
[1]

Software Architecture
with Python

Design and architect highly scalable, robust, clean,
and high performance applications in Python

Anand Balachandran Pillai

BIRMINGHAM - MUMBAI

Software Architecture with Python

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2017

Production reference: 2060619

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-852-9

www.packtpub.com

www.packtpub.com

Credits

Author
Anand Balachandran Pillai

Reviewer
Mike Driscoll

Commissioning Editor
Aaron Lazar

Acquisition Editor
Vinay Argekar

Content Development Editor
Rohit Kumar Singh

Technical Editors
Leena Patil

Vibhuti Gawde

Copy Editor
Sonia Mathur

Project Coordinator
Vaidehi Sawant

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

About the Author

Anand Balachandran Pillai is an Engineering and Technology professional
with over 18 years of experience in the software industry in Product Engineering,
Software Design and Architecture and Research. He has a Bachelor's degree in
Mechanical Engineering from the Indian Institute of Technology, Madras.

He has worked at companies such as Yahoo!, McAfee, and Infosys in the roles of
Lead Engineer and Architect in product development teams, to build new products.

His interests lie in Software Performace Engineering, High Scalability Architectures,
Security and open source communities. He often works with startups in lead
technical or consulting role.

He is the founder of the Bangalore Python Users Group and a Fellow of the Python
Software Foundation (PSF).

Anand is currently working as Senior Architect of Yegii Inc.

Dedicated to friends & family

About the Reviewer

Mike Driscoll has been programming in Python since 2006. He enjoys writing
about Python in his blog, http://www.blog.pythonlibrary.org/. He has
coauthored the Core Python refcard for DZone. He has also worked as a technical
reviewer for Python 3 Object Oriented Programming, Python 2.6 Graphics Cookbook,
Tkinter GUI Application Development Hotshot, and several other book. He recently
wrote the book Python 101 and is working on his next book.

I would like to thank my beautiful wife, Evangeline, for always
supporting me and my friends and family for all that they do to
help me. And I would like to thank Jesus Christ for saving me.

http://www.blog.pythonlibrary.org/

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1786468522.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free
eBooks and videos in exchange for their valuable feedback. Help us be relentless in
improving our products!

https://www.amazon.com/dp/1786468522

[i]

Table of Contents
Preface ix
Chapter 1: Principles of Software Architecture 1

Defining software architecture 2
Software architecture versus design 3
Aspects of software architecture 4

Characteristics of software architecture 4
An architecture defines a structure 4
An architecture picks a core set of elements 6
An architecture captures early design decisions 6
An architecture manages stakeholder requirements 7
An architecture influences the organizational structure 8
An architecture is influenced by its environment 9
An architecture documents the system 10
An architecture often conforms to a pattern 10

Importance of software architecture 11
System versus enterprise architecture 13
Architectural quality attributes 17

Modifiability 18
Testability 21
Scalability 23
Performance 25
Availability 26
Security 27
Deployability 29

Summary 30

Table of Contents

[ii]

Chapter 2: Writing Modifiable and Readable Code 33
What is modifiability? 34
Aspects related to modifiability 34
Understanding readability 35

Python and readability 35
Readability – antipatterns 37
Techniques for readability 39
Document your code 39
Follow coding and style guidelines 47
Review and refactor code 48
Commenting the code 49

Fundamentals of modifiability – cohesion and coupling 50
Measuring cohesion and coupling 51
Measuring cohesion and coupling – string and text processing 54

Exploring strategies for modifiability 55
Providing explicit interfaces 55
Reducing two-way dependencies 56
Abstract common services 57
Using inheritance techniques 58
Using late binding techniques 62

Metrics – tools for static analysis 63
What are code smells? 64
Cyclomatic complexity – the McCabe metric 65

Testing for metrics 66
Running static checkers 69

Refactoring code 77
Refactoring code – fixing complexity 78
Refactoring code – fixing code smells 80
Refactoring code – fixing styling and coding issues 82

Summary 83
Chapter 3: Testability – Writing Testable Code 85

Understanding testability 86
Software testability and related attributes 86
Testability – architectural aspects 87
Testability – strategies 89

Reduce system complexity 89
Improving predictability 90
Control and isolate external dependencies 91

White-box testing principles 95
Unit testing 96

Table of Contents

[iii]

Unit testing in action 97
Extending our unit test case 99

Nosing around with nose2 101
Testing with py.test 102
Code coverage 105

Measuring coverage using coverage.py 105
Measuring coverage using nose2 106
Measuring coverage using pytest 107

Mocking things up 108
Tests inline in documentation – doctests 113
Integration tests 117
Test automation 120

Test automation using Selenium WebDriver 120
Test-driven development 122
TDD with palindromes 123
Summary 129

Chapter 4: Good Performance is Rewarding! 131
What is performance? 133
Software performance engineering 133
Performance testing and measurement tools 135
Performance complexity 136
Measuring performance 138

Measuring time using a context manager 139
Timing code using the timeit module 142

Measuring the performance of our code using timeit 143
Finding out time complexity – graphs 145
Measuring CPU time with timeit 151

Profiling 152
Deterministic profiling 152
Profiling with cProfile and profile 152

Prime number iterator class – performance tweaks 156
Profiling – collecting and reporting statistics 158
Third-party profilers 159

Line profiler 159
Memory profiler 161
Substring (subsequence) problem 163

Other tools 168
Objgraph 168
Pympler 170

Programming for performance – data structures 172
Mutable containers – lists, dictionaries, and sets 173

Lists 173
Dictionaries 174

Table of Contents

[iv]

Sets 174
Immutable containers – tuples 175
High performance containers – the collections module 175

deque 176
defaultdict 176
OrderedDict 178
Counter 180
ChainMap 181
namedtuple 182

Probabilistic data structures – bloom filters 184
Summary 188

Chapter 5: Writing Applications that Scale 191
Scalability and performance 193
Concurrency 196

Concurrency versus parallelism 197
Concurrency in Python – multithreading 198

Thumbnail generator 199
Thumbnail generator – producer/consumer architecture 201
Thumbnail generator – resource constraint using locks 206
Thumbnail generator – resource constraint using semaphores 211
Resource constraint – semaphore versus lock 214
Thumbnail generator – URL rate controller using conditions 215

Multithreading – Python and GIL 223
Concurrency in Python – multiprocessing 224
A primality checker 224
Sorting disk files 228

Sorting disk files – using a counter 229
Sorting disk files – using multiprocessing 232

Multithreading versus multiprocessing 235
Concurrecy in Python – Asynchronous Execution 236

Pre-emptive versus cooperative multitasking 236
The asyncio module in Python 241
Waiting for a future – async and await 244
Concurrent futures – high-level concurrent processing 247

Disk thumbnail generator 249
Concurrency options – how to choose? 252
Parallel processing libraries 253
Joblib 253
PyMP 254
Fractals – the Mandelbrot set 255

Fractals – scaling the Mandelbrot set implementation 259

Table of Contents

[v]

Scaling for the web 262
Scaling workflows – message queues and task queues 262
Celery – a distributed task queue 264

The Mandelbrot set using Celery 264
Serving with Python on the Web – WSGI 269
uWSGI – WSGI middleware on steroids 272
Gunicorn – unicorn for WSGI 274
Gunicorn versus uWSGI 274
Scalability architectures 275

Vertical scalability architectures 275
Horizontal scalability architectures 275

Summary 279
Chapter 6: Security – Writing Secure Code 281

Information security architecture 282
Secure coding 284
Common security vulnerabilities 285
Is Python secure? 290

Reading input 291
Evaluating arbitrary input 294
Overflow errors 298
Serializing objects 300

Security issues with web applications 304
Server Side Template Injection 305
Server-Side Template Injection – Mitigation 308
Denial of Service 310
Cross-Site Scripting (XSS) 314
Mitigation – DoS and XSS 314

Strategies for security – Python 317
Secure coding strategies 325
Summary 326

Chapter 7: Design Patterns in Python 327
Design patterns – elements 328
Categories of design patterns 329

Pluggable hashing algorithms 331
Summing up pluggable hashing algorithm 334

Patterns in Python – creational 335
The Singleton pattern 335

The Singleton – do we need a Singleton? 338
State sharing – Borg versus Singleton 340
The Factory pattern 342

Table of Contents

[vi]

The Prototype pattern 345
Prototype – deep versus shallow copy 346
Prototype using metaclasses 347
Combining patterns using metaclasses 349
The Prototype factory 350

The Builder pattern 353
Patterns in Python – structural 360

The Adapter pattern 360
The Facade pattern 370

Facades in Python 371
The proxy pattern 377

An instance-counting proxy 378
Patterns in Python – behavioral 381

The Iterator pattern 382
The Observer pattern 385
The State pattern 393

Summary 400
Chapter 8: Python – Architectural Patterns 403

Introducing MVC 404
Model Template View (MTV) – Django 406
Django admin – automated model-centric views 407
Flexible Microframework – Flask 409

Event-driven programming 411
Chat server and client using I/O multiplexing with the select module 411
Event-driven programming versus concurrent programming 418
Twisted 420

Twisted – a simple web client 421
Chat server using Twisted 422

Eventlet 428
Greenlets and Gevent 430

Microservice architecture 432
Microservice frameworks in Python 433
Microservices example – restaurant reservation 435
Microservices – advantages 438

Pipe and Filter architectures 438
Pipe and filter in Python 439

Summary 445
Chapter 9: Deploying Python Applications 447

Deployability 448
Factors affecting deployability 449

Tiers of software deployment architecture 451

Table of Contents

[vii]

Software deployment in Python 452
Packaging Python code 452
PIP 453
Virtualenv 455
Virtualenv and pip 457
Relocatable virtual environments 459
PyPI 460
Packaging and submission of an application 462

The __init__.py files 463
The setup.py file 463
Installing the package 464
Submitting the package to PyPI 465

PyPA 468
Remote deployments using Fabric 468
Remote deployments using Ansible 470
Managing remote daemons using Supervisor 471

Deployment – patterns and best practices 472
Summary 474

Chapter 10: Techniques for Debugging 477
Maximum subarray problem 478

The power of "print" 479
Analysis and rewrite 481
Timing and optimizing the code 484

Simple debugging tricks and techniques 486
Word searcher program 487
Word searcher program – debugging step 1 488
Word searcher program – debugging step 2 489
Word searcher program – final code 490
Skipping blocks of code 491
Stopping execution 491
External dependencies – using wrappers 492
Replacing functions with their return value/data (mocking) 494

Saving to / loading data from files as cache 496
Saving to / loading data from memory as cache 498
Returning random/mock data 500

Logging as a debugging technique 505
Simple application logging 505
Advanced logging – logger objects 507

Advanced logging – custom formatting and loggers 508
Advanced logging – writing to syslog 512

Debugging tools – using debuggers 513
A debugging session with pdb 514

Table of Contents

[viii]

Pdb – similar tools 516
iPdb 516
Pdb++ 518

Advanced debugging – tracing 518
The trace module 519
The lptrace program 520
System call tracing using strace 521

Summary 522
Index 525

[ix]

Preface
Software architecture, or creating a blueprint design for a particular software
application, is not a walk in the park. The two biggest challenges in software
architecture are keeping the architecture in sync, first with the requirements as they are
uncovered or evolve, and next with the implementation as it gets built and evolves.

Filled with examples and use cases, this guide takes a direct approach to helping you
with everything it takes to become a successful software architect. This book will
help you understand the ins and outs of Python so that you can architect and design
highly scalable, robust, clean, and performant applications in Python.

What this book covers
Chapter 1, Principles of Software Architecture, introduces the topic of software
architecture, giving you a brief on architectural quality attributes and the general
principles behind them. This will enable you to have strong fundamentals in
software architectural principles and foundational attributes.

Chapter 2, Writing Modifiable and Readable Code, covers developmental architectural
quality attributes, namely, modifiability and readability. It will help you gain an
understanding of the architectural quality attribute of maintainability and tactics of
writing code in Python to test your applications.

Chapter 3, Testability – Writing Testable Code, helps you understand the architectural
quality attribute of testability and how to architect Python applications for testability.
You will also learn about various aspects of testability and software testing and the
different libraries and modules available in Python to write testable applications.

Chapter 4, Good Performance is Rewarding!, covers the performance aspects of writing
Python code. You will be equipped with the knowledge of performance as a quality
attribute in architecture and when to optimize for performance. You will learn when
to optimize for performance in the SDLC.

Preface

[x]

Chapter 5, Writing Applications that Scale, talks about the importance of writing
scalable applications. It discusses different ways to achieve of application scalability
and discusses scalability techniques using Python. You will also learn about
theoretical aspects of scalability and the best practices in the industry.

Chapter 6, Security – Writing Secure Code, discusses the security aspect of architecture
and teaches you best practices and techniques of writing applications that are secure.
You will understand the different security issues to watch out for and to and to
architecture applications in Python that are secure from the ground up.

Chapter 7, Design Patterns in Python, gives you an overview of design patterns
in Python from a pragmatic programmer's perspective, with brief theoretical
background of each pattern. You will gain knowledge of design patterns in
Python that are actually useful to pragmatic programmer.

Chapter 8, Python Architectural Patterns, introduces you to the modern architectural
patterns in Python from a high-level perspective while giving examples of Python
libraries and frameworks to realize the approaches of these patterns to solve high-
level architecture problems.

Chapter 9, Deploying Python Applications, covers the aspect of easily deploying your
code on remote environments or on the cloud using Python the right way.

Chapter 10, Techniques for Debugging, covers some of the debugging techniques for
Python code—from the simplest, strategically placed print statement to logging and
system call tracing which will be very handy to the programmer and also help the
system architect to guide his team.

What you need for this book
To run most of the code samples shown in this book, you need to have Python 3
installed on your system. The other prerequisites are mentioned at the respective
instances.

Who this book is for
This book is for experienced Python developers who are aspiring to become the
architects of enterprise-grade applications or software architects who would like
to leverage Python to create effective blueprints of applications.

Preface

[xi]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

class PrototypeFactory(Borg):
 """ A Prototype factory/registry class """

 def __init__(self):
 """ Initializer """

 self._registry = {}

 def register(self, instance):
 """ Register a given instance """

 self._registry[instance.__class__] = instance

 def clone(self, klass):
 """ Return clone given class """

 instance = self._registry.get(klass)
 if instance == None:
 print('Error:',klass,'not registered')
 else:
 return instance.clone()

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Preface

[xii]

Any command-line input or output is written as follows:

>>> import hash_stream
>>> hash_stream.hash_stream(open('hash_stream.py'))
'30fbc7890bc950a0be4eaa60e1fee9a1'

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Software-Architecture-with-Python. We also have other
code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/SoftwareArchitecturewithPython_
ColorImages.pdf.

https://github.com/PacktPublishing/Software-Architecture-with-Python
https://github.com/PacktPublishing/Software-Architecture-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/SoftwareArchitecturewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/SoftwareArchitecturewithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/SoftwareArchitecturewithPython_ColorImages.pdf

Preface

[xiv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Principles of
Software Architecture

This is a book on Python. At the same time, it is a book about software architecture
and its various attributes, which are involved in a software development life cycle.

In order for you to understand and combine both aspects, which is essential to
get maximum value from this book, it is important to grasp the fundamentals of
software architecture, the themes and concepts related to it, and the various quality
attributes of software architecture.

A number of software engineers, taking on senior roles in their organizations,
often get very different interpretations of the definitions of software design and
architecture, and the roles they play in building testable, maintainable, scalable,
secure, and functional software.

Though there is a lot of literature in the field, which is available both in conventional
book form and on the internet; very often, the practitioners among us get a
confusing picture of these very important concepts. This is often due to the pressures
involved in learning the technology rather than learning the fundamental design and
architectural principles underlying the use of technology in building systems. This is
a common practice in software development organizations, where the pressures of
delivering working code often overpowers and eclipses everything else.

A book such as this one, strives to transcend the middle path in bridging the rather
esoteric aspects of software development related to its architectural quality attributes
to the mundane details of building software using programming languages, libraries,
and frameworks—in this case, using Python and its developer ecosystem.

Principles of Software Architecture

[2]

The role of this introductory chapter is to demystify these concepts, and explain
them in very clear terms to the reader to prepare his/her for the path towards
understanding the rest of this book. Hopefully, by the end of this book, the concepts
and their practical details will represent a coherent body of knowledge to the reader.

We will now get started on this path without any further ado, roughly fitting this
chapter into the following sections:

• Defining software architecture
• Software architecture versus design
• Aspects of software architecture
• Characteristics of software architecture
• Why is software architecture important?
• System versus Enterprise Architecture
• Architectural quality attributes

 ° Modifiability
 ° Testability
 ° Scalability/performance
 ° Security
 ° Deployability

Defining software architecture
There are various definitions of software architecture in the literature concerning the
topic. A simple definition is given as follows:

Software architecture is a description of the subsystems or components of a software
system, and the relationships between them.

The following is a more formal definition, from the Recommended Practice for
Architectural Description of Software-Intensive Systems (IEEE) technology:

"Architecture is the fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution."

It is possible to get umpteen such definitions of software architecture if one spends
some time searching on the web. The wordings might differ, but all the definitions
refer to some core, fundamental aspects underlying software architecture.

Chapter 1

[3]

Software architecture versus design
In the experience of the author, this question of the software architecture of a system
versus its design seems to pop up quite often, in both online as well as offline
forums. Hence, let us take a moment to understand this aspect.

Though both terms are often used interchangeably, the rough distinction of
architecture versus design can be summarized as follows:

• Architecture covers the higher level structures and interactions in a system.
It is concerned with those questions that entail decision making about
the skeleton of the system, involving not only its functional but also its
organizational, technical, business, and quality attributes.

• Design is all about the organization of parts or components of the system
and the subsystems involved in making the system. The problems here are
typically closer to the code or modules in question, such as these:

 ° Which modules to split code into? How to organize them?
 ° Which classes (or modules) to assign the different functionalities to?
 ° Which design pattern should I use for class "C"?
 ° How do my objects interact at runtime? What are the messages

passed, and how is the interaction organized?

Software architecture is about the design of the entire system, whereas, software
design is mostly about the details, typically at the implementation level of the
various subsystems and components that make up those subsystems.

In other words, the word design comes up in both contexts, however, with the
distinction that the former is at a much higher abstraction and at a larger scope than
the latter.

There is a rich body of knowledge available for both software architecture and
design, namely, architectural patterns and design patterns respectively. We will
discuss both these topics in later chapters of this book.

Principles of Software Architecture

[4]

Aspects of software architecture
In both the formal IEEE definition and the rather informal definition given earlier,
we find some common, recurring themes. It is important to understand them in
order to take our discussion on software architecture further:

• System: A system is a collection of components organized in specific ways
to achieve a specific functionality. A software system is a collection of such
software components. A system can often be subgrouped into subsystems.

• Structure: A structure is a set of elements that are grouped or organized
together according to a guiding rule or principle. The elements can be
software or hardware systems. A software architecture can exhibit various
levels of structures depending on the observer's context.

• Environment: The environment is the context or circumstances in which a
software system is built, which has a direct influence on its architecture. Such
contexts can be technical, business, professional, operational, and so on.

• Stakeholder: A stakeholder is a person or groups of persons, who has an
interest or concern in the system and its success. Examples of stakeholders
are the architect, development team, customer, project manager, marketing
team, and others.

Now that you have understood some of the core aspects of software architecture, let
us briefly list some of its characteristics.

Characteristics of software architecture
All software architectures exhibit a common set of characteristics. Let us look at some
of the most important ones here.

An architecture defines a structure
An architecture of a system is best represented as structural details of the system. It
is a common practice for practitioners to draw the system architecture as a structural
component or class diagram in order to represent the relationships between the
subsystems.

Chapter 1

[5]

For example, the following architecture diagram describes the backend of an
application that reads from a tiered database system, which is loaded using
an ETL process:

Example architecture diagram showing system structure

Structures provide insight into architectures, and provide a unique perspective to
analyze the architecture with respect to its quality attributes.

Some examples are as follows:

• The runtime structures, in terms of the objects created at runtime, and how
they interact often determine the deployment architecture. The deployment
architecture is strongly connected to the quality attributes of scalability,
performance, security, and interoperability.

Principles of Software Architecture

[6]

• The module structures, in terms of how the code is broken down and
organized into modules and packages for task breakdown, often has a direct
bearing on the maintainability and modifiability (extensibility) of a system.
This is explained as follows:

 ° Code which is organized with a view to extensibility would often
keep the parent classes in separate well-defined packages with
proper documentation and configuration, which are then easily
extensible by external modules, without the need to resolve too many
dependencies.

 ° Code which is dependent on external or third-party developers
(libraries, frameworks, and the like) would often provide setup or
deployment steps, which manually or automatically pull in these
dependencies from external sources. Such code would also provide
documentation (README, INSTALL, and so on) which clearly
documents these steps.

An architecture picks a core set of elements
A well-defined architecture clearly captures only the core set of structural elements
required to build the core functionality of the system, and which have a lasting effect
on the system. It does not set out to document everything about every component of
the system.

For example, an architect describing the architecture of a user interacting with a web
server for browsing web pages—a typical client/server architecture—would focus
mainly on two components: the user's browser (client) and the remote web server
(server), which form the core elements of the system.

