrow
(the lambda-style syntax). The main role of this arrow is to prevent fall-through,
which means that only the block of code from its right will be executed. There is no
need to use break.

[114]

Objects, Immutability, and Switch Expressions Chapter 2

Do not conclude that the arrow turns the switch statement into a switch expression.
A switch expression can be used with a colon and break as well, as follows:

private static Player createPlayer (PlayerTypes playerType) {

return switch (playerType) {

case TENNIS:

break new TennisPlayer();
case FOOTBALL:

break new FootballPlayer();
case SNOOKER:

break new SnookerPlayer();
case UNKNOWN:

throw new UnknownPlayerException (

"Player type is unknown");

// default is not mandatory

default:
throw new IllegalArgumentException (
"Invalid player type: " + playerType);

Yi

Our example posts switch over enum, but the JDK 12 switch can
also be used over int, Integer, short, Short, byte, Byte, char,
Character, and String.

Notice that JDK 12 brings the switch expressions as a preview
feature. This means that it is prone to changes in the next few
releases, and it needs to be unlocked via the ——enable-
preview command-line option at compiling and runtime.

56. Multiple case labels

Before JDK 12, a switch statement allowed a single label per case. Starting with
the switch expressions, a case can have multiple labels separated by a comma.
Check out the following method that exemplifies multiple case labels:

private static SportType
fetchSportTypeByPlayerType (PlayerTypes playerType) {

return switch (playerType) {
case TENNIS, GOLF, SNOOKER ->
new Individual ();
case FOOTBALL, VOLLEY ->

[115]

Objects, Immutability, and Switch Expressions Chapter 2

new Team() ;
}i
}

So, if we pass to this method TENNIS, GOLF, or SNOOKER, it will return an instance of
the Individual class. If we pass FOOTBALL or VOLLEY, it will return an instance of
the Team class.

57. Statement blocks

A label's arrow can point to a single statement (as in the examples from the previous
two problems) or to a curly-braced block. This is pretty similar to the lambda blocks.
Check out the following solution:

private static Player createPlayer (PlayerTypes playerType) {
return switch (playerType) {

case TENNIS -> {
System.out.println ("Creating a TennisPlayer ...");
break new TennisPlayer();

}

case FOOTBALL —> {
System.out.println ("Creating a FootballPlayer ...");
break new FootballPlayer();

}

case SNOOKER —> {
System.out.println ("Creating a SnookerPlayer ...");
break new SnookerPlayer();

}

default ->
throw new IllegalArgumentException (
"Invalid player type: " + playerType);

}i

Notice that we exit from a curly-braced block via break, not
return. In other words, while we can return from inside a switch
statement, we can't return from within an expression.

[116]

Objects, Immutability, and Switch Expressions Chapter 2

Summary

That's all folks! This chapter has introduced you to several problems involving
objects, immutability, and the switch expressions. While the problems covering
objects and immutability represent fundamental concepts of programming, the
problems covering the switch expressions were dedicated to introducing the new
JDK 12 features addressing this topic.

Download the applications from this chapter to see the results and to see additional
details.

[117]

Working with Date and Time

This chapter includes 20 problems that involve date and time. These problems are
meant to cover a wide range of topics (converting, formatting, adding, subtracting,
defining periods/durations, computing, and so on) via Date, Calendar, LocalDate,
LocalTime, LocalDateTime, ZoneDateTime, OffsetDateTime, OffsetTime,
Instant, and so on. By the end of this chapter, you will have no problems in shaping
date and time, while conforming to your application's needs. The fundamental
problems presented in this chapter will be very helpful for obtaining the bigger
picture regarding date-time APIs, and will act like the pieces of the puzzle that need
to be pieced together in order to resolve complex challenges involving date and time.

Problems

Use the following problems to test your date and time programming prowess. I
strongly encourage you to give each problem a try before you turn to the solutions
and download the example programs:

58. Converting a string to date and time: Write a program that exemplifies
conversions between a string and date/time.

59. Formatting date and time: Explain the format pattern for date and time.

60. Getting the current date/time without time/date: Write a program that
extracts the current date without the time or date.

61. LocalDateTime from LocalDate and LocalTime: Write a program that
builds a LocalDateTime from LocalDate object and LocalTime. It
combines the date and time in a single LocalDateTime object.

62. Machine time via an Instant class: Explain and give an example of the
Instant APL

63. Defining a period of time using date-based values (Period) and a
duration of time using time-based values (Duration): Explain and give
an example of the usage of the Period and Duration APIs.

Working with Date and Time Chapter 3

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.
75.

76.

77.

Getting date and time units: Write a program that extracts the date and
time units (for example, extract from date the year, month, minute, and so
on) from an object representing a date-time.

Adding and subtracting to/from a date-time: Write a program that adds
(and subtracts) an amount of time (for example, years, days, or minutes) to
a date-time object (for example, add an hour to date, subtract 2 days from
LocalDateTime, and so on).

Getting all time zones with UTC and GMT: Write a program that displays
all the available time zones with UTC and GMT.

Getting the local date-time in all available time zones: Write a program
that displays the local time in all the available time zones.

Displaying date-time information about a flight: Write a program that
displays information about a scheduled flight time of 15 hours and 30
minutes. More precisely, a flight from Perth, Australia to

Bucharest, Europe.

Converting a Unix timestamp to date-time: Write a program that converts
a Unix timestamp to java.util.Date and java.time.LocalDateTime.
Finding the first/last day of the month: Write a program that finds the
first/last day of the month via JDK 8, TemporalAdjusters.
Defining/extracting zone offsets: Write a program that reveals different
techniques for defining and extracting zone offsets.

Converting between Date and Temporal: Write a program that converts
between Date and Instant, LocalDate, LocalDateTime, and so on.
Iterating a range of dates: Write a program that iterates a range of given
dates, day by day (with a step of a day).

Calculating age: Write a program that calculates the age of a person.

Start and end of a day: Write a program that returns the start and end time
of a day.

Difference between two dates: Write a program that calculates the amount
of time, in days, between two dates.

Implementing a chess clock: Write a program that implements a chess
clock.

[119]

Working with Date and Time Chapter 3

Solutions

The following sections describe solutions to the preceding problems. Remember that
there usually isn't a single correct way to solve a particular problem. Also, remember
that the explanations shown here include only the most interesting and important
details that are needed to solve the problems. Download the example solutions to see
additional details and to experiment with the programs at https://github.com/
PacktPublishing/Java-Coding-Problems.

58. Converting a string to date and time

Converting or parsing String to date and time can be accomplished via a set of
parse () methods. Converting from date and time to St ring can be accomplished
via the toString () or format () methods.

Before JDK 8

Before JDK 8, the typical solution to this problem relies on the main extension of the
abstract DateFormat class, named SimpleDateFormat (this is not a thread-safe
class). In the code that is bundled to this book, there are several examples of how to
use this class.

Starting with JDK 8

Starting with JDK 8, simpleDateFormat can be replaced with a new
class—DateTimeFormatter. This is an immutable (and, therefore, thread-safe) class,
and is used for printing and parsing date-time objects. This class supports everything
from predefined formatters (represented as constants, as the ISO local date,
2011-12-03, is ISO_LOCAL_DATE) to user-defined formatters (relying on a set of
symbols for writing custom format patterns).

Moreover, beside the Date class, JDK 8 comes with several new classes, which are
dedicated to working with date and time. Some of these classes are shown in the
following list (these are also referenced as temporals because they implement the
Temporal interface):

® LocalDate (date without a time zone in the ISO-8601 calendar system)
® LocalTime (time without a time zone in the ISO-8601 calendar system)

[120]

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Working with Date and Time Chapter 3

e LocalDateTime (date-time without a time zone in the ISO-8601 calendar
system)

¢ ZonedDateTime (date-time with a time zone in the ISO-8601 calendar
system), and so on

e OffsetDateTime (date-time with an offset from UTC/GMT in the
ISO-8601 calendar system)

e Of fsetTime (time with an offset from UTC/GMT in the ISO-8601 calendar
system)

In order to convert String to LocalDate via a predefined formatter, it should
respect the DateTimeFormatter.ISO_LOCAL_DATE pattern, for example, 2020-06-01.
LocalDate provides a parse () method that can be used as follows:

// 06 is the month, 01 is the day
LocalDate localDate = LocalDate.parse("2020-06-01");

Similarly, in the case of LocalTime, the string should respect the
DateTimeFormatter.ISO_LOCAL_TIME pattern; for example, 10:15:30, as shown in
the following code snippet:

LocalTime localTime = LocalTime.parse("12:23:44");

In the case of LocalDateTime, the string should respect the
DateTimeFormatter.ISO_LOCAL_DATE_TIME pattern; for example,
2020-06-01T11:20:15, as shown in the following code snippet:

LocalDateTime localDateTime
= LocalDateTime.parse ("2020-06-01T11:20:15");

And, in case of ZonedDateTime, the string must respect the
DateTimeFormatter.ISO_ZONED_DATE_TIME pattern; for example,
2020-06-01T10:15:30+09:00 [Asia/Tokyo], as shown in the following code
snippet:

ZonedDateTime zonedDateTime
= ZonedDateTime.parse ("2020-06-01T10:15:304+09:00[Asia/Tokyol");

In the case of Of fsetDateTime, the string must respect the
DateTimeFormatter.ISO_OFFSET_DATE_TIME pattern; for example,
2007-12-03T10:15:30+01:00, as shown in the following code snippet:

OffsetDateTime offsetDateTime
= OffsetDateTime.parse ("2007-12-03T10:15:30+01:00");

[121]

Working with Date and Time Chapter 3

Finally, in the case of OffsetTime, the string must respect the
DateTimeFormatter.ISO_OFFSET_TIME pattern; for example, 10:15:30+01:00, as
shown in the following code snippet:

OffsetTime offsetTime = OffsetTime.parse("10:15:30+01:00");

If the string doesn't respect any of the predefined formatters, then it is time for a user-
defined formatter via a custom format pattern; for example, the
string 01.06.2020 represents a date that needs a user-defined formatter, as follows:

DateTimeFormatter dateFormatter

= DateTimeFormatter.ofPattern ("dd.MM.yyyy");
LocalDate localDateFormatted

= LocalDate.parse("01.06.2020", dateFormatter);

However, a string such as 12|23 | 44 requires a user-defined formatter as follows:

DateTimeFormatter timeFormatter

= DateTimeFormatter.ofPattern ("HH|mm|ss");
LocalTime localTimeFormatted

= LocalTime.parse("12]23]44", timeFormatter);

A string suchas 01.06.2020, 11:20:15 requires a user-defined formatter as
follows:

DateTimeFormatter dateTimeFormatter

= DateTimeFormatter.ofPattern("dd.MM.yyyy, HH:mm:ss");
LocalDateTime localDateTimeFormatted

= LocalDateTime.parse("01.06.2020, 11:20:15", dateTimeFormatter);

A string suchas 01.06.2020, 11:20:15+09:00 [Asia/Tokyo] requires a user-
defined formatter as follows:

DateTimeFormatter zonedDateTimeFormatter
= DateTimeFormatter.ofPattern("dd.MM.yyyy, HH:mm:ssXXXXX '['VV']'");
ZonedDateTime zonedDateTimeFormatted
= ZonedDateTime.parse("01.06.2020, 11:20:15+09:00 [Asia/Tokyo]l",
zonedDateTimeFormatter) ;

A string such as 2007.12.03, 10:15:30, +01:00 requires a user-defined
formatter as follows:

DateTimeFormatter offsetDateTimeFormatter
= DateTimeFormatter.ofPattern("yyyy.MM.dd, HH:mm:ss, XXXXX");
OffsetDateTime offsetDateTimeFormatted
= OffsetDateTime.parse("2007.12.03, 10:15:30, +01:00",
offsetDateTimeFormatter) ;

[122]

Working with Date and Time Chapter 3

Finally, a string suchas 10 15 30 +01:00 requires a user-defined formatter as
follows:

DateTimeFormatter offsetTimeFormatter
= DateTimeFormatter.ofPattern("HH mm ss XXXXX");
OffsetTime offsetTimeFormatted
= OffsetTime.parse("10 15 30 +01:00", offsetTimeFormatter);

Each ofPattern () method from the previous examples also
supports Locale.

Converting from LocalDate, LocalDateTime, Or ZonedDateTime to String can be
accomplished in at least two ways:

e Rely on the LocalDate, LocalDateTime,
or ZonedDateTime.toString () method (automatically or explicitly).
Notice that relying on toString () will always print the date via the
corresponding predefined formatter:

// 2020-06-01 results in ISO_LOCAL_DATE, 2020-06-01
String localDateAsString = localDate.toString();

// 01.06.2020 results in ISO_LOCAL_DATE, 2020-06-01
String localDateAsString = localDateFormatted.toString();

// 2020-06-01T11:20:15 results
// in ISO_LOCAL_DATE_TIME, 2020-06-01T11:20:15
String localDateTimeAsString = localDateTime.toString();

// 01.06.2020, 11:20:15 results in
// ISO_LOCAL_DATE_TIME, 2020-06-01T11:20:15
String localDateTimeAsString

= localDateTimeFormatted.toString () ;

// 2020-06-01T10:15:30+09:00[Asia/Tokyo]

// results in ISO_ZONED_DATE_TIME,

// 2020-06-01T11:20:15+09:00[Asia/Tokyo]

String zonedDateTimeAsString = zonedDateTime.toString();

// 01.06.2020, 11:20:15+409:00 [Asia/Tokyo]
// results in ISO_ZONED_DATE_TIME,
// 2020-06-01T11:20:15+09:00[Asia/Tokyo]
String zonedDateTimeAsString

= zonedDateTimeFormatted.toString () ;

[123]

Working with Date and Time Chapter 3

¢ Rely on the DateTimeFormatter. format () method. Notice that relying
onDateTimeFormatter. format () will always print the date/time using
the specified formatter (by default, the time zone will be nul1l), as follows:

// 01.06.2020
String localDateAsFormattedString
= dateFormatter.format (localDateFormatted) ;

// 01.06.2020, 11:20:15
String localDateTimeAsFormattedString
= dateTimeFormatter.format (localDateTimeFormatted) ;

// 01.06.2020, 11:20:15+09:00 [Asia/Tokyo]
String zonedDateTimeAsFormattedString
= zonedDateTimeFormatted. format (zonedDateTimeFormatter) ;

Adding an explicit time zone into the discussion can be done as follows:

DateTimeFormatter zonedDateTimeFormatter
= DateTimeFormatter.ofPattern ("dd.MM.yyyy, HH:mm:sSsXXXXX '['VV']'")
.withZone (ZonelId.of ("Europe/Paris"));
ZonedDateTime zonedDateTimeFormatted
= ZonedDateTime.parse("01.06.2020, 11:20:15+09:00 [Asia/Tokyo]",
zonedDateTimeFormatter) ;

This time, the string represents the date/time in the Europe/Paris time zone:

// 01.06.2020, 04:20:15+02:00 [Europe/Paris]
String zonedDateTimeAsFormattedString
= zonedDateTimeFormatted.format (zonedDateTimeFormatter) ;

59. Formatting date and time

The previous problem contains some flavors of formatting date and time via
SimpleDateFormat.format () and DateTimeFormatter. format (). In order to
define format patterns, the developer must be aware of the format pattern syntax. In
other words, the developer must be aware of the set of symbols that are used by the
Java date-time API in order to recognize a valid format pattern.

[124]

Working with Date and Time Chapter 3

Most of the symbols are common to SimpleDateFormat (before JDK 8) and to
DateTimeFormatter (starting with JDK 8). The following table lists the most
common symbols—the complete list is available in the JDK documentation:

Letter Meaning Presentation Example
y year year 1994; 94
M month of year number/text 7,07; Jul; July; J
w week of month number 4
E day of week text Tue; Tuesday; T
d day of month number 15
H hour of day number 22
m minute of hour number 34
S second of minute number 55
S fraction of second number 345
z time zone name zone-name Pacific Standard Time; PST
Z zone offset zone-offset -0800
A% time zone id (JDK 8) zone-id | America/Los_Angeles; Z; -08:30

Some format pattern examples are available in the following table:

Pattern Example
yyyy-MM-dd 2019-02-24
MM-dd-yyyy 02-24-2019

MMM-dd-yyyy Feb-24-2019
dd-MM-yy 24-02-19
dd.MM.yyyy 24.02.2019

yyyy-MM-dd HH:mm:ss

2019-02-24 11:26:26

yyyy-MM-dd HH:mm:ssSSS

2019-02-24 11:36:32743

yyyy-MM-dd HH:mm:ssZ

2019-02-24 11:40:35+0200

yyyy-MM-dd HH:mm:ss z

2019-02-24 11:45:03 EET

E MMM yyyy HH:mm:ss.SS5Z

Sun Feb 2019 11:46:32.393+0200

yyyy-MM-dd HH:mm:ss VV (JDK 8)

2019-02-24 11:45:41 Europe/Athens

[125]

Working with Date and Time Chapter 3

Before JDK 8, a format pattern can be applied via simpleDateFormat:

// yyyy-MM-dd

Date date = new Date();

SimpleDateFormat formatter = new SimpleDateFormat ("yyyy-MM-dd");
String stringDate = formatter.format (date);

Starting with JDK 8, a format pattern can be applied via DateTimeFormatter:
e For LocalDate (date without a time zone in the ISO-8601 calendar system):

// yyyy-MM—-dd
LocalDate localDate = LocalDate.now();
DateTimeFormatter formatterLocalDate
= DateTimeFormatter.ofPattern ("yyyy-MM-dd") ;
String stringlD = formatterLocalDate.format (localDate);

// or shortly
String stringLD = LocalDate.now ()
.format (DateTimeFormatter.ofPattern ("yyyy-MM-dd")) ;

e For LocalTime (time without a time zone in the ISO-8601 calendar
system):

// HH:mm:ss
LocalTime localTime = LocalTime.now () ;
DateTimeFormatter formatterLocalTime

= DateTimeFormatter.ofPattern ("HH:mm:ss");
String stringLT

= formatterLocalTime.format (localTime) ;

// or shortly
String stringLT = LocalTime.now ()
.format (DateTimeFormatter.ofPattern ("HH:mm:ss")) ;

e For LocalDateTime (date-time without a time zone in the ISO-8601
calendar system):

// yyyy-MM-dd HH:mm:ss
LocalDateTime localDateTime = LocalDateTime.now () ;
DateTimeFormatter formatterLocalDateTime

= DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
String stringLDT

= formatterLocalDateTime.format (localDateTime) ;

// or shortly
String stringLDT = LocalDateTime.now ()
.format (DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"));

[126]

Working with Date and Time Chapter 3

e For ZonedDateTime (date-time with a time zone in the ISO-8601 calendar
system):

// E MMM yyyy HH:mm:ss.SSSZ
ZzonedDateTime zonedDateTime = ZonedDateTime.now () ;
DateTimeFormatter formatterZonedDateTime

= DateTimeFormatter.ofPattern("E MMM yyyy HH:mm:ss.SSSzZ");
String stringZDT

= formatterZonedDateTime.format (zonedDateTime) ;

// or shortly
String stringZDT = ZonedDateTime.now ()
.format (DateTimeFormatter
.ofPattern("E MMM yyyy HH:mm:ss.SSSZ"));

e For OffsetDateTime (date-time with an offset from UTC/GMT in the
ISO-8601 calendar system):

// E MMM yyyy HH:mm:ss.SSSZ
OffsetDateTime offsetDateTime = OffsetDateTime.now();
DateTimeFormatter formatterOffsetDateTime

= DateTimeFormatter.ofPattern("E MMM yyyy HH:mm:ss.SSSZ");
String odtl = formatterOffsetDateTime.format (offsetDateTime);

// or shortly
String odt2 = OffsetDateTime.now ()
.format (DateTimeFormatter
.ofPattern("E MMM yyyy HH:mm:ss.SSSZ"));

e For 0OffsetTime (time with an offset from UTC/GMT in the ISO-8601
calendar system):

// HH:mm:ss,Z
OffsetTime offsetTime = OffsetTime.now();
DateTimeFormatter formatterOffsetTime

= DateTimeFormatter.ofPattern ("HH:mm:ss,Z");
String otl = formatterOffsetTime.format (offsetTime);

// or shortly
String ot2 = OffsetTime.now ()
.format (DateTimeFormatter.ofPattern("HH:mm:ss,Z"));

[127]

Working with Date and Time Chapter 3

60. Getting the current date/time without
time/date

Before JDK 8, the solution must focus on the java.util.Date class. The code that is
bundled to this book contains this solution.

Starting with JDK 8, the date and time can be obtained via the dedicated classes,
LocalDate and LocalTime, from the java.time package:

// 2019-02-24
LocalDate onlyDate = LocalDate.now();

// 12:53:28.812637300
LocalTime onlyTime = LocalTime.now();

61. LocalDateTime from LocalDate and
LocalTime

The LocalDateTime class exposes a series of of () methods that are useful for
obtaining a different kind of instance of LocalDateTime. For example, a
LocalDateTime class that is obtained from the year, month, day, hour, minute,
second, or nanosecond looks like this:

LocalDateTime 1dt = LocalDateTime.of (2020, 4, 1, 12, 33, 21, 675);

So, the preceding code combines date and time as arguments of the of () method. In
order to combine date and time as objects, the solution can take advantage of the
following of () method:

public static LocalDateTime of (LocalDate date, LocalTime time)
This results in LocalDate and LocalTime, as in the following;:

// 2019-Feb-24
// 02:08:10 PM

LocalDate localDate = LocalDate.now ()
LocalTime localTime = LocalTime.now ()

’
’

[128]

Working with Date and Time Chapter 3

They can be combined in a single object, LocalDateTime, as follows:

LocalDateTime localDateTime = LocalDateTime.of (localDate, localTime);

Formatting LocalDateTime reveals the date and time as follows:

// 2019-Feb-24 02:08:10 PM
String localDateTimeAsString = localDateTime
.format (DateTimeFormatter.ofPattern ("yyyy-MMM-dd hh:mm:ss a"));

62. Machine time via an Instant class

JDK 8 comes with a new class, which is named java.time.Instant. Mainly, the
Instant class represents an instantaneous point on the timeline, beginning from the
first second of January 1, 1970 (the epoch), in the UTC time zone with a resolution of
nanoseconds.

A Java 8 Instant class is similar in concept to java.util.Date.
Both represent a moment on the timeline in UTC. While Instant
has a resolution up to nanoseconds, java.util.Date hasa
milliseconds resolution.

This class is very handy for generating timestamps of machine time. In order to
obtain such a timestamp, simply call the now () method as follows:

// 2019-02-24T15:05:21.7810496002
Instant timestamp = Instant.now();

A similar output can be obtained with the following code snippet:
OffsetDateTime now = OffsetDateTime.now (ZoneOffset.UTC);
Alternatively, use this code snippet:

Clock clock = Clock.systemUTC() ;

Calling Instant.toString () produces an output that follows the
ISO-8601 standard for representing date and time.

[129]

Working with Date and Time Chapter 3

Converting String to Instant

A string that follows the ISO-8601 standard for representing date and time can be
easily converted to Instant via the Instant.parse () method, as in the following
example:

// 2019-02-24T14:31:33.197021300Z
Instant timestampFromString =
Instant.parse ("2019-02-24T14:31:33.1970213002");

Adding or subtracting time to/from Instant

For adding time, Instant has a suite of methods. For example, adding 2 hours to the
current timestamp can be accomplished as follows:

Instant twoHourLater = Instant.now().plus (2, ChronoUnit.HOURS);

In terms of subtracting time, for example, 10 minutes, use the following code snippet:

Instant tenMinutesEarlier = Instant.now()
.minus (10, ChronoUnit.MINUTES) ;

Beside the plus () method, Instant also contains plusNanos (),
plusMillis (), and plusSeconds (). Moreover, beside the
minus () method, Instant also contains minusNanos (),

minusMillis (), and minusSeconds ().

Comparing Instant objects

Comparing two Instant objects can be accomplished via the Instant.isAfter ()
and Instant.isBefore () methods. For example, let's look at the following two
Instant objects:

Instant timestampl = Instant.now();
Instant timestamp2 = timestampl.plusSeconds (10);

Check whether t imestamp1 is after t imestamp2:
boolean isAfter = timestampl.isAfter (timestamp2); // false
Check whether t imestamp1 is before t imestamp?2

boolean isBefore = timestampl.isBefore (timestamp2); // true

[130]

Working with Date and Time Chapter 3

The time difference between two Instant objects can be computed via the
Instant.until () method:

// 10 seconds
long difference = timestampl.until (timestamp2, ChronoUnit.SECONDS) ;

Converting between Instant and LocalDateTime,
ZonedDateTime, and OffsetDateTime

These common conversions can be accomplished as in the following examples:

e Convert between Instant and LocalDateTime—since LocalDateTime
has no idea of time zone, use a zero offset UTC+0:

// 2019-02-24T15:27:13.990103700
LocalDateTime 1dt = LocalDateTime.ofInstant (
Instant.now (), ZoneOffset.UTC);

// 2019-02-24T17:27:14.013105%2
Instant instantLDT =
LocalDateTime.now () .toInstant (ZoneOffset.UTC) ;

e Convert between Instant and ZonedDateTime—convert an Instant
UTC+0 to a Paris ZonedDateTime UTC+1:

// 2019-02-24T16:34:36.138393100+01:00[Europe/Paris]
ZonedDateTime zdt =
Instant.now() .atZone (ZonelId.of ("Europe/Paris"));

// 2019-02-24T16:34:36.150393800%Z
Instant instantZDT = LocalDateTime.now ()
.atZone (ZonelId.of ("Europe/Paris")) .toInstant ();

¢ Convert between Instant and Of fsetDateTime—specify an offset of 2
hours:

// 2019-02-24T17:34:36.151393900+02:00
OffsetDateTime odt =
Instant.now () .atOffset (ZoneOffset.of ("+02:00"));

// 2019-02-24T15:34:36.1533947%7
Instant instantODT = LocalDateTime.now ()
.atOffset (ZoneOffset.of ("+02:00")) .toInstant ();

[131]

Working with Date and Time Chapter 3

63. Defining a period of time using date-based
values and a duration of time using time-
based values

JDK 8 comes with two new classes, named java.time.Period and
java.time.Duration. Let's take a detailed look at them in the next sections.

Period of time using date-based values

The Period class is meant to represent an amount of time using date-based values
(years, months, weeks, and days). This period of time can be obtained in different
ways. For example, a period of 120 days can be obtained as follows:

Period fromDays = Period.ofDays (120); // P120D

Next to the ofDays () method, the Period class also has
ofMonths (), ofWeeks (), and ofYears ().

Or, a period of 2,000 years, 11 months and 24 days can be obtained via the of ()
method, as follows:

Period periodFromUnits = Period.of (2000, 11, 24); // P2000Y11M24D

Period can also be obtained from LocalDate:

LocalDate localDate = LocalDate.now();
Period periodFromLocalDate = Period.of (localDate.getYear(),
localDate.getMonthValue (), localDate.getDayOfMonth());

Finally, Period can be obtained from a string object that respects the ISO-8601
period formats PnYnMnD and PnW. For example, the P2019Y2M25D string represents
2019 years, 2 months, and 25 days:

Period periodFromString = Period.parse ("P2019Y2M25D") ;

Calling Period.toString () will return the period while also
respecting the ISO-8601 period formats, PnynMnD and pPnw (for
example, P120D, P2000Y11M24D).]