The system may have other components such as multiple caching proxies in the path
from the server to the client, or a remote cache on the server which speeds up web
page delivery. However, this is not the focus of the architecture description.

An architecture captures early design
decisions
This is a corollary to the characteristics described previously. The decisions that help
an architect to focus on some core elements of the system (and their interactions) are
a result of the early design decisions about a system. Thus, these decisions play a
major role in further development of the system due to their initial weight.

Chapter 1

[7]

For example, an architect may make the following early design decisions after careful
analysis of the requirements for a system:

• The system will be deployed only on Linux 64-bit servers, since this satisfies
the client requirement and performance constraints

• The system will use HTTP as the protocol for implementing backend APIs
• The system will try to use HTTPS for APIs that transfer sensitive data from

the backend to frontend using encryption certificates of 2,048 bits or higher
• The programming language for the system would be Python for the backend,

and Python or Ruby for the frontend

The first decision freezes the deployment choices of the system to a
large extent to a specific OS and system architecture. The next two
decisions have a lot of weight in implementing the backend APIs. The
last decision freezes the programming language choices for the system.

Early design decisions need to be arrived at after careful analysis of the requirements
and matching them with the constraints—such as organizational, technical, people,
and time constraints.

An architecture manages stakeholder
requirements
A system is designed and built, ultimately, at the behest of its stakeholders.
However, it is not possible to address each stakeholder requirement to its fullest due
to an often contradictory nature of such requirements. Following are some examples:

• The marketing team is concerned with having a full-featured software
application, whereas, the developer team is concerned with feature creep
and performance issues when adding a lot of features.

• The system architect is concerned with using the latest technology to
scale out his/her deployments to the cloud, while the project manager is
concerned about the impact such technology deployments will have on
his/her budget. The end user is concerned about correct functionality,
performance, security, usability, and reliability, while the development
organization (architect, development team, and managers) is concerned
with delivering all these qualities while keeping the project on schedule and
within budget.

Principles of Software Architecture

[8]

• A good architecture tries its best to balance out these requirements by
making trade-offs, and delivering a system with good quality attributes
while keeping the people and resource costs within limits.

• An architecture also provides a common language among the stakeholders,
which allows them to communicate efficiently via expressing these
constraints, and helping the architect zero-in on an architecture that best
captures these requirements and their trade-offs.

An architecture influences the organizational
structure
The system structures an architecture describes, quite often have a direct mapping to
the structure of the teams that build those systems.

For example, an architecture may have a data access layer which describes a set of
services that read and write large sets of data—it is natural that such a system gets
functionally assigned to the database team, which already has the required skill sets.

Since the architecture of a system is its best description of the top-down structures,
it is also often used as the basis for the task-breakdown structures. Thus, software
architecture often has a direct bearing on the organizational structures that build it:

System architecture for a search web application

Chapter 1

[9]

The following diagram shows the mapping to the team structure which would be
building this application:

An architecture is influenced by its
environment
An environment imposes outside constraints or limits within which an architecture
must function. In the literature, these are often called architecture in context [Ref: Bass,
Kazman]. Some examples are as follows:

• Quality attribute requirements: In modern day web applications, it is
very common to specify the scalability and availability requirements of the
application as an early technical constraint, and capture it in the architecture.
This is an example of a technical context from a business perspective.

• Standards conformance: In some organizations where there is often a large
set of governing standards for software, especially those in the banking,
insurance, and health-care domains, these get added to the early constraints
of the architecture. This is an example of an external technical context.

• Organizational constraints: It is common to see that organizations which
either have an experience with a certain architectural style or a set of teams
operating with certain programming environments which impose such a
style (J2EE is a good example), prefer to adopt similar architectures for future
projects as a way to reduce costs and ensure productivity due to current
investments in such architectures and related skills. This is an example of an
internal business context.

• Professional context: An architect's set of choices for a system's architecture,
aside from these outside contexts, is mostly shaped from his/her set of
unique experiences. It is common for an architect to continue using a set of
architectural choices that he/she has had the most success with in his/her
past, for new projects.

Architecture choices also arise from one's own education and professional training,
and also from the influence of one's professional peers.

Principles of Software Architecture

[10]

An architecture documents the system
Every system has an architecture, whether it is officially documented or not.
However, properly documented architectures can function as an effective
documentation for the system. Since an architecture captures the system's initial
requirements, constraints, and stakeholder trade-offs, it is a good practice to
document it properly. The documentation can be used as a basis for training later on.
It also helps in continued stakeholder communication, and for subsequent iterations
of the architecture based on changing requirements.

The simplest way to document an architecture is to create diagrams for the
different aspects of the system and organizational architecture such as Component
Architecture, Deployment Architecture, Communication Architecture, and the Team
or Enterprise Architecture.

Other data that can be captured early include the system requirements, constraints,
early design decisions, and rationale for those decisions.

An architecture often conforms to a pattern
Most architectures conform to certain sets of styles which have had a lot of success
in practice. These are referred to as architectural patterns. Examples of such
patterns are client-server, pipes and filters, data-based architectures, and others.
When an architect chooses an existing pattern, he/she gets to refer to and reuse
a lot of existing use cases and examples related to such patterns. In modern day
architectures, the job of the architect comes down to mixing and matching existing
sets of such readily available patterns to solve the problem at hand.

For example, the following diagram shows an example of a client-server architecture:

Example of client-server architecture

Chapter 1

[11]

The following diagram describes another common architecture pattern, namely,
the pipes and filters architecture for processing streams of data:

Example of pipe and filters architecture

We will see examples of architectural patterns later in this book.

Importance of software architecture
So far, we have discussed the fundamental principles of software architecture, and
also seen some of its characteristics. These sections, of course, assumed that software
architecture is important, and is a critical step of the software development process.

It is time to play devil's advocate, and look back at software architecture and ask
some existential questions about it as follows:

• Why software architecture?
• Why is software architecture important?
• Why not build a system without a formal software architecture?

Let us take a look at the critical insights that software architecture provides, which
would otherwise be missing from an informal software development process. We
are only focusing on the technical or developmental aspects of the system in the
following table:

Aspect Insight/Impact Examples
Architecture selects quality
attributes to be optimized
for a system.

Aspects such as scalability,
availability, modifiability,
security, and so on of a
system depend on early
decisions and trade-
offs while selecting an
architecture. You often trade
one attribute in favor of
another.

A system that is optimized
for scalability must
be developed using a
decentralized architecture
where elements are not
tightly coupled. For
example: microservices,
brokers.

Principles of Software Architecture

[12]

Aspect Insight/Impact Examples
Architecture facilitates early
prototyping.

Defining an architecture
allows the development
organization to try and
build early prototypes,
which gives valuable
insights into how the system
would behave without
having to build the complete
system top down.

Many organizations build
out quick prototypes of
services—typically, by
building only the external
APIs of these services and
mocking the rest of the
behavior. This allows for
early integration tests and
figuring out interaction
issues in the architecture
early on.

Architecture allows a system
to be built component-wise.

Having a well-defined
architecture allows the
reuse and assembly of
existing, readily available
components to achieve the
functionality without having
to implement everything
from scratch.

Libraries or frameworks
which provide ready-to-use
building blocks for services.
For example: web
application frameworks
such as Django/RoR,
and task distribution
frameworks such as Celery.

Architecture helps to
manage changes to the
system.

An architecture allows
the architect to scope out
changes to the system in
terms of components that
are affected and those
which are not. This helps
to keep system changes
to a minimum when
implementing new features,
performance fixes, and so
on.

A performance fix for
database reads to a system
would need changes
only to the DB and Data
Access Layer (DAL) if the
architecture is implemented
correctly. It need not touch
the application code at
all. For example, this is
how most modern web
frameworks are built.

There are a number of other aspects which are related to the business context of a
system, into which architecture provides valuable insights. However, since this is a
book mostly on the technical aspects of software architecture, we have limited our
discussion to the ones given in the preceding table.

Now, let us take on the second question:

Why not build a system without a formal software architecture?

Chapter 1

[13]

If you've been following the arguments so far thoroughly, it is not very difficult
to see the answer for it. It can, however, be summarized in the following few
statements:

• Every system has an architecture, whether it is documented or not
• Documenting an architecture makes it formal, allowing it to be shared

among stakeholders, making change management and iterative development
possible

• All the other benefits and characteristics of software architecture are ready
to be taken advantage of when you have a formal architecture defined and
documented

• You may be still able to work and build a functional system without a formal
architecture, but it would not produce a system which is extensible and
modifiable, and would most likely produce a system with a set of quality
attributes quite far away from the original requirements

System versus enterprise architecture
You may have heard the term architect used in a few contexts. The following job roles
or titles are pretty common in the software industry for architects:

• The Technical architect
• The Security architect
• The Information architect
• The Infrastructure architect

You also may have heard the term System architect, perhaps the term Enterprise
architect, and maybe, Solution architect also. The interesting question is: What do
these people do?

Let us try and find the answer to this question.

Principles of Software Architecture

[14]

An Enterprise architect looks at the overall business and organizational strategies
for an organization, and applies architecture principles and practices to guide the
organization through the business, information, process, and technology changes
necessary to execute their strategies. The Enterprise architect usually has a higher
strategy focus and a lower technology focus. The other architect roles take care of
their own subsystems and processes. For example:

• The Technical architect: The Technical architect is concerned with the
core technology (hardware/software/network) used in an organization. A
Security architect creates or tunes the security strategy used in applications
to fit the organization's information security goals. An Information architect
comes up with architectural solutions to make information available to/from
applications in a way that facilitates the organization's business goals.
These specific architectural roles are all concerned with their own systems
and subsystems. So, each of these roles is a System architect role.
These architects help the Enterprise architect to understand the smaller
picture of each of the business domain they are responsible for, which helps
the Enterprise architect to get information that will aid him in formulating
business and organizational strategies.

• The System architect: A System architect usually has a higher technology
focus and a lower strategy focus. It is a practice in some service-oriented
software organizations to have a Solution architect, who combines the
different systems to create a solution for a specific client. In such cases, the
different architect roles are often combined into one, depending on the size of
the organization, and the specific time and cost requirements of the project.

• The Solution architect: A Solution architect typically straddles the
middle position when it comes to strategy versus technology focus and
organizational versus project scope.

Chapter 1

[15]

The following schematic diagram depicts the different layers in an organization–
Technology, Application, Data, People, Process, and Business, and makes the focus
area of the architect roles very clear:

Enterprise versus System architects

Let's discuss the preceding diagram a bit to understand the picture it lays out.

The System architect is pictured on the bottom-left side of the diagram, looking at
the system components of the enterprise. His/her focus is on the applications that
power the enterprise, their data, and the hardware and software stack powering the
applications.

Principles of Software Architecture

[16]

The Enterprise architect, on the other hand, is pictured on the top, having a top-
down view of the enterprise including the business goals and the people, and not just
the underlying systems that power the organization. The vertical stack of business
processes connect the technical components that power the organization with its
people and business components. These processes are defined by the Enterprise
architect in discussion with the other stakeholders.

Now that you have understood the picture behind Enterprise and System
architecture, let us take a look at some formal definitions:

"Enterprise Architecture is a conceptual blueprint that defines the structure
and behavior of an organization. It determines how the organization's structure,
processes, personnel and flow of information is aligned to its core goals to efficiently
achieve its current and future objectives."

"A system architecture is the fundamental organization of a system, represented by
its structural and behavioral views. The structure is determined by the components
of the system and the behavior by the relationships between them and their
interaction with external systems."

An Enterprise architect is concerned with how the different elements in an
organization and their interplay is tuned towards achieving the goals of the
organization in an efficient manner. In this work, he/she needs the support of
not just the technical architects in the organization, but also people managing the
organization, such as project managers and human resource professionals.

A Systems architect, on the other hand, is worried about how the core system
architecture maps to the software and hardware architecture, and the various details
of human interactions with the components in the system. His/her concern never
arises above the boundaries defined by the system and its interactions.

Chapter 1

[17]

The following diagram depicts the different focus areas and scopes of the different
architect roles that we've discussed so far:

Scope and focus of various architect roles in a software organization

Architectural quality attributes
Let us now focus on an aspect which forms the main topic for the rest of this
book–Architectural Quality Attributes.

In a previous section, we discussed how an architecture balances and optimizes
stakeholder requirements. We also saw some examples of contradicting stakeholder
requirements, which an architect seeks to balance, by choosing an architecture which
does the necessary trade-offs.

The term quality attribute has been used to loosely define some of these aspects that
an architecture makes trade-offs for. It is now the time to formally define what an
Architectural Quality Attribute is:

"A quality attribute is a measurable and testable property of a system which can
be used to evaluate the performance of a system within its prescribed environment
with respect to its non-functional aspects"

Principles of Software Architecture

[18]

There are a number of aspects that fit this general definition of an architectural
quality attribute. However, for the rest of this book, we will be focusing on the
following quality attributes:

• Modifiability
• Testability
• Scalability and performance
• Availability
• Security
• Deployability

Modifiability
Many studies show that about 80% of the cost of a typical software system
occurs after the initial development and deployment. This shows how important
modifiability is to a system's initial architecture.

Modifiability can be defined as the ease with which changes can be made to a system,
and the flexibility with which the system adjusts to the changes. It is an important
quality attribute, as almost every software system changes over its lifetime—to fix
issues, for adding new features, for performance improvements, and so on.

From an architect's perspective, the interest in modifiability is about the following:

• Difficulty: The ease with which changes can be made to a system
• Cost: In terms of time and resources required to make the changes
• Risks: Any risk associated with making changes to the system

Now, what kind of changes are we talking about here? Is it changes to code, changes
to deployment, or changes to the entire architecture?

The answer is: it can be at any level.

Chapter 1

[19]

From an architecture perspective, these changes can generally be captured at the
following three levels:

1. Local: A local change only affects a specific element. The element can be a
piece of code such as a function, a class, a module, or a configuration element
such as an XML or JSON file. The change does not cascade to any neighboring
element or to the rest of the system. Local changes are the easiest to make,
and the least risky of all. The changes can usually be quickly validated with
local unit tests.

2. Non-local: These changes involve more than one element. The examples are
as follows:

 ° Modifying a database schema, which then needs to cascade into the
model class representing that schema in the application code

 ° Adding a new configuration parameter in a JSON file, which then
needs to be processed by the parser parsing the file and/or the
application(s) using the parameter

Non-local changes are more difficult to make than local changes, require
careful analysis, and wherever possible, integration tests to avoid code
regressions.

3. Global: These changes either involve architectural changes from top
down, or changes to elements at the global level, which cascade down to a
significant part of the software system. The examples are as follows:

 ° Changing a system's architecture from RESTful to messaging (SOAP,
XML-RPC, and others) based web services

 ° Changing a web application controller from Django to an Angular-js
based component

 ° A performance change requirement which needs all data to be
preloaded at the frontend to avoid any inline model API calls for an
online news application

These changes are the riskiest, and also the costliest, in terms of resources,
time and money. An architect needs to carefully vet the different scenarios
that may arise from the change, and get his/her team to model them via
integration tests. Mocks can be very useful in these kinds of large-scale
changes.

Principles of Software Architecture

[20]

The following table shows the relationship between Cost and Risk for the different
levels of system modifiability:

Level Cost Risk
Local Low Low
Non-local Medium Medium
Global High High

Modifiability at the code level is also directly related to its readability:

"The more readable a code is, the more modifiable it is. Modifiability of a code goes
down in proportion to its readability."

The modifiability aspect is also related to the maintainability of the code. A code
module which has its elements very tightly coupled would yield to modification
much less than a module which has a loosely coupled elements—this is the Coupling
aspect of modifiability.

Similarly, a class or module which does not define its role and responsibilities
clearly would be more difficult to modify than another one which has well-defined
responsibility and functionality. This aspect is called Cohesion of a software module.

The following table shows the relation between Cohesion, Coupling, and
Modifiability for an imaginary module A. Assume that the coupling is from
this module to another module B:

Cohesion Coupling Modifiability
Low High Low
Low Low Medium
High High Medium
High Low High

Chapter 1

[21]

It is pretty clear from the preceding table that having higher Cohesion and lower
Coupling is the best scenario for the modifiability of a code module.

Other factors that affect modifiability are as follows:

• Size of a module (number of lines of code): Modifiability decreases when
size increases.

• Number of team members working on a module: Generally, a module
becomes less modifiable when a larger number of team members work on the
module due to the complexities in merging and maintaining a uniform code
base.

• External third-party dependencies of a module: The larger the number
of external third-party dependencies, the more difficult it is to modify the
module. This can be thought of as an extension of the coupling aspect of a
module.

• Wrong use of the module API: If there are other modules which make use of
the private data of a module rather than (correctly) using its public API, it is
more difficult to modify the module. It is important to ensure proper usage
standards of modules in your organization to avoid such scenarios. This can
be thought of as an extreme case of tight Coupling.

Testability
Testability refers to how much a software system is amenable to demonstrating its
faults through testing. Testability can also be thought of as how much a software
system hides its faults from end users and system integration tests—the more testable
a system is, the less it is able to hide its faults.

Testability is also related to how predictable a software system's behavior is. The
more predictable a system, the more it allows for repeatable tests, and for developing
standard test suites based on a set of input data or criteria. Unpredictable systems are
much less amenable to any kind of testing, or, in extreme case, not testable at all.

In software testing, you try to control a system's behavior by, typically, sending it a
set of known inputs, and then observing the system for a set of known outputs. Both
of these combine to form a testcase. A test suite or test harness, typically, consists of
many such test cases.

Principles of Software Architecture

[22]

Test assertions are the techniques that are used to fail a test case when the output of
the element under the test does not match the expected output for the given input.
These assertions are usually manually coded at specific steps in the test execution
stage to check the data values at different steps of the testcase:

Representative flowchart of a simple unit test case for function f('X') = 'Y'

The preceding diagram shows an example of a representative flowchart for a testable
function "f" for a sample input "X" with expected output "Y".

In order to recreate the session or state at the time of a failure, the record/playback
strategy is often used. This employs specialized software (such as Selenium), which
records all user actions that led to a specific fault, and saves it as a testcase. The test is
reproduced by replaying the testcase using the same software which tries to simulate
the same testcase; this is done by repeating the same set and order of UI actions.

Testability is also related to the complexity of code in a way very similar to
modifiability. A system becomes more testable when parts of it can be isolated and
made to work independent of the rest of the system. In other words, a system with
low coupling is more testable than a system with high coupling.

Chapter 1

[23]

Another aspect of testability, which is related to the predictability mentioned earlier,
is to reduce non-determinism. When writing test suites, we need to isolate the
elements that are to be tested from other parts of the system which have a tendency
to behave unpredictably so that the tested element's behavior becomes predictable.

An example is a multi-threaded system, which responds to events raised in other
parts of the system. The entire system is probably quite unpredictable, and not
amenable to repeated testing. Instead, one needs to separate the events subsystem,
and possibly, mock its behavior so that those inputs can be controlled, and the
subsystem which receives the events becomes predictable and hence, testable.

The following schematic diagram explains the relationship between the testability
and predictability of a system to the Coupling and Cohesion between its
components:

Relation of testability and predictability of a system to coupling and cohesion

Scalability
Modern-day web applications are all about scaling up. If you are part of any modern-
day software organization, it is very likely that you have heard about or worked on
an application that is written for the cloud, which is able to scale up elastically on
demand.

Scalability of a system is its capacity to accommodate increasing workload on
demand while keeping its performance within acceptable limits.

Principles of Software Architecture

[24]

Scalability in the context of a software system, typically, falls into two categories,
which are as follows:

• Horizontal scalability: Horizontal scalability implies scaling out/in a
software system by adding more computing nodes to it. Advances in cluster
computing in the last decade have given rise to the advent of commercial
horizontally scalable elastic systems as services on the web. A well-known
example is Amazon Web Services. In horizontally scalable systems, typically,
data and/or computation is done on units or nodes, which are, usually,
virtual machines running on commodity systems known as virtual private
servers (VPS). The scalability is achieved "n" times by adding n or more
nodes to the system, typically fronted by a load balancer. Scaling out means
expanding the scalability by adding more nodes, and scaling in means
reducing the scalability by removing existing nodes:

Example deployment architecture showing horizontally scaling a web application server

• Vertical scalability: Vertical scalability involves adding or removing
resources from a single node in a system. This is usually done by adding or
removing CPUs or RAM (memory) from a single virtual server in a cluster.
The former is called scaling up, and the latter, scaling down. Another kind
of scaling up is increasing the capacity of an existing software process in the
system—typically, by augmenting its processing power. This is usually done
by increasing the number of processes or threads available to an application.
Some examples are as follows:

 ° Increasing the capacity of an Nginx server process by increasing its
number of worker processes

 ° Increasing the capacity of a PostgreSQL server by increasing its
number of maximum connections

Chapter 1

[25]

Performance
Performance of a system is related to its scalability. Performance of a system can be
defined as follows:

"Performance of a computer system is the amount of work accomplished by a
system using a given unit of computing resource. Higher the work/unit ratio,
higher the performance."

The unit of computing resource to measure performance can be one of the following:

• Response time: How much time a function or any unit of execution takes to
execute in terms of real time (user time) and clock time (CPU time).