[132]

Working with Date and Time Chapter 3

But, the real power of Period is revealed when it is used to represent a period of time
between two dates (for example, LocalDate). The period of time between March 12,
2018 and July 20, 2019 can be represented as follows:

LocalDate startLocalDate = LocalDate.of (2018, 3, 12);
LocalDate endLocalDate = LocalDate.of (2019, 7, 20);
Period periodBetween = Period.between (startLocalDate, endLocalDate);

The amount of time in years, months, and days can be obtained via
Period.getYears (), Period.getMonths (), and Period.getDays (). For
example, the following helper method uses these methods to output the amount of
time as a string:

public static String periodToYMD (Period period) {

StringBuilder sb = new StringBuilder();
sb.append (period.getYears())

.append ("y:")

.append (period.getMonths ())

.append ("m:")

.append (period.getDays ())

.append ("d") ;

return sb.toString();

}
Let's call this method periodBetween (the difference is 1 year, 4 months, and 8 days):

periodToYMD (periodBetween); // ly:4m:8d

The Period class is also useful when determining whether a particular date is earlier
than another date. There is a flag method, named isNegative (). Having an A
period and a B period, the result of applying Period.between (A, B) canbe
negative if B is before 2, or positive if A is before B. Taking this logic
further, isNegative () returns true if B is before A or false if A is before B, as in
our case that follows (basically, this method returns false if years, months, or days is
negative):
// returns false, since 12 March 2018 is earlier than 20 July 2019
periodBetween.isNegative();

[133]

Working with Date and Time Chapter 3

Finally, Period can be modified by adding or subtracting a period of time. There are
methods such as plusYears (), plusMonths (), plusDays (), minusYears (),
minusMonths (), and minusDays (). For example, adding 1 year to periodBetween
can be done as follows:

Period periodBetweenPluslYear = periodBetween.plusYears (1L);
Adding two Period classes can be accomplished via the Period.plus () method, as
follows:

Period pl = Period.ofDays (5);
Period p2 = Period.ofDays (20);
Period plp2 = pl.plus(p2); // P25D

Duration of time using time-based values

The Duration class is meant to represent an amount of time using time-based values
(hours, minutes, seconds, or nanoseconds). This duration of time can be obtained in
different ways. For example, a duration of 10 hours can be obtained as follows:

Duration fromHours = Duration.ofHours (10); // PT10H

Next to the ofHours () method, the Duration class also has
ofDays(),ofMillis(),ofMinutes(),ofSeconds(),and
ofNanos ().

Alternatively, a duration of 3 minutes can be obtained via the of () method, as
follows:

Duration fromMinutes = Duration.of (3, ChronoUnit.MINUTES); // PT3M

Duration can also be obtained from LocalDateTime:

LocalDateTime localDateTime
= LocalDateTime.of (2018, 3, 12, 4, 14, 20, 670);

// PT14M
Duration fromLocalDateTime
= Duration.ofMinutes (localDateTime.getMinute());

[134]

Working with Date and Time Chapter 3

It can also be obtained from LocalTime:

LocalTime localTime = LocalTime.of (4, 14, 20, 670);

// PT0.00000067S
Duration fromLocalTime = Duration.ofNanos (localTime.getNano());

Finally, Duration can be obtained from a St ring object that respects the ISO-8601
duration format PnDTnHnMn . nS, with days considered to be exactly 24 hours. For
example, the P2DT3H4M string has 2 days, 3 hours, and 4 minutes:

Duration durationFromString = Duration.parse ("P2DT3H4M") ;

Calling Duration.toString () will return the duration that
respects the ISO-8601 duration format, PnDTnHnMn . nS (for example,
PT10H, PT3M, or PT51H4M).

But, as in the case of Period, the real power of Duration is revealed when it is used
to represent a period of time between two times (for example, Instant). The
duration of time between November 3, 2015, 12:11:30, and December 6, 2016, 15:17:10,
can be represented as the difference between two Instant classes, as follows:

Instant startInstant = Instant.parse("2015-11-03T12:11:30.002");
Instant endInstant = Instant.parse("2016-12-06T15:17:10.002");

// PT10059H5M40S
Duration durationBetweenInstant
= Duration.between (startInstant, endInstant);

In seconds, this difference can be obtained via the Duration.getSeconds ()
method:

durationBetweenInstant.getSeconds (); // 36212740 seconds

Or, the duration of time between March 12, 2018, 04:14:20.000000670 and July 20,
2019, 06:10:10.000000720, can be represented as the difference between two
LocalDateTime objects, as follows:

LocalDateTime startLocalDateTime
= LocalDateTime.of (2018, 3, 12, 4, 14, 20, 670);
LocalDateTime endLocalDateTime
= LocalDateTime.of (2019, 7, 20, 6, 10, 10, 720);
// PT11881H55M50.00000005S, or 42774950 seconds
Duration durationBetweenLDT
= Duration.between (startLocalDateTime, endLocalDateTime) ;

[135]

Working with Date and Time Chapter 3

Finally, the duration of time between 04:14:20.000000670 and 06:10:10.000000720, can
be represented as the difference between two LocalTime objects, as follows:

LocalTime startLocalTime = LocalTime.of (4, 14, 20, 670);
LocalTime endLocalTime = LocalTime.of (6, 10, 10, 720);

// PT1H55M50.00000005S, or 6950 seconds
Duration durationBetweenLT
= Duration.between (startLocalTime, endLocalTime);

In the preceding examples, Duration was expressed in seconds via the
Duration.getSeconds () method—this is the number of seconds in the Duration
class. However, the Duration class contains a set of methods that are dedicated to
expressing Duration in other time units—in days via toDays (), in hours via
toHours (), in minutes via toMinutes (), in milliseconds via toMillis (), and in
nanoseconds via toNanos ().

Converting from one unit of time to another unit of time may result in a remnant. For
example, converting from seconds to minutes may result in a remnant of seconds (for
example, 65 seconds is 1 minute and 5 seconds (5 seconds is the remnant)). The
remnant can be obtained via the following set of methods—the remnant in days via
toDaysPart (), the remnant in hours via toHoursPart (), the remnant in minutes
via toMinutesPart (), and so on.

Let's assume that the difference should be displayed as
days:hours:minutes:seconds:nano (for example, 9d:2h:15m:20s:230n). Joining the
forces of the toFoo () and toFooPart () methods in a helper method will result in
the following code:

public static String durationToDHMSN (Duration duration) {

StringBuilder sb = new StringBuilder();
sb.append(duration.toDays())

.append (" ")
.append(duratlon.toHoursPart())
.append("h:")

.append (duration.toMinutesPart ())
.append("m:")

.append (duration.toSecondsPart ())
.append("s:")

.append (duration.toNanosPart ())
.append("n");

return sb.toString();

[136]

Working with Date and Time Chapter 3

Let's call this method durationBetweenLDT (the difference is 495 days, 1 hour, 55
minutes, 50 seconds, and 50 nanoseconds):

// 495d:1h:55m:50s:50n
durationToDHMSN (durationBetweenLDT) ;

Identical to the Period class, the Duration class has a flag method

named isNegative (). This method is useful when determining whether a particular
time is earlier than another time. Having duration A and duration B, the result of
applying Duration.between (A, B) canbe negative if B is before 2, or positive if A
is before B. Taking the logic further, isNegative () returns true if B is before 3, or
false if A is before B, as in the following case:

durationBetweenLT.isNegative(); // false

Finally, Duration can be modified by adding or subtracting a duration of time. There
are methods such as plusDays (), plusHours (), plusMinutes (), plusMillis (),
plusNanos (), minusDays (), minusHours (), minusMinutes (), minusMillis (),
and minusNanos () to perform this. For example, adding 5 hours to
durationBetweenLT can be done as follows:

Duration durationBetweenPlus5Hours = durationBetweenLT.plusHours (5);

Adding two Duration classes can be accomplished via the Duration.plus ()
method, as follows:

Duration dl1 = Duration.ofMinutes (20);
Duration d2 = Duration.ofHours(2);

Duration dl1d2 = dl.plus(d2);

System.out.println(dl + "+" + d2 + "=" + d1d2); // PT2H20M

64. Getting date and time units

For a Date object, the solution may rely on a Calendar instance. The code that is
bundled to this book contains this solution.

[137]

Working with Date and Time Chapter 3

For JDK 8 classes, Java provides dedicated get Foo () methods and a get
(TemporalField field) method. For example, let's assume the following
LocalDateTime object:

LocalDateTime 1dt = LocalDateTime.now();

Relying on get Foo () methods, we get the following code:

int year = ldt.getYear();

int month = ldt.getMonthValue () ;
int day = ldt.getDayOfMonth () ;
int hour = ldt.getHour();

int minute = ldt.getMinute();
int second = ldt.getSecond();
int nano = ldt.getNano();

Or, relying on get (TemporalField field) results in the following:

int yearLDT = 1ldt.get (ChronoField.YEAR);

int monthLDT = 1ldt.get (ChronoField.MONTH_OF_YEAR) ;

int dayLDT = ldt.get (ChronoField.DAY_OF_MONTH) ;

int hourLDT = 1ldt.get (ChronoField.HOUR_OF_DAY) ;

int minutelDT = 1ldt.get (ChronoField.MINUTE_OF_HOUR) ;
int secondLDT = ldt.get (ChronoField.SECOND_OF_MINUTE) ;
int nanolDT = ldt.get (ChronoField.NANO_OF_SECOND) ;

Notice that the months are counted from one, which is January.

For example, a LocalDateTime object of 2019-02-25T12:58:13.109389100 can be
cut into date-time units, resulting in the following;:

Year: 2019 Month: 2 Day: 25 Hour: 12 Minute: 58 Second: 13 Nano:
109389100

With a little intuition and documentation, it is very easy to adapt this example for
LocalDate, LocalTime, ZonedDateTime, and others.

65. Adding and subtracting to/from date-time

The solution to this problem relies on the Java APIs that are dedicated to
manipulating date and time. Let's take a look at them in the next sections.

[138]

Working with Date and Time Chapter 3

Working with Date

For a Date object, the solution may rely on a Calendar instance. The code that is
bundled to this book contains this solution.

Working with LocalDateTime

Jumping to JDK 8, the focus is on LocalDate, LocalTime, LocalDateTime,
Instant, and many more. The new Java date-time API comes with methods that are
dedicated to adding or subtracting an amount of time. LocalDate, LocalTime,
LocalDateTime, ZonedDateTime, OffsetDateTime, Instant, Period, Duration,
and many others come with methods such as plusFoo () and minusFoo (), where
Foo can be replaced with the unit of time (for example, plusYears (),

plusMinutes (), minusHours (), minusSeconds (), and so on).

Let's assume the following LocalDateTime:

// 2019-02-25T14:55:06.651155500
LocalDateTime 1dt = LocalDateTime.now();

Adding 10 minutes is as easy as calling LocalDateTime.plusMinutes (long
minutes), while subtracting 10 minutes is as easy as calling
LocalDateTime.minusMinutes (long minutes):

LocalDateTime ldtAfterAddingMinutes = ldt.plusMinutes (10);
LocalDateTime ldtAfterSubtractingMinutes = ldt.minusMinutes (10);

The output will reveal the following dates:

After adding 10 minutes: 2019-02-25T15:05:06.651155500
After subtracting 10 minutes: 2019-02-25T14:45:06.651155500

Beside the methods dedicated per time unit, these classes also
support plus/minus (TemporalAmount amountToAdd) and
plus/minus (long amountToAdd, TemporalUnit unit).

Now, let's focus on the Instant class. Besides plus/minusSeconds (),
plus/minusMillis (), and plus/minusNanos (), the Instant class also provides
a plus/minus (TemporalAmount amountToAdd) method.

[139]

Working with Date and Time Chapter 3

In order to exemplify this method, let's assume the following Instant:

// 2019-02-25T12:55:06.6541557002
Instant timestamp = Instant.now();

Now, let's add and subtract 5 hours:

Instant timestampAfterAddingHours

= timestamp.plus (5, ChronoUnit.HOURS) ;
Instant timestampAfterSubtractingHours

= timestamp.minus (5, ChronoUnit .HOURS) ;

The output will reveal the following Instant:

After adding 5 hours: 2019-02-25T17:55:06.6541557002
After subtracting 5 hours: 2019-02-25T07:55:06.654155700%

66. Getting all time zones with UTC and GMT

UTC and GMT are recognized as the standard references for dealing with dates and
times. Today, UTC is the preferred way to go, but UTC and GMT should return the
same result in most cases.

In order to get all the time zones with UTC and GMT, the solution should focus on
the implementation before and after JDK 8. So, let's start with the solution that was
useful before JDK 8.

Before JDK 8

The solution needs to extract the available time zone IDs (Africa/Bamako,
Europe/Belgrade, and so on). Furthermore, each time zone ID should be used to
create a TimeZone object. Finally, the solution needs to extract the offset that was
specific to each time zone, taking into account Daylight Saving Time. The code that is
bundled to this book contains this solution.

Starting with JDK 8

The new Java date-time API provides new leverages for solving this problem.

[140]

Working with Date and Time Chapter 3

At the first step, the available time zones IDs can be obtained via the zoneId class, as
follows:

Set<String> zonelds = Zoneld.getAvailableZonelds();

At the second step, each time zone ID should be used to create a ZoneId instance.
This can be accomplished via the ZoneId.of (String zoneId) method:

zoneld zoneid = Zoneld.of (current_zone_Id);

At the third step, each zZoneId can be used to obtain the time that is specific to the
identified zone. This means that a "lab rats" reference date-time is needed. This
reference date-time (without a time zone, LocalDateTime.now ()) is combined with
the given time zone (ZoneId), via LocalDateTime.atZone (), in order to

obtain ZoneDateTime (a date-time that is time-zone aware):

LocalDateTime now = LocalDateTime.now();
ZonedDateTime zdt = now.atZone (Zoneld.of (zone_id instance));

The at Zone () method matches the date-time as closely as possible,
taking into account time zone rules, such as Daylight Saving Time.

At the fourth step, the code can exploit ZonedDateTime in order to extract the UTC
offset (for example, for Europe/Bucharest the UTC offset is +02:00):

String utcOffset = zdt.getOffset ().getId().replace("z", "+00:00");

The get1d () method returns the normalized zone offset ID. The +00:00 offset is
returned as the z character; therefore the code needs to quickly replace z with +00:00,
in order to align with the rest of the offsets, which respect the format +hh:mm or
+hh:mm:ss.

Now, let's join these steps into a helper method:

public static List<String> fetchTimeZones (OffsetType type) {

List<String> timezones = new ArrayList<>();
Set<String> zonelds = ZonelId.getAvailableZoneIds();
LocalDateTime now = LocalDateTime.now();

zonelds.forEach ((zoneId) -> {
timezones.add (" (" + type + now.atZone (Zoneld.of (zoneld))
.getOffset () .getId().replace("z2", "+00:00") + ") " + zoneId);
)i

[141]

Working with Date and Time Chapter 3

return timezones;

}
Assuming that this method lives in a DateTimes class, the following code is obtained:

List<String> timezones

= DateTimes.fetchTimeZones (DateTimes.OffsetType.GMT) ;
Collections.sort (timezones); // optional sort
timezones.forEach(System.out::println);

In addition, an output snapshot is shown, as follows:

(GMT+00:00) Africa/Abidjan
(GMT+00:00) Africa/Accra
(GMT+00:00) Africa/Bamako

(GMT+11:00) Australia/Tasmania
(GMT+11:00) Australia/Victoria

67. Getting local date-time in all available time
zones

The solution to this problem can be obtained by following these steps:

1. Get the local date-time.

2. Get the available time zones.

3. Before JDK 8, use simpleDateFormat with the set TimeZone () method.
4. Starting with JDK 8, use ZonedDateTime.

Before JDK 8

Before JDK 8, the quick solution to get the current local date-time was to call the Date
empty constructor. Furthermore, use Date to display it in all the available time zones,
which can be obtained via the TimeZone class. The code that is bundled to this book
contains this solution.

[142]

Working with Date and Time Chapter 3

Starting with JDK 8

Starting with JDK 8, a convenient solution to get the current local date-time in the
default time zone is to call the ZonedDateTime.now () method:

ZonedDateTime zlt = ZonedDateTime.now();

So, this is the current date in the default time zone. Furthermore, this date should be
displayed in all the available time zones that are obtained via the ZoneId class:

Set<String> zonelds = Zoneld.getAvailableZoneIds();

Finally, the code can loop the zoneIds, and for each zone id, it can call the
ZonedDateTime.withZoneSameInstant (ZoneId zone) method. This method
returns a copy of this date-time with a different time zone, retaining the instant:

public static List<String> localTimeToAllTimeZones () {

List<String> result = new ArrayList<>();
Set<String> zonelds = Zoneld.getAvailableZonelIds();
DateTimeFormatter formatter

= DateTimeFormatter.ofPattern("yyyy-MMM-dd'T'HH:mm:ss a 2");
ZonedDateTime zlt = ZonedDateTime.now();

zonelds.forEach ((zoneId) -> {
result.add(zlt.format (formatter) + " in " + zoneId + " is "
+ zlt.withZoneSamelInstant (Zoneld.of (zoneld))
.format (formatter));

b

return result;

}

An output snapshot of this method can be as follows:

2019-Feb-26T14:26:30 PM +0200 in Africa/Nairobi
is 2019-Feb-26T15:26:30 PM +0300

2019-Feb-26T14:26:30 PM +0200 in America/Marigot
is 2019-Feb-26T08:26:30 AM -0400

2019-Feb-26T14:26:30 PM +0200 in Pacific/Samoa
is 2019-Feb-26T01:26:30 AM -1100

[143]

Working with Date and Time Chapter 3

68. Displaying date-time information about a
flight

The solution that is presented in this section will display the following information
about the 15 hours and 30 minutes flight from Perth, Australia to Bucharest, Europe:

e UTC date-time at departure and arrival
e Perth date-time at departure and arrival in Bucharest
¢ Bucharest date-time at departure and arrival

Let's assume that the reference departure date-time from Perth is February 26, 2019, at
16:00 (or 4:00 PM):

LocalDateTime 1dt = LocalDateTime.of (
2019, Month.FEBRUARY, 26, 16, 00);

First, let's combines this date-time with the time zone of Australia/Perth (+08:00). This
will result in a ZonedDateTime object that is specific to Australia/Perth (this is the
clock date and time in Perth at departure):

// 04:00 PM, Feb 26, 2019 +0800 Australia/Perth
ZonedDateTime auPerthDepart
= ldt.atZone (Zoneld.of ("Australia/Perth"));

Further, let's add 15 hours and 30 minutes to ZonedDateTime. The resulting
ZonedDateTime represents the date-time in Perth (this is the clock date and time in
Perth on arrival in Bucharest):

// 07:30 AM, Feb 27, 2019 +0800 Australia/Perth
ZonedDateTime auPerthArrive
= auPerthDepart.plusHours (15) .plusMinutes (30) ;

Now, let's calculate the date-time in Bucharest at the departure date-time in Perth.
Basically, the following code expresses the departure date-time from the Perth time
zone in the Bucharest time zone:

// 10:00 AM, Feb 26, 2019 +0200 Europe/Bucharest
ZonedDateTime euBucharestDepart
= auPerthDepart.withZoneSameInstant (ZonelId.of ("Europe/Bucharest"));

[144]

Working with Date and Time Chapter 3

Finally, let's calculate the date-time in Bucharest on arrival. The following code
expresses the arrival date-time from the Perth time zone in the Bucharest time zone:

// 01:30 AM, Feb 27, 2019 +0200 Europe/Bucharest
ZonedDateTime euBucharestArrive
= auPerthArrive.withZoneSameInstant (ZoneId.of ("Europe/Bucharest"));

As shown in the following figure, the UTC time at departure from Perth is 8:00 AM,
while the UTC time on arrival in Bucharest is 11:30 PM:

TUE
uTc 8:00a - 11:30p B q ?89101112123456?89@
Tue, Feb 26 Tue, Feb 26 26 am am {am am am am pm pmM pM M pM pM pm pm pm pm
WED
+8 Perth AwsT 4:00p - 7:30a 8 9 3

LTS
Hen
L)
B~
Hoo
Bw

d

g
BN
B
B
B

o

Australia Tue, Feb 26 Wed, Feb 27

+2 Bucharest: 10:00a - 1:30a 9|10 11 12
Romania Tue, Feb 26 Wed, Feb 27 am | am am pm

B=
BN
Bea
ETS
Hen
3o
B~
B
Bw

These times can be easily extracted as Of fsetDateTime, as follows:

// 08:00 AM, Feb 26, 2019
OffsetDateTime utcAtDepart = auPerthDepart.withZoneSameInstant (
zZonelId.of ("UTC")) .toOffsetDateTime () ;

// 11:30 PM, Feb 26, 2019
OffsetDateTime utcAtArrive = auPerthArrive.withZoneSameInstant (
zZonelId.of ("UTC")) .toOffsetDateTime () ;

69. Converting a Unix timestamp to date-time

For this solution, let's suppose the following Unix timestamp—1573768800. This
timestamp is equivalent to the following;:

11/14/2019 @ 10:00pm (UTC)

2019-11-14T22:00:00+00:00 in ISO-8601

Thu, 14 Nov 2019 22:00:00 +0000 in RFC 822, 1036, 1123, 2822
Thursday, 14-Nov-19 22:00:00 UTC in RFC 2822
2019-11-14T22:00:00+00:00 in RFC 3339

[145]

Working with Date and Time Chapter 3

In order to convert a Unix timestamp to a date-time, it is important to know that the
Unix timestamps resolution is in seconds, while java.util.Date needs
milliseconds. So, the solution to obtain a Date object from a Unix timestamp requires
a conversion from seconds to milliseconds by multiplying the Unix timestamp by
1,000 as shown in the following two examples:

long unixTimestamp = 1573768800;

// Fri Nov 15 00:00:00 EET 2019 - in the default time zone
Date date = new Date (unixTimestamp * 1000L);

// Fri Nov 15 00:00:00 EET 2019 - in the default time zone
Date date = new Date (TimeUnit .MILLISECONDS
.convert (unixTimestamp, TimeUnit.SECONDS)) ;

Starting with JDK 8, the Date class uses the from (Instant instant) method.
Moreover, the Instant class comes with the ocfEpochSecond (long epochSecond)
method, which returns an instance of Instant, using the given seconds from the
epoch, of 1970-01-01T00:00:00Z:

// 2019-11-14T22:00:00Z in UTC
Instant instant = Instant.ofEpochSecond (unixTimestamp) ;

// Fri Nov 15 00:00:00 EET 2019 - in the default time zone
Date date = Date.from(instant);

The instant that was obtained in the previous example can be used to create
LocalDateTime or ZonedDateTime, as follows:

// 2019-11-15T06:00
LocalDateTime date = LocalDateTime
.ofInstant (instant, ZoneId.of ("Australia/Perth"));

// 2019-Nov-15 00:00:00 +0200 Europe/Bucharest
ZonedDateTime date = ZonedDateTime
.ofInstant (instant, ZonelId.of ("Europe/Bucharest"));

70. Finding the first/last day of the month

The proper solution to this problem will rely on JDK 8's, Temporal and
TemporalAdjuster interfaces.

[146]

Working with Date and Time Chapter 3

The Temporal interface sits behind representations of date-time. In other words,
classes that represent a date and/or a time implement this interface. For example, the
following classes are just a few that implement this interface:

® LocalDate (date without a time zone in the ISO-8601 calendar system)

® LocalTime (time without a time zone in the ISO-8601 calendar system)

e LocalDateTime (date-time without a time zone in the ISO-8601 calendar
system)

e ZonedDateTime (date-time with a time zone in the ISO-8601 calendar
system), and so on

e Of fsetDateTime (date-time with an offset from UTC/Greenwich in the
ISO-8601 calendar system)

e HijrahDate (date in the Hijrah calendar system)

The TemporalAdjuster class is a functional interface that defines strategies that can
be used to adjust a Temporal object. Beside the possibility of defining custom
strategies, the TemporalAdjuster class provides several predefined strategies, as
follows (the documentation contains the entire list, which is pretty impressive):

e firstDayOfMonth () (return the first day of the current month)

e lastDayOfMonth () (return the last day of the current month)

e firstDayOfNextMonth () (return the first day of the next month)
e firstDayOfNextYear () (return the first day of the next year)

Notice that the first two adjusters in the preceding list are exactly the ones needed by
this problem.

Consider a fix—LocalDate:

LocalDate date = LocalDate.of (2019, Month.FEBRUARY, 27);

And, let's see when the first/last days of February are:

// 2019-02-01
LocalDate firstDayOfFeb
= date.with (TemporalAdjusters.firstDayOfMonth());

// 2019-02-28
LocalDate lastDayOfFeb
= date.with (TemporalAdjusters.lastDayOfMonth());

[147]

Working with Date and Time Chapter 3

Looks like relying on the predefined strategies is pretty simple. But, let's assume that
the problem requests you to find the date that's 21 days after February, 27 2019, which
is March 20, 2019. For this problem there is no predefined strategy, therefore a custom
strategy is needed. A solution to this problem can rely on a lambda expression, as in
the following helper method:

public static LocalDate getDayAfterDays (
LocalDate startDate, int days) {

Period period = Period.ofDays (days);
TemporalAdjuster ta = p —-> p.plus(period);

LocalDate endDate = startDate.with(ta);

return endDate;

}

If this method lives in a class named DateTimes, then the following call will return
the expected result:

// 2019-03-20
LocalDate datePlus2l1Days = DateTimes.getDayAfterDays (date, 21);

Following the same technique, but relying on the static factory
method ofDateAdjuster (), the following snippet of code defines a static adjuster
that returns the next date that falls on a Saturday:

static TemporalAdjuster NEXT_SATURDAY
= TemporalAdjusters.ofDateAdjuster (today —-> {

DayOfWeek dayOfWeek = today.getDayOfWeek () ;

if (dayOfWeek == DayOfWeek.SATURDAY) {
return today;

}

if (dayOfWeek == DayOfWeek.SUNDAY) {
return today.plusDays (6);
}

return today.plusDays (6 - dayOfWeek.getValue());
1)

Let's call this method for February 27, 2019 (the next Saturday is on March 2, 2019):

// 2019-03-02
LocalDate nextSaturday = date.with (NEXT_SATURDAY) ;

[148]

Working with Date and Time Chapter 3

Finally, this functional interface defines an abstract method named adjustInto ().
This method can be overridden in custom implementations by passing a Temporal
object to it, as follows:

public class NextSaturdayAdjuster implements TemporalAdjuster {

@Override
public Temporal adjustInto (Temporal temporal) {

DayOfWeek dayOfWeek = DayOfWeek
.of (temporal.get (ChronoField.DAY_OF_WEEK)) ;

if (dayOfWeek == DayOfWeek.SATURDAY) {
return temporal;

}

if (dayOfWeek == DayOfWeek.SUNDAY) {
return temporal.plus (6, ChronoUnit.DAYS);
}

return temporal.plus (6 - dayOfWeek.getValue (), ChronoUnit.DAYS);
}
Here is the usage example:
NextSaturdayAdjuster nsa = new NextSaturdayAdjuster();

// 2019-03-02
LocalDate nextSaturday = date.with (nsa);

71. Defining/extracting zone offsets

By zone offset, we understand the amount of time needed to be added/subtracted from
the GMT/UTC time in order to obtain the date-time for a specific zone on the globe
(for example, Perth, Australia). Commonly, a zone offset is printed as a fixed number
of hour and minutes: +02:00, -08:30, +0400, UTC+01:00, and so on.

So, in short, a zone offset is the amount of time by which a time zone differs from
GMT/UTC.

[149]

Working with Date and Time Chapter 3

Before JDK 8

Before JDK 8, a time zone can be defined via java.util.TimeZone. With this time
zone, the code can obtain the zone offset via the TimeZone.getRawOffset ()

method (the raw part comes from the fact that this method doesn't take into account
Daylight Saving Time). The code that is bundled to this book contains this solution.

Starting with JDK 8

Starting with JDK 8, there are two classes responsible for dealing with time zone
representations. First, there is java.time. ZoneId, which represents a time zone
such as Athens, Europe, and second there is java.time.ZoneOffset (extends
ZoneId), which represents the fixed amount of time (offset) of the specified time zone
with GMT/UTC.

The new Java date-time API deals with Daylight Saving Time by default; therefore, a
region with summer-winter cycles that uses Daylight Saving Time will have two
ZoneOffset classes.

The UTC zone offset can be easily obtained as follows (this is +00:00, represented in
Java by the z character):

/] Z
ZzoneOffset zoneOffsetUTC = ZoneOffset.UTC;

The system default time zone can also be obtained via the zoneOf fset class:

// Europe/Athens
Zoneld defaultZoneId = ZoneOffset.systemDefault ();

In order to take the zone offset with Daylight Saving Time, the code needs to associate
a date-time with it. For example, associate a LocalDateTime class (Instant can also
be used) like this:

// by default it deals with the Daylight Saving Times
LocalDateTime 1ldt = LocalDateTime.of (2019, 6, 15, 0, 0);
ZoneId zoneld = Zoneld.of ("Europe/Bucharest");

// +03:00
ZoneOffset zoneOffset = zoneId.getRules () .getOffset (1dt);

[150]

Working with Date and Time Chapter 3

A zone offset can also be obtained from a string. For example, the following code
obtains a zone offset of +02:00:

ZoneOffset zoneOffsetFromString = ZoneOffset.of ("+02:00");

This is a very convenient approach of quickly adding a zone offset to a Temporal
object that supports zone offsets. For example, use it to add a zone offset to
OffsetTime and OffsetDateTime (convenient ways for storing a date in a
database, or sending over the wires):

OffsetTime offsetTime = OffsetTime.now(zoneOffsetFromString);
OffsetDateTime offsetDateTime
= OffsetDateTime.now (zoneOffsetFromString) ;

Another solution to our problem is to rely on defining zoneOffset from hours,
minutes, and seconds. One of the helper methods of Zone0Offset is dedicated to this:

// +08:30 (this was obtained from 8 hours and 30 minutes)
ZoneOffset zoneOffsetFromHoursMinutes
= ZoneOffset.ofHoursMinutes (8, 30);

Next to ZoneOffset .ofHoursMinutes (), there is
ZoneOffset.ofHours (), ofHoursMinutesSeconds () and
ofTotalSeconds ().

Finally, every Temporal object that supports a zone offset provides a handy
getOffset () method. For example, the following code gets the zone offset from the
preceding of fsetDateTime object:

// +02:00
ZoneOffset zoneOffsetFromOdt = offsetDateTime.getOffset();

72. Converting between Date and Temporal

The solution that is presented here will cover the following Temporal
classes—Instant, LocalDate, LocalDateTime, ZonedDateTime,
OffsetDateTime, LocalTime, and OffsetTime.

[151]

Working with Date and Time Chapter 3

Date - Instant

In order to convert from Date to Instant, the solution can rely on the
Date.toInstant () method. The reverse can be accomplished via the
Date.from(Instant instant) method:

e Date to Instant can be accomplished like this:
Date date = new Date();

// e.g., 2019-02-27T12:02:49.369%Z, UTC
Instant instantFromDate = date.tolInstant();

e Instant toDate can be accomplished like this:
Instant instant = Instant.now();

// Wed Feb 27 14:02:49 EET 2019, default system time zone
Date dateFromInstant = Date.from(instant);

Keep in mind that Date is not time-zone aware, but it is displayed in
the system default time zone (for example, via toString()).
Instant is with a UTC time zone.

Let's quickly wrap these snippets of code in two utility methods, defined in a utility
class—DateConverters:

public static Instant dateToInstant (Date date) {

return date.toInstant ();

public static Date instantToDate (Instant instant) {

return Date.from(instant);

[152]

Working with Date and Time

Chapter 3

Further, let's enrich this class with the methods from the following screenshot:

[DEFAULT TIME ZONE Zoneld
h dateToInstant (Date date) Instant
) dateToLocalDate (Date date) LocalDate
) dateToLocalDateTime (Date dzte) LocalDateTime
 dateToLocalTime (Date date) LocalTime
 dateToOffsetDateTime (Date date) OffsetDateTime
) dateToOffsetTime (Date date) OffsetTime
h dateToZonedDateTime (Date dzte) ZonedDateTime
{0 instantToDate (Instant instant) Date
() localDateTimeToDate (LocalDateTime localDateTime) Date
) localDateToDate (LocalDate localDate) Date
) localTimeToDate (LocalTime localTime) Date
D offsetDateTimeToDate (0OffsetDateTime offsetDateTime) Date
D offsetTimeToDate (0ffsetTime offsetTime) Date
) zonedDateTimeToDate (ZonedDateTime zonedDateTime) Date

The constant from the screenshot, DEFAULT_TIME_ZONE, is the system default time
zone:

public static final ZoneId DEFAULT_TIME_ZONE = Zoneld.systemDefault ();

Date - LocalDate

A Date object can be converted to LocalDate via an Instant object. Once we have
obtained the Instant object from the given Date object, the solution can apply to it
the system default time zone, and call the toLocaleDate () method:

// e.g., 2019-03-01
public static LocalDate dateToLocalDate (Date date) {

return dateToInstant (date) .atZone (DEFAULT_TIME_ZONE) .toLocalDate () ;
}

Converting from LocalDate to Date should take into account that LocalDate
doesn't contain a time component as Date, so the solution must supply a time
component as the start of the day (more details regarding this can be found in the
Start and end of a day problem):

// e.g., Fri Mar 01 00:00:00 EET 2019
public static Date localDateToDate (LocalDate localDate) {

return Date.from(localDate.atStartOfDay (

[153]

Working with Date and Time Chapter 3

DEFAULT_TIME_ZONE) .toInstant ());

Date — DateLocalTime

Converting from Date to DateLocalTime is the same as converting from Date to
LocalDate, apart from the fact that the solution should call the toLocalDateTime ()

method as follows:

// e.g., 2019-03-01T07:25:25.624
public static LocalDateTime dateToLocalDateTime (Date date) {

return dateTolInstant (date) .atZone (
DEFAULT_TIME_ZONE) .toLocalDateTime () ;

}

Converting from LocalDateTime to Date is straightforward. Just apply the system
default time zone and call toInstant ():

// e.g., Fri Mar 01 07:25:25 EET 2019
public static Date localDateTimeToDate (LocalDateTime localDateTime) {

return Date.from(localDateTime.atZone (
DEFAULT_TIME_ZONE) .toInstant ());

Date — ZonedDateTime

Converting Date to ZonedDateTime can be accomplished via the Instant object
obtained from the given Date object and the system default time zone:

// e.g., 2019-03-01T07:25:25.624+02:00 [Europe/Athens]
public static ZonedDateTime dateToZonedDateTime (Date date) |

return dateToInstant (date) .atZone (DEFAULT_TIME_ZONE) ;
}

Converting ZonedDateTime to Date is just about converting ZonedbDateTime to

Instant:

// e.g., Fri Mar 01 07:25:25 EET 2019
public static Date zonedDateTimeToDate (ZonedDateTime zonedDateTime) {

return Date.from(zonedDateTime.toInstant ());

[154]

Working with Date and Time Chapter 3

Date — OffsetDateTime

Converting from Date to OffsetDateTime relies on the toOffsetDateTime ()

method:
// e.g., 2019-03-01T07:25:25.624+02:00
public static OffsetDateTime dateToOffsetDateTime (Date date) {

return dateToInstant (date) .atZone (

DEFAULT_TIME_ZONE) .toOffsetDateTime () ;

}
An approach for converting from Of fsetDateTime to Date requires two steps. First,
convert Of fsetDateTime to LocalDateTime. Second, convert LocalDateTime to

Instant with the corresponding offset:

// e.g., Fri Mar 01 07:55:49 EET 2019
public static Date offsetDateTimeToDate (
OffsetDateTime offsetDateTime) |

return Date.from(offsetDateTime.toLocalDateTime ()
.toInstant (ZoneOffset.of (offsetDateTime.getOffset () .getId())));

Date - LocalTime

Converting Date to LocalTime canrely on the LocalTime.toInstant () method as

follows:

// e.g., 08:03:20.336
public static LocalTime dateToLocalTime (Date date) {

return LocalTime.ofInstant (dateToInstant (date), DEFAULT_TIME_ZONE) ;

}
Converting LocalTime to Date should take into account that LocalTime doesn't
have a date component. This means that the solution should set the date on January 1,

1970, the epoch:
// e.g., Thu Jan 01 08:03:20 EET 1970
{

public static Date localTimeToDate (LocalTime localTime)

return Date.from(localTime.atDate (LocalDate.EPOCH)
.toInstant (DEFAULT_TIME_ZONE.getRules ()
.getOffset (Instant.now())));

[155]

Working with Date and Time Chapter 3

Date - OffsetTime

Converting Date to Of fsetTime can rely on the OffsetTime.toInstant () method
as follows:

// e.g., 08:03:20.336+02:00
public static OffsetTime dateToOffsetTime (Date date) {

return OffsetTime.ofInstant (dateToInstant (date), DEFAULT_TIME_ZONE) ;
}

Converting Of fsetTime to Date should take into account that Of fset Time doesn't
have a date component. This means that the solution should set the date at January 1,
1970, the epoch:

// e.g., Thu Jan 01 08:03:20 EET 1970
public static Date offsetTimeToDate (OffsetTime offsetTime) {

return Date.from(offsetTime.atDate (LocalDate.EPOCH) .toInstant ());
}

73. Iterating a range of dates

Let's assume that the range is demarcated by the start date, 2019 Feb 1, and the end
date, 2019 Feb 21. The solution to this problem should loop the [2019 Feb 1, 2019 Feb
21) interval with a step of a day and print each date on the screen. Basically, there are
two main problems to solve:

e Stop looping once the start date is equal with the end date.
¢ Increase the start date day by day until the end date.

Before JDK 8

Before JDK 8, the solution can rely on the Calendar utility class. The code that is
bundled to this book contains this solution.

[156]

Working with Date and Time Chapter 3

Starting with JDK 8

First, starting with JDK 8, the dates can be easily defined as LocalDate, without the
help of calendar:

LocalDate startLocalDate = LocalDate.of (2019, 2, 1);
LocalDate endLocalDate = LocalDate.of (2019, 2, 21);

Once the start date is equal with the end date, we stop the loop via the
LocalDate.isBefore (ChronoLocalDate other) method. This flag method
checks if this date is before the given date.

Increasing the start date day by day until the end date can be accomplished using the
LocalDate.plusDays (long daysToAdd) method. Using these two methods in a
for loop results in the following code:

for (LocalDate date = startLocalDate;
date.isBefore (endLocalDate); date = date.plusDays (1)) {

// do something with this day
System.out.println (date);
}

A snapshot of the output should be as follows:

2019-02-01
2019-02-02
2019-02-03

2019-02-20

Starting with JDK 9

JDK 9 can solve this problem using a single line of code. This is possible thanks to the
new LocalDate.datesUntil (LocalDate endExclusive) method. This method
returns Stream<LocalDate> with an incremental step of one day:

startLocalDate.datesUntil (endLocalDate) .forEach(System.out::println);

If the incremental step should be expressed in days, weeks, months, or years, then
reblonLocalDate.datesUntil(LocalDate endExclusive, Period step).For
example, an incremental step of 1 week can be specified as follows:

startLocalDate.datesUntil (endLocalDate,
Period.ofWeeks (1)) .forEach (System.out::println);

[157]

Working with Date and Time Chapter 3

The output should be (weeks 1-8, weeks 8-15) as follows:

2019-02-01
2019-02-08
2019-02-15

74. Calculating age

Probably the most commonly used case of difference between two dates is about
calculating the age of a person. Typically, the age of a person is expressed in years,
but sometimes months, and even days, should be provided.

Before JDK 8

Before JDK 8, trying to provide a good solution can rely on Calendar and/or
SimpleDateFormat. The code that is bundled to this book contains such a solution.

Starting with JDK 8

A better idea is to upgrade to JDK 8, and rely on the following straightforward
snippet of code:

LocalDate startLocalDate = LocalDate.of (1977, 11, 2);
LocalDate endLocalDate = LocalDate.now();

long years = ChronoUnit.YEARS.between (startLocalDate, endLocalDate);

Adding months and days to the result is also easy to accomplish, thanks to the
Period class:

Period periodBetween = Period.between (startLocalDate, endLocalDate);

Now, the age in years, months, and days can be obtained via
periodBetween.getYears (), periodBetween.getMonths (), and
periodBetween.getDays ().

For example, between the current date, February 28, 2019, and November 2, 1977, we
have 41 years, 3 months, and 26 days.

[158]

Working with Date and Time Chapter 3

75. Start and end of a day

In JDK 8, trying to find the start/end of a day can be accomplished in several ways.

Let's consider a day expressed via LocalDate:

LocalDate localDate = LocalDate.of (2019, 2, 28);

The solution to finding the start of the day February 28, 2019, relies on a method
named atStartOfDay (). This method returns LocalDateTime from this date at the
time of midnight, 00:00:

// 2019-02-28T00:00
LocalDateTime ldDayStart = localDate.atStartOfDay();

Alternatively, the solution can use the of (LocalDate date, LocalTime time)
method. This method combines the given date and time into LocalDateTime. So, if
the passed time is LocalTime .MIN (the time of midnight at the start of the day) then
the result will be as follows:

// 2019-02-28T00:00
LocalDateTime ldDayStart = LocalDateTime.of (localDate, LocalTime.MIN) ;

The end of the day of a LocalDate object can be obtained using at least two
solutions. One solution consist of relying on LocalDate.atTime (LocalTime

time). The resulting LocalDateTime can represent the combination of this date with
the end of the day, if the solution passes as an argument, LocalTime .MAX (the time
just before midnight at the end of the day):

// 2019-02-28T23:59:59.999999999
LocalDateTime ldDayEnd = localDate.atTime (LocalTime.MAX) ;

Alternatively, the solution can combine LocalTime.MAX with the given date, via the
atDate (LocalDate date) method:

// 2019-02-28T23:59:59.999999999
LocalDateTime ldDayEnd = LocalTime.MAX.atDate (localDate);

[159]

Working with Date and Time Chapter 3

Since LocalDate doesn't have the concept of a time zone, the preceding examples are
prone to issues caused by different corner-cases, for example, Daylight Saving Time.
Some Daylight Saving Times impose a change of hour at midnight (00:00 becomes
01:00 AM), which means that the start of the day is at 01:00:00, not at 00:00:00. In
order to mitigate these issues, consider the following examples that extend the
preceding examples to use ZonedDateTime, which is Daylight Saving Time aware:

// 2019-02-28T00:00+08:00[Australia/Perth]
ZonedDateTime ldDayStartZone
= localDate.atStartOfDay (Zoneld.of ("Australia/Perth"));

// 2019-02-28T00:00+08:00[Australia/Perth]
ZonedDateTime ldDayStartZone = LocalDateTime
.of (localDate, LocalTime.MIN) .atZone (ZonelId.of ("Australia/Perth"));

// 2019-02-28T23:59:59.9999999994+08:00 [Australia/Perth]
ZonedDateTime ldDayEndZone = localDate.atTime (LocalTime.MAX)
.atzone (Zoneld.of ("Australia/Perth"));

// 2019-02-28T23:59:59.999999999+08:00 [Australia/Perth]
ZonedDateTime ldDayEndZone = LocalTime.MAX.atDate (localDate)
.atZone (ZonelId.of ("Australia/Perth"));

Now, let's consider the following—LocalDateTime, February 28, 2019, 18:00:00:

LocalDateTime localDateTime = LocalDateTime.of (2019, 2, 28, 18, 0, 0);

The obvious solution is to extract LocalDate from LocalDateTime and apply the
previous approaches. Another solution relies on the fact that every implementation of
the Temporal interface (including LocalDate) can take advantage of the

with (TemporalField field, long newValue) method. Mainly, the with ()
method returns a copy of this date with the specified field, ChronoField, set

to newValue. So, if the solution sets ChronoField.NANO_OF_DAY (nanoseconds of a
day) as LocalTime.MIN, then the result will be the start of the day. The trick here is
to convert LocalTime .MIN to nanoseconds via toNanoOfDay (), as follows:

// 2019-02-28T00:00
LocalDateTime ldtDayStart = localDateTime
.with (ChronoField.NANO_OF_DAY, LocalTime.MIN.toNanoOfDay());

This is equivalent to the following;:

LocalDateTime ldtDayStart
= localDateTime.with (ChronoField.HOUR_OF_DAY, O0);

[160]

Working with Date and Time Chapter 3

The end of the day is pretty similar. Just pass LocalTime .MAX instead of MIN:

// 2019-02-28T23:59:59.999999999
LocalDateTime ldtDayEnd = localDateTime
.with (ChronoField.NANO_OF_DAY, LocalTime.MAX.toNanoOfDay());

This is equivalent to the following;:

LocalDateTime ldtDayEnd = localDateTime.with (
ChronoField.NANO_OF_DAY, 86399999999999L);

Like LocalDate, the LocalDateTime object is not aware of time zones. In this case,
ZonedDateTime can help:

// 2019-02-28T00:00+08:00[Australia/Perth]

ZonedDateTime ldtDayStartZone = localDateTime
.with (ChronoField.NANO_OF_DAY, LocalTime.MIN.toNanoOfDay())
.atZone (ZonelId.of ("Australia/Perth"));

// 2019-02-28T23:59:59.999999999+08:00 [Australia/Perth]
ZonedDateTime ldtDayEndZone = localDateTime
.with (ChronoField.NANO_OF_DAY, LocalTime.MAX.toNanoOfDay())
.atZone (ZonelId.of ("Australia/Perth"));

As abonus here, let's see the start/end of the day with UTC. Beside the solution
relying on the with () method, another solution can rely on toLocalDate (), as
follows:

// e.g., 2019-02-28T09:23:10.603572%Z
ZonedDateTime zdt = ZonedDateTime.now (ZoneOffset.UTC);

// 2019-02-28T00:002Z
ZonedDateTime dayStartzdt
= zdt.toLocalDate () .atStartOfDay (zdt.getZone());

// 2019-02-28T23:59:59.9999999997
ZonedDateTime dayEndZdt = zdt.toLocalDate ()
.atTime (LocalTime.MAX) .atZone (zdt.getZone ());

Because of the numerous issues with java.util.Date and
Calendar, it is advisable to avoid trying to implement a solution to
this problem with them.

[161]

Working with Date and Time Chapter 3

76. Difference between two dates

Computing the difference between two dates is a very common task (for example, see
the Calculating age section). Let's see a collection of other approaches that can be used
to obtain the difference between two dates in milliseconds, seconds, hours, and so on.

Before JDK 8

The recommended way to represent date-time information is via the
java.util.Date and Calendar classes. The easiest difference to compute is
expressed in milliseconds. The code that is bundled to this book contains such a
solution.

Starting with JDK 8

Starting with JDK 8, the recommended way to represent date-time information is
via Temporal (for example, DateTime, DateLocalTime, ZonedDateTime, and so
on).

Let's assume the following two LocalDate objects, January 1, 2018, and March 1,
2019:

LocalDate 1dl1 = LocalDate.of (2018, 1, 1)
LocalDate 1d2 = LocalDate.of (2019, 3, 1)

The simplest way to compute the difference between these two Temporal objects is
via the ChronoUnit class. Beside representing the standard set of date periods units,
ChronoUnit comes with several handy methods, including between (Temporal
tlInclusive, Temporal t2Exclusive)“Asimluunesuggesﬁbthebetween()
method calculates the amount of time between two Temporal objects. Let's see it at
work to compute the difference between 1d1 and 1d2 in days, months, and years:

// 424
long betweenInDays = Math.abs (ChronoUnit.DAYS.between (1d1, 1d2));

// 14
long betweenInMonths = Math.abs (ChronoUnit.MONTHS.between (1dl, 1d2));

// 1
long betweenInYears = Math.abs (ChronoUnit.YEARS.between (1dl, 1d2));

[162]

Working with Date and Time Chapter 3

Alternatively, every Temporal exposes a method named until (). Actually,
LocalDate has two, one that returns Period as a difference between two dates and
another one that returns long as a difference between two dates in the specified time
unit. Using the one that returns Period looks like this:

Period period = 1ldl.until (1d2);

// Difference as Period: 1y2m0Od
System.out.println("Difference as Period: " + period.getYears() + "y"
+ period.getMonths () + "m" + period.getDays() + "d");

Using the one that allows us to specify the time unit looks like this:

// 424
long untilInDays = Math.abs (1ldl.until (1d2, ChronoUnit.DAYS));

// 14
long untilInMonths = Math.abs (1ldl.until (1d2, ChronoUnit.MONTHS)) ;

// 1
long untilInYears = Math.abs(ldl.until (1d2, ChronoUnit.YEARS));

The ChronoUnit.convert () method is also useful in the case of LocalDateTime.
Let's consider the following two LocalDateTime objects—January 1, 2018 22:15:15,
and March 1, 2019 23:15:15:

LocalDateTime 1dtl = LocalDateTime.of (2018, 1, 1, 22, 15, 15);
LocalDateTime 1dt2 = LocalDateTime.of (2018, 1, 1, 23, 15, 15);

Now, let's see the difference between 1dt1 and 1dt2, when expressed in minutes:

// 60
long betweenInMinutesWithoutZone
= Math.abs (ChronoUnit .MINUTES.between (1dt1, 1dt2));

And, the difference when expressed in hours via the LocalDateTime.until ()
method:

// 1
long untilInMinutesWithoutZone
= Math.abs (1dtl.until (1dt2, ChronoUnit.HOURS)) ;

[163]

Working with Date and Time Chapter 3

But, a really awesome thing about ChronoUnit .between () and until () is the fact
that they work with ZonedDateTime. For example, let's consider 1dt 1 in the
Europe/Bucharest time zone and in the Australia/Perth time zone, plus one hour:

ZonedDateTime zdtl = 1ldtl.atZone(Zoneld.of ("Europe/Bucharest"));
ZonedDateTime zdt2 = zdtl.withZoneSameInstant (
ZonelId.of ("Australia/Perth")) .plusHours (1) ;

Now, let's use ChronoUnit.between () to express the difference between zdt1 and
zdt2 in minutes, and ZonedDateTime.until () to express the difference between
zdt1 and zdt2 in hours:

// 60
long betweenInMinutesWithZone
= Math.abs (ChronoUnit .MINUTES.between (zdtl1l, zdt2));

// 1
long untilInHoursWithZone
= Math.abs (zdtl.until (zdt2, ChronoUnit.HOURS)) ;

Finally, let's repeat this technique, but for two independent ZonedDateTime objects;
one obtained for 1dt1 and one for 1dt2:

ZonedDateTime zdtl = 1ldtl.atZone(Zoneld.of ("Europe/Bucharest"));
ZonedDateTime zdt2 1dt2.atZone (Zoneld.of ("Australia/Perth"));

// 300
long betweenInMinutesWithZone
= Math.abs (ChronoUnit .MINUTES.between (zdtl, zdt2));

// 5
long untilInHoursWithZone
= Math.abs (zdtl.until (zdt2, ChronoUnit.HOURS)) ;

77. Implementing a chess clock

Starting with JDK 8, the java.time package has an abstract class named Clock. The
main purpose of this class is to allow us to plug in different clocks when needed (for
example, for testing purposes). By default, Java comes with four implementations:
SystemClock, OffsetClock, TickClock, and FixedClock. For each of these
implementations, there are static methods in the Clock class. For example, the
following code creates FixedClock (a clock that always returns the same Instant):

Clock fixedClock = Clock.fixed(Instant.now(), ZoneOffset.UTC);

[164]

Working with Date and Time Chapter 3

There is also TickClock, which returns the current Instant ticking in whole
seconds for the given time zone:

Clock tickClock = Clock.tickSeconds (ZoneId.of ("Europe/Bucharest"));

There is also a method that can be used to tick in whole minutes,
tickMinutes (), and a generic one, tick (), which allows us to
specify Duration.

A Clock class may also support time zones and offsets, but the most important
method of a Clock class is instant (). This method returns the instant of Clock:

// 2019-03-01T13:29:34%
System.out.println(tickClock.instant ());

There is also the millis () method, which returns the current
instant of the clock in milliseconds.

Let's assume that we want to implement a clock that acts a chess clock:

1 —

LEFT RIGHT

In order to implement a Clock class, there are several steps to follow:

1. Extend the Clock class.
2. Implement Serializable
3. Override at least the abstract methods inherited from Clock.

A skeleton of a Clock class is as follows:
public class ChessClock extends Clock implements Serializable {

@Override
public ZoneId getZone() {

}

[165]

Working with Date and Time Chapter 3

@Override
public Clock withZone (ZoneId zone) {

}

@Override
public Instant instant () {

}
}

Our ChessClock will work only with UTC; no other time zone will be supported.
This means that the getZone () and withZone () methods can be implemented as
follows (of course, this can be modified in the future):

@Override

public ZonelId getZone() |
return ZoneOffset.UTC;

}

@Override
public Clock withZone (ZoneId zone) {
throw new UnsupportedOperationException (
"The ChessClock works only in UTC time zone");

}

The climax of our implementation is the instant () method. The difficulty consists
in managing two Instant, one for the player from the left (instantLeft) and one
for the player from the right (instantRight). We can associate every call of the
instant () method with the fact that the current player has performed a move, and
now it is the other player's turn. So, basically, this logic says that the same player
cannot call instant () twice. Implementing this logic, the instant () method is as
follows:

public class ChessClock extends Clock implements Serializable {

public enum Player {
LEFT,
RIGHT

private static final long serialVersionUID = 1L;

private Instant instantStart;
private Instant instantLeft;
private Instant instantRight;
private long timeleft;

[166]

Working with Date and Time

Chapter 3

private long timeRight;
private Player player;

public ChessClock (Player player) {
this.player = player;

public Instant gameStart () {

if (this.instantStart == null) {
this.timeLeft = 0;
this.timeRight = 0;
this.instantStart = Instant.now();
this.instantLeft = instantStart;
this.instantRight = instantStart;
return instantStart;

throw new IllegalStateException (

"Game already started. Stop it and try again.");

public Instant gameEnd() {

if (this.instantStart != null) {
instantStart = null;
return Instant.now();
}
throw new IllegalStateException ("Game was not started.");
}
@Override

public ZonelId getZone() |
return ZoneOffset.UTC;

@Override
public Clock withZone (ZoneId zone) {
throw new UnsupportedOperationException (
"The ChessClock works only in UTC time zone");

@Override
public Instant instant () {

if (this.instantStart != null) {
if (player == Player.LEFT) {

[167]

Working with Date and Time Chapter 3

player = Player.RIGHT;

long secondsLeft = Instant.now().getEpochSecond()
- instantRight.getEpochSecond() ;

instantLeft = instantLeft.plusSeconds (
secondsLeft - timelLeft);

timeLeft = secondsLeft;

return instantLeft;
} else {
player = Player.LEFT;

long secondsRight = Instant.now().getEpochSecond/()
- instantLeft.getEpochSecond();

instantRight = instantRight.plusSeconds (
secondsRight - timeRight);

timeRight = secondsRight;

return instantRight;

throw new IllegalStateException ("Game was not started.");

}

So, depending on which player calls the instant () method, the code computes the
number of seconds needed by that player to think until she/he performed a move.
Moreover, the code switches the player, so the next call of instant () will deal with
the other player.