• Latency: How much time it takes for a system to get its stimulation, and
then provide a response. An example is the time it takes for the request-
response loop of a web application to complete, measured from the end-user
perspective.

• Throughput: The rate at which a system processes its information. A system
which has higher performance would usually have a higher throughput,
and correspondingly higher scalability. An example is the throughput of an
e-commerce website measured as the number of transactions completed per
minute.

Performance is closely tied to scalability, especially, vertical scalability. A system
that has excellent performance with respect to its memory management would easily
scale up vertically by adding more RAM.

Similarly, a system that has multi-threaded workload characteristics and is written
optimally for a multicore CPU, would scale up by adding more CPU cores.

Horizontal scalability is thought of as having no direct connection to the
performance of a system within its own compute node. However, if a system is
written in a way that it doesn't utilize the network effectively, thereby producing
network latency issues, it may have a problem scaling horizontally effectively, as
the time spent on network latency would offset any gain in scalability obtained by
distributing the work.

Some dynamic programming languages such as Python have built-in scalability
issues when it comes to scaling up vertically. For example, the Global Interpreter
Lock (GIL) of Python (CPython) prevents it from making full use of the available
CPU cores for computing by multiple threads.

Principles of Software Architecture

[26]

Availability
Availability refers to the property of readiness of a software system to carry out its
operations when the need arises.

Availability of a system is closely related to its reliability. The more reliable a system
is, the more available it is.

Another factor which modifies availability is the ability of a system to recover
from faults. A system may be very reliable, but if the system is unable to recover
either from complete or partial failures of its subsystems, then it may not be able to
guarantee availability. This aspect is called recovery.

The availability of a system can be defined as follows:

"Availability of a system is the degree to which the system is in a fully operable
state to carry out its functionality when it is called or invoked at random."

Mathematically, this can be expressed as follows:

Availability = MTBF/(MTBF + MTTR)

Take a look at the following terms used in the preceding formula:

• MTBF: Mean time between failures
• MTTR: Mean time to repair

This is often called the mission capable rate of a system.

Techniques for Availability are closely tied to recovery techniques. This is due to the
fact that a system can never be 100% available. Instead, one needs to plan for faults
and strategies to recover from faults, which directly determines the availability.
These techniques can be classified as follows:

• Fault detection: The ability to detect faults and take action helps to
avert situations where a system or parts of a system become unavailable
completely. Fault detection typically involves steps such as monitoring,
heartbeat, and ping/echo messages, which are sent to the nodes in a system,
and the response measured to calculate if the nodes are alive, dead, or are in
the process of failing.

Chapter 1

[27]

• Fault recovery: Once a fault is detected, the next step is to prepare the system
to recover from the fault and bring it to a state where the system can be
considered available. Typical tactics used here include Hot/Warm Spares
(Active/Passive redundancy), Rollback, Graceful Degradation, and Retry.

• Fault prevention: This approach uses active methods to anticipate and
prevent faults from occurring so that the system does not have a chance to go
to recovery.

Availability of a system is closely tied to the consistency of its data via the CAP
theorem which places a theoretical limit on the trade-offs a system can make with
respect to consistency versus availability in the event of a network partition. The
CAP theorem states that a system can choose between being consistent or being
available—typically leading to two broad types of systems, namely, CP (consistent
and tolerant to network failures) and AP (available and tolerant to network failures).

Availability is also tied to the system's scalability tactics, performance metrics, and
its security. For example, a system that is highly horizontally scalable would have a
very high availability, since it allows the load balancer to determine inactive nodes
and take them out of the configuration pretty quickly.

A system which, instead, tries to scale up may have to monitor its performance
metrics carefully. The system may have availability issues even when the node on
which the system is fully available if the software processes are squeezed for system
resources, such as CPU time or memory. This is where performance measurements
become critical, and the system's load factor needs to be monitored and optimized.

With the increasing popularity of web applications and distributed computing,
security is also an aspect that affects availability. It is possible for a malicious hacker
to launch remote denial of service attacks on your servers, and if the system is not
made foolproof against such attacks, it can lead to a condition where the system
becomes unavailable or only partially available.

Security
Security, in the software domain, can be defined as the degree of ability of a system
to avoid damage to its data and logic from unauthenticated access, while continuing
to provide services to other systems and roles that are properly authenticated.

A security crisis or attack occurs when a system is intentionally compromised with
a view to gaining illegal access to it in order to compromise its services, copy, or
modify its data, or deny access to its legitimate users.

Principles of Software Architecture

[28]

In modern software systems, the users are tied to specific roles which have exclusive
rights to different parts of the system. For example, a typical web application with a
database may define the following roles:

• user: End user of the system with login and access to his/her private data
• dbadmin: Database administrator, who can view, modify, or delete all

database data
• reports: Report admin, who has admin rights only to those parts of database

and code that deal with report generation
• admin: Superuser, who has edit rights to the complete system

This way of allocating system control via user roles is called access control. Access
control works by associating a user role with certain system privileges, thereby
decoupling the actual user login from the rights granted by these privileges.

This principle is the Authorization technique of security.

Another aspect of security is with respect to transactions where each person must
validate the actual identity of the other. Public key cryptography, message signing,
and so on are common techniques used here. For example, when you sign an e-mail
with your GPG or PGP key, you are validating yourself—The sender of this message is
really me, Mr. A—to your friend Mr. B on the other side of the e-mail. This principle is
the Authentication technique of security.

The other aspects of security are as follows:

• Integrity: These techniques are used to ensure that data or information is not
tampered with in anyway on its way to the end user. Examples are message
hashing, CRC Checksum, and others.

• Origin: These techniques are used to assure the end receiver that the origin
of the data is exactly the same as where it is purporting to be from. Examples
of this are SPF, Sender-ID (for e-mail), Public Key Certificates and Chains (for
websites using SSL), and others.

• Authenticity: These are the techniques which combine both the Integrity
and Origin of a message into one. This ensures that the author of a message
cannot deny the contents of the message as well as its origin (himself/
herself). This typically uses Digital Certificate Mechanisms.

Chapter 1

[29]

Deployability
Deployability is one of those quality attributes which is not fundamental to the
software. However, in this book, we are interested in this aspect, because it plays a
critical role in many aspects of the ecosystem in the Python programming language
and its usefulness to the programmer.

Deployability is the degree of ease with which software can be taken from the
development to the production environment. It is more of a function of the technical
environment, module structures, and programming runtime/languages used in
building a system, and has nothing to do with the actual logic or code of the system.

The following are some factors that determine deployability:

• Module structures: If your system has its code organized into well-defined
modules/projects which compartmentalize the system into easily deployable
subunits, the deployment is much easier. On the other hand, if the code is
organized into a monolithic project with a single setup step, it would be hard
to deploy the code into a multiple node cluster.

• Production versus development environment: Having a production
environment which is very similar to the structure of the development
environment makes deployment an easy task. When the environments
are similar, the same set of scripts and toolchains that are used by
the developers/DevOps team can be used to deploy the system to
a development server as well as a production server with minor
changes—mostly in the configuration.

• Development ecosystem support: Having a mature tool-chain support for
your system runtime, which allows configurations such as dependencies
to be automatically established and satisfied, increases deployability.
Programming languages such as Python are rich in this kind of support
in its development ecosystem, with a rich array of tools available for the
DevOps professional to take advantage of.

• Standardized configuration: It is a good idea to keep your configuration
structures (files, database tables, and others) the same for both developer and
production environments. The actual objects or filenames can be different,
but if the configuration structures vary widely across both the environments,
deployability decreases, as extra work is required to map the configuration of
the environment to its structures.

Principles of Software Architecture

[30]

• Standardized infrastructure: It is a well-known fact that keeping your
deployments to a homogeneous or standardized set of infrastructure
greatly aids deployability. For example, if you standardize your frontend
application to run on 4 GB RAM, Debian-based 64-bit Linux VPS, then it
is easy to automate deployment of such nodes—either using a script, or
by using elastic compute approaches of providers such as Amazon—and
to keep a standard set of scripts across both development and production
environments. On the other hand, if your production deployment consists of
heterogeneous infrastructure, say, a mix of Windows and Linux servers with
varying capacities and resource specifications, the work typically doubles for
each type of infrastructure decreasing deployability.

• Use of containers: The user of container software, popularized by the advent
of technology such as Docker and Vagrant built on top of Linux containers,
has become a recent trend in deploying software on servers. The use of
containers allows you to standardize your software, and makes deployability
easier by reducing the amount of overhead required to start/stop the nodes,
as containers don't come with the overhead of a full virtual machine. This is
an interesting trend to watch for.

Summary
In this chapter, we learned about software architecture. We saw the different aspects
of software architecture, and learned that every architecture comprises a system,
which has a structure working in an environment for its stakeholders. We briefly
looked at how software architecture differs from software design.

We went on to look at various characteristics of software architecture such as how a
software architecture defines a structure, picks a core set of elements, and connects
stakeholders.

We then addressed the important question of the importance of software architecture
to an organization, and why it is a good idea to have a formal software architecture
defined for your software systems.

The distinction of different roles of architects in an organization was discussed next. We
saw the various roles system architects play in an organization, and how an Enterprise
architect's focus is different from that of the System architect. The focus of strategy and
technology breadth versus technology depth was clarified with illustrations.

Chapter 1

[31]

We then discussed the elements of the main theme of this book—Architectural
Quality Attributes. We defined what a quality attribute is, and then looked,
in quite some detail, at the quality attributes of Modifiability, Testability,
Scalability/Performance, Security, and Deployability. While going into the
details of these attributes, we discussed their definitions, techniques, and
how they relate to each other.

With this chapter serving as the base, we are now ready to take on these quality
attributes, and then discuss in detail the various tactics and techniques to achieve
them using the Python programming language. That forms the rest of this book.

In the next chapter, we'll start with one of the very first quality attributes we
discussed in this chapter, namely, Modifiability and its associated attribute,
Readability.

[33]

Writing Modifiable and
Readable Code

In the first chapter, we discussed the various aspects of software architecture and
covered some definitions of the terms involved. We looked at the different aspects of
software architecture that an architect should be concerned with. Toward the end of
the chapter, we discussed the various architectural quality attributes that an architect
should focus on when building a system. We went in some detail into each of these
attributes and looked at some definitions and various concerns that should be kept in
mind when architecting a system for achieving these attributes.

From this chapter onward, we will focus on each of these quality attributes one by
one, and discuss them in detail, per chapter. We will delve deep into an attribute—
such as its various factors, techniques to achieve it, aspects to keep in mind when
programming toward it, and so on. Since our focus in this book is on Python and
its ecosystem, we will also look at various code examples and third-party software
support that Python provides for achieving and maintaining these quality attributes.

The focus of this chapter is on the quality attribute of modifiability.

This chapter will cover the following topics:

• What is modifiability?
• Aspects related to modifiability
• Understanding readability
• Fundamentals of modifiability—cohesion and coupling
• Exploring strategies for modifiability
• Metrics—tools for static analysis
• Refactoring code

Writing Modifiable and Readable Code

[34]

What is modifiability?
The architectural quality attribute of modifiability can be defined as follows:

Modifiability is the degree of ease with which changes can be made to a system, and
the flexibility with which the system adapts to such changes.

We discussed various aspects of modifiability in the first chapter, such as cohesion,
coupling, and others. We will dig a little bit deeper into these aspects in this chapter
with some examples. However, before we dig deeper, it might be a good idea to take
a look at the big picture of how modifiability fits in with the other quality attributes
that are related to it.

Aspects related to modifiability
We have already seen some aspects of modifiability in the previous chapter. Let's
discuss this a bit further and look at some of the related quality attributes that are
closely related to modifiability:

• Readability: Readability can be defined as the ease with which a program's
logic can be followed and understood. Readable software is code that has
been written in a specific style, following guidelines typically adopted for the
programming language used, and whose logic uses the features provided by
the language in a concise, clear way.

• Modularity: Modularity means that the software system is written in
well-encapsulated modules, which do very specific, well-documented
functions. In other words, modular code provides programmer friendly APIs
to the rest of the system. Modifiability is closely connected to reusability.

• Reusability: This measures the number of parts of a software system,
including code, tools, designs, and others, that can be reused in other parts
of the system with zero or very little modifications. A good design would
emphasize reusability from the beginning. Reusability is embodied in the
DRY principle of software development.

• Maintainability: Maintainability of a software is the ease and efficiency with
which the system can be updated and kept working in a useful state by its
intended stakeholders. Maintainability is a metric, which encompasses the
aspects of modifiability, readability, modularity and testability.

In this chapter, we are going to go deep into the readability, reusability, and
modularity aspects. We will look at these one by one from the context of the
Python programming language. We will start with readability first.

Chapter 2

[35]

Understanding readability
The readability of a software system is closely tied to its modifiability. Well-written,
well-documented code, keeping up with standard or adopted practices for the
programming language, tends to produce simple, concise code that is easy to read
and modify.

Readability is not only related to the aspect of following good coding guidelines, but
it also ties up to how clear the logic is, how much the code uses standard features of
the language, how modular the functions are, and so on.

In fact, we can summarize the different aspects of readability as follows:

• Well-written: A piece of code is well-written if it uses simple syntax
and well-known features and idioms of the language, if the logic is clear
and concise, and if it uses variables, functions, and class/module names
meaningfully, that is, they express what they do.

• Well-documented: Documentation usually refers to the inline comments in
the code. A well-documented piece of code tells what it does, what its input
arguments are, and what is its return value (if any) along with the logic or
algorithm, in some detail. It also documents any external library or API
usage and configuration required for running the code either inline or in
separate files.

• Well-formatted: Most programming languages, especially the open
source languages like Python, developed over the internet via distributed but
closely-knit programming communities, tend to have well-documented style
guidelines. A piece of code that keeps up with these guidelines on aspects
such as indentation and formatting will tend to be more readable than
something that doesn't.

Lack of readability affects modifiability, and hence, maintainability of the
code, thereby incurring ever-increasing costs for the organization in terms of
resources—mainly people and time—in maintaining the system in a useful state.

Python and readability
Python is a language that has been designed from the ground-up for readability.
To borrow a line from the well-known Zen of Python, we can say:

Readability counts

Writing Modifiable and Readable Code

[36]

The Zen of Python is a set of 20 principles that influence the
design of the Python programming language, 19 of which have
been written down. You can see the Zen of Python by opening
the Python interpreter prompt and typing this:

>>>import this

Python, as a language, emphasizes readability. It achieves this by clear, concise
keywords, which mimic their English language counterparts, using minimal
operators, and using the following philosophy:

There should be one—and preferably only one—obvious way to do it.

For example, here is one way to iterate through a sequence in Python while also
printing its index:

for idx in range(len(seq)):
 item = seq[idx]
 print(idx, '=>', item)

However, a more common idiom used in Python is the enumerate() helper for
iterators, which returns a two tuple of (idx, item) for each item in the sequence:

for idx, item in enumerate(seq):
 print(idx, '=>', item)

In many other programming languages such as C++ or Java, the first version would
be considered with the same merit as the second version. However, in Python,
there are certain idioms of writing code that keep up with the language's principles—
the Zen—than certain others.

In this case, the second version is closer to the way Python programmers would
write code to solve the problem. The first way would be considered less Pythonic
than the second one.

The term "Pythonic" is something you would commonly encounter when interacting
with the Python community. It means that the code not just solves the problem, but
follows the conventions and idioms the Python community generally follows, and
uses the language in the way it is intended to be used.

The definition of Pythonic is subjective, but you can think of it as
Python code keeping up with the Zen of Python, or in general,
following well-known idiomatic programming practices adopted
by the community.

Chapter 2

[37]

Python, by its design principles and clean syntax, makes writing readable code easy.
However, it is a common trap for programmers migrating to Python from other more
pedantic and less-idiomatic languages to write Python code in a less Pythonic way.

It is important for a Python programmer to understand this aspect early so that
you tend to write more idiomatic or Pythonic code as you get used to the language
more and more. You can be more productive with Python in the long term if you
familiarize yourself with its coding principles and idioms than otherwise.

Readability – antipatterns
Python, in general, encourages and facilitates writing readable code. However, it
would be, of course, very unrealistic to say that any code written in Python is highly
readable. Even with all of its readability DNA, Python also has its fair share of
difficult-to-read, badly written, or unreadable code as can be evident by spending
some time scanning through some of the public, open source code written in Python
on the web.

There are certain practices that tend to produce difficult-to-read or unreadable code
in a programming language. These can be thought of as antipatterns, which are a
bane, not just in programming with Python, but in any programming language:

• Code with little or no comments: Lack of code comments is often the
primary reason for producing code that is unreadable. More often than
not, programmers don't do a very good job of documenting their thoughts,
which led to a particular implementation, in code. When the same code is
read by another programmer or by the same programmer a few months
later (this happens quite a lot!), it is not easy to figure out why the specific
implementation approach was followed. This makes it difficult to reason
about the pros and cons of an alternate approach.
This also makes taking decisions on modifying the code—perhaps for a
customer fix—difficult, and in general, affects code modifiability in the long
term. The commenting of code is often an indicator of the discipline and rigor
of the programmer who wrote the code and of the organization in enforcing
such practices.

• Code that breaks best practices of the language: Best practices of a
programming language typically evolve from years of experience in using
the language by a community of developers, and the efficient feedback that it
generates. They capture the best way of putting the programming language
to good use to solve problems, and typically, capture the idioms and
common patterns for using the language.

Writing Modifiable and Readable Code

[38]

For example, in Python, the Zen can be considered as a shining torch to its
best practices and the set of common programming idioms adopted by the
community.
Often, programmers who are either inexperienced or those who migrate from
other programming languages or environments tend to produce code that is
not in keeping with these practices, and hence, end up writing code that is
low on readability.

• Programming antipatterns: There are a large number of coding or
programming antipatterns, which tend to produce difficult-to-read, and
hence, difficult-to-maintain code. Here are some of the well-known ones:

 ° Spaghetti code: This is a piece of code with no discernible structure
or control-flow. It is typically produced by following complex
logic with a lot of unconditional jumps and unstructured exception
handling, badly written concurrent code and so on.

 ° Big ball of mud: This is a system with pieces of code that show no
overall structure or goal. Big ball of mud typically consists of many
pieces of spaghetti code and is usually a sign of code that has been
worked on by multiple people, patched-up multiple times with little
or zero documentation.

 ° Copy-Paste programming: Often produced in organizations where
expediency of delivery is favored over thoughtful design, copy/paste
coding produces long, repetitive chunks of code, which essentially
do the same thing again and again with minor modifications.
This leads to code-bloat and, in the long term, the code becomes
unmaintainable.
A similar antipattern is cargo-cult programming, where programmers
follows the same design or programming pattern over and over again
without a thought to whether it fits the specific scenarios or problems
that they are trying to solve.

 ° Ego programming: Ego programming is where a programmer—often
an experienced one—favors their personal style over the documented
best practices or the organizational style of coding. This sometimes
creates code that is cryptic and difficult to read for the other—
usually, younger or less-experienced programmers. An example is
the tendency to use functional programming constructs in Python to
write everything as a one-liner.

Coding antipatterns can be circumvented by adopting practices of structured
programming in your organization, and by enforcing the use of coding guidelines
and best practices.

Chapter 2

[39]

The following are some antipatterns that are specific to Python:

• Mixed indentation: Python uses indentation to separate blocks of code, as
it lacks braces or other syntactical constructs of languages such as C/C++
or Java, which separate code blocks. However, we need to be careful when
indenting code in Python. A common antipattern is where people mix both
tabs (the \t character) and spaces in their Python code. This can be fixed by
using editors that always use either tabs or spaces to indent code.
Python comes with built-in modules such as tabnanny, which can be used to
check your code for indentation issues.

• Mixing string literal types: Python provides three different ways to create
string literals: either by using the single quote ('), the double quote ("), or
Python's own special triple quote (''' or """). Code that mixes these three
types of literals in the same block of code or functional unit becomes more
difficult to read.

• Overuse of functional constructs: Python, being a mixed paradigm
language, provides support for functional programming via its lambda
keyword and its map(), reduce(), and filter()functions. However,
sometimes, experienced programmers or programmers coming from a
background of functional programming to Python overuse these constructs,
producing code that is too cryptic and, hence, unreadable to other
programmers.

Techniques for readability
Now that we have a good knowledge on what helps readability of code, let's look
at the approaches that we can adopt in order to improve the readability of code in
Python.

Document your code
A simple and effective way to improve the readability of your code is to document
what it does. Documentation is important for readability and long term modifiability
of your code.

Writing Modifiable and Readable Code

[40]

Code documentation can be categorized as follows:

• Inline documentation: The programmer documents their code by using
code comments, function documentation, module documentation, and others
as part of the code itself. This is the most effective and useful type of code
documentation.

• External documentation: These are additional documentation captured in
separate files, which usually document aspects such as usage of code, code
changes, install steps, deployment, and the like. Examples are the README,
INSTALL, or CHANGELOG files usually found with open source projects keeping
up with the GNU build principles.

• User manuals: These are formal documents, usually by a dedicated person
or team, using pictures and text that is usually targeted toward users of the
system. Such documentation is usually prepared and delivered toward the
end of a software project when the product is stable and is ready to ship. We
are not concerned with this type of documentation in our discussion here.