Let's consider a chess game starting at 2019-03-01T14:02:46.3094592:
ChessClock chessClock = new ChessClock (Player.LEFT);

// 2019-03-01T14:02:46.309459%2
Instant start = chessClock.gameStart();

[168]

Working with Date and Time Chapter 3

Further, the players perform the following sequence of movements until the player
from the right wins the game:

Left moved first after 2 seconds: 2019-03-01T14:02:48.309459Z7
Right moved after 5 seconds: 2019-03-01T14:02:51.309459Z2

Left moved after 6 seconds: 2019-03-01T14:02:54.3094597

Right moved after 1 second: 2019-03-01T14:02:52.309459Z

Left moved after 2 second: 2019-03-01T14:02:56.3094597

Right moved after 3 seconds: 2019-03-01T14:02:55.309459Z2

Left moved after 10 seconds: 2019-03-01T14:03:06.3094597

Right moved after 11 seconds and win: 2019-03-01T14:03:06.309459%Z

It looks like the clock has correctly registered the movements of the players.

Finally, the game is over after 40 seconds:

Game ended:2019-03-01T14:03:26.350749300Z
Instant end = chessClock.gameEnd() ;

Game duration: 40 seconds
// Duration.between (start, end).getSeconds();

Summary

Mission accomplished! This chapter provided a comprehensive overview of working
with date and time information. A wide range of applications must manipulate this
kind of information. Therefore, having the solutions to these problems under your
tool belt is not optional. From Date and Calendar to LocalDate, LocalTime,
LocalDateTime, ZoneDateTime, OffsetDateTime, OffsetTime,

and Instant—they are all important and very useful in daily tasks that involve date
and time.

Download the applications from this chapter to see the results and to see additional
details.

[169]

Type Inference

This chapter includes 21 problems that involve JEP 286 or Java Local Variable Type
Inference (LVTI), also known as the var type. These problems have been carefully

crafted to reveal the best practices and common mistakes that are involved in using
var. By the end of this chapter, you will have learned everything you need to know
about var to push it to production.

Problems

Use the following problems to test your type inference programming prowess. I
strongly encourage you to give each problem a try before you turn to the solutions
and download the example programs:

78.

79.

80.

81.

82.

83.

Simple var example: Write a program that exemplifies the correct usage of
type inference (var) with respect to the code's readability.

Using var with primitive types: Write a program that exemplifies the
usage of var with Java primitive types (int, long, £loat, and double).

Using var and implicit type casting to sustain the code's maintainability:
Write a program that exemplifies how var and implicit type casting can
sustain the code's maintainability.

Explicit downcast or better avoid var: Write a program that exemplifies
the combination of var and explicit downcast and explain why var should
be avoided.

Avoid using var if the called names don't contain enough type
information for humans: Provide examples where var should be avoided
because its combination with called names causes loss of information for
humans.

Combining LVTI and programming to the interface technique: Write a
program that exemplifies the usage of var via the programming to the
interface technique.

Type Inference Chapter 4

84.

85.
86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

Combining LVTI and the diamond operator: Write a program that
exemplifies the usage of var with the diamond operator.

Assigning an array to var: Write a program that assigns an array to var.

Using LVTI in compound declarations: Explain and exemplify the usage
of LVTT with compound declarations.

LVTI and variable scope: Explain and exemplify why LVTI should
minimize the variable's scope as much as possible.

LVTI and the ternary operator: Write several snippets of code that
exemplify the advantages of combining LVTI and the ternary operator.
LVTI and for loops: Write several examples that exemplify the usage of
LVTIin for loops.

LVTI and streams: Write several snippets of code that exemplify the usage
of LVTI and Java streams.

Using LVTI to break up nested/large chains of expressions: Write a
program that exemplifies the usage of LVTI for breaking up a nested/large
chain of expressions.

LVTI and the method return and argument types: Write several snippets
of code that exemplify the usage of LVTI and Java methods in terms of
return and argument types.

LVTI and anonymous classes: Write several snippets of code that
exemplify the usage of LVTI in anonymous classes.

LVTI can be £inal and effectively final: Write several snippets of code
that exemplify how LVTI can be used for final and effectively final
variables.

LVTI and lambdas: Explain via several snippets of code how LVTI can be
used in combination with lambda expressions.

LVTI and null initializers, instance variables, and catch blocks
variables: Explain with examples how LVTI can be used in combination
with null initializers, instance variables, and catch blocks.

LVTI and generic types, T: Write several snippets of code that exemplify
how LVTI can be used in combination with generic types.

LVTI, wildcards, covariants, and contravariants: Write several snippets of
code that exemplify how LVTI can be used in combination with wildcards,
covariants, and contravariants.

[171]

Type Inference Chapter 4

Solutions

The following sections describe the solutions to the preceding problems. Remember
that there usually isn't a single correct way to solve a particular problem. Also,
remember that the explanations shown here include only the most interesting and
important details that are needed to solve the problems. You can download the
example solutions to view additional details and experiment with the programs
from https://github.com/PacktPublishing/Java-Coding-Problems.

78. Simple var example

Starting with version 10, Java comes with JEP 286, or Java LVTI, also known as the
var type.

The var identifier is not a Java keyword, it is a reserved type name.

This is a 100% compile feature with no side effects in terms of bytecode, runtime, or
performance. In a nutshell, LVTT is applied to local variables and works as follows:
the compiler checks the right-hand side and infers the real type (if the right-hand side
is an initializer, then it uses that type).

This feature ensures compile-time safety. This means that we cannot
compile an application that tries to achieve a wrong assignment. If
the compiler has inferred the concrete/actual type of var, we can
only assign the values of that type.

There are multiple benefits of LVTI; for example, it reduces code verbosity and
mitigates redundancy and boilerplate code. Moreover, the time spent to write code can
be reduced by LVTI, especially in cases that involve heavy declarations, as follows:

// without var
Map<Boolean, List<Integer>> evenAndOddMap...

// with var
var evenAndOddMap = ...

[172]

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Type Inference Chapter 4

A controversial benefit is represented by code readability. Some voices sustain that
using var reduces code readability, while other voices support the opposite.
Depending on the use case, it may require a trade-off in readability, but the truth is
that, typically, we pay a lot of attention to meaningful names for fields (instance
variables) and we neglect the names of local variables. For example, let's consider the
following method:

public Object fetchTransferableData (String data)
throws UnsupportedFlavorException, IOException {

StringSelection ss = new StringSelection(data);
DataFlavor[] df = ss.getTransferDataFlavors();
Object obj = ss.getTransferData (df[0]);

return obj;

}

This is a short method; it has a meaningful name and a clean implementation. But
checkout the local variables' names. Their names are drastically reduced (they are just
shortcuts), but this is not a problem since the left-hand side provides enough
information that we can easily understand the type of each local variable. Now, let's
write this code using LVTI:

public Object fetchTransferableData (String data)
throws UnsupportedFlavorException, IOException {

var ss = new StringSelection (data);
var df = ss.getTransferDataFlavors();
var obj = ss.getTransferData (df[0]);

return obj;

}

Obviously, the code's readability has decreased since it's now harder to infer the type
of the local variables. As the following screenshot reveals, the compiler doesn't have a
problem with inferring the correct types, but for humans, this is a lot more difficult:

Decompilation of the class containing this method:

public Object fetchTransferableData(String data)
throws UnsupportedFlavorException, IOException {

StringSelection ss = new StringSelection(data);
DataFlaver[] df = ss.getTransferDataFlavors();
Object obj = ss.getTransferData(df[0]);

return obj;

[173]

Type Inference Chapter 4

The solution to this problem consists of providing a meaningful name to local
variables when relying on LVTI. For example, the code can regain its readability if the
local variables' names are provided, as follows:

public Object fetchTransferableData (String data)
throws UnsupportedFlavorException, IOException {

var stringSelection = new StringSelection (data);
var dataFlavorsArray = stringSelection.getTransferDataFlavors();
var obj = stringSelection.getTransferData(dataFlavorsArrayl[0]);

return obj;

}

Nevertheless, the readability problem is also caused by the fact that, typically, we
tend to look at the type as primary information and the variable name as secondary
information, while this should be the opposite.

Let's look at two more examples that are meant to enforce the aforementioned
statements. A method that uses collections (for example, List) is as follows:

// Avoid
public List<Player> fetchPlayersByTournament (String tournament) {

var t = tournamentRepository.findByName (tournament) ;
var p = t.getPlayers();

return p;

// Prefer
public List<Player> fetchPlayersByTournament (String tournament) {

var tournamentName = tournamentRepository.findByName (tournament);
var playerList = tournamentName.getPlayers();

return playerList;

}

Providing meaningful names for local variables doesn't mean falling into the over-
naming technique.

For example, avoid naming variables by simply repeating the type name:

// Avoid
var fileCacheImageOutputStream
= new FileCacheImageOutputStream(..., ...);

[174]

Type Inference Chapter 4

// Prefer
var outputStream = new FileCacheImageOutputStream(..., ...);

// Or
var outputStreamOfFoo = new FileCacheImageOutputStream(..., ...);

79. Using var with primitive types

The problem of using LVTI with primitive types (int, long, float, and double)is
that the expected and inferred types may differ. Obviously, this causes confusion and
unexpected behavior in code.

The guilty party in this situation is the implicit type casting used by the var type.

For example, let's consider the following two declarations that rely on explicit
primitive types:
boolean valid = true; // this is of type boolean

char ¢ = 'c'; // this is of type char

Now, let's replace the explicit primitive type with LVTI:

var valid = true; // inferred as boolean
var ¢ = 'c¢'; // inferred as char

Nice! There are no problems so far! Now, let's have a look at another set of
declarations based on explicit primitive types:

int intNumber = 10; // this is of type int

long longNumber = 10; // this is of type long

float floatNumber = 10; // this is of type float, 10.0
double doubleNumber = 10; // this is of type double, 10.0

Let's follow the logic from the first example and replace the explicit primitive types
with LVTL

// Avoid

var intNumber = 10; // inferred as int
var longNumber = 10; // inferred as int
var floatNumber = 10; // inferred as int
var doubleNumber = 10; // inferred as int

[175]

Type Inference Chapter 4

Conforming to the following screenshot, all four variables have been inferred as
integers:

Decompilation of the class containing these declarations:
int intNumber = 18;

int longNumber = 18;

int floatNumber = 18;

int doubleNumber = 18;

The solution to this problem consists of using explicit Java literals:

// Prefer
var intNumber = 10; // inferred as int
var longNumber = 10L; // inferred as long

var floatNumber = 10F; // inferred as float, 10.0
var doubleNumber = 10D; // inferred as double, 10.0

Finally, let's consider the case of a number with decimals, as follows:

var floatNumber = 10.5; // inferred as double

The variable name suggests that 10. 5 is f1oat, but actually, it is inferred as double.
So, it is advisable to rely on literals even for numbers with decimals (especially for
numbers of the float type):

var floatNumber = 10.5F; // inferred as float

80. Using var and implicit type casting to
sustain the code's maintainability

In the previous section, Using var with primitive types, we saw that combining var
with implicit type casting can cause real problems. But in certain scenarios, this
combination can be advantageous and sustain the code's maintainability.

Let's consider the following scenario—we need to write a method that sits between
two existing methods of an external APl named ShoppingaAddicted (by
extrapolation, these methods can be two web services, endpoints, and so on). One
method is dedicated to returning the best price for a given shopping cart. Basically,
this method takes a bunch of products and queries different online stores to fetch the
best price.

[176]

Type Inference Chapter 4

The resulting price is returned as int. A stub of this method is listed as follows:

public static int fetchBestPrice(String[] products) {

float realprice = 399.99F; // code to query the prices in stores
int price = (int) realprice;

return price;

}

The other method receives the price as int and performs the payment. If the payment
is successful, it returns true:

public static boolean debitCard(int amount) {

return true;

}

Now, by programming with respect to this code, our method will act as a client, as
follows (the customers can decide what items to buy, and our code will return the
best price for them and debit their cards accordingly):

// Avoid
public static boolean purchaseCart (long customerId) {

int price = ShoppingAddicted.fetchBestPrice(new String[0]);
boolean paid = ShoppingAddicted.debitCard (price);

return paid;

}

But after some time, the owners of the ShoppingAddicted API realize that they lose
money by converting the real price into int (for example, the real price is 399.99, but
in int form, it's 399.0, which means a loss of 99 cents). So, they decide to quit this
practice and return the real price as float:

public static float fetchBestPrice (String[] products) {
float realprice = 399.99F; // code to query the prices in stores

return realprice;

[177]

Type Inference Chapter 4

Since the returned price is f1oat, debitCard () is updated as well:

public static boolean debitCard(float amount) {

return true;

}

But once we upgrade to the new release of the ShoppingaAddicted AP the code will
fail with a possible lossy conversion from float into int exceptions. This is normal
since our code expects int. Since our code doesn't tolerate these modifications well,
the code needs to be modified accordingly.

Nevertheless, if we have anticipated this situation and used var instead of int, then
the code will work without problems thanks to implicit type casting:

// Prefer
public static boolean purchaseCart (long customerId) {

var price = ShoppingAddicted.fetchBestPrice(new String[0]);
var paid = ShoppingAddicted.debitCard(price);

return paid;

}

81. Explicit downcast or better avoid var

In the Using var with primitive types section, we talked about using literals with
primitive types (int, long, float, and double) to avoid issues caused by implicit
type casting. But not all Java primitive types can take advantage of literals. In such a
situation, the best approach is to avoid using var. But let's see why!

Check out the following declarations of byte and short variables:

byte byteNumber = 25; // this is of type byte
short shortNumber = 1463; // this is of type short

If we replace the explicit types with var, then the inferred type will be int:

var byteNumber = 25; // inferred as int
var shortNumber = 1463; // inferred as int

[178]

Type Inference Chapter 4

Unfortunately, there are no literals available for these two primitive types. The only
approach to help the compiler to infer the correct types is to rely on an explicit
downcast:

var byteNumber = (byte) 25; // inferred as byte
var shortNumber = (short) 1463; // inferred as short

While this code compiles successfully and works as expected, we cannot say that
using var brought any value compared to using explicit types. So, in this case, it is
better to avoid var and explicit downcast.

82. Avoid using var if the called names don't

contain enough type information for humans

Well, var is not a silver bullet, and this problem will highlight this once again. The
following snippet of code can be written using explicit types or var without losing
information:

// using explicit types
MemoryCacheImageInputStream is =
new MemoryCacheImageInputStream(...);
JavaCompiler jc = ToolProvider.getSystemJavaCompiler () ;
StandardJavaFileManager fm = compiler.getStandardFileManager(...);

So, migrating the preceding snippet of code to var will result in the following code
(the variables names have been chosen by visually inspecting the called names from
the right-hand side):

// using var

var inputStream = new MemoryCacheImagelInputStream(...);

var compiler = ToolProvider.getSystemJavaCompiler ();
var fileManager = compiler.getStandardFileManager(...);

The same will happen at the border of over-naming;:

// using var

var inputStreamOfCachedImages = new MemoryCachelImageInputStream(...);
var javaCompiler = ToolProvider.getSystemJavaCompiler () ;
var standardFileManager = compiler.getStandardFileManager(...);

So, the preceding code doesn't raise any issues in choosing the variable's names and
readability. The called names contain enough information for humans to feel
comfortable with var.

[179]

Type Inference Chapter 4

But let's consider the following snippet of code:

// Avoid
public File fetchBinContent () {
return new File(...);

}

// called from another place
// notice the variable name, bin
var bin = fetchBinContent ();

For humans, it is pretty difficult to infer the type that's returned by the called name
without inspecting the returned type of this name, fetchBinContent (). As a rule of
thumb, in such cases, the solution should avoid var and rely on explicit types since
there is not enough information on the right-hand side for us to choose a proper name
for the variable and obtain highly readable code:

// called from another place
// now the left-hand side contains enough information
File bin = fetchBinContent () ;

So, if var in combination with the called names causes loss of clarity, then it is better
to avoid the usage of var. Ignoring this statement may lead to confusion and will
increase the time needed to understand and/or extend the code.

Consider another example based on the java.nio.channels.Selector class. This
class exposes a static method named open () that returns a newly opened
Selector. But if we capture this return in a variable declared with var, it's tempting
to think that this method may return a boolean representing the success of opening
the current selector. Using var without considering the possible loss of clarity can
produce exactly these kinds of problems. Just a few issues like this one and the code
will become a real pain.

83. Combining LVTI and programming to the
interface technique

Java best practices encourage us to bind the code to the abstraction. In other words,
we need to rely on the programming to the interface technique.

This technique fits very well for collection declarations. For example, it is advisable to
declare ArrayList as follows:

List<String> players = new ArrayList<>();

[180]

Type Inference Chapter 4

We should also avoid something like this:

ArrayList<String> players = new ArrayList<>();

By following the first example, the code instantiates the ArrayList class

(or HashsSet, HashMap, and so on), but declares a variable of the List type (or Set,
Map, and so on). Since List, Set, Map, and many more are interfaces (or contracts), it
is very easy to replace the instantiation with other implementation of List (Set,

and Map) without subsequent modifications being made to the code.

Unfortunately, LVTI cannot take advantage of the programming to the interface
technique. In other words, when we use var, the inferred type is the concrete
implementation, not the contract. For example, replacing List<String> with var
will result in the inferred type, ArrayList<String>:

// inferred as ArrayList<String>
var playerList = new ArrayList<String>();

Nevertheless, there are some explanations that sustain this behavior:

e LVTI acts at the local level (local variables) where the programming to the
interface technique is used less than method parameters/return types or
field types.

e Since local variables have a small scope, the modifications that are induced
by switching to another implementation should be small as well. Switching
implementation should have a small impact on detecting and fixing the
code.

¢ LVTI sees the code from the right-hand side as an initializer that's useful for
inferring the actual type. If this initializer is going to be modified in the
future, then the inferred type may differ, and this will cause problems in
the code that uses this variable.

84. Combining LVTI and the diamond operator

As a rule of thumb, LVTI combined with the diamond operator may result in
unexpected inferred types if the information that's needed for inferring the expected
type is not present in the right-hand side.

Before JDK 7, that is, Project Coin, List<String> would be declared as follows:

List<String> players = new ArrayList<String>();

[181]

Type Inference Chapter 4

Basically, the preceding example explicitly specifies the generic class's instantiation
parameter type. Starting with JDK 7, Project Coin introduced the diamond operator,
which is capable of inferring the generic class instantiation parameter type, as
follows:

List<String> players = new ArrayList<>();

Now, if we think about this example in terms of LVTI, we will get the following
result:

var playerList = new ArrayList<>();

But what will be the inferred type now? Well, we have a problem because the inferred
type will be ArrayList<Object>, not ArrayList<String>. The explanation is
quite obvious: the information that's needed for inferring the expected type (St ring)
is not present (notice that there is no String type mentioned in the right-hand side).
This instructs LVTI to infer the type that is the broadest applicable type, which, in this
case, is Object.

Butif ArrayList<Object> was not our intention, then we need a solution to this
problem. The solution is to provide the information that's needed for inferring the
expected type, as follows:

var playerList = new ArrayList<String>();

Now, the inferred type is ArrayList<String>. The type can be inferred indirectly as
well. See the following example:

var playerStack = new ArrayDeque<String>();

// inferred as ArrayList<String>
var playerList = new ArraylList<>(playerStack);

It can also be inferred indirectly in the following way:

Player pl = new Player();
Player p2 = new Player();
var listOfPlayer = List.of(pl, p2); // inferred as List<Player>

// Don't do this!

var listOfPlayer = new ArraylList<>(); // inferred as ArrayList<Object>
listOfPlayer.add(pl);

listOfPlayer.add (p2);

[182]

Type Inference Chapter 4

85. Assigning an array to var

As a rule of thumb, assigning an array to var doesn't require brackets, []. Defining
an array of int via the corresponding explicit type can be done as follows:

int[] numbers = new int[10];

// or, less preferred
int numbers[] = new int[10];

Now, trying to intuit how to use var instead of int may result in the following
attempts:

var[] numberArray = new int[10]
var numberArray[] = new int[10]

~e o~

Unfortunately, none of these two approaches will compile. The solution requires us to
remove the brackets from the left-hand side:

// Prefer
var numberArray = new int[10]; // inferred as array of int, int[]
numberArray[0] = 3; // works

numberArray[0] = 3.2; // doesn't work
numbers[0] = "3"; // doesn't work

There is a common practice to initialize an array at declaration time, as follows:

// explicit type work as expected
int [] numbers = {1, 2, 3};

However, trying to use var will not work (will not compile):

// Does not compile

var numberArray = {1, 2, 3};
var numberArray[] = {1, 2, 3};
var[] numberArray = {1, 2, 3};

This code doesn't compile because the right-hand side doesn't have its own type.

[183]

Type Inference Chapter 4

86. Using LVTI in compound declarations

A compound declaration allows us to declare a group of variables of the same type
without repeating the type. The type is specified a single time and the variables are
demarcated by a comma:

// using explicit type

String pending = "pending", processed = "processed",
deleted = "deleted";

Replacing st ring with var will result in code that doesn't compile:

// Does not compile
var pending = "pending", processed = "processed", deleted = "deleted";

The solution to this problem is to transform the compound declaration into one
declaration per single line:

// using var, the inferred type is String

var pending = "pending";
var processed = "processed";
var deleted = "deleted";

So, as a rule of thumb, LVTI cannot be used in compound declarations.

87. LVTI and variable scope

The clean code best practices include keeping a small scope for all local variables. This
is one of the clean code golden rules that was followed even before the existence of
LVTL

This rule sustains the readability and debugging phase. It can speed up the process of
finding bugs and writing fixes. Consider the following example that breaks down this
rule:

// Avoid
var stack = new Stack<String>();
stack.push ("John");
stack.push ("Martin") ;
stack.push ("Anghel");
stack.push ("Christian");

// 50 lines of code that doesn't use stack

[184]

Type Inference Chapter 4

// John, Martin, Anghel, Christian
stack.forEach(...);

So, the preceding code declares a stack with four names, contains 50 lines of code that
don't use this stack, and finishes with a loop of this stack via the forEach () method.
This method is inherited from java.util.Vector and will loop the stack as any
vector (John, Martin, Anghel, Christian). This is the order of traversal that we
want.

But later on, we decide to switch from the stack to ArrayDeque (the reason is
irrelevant). This time, the forEach () method will be the one provided by the
ArrayDeque class. The behavior of this method is different from

Vector. forEach (), meaning that the loop will traverse the entries following the
Last In First Out (LIFO) traversal (Christian, Anghel, Martin, John):

// Avoid
var stack
stack.push ("John") ;

= new ArrayDeque<String>();
(
stack.push ("Martin") ;
(
(

stack.push ("Anghel");
stack.push ("Christian");

// 50 lines of code that doesn't use stack

// Christian, Anghel, Martin, John
stack.forEach(...);

This was not our intention! We switched to ArrayDeque for other purposes, not for
affecting the looping order. But it is pretty difficult to see that there was a bug in the
code since the part of the code containing the forEach () part is not in proximity of
the code where we completed the modifications (50 lines below this line of code). It is
our duty to come up with a solution that maximizes the chances of getting this bug
fixed quickly and avoiding a bunch of scrolling up and down to understand what is
going on. The solution consists of following the clean code rule we invoked earlier
and writing this code with a small scope for the stack variable:

// Prefer

var stack new Stack<String>();

stack.push ("John") ;
stack.push ("Martin");
stack.push ("Anghel");
stack.push ("Christian");

[185]

Type Inference Chapter 4

// John, Martin, Anghel, Christian
stack.forEach(...);

// 50 lines of code that doesn't use stack

Now, when we switch from Stack to ArrayQueue, we should notice the bug faster
and be able to fix it.

88. LVTI and the ternary operator

As long as it is written correctly, the ternary operator allows us to use different types
of operands on the right-hand side. For example, the following code will not compile:

// Does not compile
List evensOrOdds = containsEven ?
List.of (10, 2, 12) : Set.of (13, 1, 11);

// Does not compile
Set evensOrOdds = containsEven *?
List.of (10, 2, 12) : Set.of (13, 1, 11);

Nevertheless, this code can be fixed by rewriting it using the correct/supported
explicit types:

Collection evensOrOdds = containsEven ?
List.of (10, 2, 12) : Set.of (13, 1, 11);

Object evensOrOdds = containsEven ?
List.of (10, 2, 12) : Set.of (13, 1, 11);

A similar attempt will fail for the following snippet of code:

// Does not compile
int numberOrText = intOrString ? 2234 : "2234";

// Does not compile
String numberOrText = intOrString ? 2234 : "2234";

However, it can be fixed like this:

Serializable numberOrText = intOrString ? 2234 : "2234";

Object numberOrText = intOrString ? 2234 : "2234";

[186]

Type Inference Chapter 4

So, in order to have a ternary operator with different types of operands on the right-
hand side, the developer must match the correct type that supports both conditional
branches. Alternatively, the developer can rely on LVTI, as follows (of course, this
works for the same types of operands as well):

// inferred type, Collection<Integer>

var evensOrOddsCollection = containsEven ?

List.of (10, 2, 12) : Set.of(13, 1, 11);

// inferred type, Serializable
var numberOrText = intOrString ? 2234 : "2234";

Don't conclude from these examples that the var type is inferred at runtime! It is
NOT!

89. LVTI and for loops

Declaring simple for loops using explicit types is a trivial task, as follows:

// explicit type
for (int 1 = 0; 1 < 5; i4++) {

}
Alternatively, we can use an enhanced for loop:
List<Player> players = List.of(
new Player (), new Player (), new Player());
for (Player player: players) {

}

Starting with JDK 10, we can replace the explicit types of the variables, i and player,
with var, as follows:

for (var 1 = 0; 1 < 5; i++) { // 1 is inferred of type int
}
for (var player: players) { // 1 is inferred of type Player

}

[187]

Type Inference Chapter 4

Using var can be helpful when the type of a looped array, collection, and so on is
changed. For example, by using var, both versions of the following array can be
looped without specifying the explicit type:

// a variable 'array' representing an int[]
int[] array = { 1, 2, 3 };

// or the same variable, 'array',K but representing a String[]
String[] array = {

"1", "2", "3"
bi

// depending on how 'array' is defined
// '"1'" will be inferred as int or as String
for (var i: array) {

System.out.println (i) ;

90. LVTI and streams

Let's consider the following St ream<Integer> stream:

// explicit type
Stream<Integer> numbers = Stream.of (1, 2, 3, 4, 5);
numbers.filter(t -> t % 2 == 0).forEach(System.out::println);

Using LVTI instead of St ream<Integer> is pretty straightforward. Simply replace
Stream<Integer> with var, as follows:

// using var, inferred as Stream<Integer>
var numberStream = Stream.of (1, 2, 3, 4, 5);

o)

numberStream.filter(t -> t $ 2 == 0).forEach(System.out::println);

Here is another example:

// explicit types
Stream<String> paths = Files.lines(Path.of("..."));
List<File> files = paths.map(p -> new File(p)) .collect (toList ());

// using var
// inferred as Stream<String>
var pathStream = Files.lines (Path.of(""));

// inferred as List<File>
var filelist = pathStream.map(p —-> new File(p)) .collect (toList());

[188]

Type Inference Chapter 4

It looks like Java 10, LVTL Java 8, and the St ream API make a good team.