Python is a language that is designed for smart inline code documentation from the
ground up. In Python, inline documentation can be done at the following levels:

• Code comments: This is the text inline with code, prefixed by the hash (#)
character. They can be used liberally inside your code explaining what each
step of the code does.
Here is an example:
This loop performs a network fetch of the URL, retrying up to 3
times in case of errors. In case the URL can't be fetched,
an error is returned.

Initialize all state
count, ntries, result, error = 0, 3, None, None
while count < ntries:
 try:
 # NOTE: We are using an explicit timeout of 30s here
 result = requests.get(url, timeout=30)
 except Exception as error:
 print('Caught exception', error, 'trying again after a
 while')
 # increment count
 count += 1
 # sleep 1 second every time
 time.sleep(1)

 if result == None:

Chapter 2

[41]

 print("Error, could not fetch URL",url)
 # Return a tuple of (<return code>, <lasterror>)
 return (2, error)

Return data of URL
 return result.content

Notice the liberal use of comments even in places it may be deemed
superfluous. We will look at some general rules of thumb in commenting
your code later.

• The docstring function: Python provides a simple way to document what a
function does by using a string literal just below the function definition. This
can be done by using any of the three styles of string literals.
Here is an example:
 def fetch_url(url, ntries=3, timeout=30):
 " Fetch a given url and return its contents "

 # This loop performs a network fetch of the URL, retrying
 # up to
 # 3 times in case of errors. In case the URL can't be
 # fetched,
 # an error is returned.

 # Initialize all state
 count, result, error = 0, None, None
 while count < ntries:
 try:
 result = requests.get(url, timeout=timeout)
 except Exception as error:
 print('Caught exception', error, 'trying again
 after a while')
 # increment count
 count += 1
 # sleep 1 second every time
 time.sleep(1)

 if result == None:
 print("Error, could not fetch URL",url)
 # Return a tuple of (<return code>, <lasterror>)
 return (2, error)

 # Return data of URL
 return result.content

Writing Modifiable and Readable Code

[42]

The function docstring is the line that says fetch a given URL and return its
contents. However, though it is useful, the usage is limited, since it only
says what the function does and doesn't explain its parameters. Here is an
improved version:
 def fetch_url(url, ntries=3, timeout=30):
 """ Fetch a given url and return its contents.

 @params
 url - The URL to be fetched.
 ntries - The maximum number of retries.
 timeout - Timout per call in seconds.

 @returns
 On success - Contents of URL.
 On failure - (error_code, last_error)
 """

 # This loop performs a network fetch of the URL,
 # retrying up to
 # 'ntries' times in case of errors. In case the URL
 # can't be fetched, an error is returned.

 # Initialize all state
 count, result, error = 0, None, None
 while count < ntries:
 try:
 result = requests.get(url, timeout=timeout)
 except Exception as error:
 print('Caught exception', error, 'trying again
 after a while')
 # increment count
 count += 1
 # sleep 1 second every time
 time.sleep(1)

 if result == None:
 print("Error, could not fetch URL",url)
 # Return a tuple of (<return code>, <lasterror>)
 return (2, error)

 # Return data of the URL
 return result.content

Chapter 2

[43]

In the preceding code, the function usage has become much clearer to the
programmer. Note that such extended documentation would usually span
more than one line, and hence, it is a good idea to always use triple quotes
with your function docstrings.

• Class docstrings: These work just like a function docstring except that they
provide documentation for a class directly. This is provided just below the
class keyword defining the class.
Here is an example:
 class UrlFetcher(object):
 """ Implements the steps of fetching a URL.

 Main methods:
 fetch - Fetches the URL.
 get - Return the URLs data.
 """

 def __init__(self, url, timeout=30, ntries=3, headers={}):
 """ Initializer.
 @params
 url - URL to fetch.
 timeout - Timeout per connection (seconds).
 ntries - Max number of retries.
 headers - Optional request headers.
 """
 self.url = url
 self.timeout = timeout
 self.ntries = retries
 self.headers = headers
 # Enapsulated result object
 self.result = result

 def fetch(self):
 """ Fetch the URL and save the result """

 # This loop performs a network fetch of the URL,
 # retrying
 # up to 'ntries' times in case of errors.

 count, result, error = 0, None, None
 while count < self.ntries:

Writing Modifiable and Readable Code

[44]

 try:
 result = requests.get(self.url,
 timeout=self.timeout,
 headers = self.headers)
 except Exception as error:
 print('Caught exception', error, 'trying again
 after a while')
 # increment count
 count += 1
 # sleep 1 second every time
 time.sleep(1)

 if result != None:
 # Save result
 self.result = result

 def get(self):
 """ Return the data for the URL """

 if self.result != None:
 return self.result.content

See how the class docstring defines some of the main methods of the
class. This is a very useful practice, as it gives the programmer useful
information at the top level without having to go and inspect each function's
documentation separately.

• Module docstrings: Module docstrings capture information at the module
level, usually about the functionality of the module and some detail about
what each member of the module (function, class, and others) does. The
syntax is the same as the class or function docstring. The information is
usually captured at the top of the module, before any code.

A module documentation can also capture any specific external
dependencies of a module:
"""
 urlhelper - Utility classes and functions to work with URLs.

 Members:

 # UrlFetcher - A class which encapsulates action of
 # fetching content of a URL.

Chapter 2

[45]

 # get_web_url - Converts URLs so they can be used on the
 # web.
 # get_domain - Returns the domain (site) of the URL.
"""

import urllib

def get_domain(url):
 """ Return the domain name (site) for the URL"""

 urlp = urllib.parse.urlparse(url)
 return urlp.netloc

def get_web_url(url, default='http'):
 """ Make a URL useful for fetch requests
 - Prefix network scheme in front of it if not present already
 """

 urlp = urllib.parse.urlparse(url)
 if urlp.scheme == '' and urlp.netloc == '':
 # No scheme, prefix default
 return default + '://' + url

 return url

class UrlFetcher(object):
 """ Implements the steps of fetching a URL.

 Main methods:
 fetch - Fetches the URL.
 get - Return the URLs data.
 """

 def __init__(self, url, timeout=30, ntries=3, headers={}):
 """ Initializer.
 @params
 url - URL to fetch.
 timeout - Timeout per connection (seconds).
 ntries - Max number of retries.
 headers - Optional request headers.
 """
 self.url = url
 self.timeout = timeout
 self.ntries = retries

Writing Modifiable and Readable Code

[46]

 self.headers = headers
 # Enapsulated result object
 self.result = result

 def fetch(self):
 """ Fetch the URL and save the result """

 # This loop performs a network fetch of the URL, retrying
 # up to 'ntries' times in case of errors.

 count, result, error = 0, None, None
 while count < self.ntries:
 try:
 result = requests.get(self.url,
 timeout=self.timeout,
 headers = self.headers)
 except Exception as error:
 print('Caught exception', error, 'trying again
 after a while')
 # increment count
 count += 1
 # sleep 1 second every time
 time.sleep(1)

 if result != None:
 # Save result
 self.result = result

 def get(self):
 """ Return the data for the URL """

 if self.result != None:
 return self.result.content

Chapter 2

[47]

Follow coding and style guidelines
Most programming languages have a relatively well-known set of coding and/or
style guidelines. These are either developed over many years of use as a convention,
or come as a result of discussions in the online community of that programming
language. C/C++ is a good example of the former, and Python is a good example of
the latter.

It is also a common practice for companies to specify their own guidelines—mostly,
by adopting existing standard guidelines and customizing them for the company's
own specific development environment and requirements.

For Python, there is a clear set of coding style guidelines published by the Python
programming community. This guideline, known as PEP-8, is available online as
part of the Python Enhancement Proposal (PEP) set of documents.

You can find PEP-8 at the following URL: https://www.
python.org/dev/peps/pep-0008/.

PEP-8 was first created in 2001 and has undergone multiple revisions since then. The
primary author is the creator of Python, Guido Van Rossum, with input from Barry
Warsaw and Nick Coghlan.

PEP-8 was created by adapting Guido's original Python Style Guide essay with
additions from Barry's style guide.

We will not go deep into PEP-8 in this book, as the goal of this section is not to teach
you PEP-8. However, we will discuss the general principles underlying PEP-8.

The philosophy underlying PEP-8 can be summarized as follows:

• Code is read more than it is written. Hence, providing a guideline would
make code more readable and make it consistent across a full spectrum of
Python code.

• Consistency within a project is important. However, consistency within
a module or package is more important. Consistency within a unit of
code—such as class or function is the most important.

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Writing Modifiable and Readable Code

[48]

• Know when to ignore a guideline. For example, this may happen if adopting
the guideline makes your code less readable, breaks the surrounding code, or
breaks backward compatibility of the code. Study examples, and choose what
is best.

• If a guideline is not directly applicable or useful for your organization,
customize it. If you have any doubts about a guideline, get clarification by
asking the Python community.

Review and refactor code
Code requires maintenance. Unmaintained code that is used in production can
become a problem if not tended to periodically.

Periodically scheduled reviews of code can be very useful in keeping the code
readable and in good health aiding modifiability and maintainability. Code that is
central to a system or an application in production tends to get a lot of quick-fixes
over time, as it is customized or enhanced for different use cases or patched for
issues. It is observed that programmers generally don't document such quick fixes,
as the situations demand expedite testing and deployment over good engineering
practices such as documentation.

Over time, such patches can accumulate, thereby causing code-bloat and creating
future engineering debts for the team, which can become a costly affair. The solution
is periodical reviews.

Reviews should be done with engineers who are familiar with the application, but
ideally, who are not working on the same code. This gives the code a fresh set of
eyes, which is often useful in detecting bugs that the original author(s) may have
overlooked. It is a good idea to get large changes reviewed by a couple of reviewers
who are experienced developers.

This can be combined with the general refactoring of code to improve
implementation, reduce coupling, or increase cohesion.

Chapter 2

[49]

Commenting the code
We are coming toward the end of our discussions on readability of code, and it is
a good time to introduce some general rules of thumb to follow when writing code
comments. These can be listed as follows:

• Comments should be descriptive, and should explain the code. A comment
that simply repeats what is obvious from the function name is not very useful.
Here is an example. Both of the following codes show the same
implementation of a Root-Mean-Squared (RMS) velocity calculation, but the
second version has a much more useful docstring than the first:
def rms(varray=[]):
 """ RMS velocity """

 squares = map(lambda x: x*x, varray)
 return pow(sum(squares), 0.5)

def rms(varray=[]):
 """ Root mean squared velocity. Returns
 square root of sum of squares of velocities """

 squares = map(lambda x: x*x, varray)
 return pow(sum(squares), 0.5)

• Code comments should be written in the block we are commenting on, rather
than as follows:
This code calculates the sum of squares of velocities
squares = map(lambda x: x*x, varray)

The preceding version is much clearer than the following version, which uses
comments below the code:
squares = map(lambda x: x*x, varray)
The above code calculates the sum of squares of velocities

Writing Modifiable and Readable Code

[50]

• Inline comments should be used as little as possible. This is because it is
very easy to get these confused as part of the code itself, especially if the
separating comment character is accidentally deleted, causing bugs:
squares = map(lambda x: x*x, varray) # Calculate squares of
velocities

• Try to avoid comments that are superfluous and add little value:
The following code iterates through odd numbers
for num in nums:
 # Skip if number is odd
 if num % 2 == 0: continue

The second comment in the last piece of code adds little value and can
be omitted.

Fundamentals of modifiability – cohesion
and coupling
Let's now get back to the main topic of modifiability and discuss the two fundamental
aspects that affect modifiability of code—namely, cohesion and coupling.

We've already discussed these concepts briefly in the first chapter. Let's do a quick
review here.

Cohesion refers to how tightly the responsibilities of a module are related to each
other. A module that performs a specific task or group of related tasks has high
cohesion. A module in which a lot of functionality is dumped without a thought as
to the core functionality would have low cohesion.

Coupling is the degree to which the functionality of two modules, A and B, are
related. Two modules are strongly coupled if their functionality overlaps strongly
at the code level—in terms of function or method calls. Any changes in module
A would probably require changes in module B.

Strong coupling is always prohibitory for modifiability, as it increases the cost of
maintaining the code base. Code which aims to increase modifiability should aim
for high cohesion and low coupling.

We will analyze cohesion and coupling in the following subsections with some
examples.

Chapter 2

[51]

Measuring cohesion and coupling
Let's look at a simple example of two modules to figure out how we can measure
coupling and cohesion quantitatively. The following is the code for module A, which
purportedly implements functions that operate with a series (array) of numbers:

"" Module A (a.py) – Provides functions that operate on series of
numbers """

def squares(narray):
 """ Return array of squares of numbers """
 return pow_n(array, 2)

def cubes(narray):
 """ Return array of cubes of numbers """
 return pow_n(narray, 3)

def pow_n(narray, n):
 """ Return array of numbers raised to arbitrary power n each """
 return [pow(x, n) for x in narray]

def frequency(string, word):
 """ Find the frequency of occurrences of word in string
 as percentage """

 word_l = word.lower()
 string_l = string.lower()

 # Words in string
 words = string_l.split()
 count = w.count(word_l)

 # Return frequency as percentage
 return 100.0*count/len(words)

Next is the listing of module B:

""" Module B (b.py) – Provides functions implementing some statistical
methods """

import a

def rms(narray):

Writing Modifiable and Readable Code

[52]

 """ Return root mean square of array of numbers"""
 return pow(sum(a.squares(narray)), 0.5)

def mean(array):
 """ Return mean of an array of numbers """
 return 1.0*sum(array)/len(array)

def variance(array):
 """ Return variance of an array of numbers """

 # Square of variation from mean
 avg = mean(array)
 array_d = [(x – avg) for x in array]
 variance = sum(a.squares(array_d))
 return variance

def standard_deviation(array):
 """ Return standard deviation of an array of numbers """

 # S.D is square root of variance
 return pow(variance(array), 0.5)

Let's do an analysis of the functions in module A and B. Here is the report:

Module Core functions Unrelated functions Function dependencies
B 4 0 3 x 1 = 3
A 3 1 0

This has four functions that can be explained as follows:

• Module B has four functions, all of them dealing with the core functionality.
There are no unrelated functions in this module. Module B has 100%
cohesion.

• Module A has four functions, three of which are related to its core
functionality, but the last one (frequency) isn't. This gives module A
approximately 75% cohesion.

• Three of the module B functions depend on one function in module A,
namely, squares. This makes module B strongly coupled to module A.
Coupling at function level is 75% from module B → A.

• Module A doesn't depend on any functionality of module B. Module A will
work independent of module B. Coupling from module A → B is zero.

Chapter 2

[53]

Let's now look at how we can improve the cohesion of module A. In this case, it is as
simple as dropping the last function, which doesn't really belong there. It could be
dropped out entirely or moved to another module.

Here is the rewritten module A code, now with 100% cohesion with respect to its
responsibilities:

""" Module A (a.py) – Implement functions that operate on series of
numbers """

def squares(narray):
 """ Return array of squares of numbers """
 return pow_n(array, 2)

def cubes(narray):
 """ Return array of cubes of numbers """
 return pow_n(narray, 3)

def pow_n(narray, n):
 """ Return array of numbers raised to arbitrary power n each """
 return [pow(x, n) for x in narray]

Let's now analyze the quality of coupling from module B→ A and look at the risk
factors of modifiability of code in B with respect to code in A, which are as follows:

• The three functions in B depend on just one function in module A.
• The function is named squares, which accepts an array and returns each of its

member squared.
• The function signature (API) is simple, so chances of changing the function

signature in the future is less.
• There is no two-way coupling in the system. The dependency is only from

the direction B → A.

In other words, even though there is strong coupling from B to A, it is good coupling
and doesn't affect the modifiability of the system in any way at all.

Let's now look at another example.

Writing Modifiable and Readable Code

[54]

Measuring cohesion and coupling – string
and text processing
Let's consider a different use case now, an example with modules that do a lot of
string and text processing:

""" Module A (a.py) – Provides string processing functions """
import b

def ntimes(string, char):
 """ Return number of times character 'char'
 occurs in string """

 return string.count(char)

def common_words(text1, text2):
 """ Return common words across text1 and text2"""

 # A text is a collection of strings split using newlines
 strings1 = text1.split("\n")
 strings2 = text2.split("\n")

 common = []
 for string1 in strings1:
 for string2 in strings2:
 common += b.common(string1, string2)

 # Drop duplicates
 return list(set(common))

Next is the listing of module B, which is as follows:

""" Module B (b.py) – Provides text processing functions to user """

import a

def common(string1, string2):
 """ Return common words across strings1 1 & 2 """

 s1 = set(string1.lower().split())
 s2 = set(string2.lower().split())
 return s1.intersection(s2)

Chapter 2

[55]

def common_words(text1, text2):
 """ Return common words across two input files """

 lines1 = open(filename1).read()
 lines2 = open(filename2).read()

 return a.common_words(lines1, lines2)

Let's go through the coupling and cohesion analysis of these modules, given in
following table:

Module Core functions Unrelated functions Function dependencies
B 2 0 1 x 1 = 1
A 2 0 1 x 1 = 1

Here is an explanation of these numbers in the table:

• Module A and B have two functions each, each of them dealing with the core
functionality. Modules A and B both have 100% cohesion.

• One function of module A is dependent on one function of module B.
Similarly, one function of module B is dependent on one function of module
A. There is strong coupling from A→ B and from B → A. In other words, the
coupling is bidirectional.

Bidirectional coupling between two modules ties their modifiability to each other
very strongly. Any changes in module A will quickly cascade to behavior of module
B and vice versa. In other words, this is bad coupling.

Exploring strategies for modifiability
Now that we have seen some examples of good and bad coupling and cohesion, let's
get to the strategies and approaches that a software architect can adopt to improve
the modifiability of the software system.

Providing explicit interfaces
A module should mark a set of functions, classes, or methods as the interface it
provides to external code. This can be thought of as the API of this module. Any
external code that uses this API would become a client to the module.

Writing Modifiable and Readable Code

[56]

Methods or functions that the module considers internal to its function, and which
do not make up its API, should either be explicitly made private to the module or
should be documented as such.

In Python, which doesn't provide variable access scope for functions or class
methods, this can be done by conventions such as prefixing the function name
with a single or double underscore, thereby signaling to potential clients that these
functions are internal and shouldn't be referred to from outside.

Reducing two-way dependencies
As seen in the examples earlier, coupling between two software modules is
manageable if the coupling direction is one-way. However, bidirectional coupling
creates very strong linkages between modules, which can complicate the usage of
the modules and increase their maintenance costs.

In Python, which uses reference-based garbage collection, this may also create
cryptic referential loops for variables and objects, thereby making garbage
collection difficult.

Bidirectional dependencies can be broken by refactoring the code in such a way that
a module always uses the other one and not vice versa. In other words, encapsulate
all related functions in the same module.

Here are our modules A and B of the earlier example, rewritten to break their
bidirectional dependency:

 """ Module A (a.py) – Provides string processing functions """

 def ntimes(string, char):
 """ Return number of times character 'char'
 occurs in string """

 return string.count(char)

 def common(string1, string2):
 """ Return common words across strings1 1 & 2 """

 s1 = set(string1.lower().split())
 s2 = set(string2.lower().split())
 return s1.intersection(s2)

 def common_words(text1, text2):
 """ Return common words across text1 and text2"""

Chapter 2

[57]

 # A text is a collection of strings split using newlines
 strings1 = text1.split("\n")
 strings2 = text2.split("\n")

 common_w = []
 for string1 in strings1:
 for string2 in strings2:
 common_w += common(string1, string2)

 return list(set(common_w))

Next is the listing of module B:

 """ Module B (b.py) – Provides text processing functions to user """

 import a

 def common_words(filename1, filename2):
 """ Return common words across two input files """

 lines1 = open(filename1).read()
 lines2 = open(filename2).read()

 return a.common_words(lines1, lines2)

We achieved this by simply moving the common function, which picks common
words from two strings from module B to A. This is an example of refactoring to
improve modifiability.

Abstract common services
Usage of helper modules that abstract common functions and methods can reduce
coupling between two modules and increase their cohesion. For example, in the first
example, module A acts as a helper module for module B.

Helper modules can be thought of as intermediaries or mediators, which abstract
common services for other modules so that the dependent code is all available in one
place without duplication. They can also help modules to increase their cohesion by
moving out unwanted or unrelated functions.

Writing Modifiable and Readable Code

[58]

Using inheritance techniques
When we find similar code or functionality occurring in classes, it might be a good
time to refactor them so as to create class hierarchies so that common code is shared
by virtue of inheritance.

Let's take a look at the following example:

""" Module textrank - Rank text files in order of degree of a specific
word frequency. """

import operator

class TextRank(object):
 """ Accept text files as inputs and rank them in
 terms of how much a word occurs in them """

 def __init__(self, word, *filenames):
 self.word = word.strip().lower()
 self.filenames = filenames

 def rank(self):
 """ Rank the files. A tuple is returned with
 (filename, #occur) in decreasing order of
 occurences """

 occurs = []

 for fpath in self.filenames:
 data = open(fpath).read()
 words = map(lambda x: x.lower().strip(), data.split())
 # Filter empty words
 count = words.count(self.word)
 occurs.append((fpath, count))

 # Return in sorted order
 return sorted(occurs, key=operator.itemgetter(1),
 reverse=True)

Here is another module, urlrank, which performs the same function on URLs:

 """ Module urlrank - Rank URLs in order of degree of a specific
 word frequency """
 import operator

Chapter 2

[59]

import operator
import requests

class UrlRank(object):
 """ Accept URLs as inputs and rank them in
 terms of how much a word occurs in them """

 def __init__(self, word, *urls):
 self.word = word.strip().lower()
 self.urls = urls

 def rank(self):
 """ Rank the URLs. A tuple is returned with
 (url, #occur) in decreasing order of
 occurences """

 occurs = []

 for url in self.urls:
 data = requests.get(url).content
 words = map(lambda x: x.lower().strip(), data.split())
 # Filter empty words
 count = words.count(self.word)
 occurs.append((url, count))

 # Return in sorted order
 return sorted(occurs, key=operator.itemgetter(1),
 reverse=True)

Both these modules perform similar functions of ranking a set of input data in terms
of how much a given keyword appears in them. Over time, these classes could
develop a lot of similar functionality, and the organization could end up with a lot of
duplicate code, reducing modifiability.

We can use inheritance to help us here to abstract away the common logic in a
parent class. Here is the parent class named RankBase, which accomplishes this by
abstracting all common code as part of its API:

""" Module rankbase - Logic for ranking text using degree of word
frequency """

import operator

class RankBase(object):

Writing Modifiable and Readable Code

[60]

 """ Accept text data as inputs and rank them in
 terms of how much a word occurs in them """

 def __init__(self, word):
 self.word = word.strip().lower()

 def rank(self, *texts):
 """ Rank input data. A tuple is returned with
 (idx, #occur) in decreasing order of
 occurences """

 occurs = {}

 for idx,text in enumerate(texts):
 words = map(lambda x: x.lower().strip(), text.split())
 count = words.count(self.word)
 occurs[idx] = count

 # Return dictionary
 return occurs

 def sort(self, occurs):
 """ Return the ranking data in sorted order """

 return sorted(occurs, key=operator.itemgetter(1),
 reverse=True)

We now have the textrank and urlrank modules rewritten to take advantage of the
logic in the parent class:

""" Module textrank - Rank text files in order of degree of a specific
word frequency. """

import operator
from rankbase import RankBase

class TextRank(object):
 """ Accept text files as inputs and rank them in
 terms of how much a word occurs in them """

 def __init__(self, word, *filenames):
 self.word = word.strip().lower()
 self.filenames = filenames

 def rank(self):

Chapter 2

[61]

 """ Rank the files. A tuple is returned with
 (filename, #occur) in decreasing order of
 occurences """

 texts = map(lambda x: open(x).read(), self.filenames)
 occurs = super(TextRank, self).rank(*texts)
 # Convert to filename list
 occurs = [(self.filenames[x],y) for x,y in occurs.items()]

 return self.sort(occurs)

Here is the modified listing for the urlrank module:

""" Module urlrank - Rank URLs in order of degree of a specific word
frequency """

import requests
from rankbase import RankBase

class UrlRank(RankBase):
 """ Accept URLs as inputs and rank them in
 terms of how much a word occurs in them """

def __init__(self, word, *urls):
 self.word = word.strip().lower()
 self.urls = urls

def rank(self):
 """ Rank the URLs. A tuple is returned with
 (url, #occur) in decreasing order of
 occurences"""

 texts = map(lambda x: requests.get(x).content, self.urls)
 # Rank using a call to parent class's 'rank' method
 occurs = super(UrlRank, self).rank(*texts)
 # Convert to URLs list
 occurs = [(self.urls[x],y) for x,y in occurs.items()]

 return self.sort(occurs)

Not only has refactoring reduced the size of the code in each module, but it has also
resulted in improved modifiability of the classes by abstracting the common code to
a parent class which can be developed independently.

Writing Modifiable and Readable Code

[62]

Using late binding techniques
Late binding refers to the practice of postponing the binding of values to parameters
as late as possible in the order of execution of a code. Late binding allows the
programmer to defer the factors that influence code execution, and hence the results
of execution and performance of the code, to a later time by making use of multiple
techniques.

Some late-binding techniques that can be used are as follows:

• Plugin mechanisms: Rather than statically binding modules together,
which increases coupling, this technique uses values resolved at runtime
to load plugins that execute a specific dependent code. Plugins can be
Python modules whose names are fetched during computations done at
runtime or via IDs or variable names loaded from database queries or from
configuration files.

• Brokers/registry lookup services: Some services can be completely deferred
to brokers, which look up the service names from a registry on demand, and
call them dynamically and return results. An example may be a currency
exchange service, which accepts a specific currency transformation as input
(say USDINR), and looks up and configures a service for it dynamically at
runtime, thereby requiring only the same code to execute on the system at
all times. Since there is no dependent code on the system that varies with the
input, the system remains immune from any changes required if the logic for
the transformation changes, as it is deferred to an external service.

• Notification services: Publish/subscribe mechanisms, which notify
subscribers when the value of an object changes or when an event is
published, can be useful to decouple systems from a volatile parameter and
its value. Rather than tracking changes to such variables/objects internally,
which may need a lot of dependent code and structures, such systems keep
their clients immune to the changes in the system that affect and trigger
the objects' internal behavior, but bind them only to an external API, which
simply notifies the clients of the changed value.

• Deployment time binding: By keeping the variable values associated to
names or IDs in configuration files, we can defer object/variable binding to
deployment time. The values are bound at startup by the software system
once it loads its configuration files, which can then invoke specific paths in
the code that creates appropriate objects.
This approach can be combined with object-oriented patterns such as
factories, which create the required object at runtime given the name or ID,
hence keeping the clients that are dependent on these objects immune from
any internal changes, increasing their modifiability.

Chapter 2

[63]

• Using creational patterns: Creational design patterns such as factory or
builder, which abstract the task of creating of an object from the details of
creating it, are ideal for separation of concerns for client modules that don't
want their code to be modified when the code for creation of a dependent
object changes.
These approaches, when combined with deployment/configuration time or
dynamic binding (using lookup services), can greatly increase the flexibility
of a system and aid its modifiability.

We will look at examples of Python patterns in a later chapter in this book.

Metrics – tools for static analysis
Static code analysis tools can provide a rich summary of information on the static
properties of your code, which can provide insights into aspects such as complexity
and modifiability/readability of the code.

Python has a lot of third-party tool support, which helps in measuring the static
aspects of Python code such as these:

• Conformance to coding standards such as PEP-8
• Code complexity metrics such as the McCabe metric
• Errors in code such as syntax errors, indentation issues, missing imports,

variable overwrites, and others
• Logic issues in code
• Code smells

The following are some of the most popular tools in the Python ecosystem that can
perform such static analysis:

• Pylint: Pylint is a static checker for Python code, which can detect a range of
coding errors, code smells, and style errors. Pylint uses a style close to PEP-8.
The newer versions of Pylint also provide statistics about code complexity
and can print reports. Pylint requires the code to be executed before checking
it. You can refer to http://pylint.org.

• Pyflakes: Pyflakes is a more recent project than Pylint. It differs from Pylint
in that it need not execute the code before checking it for errors. Pyflakes
does not check for coding style errors and only performs logic checks in code.
You can refer to https://launchpad.net/pyflakes.

http://pylint.org
https://launchpad.net/pyflakes

Writing Modifiable and Readable Code

[64]

• McCabe: It is a script that checks and prints a report on the McCabe
complexity of your code. You can refer to https://pypi.python.org/pypi/
mccabe.

• Pycodestyle: Pycodestyle is a tool that checks your Python code against
some of the PEP-8 guidelines. This tool was earlier called PEP-8. Refer to
https://github.com/PyCQA/pycodestyle.

• Flake8: Flake8 is a wrapper around the Pyflakes, McCabe, and pycodestyle
tools and can perform a number of checks including the ones provided by
these tools. Refer to https://gitlab.com/pycqa/flake8/.

What are code smells?
Code smells are surface symptoms of deeper problems with your code. They usually
indicate problems with the design, which can cause bugs in the future or negatively
impact development of the particular piece of code.

Code smells are not bugs themselves, but they are patterns that indicate that the
approach to solving problems adopted in the code is not right and should be fixed
by refactoring.

Some of the common code smells are as follows:

At the class level, there are the following:

• God object: A class that tries to do too many things. In short, this class lacks
any kind of cohesion.

• Constant class: A class that's nothing but a collection of constants, which is
used elsewhere, and hence, should not ideally belong here.

• Refused bequest: A class that doesn't honor the contract of the base class,
and hence, breaks the substitution principle of inheritance.

• Freeloader: A class with too few functions that do almost nothing and add
little value.

• Feature envy: A class that is excessively dependent on methods of another
class, indicating high coupling.

https://pypi.python.org/pypi/mccabe
https://pypi.python.org/pypi/mccabe
https://github.com/PyCQA/pycodestyle
https://gitlab.com/pycqa/flake8/

Chapter 2

[65]

At the method/function level, there are the following:

• Long method: A method or function that has grown too big and complex.
• Parameter creep: This is when there are too many parameters for a function

or method. This makes the callability and testability of the function difficult.
• Cyclomatic complexity: This is a function or method with too many branches

or loops, which creates a convoluted logic that is difficult to follow and can
cause subtle bugs. Such a function should be refactored and broken down to
multiple functions, or the logic rewritten to avoid too much branching.

• Overly long or short identifiers: A function that uses either overly long
or overly short variable names so that their purpose is not clear from their
names. The same is applicable to the function name as well.

A related antipattern to code smell is design smell, which are the surface symptoms
in the design of a system that indicate underlying deeper problems in the
architecture.

Cyclomatic complexity – the McCabe metric
Cyclomatic complexity is a measure of complexity of a computer program. It is
computed as the number of linearly independent paths through the program's
source code from start to finish.

For a piece of code with no branches at all, such as the one given next, the Cyclomatic
complexity would be 1, as there is just one path through the code:

""" Module power.py """

def power(x, y):
 """ Return power of x to y """
 return x^y

A piece of code with two branches, like the following one, will have a complexity
of 2:

""" Module factorial.py """

def factorial(n):
 """ Return factorial of n """
 if n == 0:
 return 1
 else:
 return n*factorial(n-1)

Writing Modifiable and Readable Code

[66]

The use of Cyclomatic complexity as a metric using the control graph of a code was
developed by Thomas J. McCabe in 1976. Hence, it is also called McCabe complexity
or the McCabe index.

To measure the metric, the control graph can be pictured as a directed graph, where
the nodes represent the blocks of the program and edges represent control flow from
one block to another.

With respect to the control graph of a program, the McCabe complexity can be
expressed as follows:

M = E − N + 2P

In the preceding equation, we have the following:

• E => Number of edges in the graph
• N => Number of nodes in the graph
• P => Number of connected components in the graph

In Python, the mccabe package, written by Ned Batcheldor, can be used to measure
a program's Cyclomatic complexity. It can be used as a standalone module or as a
plugin to programs such as Flake8 or Pylint.

For example, here is how we measure the Cyclomatic complexity of the two code
pieces given earlier:

McCabe metrics for some sample Python programs

The –min argument tells the mccabe module to start measuring and reporting from
the given McCabe index.

Testing for metrics
Let's now try a few of the aforementioned tools and use them on an example module
to find out what kind of information these tools report.

Chapter 2

[67]

The purpose of the following sections is not to teach you the usage of
these tools or their command-line options—these can be picked up via
the tool's documentation. Instead, the purpose is to explore the depth and
richness of information that these tools provide with respect to the style,
logic, and other issues with the code.

For purposes of this testing, the following contrived module example has been used.
It is written purposefully with a lot of coding errors, style errors, and coding smells.

Since the tools we are using lists errors by line numbers, the code has been presented
with numbered lines so that it is easy to follow the output of the tools back to the
code:

 1 """
 2 Module metrictest.py
 3
 4 Metric example - Module which is used as a testbed for static
 checkers.
 5 This is a mix of different functions and classes doing
 different things.
 6
 7 """
 8 import random
 9
 10 def fn(x, y):
 11 """ A function which performs a sum """
 12 return x + y
 13
 14 def find_optimal_route_to_my_office_from_home(start_time,
 15 expected_time,
 16 favorite_route='SBS1K',
 17 favorite_option='bus'):
 18
 19
 20 d = (expected_time – start_time).total_seconds()/60.0
 21
 22 if d<=30:
 23 return 'car'
 24
 25 # If d>30 but <45, first drive then take metro
 26 if d>30 and d<45:
 27 return ('car', 'metro')
 28
 29 # If d>45 there are a combination of options

Writing Modifiable and Readable Code

[68]

 30 if d>45:
 31 if d<60:
 32 # First volvo,then connecting bus
 33 return ('bus:335E','bus:connector')
 34 elif d>80:
 35 # Might as well go by normal bus
 36 return random.choice(('bus:330','bus:331',':'.
 join((favorite_option,
 37 favorite_route))))
 38 elif d>90:
 39 # Relax and choose favorite route
 40 return ':'.join((favorite_option,
 41 favorite_route))
 42
 43
 44 class C(object):
 45 """ A class which does almost nothing """
 46
 47 def __init__(self, x,y):
 48 self.x = x
 49 self.y = y
 50
 51 def f(self):
 52 pass
 53
 54 def g(self, x, y):
 55
 56 if self.x>x:
 57 return self.x+self.y
 58 elif x>self.x:
 59 return x+ self.y
 60
 61 class D(C):
 62 """ D class """
 63
 64 def __init__(self, x):
 65 self.x = x
 66
 67 def f(self, x,y):
 68 if x>y:
 69 return x-y
 70 else:

Chapter 2

[69]

 71 return x+y
 72
 73 def g(self, y):
 74
 75 if self.x>y:
 76 return self.x+y
 77 else:
 78 return y-self.x

Running static checkers
Let's see what Pylint has to say about our rather horrible-looking piece of test code.

$ pylint –reports=n metrictest.py

Pylint prints a lot of styling errors, but the purpose of this example
being to focus on logic issues and code smells, the log is shown
only starting from these reports.

Here is the detailed output captured in two screenshots:

Pylint output for metric test program (page 1)

Writing Modifiable and Readable Code

[70]

Take a look at the screenshot of the next page of the report:

Pylint output for metric test program (page 2)

Let's focus on those very interesting last 10-20 lines of the Pylint report, skipping the
earlier styling and convention warnings.

Here are the errors, classified into a table. We have skipped similar occurrences to
keep the table short:

Error Occurrences Explanation Type of Code Smell
Invalid function
name

The fn function The name fn is too
short to explain
what the function
does

Too short identifier

Invalid variable
name

The x and y
variables of the fn
function, f

The names x and y
too short to indicate
what the variables
represent

Too short identifier

Chapter 2

[71]

Error Occurrences Explanation Type of Code Smell
Invalid function
name

Function name,
find_optimal_
route_to_my_
office_from_
home

The function name
is too long

Too long identifier

Invalid variable
name

The d variable of
function, find_
optimal...

The name d too
short to indicate
what the variable
represents

Too short identifier

Invalid class name Class C The name C doesn't
tell anything about
the class

Too short identifier

Invalid method
name

Class C: Method f The name f too
short to explain
what it does

Too short identifier

Invalid __init__
method

Class D: Method
__init__

Doesn't call base
class __init__

Breaks contract with
base Class

Arguments of f
differ in class D from
class C

Class D: Method f Method signature
breaks contract with
base class signature

Refused bequest

Arguments of g
differ in class D from
class C

Class D: Method g Method signature
breaks contract with
base class signature

Refused bequest

As you can see, Pylint has detected a number of code smells, which we discussed
in the previous section. Some of the most interesting ones are how it detected the
absurdly long function name and how the subclass D breaks the contract with the
base class, C, in its __init__ method and other methods.

Writing Modifiable and Readable Code

[72]

Let's see what flake8 has to tell us about our code. We will run it in order to report
the statistics and summary of error counts:

$ flake8 --statistics --count metrictest.py

The preceding command gives the following output:

Flake8 static check output of the metrictest program

As you would've expected from a tool that is written to mostly follow PEP-8
conventions, the errors reported are all styling and convention errors. These errors
are useful to improve the readability of the code and make it follow closer to the
style guidelines of PEP-8.

You can get more information about the PEP-8 tests by passing
the –show-pep8 option to Flake8.

Chapter 2

[73]

It is a good time to now check the complexity of our code. First, we will use mccabe
directly and then call it via Flake8:

mccabe complexity of metric test program

As expected, the complexity of the office-route function is too high, as it has too
many branches and sub-branches.

As flake8 prints too many styling errors, we will grep specifically for the report on
complexity:

mccabe complexity of metric test program as reported by flake8

As expected, Flake8 reports the find _optimal_route_to_my_office_from_home
function as too complex.

There is a way to run mccabe as a plugin from Pylint as well, but
since it involves some configuration steps, we will not cover it
here.

Writing Modifiable and Readable Code

[74]

As a last step, let's run pyflakes on the code:

Static analysis output of pyflakes on the metric test code

There is no output! So, Pyflakes finds no issues with the code. The reason is that
Pyflakes is a basic checker that does not report anything beyond the obvious syntax
and logic errors, unused imports, missing variable names, and the like.

Let's add some errors into our code and rerun Pyflakes. Here is the adjusted code
with line numbers:

 1 """
 2 Module metrictest.py
 3
 4 Metric example - Module which is used as a testbed for static
 checkers.
 5 This is a mix of different functions and classes doing
 different things.
 6
 7 """
 8 import sys
 9
 10 def fn(x, y):
 11 """ A function which performs a sum """
 12 return x + y
 13
 14 def find_optimal_route_to_my_office_from_home(start_time,
 15 expected_time,
 16 favorite_route='SBS1K',
 17 favorite_option='bus'):
 18
 19
 20 d = (expected_time – start_time).total_seconds()/60.0
 21
 22 if d<=30:

Chapter 2

[75]

 23 return 'car'
 24
 25 # If d>30 but <45, first drive then take metro
 26 if d>30 and d<45:
 27 return ('car', 'metro')
 28
 29 # If d>45 there are a combination of options
 30 if d>45:
 31 if d<60:
 32 # First volvo,then connecting bus
 33 return ('bus:335E','bus:connector')
 34 elif d>80:
 35 # Might as well go by normal bus
 36 return random.choice(('bus:330','bus:331',':'.
 join((favorite_option,
 37 favorite_route))))
 38 elif d>90:
 39 # Relax and choose favorite route
 40 return ':'.join((favorite_option,
 41 favorite_route))
 42
 43
 44 class C(object):
 45 """ A class which does almost nothing """
 46
 47 def __init__(self, x,y):
 48 self.x = x
 49 self.y = y
 50
 51 def f(self):
 52 pass
 53
 54 def g(self, x, y):
 55
 56 if self.x>x:
 57 return self.x+self.y
 58 elif x>self.x:
 59 return x+ self.y
 60
 61 class D(C):
 62 """ D class """
 63
 64 def __init__(self, x):

Writing Modifiable and Readable Code

[76]

 65 self.x = x
 66
 67 def f(self, x,y):
 68 if x>y:
 69 return x-y
 70 else:
 71 return x+y
 72
 73 def g(self, y):
 74
 75 if self.x>y:
 76 return self.x+y
 77 else:
 78 return y-self.x
 79
 80 def myfunc(a, b):
 81 if a>b:
 82 return c
 83 else:
 84 return a

Take a look at the following output:

Static analysis output of pyflakes on the metric test code, after modifications

Pyflakes now returns some useful information in terms of a missing name (random),
unused import (sys), and an undefined name (the c variable in the newly introduced
function, myfunc). So it does perform some useful static analysis on the code. For
example, the information on the missing and undefined names is useful to fix
obvious bugs in the preceding code.

It is a good idea to run Pylint and/or Pyflakes on your code to
report and figure out logic and syntax errors after the code is
written. To run Pylint to report only errors, use the -E option. To
run Pyflakes, just follow the preceding example.

Chapter 2

[77]

Refactoring code
Now that we have seen how static checkers can be used to report a wide range of
errors and issues in our Python code, let's do a simple exercise of refactoring our
code. We will take our poorly written metric test module as the use case (the first
version of it) and perform a few refactoring steps.

Here are the rough guidelines to follow when refactoring software:

1. Fix complex code first: This will get a lot of code out of the way as typically,
when a complex piece of code is refactored, we end up reducing the number
of lines of code. This overall improves the code quality and reduces code
smells. You may be creating new functions or classes here, so it always helps
to perform this step first.

2. Do an analysis of the code: It is a good idea to run the complexity checkers
at this step and see how the overall complexity of the code—class/module or
functions—has been reduced. If not, iterate again.

3. Fix code smells next: Fix any issue with code smells—class, function, or
module—next. This gets your code into a much better shape and improves
the overall semantics.

4. Run checkers: Run checkers such as Pylint on the code now, and get a report
on the code smells. Ideally, they should be close to zero or reduced very
much from the original.