91. Using LVTI to break up nested/large chains
of expressions

Large/nested expressions are usually snippets of codes that look pretty impressive
and are intimidating. They are commonly seen as pieces of smart or clever code. It is
controversial as to whether this is good or bad, but most likely, the balance tends to
be in favor of those who claim that such code should be avoided. For example, check
out the following expression:

List<Integer> ints = List.of (1, 1, 2, 3, 4, 4, 6, 2, 1, 5, 4, 5);

// Avoid

int result = ints.stream()
.collect (Collectors.partitioningBy (i -> i % 2 == 0))
.values ()
.stream()

.max (Comparator.comparing (List::size))
.orElse(Collections.emptyList ())
.stream()

.mapToInt (Integer::intValue)

.sum() ;

Such expressions can be written deliberately or they can represent the final result of
an incremental process that enriches an initially small expression in time.
Nevertheless, when such expressions start to become gaps in readability, they must
be broken into pieces via local variables. But this is not fun and can be considered
exhausting work that we want to avoid:

List<Integer> ints = List.of(1, 1, 2, 3, 4, 4, 6, 2, 1, 5, 4, 5);

// Prefer
Collection<List<Integer>> evenAndOdd = ints.stream()

.collect (Collectors.partitioningBy (i -> i % 2 == 0))
.values () ;

List<Integer> evenOrOdd = evenAndOdd.stream/()
.max (Comparator.comparing (List::size))
.orElse(Collections.emptyList());

int sumEvenOrOdd = evenOrOdd.stream/()
.mapToInt (Integer::intValue)
.sum () ;

[189]

Type Inference Chapter 4

Check out the types of the local variables in the preceding code. We

have Collection<List<Integer>>, List<Integer>, and int. It is obvious that
these explicit types require some time to be fetched and written. This may be a good
reason to avoid breaking this expression into pieces. Nevertheless, the triviality of
using the var type instead of explicit types is tempting if we wish to adopt the local
variable's style because it saves time that's usually spent fetching the explicit types:

var intList = List.of (1, 1, 2, 3, 4, 4, 6, 2, 1, 5, 4, 5);

// Prefer

var evenAndOdd = intList.stream()
.collect (Collectors.partitioningBy (i -> i % 2 == 0))
.values () ;

var evenOrOdd = evenAndOdd.stream/()
.max (Comparator.comparing(List::size))
.orElse (Collections.emptyList ());

var sumEvenOrOdd = evenOrOdd.stream/()
.mapTolInt (Integer::intValue)
.sum() ;

Awesome! Now, it is the compiler's job to infer the types of these local variables. We
only choose the points where we break the expression and demarcate them with var.

92. LVTI and the method return and argument
types

As a rule of thumb, LVTI cannot be used as a return method type or as an argument
method type; instead, variables of the var type can be passed as method arguments
or store a return method. Let's iterate these statements via several examples:

e LVTI cannot be used as the method return type—the following code
doesn't compile:

// Does not compile
public var fetchReport (Player player, Date timestamp) {

return new Report ();

}

[190]

Type Inference Chapter 4

e LVTI cannot be used as a method argument type—the following code
doesn't compile:

public Report fetchReport (var player, var timestamp) {

return new Report();

}

e Variables of the var type can be passed as method arguments or store a
return method—the following code compiles successfully and it works:

public Report checkPlayer () {
var player = new Player();
var timestamp = new Date();

var report = fetchReport (player, timestamp);

return report;

public Report fetchReport (Player player, Date timestamp) {

return new Report();

93. LVTI and anonymous classes

LVTI can be used for anonymous classes. Let's take a look at the following example of
an anonymous class that uses an explicit type for the weighter variable:

public interface Weighter {
int getWeight (Player player);

Weighter weighter = new Weighter () {

@Override
public int getWeight (Player player) {
return ...;

}
bi

Player player = ...;
int weight = weighter.getWeight (player);

[191]

Type Inference Chapter 4

Now, look at what happens if we use LVTI:

var weighter = new Weighter () {
@Override
public int getWeight (Player player) {
return ...;

}
}i

94. LVTI can be final and effectively final

As a quick reminder, starting in Java SE 8, a local class can access local variables and
parameters of the enclosing block that are final or effectively final. A variable or parameter
whose value is never changed after it is initialized is effectively final.

The following snippet of code represents the use case of an effectively final variable
(trying to reassign the ratio variable will result in an error, which means that this
variable is effectively final) and two final variables (trying to reassign the 1imit and
bmi variables will result in an error, which means that these variables are final):

public interface Weighter {
float getMarginOfError();

float ratio = fetchRatio(); // this is effectively final

var weighter = new Weighter () {
@Override
public float getMarginOfError () {
return ratio * ...;

}
}i

ratio = fetchRatio(); // this reassignment will cause error
public float fetchRatio() {

final float limit = new Random() .nextFloat(); // this is final
final float bmi = 0.00023f; // this is final

limit = 0.002f; // this reassignment will cause error
bmi = 0.25f; // this reassignment will cause error

return limit * bmi / 100.12f;

[192]

Type Inference Chapter 4

Now, let's replace the explicit types with var. The compiler will infer the correct
types for these variables (ratio, 1imit, and bmi) and maintain their state—ratio

will be effectively final while 1imit and bmi are final. Trying to reassign any of them

will cause a specific error:

var ratio = fetchRatio(); // this is effectively final

var weighter = new Weighter () <
@Override
public float getMarginOfError () {
return ratio * ...;

}
}i

ratio = fetchRatio(); // this reassignment will cause error
public float fetchRatio() {

final var limit = new Random() .nextFloat(); // this is final
final var bmi = 0.00023f; // this is final

limit

= 0.002f; // this reassignment will cause error
bmi = 0.2

5f; // this reassignment will cause error

return limit * bmi / 100.12f;

95. LVTI and lambdas

The problem with using LVTI and lambdas is that the concrete type cannot be

inferred. Lambdas and method reference initializers are not allowed. This statement is

part of var limitations; therefore, lambda expressions and method references need
explicit target types.

For example, the following snippet of code will not compile:
// Does not compile

// lambda expression needs an explicit target-type
var incrementX = x -> x + 1;

// method reference needs an explicit target-type
var exceptionIAE = IllegalArgumentException::new;

[193]

Type Inference Chapter 4

Since var cannot be used, these two snippets of code need to be written as follows:

Function<Integer, Integer> incrementX = x -> x + 1;
Supplier<IllegalArgumentException> exceptionIAE
= IllegalArgumentException: :new;

But in the context of lambdas, Java 11 allows us to use var in lambda parameters. For
example, the following code is working in Java 11 (more details can be found in JEP
323: Local-Variable Syntax for Lambda Parameters at https://openjdk.java.net/jeps/
323):

@FunctionalInterface

public interface Square {

int calculate(int x);

}
Square square = (var x) —> x * x;
However, keep in mind that the following will not work:

var square = (var x) —-> x * x; // cannot infer

96. LVTI and null /initializers, instance variables,
and catch blocks variables

What does LVTI have in common with null initializers, instance variables, and catch
blocks variables? Well, LVTI cannot be used with any of them. The following
attempts will fail:

e LVTI cannot be used with null initializers:

// result in an error of type: variable initializer is 'null'
var message = null;

// result in: cannot use 'var' on variable without initializer
var message;

e LVTI cannot be used with instance variables (fields):
public class Player {

private var age; // error: 'var' is not allowed here
private var name; // error: 'var' is not allowed here

[194]

https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323

Type Inference Chapter 4

e LVTI cannot be used in catch block variables:

try |
TimeUnit .NANOSECONDS.sleep (1000);
} catch (var ex) { s)
Try-with-resource

On the other hand, the var type is a very nice fit for try-with-resource, as in the
following example:

// explicit type
try (PrintWriter writer = new PrintWriter (new File("welcome.txt"))) {
writer.println ("Welcome message");

}

// using var
try (var writer = new PrintWriter (new File ("welcome.txt"))) {
writer.println ("Welcome message");

}

97. LVTI and generic types, T

In order to understand how LVTI can be combined with generic types, let's start with
an example. The following method is a classical usage case of a generic type, T:

public static <T extends Number> T add(T t) {
T temp = t;

return temp;

}

In this case, we can replace T with var and the code will work fine:

public static <T extends Number> T add(T t) {
var temp = t;

return temp;

}

[195]

Type Inference Chapter 4

So, local variables that have generic types can take advantage of LVTI. Let's look at
some other examples, first using the generic type, T:

public <T extends Number> T add(T t) {

List<T> numberList = new ArrayList<T>();
numberList.add (t);

numberList.add ((T) Integer.valueOf (3));
numberList.add ((T) Double.valueOf(3.9));

’

// error: incompatible types: String cannot be converted to T
// numbers.add("5");

return numberList.get (0);

}
Now, let's replace List<T> with var:
public <T extends Number> T add(T t) {

var numberList = new ArrayList<T>();

numberList.add (t

numberList.add ((
(

)
T) Integer.valueOf (3))
numberList.add ((T)

Double.valueOf (3.9));

// error: incompatible types: String cannot be converted to T
// numbers.add ("5");

return numberList.get (0);
}
Pay attention and double-check the ArrayList instantiation for the presence of T.

Don't do this (this will be inferred as ArrayList<Object> and will ignore the real
type behind the generic type, T):

var numberList = new ArrayList<>();

98. LVTI, wildcards, covariants, and
contravariants

Replacing wildcards, covariants, and contravariants with LVTI is a delicate job and
should be done with full awareness of the consequences.

[196]

Type Inference Chapter 4

LVTI and wildcards

First, let's talk about LVTI and wildcards (?). It is a common practice to associate
wildcards with Class and write something like this:

// explicit type
Class<?> clazz = Long.class;

In such cases, there is no problem with using var instead of Class<?>. Depending on
the right-hand side type, the compiler will infer the correct type. In this example, the
compiler will infer Class<Long>.

But notice that replacing wildcards with LVTI should be done carefully and that you
should be aware of the consequences (or side effects). Let's look at an example where
replacing a wildcard with var is a bad choice. Consider the following piece of code:

Collection<?> stuff = new ArrayList<>();
stuff.add ("hello"); // compile time error
stuff.add ("world"); // compile time error

This code doesn't compile because of incompatible types. A very bad approach would
be to fix this code by replacing the wildcard with var, as follows:

var stuff = new ArrayList<>();
strings.add("hello"); // no error
strings.add("world"); // no error

By using var, the error will disappear, but this is not what we had in mind when we
wrote the preceding code (the code with type incompatibility errors). So, as a rule of
thumb, don't replace Foo<?> with var just because some annoying errors will
disappear by magic! Try to think about what the intended task was and act
accordingly. For example, maybe in the preceding snippet of code, we tried to define
ArrayList<String> and, by mistake, ended up with Collection<?>.

LVTI and covariants/contravariants

Replacing covariants (Foo<? extends T>) or contravariants (Foo<? super T>)
with LVTI is a dangerous approach and should be avoided.

Check out the following snippet of code:

// explicit types
Class<? extends Number> intNumber = Integer.class;
Class<? super FilterReader> fileReader = Reader.class;

[197]

Type Inference Chapter 4

In the covariant, we have an upper bound represented by the Number class, while in
the contravariant, we have a lower bound represented by the FilterReader class.
Having these bounds (or constraints) in place, the following code will trigger a
specific compile-time error:

// Does not compile

// error: Class<Reader> cannot be converted

// to Class<? extends Number>

Class<? extends Number> intNumber = Reader.class;

// error: Class<Integer> cannot be converted
// to Class<? super FilterReader>
Class<? super FilterReader> fileReader = Integer.class;

Now, let's use var instead of the preceding covariant and contravariant:

// using var
var intNumber = Integer.class;
var fileReader = Reader.class;

This code will not cause any issues. Now, we can assign any class to these variables so
that our bounds/constraints vanish. This is not what we intended to do:

// this will compile just fine
var intNumber = Reader.class;
var fileReader = Integer.class;

So, using var in place of our covariant and contravariant was a bad choice!

Summary

This was the last problem of this chapter. Take a look at JEP 323: Local-Variable Syntax
for Lambda Parameters (nttps://openjdk.java.net/jeps/323) and JEP 301: Enhanced
Enums (http://openjdk.java.net/jeps/301) for more information. Adopting these
features should be pretty smooth as long as you are familiar with the problems that
were covered in this chapter.

Download the applications from this chapter to see the results and additional details.

[198]

https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301
http://openjdk.java.net/jeps/301

Arrays, Collections, and Data
Structures

This chapter includes 30 problems that involve arrays, collections, and several data
structures. The aim is to provide solutions to a category of problems encountered in a
wide range of applications, including sorting, finding, comparing, ordering,
reversing, filling, merging, copying, and replacing. The solutions provided are
implemented in Java 8-12 and they can also be used as a basis for solving other
related issues. At the end of this chapter, you will have at your disposal a solid
breadth of knowledge that will prove useful in solving a variety of problems
involving arrays, collections, and data structures.

Problems

Use the following problems to test your programming prowess based on arrays,
collections, and data structures. I strongly encourage you to give each problem a try
before you turn to the solutions and download the example programs:

99. Sorting an array: Write several programs that exemplify different sorting
algorithms for arrays. Also, write a program for shuffling arrays.

100. Finding an element in an array: Write several programs that exemplify
how to find the given element (primitive and object) in a given array. Find
the index and/or simply check whether the value is in the array.

101. Checking whether two arrays are equal or mismatches: Write a program
that checks whether the two given arrays are equals or whether there is a
mismatch.

102. Comparing two arrays lexicographically: Write a program that compares
the given arrays lexicographically.

Arrays, Collections, and Data Structures Chapter 5

103.

104.

105.
106.

107.

108.

109.

110.

111.

112.

113.

114.
115.
116.

117.
118.

119.

120.

121.

Creating a stream from an array: Write a program that creates a stream
from the given array.

Minimum, maximum, and average of an array: Write a program that
computes the maximum, minimum, and average of the given array.
Reversing an array: Write a program that reverses the given array.

Filling and setting an array: Write several examples for filling up an array
and setting all elements based on a generator function to compute each
element.

Next Greater Element (NGE): Write a program that returns the NGE for
each element of an array.

Changing array size: Write a program that adds an element to an array by
increasing its size by one. In addition, write a program that increases the
size of an array with the given length.

Creating unmodifiable/immutable collections: Write several examples
that create unmodifiable and immutable collections.

Mapping a default value: Write a program that gets a value from Map or a
default value.

Computing whether absent/present in a Map: Write a program that
computes the value of an absent key or a new value of a present key.
Removal from a Map: Write a program that removes from a Map by means
of the given key.

Replacing entries from a Map: Write a program that replaces the given
entries from a Map.

Comparing two maps: Write a program that compares two maps.
Merging two maps: Write a program that merges two given maps.
Copying HashMap: Write a program that performs a shallow and deep
copy of HashMap.

Sorting a Map: Write a program that sorts a Map.

Removing all elements of a collection that match a predicate: Write a

program that removes all elements of a collection that match the given
predicate.

Converting a collection into an array: Write a program that converts a
collection into an array.

Filtering a collection by List: Write several solutions for filtering a
collection by a List. Reveal the best way of doing this.

Replacing elements of a List: Write a program that replaces each element
of a List with the result of applying a given operator to it.

[200]

Arrays, Collections, and Data Structures Chapter 5

122. Thread-safe collections, stacks, and queues: Write several programs that
exemplify the usage of Java thread-safe collections.

123. Breadth-first search (BFS): Write a program that implements the BFS
algorithm.

124. Trie: Write a program that implements a Trie data structure.

125. Tuple: Write a program that implements a Tuple data structure.

126. Union Find: Write a program that implements the Union Find algorithm.

127. Fenwick Tree or Binary Indexed Tree: Write a program that implements
the Fenwick Tree algorithm.

128. Bloom filter: Write a program that implements the Bloom filter algorithm.

Solutions

The following sections describe solutions to the preceding problems. Remember that
there usually isn't a single correct way to solve a particular problem. Also, remember
that the explanations shown here include only the most interesting and important
details needed to solve the problems. Download the example solutions to see
additional details and to experiment with the programs at https://github.com/
PacktPublishing/Java-Coding-Problems.

99. Sorting an array

Sorting an array is a common task encountered in a lot of domains/applications. It is
so common that Java provides a built-in solution for sorting arrays of primitives and
objects using a comparator. This solution works very well and is the preferable way
to go in most of the cases. Let's take a look at the different solutions in the next
section.

JDK built-in solutions

The built-in solution is named sort () and it comes in many different flavors in the
java.util.Arrays class (15+ flavors).

Behind the sort () method, there is a performant sorting algorithm of the Quicksort
type, named Dual-Pivot Quicksort.

[201]

https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems
https://github.com/PacktPublishing/Java-Coding-Problems

Arrays, Collections, and Data Structures Chapter 5

Let's assume that we need to sort an array of integers by natural order (primitive
int). For this, we can rely on Arrays.sort (int [] a), as in the following example:

int[] integers = new int[]{...};
Arrays.sort (integers);

Sometimes, we need to sort an array of an object. Let's assume that we have a class as
Melon:

public class Melon {

private final String type;
private final int weight;

public Melon (String type, int weight) {

this.type = type;
this.weight = weight;

// getters omitted for brevity
}

An array of Melon can be sorted by ascending weight via the proper Comparator:

Melon[] melons = new Melon[] { ... };
Arrays.sort (melons, new Comparator<Melon> () {
@Override
public int compare (Melon melonl, Melon melon2) {
return Integer.compare (melonl.getWeight (), melon2.getWeight ());

}
)i

The same result can be obtained by rewriting the preceding code via a lambda
expression:

Arrays.sort (melons, (Melon melonl, Melon melon2)
-> Integer.compare (melonl.getWeight (), melon2.getWeight ()));

Moreover, arrays provide a method for sorting elements in parallel,
parallelSort (). The sorting algorithm used behind the scenes is a parallel sort-
merge based on ForkJoinPool that breaks up the array into sub-arrays that are
themselves sorted and then merged. Here is an example:

Arrays.parallelSort (melons, new Comparator<Melon> () {
@Override
public int compare (Melon melonl, Melon melon2) {

[202]

Arrays, Collections, and Data Structures Chapter 5

return Integer.compare (melonl.getWeight (), melon2.getWeight ());

}
)i

Or, via a lambda expression, we have the following example:

Arrays.parallelSort (melons, (Melon melonl, Melon melon?2)
-> Integer.compare (melonl.getWeight (), melon2.getWeight ()));

The preceding examples sort an array in ascending order, but sometimes, we need to
sort it by descending order. When we sort an array of Object and rely on a
Comparator, we can simply multiply the result returned by Integer.compare () by
-1:

Arrays.sort (melons, new Comparator<Melon> () {
@Override
public int compare (Melon melonl, Melon melon2) {
return (-1) * Integer.compare (melonl.getWeight (),

melon2.getWeight ());
}
}) i

Or, we can simply switch the arguments in the compare () method.

In the case of an array of boxed primitive types, the solution can rely on
the Collections.reverse () method, as in the following example:

Integer[] integers = new Integer[] {3, 1, 5};

// 1, 3, 5
Arrays.sort (integers);

// 5, 3, 1
Arrays.sort (integers, Collections.reverseOrder());

Unfortunately, there is no built-in solution for sorting an array of primitives

in descending order. Most commonly, if we still want to rely on Arrays.sort (), the
solution to this problem consists of reversing the array (0 (n)) after it is sorted in
ascending order:

// sort ascending
Arrays.sort (integers);

// reverse array to obtain it in descending order
for (int leftHead = 0, rightHead = integers.length - 1;
leftHead < rightHead; leftHead++, rightHead--) {

[203]

Arrays, Collections, and Data Structures Chapter 5

int elem = integers[leftHead];
integers[leftHead] = integers|[rightHead];
integers[rightHead] = elem;

}

Another solution can rely on Java 8 functional style and boxing (be aware that boxing
is a pretty time-consuming operation):

int[] descIntegers = Arrays.stream(integers)
.boxed () //or .mapToObj (i -> 1)
.sorted((il, i2) -> Integer.compare (i2, il))
.mapToInt (Integer::intValue)
.toArray();

Other sorting algorithms

Well, there are plenty of other sorting algorithms out there. Each of them has pros
and cons, and the best way to choose between them is to benchmark the situation
specific to the application.

Let's examine some of these, as highlighted in the next section, and begin with a
pretty slow algorithm.

Bubble sort

Bubble sort is a simple algorithm that basically bubbles up the elements of the array.
This means that it traverses the array multiple times and swaps the adjacent elements
if they are in the wrong order, as in the following diagram:

The time complexity cases are as follows: best case 0 (n), average case 0 (n°), and
worst case O (n°)

[204]

Arrays, Collections, and Data Structures Chapter 5

The space complexity case is as follows: worst case O (1)
A utility method implementing the Bubble sort is as follows:
public static void bubbleSort (int[] arr) {
int n = arr.length;

for (int 1 = 0; 1 < n - 1; i++) {
for (int 7 = 0; J < n - 1 - 1; j++) {

if (arr[j] > arr[j + 11) H
int temp = arr([jl;

arr[j] = arr[j + 1];
arr[j + 1] = temp;

}

}

There is also an optimized version of it that relies on a while loop. You can find it in
the code bundled to this book under the name bubbleSortOptimized ().

As a performance comparison of time execution, for a random array of 100,000
integers, the optimized version will work around 2 seconds faster.

The preceding implementations work well for sorting arrays of primitives, but, for
sorting an array of Object, we need to bring Comparator into the code, as follows:

public static <T> void bubbleSortWithComparator (
T arr[], Comparator<? super T> c) {

int n = arr.length;

for (int 1 = 0; 1 < n - 1; i++) {
for (int 7 = 0; J < n — 1 - 1; Jj++) {

if (c.compare(arr([j], arr[j + 1]1) > 0) |
T temp = arr[j];
arr[j] = arxr[j + 1]1;
arr[j + 1] = temp;

}

[205]

Arrays, Collections, and Data Structures Chapter 5

Remember the Melon class from before? Well, we can write a Comparator for it by
implementing the Comparator interface:

public class MelonComparator implements Comparator<Melon> {

@Override
public int compare (Melon ol, Melon o02) {
return ol.getType () .compareTo (o2.getType());
}
}

Or, in Java 8 functional style, we have the following:

// Ascending
Comparator<Melon> byType = Comparator.comparing(Melon::getType);

// Descending
Comparator<Melon> byType
= Comparator.comparing (Melon: :getType) .reversed();

Having an array of Melon, the preceding Comparator, and the
bubbleSortWithComparator () method in a utility class named ArraySorts, we
can write something along the lines of the following:

Melon[] melons = {...};
ArraySorts.bubbleSortWithComparator (melons, byType);

For brevity, the Bubble sort optimized version with a Comparator was skipped, but it
is available in the code bundled to the book.

Bubble sort is fast when the array is almost sorted. Also, it fits well
for sorting rabbits (big elements that are close to the start of the
array) and turtles (small elements that are close to the end of the
array). But overall, this is a slow algorithm.

Insertion sort

The insertion sort algorithm relies on a simple flow. It starts from the second element
and compares it with the element before. If the element before is greater than the
current element, then the algorithm swaps the elements. This process continues until
the element before is smaller than the current element.

[206]

Arrays, Collections, and Data Structures Chapter 5

In that case, the algorithm passes to the next element in the array and repeats the
flow, as in the following diagram:

al2|[1]6[8f
2515}1]
12463[

The time complexity cases are as follows: best case O (n), average case O (n®), worst
case O (n°)

The space complexity case is as follows: worst case O (1)
Based on this flow, an implementation for primitive types will be as follows:
public static void insertionSort (int arr[]) {
int n = arr.length;
for (int i = 1; i < n; ++i) |

int key = arr[il];
int 3 =1 - 1;

while (j >= 0 && arr[j] > key) |

arr[j + 1] = arr(jl;
j=3 -1

}

arr[j + 1] = key;

[207]

Arrays, Collections, and Data Structures Chapter 5

For comparing an array of Melon, we need to bring a Comparator in to the
implementation as follows:

public static <T> void insertionSortWithComparator (
T arr[], Comparator<? super T> c) {

int n = arr.length;
for (int i = 1; i < n; ++i) |

T key = arr[i];
int jJ i-1;

while (j >= 0 && c.compare(arr[j], key) > 0) {
arr[j + 1] = arr[jl;
j=3-1

arr[j + 1] = key;
t

Here, we have a Comparator that sorts the melons by type and weight written in
Java 8 functional style using the thenComparing () method:

Comparator<Melon> byType = Comparator.comparing(Melon::getType)
.thenComparing (Melon: :getWeight) ;

Having an array of Melon, the preceding Comparator, and the
insertionSortWithComparator () method in a utility class named ArraySorts,
we can write something as follows:

Melon[] melons = {...};
ArraySorts.insertionSortWithComparator (melons, byType);

This can be fast for small and mostly sorted arrays. Also, it performs
well when adding new elements to an array. It is also very memory-
efficient since a single element is moved around.

[208]

Arrays, Collections, and Data Structures Chapter 5

Counting sort

The counting sort flow starts by calculating the minimum and the maximum element
in the array. Based on the computed minimum and maximum, the algorithm defines
a new array that will be used to count the unsorted elements by using the element as
the index. Furthermore, this new array is modified in such a way that each element at
each index stores the sum of previous counts. Finally, the sorted array is obtained
from this new array.

The time complexity cases are as follows: best case 0 (n + k), average case O (n +
k), worstcase O (n + k)

The space complexity case is as follows: worst case O (k)

k is the number of possible values in the range.
n is the number of elements to be sorted.

Let's consider a quick example. The initial array contains the following elements, arr:
4,2,6,2,6,8,5:

[a]2]6 2[5]s]s]

A
[

The minimum element is 2 and the maximum element is 8. The new array, counts,
will have a size equal to the maximum minus the minimum +1=8-2+1=7.

Counting each element will result in the following array (counts[arr[i] -
min]++):

counts[2] =
counts[6] =

[209]

Arrays, Collections, and Data Structures Chapter 5

Now, we must loop this array and use it to reconstruct the sorted array as in the
following implementation:

public static void countingSort (int[] arr) {
int min = arr[0];
int max = arr[0];
for (int 1 = 1; i < arr.length; i++) {
if (arr[i] < min) {
min = arr([i];
} else if (arr[i] > max) {
max = arr[i];
}
}
int[] counts = new int[max - min + 1];
for (int 1 = 0; i < arr.length; i++) {
countsf[arr[i] - min]++;

}

int sortedIndex = 0;
for (int 1 = 0; i < counts.length; i++) {
while (counts([i] > 0) {
arr[sortedIndex++] = i + min;

counts[i]-—;

}
}

This is a very fast algorithm.

Heap sort

Heap sort is an algorithm that relies on a binary heap (complete binary tree).

The time complexity cases are as follows: best case 0 (n 1og n), average case O (n
log n),worstcase O(n log n)

The space complexity case is as follows: worst case O (1)

[210]

Arrays, Collections, and Data Structures Chapter 5

Heap (the parent node is always greater than, or equal to, child
nodes), and in descending order via a Min Heap (the parent node is
always smaller than, or equal to, child nodes).