5. Fix low-hanging fruits: Fix low-hanging fruits, such as code style and
convention errors, last. This is because, in the process of refactoring, when
trying to reduce complexity and code smells, you typically would introduce
or delete a lot of code. So, it doesn't make sense to try and improve the code
convention issues at earlier stages.

6. Perform a final check using the tools: You can run Pylint for code smells,
Flake8 for PEP-8 conventions, and Pyflakes for catching the logic, syntax, and
missing variable issues.

Here is a step-by-step demonstration of fixing our metric test module using this
approach in the next section.

Writing Modifiable and Readable Code

[78]

Refactoring code – fixing complexity
Most of the complexity is in the office route function, so let's try and fix it. Here is the
rewritten version (showing only that function here):

def find_optimal_route_to_my_office_from_home(start_time,
 expected_time,
 favorite_route='SBS1K',
 favorite_option='bus'):

 d = (expected_time - start_time).total_seconds()/60.0

 if d<=30:
 return 'car'
 elif d<45:
 return ('car', 'metro')
 elif d<60:
 # First volvo,then connecting bus
 return ('bus:335E','bus:connector')
 elif d>80:
 # Might as well go by normal bus
 return random.choice(('bus:330','bus:331',':'.
 join((favorite_option,
 favorite_route))))
 # Relax and choose favorite route
 return ':'.join((favorite_option, favorite_route))

In the preceding rewrite, we got rid of the redundant if...else conditions. Let's
check the complexity now:

mccabe metric of metric test program after refactoring step 1

We were able to reduce the complexity from 7 to 5. Can we do better?

Chapter 2

[79]

In the following piece of code, the code is rewritten to use ranges of values as keys,
and the corresponding return value as values. This simplifies our code a lot. Also, the
earlier default return at the end would never have got picked, so it is removed now,
hence getting rid of a branch and reducing complexity by one. The code has become
much simpler:

def find_optimal_route_to_my_office_from_home(start_time,
 expected_time,
 favorite_route='SBS1K',
 favorite_option='bus'):

 # If I am very late, always drive.
 d = (expected_time – start_time).total_seconds()/60.0
 options = { range(0,30): 'car',
 range(30, 45): ('car','metro'),
 range(45, 60): ('bus:335E','bus:connector') }

if d<80:
Pick the range it falls into
for drange in options:
 if d in drange:
 return drange[d]

 # Might as well go by normal bus
 return random.choice(('bus:330','bus:331',':'.join((favorite_
 option, favorite_route))))

mccabe metric of metric test program after refactoring step #2

The complexity of the function is now reduced to 4, which is manageable.

Writing Modifiable and Readable Code

[80]

Refactoring code – fixing code smells
The next step is to fix code smells. Thankfully, we have a very good list from the
previous analysis, so this is not too difficult. Mostly, we need to change function
names and variable names and fix the contracts from child class to parent class.

Here is the code with all of the fixes:

""" Module metrictest.py - testing static quality metrics of Python
code """

import random

def sum_fn(xnum, ynum):
 """ A function which performs a sum """

 return xnum + ynum

def find_optimal_route(start_time,
 expected_time,
 favorite_route='SBS1K',
 favorite_option='bus'):
 """ Find optimal route for me to go from home to office """

 # Time difference in minutes - inputs must be datetime instances
 tdiff = (expected_time - start_time).total_seconds()/60.0

 options = {range(0, 30): 'car',
 range(30, 45): ('car', 'metro'),
 range(45, 60): ('bus:335E', 'bus:connector')}

 if tdiff < 80:
 # Pick the range it falls into
 for drange in options:
 if tdiff in drange:
 return drange[tdiff]

 # Might as well go by normal bus
 return random.choice(('bus:330', 'bus:331',
 ':'.join((favorite_option,
 favorite_route))))

class MiscClassC(object):

Chapter 2

[81]

 """ A miscellaneous class with some utility methods """

 def __init__(self, xnum, ynum):
 self.xnum = xnum
 self.ynum = ynum

 def compare_and_sum(self, xnum=0, ynum=0):
 """ Compare local and argument variables
 and perform some sums """

 if self.xnum > xnum:
 return self.xnum + self.ynum
 else:
 return xnum + self.ynum

class MiscClassD(MiscClassC):
 """ Sub-class of MiscClassC overriding some methods """

 def __init__(self, xnum, ynum=0):
 super(MiscClassD, self).__init__(xnum, ynum)

 def some_func(self, xnum, ynum):
 """ A function which does summing """

 if xnum > ynum:
 return xnum - ynum
 else:
 return xnum + ynum

 def compare_and_sum(self, xnum=0, ynum=0):
 """ Compare local and argument variables
 and perform some sums """

 if self.xnum > ynum:
 return self.xnum + ynum
 else:
 return ynum - self.xnum

Writing Modifiable and Readable Code

[82]

Let's run Pylint on this code and see what it outputs this time:

Pylint output of refactored metric test program

You see that the number of code smells has boiled down to near zero except a
complaint of lack of public methods, and the insight that the some_func method of
the MiscClassD class can be a function, as it does not use any attributes of the class.

We have invoked Pylint with the –reports=n option in order to
avoid Pylint printing its summary report, as it would make the
entire output too long to display here. These reports can be enabled
by calling Pylint without any argument.

Refactoring code – fixing styling and coding
issues
Now that we have fixed the major code issues, the next step is to fix code style and
convention errors. However, in order to shorten the number of steps and the amount
of code to be printed in this book for this exercise, this was already merged along
with the last step, as you may have guessed from the output of Pylint.

Except for a few whitespace warnings, all of the issues are fixed.

This completes our Refactoring exercise.

Chapter 2

[83]

Summary
In this chapter, we looked at the architectural quality attribute of modifiability and
its various aspects. We discussed readability in some detail, including the readability
antipatterns along with a few coding antipatterns.

We looked at various techniques for improving readability of code and understood the
different aspects of commenting of code such as function, class and module docstrings.
We also looked at PEP-8, the official coding convention guideline for Python.

We then looked at some rules of thumb for code comments and went on to discuss
the fundamentals of modifiability, namely, coupling and cohesion of code. We
looked at different cases of coupling and cohesion with a few examples. We
then went on to discuss the strategies of improving modifiability of code such as
providing explicit interfaces or APIs, avoiding two-way dependencies, abstracting
common services to helper modules, and using inheritance techniques. We looked
at an example where we refactored a class hierarchy via inheritance to abstract away
common code and to improve the modifiability of the system.

Toward the end, we listed the different tools, providing static code metrics in
Python such as Pylint, Flake8, Pyflakes, and others. We learned about McCabe
Cyclomatic complexity with the help of a few examples. We also learned what code
smells are and performed a refactoring exercise to improve the quality of the piece
of code in stages.

In the next chapter, we'll discuss another important quality attribute of software
architecture, namely, testability.

[85]

Testability – Writing
Testable Code

In the previous chapter, we covered a very important architectural attribute of
software, namely, modifiability, and its related aspects. In this chapter, the topic
is a closely related quality attribute: testability of software.

We briefly covered testability in the first chapter of this book, where we understood
what testability is, and how it relates to the complexity of the code. In this chapter,
we will look into the different aspects of software testability in detail.

Software testing by itself has developed into a large field with its own standards and
unique set of tools and processes. The focus of this chapter is not to cover the formal
aspects of software testing. Instead, what we will strive to do here is to understand
software testing from an architectural perspective and understand its relation to the
other quality attributes and, in the second half of this chapter, discuss the Python
tools and libraries relevant to our discussion on software testing using Python.

We will cover the following topics in this chapter:

• Understanding testability
• White-box testing principles
• Test-driven development
• TDD with palindromes

Testability – Writing Testable Code

[86]

Understanding testability
Testability can be defined as follows:

"The degree of ease with which a software system exposes its faults through
execution-based testing".

A software system with a high level of testability provides a high degree of exposure
of its faults through testing, thereby giving the developers higher accessibility to the
system's issues and allowing them to find and fix bugs faster. A less testable system,
on the other hand, would make it difficult for developers to figure out issues with it
and can often lead to unexpected failures in production.

Testability is, hence, an important aspect in ensuring the quality, stability, and
predictability of the software system in production.

Software testability and related attributes
A software system is testable if it gives up (exposes) its faults easily to the tester. Not
only that, the system should behave in a predictable way for the tester to develop
useful tests. An unpredictable system would give varying output variables to fixed
input at varying times, hence, is not testable (or very useful for that matter!).

More than unpredictability, complex or chaotic systems are also less amenable to
testing. For example, a system whose behavior varies wildly across a spectrum under
load doesn't make a good candidate for load testing. Hence, deterministic behavior is
also important to assure the testability of a system.

Another aspect is the amount of control that the tester has on the substructures of the
system. In order to design meaningful tests, a system should be easily identifiable to
subsystems with their well-defined APIs, for which tests can be written. A software
system that is complex and doesn't provide easy access to its subsystems, by
definition, becomes much less testable than the one which does.

This means that systems that are more structurally complex are more difficult to test
than ones that aren't.

Let's list this in an easy-to-read table:

Determinism Complexity Testability
High Low High
Low High Low

Chapter 3

[87]

Testability – architectural aspects
Software testing generally implies that the software artifact being tested is being
assessed for its functionality. However, in practical software testing, functionality is
just one of the aspects that can fail. Testing implies assessing the software for other
quality attributes such as performance, security, and robustness.

Due to these different aspects of testing, software testability is usually grouped
at different levels. We will take a look at these from the point of view of software
architecture.

Here is a brief listing of the different aspects that usually fall under software testing:

• Functional testing: This involves testing the software for verifying its
functionality. A unit of software passes its functional test if it behaves exactly
the way it is supposed to as per its development specifications. Functional
testing is usually of two types:

 ° White-box testing: These are usually tests implemented by the
developers, who have visibility into the software code, themselves.
The units being tested here are the individual functions, methods,
classes, or modules that make up the software rather than the end
user functionality. The most basic form of white-box testing is unit
testing. Other types are integration testing and system testing.

 ° Black-box testing: This type of testing is usually performed by
someone who is outside the development team. The tests have no
visibility into the software code, and treat the entire system like a
black box. Black-box testing tests the end user functionality of the
system without bothering about its internal details. Such tests are
usually performed by dedicated testing or QA engineers. However,
nowadays, a lot of black-box tests on web-based applications can be
automated by using testing frameworks such as Selenium.
Other than functional testing, there are a lot of testing methodologies
that are used to assess the various architectural quality attributes of a
system. We will discuss these next.

Testability – Writing Testable Code

[88]

• Performance testing: Tests that measure how a software performs with
respect to its responsiveness and robustness (stability) under high workloads
come within this category. Performance tests are usually categorized into the
following:

 ° Load testing: These are tests that assess how a system performs
under a certain specific load, either in terms of the number of
concurrent users, input data, or transactions.

 ° Stress testing: This tests the robustness and response of the system
when some inputs present a sudden or high rate of growth and go to
extreme limits. Stress tests typically tend to test the system slightly
beyond its prescribed design limits. A variation of stress testing
is running the system under a certain specified load for extended
periods of time and measuring its responsiveness and stability.

 ° Scalability testing: Measure how much the system can scale out
or scale up when the load is increased. For example, if a system
is configured to use a cloud service, this can test the horizontal
scalability—as in how the system auto scales to a certain number of
nodes upon increased load or vertical scalability—in terms of the
degree of utilization of CPU cores and/or RAM of the system.

• Security testing: Tests that verify the system's security fall into this category.
For web-based applications, this usually involves verifying authorization of
roles by checking that a given login or role can only perform a specified set of
actions and nothing more (or less). Other tests that fall under security would
be to verify proper access to data or static files to make sure that all sensitive
data of an application is protected by proper authorization via logins.

• Usability testing: Usability testing involves testing how much the user
interface of a system is easy to use, is intuitive, and understandable by its end
users. Usability testing is usually done via target groups comprising selected
people who fall into the definition of the intended audience or end users of
the system.

• Installation testing: For software that is shipped to the customer's location
and is installed there, installation testing is important. This tests and verifies
that all of the steps involved in building and/or installing the software at
the customer's end work as expected. If the development hardware differs
from the customer's, then the testing also involves verifying the steps and
components in the end user's hardware. Apart from a regular software
installation, installation testing is also important when delivering software
updates, partial upgrades, and so on.

Chapter 3

[89]

• Accessibility testing: Accessibility, from a software standpoint, refers to
the degree of usability and inclusion of a software system towards end
users with disabilities. This is usually done by incorporating support for
accessibility tools in the system, and designing the user interface by using
accessible design principles. A number of standards and guidelines have
been developed over the years, which allow organizations to develop
software with a view to making the software accessible to such an audience.
Examples are the Web Content Accessibility Guidelines (WCAG) of W3C,
Section 508 of the Government of USA, and the like.
Accessibility testing aims to assess the accessibility of software with respect
to these standards, wherever applicable.

There are various other types of software testing, which involves different
approaches, and are invoked at various phases of software development, such as
regression testing, acceptance testing, alpha or beta testing, and so on.

However, since our focus of discussion is on the architectural aspects of software
testing, we will limit our attention to the topics mentioned in the previous list.

Testability – strategies
We saw in a previous section how testability varies according to the complexity and
determinism of the software system under testing.

Being able to isolate and control the artifacts that are being tested is critical to
software testing. Separation of concerns on the system being tested, as in being able
to test components independently and without too much external dependency, is
key to this.

Let's look at the strategies that the software architect can employ in order to make
sure that the components he/she is subjecting to tests provide predictable and
deterministic behavior, which will provide valid and useful test results.

Reduce system complexity
As mentioned earlier, a complex system has lower testability. The system complexity
can be reduced by techniques such as splitting systems into subsystems, providing
well-defined APIs for systems to be tested, and so on. Here is a list of these
techniques in some detail:

• Reducing coupling: This is to isolate components so that coupling is reduced
in the system. Inter-component dependencies should be well defined, and if
possible, documented.

Testability – Writing Testable Code

[90]

• Increasing cohesion: This is to increase cohesion of modules, that is, to make
sure that a particular module or class performs only a well-defined set of
functions.

• Providing well-defined interfaces: Try to provide well-defined interfaces
for getting/setting the state of the components and classes involved. For
example, getters and setters allow us to provide specific methods for getting
and setting the value of a class's attributes. A reset method allows to set the
internal state of an object to its state at the time of creation. In Python, this
can be done by defining properties.

• Reducing class complexity: This means to reduce the number of classes
a class derives from. A metric called Response For Class (RFC) is a set
of methods of a class C, plus the methods on other classes called by the
methods of class C. It is suggested to keep the RFC of a class in manageable
limits, usually not more than 50 for small- to medium-sized systems.

Improving predictability
We saw that having a deterministic behavior is very important to design tests
that provide predictable results, and hence, can be used to build a test harness for
repeatable testing. Here are some strategies to improve the predictability of the code
under test:

• Correct exception handling: Missing or improperly-written exception
handlers is one of the main reasons for bugs and thence, unpredictable
behavior in software systems. It is important to find out places in the code
where exceptions can occur and then handle errors. Most of the time,
exceptions occur when a code interacts with an external resource such as
performing a database query, fetching a URL, waiting on a shared mutex,
and the like.

• Infinite loops and/or blocked wait: When writing loops that depend on
specific conditions such as availability of an external resource, or getting an
handle to or data from a shared resource, say a shared mutex or queue, it is
important to make sure that there are always safe exit or break conditions
provided in the code. Otherwise, the code can get stuck in infinite loops that
never break or on never-ending blocked waits on resources causing bugs that
are hard to troubleshoot and fix.

• Logic that is time dependent: When implementing logic that is dependent
on certain times of the day (hours or specific weekdays), make sure that the
code works in a predictable fashion. When testing such code, we often need
to isolate such dependencies by using mocks or stubs.

Chapter 3

[91]

• Concurrency: When writing code that uses concurrent methods such as
multiple threads and/or processes, it is important to make sure that the
system logic is not dependent on threads or processes starting in any specific
order. The system state should be initialized in a clean and repeatable way
via well-defined functions or methods that allow the system behavior to be
repeatable, and hence, testable.

• Memory management: A very common reason for software errors and
unpredictability is incorrect usage and mismanagement of memory. In
modern runtimes with dynamic memory management, such as Python, Java,
or Ruby, this is less of a problem. However, memory leaks and unreleased
memory leading to bloated software are still very much a reality in modern
software systems.

It is important to analyze and be able to predict the maximum memory usage of your
software system so that you allocate enough memory for it and run it on the right
hardware. Also, software should be periodically evaluated and tested for memory
leaks and better memory management, and any major issues should be addressed
and fixed.

Control and isolate external dependencies
Tests usually have some sort of external dependency. For example, a test may need
to load/save data to/from a database. Another may depend on the test running on
specific times of the day. A third may require fetching data from a URL on the web.

However, having external dependencies usually complicates a test scenario. This
is because external dependencies are usually not within the control of the test
designer. In the aforementioned cases, the database may be in another data center,
the connection may fail, or the website may not respond within the configured time
or may give a 50X error.

Isolating such external dependencies is very important in designing and writing
repeatable tests. The following are a few techniques for the same:

• Data sources: Most realistic tests require data of some form. More often than
not, data is read from a database. However, a database being an external
dependency cannot be relied upon. The following are a few techniques to
control data source dependencies:

 ° Using local files instead of a database: Quite often, test files with
prefilled data can be used instead of querying a database. Such files
could be text, JSON, CSV, or YAML files. Usually, such files are used
with mock or stub objects.

Testability – Writing Testable Code

[92]

 ° Using an in-memory database: Rather than connecting to a real
database, a small in-memory database could be used. A good
example is the SQLite DB, a file or memory-based database which
implements a good, but minimal, subset of SQL.

 ° Using a test database: If the test really requires a database, the
operation can use a test database that uses transactions. The database
is set up in the setUp() method of the test case, and rolled back in
the tearDown() method so that no real data remains at the end of the
operation.

• Resource virtualization: In order to control the behavior of resources that are
outside the system, we can virtualize them, that is, build a version of these
resources that mimic their APIs, but not the internal implementation. Some
common techniques for resource virtualization are as follows:

 ° Stubs: Stubs provide standard (canned) responses to function calls
made during a test. A Stub() function replaces the details of the
function it replaces, only returning the response as required.
For example, here is a function that returns data for a given URL:
import hashlib
import requests

def get_url_data(url):
 """ Return data for a URL """

 # Return data while saving the data in a file
 # which is a hash of the URL
 data = requests.get(url).content
 # Save it in a filename
 filename = hashlib.md5(url).hexdigest()
 open(filename, 'w').write(data)
 return data

And the following is the stub that replaces it, which internalizes the external
dependency of the URL:
import os

def get_url_data_stub(url):
 """ Stub function replacing get_url_data """

 # No actual web request is made, instead
 # the file is opened and data returned

Chapter 3

[93]

 filename = hashlib.md5(url).hexdigest()
 if os.path.isfile(filename):
 return open(filename).read()

A more common way to write such a function is to combine both the original
request and the file cache in the same code. The URL is requested just once—
the first time the function is called—and in subsequent requests, the data
from the file cache is returned:
def get_url_data(url):
 """ Return data for a URL """

 # First check for cached file - if so return its
 # contents. Note that we are not checking for
 # age of the file - so content may be stale.
 filename = hashlib.md5(url).hexdigest()
 if os.path.isfile(filename):
 return open(filename).read()

 # First time - so fetch the URL and write to the
 # file. In subsequent calls, the file contents will
 # be returned.
 data = requests.get(url).content
 open(filename, 'w').write(data)

 return data

 ° Mocks: Mocks fake the API of the real-world objects they replace. We
program mock objects directly in the test by setting expectations—
in terms of the type and order of the arguments the functions will
expect and the responses they will return. Later, the expectations can
be optionally verified in a verification step.

We will see examples of writing unit test via mocks with Python later.

The main difference between mocks and stubs is that a stub
implements just enough behavior for the object under test to execute
the test. A mock usually goes beyond by also verifying that the object
under test calls the mock as expected—for example, in terms of
number and order of arguments.
When using a mock object, part of the test involves verifying that
the mock was used correctly. In other words, both mocks and stubs
answer the question, What is the result?, but mocks also answer the
question, How has the result been achieved?

Testability – Writing Testable Code

[94]

 ° Fakes: Fake objects have working implementations, but fall short of
production usage because they have some limitations. A Fake object
provides a very lightweight implementation, which goes beyond just
stubbing the object.
For example, here is a Fake object that implements a very minimal
logging, mimicking the API of the Logger object of the Python's
logging module:
import logging

class FakeLogger(object):
 """ A class that fakes the interface of the
 logging.Logger object in a minimalistic fashion """

 def __init__(self):
 self.lvl = logging.INFO

 def setLevel(self, level):
 """ Set the logging level """
 self.lvl = level

 def _log(self, msg, *args):
 """ Perform the actual logging """

 # Since this is a fake object - no actual logging is
 # done.
 # Instead the message is simply printed to standard
 # output.

 print (msg, end=' ')
 for arg in args:
 print(arg, end=' ')
 print()

 def info(self, msg, *args):
 """ Log at info level """
 if self.lvl<=logging.INFO:
 return self._log(msg, *args)

 def debug(self, msg, *args):
 """ Log at debug level """

Chapter 3

[95]

 if self.lvl<=logging.DEBUG:
 return self._log(msg, *args)

 def warning(self, msg, *args):
 """ Log at warning level """
 if self.lvl<=logging.WARNING:
 return self._log(msg, *args)

 def error(self, msg, *args):
 """ Log at error level """
 if self.lvl<=logging.ERROR:
 return self._log(msg, *args)

 def critical(self, msg, *args):
 """ Log at critical level """
 if self.lvl<=logging.CRITICAL:
 return self._log(msg, *args)

The FakeLogger class in the preceding code implements some main methods of the
logging.Logger class, which it is trying to fake.

It is ideal as a fake object for replacing the Logger object for implementing tests.

White-box testing principles
From a software architecture perspective, one of the most important steps of testing
is at the time the software is developed. The behavior or functionality of a software,
which is apparent only to its end users, is an artifact of the implementation details of
the software.

Hence, it follows that a system that is tested early and tested often has a higher
likelihood to produce a testable and robust system, which provides the required
functionality to the end user in a satisfactory manner.

The best way, therefore, to start implementing testing principles is right from the
source, that is, where the software is written, and by the developers. Since the source
code is visible to the developer, this testing is often called white-box testing.

Testability – Writing Testable Code

[96]

So, how do we make sure that we can follow the correct testing principles, and
perform due diligence while the software is getting developed? Let's take a look at
the different types of testing that are involved during the development stage before
the software ends up in front of the customer.

Unit testing
Unit testing is the most fundamental type of testing performed by developers. A
unit test applies the most basic unit of software code—typically, functions or class
methods—by using executable assertions, which check the output of the unit being
tested against an expected outcome.

In Python, support for unit testing is provided by the unittest module in the
standard library.

The unit test module provides the following high-level objects:

• Test cases: The unittest module provides the TestCase class, which
provides support for test cases. A new test case class can be set up by
inheriting from this class and setting up the test methods. Each test method
will implement unit tests by checking the response against an expected
outcome.

• Test fixtures: Test fixtures represent any setup or preparation required
for one or more tests followed by any cleanup actions. For example, this
may involve creating temporary or in-memory databases, starting a server,
creating a directory tree, and the like. In the unittest module, support
for fixtures is provided by the setUp() and tearDown() methods of
the TestCase class and the associated class and module methods of the
TestSuite class.

• Test suites: A test suite is an aggregation of related test cases. A test suite
can also contain other test suites. A test suite allows to group test cases that
perform functionally similar tests on a software system, and whose results
should be read or analyzed together. The unittest module provides support
for test suites through the TestSuite class.

• Test runners: A test runner is an object that manages and runs the test cases,
and provides the results to the tester. A test runner can use a text interface or
a GUI.

• Test results: Test result classes manage the test result output shown to the
tester. Test results summarize the number of successful, failed, and erred-out
test cases. In the unittest module, this is implemented by the TestResult
class with a concrete, default implementation of the TextTestResult class.

Chapter 3

[97]

Other modules that provide support for Unit testing in Python are nose (nose2) and
py.test. We will discuss each of these briefly in the following sections.

Unit testing in action
Let's take a specific unit-testing task and then try to build a few test cases and test
suites. Since the unittest module is the most popular, and available by default in
the Python standard library, we will start with it first.

For our test purposes, we will create a class that has a few methods, which are used
for date/time conversions.

The following code shows our class:

""" Module datetime helper - Contains the class DateTimeHelper
providing some helpful methods for working with date and datetime
objects """

import datetime
class DateTimeHelper(object):
 """ A class which provides some convenient date/time
 conversion and utility methods """

 def today(self):
 """ Return today's datetime """
 return datetime.datetime.now()

 def date(self):
 """ Return today's date in the form of DD/MM/YYYY """
 return self.today().strftime("%d/%m/%Y")

 def weekday(self):
 """ Return the full week day for today """
 return self.today().strftime("%A")

 def us_to_indian(self, date):
 """ Convert a U.S style date i.e mm/dd/yy to Indian style
 dd/mm/yyyy """

 # Split it
 mm,dd,yy = date.split('/')
 yy = int(yy)
 # Check if year is >16, else add 2000 to it
 if yy<=16: yy += 2000
 # Create a date object from it

Testability – Writing Testable Code

[98]

 date_obj = datetime.date(year=yy, month=int(mm), day=int(dd))
 # Retur it in correct format
 return date_obj.strftime("%d/%m/%Y")

Our DateTimeHelper class has a few methods, which are as follows:

• date: Returns the day's timestamp in the dd/mm/yyyy format
• weekday: Returns the day's weekday, for example, Sunday, Monday,

and so on
• us_to_indian: Converts a US date format (mm/dd/yy(yy)) into the Indian

format (dd/mm/yyyy)

Here is a unittest TestCase class, which implements a test for the last method:

""" Module test_datetimehelper - Unit test module for testing
datetimehelper module """

import unittest
import datetimehelper

class DateTimeHelperTestCase(unittest.TestCase):
 """ Unit-test testcase class for DateTimeHelper class """

 def setUp(self):
 print("Setting up...")
 self.obj = datetimehelper.DateTimeHelper()

 def test_us_india_conversion(self):
 """ Test us=>india date format conversion """

 # Test a few dates
 d1 = '08/12/16'
 d2 = '07/11/2014'
 d3 = '04/29/00'
 self.assertEqual(self.obj.us_to_indian(d1), '12/08/2016')
 self.assertEqual(self.obj.us_to_indian(d2), '11/07/2014')
 self.assertEqual(self.obj.us_to_indian(d3), '29/04/2000')

if __name__ == "__main__":
 unittest.main()

Chapter 3

[99]

Note that, in the main part of the test case code, we just invoke unittest.main().
This automatically figures out the test cases in the module, and executes them. The
following screenshot shows the output of the test run:

Output of the unit-test case for the datetimehelper module—version #1

As we can see from the output, this simple test case passes.

Extending our unit test case
You may have noted that the first version of the unit test case for the datetimehelper
module contained a test only for one method, namely, the method that converts the US
date format in to the Indian one.

However, what about the other two methods? Shouldn't we write unit tests for
them too?

The problem with the other two methods is that they get data from today's date. In
other words, the output is dependent on the exact day that the code is run. Hence,
it is not possible to write a specific test case for them by feeding in a date value and
expecting the result to match an outcome as the code is time dependent. We need a
way to control this external dependency.

This is where mocking comes to our rescue. Remember that we discussed mock
objects as a way to control external dependencies. We can use the patching support
of the unittest.mock library, and patch the method that returns today's date to
return a date that we control. This way, we are able to test the methods that depend
on it.

Here is the modified test case with support added for the two methods using this
technique:

""" Module test_datetimehelper - Unit test module for testing
datetimehelper module """

import unittest
import datetime
import datetimehelper

Testability – Writing Testable Code

[100]

from unittest.mock import patch

class DateTimeHelperTestCase(unittest.TestCase):
 """ Unit-test testcase class for DateTimeHelper class """

 def setUp(self):
 self.obj = datetimehelper.DateTimeHelper()

 def test_date(self):
 """ Test date() method """

 # Put a specific date to test
 my_date = datetime.datetime(year=2016, month=8, day=16)

 # Patch the 'today' method with a specific return value
 with patch.object(self.obj, 'today', return_value=my_date):
 response = self.obj.date()
 self.assertEqual(response, '16/08/2016')

 def test_weekday(self):
 """ Test weekday() method """

 # Put a specific date to test
 my_date = datetime.datetime(year=2016, month=8, day=21)

 # Patch the 'today' method with a specific return value
 with patch.object(self.obj, 'today', return_value=my_date):
 response = self.obj.weekday()
 self.assertEqual(response, 'Sunday')

 def test_us_india_conversion(self):
 """ Test us=>india date format conversion """

 # Test a few dates
 d1 = '08/12/16'
 d2 = '07/11/2014'
 d3 = '04/29/00'
 self.assertEqual(self.obj.us_to_indian(d1), '12/08/2016')
 self.assertEqual(self.obj.us_to_indian(d2), '11/07/2014')
 self.assertEqual(self.obj.us_to_indian(d3), '29/04/2000')

if __name__ == "__main__":
 unittest.main()

Chapter 3

[101]

As you can see, we have patched the today method to return a specific date in
the two test methods. This allows us to control the method's output and, in turn,
compare the result with a specific outcome.

Here is the new output of the test case:

Output of the unit-test case for datetimehelper module with two more tests—version #2

unittest.main is a convenience function on the unittest
module, which makes it easy to load a set of test cases
automatically from a module and run them.

To find out more details of what is happening when the tests are run, we can make
the test runner show more information by increasing the verbosity. This can be done
either by passing the verbosity argument to unittest.main or by passing the -v
option on the command line as follows:

Producing verbose output from the unit-test case by passing the -v argument

Nosing around with nose2
There are other unit-testing modules in Python that are not part of the standard
library, but are available as third-party packages. We will look at the first one named
nose. The most recent version (at the time of writing) is version 2, and the library has
been renamed as nose2.

Testability – Writing Testable Code

[102]

The nose2 package can be installed by using the Python package installer, pip:

$ pip install nose2

Running nose2 is very simple. It automatically detects Python test cases to run in the
folder that it is run from by looking for classes derived from unittest.TestCase
and functions starting with test.

In the case of our datetimehelper test case, nose2 picks it up automatically. Simply
run it from the folder containing the module. Here is the test output:

Running unit tests using nose2

The preceding output doesn't, however, report anything, since, by default, nose2 runs
quietly. We can turn on some reporting of tests by using the verbose option (-v):

Running unit-tests using nose2 with verbose output

nose2 also supports reporting code coverage by using plugins. We will look at code
coverage in a later section.

Testing with py.test
The py.test package, commonly known as pytest, is a full-featured, mature testing
framework for Python. Like nose2, py.test also supports test discovery by looking
for files starting with certain patterns.

Chapter 3

[103]

The py.test can also be installed with pip:

$ pip install pytest

Like nose2, test execution with pytest is also easy. Simply run the pytest executable
in the folder containing the test cases:

Test discovery and execution with py.test

Like nose2, pytest also comes with its own plugin support, the most useful among
them being the code coverage plugin. We will see examples in a later section.

It is to be noted that pytest doesn't require test cases to be derived formally from the
unittest.TestCase module. pytest automatically discovers tests from any modules
containing classes prefixed with Test or from functions prefixed with test_.

For example, here is a new test case without any dependency on the unittest
module but with the test case class derived from object, the most base type in
Python. The new module is called test_datetimehelper_object:

""" Module test_datetimehelper_object - Simple test case with test
class derived from object """

import datetimehelper

class TestDateTimeHelper(object):

 def test_us_india_conversion(self):
 """ Test us=>india date format conversion """

 obj = datetimehelper.DateTimeHelper()
 assert obj.us_to_indian('1/1/1') == '01/01/2001'

Testability – Writing Testable Code

[104]

Note how this class has zero dependency on the unittest module and defines no
fixtures. Here is the output of running pytest on the folder now:

Test case discovery and execution without the unittest module support using py.test

The py.test has picked up the test case in this module and executed it automatically
as the output shows.

nose2 also has similar capabilities to pick up such test cases. The following
screenshot shows the output of nose2 with the new test case defined:

Test case discovery and execution without the unittest module support using nose2

The preceding output shows that the new test has been picked up and executed.

The unittest module, nose2, and py.test packages provide a lot of support for
developing and implementing test cases, fixtures, and test suites in a very flexible
and customizable manner. Discussing all of the multitude of options of these tools
is beyond the scope of this chapter, as our focus is on getting to know these tools
to understand how we can use them to satisfy the architectural quality attribute of
testability.

So, at this point, we will go on to the next major topic in unit testing, that of code
coverage. We will look at these three tools, namely, unittest, nose2, and pytest,
and see how they allow the architect to help his/her developers and testers find
information about the code coverage in their unit tests.

Chapter 3

[105]

Code coverage
Code coverage is measured as the degree to which the source code under test
is covered by a specific test suite. Ideally, test suites should aim for higher code
coverage, as this would expose a larger percentage of the source code to tests and
help to uncover bugs.

Code coverage metrics are reported typically as a percentage of Lines of Code (LOC)
or a percentage of the subroutines (functions) covered by a test suite.

Let's now look at different tools support for measuring code coverage. We will
continue to use our test example (datetimehelper) for these illustrations too.

Measuring coverage using coverage.py
coverage.py is a third-party Python module, which works with test suites and cases
written with the unittest module, and reports their code coverage.

coverage.py can be installed, like other tools shown here so far, using pip:

$ pip install coverage

This last command installs the coverage application, which is used to run and report
code coverages.

Coverage.py has two stages: first, where it runs a piece of source code and collects
coverage information, and next, where it reports the coverage data.

To run coverage.py, use the following syntax:

 $ coverage run <source file1> <source file 2> …

Once the run is complete, report the coverage using this command:

 $ coverage report -m

For example, here is the output with our test modules:

Test coverage report for the datetimehelper module using coverage.py

Testability – Writing Testable Code

[106]

coverage.py reports that our tests cover 93% of the code in the datetimehelper
module, which is pretty good code coverage. (You can ignore the report on the test
module itself.)

Measuring coverage using nose2
The nose2 package comes with plugin support for code coverage. This is not installed
by default. To install the code coverage plugin for nose2, use this command:

$ pip install cov-core

Now, nose2 can be run with the code coverage option to run the test cases and to
report coverage in one shot. This can be done as follows:

$ nose2 -v -C

Behind the scenes, cov-core makes use of coverage.py to
get its work done, so the metric report of coverage by both
coverage.py and nose2 is the same.

Here is the output of running test coverage using nose2:

Test coverage report for the datetimehelper module using nose2

Chapter 3

[107]

By default, the coverage report is written to the console. To produce other forms
of output, the –coverage-report option can be used. For example, --coverage-
report html will write the coverage report in the HTML format to a subfolder
named htmlcov:

Producing HTML coverage output using nose2

Here is how the HTML output looks in the browser:

HTML coverage report as viewed in the browser

Measuring coverage using pytest
pytest also comes with its own coverage plugin for reporting code coverage. Like
nose2, it utilizes coverage.py behind the scenes to get the work done.

To provide support for code coverage for py.test, the pytest-cov package needs to
be installed as follows:

$ pip install pytest-cov

To report code coverage of test cases in the current folder, use the following
command:

$ pytest –cov

Testability – Writing Testable Code

[108]

Here is a sample output of pytest code coverage:

Running code coverage for current folder using py.test

Mocking things up
We saw an example of using the patch support of unittest.mock in our test
example earlier. However, the mock support provided by unittest is even more
powerful than this, so let's look at one more example to understand its power and
applicability in writing unit tests.

For the purpose of this illustration, we will consider a class that performs a keyword
search on a large dataset and returns the results ordered by weightage. Assume that
the dataset is stored in a database, and the results are returned as a list of (sentence,
relevance) tuples, where sentence is the original string with a match for the keyword,
and relevance is its hit weightage in the result set.

Here is the code:

"""
Module textsearcher - Contains class TextSearcher for performing
search on a database and returning results
"""

import operator

class TextSearcher(object):
 """ A class which performs a text search and returns results """

 def __init__(self, db):

Chapter 3

[109]

 """ Initializer - keyword and database object """

 self.cache = False
 self.cache_dict = {}
 self.db = db
 self.db.connect()

 def setup(self, cache=False, max_items=500):
 """ Setup parameters such as caching """

 self.cache = cache
 # Call configure on the db
 self.db.configure(max_items=max_items)

 def get_results(self, keyword, num=10):
 """ Query keyword on db and get results for given keyword """

 # If results in cache return from there
 if keyword in self.cache_dict:
 print ('From cache')
 return self.cache_dict[keyword]

 results = self.db.query(keyword)
 # Results are list of (string, weightage) tuples
 results = sorted(results, key=operator.itemgetter(1),
 reverse=True)[:num]
 # Cache it
 if self.cache:
 self.cache_dict[keyword] = results

 return results

The class has the following three methods:

• __init__: This is the initializer; it accepts an object that acts as a handle to
the data source (database). It also initializes a few attributes and connects to
the database

• setup: It sets up the searcher and configures the database object
• get_results: It performs a search using the data source (database) and

returns the results for a given keyword

We now want to implement a unit test case for this searcher. Since the database is an
external dependency, we will virtualize the database object by mocking it. We will
test only the searcher's logic, callable signatures, and return data.

Testability – Writing Testable Code

[110]

We will develop this program step by step so that each step of mocking is clear to
you. We will use a Python interactive interpreter session for the same.

First, let's get the mandatory imports:

>>> from unittest.mock import Mock, MagicMock
>>> import textsearcher
>>> import operator

Since we want to mock the DB, the first step is to do that exactly:

>>> db = Mock()

Now let's create the searcher object. We are not going to mock this, as we need to
test the calling signature and the return value of its methods:

>>> searcher = textsearcher.TextSearcher(db)

At this point, the database object has been passed to the __init__ method of
searcher, and connect has been called on it. Let's verify this expectation:

>>> db.connect.assert_called_with()

No issues, so the assertion has succeeded! Let's now set up searcher:

>>> searcher.setup(cache=True, max_items=100)

Looking at the code of the TextSearcher class, we realize that the preceding call
should have called configure on the database object with the max_items parameter
set to the value 100. Let's verify this:

>>> searcher.db.configure.assert_called_with(max_items=100)
<Mock name='mock.configure_assert_called_with()' id='139637252379648'>

Bravo! Finally, let's try and test the logic of the get_results method. Since our
database is a mock object, it won't be able to do any actual query, so we pass some
canned results to its query method, effectively mocking it:

>>> canned_results = [('Python is wonderful', 0.4),
... ('I like Python',0.8),
... ('Python is easy', 0.5),
... ('Python can be learnt in an afternoon!',
0.3)]
>>> db.query = MagicMock(return_value=canned_results)

Chapter 3

[111]

Now we set up the keyword and the number of results and call get_results using
these parameters:

>>> keyword, num = 'python', 3
>>> data = searcher.get_results(python, num=num)

Let's inspect the data:

>>> data
[('I like Python', 0.8), ('Python is easy', 0.5), ('Python is
wonderful', 0.4)]

It looks good! In the next step, we verify that get_results has indeed called query
with the given keyword:

>>> searcher.db.query.assert_called_with(keyword)

Finally, we verify that the data returned has been sorted right and truncated to the
number of results (num) value we passed:

>>> results = sorted(canned_results, key=operator.itemgetter(1),
reverse=True)[:num]
>>> assert data == results
True

All good! The example shows how to use mock support in the unittest module in
order to mock an external dependency and effectively virtualize it, while at the same
time testing the program's logic, control flow, callable arguments, and return values.

Here is a test module combining all of these tests into a single test module and the
output of nose2 on it:

"""
Module test_textsearch - Unittest case with mocks for textsearch
module
"""

from unittest.mock import Mock, MagicMock
import textsearcher
import operator

def test_search():

Testability – Writing Testable Code

[112]

 """ Test search via a mock """

 # Mock the database object
 db = Mock()
 searcher = textsearcher.TextSearcher(db)
 # Verify connect has been called with no arguments
 db.connect.assert_called_with()
 # Setup searcher
 searcher.setup(cache=True, max_items=100)
 # Verify configure called on db with correct parameter
 searcher.db.configure.assert_called_with(max_items=100)

 canned_results = [('Python is wonderful', 0.4),
 ('I like Python',0.8),
 ('Python is easy', 0.5),
 ('Python can be learnt in an afternoon!', 0.3)]
 db.query = MagicMock(return_value=canned_results)

 # Mock the results data
 keyword, num = 'python', 3
 data = searcher.get_results(keyword,num=num)
 searcher.db.query.assert_called_with(keyword)

 # Verify data
 results = sorted(canned_results, key=operator.itemgetter(1),
 reverse=True)[:num]
 assert data == results

Here is the output of nose2 on this test case:

Running testsearcher test-case using nose2

Chapter 3

[113]

For good measure, let's also look at the coverage of our mock test example, the
test_textsearch module, using the py.test coverage plugin:

Measuring coverage of the textsearcher module via test_textsearch test case using py.test

So our mock test has a coverage of 89%, missing just two statements out of 20.
Not bad!

Tests inline in documentation – doctests
Python has unique support for another form of inline code tests, which are
commonly called doctests. These are inline unit tests in a function, class, or module
documentation, which add a lot of value by combining code and tests in one place
without having to develop or maintain separate test suites.

The doctest module works by looking for pieces of text in code documentation
that look like Python strings, and executing those sessions to verify that they work
exactly as found. Any test failures are reported on the console.

Let's look at a code example to see this in action. The following piece of code
implements the simple factorial function by using an iterative approach:

"""
Module factorial - Demonstrating an example of writing doctests
"""

import functools
import operator

def factorial(n):

Testability – Writing Testable Code

[114]

 """ Factorial of a number.

 >>> factorial(0)
 1
 >>> factorial(1)
 1
 >>> factorial(5)
 120
 >>> factorial(10)
 3628800

 """

 return functools.reduce(operator.mul, range(1,n+1))

if __name__ == "__main__":
 import doctest
 doctest.testmod(verbose=True)

Let's look at the output of executing this module:

Output of doctest for the factorial module

The doctest reports that one out of four tests failed.