0 Sorting elements in ascending order can be accomplished via a Max

At the first step, the algorithm uses the array provided to build this heap and
transform it into a Max Heap (the heap is represented by another array). Since this is a
Max Heap, the largest element is the root of the heap. At the next step, the root is
swapped with the last element from the heap and the heap size is reduced by 1
(delete the last node from the heap). The elements that are at the top of the heap come
out in sorted order. The final step consists of heapify (the recursive process that builds
the heap in a top-down manner), and the root of the heap (reconstruct the Max Heap).
These three steps are repeated until the heap size is greater than 1:

(alsi217ij (7]si2falnj [1]5121al7] [s{al2]1]7] [1TaT2]5]7] [aT112]507] [2]11al517] [1] 2]al5]7]
@ 0, ® ® ® ® @ @
0 0 PO F® GO O @

QO OO O O,

Initial Max Heap 7swapi Max Heap s5wapi1 Max Heap 4swap2 2s5wap1
heap L Swap 4 delete 7 5swap1 deleteg 1s5wap 4 delete 4 delete 2
4swapy 15wWap &
5swapy

For example, let's assume the array from the preceding diagram -4, 5, 2,7, 1:

1. So, at the first step, we build the heap: 4,5, 2,7, 1.

2. We build the Max Heap: 7, 5, 2, 4, 1 (we swapped 5 with 4, 4 with 7, and 5
with 7).

3. Next, we swap the root (7) with the last element (1) and delete 7. Result: 1,
5247.

4. Further, we construct the Max Heap again: 5, 4, 2, 1 (we swapped 5 with 1
and 1 with 4).

5. We swap the root (5) with the last element (1) and delete 5. Result: 1, 4, 2, 5,
7.

6. Next, we construct the Max Heap again: 4, 1, 2 (we swapped 1 with 4).
7. We swap the root (4) with the last element (2) and delete 4. Result: 2, 1.

8. This is a Max Heap, so swap the root (2) with the last element (1) and
remove 2:1,2,4,5,7.
9. Done! There is a single element left in the heap (1).

[211]

Arrays, Collections, and Data Structures Chapter 5

In code lines, the preceding example can be generalized as follows:

public static void heapSort (int[] arr) {
int n = arr.length;

buildHeap (arr, n);

while (n > 1) {

swap (arr, 0, n — 1);
n--;
heapify(arr, n, 0);
}
}
private static void buildHeap (int[] arr, int n) |
for (int i = arr.length / 2; i >= 0; i-——) {
heapify(arr, n, 1i);
}
}
private static void heapify(int[] arr, int n, int 1) {
int left =1 * 2 + 1;
int right = 1 * 2 + 2;
int greater;
if (left < n && arr[left] > arr[i]) |
greater = left;
} else {
greater = 1i;
}
if (right < n && arr[right] > arr[greater]) {
greater = right;
}
if (greater != i) {
swap (arr, 1, greater);
heapify(arr, n, greater);
}
}
private static void swap(int[] arr, int x, int y) |
int temp = arr([x];
arr([x] = arrly]l;
arrly] = temp;
}

[212]

Arrays, Collections, and Data Structures Chapter 5

If we want to compare objects, then we have to bring a Comparator into the
implementation. This solution is available in the code bundled to this book under the
name heapSortWithComparator ().

Here, it is a Comparator written in Java 8 functional style that uses the
thenComparing () and reversed () methods to sort the melons in descending
order by type and weight:

Comparator<Melon> byType = Comparator.comparing(Melon::getType)
.thenComparing (Melon: :getWeight) .reversed() ;

Having an array of Melon, the preceding Comparator, and the
heapSortWithComparator () method in a utility class named ArraySorts, we can
write something as follows:

Melon[] melons = {...};
ArraySorts.heapSortWithComparator (melons, byType);

Heap sort is pretty fast, but is not stable. For example, sorting an
array that is already sorted may leave it in a different order.

We will stop our dissertation regarding sorting arrays here, but, in the code bundled
to this book, there are a few more sorting algorithms available:

O bubbleSort (int[] arr) wvoid
() bubbleSortWithComparator (T[] zrr, Comparator<? super T> <) wveoid
{bubleSortOptimized (int[] arr) wvoid
() bubleSortOptimizedWithComparator (T[] zrr, Comparator<? super T> c) void
@ bucketSort (int[] arr) wvoid
) eocktailSort(int[] arr) void
) countingSort (int[] arr) wvoid
) eyeleSort (int[] arr) void
() exchangeSort (int[] arr) void
{ heapSort (int[] zrr) wvoid
() heapSortWithComparator (T[] arr, Comparator<? super T> c) wvoid
() insertionSort (int[] arr) wvoid
) insertionSortWithComparatoxr (T[] arr, Comparator<? super T> c) wvoid
(mergeSort (int[] arr) wvoid
() pancakeSort (int[] arr) wvoid
G guickSort (int[] arr, int left, int right) void
@ gquickSortWithComparatoxr (T[] zrr, int le=ft, int right, Comparator<? super T> c) woid
@ radixSort (int[] arr, int radix) wvoid
@ selectionSoxt (int[] arr) wvoid
@ shellSort (int[] arr) void
) shuffleInt (int[] =zrr) wvoid
) shuffleObj (T[] arr) void‘

[213]

Arrays, Collections, and Data Structures Chapter 5

There are many other algorithms dedicated to sorting arrays. Some of them are built
on top of those presented here (for example, Comb sort, Cocktail sort, and Odd-even
sort are flavors of Bubble sort, Bucket sort is a distribution sort commonly relying on
Insertion sort, Radix sort (LSD) is a stable distribution similar to Bucket sort, and
Gnome sort is a variation of Insertion sort).

Others are different approaches (for example, Quicksort implemented by
the Arrays.sort () method, and Merge sort implemented by
Arrays.parallelSort ()).

By way of a bonus to this section, let's see how we can shuffle an array. An efficient
way to accomplish this relies on the Fisher-Yates shuffle (known as the Knuth
shuffle). Basically, we loop the array in reverse order and we randomly swap
elements. For primitives (for example, int), the implementation is as follows:

public static void shufflelInt (int[] arr) {

int index;

Random random = new Random() ;
for (int i = arr.length - 1; i > 0; i--) {
index = random.nextInt (i + 1);

swap (arr, index, 1i);
}
}

In the code bundled to this book, there is also the implementation for shuffling an
array of Object.

Shuffling a list is pretty straightforward
via Collections.shuffle (List<?> list).

[214]

Arrays, Collections, and Data Structures Chapter 5

100. Finding an element in an array

When we search for an element in an array, we may be interested to find out the
index at which this element occurs, or only whether it is present in the array. The
solutions presented in this section are materialized in the methods from the following
screenshot:

) containsElementObijectV1 (T[] zrr, T toContain) boolean
) containsElementObijectV2 (T[] zrr, T toContain, Comparator<? super T> c) boolean
) containsElementObijectV3 (T[] zrr, T toContain, Comparator<? super T> c) boolean
) containsElementV1 (int[] arr, int toContzin) boolean
) containsElementV2 (int[] arr, int toContzin) boolean
) containsElementV3 (int[] arr, int toContzin) boolean
) £indIndexOfElementObjectV1 (T[] zarr, T toFind) int
) £indIndexOfElementObjectV2 (T[] zarr, T toFind, Comparator<? super T> c) int
) £indIndexOfElementObjectV3 (T[] zarr, T toFind, Comparator<? super T> c) int
) £indIndexOfElementV1 (int[] zrr, int toFind) int
) £indIndex0fElementV2 (int[] zrr, int toFind) int

Let's take a look at the different solutions in the next sections.

Check only for the presence

Let's assume the following array of integers:

int[] numbers = {4, 5, 1, 3, 7, 4, 1};

Since this is an array of primitives, the solution can simply loop the array and return
to the first occurrence of the given integer, as follows:

public static boolean containsElement (int[] arr, int toContain) {
for (int elem: arr) {

if (elem == toContain) {
return true;

return false;

[215]

Arrays, Collections, and Data Structures Chapter 5

Another solution to this problem can rely on the Arrays.binarySearch () methods.
There are several flavors of this method, but in this case, we need this one: int
binarySearch(int[] a, int key).The method will search the given key in the
given array and will return the corresponding index or a negative value. The only
issue is that this method works only for sorted arrays; therefore, we need to sort the
array beforehand:

public static boolean containsElement (int[] arr, int toContain) {

Arrays.sort (arr);
int index = Arrays.binarySearch(arr, toContain);

return (index >= 0);

If the array is already sorted, then the preceding method can be
optimized by removing the sorting step. Moreover, if the array is
sorted, the preceding method may return the index where the
element occurs in the array instead of a boolean. However, if the
array is not sorted, then keep in mind that the returned index
corresponds to the sorted array, not to the unsorted (initial) array. If
you don't want to sort the initial array, then it is advisable to pass a
clone of the array to this method. Another approach will be to clone
the array inside this helper method.

In Java 8, the solution can rely on a functional style approach. A good candidate here
is the anyMatch () method. This method returns whether any elements of the stream
match the predicate provided. So, all we need to do is to convert the array to a stream,
as follows:

public static boolean containsElement (int[] arr, int toContain) {

return Arrays.stream(arr)
.anyMatch (e -> e == toContain);

}

For any other primitive type, it is pretty straightforward to adapt or generalize the
preceding examples.

[216]

Arrays, Collections, and Data Structures Chapter 5

Now, let's focus on finding Object in arrays. Let's consider the Melon class:

public class Melon {

private final String type;
private final int weight;

// constructor, getters, equals() and hashCode() skipped for brevity

}

Next, let's consider an array of Melon:
{new Melon ("Crenshaw", 2000),

= new Melon[]
2200)

Melon[] melons =
new Melon ("Gac", 1200), new Melon ("Bitter",
i
Now, let's assume that we want to find the Gac melon of 1,200 g in this array. A
solution can rely on the equals () method, which is used to determine the equality of

two objects:

public static <T> boolean

containsElementObject (T[] arr, T toContain) {

for (T elem: arr) |
if (elem.equals (toContain)) {

return true;
return false;
Similarly, we can rely on Arrays.asList (arr) .contains (find).

Basically, convert the array to a List and call the contains ()
method. Behind the scenes, this method uses the equals () contract.

If this method lives in a utility class named ArraySearch, then the following call will

return true:

// true
boolean found = ArraySearch.containsElementObject (
melons, new Melon ("Gac", 1200));

[217]

Arrays, Collections, and Data Structures Chapter 5

This solution works fine as long as we want to rely on the equals () contract. But we
may consider that our melon is present in the array if its name occurs (Gac), or if its
weight occurs (1,200). For such cases, it is more practical to rely on a Comparator:

public static <T> boolean containsElementObject (
T[] arr, T toContain, Comparator<? super T> c) |

for (T elem: arr) |
if (c.compare(elem, toContain) == 0) {
return true;

return false;

}

Now, a Comparator that takes into account only the type of melons can be written as
follows:

Comparator<Melon> byType = Comparator.comparing(Melon::getType);

Since the Comparator ignores the weight of the melon (there is no melon of 1,205
grams), the following invocation will return t rue:

// true
boolean found = ArraySearch.containsElementObject (
melons, new Melon ("Gac", 1205), byType);

Another approach relies on another flavor of binarySearch (). The Arrays class
provides a binarySearch () method that gets a Comparator, <T> int
binarySearch (T[] a, T key, Comparator<? super T> c).This means that
we can use it as follows:

public static <T> boolean containsElementObject (
T[] arr, T toContain, Comparator<? super T> c) |

Arrays.sort (arr, c);
int index = Arrays.binarySearch(arr, toContain, c);

return (index >= 0);
If the initial array state should remain unmodified, then it is

advisable to pass a clone of the array to this method. Another
approach would be to clone the array inside this helper method.

[218]

Arrays, Collections, and Data Structures Chapter 5

Now, a Comparator that takes into account only the weight of melons can be written
as follows:

Comparator<Melon> byWeight = Comparator.comparing(Melon::getWeight);

Since the Comparator ignores the type of melon (there is no melon of the Honeydew
type), the following invocation will return t rue:
// true

boolean found = ArraySearch.containsElementObject (
melons, new Melon ("Honeydew", 1200), byWeight) ;

Check only for the first index

For an array of primitives, the simplest implementation speaks for itself:

public static int findIndexOfElement (int[] arr, int toFind) {

for (int i =
if (arrf[i]
return i;

0; 1 < arr.length; i++)
== toFind) {

I~

}

return -1;

}

Relying on Java 8 functional style, we can try to loop the array and filter the elements
that match the given element. In the end, simply return the first found element:

public static int findIndexOfElement (int[] arr, int toFind) {

return IntStream.range (0, arr.length)
.filter (i -> toFind == arrf[il])
.findFirst ()
.orElse (-1);
}

For an array of Object, there are at least three approaches. In the first instance, we
can rely on the equals () contract:

public static <T> int findIndexOfElementObject (T[] arr, T toFind) {

for (int i = 0; 1 < arr.length; i++) {
if (arr[i].equals(toFind)) {
return i

’

[219]

Arrays, Collections, and Data Structures Chapter 5

}
}

return -1;

}

Similarly, we can rely on Arrays.asList (arr) .indexOf (find).
Basically, convert the array to a List and call the indexOf ()
method. Behind the scenes, this method uses the equals () contract.

Secondly, we can rely on a Comparator:

public static <T> int findIndexOfElementObject (
T[] arr, T toFind, Comparator<? super T> c) {

for (int i = 0; 1 < arr.length; i++)
if (c.compare(arr([i], toFind) == 0) {
return i;
}
}

return -1;

}
And thirdly, we can rely on Java 8 functional style and a Comparator:

public static <T> int findIndexOfElementObject (
T[] arr, T toFind, Comparator<? super T> c) {

return IntStream.range (0, arr.length)
.filter (i -> c.compare (toFind, arr[i]) == 0)
.findFirst ()
.orElse(-1);

101. Checking whether two arrays are equal or
mismatches

Two arrays of primitives are equal if they contain the same number of elements, and
all corresponding pairs of elements in the two arrays are equal.

The solutions to these two problems rely on the Arrays utility class. The following
sections give the solutions to these problems.

[220]

Arrays, Collections, and Data Structures Chapter 5

Checking whether two arrays are equal

Checking whether two arrays are equal can be easily accomplished via
the Arrays.equals () method. This flag method comes in many flavors for primitive
types, Object, and generics. It also supports comparators.

Let's consider the following three arrays of integers:

int[] integersl = {3, 4, 5, 6, 1, 5};
int[] integers2 = {3, 4, 5, 6, 1, 5};
int[] integers3 {3, 4, 5, 6, 1, 3};

Now, let's check whether integers1 is equal to integers2, and
whether integers1 is equal to integers3. This is very simple:

boolean 112 = Arrays.equals (integersl, integers2); // true
boolean 113 = Arrays.equals (integersl, integers3); // false

The preceding examples check whether two arrays are equal, but we can check

whether two segments (or ranges) of the arrays are equal as well via the boolean
equals (int[] a, int aFromIndex, int aToIndex, int[] b, int

bFromIndex, int bToIndex) method.So, we demarcate the segment of the first
array via the range [aFromIndex, aToIndex) and the segment of the second array via
the range [bFromIndex, bToIndex):

// true
boolean is13 = Arrays.equals(integersl, 1, 4, integers3, 1, 4);

Now, let's assume three arrays of Melon:
public class Melon {

private final String type;
private final int weight;

public Melon (String type, int weight) {
this.type = type;
this.weight = weight;

}

// getters, equals() and hashCode () omitted for brevity

Melon[] melonsl = {
new Melon ("Horned", 1500), new Melon("Gac", 1000)
}i

[221]

Arrays, Collections, and Data Structures Chapter 5

Melon[] melons2 = {
new Melon ("Horned", 1500), new Melon ("Gac", 1000)
}i

Melon[] melons3 = {
new Melon ("Hami", 1500), new Melon ("Gac", 1000)
}i

Two arrays of Object are considered equal based on the equals () contract, or based
on the specified Comparator. We can easily check whether melons1 is equal
to melons2, and whether melons1 is equal to melons3 as follows:

boolean ml2 = Arrays.equals (melonsl, melons2); // true
boolean ml3 = Arrays.equals (melonsl, melons3); // false

And, in an explicit range, use boolean equals (Object[] a, int aFromIndex,
int aToIndex, Object[] b, int bFromIndex, int bTolIndex):

boolean msl13 = Arrays.equals (melonsl, 1, 2, melons3, 1, 2); // false

While these examples rely on the Melon.equals () implementation, the following
two examples rely on the following two Comparator:

Comparator<Melon> byType = Comparator.comparing (Melon::getType);
Comparator<Melon> byWeight = Comparator.comparing(Melon::getWeight);

Using the boolean equals (T[] a, T[] a2, Comparator<? super T> cmp), we
have the following:

boolean mwl3 = Arrays.equals(melonsl, melons3, byWeight); // true
boolean mtl3 = Arrays.equals(melonsl, melons3, byType); // false

And, in an explicit range, using Comparator, <T> boolean equals (T[] a, int
aFromIndex, int aToIndex, T[] b, int bFromIndex, int bToIndex,
Comparator<? super T> cmp), we have the following;:

// true
boolean mrtl3 = Arrays.equals(melonsl, 1, 2, melons3, 1, 2, byType);

Checking whether two arrays contain a mismatch

If two arrays are equal, then a mismatch should return -1. But if two arrays are not
equal, then a mismatch should return the index of the first mismatch between the two
given arrays. In order to resolve this problem, we can rely on JDK

9 Arrays.mismatch () methods.

[222]

Arrays, Collections, and Data Structures Chapter 5

For example, we can check for mismatches between integersl and integers2 as
follows:

int mil2 = Arrays.mismatch(integersl, integers2); // -1

The result is -1, since integers1 and integers2 are equal. But if we check for
integersl and integers3, we receive the value 5, which is the index of the first
mismatch between these two:

int mil3 = Arrays.mismatch(integersl, integers3); // 5

If the given arrays have different lengths and the smaller one is a
prefix for the larger one, then the returned mismatch is the length of
the smaller array.

For arrays of Object, there are dedicated mismatch () methods as well. These
methods count on the equals () contract or on the given Comparator. We can check
whether there is a mismatch between melons1 and melons?2 as follows:

int mml2 = Arrays.mismatch (melonsl, melons2); // -1

If the mismatch occurs on the first index, then the returned value is 0. This is
happening in the case of melons1 and melons3:

int mml13 = Arrays.mismatch (melonsl, melons3); // 0

As in the case of Arrays.equals (), we can check mismatches in an explicit range
using a Comparator:

// range [1, 2), return -1
int mmsl3 = Arrays.mismatch (melonsl, 1, 2, melons3, 1, 2);

// Comparator by melon's weights, return -1
int mmwl3 = Arrays.mismatch (melonsl, melons3, byWeight);

// Comparator by melon's types, return 0
int mmtl1l3 = Arrays.mismatch(melonsl, melons3, byType);

// range [1,2) and Comparator by melon's types, return -1
int mmrtl3 = Arrays.mismatch (melonsl, 1, 2, melons3, 1, 2, byType);

[223]

Arrays, Collections, and Data Structures Chapter 5

102. Comparing two arrays lexicographically

Starting with JDK 9, we can compare two arrays lexicographically via the
Arrays.compare () methods. Since there is no need to reinvent the wheel, just

upgrade to JDK 9 and let's dive into it.
A lexicographic comparison of two arrays may return the following;:

e (, if the given arrays are equal and contain the same elements in the same
order

e A value less than 0 if the first array is lexicographically less than the second
array

¢ A value greater than 0 if the first array is lexicographically greater than the
second array

If the first array length is less than the second array length, then the first array is
lexicographically less than the second array. If the arrays have the same length,
contain primitives, and share a common prefix, then the lexicographic comparison is
the result of comparing two elements, precisely as Integer.compare (int, int),
Boolean.compare (boolean, boolean),Byte.compare (byte, byte), and so
on. If the arrays contain Object, then the lexicographic comparison is relying on the
given Comparator or on the Comparable implementation.

First, let's consider the following arrays of primitives:

int[] integersl = {3, 4, 5, 6, 1, 5};
int[] integers2 = {3, 4, 5, 6, 1, 5};
int[] integers3 = {3, 4, 5, 6, 1, 3};

Now, integers1 is lexicographically equal to integers2 because they are equal and
contain the same elements in the same order, int compare (int[] a, int[] b):

int 112 = Arrays.compare (integersl, integers2); // O

However, integers1 is lexicographically greater than integers3, since they share
the same prefix (3, 4, 5, 6, 1), but for the last element, Integer.compare (5, 3)
returns a value greater than 0 since 5 is greater than 3:

int 113 = Arrays.compare (integersl, integers3); // 1

[224]

Arrays, Collections, and Data Structures Chapter 5

A lexicographical comparison can be accomplished on different ranges of the arrays.
For example, the following example compares integersl and integers3 in the
range [3, 6) via the int compare (int[] a, int aFromIndex, int aToIndex,
int[] b, int bFromIndex, int bToIndex) method:

int is13 = Arrays.compare (integersl, 3, 6, integers3, 3, 6); // 1

For arrays of Object, the Arrays class also provides a set of dedicated compare ()
methods. Remember the Melon class? Well, in order to compare two arrays of Melon
without an explicit Comparator, we need to implement the Comparable interface
and implement the compareTo () method. Let's assume that we are relying on melon
weights as follows:

public class Melon implements Comparable {

private final String type;
private final int weight;

@Override
public int compareTo (Object o) {
Melon m = (Melon) o;
return Integer.compare (this.getWeight (), m.getWeight ());
}
// constructor, getters, equals() and hashCode() omitted for brevity

Note that the lexicographic comparison of arrays of Object doesn't
rely on equals (). It requires an explicit Comparator or
Comparable elements.

Let's assume the following arrays of Melon:

Melon[] melonsl = {new Melon ("Horned", 1500), new Melon ("Gac", 1000)};
Melon[] melons2 = {new Melon ("Horned", 1500), new Melon("Gac", 1000)};
Melon[] melons3 = {new Melon ("Hami", 1600), new Melon ("Gac", 800)};

And, let's compare lexicographically melons1 with melons2 via <T extends
Comparable<? super T>> int compare(T[] a, T[] b):

int ml2 = Arrays.compare (melonsl, melons2); // O

[225]

Arrays, Collections, and Data Structures Chapter 5

Since melons1 and melons?2 are identical, the resultis 0.

Now, let's do the same thing with melons1 and melons3. This time, the result will be
negative, which means that melons1 is lexicographically less than melons3. This is
true since, at index 0, the Horned melon has a weight of 1,500 g, which is less than the
weight of the Hami melon, which is 1,600 g:

int m13 = Arrays.compare (melonsl, melons3); // -1

We can perform the comparison in different ranges of the arrays via the <T extends
Comparable<? super T>> int compare (T[] a, int aFromIndex, int
aToIndex, T[] b, int bFromIndex, int bToIndex) method. For example, in
the common range [1, 2), melons1 is lexicographically greater than melons2, since
the weight of Gac is 1,000g in melons1 and 800g in melons3:

int msl1l3 = Arrays.compare (melonsl, 1, 2, melons3, 1, 2); // 1

If we don't want to rely on Comparable elements (implement Comparable), we can
passhlaComparatorxdathe<T> int compare(T[] a, T[] b, Comparator<?
super T> cmp) method:

Comparator<Melon> byType = Comparator.comparing(Melon::getType);
int mtl1l3 = Arrays.compare (melonsl, melons3, byType); // 14

Using ranges is also possible by means of <T> int compare (T[] a, int
aFromIndex, int aToIndex, T[] b, int bFromIndex, int bToIndex,
Comparator<? super T> cmp):

int mrtl1l3 = Arrays.compare (melonsl, 1, 2, melons3, 1, 2, byType); // O

If the arrays of numbers should be treated unsigned, then rely on
the bunch of Arrays.compareUnsigned () methods, which are
available for byte, short, int, and long.

To compare two strings lexicographically, rely on
String.compareTo () and int compareTo (String
anotherString).

[226]

Arrays, Collections, and Data Structures Chapter 5

103. Creating a Stream from an array

Once we create a St ream from an array, we have access to all the Stream API goodies.
Therefore, this is a handy operation that is important to have in our tool belt.

Let's start with an array of strings (can be other objects as well):

String[] arr = {"One", "Two", "Three", "Four", "Five"};

The easiest way to create St ream from this String[] array is to rely on the
Arrays.stream() method available starting with JDK 8:

Stream<String> stream = Arrays.stream(arr);

Or, if we need a stream from a sub-array, then simply add the range as arguments.
For example, let's create a St ream from the elements that range between (0,2), which

are one and two:
Stream<String> stream = Arrays.stream(arr, 0, 2);
The same cases, but passing through a List, can be written as follows:

Stream<String> stream = Arrays.aslist (arr).stream();
Stream<String> stream = Arrays.aslList (arr).subList (0, 2).stream();

Another solution relies on Stream. of () methods, as in the following
straightforward examples:

Stream<String> stream = Stream.of (arr);
Stream<String> stream = Stream.of ("One", "Two", "Three");

Creating an array from a St ream can be accomplished via the St ream.toArray ()
method. For example, a simple approach appears as follows:

String[] array = stream.toArray(Stringl[]::new);
In addition, let's consider an array of primitives:
int[] integers = {2, 3, 4, 1};

In such a case, the Arrays.stream() method can help again, the only difference
being that the returned result is of the Int St ream type (this is the int primitive
specialization of St ream):

IntStream intStream = Arrays.stream(integers);

[227]

Arrays, Collections, and Data Structures Chapter 5

But the IntStream class also provides an of () method that can be used as follows:

IntStream intStream = IntStream.of (integers);

Sometimes, we need to define a St ream of sequentially ordered integers with an
incremental step of 1. Moreover, the size of the St ream should be equal to the size of
an array. Especially for such cases, the Int St ream method provides two
methods—range (int inclusive, int exclusive) and rangeClosed (int

startInclusive, int endInclusive):

IntStream intStream = IntStream.range (0, integers.length);
IntStream intStream = IntStream.rangeClosed (0, integers.length);

Creating an array from a St ream of integers can be accomplished via
the Stream.toArray () method. For example, a simple approach appears as follows:

int[] intArray = intStream.toArray();

// for boxed integers
int[] intArray = intStream.mapTolInt (i -> 1i).toArray();

Besides the Int Stream specialization of Stream, JDK 8 provides
specializations for long (LongStream) and double (DoubleStream).

104. Minimum, maximum, and average of an
array

Computing the minimum, maximum, and average values of an array is a common
task. Let's look at several approaches to solving this problem in functional style and
imperative programming,.

Computing maximum and minimum

Computing the maximum value of an array of numbers can be implemented by
looping the array and tracking the maximum value via a comparison with each
element of the array. In terms of lines of code, this can be written as follows:

public static int max(int[] arr) {

int max = arr[0];

[228]

Arrays, Collections, and Data Structures Chapter 5

for (int elem: arr) {
if (elem > max) {
max = elem;

return max;

}

A little pinch in readability here may entail using the Math.max () method instead of
an if statement:

max = Math.max (max, elem);

Let's suppose that we have the following array of integers and a utility class named
MathArrays that contains the preceding methods:

int[] integers = {2, 3, 4, 1, -4, 6, 2};

The maximum of this array can easily be obtained as follows:
int maxInt = MathArrays.max (integers); // 6

In Java 8 functional style, the solution to this problem entails a single line of code:
int maxInt = Arrays.stream(integers) .max().getAsInt();

In the functional-style approach, the max () method returns an
OptionalInt. Similarly, we have Optionallong and
OptionalDouble.

Furthermore, let's assume an array of objects, in this case, an array of Melon:

Melon[] melons = {
new Melon ("Horned", 1500), new Melon ("Gac", 2200),
new Melon ("Hami", 1600), new Melon ("Gac", 2100)

i
public class Melon implements Comparable {

private final String type;
private final int weight;

@Override
public int compareTo (Object o) {

[229]

Arrays, Collections, and Data Structures Chapter 5

Melon m = (Melon) o;
return Integer.compare (this.getWeight (), m.getWeight ());
}
// constructor, getters, equals() and hashCode() omitted for brevity

}

It is obvious that our max () methods defined earlier cannot be used in this case, but
the logical principle remains the same. This time, the implementation should rely on

Comparable or Comparator. The implementation based on Comparable can be as
follows:

public static <T extends Comparable<T>> T max (T[] arr) {
T max = arr[0];
for (T elem : arr) |

if (elem.compareTo (max) > 0) A
max = elem;

return max;

}

Check the Melon.compareTo () method and note that our implementation will

compare the weights of melons. Therefore, we can easily find the heaviest melon from
our array as follows:

Melon maxMelon = MathArrays.max (melons); // Gac(2200g)
And the implementation relying on Comparator can be written as follows:
public static <T> T max (T[] arr, Comparator<? super T> c) {
T max = arr([0];
for (T elem: arr) {

if (c.compare(elem, max) > 0) {
max = elem;

return max;

[230]

Arrays, Collections, and Data Structures Chapter 5

And, if we define a Comparator according to the type of melon, we have the
following;:

Comparator<Melon> byType = Comparator.comparing(Melon::getType);

Then, we get the maximum melon conforming to the lexicographical comparison of
strings:

Melon maxMelon = MathArrays.max (melons, byType); // Horned(1500q)
In Java 8 functional style, the solution to this problem entails a single line of code:

Melon maxMelon = Arrays.stream(melons) .max (byType) .orElseThrow() ;

Computing average

Computing the average value of an array of numbers (in this case integers) can be
implemented in two simple steps:

1. Compute the sum of the elements from the array.
2. Divide this sum by the length of the array.

In code lines, we have the following:
public static double average (int[] arr) {

return sum(arr) / arr.length;

}
public static double sum(int[] arr) |
double sum = 0;
for (int elem: arr) {
sum += elem;

}

return sum;

}

The average of our integers array is 2.0:

double avg = MathArrays.average (integers);

[231]

Arrays, Collections, and Data Structures Chapter 5

In Java 8 functional style, the solution to this problem entails a single line of code:

double avg = Arrays.stream(integers) .average () .getAsDouble();

For third-party library support, please consider Apache Common
Lang (ArrayUtil) and Guava's Chars, Ints, Longs, and other

classes.

105. Reversing an array
There are several solutions to this problem. Some of them mutate the initial array,
while others just return a new array.
Let's assume the following array of integers:
int[] integers = {-1, 2, 3, 1, 4, 5, 3, 2, 22};

Let's start with a simple implementation that swaps the first element of the array with
the last element, the second element with the penultimate element, and so on:

public static void reverse (int[] arr) {

for (int leftHead = 0, rightHead = arr.length - 1;
leftHead < rightHead; leftHead++, rightHead--) {

int elem = arr[leftHead];
arr[leftHead] = arr[rightHead];
arr[rightHead] = elem;
}
}

The preceding solution mutates the given array and this is not always the desired
behavior. Of course, we can modify it to return a new array, or we can rely on Java 8
functional style as follows:

// 22/ 2/ 3/ 5/ 4/ ll 3/ 2/ -1

int[] reversed = IntStream.rangeClosed(l, integers.length)
.map (1 -> integers[integers.length - i]).toArray();

Now, let's reverse an array of objects. For this, let's consider the Melon class:
public class Melon {

private final String type;
private final int weight;

[232]

Arrays, Collections, and Data Structures Chapter 5

// constructor, getters, equals (), hashCode() omitted for brevity

}
Also, let's consider an array of Melon:

Melon[] melons = {
new Melon ("Crenshaw", 2000),
new Melon ("Gac", 1200),
new Melon ("Bitter", 2200)

bi

The first solution entails using generics to shape the implementation that swaps the
first element of the array with the last element, the second element with the second
last element, and so on:

public static <T> void reverse (T[] arr) {

for (int leftHead = 0, rightHead = arr.length - 1;
leftHead < rightHead; leftHead++, rightHead--) {

T elem = arr[leftHead];
arr[leftHead] = arr[rightHead];
arr[rightHead] = elem;

}

Since our array contains objects, we can rely on Collections.reverse () as well.
We just need to convert the array to a List via the Arrays.asList () method:

// Bitter (2200g), Gac(1200g), Crenshaw(2000qg)
Collections.reverse (Arrays.asList (melons));

The preceding two solutions mutate the elements of the array. Java 8 functional style
can help us to avoid this mutation:

// Bitter (2200g), Gac(1200g), Crenshaw(2000qg)

Melon[] reversed = IntStream.rangeClosed(l, melons.length)
.mapToObj (i -> melons[melons.length - i])
.toArray (Melon|[] :new);

For third-party library support, please consider Apache Common
Lang (ArrayUtils.reverse ())and Guava's Lists class.

[233]

Arrays, Collections, and Data Structures Chapter 5

106. Filling and setting an array

Sometimes, we need to fill up an array with a fixed value. For example, we may want
to fill up an array of integers with the value 1. The simplest way to accomplish this
relies on a for statement as follows:

int[] arr = new int[10];

;1,011,111
0; 1 < arr.length; i++) {

But we can reduce this code to a single line of code by means of the Arrays.£i11 ()
methods. This method comes in different flavors for primitives and for objects. The
preceding code can be rewritten via Arrays.fill (int[] a, int val) as follows:

// 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Arrays.fill (arr, 1);

Arrays.fill () also come with flavors for filling up just a
segment/range of an array. For integers, this method is £111 (int []
a, int fromIndexInclusive, int toIndexExclusive, int

val).

Now, how about applying a generator function to compute each element of the array?
For example, let's assume that we want to compute each element as the previous one
plus 1. The simplest approach will again rely on a for statement as follows:

// 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
for (int 1 = 1; i < arr.length; i++) {
arr[i] = arr[i - 1] + 1;

}

The preceding code has to be modified accordingly depending on the computations
that need to be applied to each element.

For such tasks, JDK 8 comes with a bunch of Arrays.setAll () and
Arrays.parallelSetAll () methods. For example, the preceding snippet of code
can be rewritten via setAll (int [] array, IntUnaryOperator generator) as
follows:

// 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Arrays.setAll (arr, t —-> {
if (t == 0) {

[234]

Arrays, Collections, and Data Structures Chapter 5

return arr[t];
} else {
return arr[t - 1] + 1;
}
}) i

Besides this method, we also have setAll (double[] array,
IntToDoubleFunction generator), setAll (long[] array,
IntToLongFunction generator),and setAll (T[] array,
IntFunction<? extends T> generator).

Depending on the generator function, this task can be accomplished in parallel or not.
For example, the preceding generator function cannot be applied in parallel since
each element depends on the value of the preceding element. Trying to apply this
generator function in parallel will lead to incorrect and unstable results.

But let's assume that we want to take the preceding array (1, 2, 3,4, 5, 6,7, 8,9, 10)
and multiply each even value by itself and decrease each odd value by 1. Since each
element can be computed individually, we can empower a parallel process in this
case. This is the perfect job for Arrays.parallelsetAll () methods. Basically, these
methods are meant to parallelize Arrays.setAll () methods.

Let's now apply parallelSetAll (int[] array, IntUnaryOperator
generator) to this array:

// 0, 4, 2, 16, 4, 36, 6, 64, 8, 100
Arrays.parallelSetAll (arr, t —> {

if (arr[t] % 2 == 0) {
return arr([t] * arr[t];
} else {
return arr[t] - 1;

}
)i

For each Arrays.setAll () method, thereis an
Arrays.parallelSetAll () method.

As abonus, Arrays come with a set of methods named parallelPrefix (). These
methods are useful for applying a mathematical function to the elements of the array,
both cumulatively and concurrently.

[235]

Arrays, Collections, and Data Structures Chapter 5

For example, if we want to compute each element of the array as the sum of the
preceding elements, then we can do it as follows:

// 0, 4, 6, 22, 26, 62, 68, 132, 140, 240
Arrays.parallelPrefix(arr, (t, gq) -> t + qg);

107. Next Greater Element

NGE is a classic problem that involves arrays.

Basically, having an array and an element from it, e, we want to fetch the next (right-
hand side) element greater than e. For example, let's assume the following array:

int[] integers = {1, 2, 3, 4, 12, 2, 1, 4};

Fetching the NGE for each element will result in the following pairs (-1 is interpreted
as no element from the right-hand side is greater than the current one):

1 : 2 2 : 3 3 : 4 4 : 12 12 : -1 2 : 4 1 : 4 4 @ -1

A simple solution to this problem will be looping the array for each element until a
greater element is found or there are no more elements to check. If we just want to
print the pairs on the screen, then we can write a trivial code such as the following;:

public static void println(int[] arr) {

int nge;
int n = arr.length;

for (int i = 0; i < n; i++) |
nge = -1;
for (int j =1 + 1; J < n; J++) {
if (arr([i] < arr([j]) A
nge = arr[jl;
break;
}
}
System.out.println(arr[i] + " : " + nge);

}

[236]

Arrays, Collections, and Data Structures Chapter 5

Another solution relies on a stack. Mainly, we push elements in the stack until the
currently processed element is greater than the top element in the stack. When this is
happening, we pop that element. The solution is available in the code bundled to this
book.

108. Changing array size

Increasing the size of an array is not straightforward. This is because Java arrays are
of a fixed size and we cannot modify their size. The solution to this problem entails
creating a new array of the requisite size and copying all the values from the original
array to this one. This can be done via the Arrays.copyOf () method or via
System.arraycopy () (used internally by Arrays.copyOf£ ()).

For an array of primitives (for example, int), we can add the value to an array after
increasing its size by 1 as follows:

public static int[] add(int[] arr, int item) {
int[] newArr = Arrays.copyOf (arr, arr.length + 1);
newArr [newArr.length - 1] = item;

return newArr;

}

Or, we can remove the last value as follows:

public static int[] remove (int[] arr) {
int[] newArr = Arrays.copyOf (arr, arr.length - 1);

return newArr;

}

Alternatively, we can resize the array with the given length as follows:

public static int[] resize(int[] arr, int length) {
int[] newArr = Arrays.copyOf (arr, arr.length + length);

return newArr;

}

[237]

Arrays, Collections, and Data Structures Chapter 5

The code bundled to this book also contains the System.arraycopy () alternatives.
Moreover, it contains the implementations for generic arrays. The signatures are as
follows:

public static <T> T[] addObject (T[] arr, T item);
public static <T> T[] removeObject (T[] arr);
public static <T> T[] resize (T[] arr, int length);

Being in a favorable context, let's bring a related topic into the discussion: how to
create a generic array in Java. The following will not work:

T[] arr = new Tlarr_size]; // causes generic array creation error

There are several approaches, but Java uses the following code in copyOf (T[]
original, int newLength):

// newIype is original.getClass ()

T[] copy = ((Object) newTIype == (Object) Object[].class) *?
(T[]) new Object [newLength]
(T[]) Array.newInstance (newType.getComponentType (), newLength);

109. Creating unmodifiable/immutable
collections

Creating unmodifiable/immutable collections in Java can easily be accomplished by
means of the Collections.unmodifiableFoo () method (for example,
unmodifiableList ()) and, starting with JDK 9, via the set of of () methods from
List, Set, Map, and other interfaces.

Furthermore, we will use these methods in a bunch of examples to obtain
unmodifiable/immutable collections. The main goal is to determine whether each
defined collection is unmodifiable or immutable.

Before reading this section, it is advisable to read the problems
dedicated to immutability from chapter 2, Objects, Immutability, and
Switch Expressions.

[238]

Arrays, Collections, and Data Structures

Chapter 5

OK. In the case of primitives, it is pretty simple. For example, we can create an

immutable List of integers as follows:

private static final List<Integer> LIST
= Collections.unmodifiablelist (Arrays.asList (1, 2, 3,

private static final List<Integer> LIST = List.of (1, 2,

For the next examples, let's consider the following mutable class:

public class MutableMelon {

private String type;
private int weight;

// constructor omitted for brevity
public void setType (String type) {

this.type = type;

public void setWeight (int weight) {
this.weight = weight;

// getters, equals() and hashCode () omitted for brevity

Problem 1 (Collections.unmodifiableList())

Let's create a list of MutableMelon via the Collections.unmodifiableList ()

method:

// Crenshaw (2000g), Gac(1200g)
private final MutableMelon melonl

= new MutableMelon ("Crenshaw", 2000);
private final MutableMelon melon2

= new MutableMelon ("Gac", 1200);

private final List<MutableMelon> list
= Collections.unmodifiablelist (Arrays.asList (melonl,

melon2));

[239]

Arrays, Collections, and Data Structures Chapter 5

So, is 1ist unmodifiable or immutable? The answer is unmodifiable. While mutator
methods will throw UnsupportedOperationException, the underlying melon1
and melon2 are mutable. For example, let's set the weights of our melons to 0:

melonl.setWeight (0);
melon2.setWeight (0);

Now, the list will reveal the following melons (so the list was mutated):

Crenshaw (0g), Gac (0g)

Problem 2 (Arrays.asList())

Let's create a list of MutableMelon by hardcoding the instances directly in
Arrays.asList ():

private final List<MutableMelon> list
= Collections.unmodifiablelList (Arrays.asList (
new MutableMelon ("Crenshaw", 2000),
new MutableMelon ("Gac", 1200)));

So, is the list unmodifiable or immutable? The answer is unmodifiable. While mutator
methods will throw UnsupportedOperationException, the hardcoded instances
can be accessed via the List .get () method. Once they can be accessed, they can be
mutated:

MutableMelon melonl list.get (0);
MutableMelon melon2 = list.get(1);

melonl.setWeight (0);
melon2.setWeight (0);

Now, the list will reveal the following melons (so the list was mutated):

Crenshaw (0g), Gac(09g)

Problem 3 (Collections.unmodifiableList() and static
block)

Let's create a list of MutableMelon via the Collections.unmodifiableList ()
method and a static block:

private static final List<MutableMelon> list;
static {

[240]

Arrays, Collections, and Data Structures Chapter 5

final MutableMelon melonl = new MutableMelon ("Crenshaw", 2000);
final MutableMelon melon2 = new MutableMelon ("Gac", 1200);

list = Collections.unmodifiablelist (Arrays.asList (melonl, melon2));

}

So, is the list unmodifiable or immutable? The answer is unmodifiable. While mutator
methods will throw UnsupportedOperationException, the hardcoded instances
can still be accessed via the List . get () method. Once they can be accessed, they can
be mutated:

MutableMelon melonll = list.get (0);
MutableMelon melon2l = list.get(1l);

melonll.setWeight (0);
melon2l.setWeight (0);

Now, the list will reveal the following melons (so the list was mutated):

Crenshaw (0g), Gac (0g)

Problem 4 (List.of())

Let's create a list of MutableMelon via List.of ():

private final MutableMelon melonl

= new MutableMelon ("Crenshaw", 2000);
private final MutableMelon melon2

= new MutableMelon ("Gac", 1200);

private final List<MutableMelon> list = List.of (melonl, melon2?);

So, is the list unmodifiable or immutable? The answer is unmodifiable. While mutator
methods will throw UnsupportedOperationException, the hardcoded instances
can still be accessed via the List.get () method. Once they can be accessed, they can
be mutated:

MutableMelon melonll = list.get (0);
MutableMelon melon2l = list.get (1);

melonll.setWeight (0);
melon2l.setWeight (0);

Now, the list will reveal the following melons (so the list was mutated):

Crenshaw (0g), Gac (0g)

[241]

Arrays, Collections, and Data Structures Chapter 5

For the next examples, let's consider the following immutable class:

public final class ImmutableMelon {

private final String type;
private final int weight;

// constructor, getters, equals() and hashCode() omitted for brevity

Problem 5 (immutable)

Let's now create a list of ImmutableMelon via Collections.unmodifiableList ()
and the List.of () methods:

private static final ImmutableMelon MELON_1
= new ImmutableMelon ("Crenshaw", 2000);

private static final ImmutableMelon MELON_2
= new ImmutableMelon ("Gac", 1200);

private static final List<ImmutableMelon> LIST

= Collections.unmodifiablelList (Arrays.asList (MELON_1, MELON_2));
private static final List<ImmutableMelon> LIST

= List.of (MELON_1, MELON_2);

So, is the list unmodifiable or immutable? The answer is immutable. Mutator
methods will throw UnsupportedOperationException, and we cannot mutate the
instances of ImmutableMelon.

As a rule of thumb, a collection is unmodifiable if it is defined via
unmodifiableFoo () or of () methods and contains mutable data,
and it is immutable if it is unmodifiable and contains immutable
data (including primitives).

Pay attention to the fact that impenetrable immutability should take
into consideration Java Reflection API and similar APIs that have
supplementary powers in manipulating code.

For third-party library support, please consider Apache Common
Collection, UnmodifiableList (and companions), and Guava's
ImmutableList (and companions).

In the case of Map, we can create an unmodifiable/immutable Map via
unmodifiableMap () or the Map.of () methods.

[242]

Arrays, Collections, and Data Structures Chapter 5

But we can also create an immutable empty Map via Collections.emptyMap ():

Map<Integer, MutableMelon> emptyMap = Collections.emptyMap () ;

Similar to emptyMap (), we have Collections.emptyList (), and
Collections.emptySet (). These methods are very handy as
returns in methods that return a Map, List, or Set, and we want to
avoid returning null.

Alternatively, we can create an unmodifiable/immutable Map with a single element
via Collections.singletonMap (K key, V value):

// unmodifiable
Map<Integer, MutableMelon> mapOfSingleMelon
= Collections.singletonMap (1, new MutableMelon ("Gac", 1200));

// immutable
Map<Integer, ImmutableMelon> mapOfSingleMelon
= Collections.singletonMap (1, new ImmutableMelon ("Gac", 1200));

Similar to singletonMap (), we have singletonList () and
singleton (). The latter is for Set.

Moreover, starting with JDK 9, we can create an unmodifiable Map via a method
named ofEntries (). This method takes Map.Entry as an argument, as in the
following example:

// unmodifiable Map.Entry containing the given key and value
import static java.util.Map.entry;

Map<Integer, MutableMelon> mapOfMelon = Map.ofEntries (
entry (1, new MutableMelon ("Apollo", 3000)),
entry (2, new MutableMelon ("Jade Dew", 3500)),
entry (3, new MutableMelon ("Cantaloupe", 1500))

)i
Alternatively, an immutable Map is another option:

Map<Integer, ImmutableMelon> mapOfMelon = Map.ofEntries (
entry (1, new ImmutableMelon ("Apollo", 3000)),
entry (2, new ImmutableMelon ("Jade Dew", 3500)),
entry (3, new ImmutableMelon ("Cantaloupe", 1500))

)i

[243]

Arrays, Collections, and Data Structures Chapter 5

In addition, an unmodifiable/immutable Map can be obtained from a
modifiable/mutable Map via JDK 10, the Map . copyOf (Map<? extends K, ?
extends V> map) method:
Map<Integer, ImmutableMelon> mapOfMelon = new HashMap<>();
mapOfMelon.put (1, new ImmutableMelon ("Apollo", 3000));
mapOfMelon.put (2, new ImmutableMelon ("Jade Dew", 3500));
mapOfMelon.put (3, new ImmutableMelon ("Cantaloupe", 1500));

Map<Integer, ImmutableMelon> immutableMapOfMelon
= Map.copyOf (mapOfMelon) ;

By way of a bonus for this section, let's talk about an immutable array.
Question: Can I create an immutable array in Java?

Answer: No, you cannot. Or... there is one way to make an immutable array in Java:

static final String[] immutable = new String[0];

So, all useful arrays in Java are mutable. But we can create a helper class to create
immutable arrays based on Arrays.copyOf£ (), which copies the elements and
creates a new array (behind the scenes, this method relies on System.arraycopy ()).

So, our helper class is as follows:
import java.util.Arrays;
public final class ImmutableArray<T> {
private final T[] array;
private ImmutableArray (T[] a) A

array = Arrays.copyOf(a, a.length);

public static <T> ImmutableArray<T> from(T[] a) {
return new ImmutableArray<>(a);

public T get (int index) {
return array|[index];

// equals (), hashCode () and toString() omitted for brevity

[244]

Arrays, Collections, and Data Structures Chapter 5

A usage example is as follows:

ImmutableArray<String> sample =
ImmutableArray.from(new Stringl[] {
llall, "b", llcll

)i

110. Mapping a default value

Before JDK 8, the solution to this problem relied on a helper method, which basically
checks the presence of the given key in a Map and returns the corresponding value, or
a default value. Such a method can be written in a utility class or by extending the
Map interface. By returning a default value, we avoid returning null if the given key
was not found in the Map. Moreover, this is a convenient approach for relying on a
default setting or configuration.

Starting with JDK 8, the solution to this problem consists of a simple invocation of
the Map.getOrDefault () method. This method gets two arguments representing
the key to look up in the Map method and the default value. The default value acts as
the backup value that should be returned when the given key is not found.

For example, let's assume the following Map that wraps several databases and their
default host :port:

Map<String, String> map = new HashMap<>();
map.put ("postgresqgl", "127.0.0.1:5432");
map.put ("mysgl", "192.168.0.50:3306");
map.put ("cassandra", "192.168.1.5:9042");

And, let's try to see whether this Map contains the default host : port for Derby DB as
well:

map.get ("derby"); // null

Since Derby DB is not present in the map, the result will be nul1l. This is not what we
want. Actually, when the searched database is not present on the map, we can use
MongoDB on 69:89.31.226:27017, which is always available. Now, we can easily
shape this behavior as follows:

// 69:89.31.226:27017
string hpl = map.getOrDefault ("derby", "69:89.31.226:27017");

// 192.168.0.50:3306
String hp2 = map.getOrDefault ("mysql", "69:89.31.226:27017");

[245]

Arrays, Collections, and Data Structures Chapter 5

This method is convenient for building fluent expressions and
avoiding disrupting the code for null checks. Note that returning
the default value doesn't mean that this value will be added to the
Map. Map remains unmodified.

111. Computing whether absent/present in a
map

Sometimes, a Map doesn't contain the exact out-of-the-box entry that we need.
Moreover, when an entry is absent, returning a default entry is not an option as well.
Basically, there are cases when we need to compute our entry.

For such cases, JDK 8 comes with a bunch of methods: compute (),
computelfAbsent (), computelfPresent (), and merge (). Choosing between
these methods is a matter of knowing each of them very well.

Let's now take a look at the implementation of these methods using examples.

Example 1 (computelfPresent())

Let's suppose that we have the following Map:

Map<String, String> map = new HashMap<>();
map.put ("postgresqgl", "127.0.0.1");
map.put ("mysgl", "192.168.0.50");

We use this map to build JDBC URLs for different database types.

Let's assume that we want to build the JDBC URL for MySQL. If the mysql key is
present in the map, then the JDBC URL should be computed based on the
corresponding value, jdbc:mysgl://192.168.0.50/customers_db. Butif the
mysqgl key is not present, then the JDBC URL should be null. In addition to this, if
the result of our computation is null (the JDBC URL cannot be computed), then we
want to remove this entry from the map.

This is ajob for V. computeIfPresent (K key, BiFunction<? super K,? super
V,? extends V> remappingFunction).

[246]

Arrays, Collections, and Data Structures Chapter 5

In our case, BiFunction used for computing the new value will be as follows (k is
the key from the map, v is the value associated with the key):

BiFunction<String, String, String> jdbcUrl
= (k, v) -> "jdbc:" + k + "://" + v + "/customers_db";

Once we have this function in place, we can compute the new value for the mysql key
as follows:

// jdbc:mysgl://192.168.0.50/customers_db
String mySqlJddbcUrl = map.computelfPresent ("mysqgl", jdbcUrl);

Since the mysql key is present in the map, the result will be
jdbc:mysgl://192.168.0.50/customers_db, and the new map contains the
following entries:

postgresgl=127.0.0.1, mysqgl=jdbc:mysqgl://192.168.0.50/customers_db

Calling computeIfPresent () again will recompute the value,
which means that it will result in something like mysql=
jdbc:imysgl://jdbc:mysqgl://. ... Obviously, this is not OK, so
pay attention to this aspect.

On the other hand, if we try the same computation for an entry that doesn't exist (for
example, voltdb), then the returned value will be null and the map remains
untouched:

// null
String voldDbJdbcUrl = map.computelfPresent ("voltdb", jdbcUrl);

Example 2 (computelfAbsent())

Let's suppose that we have the following Map:

Map<String, String> map = new HashMap<>();
map.put ("postgresqgl", "jdbc:postgresqgl://127.0.0.1/customers_db");
map.put ("mysqgl", "jdbc:mysqgl://192.168.0.50/customers_db");

We use this map to build JDBC URLs for different databases.

[247]

Arrays, Collections, and Data Structures Chapter 5

Let's assume that we want to build the JDBC URL for MongoDB. This time, if the
mongodb key is present in the map, then the corresponding value should be returned
without further computations. But if this key is absent (or is associated with a null
value), then it should be computed based on this key and the current IP and be added
to the map. If the computed value is null, then null is the returned result and the
map remains untouched.

Well, this is a job for V computeIfAbsent (K key, Function<? super K,?
extends V> mappingFunction).

In our case, Function used to compute the value will be as follows (the first String
is the key from the map (k), while the second String is the value computed for this
key):

String address = InetAddress.getlLocalHost () .getHostAddress();

Function<String, String> jdbcUrl
=k -> k + "://" + address + "/customers_db";

Based on this function, we can try to obtain the JDBC URL for MongoDB via the
mongodb key as follows:

// mongodb://192.168.100.10/customers_db
String mongodbJdbcUrl = map.computelfAbsent ("mongodb", jdbcUrl);

Since our map doesn't contain the mongodb key, it will be computed and added to the
map.

If our Function is evaluated to null, then the map remains untouched and the
returned value is null.

Calling computeIfAbsent () again will not recompute the value.
This time, since mongodb is in the map (it was added at the previous
call), the returned value will be
mongodb://192.168.100.10/customers_db. This is the same as
trying to fetch the JDBC URL for mysql, which will

return jdbc:mysql://192.168.0.50/customers_db without
further computations.

[248]

Arrays, Collections, and Data Structures Chapter 5

Example 3 (compute())

Let's suppose that we have the following Map:

Map<String, String> map = new HashMap<>();
map.put ("postgresqgl", "127.0.0.1");
map.put ("mysgl", "192.168.0.50");

We use this map to build JDBC URLs for different database types.

Let's assume that we want to build the JDBC URLs for MySQL and Derby DB. In this
case, irrespective of whether the key (mysql or derby) is present in the map, the
JDBC URL should be computed based on the corresponding key and value (which
can be null). In addition, if the key is present in the map and the result of our
computation is null (the JDBC URL cannot be computed), then we want to remove
this entry from the map. Basically, this is a combination of computeIfPresent ()
and computeIfAbsent ().

This is a job for V compute (K key, BiFunction<? super K,? super V,?
extends V> remappingFunction).

This time, BiFunct ion should be written to cover the case when the value of the
searched key is null:

String address = InetAddress.getlLocalHost ().getHostAddress();
BiFunction<String, String, String> jdbcUrl = (k, v)
-> "jdbc:" + k + "://" + ((v == null) ? address : V)
+ "/customers_db";

Now, let's compute the JDBC URL for MySQL. Since the mysgl key is present in the
map, the computation will rely on the corresponding value, 192.168.0.50. The
result will update the value of the mysql key in the map:

// jdbc:imysqgl://192.168.0.50/customers_db
String mysglJddbcUrl = map.compute ("mysgl", jdbcUrl);

In addition, let's compute the JDBC URL for Derby DB. Since the derby key is not
present in the map, the computation will rely on the current IP. The result will be
added to the map under the derby key:

// jdbc:derby://192.168.100.10/customers_db
String derbyJdbcUrl = map.compute ("derby", jdbcUrl);

[249]

Arrays, Collections, and Data Structures Chapter 5

After these two computations, the map will contain the following three entries:

® postgresgl=127.0.0.1
e derby=jdbc:derby://192.168.100.10/customers_db
e mysgl=jdbc:mysqgl://192.168.0.50/customers_db

Pay attention to the fact that calling compute () again will
recompute the values. This can lead to unwanted results such

as jdbc:derby://jdbc:derby://. ...

If the result of the computation is null (for example, the JDBC URL
cannot be computed) and the key (for example, mysql) exists in the
map, then this entry will be removed from the map and the returned
resultis null.

Example 4 (merge())

Let's suppose that we have the following Map:

Map<String, String> map = new HashMap<>();
map.put ("postgresqgl"”, "9.6.1 ");
map.put ("mysgl", "5.1 5.2 5.6 ");

We use this map to store the versions of each database type separated by a space.

Now, let's assume that every time a new version of a database type is released, we
want to add it to our map under the corresponding key. If the key (for example,
mysql) is present in the map, then we want to simply concatenate the new version to
the end of the current value. If the key (for example, derby) is not present in the map,
then we just want to add it now.

This is the perfect job for Vmerge (K key, V value, BiFunction<? super V,?
super V,? extends V> remappingFunction).

If the given key (K) is not associated with a value or is associated with null, then the
new value will be v. If the given key () is associated with a non-null value, then the
new value is computed based on the given BiFunction. If the result of this
BiFunction is null, and the key is present in the map, then this entry will be
removed from the map.

[250]

Arrays, Collections, and Data Structures Chapter 5

In our case, we want to concatenate the current value with the new version, so our
BiFunction can be written as follows:

BiFunction<String, String, String> jdbcUrl = String::concat;

We have a similar situation with the following;:

BiFunction<String, String, String> jdbcUrl
= (vold, vnew) -> vold.concat (vnew);

For example, let's suppose that we want to concatenate in the map version 8.0 of
MySQL. This can be accomplished as follows:

// 5.1 5.2 5.6 8.0
String mySglVersion = map.merge ("mysqgl", "8.0 ", jdbcUrl);

Later on, we concatenate version 9.0 as well:

// 5.1 5.2 5.6 8.0 9.0
String mySglVersion = map.merge ("mysqgl", "9.0 ", jdbcUrl);

Or, we add version 10.11.1.1 of Derby DB. This will result in a new entry in the
map since there is no derby key present:

// 10.11.1.1
String derbyVersion = map.merge ("derby", "10.11.1.1 ", jdbcUrl);

At the end of these three operations, the map entries will be as follows:

postgresqgl=9.6.1, derby=10.11.1.1, mysgl=5.1 5.2 5.6 8.0 9.0

Example 5 (putlfAbsent())

Let's suppose that we have the following Map:

Map<Integer, String> map = new HashMap<>();
map.put (1, "postgresqgl");

map.put (2, "mysqgl");

map.put (3, null);

We use this map to store the names of some database types.

[251]

Arrays, Collections, and Data Structures Chapter 5

Now, let's suppose that we want to include more database types in this map based on
the following constraints:

o If the given key is present in the map, then simply return the
corresponding value and leave the map untouched.

o If the given key is not present in the map (or is associated with a null
value), then put the given value in the map and return null.

Well, this is a job for put IfAbsent (K key, V value).

The following three attempts speak for themselves:

String vl = map.putIfAbsent (1, "derby"); // postgresqgl
String v2 = map.putIfAbsent (3, "derby"); // null
String v3 = map.putIfAbsent (4, "cassandra"); // null

And the map content is as follows:

l=postgresqgl, 2=mysqgl, 3=derby, 4=cassandra

112. Removal from a Map

Removal from a Map can be accomplished by a key, or by a key and value.

For example, let's assume that we have the following Map:

Map<Integer, String> map = new HashMap<>();
map.put (1, "postgresqgl");

map.put (2, "mysqgl");

map.put (3, "derby");

Removal by key is as simple as calling the V Map.remove (Object key) method. If
the entry corresponding to the given key is successfully removed, then this method
returns the associated value, otherwise it returns null.

Check the following examples:

String rl = map.remove (1)
String r2 = map.remove (4)

// postgresqgl
// null

Now, the map contains the following entries (the entry from key 1 was removed):

2=mysqgl, 3=derby

[252]

Arrays, Collections, and Data Structures Chapter 5

Starting with JDK 8, the Map interface was enriched with a new remove () flag
method with the following signature: boolean remove (Object key, Object
value). Using this method, we can remove an entry from a map only if there is a
perfect match between the given key and value. Basically, this method is a shortcut of
the following compound condition: map.containsKey (key) &&

Objects.equals (map.get (key), value).

Let's have two simple examples:

// true
boolean rl = map.remove (2, "mysqgl");

// false (the key is present, but the values don't match)
boolean r2 = map.remove (3, "mysqgl");

The resultant map contains the single remaining entry, 3=derby.

Iterating and removing from a Map can be accomplished in at least two ways; first, via
an Iterator (solution present in the bundled code), and second, starting with JDK 8§,
we can do it via removeIf (Predicate<? super E> filter):

map.entrySet () .removelf (e —-> e.getValue () .equals ("mysqgl"));

More details about removing from a collection are available in the Removing all
elements of a collection that match a predicate section.

113. Replacing entries from a Map

Replacing entries from a Map is a problem that can be encountered in a wide range of
cases. The convenient solution to accomplish this and avoid a snippet of spaghetti
code written in a helper method relies on JDK 8, the replace () method.

Let's assume that we have the following Melon class and a map of Melon:
public class Melon {

private final String type;
private final int weight;

// constructor, getters, equals (), hashCode(),
// toString() omitted for brevity
}

Map<Integer, Melon> mapOfMelon = new HashMap<>();

[253]

Arrays, Collections, and Data Structures Chapter 5

mapOfMelon.put (1, new Melon ("Apollo", 3000));
mapOfMelon.put (2, new Melon ("Jade Dew", 3500));
mapOfMelon.put (3, new Melon ("Cantaloupe", 1500));

Replacing the melon corresponding to key 2 can be accomplished by means of v
replace (K key, V value).If the replacement is successful, then this method will
return the initial Melon:

// Jade Dew (3500g) was replaced
Melon melon = mapOfMelon.replace (2, new Melon ("Gac", 1000));

Now, the map contains the following entries:

1=Apollo(3000g), 2=Gac(1000g), 3=Cantaloupe(1500q)

Furthermore, let's suppose that we want to replace the entry with key 1 and the
Apollo melon (3,000g). So, the melon should be the same one in order to obtain a
successful replacement. This can be accomplished via the Boolean, replace (K key,
V oldValue, V newValue). This method relies on the equals () contract to
compare the given values; therefore Melon needs to implement the equals ()
method, otherwise the result will be unpredictable:

// true
boolean melon = mapOfMelon.replace (
1, new Melon ("Apollo", 3000), new Melon ("Bitter", 4300));

Now, the map contains the following entries:

1=Bitter (4300g), 2=Gac(1000g), 3=Cantaloupe(1500q)

Finally, let's assume that we want to replace all entries from a Map based on a given
function. This can be done via void replaceAll (BiFunction<? super K, ?
super V,? extends V> function).

For example, let's replace all melons that weigh more than 1,000 g with melons
weighing equal to 1,000g. The following BiFunction shapes this function (k is the
key and v is the value of each entry from the Map):

BiFunction<Integer, Melon, Melon> function = (k, v)
-> v.getWeight () > 1000 ? new Melon(v.getType(), 1000) : v;

Next, replaceAll () appears on the scene:

mapOfMelon.replaceAll (function);

[254]

Arrays, Collections, and Data Structures Chapter 5

Now, the map contains the following entries:

1=Bitter (1000g), 2=Gac(1000g), 3=Cantaloupe(10009g)

114. Comparing two maps

Comparing two maps is straightforward as long as we rely on the Map.equals ()
method. When comparing two maps, this method compares the keys and values of
them using the Object .equals () method.

For example, let's consider two maps of melons having the same entries (the presence
of equals () and hashCode () is a must in the Melon class):

public class Melon {

private final String type;
private final int weight;

// constructor, getters, equals (), hashCode(),
// toString() omitted for brevity

Map<Integer, Melon> melonslMap = new HashMap<>();
Map<Integer, Melon> melons2Map = new HashMap<>();
melonslMap.put (1, new Melon ("Apollo", 3000));
melonslMap.put (2, new Melon ("Jade Dew", 3500));
melonslMap.put (3, new Melon ("Cantaloupe", 1500));
melons2Map.put (1, new Melon ("Apollo", 3000));
melons2Map.put (2, new Melon ("Jade Dew", 3500));
melons2Map.put (3, new Melon ("Cantaloupe", 1500));

Now, if we test melons1Map and melons2Map for equality, then we obtain true:

boolean equalsl2Map = melonslMap.equals (melons2Map); // true

But this will not work if we use arrays. For example, consider the next two maps:

Melon[] melonslArray = {

new Melon ("Apollo", 3000),

new Melon ("Jade Dew", 3500), new Melon ("Cantaloupe", 1500)
bi
Melon[] melons2Array = {

new Melon ("Apollo", 3000),

new Melon ("Jade Dew", 3500), new Melon ("Cantaloupe", 1500)
bi

[255]

Arrays, Collections, and Data Structures Chapter 5

Map<Integer, Melon[]> melonslArrayMap = new HashMap<>();
melonslArrayMap.put (1, melonslArray);
Map<Integer, Melon[]> melons2ArrayMap = new HashMap<>();
melons2ArrayMap.put (1, melons2Array);

Even if melons1ArrayMap and melons2ArrayMap are equal, Map.equals () will
return false:

boolean equalsl2ArrayMap = melonslArrayMap.equals (melons2ArrayMap);

The problem originates in the fact that the array's equals () method compares
identity and not the contents of the array. In order to solve this problem, we can write
a helper method as follows (this time relying on Arrays.equals (), which compares
the contents of the arrays):

public static <A, B> boolean equalsWithArrays (
Map<A, B[]> first, Map<A, B[]> second) {

if (first.size() != second.size()) {
return false;

return first.entrySet () .stream()
.allMatch(e -> Arrays.equals(e.getValue(),
second.get (e.getKey ())));

115. Sorting a Map

There are several solutions for sorting a Map. For a start, let's assume the following
Map of Melon:

public class Melon implements Comparable {

private final String type;
private final int weight;

@Override
public int compareTo (Object o) {
return Integer.compare (this.getWeight (), ((Melon) o) .getWeight());
}
// constructor, getters, equals (), hashCode(),

// toString() omitted for brevity

[256]

Arrays, Collections, and Data Structures Chapter 5

Map<String, Melon> melons = new HashMap<>();
melons.put ("delicious", new Melon ("Apollo", 3000));
melons.put ("refreshing", new Melon ("Jade Dew", 3500));
melons.put ("famous", new Melon ("Cantaloupe", 1500));

Now, let's examine several solutions for sorting this Map. Basically, the goal is to
expose the methods from the following screenshot via a utility class named Maps:

) sortByKeyList (Map<¥, V> map) List<K>
) sortByKeyStream (Map<K, V> mzap, Comparator<? super K> <) Map<K, V>
) sortByKeyTreeMap (Map<K, V> map) TreeMap<K, V>
h sortByValuelist (Map<K, V> map) List<V>
) sortByValueStream (Map<K, V> mzp, Comparator<? super V> c) Map<K, V>

Let's take a look at the different solutions in the next sections.

Sorting by key via TreeMap and natural ordering

A quick solution to sorting a Map relies on TreeMap. By definition, the keys in
TreeMap are sorted by their natural order. Moreover, TreeMap has a constructor of
the TreeMap (Map<? extends K,? extends V> m) type:

public static <K, V> TreeMap<K, V> sortByKeyTreeMap (Map<K, V> map) A

return new TreeMap<> (map) ;

}

And calling it will sort the map by key:

// {delicious=Apollo (3000qg),
// famous=Cantaloupe (1500g), refreshing=Jade Dew (35009g) }
TreeMap<String, Melon> sortedMap = Maps.sortByKeyTreeMap (melons);

Sorting by key and value via Stream and
Comparator

Once we create a St ream for a map, we can easily sort it by means of
the Stream.sorted () method with or without a Comparator. This time, let's use a
Comparator:

public static <K, V> Map<K, V> sortByKeyStream (
Map<K, V> map, Comparator<? super K> c) {

[257]

Arrays, Collections, and Data Structures Chapter 5

return map.entrySet ()
.stream()
.sorted (Map.Entry.comparingByKey (c))
.collect (toMap (Map.Entry::getKey, Map.Entry::getValue,
(vl, v2) -> vl1, LinkedHashMap: :new));

public static <K, V> Map<K, V> sortByValueStream/(
Map<K, V> map, Comparator<? super V> c) {

return map.entrySet ()
.stream()
.sorted (Map.Entry.comparingByValue (c))
.collect (toMap (Map.Entry::getKey, Map.Entry::getValue,
(vl, v2) -> vl1, LinkedHashMap: :new));

}

We need to rely on LinkedHashMap instead of HashMap. Otherwise, we cannot
preserve the iteration order.

Let's sort our map as follows:

// {delicious=Apollo (3000qg),

// famous=Cantaloupe (1500qg),

// refreshing=Jade Dew (35009) }

Comparator<String> byInt = Comparator.naturalOrder () ;

Map<String, Melon> sortedMap = Maps.sortByKeyStream(melons, byInt);

// {famous=Cantaloupe (1500q),
// delicious=Apollo (3000qg),
// refreshing=Jade Dew (35009) }
Comparator<Melon> byWeight = Comparator.comparing(Melon::getWeight) ;
Map<String, Melon> sortedMap
= Maps.sortByValueStream(melons, byWeight) ;

Sorting by key and value via List

The preceding examples sort the given map, and the result is also a map. If all we
need is the sorted keys (and we don't care about the values) or vice versa, then we can
rely on a List created via Map.keySet () for keys, and via Map.values () for
values:

public static <K extends Comparable, V> List<K>
sortByKeyList (Map<K, V> map) {

List<K> list = new ArrayList<> (map.keySet());

[258]

Arrays, Collections, and Data Structures Chapter 5

Collections.sort (list);

return list;

public static <K, V extends Comparable> List<V>
sortByValuelList (Map<K, V> map) {

List<V> list = new ArrayList<> (map.values());
Collections.sort (list);

return list;

}

Now, let's sort our map:

// [delicious, famous, refreshing]
List<String> sortedKeys = Maps.sortByKeyList (melons);

// [Cantaloupe (1500g), Apollo(3000g), Jade Dew (3500q)]
List<Melon> sortedValues = Maps.sortByValuelList (melons);

If duplicate values are not allowed, then you have to rely on an implementation using
SortedSet:

SortedSet<String> sortedKeys = new TreeSet<> (melons.keySet());
SortedSet<Melon> sortedValues = new TreeSet<>(melons.values());

116. Copying HashMap

A handy solution for performing a shallow copy of HashMap relies on the HashMap
constructor, HashMap (Map<? extends K, ? extends V> m). The following code is
self-explanatory:

Map<K, V> mapToCopy = new HashMap<>();
Map<K, V> shallowCopy = new HashMap<> (mapToCopy) ;

Another solution may rely on the putAll (Map<? extends K,? extends V> m)
method. This method copies all of the mappings from the specified map to this map,
as shown in the following helper method:

@SuppressWarnings ("unchecked")
public static <K, V> HashMap<K, V> shallowCopy (Map<K, V> map) A

HashMap<K, V> copy = new HashMap<>();
copy.putAll (map) ;

[259]

Arrays, Collections, and Data Structures Chapter 5

return copy;

}

We can also write a helper method in Java 8 functional style as follows:

@SuppressWarnings ("unchecked")
public static <K, V> HashMap<K, V> shallowCopy (Map<K, V> map) {

Set<Entry<K, V>> entries = map.entrySet();
HashMap<K, V> copy = (HashMap<K, V>) entries.stream()
.collect (Collectors.toMap (
Map.Entry::getKey, Map.Entry::getValue));

return copy;

}

However, these three solutions only provide a shallow copy of the map. A solution
for obtaining a deep copy can rely on the Cloning library (https://github.com/
kostaskougios/cloning) introduced in chapter 2, Objects, Immutability, and Switch
Expressions. A helper method that will use Cloning can be written as follows:

@SuppressWarnings ("unchecked")

public static <K, V> HashMap<K, V> deepCopy (Map<K, V> map) {

Cloner cloner = new Cloner();
HashMap<K, V> copy = (HashMap<K, V>) cloner.deepClone (map);

return copy;

117. Merging two maps

Merging two maps is the process of joining two maps into a single map that contains
the elements of both maps. Furthermore, for key collisions, we incorporate in the final
map the value belonging to the second map. But this is a design decision.

Let's consider the following two maps (we intentionally added a collision for key 3):
public class Melon {

private final String type;
private final int weight;

// constructor, getters, equals (), hashCode(),
// toString() omitted for brevity

[260]

https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning

Arrays, Collections, and Data Structures Chapter 5

Map<Integer, Melon> melonsl = new HashMap<>();
Map<Integer, Melon> melons2 = new HashMap<>();
melonsl.put (1, new Melon ("Apollo", 3000));
melonsl.put (2, new Melon ("Jade Dew", 3500));
melonsl.put (3, new Melon ("Cantaloupe", 1500));
melons2.put (3, new Melon ("Apollo", 3000));
melons2.put (4, new Melon ("Jade Dew", 3500));
melons2.put (5, new Melon ("Cantaloupe", 1500));

Starting with JDK 8, we have the following method in Map: V merge (K key, V
value, BiFunction<? super V,? super V,? extends V>
remappingFunction).

If the given key (K) is not associated with a value, or is associated with nul1l, then the
new value will be v. If the given key () is associated with a non-null value, then the
new value is computed based on the given BiFunction. If the result of this
BiFunction is null, and the key is present in the map, then this entry will be
removed from the map.

Based on this definition, we can write a helper method for merging two maps as
follows:

public static <K, V> Map<K, V> mergeMaps (
Map<K, V> mapl, Map<K, V> map2) {

Map<K, V> map = new HashMap<> (mapl) ;

map2.forEach (
(key, value) -> map.merge (key, value, (vl, v2) -> v2));

return map;

}

Note that we don't modify the original maps. We prefer to return a new map
containing the elements of the first map merged with the elements of the second map.
In the case of a collision of keys, we replace the existing value with the value from the
second map (v2).

Another solution can be written based on Stream. concat () . Basically, this method
concatenates two streams into a single St ream. In order to create a St ream from a
Map, we call Map.entrySet () . stream (). After concatenating the two streams
created from the given maps, we simply collect the result via the toMap () collector:

public static <K, V> Map<K, V> mergeMaps (
Map<K, V> mapl, Map<K, V> map2) {

[261]

Arrays, Collections, and Data Structures Chapter 5

Stream<Map.Entry<K, V>> combined
= Stream.concat (mapl.entrySet () .stream(),
map2.entrySet () .stream());

Map<K, V> map = combined.collect (
Collectors.toMap (Map.Entry::getKey, Map.Entry::getValue,
(vl, v2) —-> v2));

return map;

}

As abonus, a set (for example, a Set of integers) can be sorted as follows:

List<Integer> sortedList = someSetOfIntegers.stream()
.sorted () .collect (Collectors.toList ());

For objects, rely on sorted (Comparator<? super T>.

118. Removing all elements of a collection that
match a predicate

Our collection will hold a bunch of Melon:
public class Melon {

private final String type;
private final int weight;

// constructor, getters, equals(),
// hashCode (), toString() omitted for brevity
}

Let's assume the following collection (ArrayList) throughout our examples to
demonstrate how we can remove elements from it that match a given predicate:

List<Melon> melons = new ArrayList<>();
melons.add (new Melon ("Apollo", 3000));
melons.add (new Melon ("Jade Dew", 3500));
melons.add (new Melon ("Cantaloupe", 1500));
melons.add (new Melon ("Gac", 1600));
melons.add (new Melon ("Hami", 1400));

(
(
(
(

Let's take a look at the different solutions given in the following sections.

[262]

Arrays, Collections, and Data Structures Chapter 5

Removing via an iterator

Removing via an Iterator is the oldest approach available in Java. Mainly, an
Iterator allows us to iterate (or traverse) a collection and remove certain elements.
The oldest approach also has some drawbacks. First of all, depending on the
collection type, removing via an Iterator is prone to
ConcurrentModificationException if multiple threads modify the collection.
Moreover, removal does not behave the same for all collections (for example,
removing from a LinkedList is faster than removing from an ArrayList because
the former simply moves the pointer to the next element while the latter needs to shift
elements). Nevertheless, the solution is available in the bundled code.

If all you need is the size of Iterable, then consider one of the following approaches:

// for any Iterable
StreamSupport.stream(iterable.spliterator (), false).count ();

// for collections
((Collection<?>) iterable) .size ()

Removing via Collection.removelf()

Starting with JDK 8, we can reduce the preceding code to a single line of code via
the Collection.removeIf () method. This method relies on Predicate, as in the

following example:
melons.removelf (t —-> t.getWeight () < 3000);
This time, the ArrayList iterates the list and marks for deletion those elements that

satisfy our Predicate. Furthermore, ArrayList iterates again to remove the marked
elements and shift the remaining elements.

Using this approach, LinkedList and ArrayList perform in almost an identical
fashion.

Removing via Stream

Starting with JDK 8, we can create a St ream from a collection
(Collection.stream()) and filter its elements via filter (Predicate p).The
filter will only retain those elements that satisfy the given Predicate.

[263]

Arrays, Collections, and Data Structures Chapter 5

Finally, we collect these elements via the proper collector:

List<Melon> filteredMelons = melons.stream/()
.filter(t -> t.getWeight () >= 3000)
.collect (Collectors.toList ());

Unlike the other two solutions, this one doesn't mutate the original
collection, but it may be slower and consume more memory.

Separating elements via Collectors.partitioningBy()

Sometimes, we don't want to delete the elements that don't match our predicate.
What we actually want is to separate elements based on our predicate. Well, this is
achievable via Collectors.partitioningBy (Predicate p).

Basically, Collectors.partitioningBy () will separate the elements into two lists.
These two lists are added to a Map as values. The two keys of this Map will be true
and false:

Map<Boolean, List<Melon>> separatedMelons = melons.stream/()
.collect (Collectors.partitioningBy (
(Melon t) —-> t.getWeight () >= 3000));

List<Melon> weightLessThan3000 = separatedMelons.get (false);
List<Melon> weightGreaterThan3000 = separatedMelons.get (true);

So, the t rue key is for retrieving the List that contains the elements that match the
predicate, while the false key is for retrieving the List that contains the elements
that didn't match the predicate.

By way of a bonus, if we want to check whether all the elements of a List are the
same, then we can rely on Collections. frequency (Collection ¢, Object
obj). This method returns the number of elements in the specified collection equal to
the specified object:

boolean allTheSame = Collections.frequency (
melons, melons.get (0)) == melons.size());

If al1TheSame is true, then all elements are the same. Note that equals () and
hashCode () of the object from the List must be implemented accordingly.

[264]

Arrays, Collections, and Data Structures Chapter 5

119. Converting a collection into an array

In order to convert a collection into an array, we can rely on
the Collection.toArray () method. Without arguments, this method will convert
the given collection into an Object [], as in the following example:

List<String> names = Arrays.asList ("ana", "mario", "vio");
Object[] namesArrayAsObjects = names.toArray();

Obviously, this is not entirely useful since we are expecting a String[] instead of
Object []. This can be accomplished via Collection.toArray (T[] a) as follows:

String[] namesArraysAsStrings = names.toArray (new
String[names.size()]);
String[] namesArraysAsStrings = names.toArray (new Stringl[0]);

From these two solutions, the second one is preferable since we avoid computing the
collection size.

But starting with JDK 11, there is one more method dedicated to this task,
Collection.toArray (IntFunction<T[]> generator). This method returns an

array containing all the elements in this collection, using the generator function
provided to allocate the returned array:

String[] namesArraysAsStrings = names.toArray (String[]::new);

Next to the fixed-size modifiable Arrays.asList (), we can build an unmodifiable
List/Set from an array via the of () methods:

String[] namesArray = {"ana", "mario", "vio"};
List<String> namesArrayAsList = List.of (namesArray);
Set<String> namesArrayAsSet = Set.of (namesArray);

120. Filtering a Collection by a List

A common problem that we encounter in applications is filtering a Collection by a
List. Mainly, we start from a huge Collection, and we want to extract from it the
elements that match the elements of a List.

[265]

Arrays, Collections, and Data Structures Chapter 5

In the following examples, let's consider the Melon class:

public class Melon {

private final String type;
private final int weight;

// constructor, getters, equals (), hashCode(),
// toString() omitted for brevity
}

Here, we have a huge Collection (in this case, an ArrayList) of Melon:

List<Melon> melons = new ArrayList<>();
melons.add (new Melon ("Apollo", 3000));
melons.add (new Melon ("Jade Dew", 3500));
melons.add (new Melon ("Cantaloupe", 1500));
melons.add (new Melon ("Gac", 1600));
melons.add (new Melon ("Hami", 1400));

(
(
(
(
And we also have a List containing the types of melons that we want to extract from
the preceding ArrayList:

List<String> melonsByType
= Arrays.aslList ("Apollo", "Gac", "Crenshaw", "Hami");

One solution to this problem may involve looping both collections and comparing the
types of melons, but the resultant code will be pretty slow. Another solution to this
problem may involve the List .contains () method and a lambda expression:

List<Melon> results = melons.stream/()
.filter(t -> melonsByType.contains (t.getType()))
.collect (Collectors.toList ());

The code is compact and fast. Behind the scenes, List.contains () relies on the
following check:

// size — the size of melonsByType

// o — the current element to search from melons
// elementData - melonsByType
for (int 1 = 0; 1 < size; 1i++)

if (o.equals(elementDatali])) {

return 1i;

[2661

Arrays, Collections, and Data Structures Chapter 5

However, we can give another boost to performance via a solution that relies on
HashSet.contains () instead of List.contains (). While List.contains () uses
the preceding for statement to match the elements, HashSet .contains () uses
Map.containsKey (). Mainly, Set is implemented based on a Map, and each added
element is mapped as a key-value of the element-PRESENT type. So, element is a
key in this M<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>