Chapter 3

[115]

A quick scan of the output tells us that we forgot to code in the special case to
compute the factorial for zero. The error occurs because the code tries to compute
range(1, 1), which raises an exception with reduce.

The code can be easily rewritten to fix this. Here is the modified code:

"""
Module factorial - Demonstrating an example of writing doctests
"""

import functools
import operator

def factorial(n):
 """ Factorial of a number.

 >>> factorial(0)
 1
 >>> factorial(1)
 1
 >>> factorial(5)
 120
 >>> factorial(10)
 3628800
 """

 # Handle 0 as a special case
 if n == 0:
 return 1

 return functools.reduce(operator.mul, range(1,n+1))

if __name__ == "__main__":
 import doctest
 doctest.testmod(verbose=True)

Testability – Writing Testable Code

[116]

The next screenshot shows the fresh output of executing the module now:

Output of doctest for the factorial module after the fix

Now all of the tests pass.

We turned on the verbose option of the doctest module's
testmod function in this example in order to show the details of
the tests. Without this option, doctest would be silent if all of the
tests passed, producing no output.

The doctest module is very versatile. Rather than just Python code, it can also load
Python interactive sessions from sources such as text files and execute them as tests.

The doctest module examines all docstrings including function, class, and module
docstrings to search for Python interactive sessions.

The pytest package comes with built-in support for doctests. To allow
pytest to discover and run doctests in the current folder, use the
following command:

$ pytest –doctest-modules

Chapter 3

[117]

Integration tests
Unit tests, though very useful to discover and fix bugs during white-box testing early
on in the software development life cycle, aren't enough by themselves. A software
system is fully functional only if the different components work together in expected
ways in order to deliver the required functionality to the end user, satisfying the
pre-defined architectural quality attributes. This is where integration tests assume
importance.

The purpose of integration tests is to verify the functional, performance, and other
quality requirements on the different functional subsystems of a software system,
which act as a logical unit, providing certain functionality. Such subsystems deliver
some piece of functionality through the cumulative action of their individual units.
Though each component may have defined its own unit test, it is also important to
verify the combined functionality of the system by writing integration tests.

Integration tests are usually written after unit testing is completed and before
validation testing is done.

It would be instructional to list down the advantages provided by integration tests
at this point, as this could be useful for any software architect who is at a phase
where he/she has designed and implemented his/her unit tests for the different
components:

• Testing component interoperability: Each unit in a functional subsystem
could be written by different programmers. Though each programmer is
aware of how this component should perform, and may have written unit
tests for the same, the entire system may have issues working in unison,
as there could be errors or misunderstanding in the integration points
where components talk to each other. Integration testing would reveal such
mistakes.

• Testing for system requirement modifications: The requirements may have
changed during the time of implementation. These updated requirements
may not have been unit tested, hence, an integration test becomes very useful
to reveal issues. Also, some parts of the system may not have implemented
the requirements correctly, which can also be revealed by an appropriate
integration test.

• Testing external dependencies and APIs: Software components these days
use a lot of third-party APIs, which are usually mocked or stubbed during
unit tests. Only an integration test would reveal how these APIs would
perform and expose any issues either in the calling convention, response
data, or performance with them.

Testability – Writing Testable Code

[118]

• Debugging hardware issues: Integration tests are helpful in getting
information about any hardware problems, and debugging such tests gives
the developer(s) data about whether an update or change in the hardware
configuration is required.

• Uncovering exceptions in code paths: Integration tests can also help
developers figure out exceptions that they may not have handled in their
code, as unit tests wouldn't have executed paths or conditions which raised
such errors. Higher code coverage can identify and fix a lot of such issues.
However, a good integration test combining known code paths for each
functionality with high coverage is a good formula for making sure most
potential errors that may occur during usage are uncovered and executed
during testing.

There are three approaches to writing integration tests. These are as follows:

• Bottom-up: In this approach, components at the lower level are tested
first, and these test results are used to integrate tests of the higher-level
components in the chain. The process repeats until we reach the top
of the hierarchy of the components with respect to the control flow. In
this approach, critical modules at the top of the hierarchy may be tested
inadequately.
If the top-level components are under development, drivers may be required
to simulate (mock) them:

Bottom-up strategy of integration testing

Chapter 3

[119]

• Top-down: Test development and testing happens top-down, following
the workflow in the software system. Hence, components at the top level
of the hierarchy are tested first and the lower-level modules are tested last.
In this approach, critical modules are tested on priority, so we can identify
major design or development flaws first and fix them. However, lower-level
modules may be tested inadequately.
Lower-level modules can be replaced by stubs which mock their
functionality. Early prototypes are possible in this approach,
as lower-level module logic can be stubbed out:

Top-down strategy of integration testing

• Big-bang: This is the approach is one where all of the components are
integrated and tested at the very end of development. Since the integration
tests come at the end, this approach saves time for development. However,
this may not give enough time to test critical modules, as there may not be
enough time to spend equally on all of the components.

There is no specific software for general integration testing. A certain class of
applications, such as web frameworks, define their own specific integration test
frameworks. For example, some web frameworks such as Django, Pyramid, and
Flask have some specific testing frameworks developed by their own communities.

Another example is the popular WebTest framework, which is useful for automated
testing of the Python WSGI applications. A detailed discussion of such frameworks is
outside the scope of this chapter and this book.

Testability – Writing Testable Code

[120]

Test automation
There are a number of tools on the internet that are useful for automating integration
testing of software applications. We will take a quick look at some of the popular
ones here.

Test automation using Selenium WebDriver
Selenium has been a popular choice for automating integration, regression, and
validation tests for a number of software applications. Selenium is free and open
source and comes with support for most popular web browser engines.

In Selenium, the primary object is a web driver, which is a stateful object on the
client side, representing a browser. The web driver can be programmed to visit
URLs, perform actions (such as clicking, filling forms, and submitting forms),
effectively replacing the human test subject, who usually performs these steps
manually.

Selenium provides client driver support for most popular programming languages
and runtimes.

To install the Selenium WebDriver in Python, use the following command:

$ pip install selenium

We will look at a small example that uses Selenium along with pytest in order
to implement a small automation test, which will test the Python website
(http://www.python.org) for some simple test cases.

Here is our test code. The module is named selenium_testcase.py:

"""
Module selenium_testcase - Example of implementing an automated UI
test using selenium framework
"""

from selenium import webdriver
import pytest
import contextlib

@contextlib.contextmanager
@pytest.fixture(scope='session')
def setup():
 driver = webdriver.Firefox()
 yield driver

http://www.python.org/
http://www.python.org

Chapter 3

[121]

 driver.quit()

def test_python_dotorg():
 """ Test details of python.org website URLs """

 with setup() as driver:
 driver.get('http://www.python.org')
 # Some tests
 assert driver.title == 'Welcome to Python.org'
 # Find out the 'Community' link
 comm_elem = driver.find_elements_by_link_text('Community')[0]
 # Get the URL
 comm_url = comm_elem.get_attribute('href')
 # Visit it
 print ('Community URL=>',comm_url)
 driver.get(comm_url)
 # Assert its title
 assert driver.title == 'Our Community | Python.org'
 assert comm_url == 'https://www.python.org/community/'

Before running the preceding example and showing the output, let's inspect the
functions a bit:

• The setUp function is a test fixture, which sets up the main object required
for our test, that is, the Selenium WebDriver for Firefox. We convert
the setUp function in to a context manager by decorating it with the
contextmanager decorator from the contextlib module. At the end of the
setUp function, the driver exits, since its quit method is called.

• In the test_python_dot_org test function, we set up a rather simple,
contrived test for visiting the main Python website URL and checking its title
via an assertion. We load the URL for the Python community by locating it
on the main page and then visit this URL. We finally assert its title and URL
before ending our tests.

Let's see the program in action. We will specifically ask pytest to load only this
module and run it. The command line for this is as follows:

$ pytest -s selenium_testcase.py

Testability – Writing Testable Code

[122]

The Selenium driver will launch the browser (Firefox) and open a window
automatically, visiting the Python website URL while running the tests.
The console output for the test is shown in the following screenshot:

Console output of a simple Selenium test case on the Python programming language website

Selenium can be used for more complex test cases, as it provides a number of
methods for inspecting the HTML of pages, locating elements, and interacting with
them. There are also plugins for Selenium, which can execute the JavaScript content
of the pages to make the testing support complex interactions via JavaScript (such as
AJAX requests).

Selenium can also be run on the server. It provides support for remote clients via
its remote driver support. Browsers are instantiated on the server (typically, using
virtual X sessions), whereas, the tests can be run and controlled from client machines
via the network.

Test-driven development
Test-Driven Development (TDD) is an agile practice of software development,
which uses a very short development cycle, where code is written to satisfy an
incremental test case.

In TDD, a functional requirement is mapped to a specific test case. Code is written
to pass the first test case. Any new requirement is added as a new test case. Code is
refactored to support the new test case. The process continues till the code is able to
support the entire spectrum of user functionality.

The steps in TDD are as follows:

1. Define a few starting test cases as a specification for the program.
2. Write code to make the early test cases pass.
3. Add a new test case defining new functionality.
4. Run all of the tests and see whether the new test fails or passes.
5. If the new test fails, write some code for the test to pass.

Chapter 3

[123]

6. Run the tests again.
7. Repeat steps 4 to 6 till the new test passes.
8. Repeat steps 3 to 7 to add a new functionality via test cases.

In TDD, the focus is on keeping everything simple, including the unit test cases and
the new code that is added to support the test cases. TDD practitioners believe that
writing tests upfront allows the developer to understand the product requirements
better, allowing a focus on software quality from the very beginning of the
development lifecycle.

In TDD, often, a final refactoring step is also done after many tests have been added
to the system in order to make sure no coding smells or antipatterns are introduced
and to maintain code readability and maintainability.

There is no specific software for TDD, rather, it is a methodology and process for
software development. Most of the time, TDD uses unit tests, so the toolchain
support is mostly the unittest module and the related packages that we've
discussed in this chapter.

TDD with palindromes
Let's understand TDD as discussed earlier with a simple example of developing a
program in Python that checks whether an input string is a palindrome.

A palindrome is a string that reads the same in both directions. For
example, bob, rotator, and Malayalam are palindromes. So is the sentence,
Madam, I'm Adam when you get rid of the punctuation marks.

Let us follow the steps of TDD. Initially, we need a test case that defines the basic
specification of the program. Our first version of the test code looks like this:

"""
Module test_palindrome - TDD for palindrome module
"""

import palindrome

def test_basic():
 """ Basic test for palindrome """

 # True positives
 for test in ('Rotator','bob','madam','mAlAyAlam', '1'):

Testability – Writing Testable Code

[124]

 assert palindrome.is_palindrome(test)==True

 # True negatives
 for test in ('xyz','elephant', 'Country'):
 assert palindrome.is_palindrome(test)==False

Note that the preceding code not only gives us a specification for the program in
terms of its early functionality, but also gives a function name and signature—in
terms of the argument and return value. We can list down the requirements for the
first version by looking at the test:

• The function is named is _palindrome. It should accept a string and return
True if it is a palindrome and False otherwise. The function sits in the
palindrome module.

• The function should treat strings as case-insensitive.

With these specifications, here is our first version of the palindrome module:

def is_palindrome(in_string):
 """ Returns True whether in_string is palindrome, False otherwise
 """

 # Case insensitive
 in_string = in_string.lower()
 # Check if string is same as in reverse
 return in_string == in_string[-1::-1]

Let's check whether this passes our test. We will run py.test on the test module to
verify this:

Test output of test_palindrome.py version #1

Chapter 3

[125]

As you can see in the last image, the basic test passes; so, we've got a first version of
the palindrome module, which works and passes its tests.

Now as per the TDD step, let's go to step 3 and add a new test case. This adds a
check for testing palindrome strings with spaces. Here is the new test module with
this extra test:

"""
Module test_palindrome - TDD for palindrome module
"""

import palindrome

def test_basic():
 """ Basic test for palindrome """

 # True positives
 for test in ('Rotator','bob','madam','mAlAyAlam', '1'):
 assert palindrome.is_palindrome(test)==True

 # True negatives
 for test in ('xyz','elephant', 'Country'):
 assert palindrome.is_palindrome(test)==False

def test_with_spaces():
 """ Testing palindrome strings with extra spaces """

 # True positives
 for test in ('Able was I ere I saw Elba',
 'Madam Im Adam',
 'Step on no pets',
 'Top spot'):
 assert palindrome.is_palindrome(test)==True

 # True negatives
 for test in ('Top post','Wonderful fool','Wild Imagination'):
 assert palindrome.is_palindrome(test)==False

Testability – Writing Testable Code

[126]

Let's run the updated test and see the results:

 Test output of test_palindrome.py version #2

The test fails, because the code is not enabled to process palindrome strings with
spaces in them. So let's do as TDD step 5 says and write some code to make this
test pass.

Since it is clear we need to ignore spaces, a quick fix is to purge all spaces from the
input string. Here is the modified palindrome module with this simple fix:

"""
Module palindrome - Returns whether an input string is palindrome or
not
"""

import re

def is_palindrome(in_string):
 """ Returns True whether in_string is palindrome, False otherwise
 """

 # Case insensitive
 in_string = in_string.lower()
 # Purge spaces
 in_string = re.sub('\s+','', in_string)
 # Check if string is same as in reverse
 return in_string == in_string[-1::-1]

Chapter 3

[127]

Let's now repeat step 4 of TDD to see whether the updated code makes the test pass:

Console output of test_palindrome.py version #2, after code updates

Surely, the code passes the test now!

What we just saw was an instance of TDD with one update cycle for implementing
a module in Python, which checks strings for palindromes. In a similar way, we can
keep adding tests and keep updating the code as per step 8 of TDD, thereby adding
new functionality while maintaining the updated tests naturally via the process.

We conclude this section with the final version of our palindrome test case, which
adds a test case for checking for strings with extra punctuation marks:

"""
Module test_palindrome - TDD for palindrome module
"""

import palindrome

def test_basic():
 """ Basic test for palindrome """

 # True positives
 for test in ('Rotator','bob','madam','mAlAyAlam', '1'):
 assert palindrome.is_palindrome(test)==True

 # True negatives
 for test in ('xyz','elephant', 'Country'):
 assert palindrome.is_palindrome(test)==False

def test_with_spaces():

Testability – Writing Testable Code

[128]

 """ Testing palindrome strings with extra spaces """

 # True positives
 for test in ('Able was I ere I saw Elba',
 'Madam Im Adam',
 'Step on no pets',
 'Top spot'):
 assert palindrome.is_palindrome(test)==True

 # True negatives
 for test in ('Top post','Wonderful fool','Wild Imagination'):
 assert palindrome.is_palindrome(test)==False

def test_with_punctuations():
 """ Testing palindrome strings with extra punctuations """

 # True positives
 for test in ('Able was I, ere I saw Elba',
 "Madam I'm Adam",
 'Step on no pets.',
 'Top spot!'):
 assert palindrome.is_palindrome(test)==True

 # True negatives
 for test in ('Top . post','Wonderful-fool','Wild Imagination!!'):
 assert palindrome.is_palindrome(test)==False

And here is the updated palindrome module that makes this test pass:

"""
Module palindrome - Returns whether an input string is palindrome or
not
"""

import re
from string import punctuation

def is_palindrome(in_string):
 """ Returns True whether in_string is palindrome, False otherwise
 """

 # Case insensitive
 in_string = in_string.lower()

Chapter 3

[129]

 # Purge spaces
 in_string = re.sub('\s+','', in_string)
 # Purge all punctuations
 in_string = re.sub('[' + re.escape(punctuation) + ']+', '',
 in_string)
 # Check if string is same as in reverse
 return in_string == in_string[-1::-1]

Let's inspect the final output of the test_palindrome module on the console:

Console output of test_palindrome.py version #3, with matching code updates

Summary
In this chapter, we revisited the definition of testability and its related architectural
quality aspects, such as complexity and determinism. We looked at the different
architectural aspects that are tested and got an understanding of the type of tests that
are usually performed by the software testing process.

We then discussed the various strategies for improving the testability of software,
and looked at techniques to reduce system complexity and improve predictability
and to control and manage external dependencies. Along the way, we learned the
different ways to virtualize and manage external dependencies, such as fakes, mocks
and stubs, by way of examples.

We then looked at unit testing and its various aspects mainly from the perspective of
the Python unittest module. We saw an example by using a datetime helper class,
and explained how to write effective unit tests—a simple example followed by an
interesting example of patching functions using the mock library of unittest.

Testability – Writing Testable Code

[130]

We then introduced, and learned quite a bit about, the two other well-known
testing frameworks in Python, namely, nose2 and py.test. Next, we discussed
the very important aspect of code coverage and saw examples of measuring code
coverage using the coverage.py package directly, and by using it via plugins of
nose2 and pytest.

In the next section, we sketched an example of a textsearch class for using
advanced mock objects, where we mocked its external dependency and wrote a unit
test case. We went on to discuss the Python doctest support of embedding tests in the
documentation of classes, modules, methods, and functions via the doctest module
while looking at examples.

The next topic was integration tests, where we discussed the different aspects and
advantages of integration tests, and looked at the three different ways in which
tests can be integrated in a software organization. Test automation via Selenium
was discussed next with an example of automating a couple of tests on the Python
language website using Selenium and py.test.

We ended this chapter with a quick overview of TDD, and discussed an example of
writing a program for detecting palindromes in Python using TDD principles, where
we developed the program using tests in a step-by-step fashion.

In the next chapter, we will look at one of the most critical quality attribute of
architecture when developing software—namely, performance.

[131]

Good Performance is
Rewarding!

Performance is one of the cornerstones of modern-day software applications. Every
day we interact with high-performing computing systems in many different ways, as
part of our work and our leisure.

When you book an airline ticket from one of the travel sites on the web, you are
interacting with a high-performance system that carries out hundreds of such
transactions at any given time. When you transfer money to someone or pay your
credit card bill online via an internet banking transaction, you are interacting with
a high performance and high throughput transactional system. Similarly, when you
play online games on your mobile phone and interact with other players, again there
is a network of servers built for high concurrency and low latency that is receiving
input from you and thousands of other players, performing computations at the
backend and sending data to you—all with reasonable and quiet efficiency.

Modern day web applications that serve millions of users concurrently became
possible with the advent of high-speed internet and huge drops in the price and
performance ratio of hardware. Performance is still a key quality attribute of modern
day software architecture and writing high-performing and scalable software still
continues to be something of a difficult art. You may write an application which
ticks all the boxes of functionality and other quality attributes, but if it fails its
performance tests, then it cannot be moved to production.

In this chapter and the next, we focus on two aspects of writing software with high
throughput—namely performance and scalability. In this chapter, the focus is on
performance, the various aspects of it, how to measure it, the performance of various
data structures, and when to choose what—with the focus on Python.

Good Performance is Rewarding!

[132]

The topics we will be discussing in this chapter roughly fall under the following
sections:

• Defining performance
• Software performance engineering
• Types of performance-testing tool
• Performance complexity and the Big O notation:

 ° Measuring performance
 ° Finding performance complexity using graphs
 ° Improving performance

• Profiling:
 ° Deterministic profiling
 ° cProfile and profile
 ° Third-party profilers

• Other tools:
 ° Objgraph
 ° Pympler

• Programming for performance—data structures:
 ° Lists
 ° Dictionaries
 ° Sets
 ° Tuples

• High performance containers—the collections module:
 ° deque

 ° defaultdict

 ° OrderedDict

 ° Counter

 ° ChainMap

 ° namedtuple

• Probabilistic data structures—bloom filters

Chapter 4

[133]

What is performance?
The performance of a software system can be broadly defined as:

The degree to which the system is able to meet its throughput and/or latency
requirements in terms of the number of transactions per second or time taken for a
single transaction.

We've already taken an overview of measuring performance in the introductory
chapter. Performance can be measured either in terms of response time/latency or in
terms of throughput. The former is the time it takes for the application to complete
a request/response loop on average. The latter is the rate at which the system
processes its input in terms of the number of requests or transactions successfully
completed per minute.

The performance of a system is a function of its software and of its hardware
capabilities. A badly written piece of software could still be made to perform better
by scaling the hardware—for example, the amount of RAM.

Similarly, a piece of software can be made to work better on existing hardware by
increasing its performance—for example, by rewriting routines or functions to be
more efficient in terms of time or memory, or by modifying the architecture.

However, the right type of performance engineering is the one where the software is
tuned for the hardware in an optimal fashion so that software scales linearly or better
with respect to the available hardware.

Software performance engineering
Software performance engineering includes all the activities of software engineering
and analysis applied during the Software Development Life Cycle (SDLC) and is
directed towards meeting performance requirements.

In conventional software engineering, performance testing and feedback are done
usually towards the end of the SDLC. This approach is purely measurement-based
and waits for the system to be developed before applying tests and diagnostics and
tuning the system based on the results.

Another more formal model named Software Performance Engineering (SPE), itself
develops performance models early in the SDLC and uses results from the models
to modify the software design and architecture to meet performance requirements in
multiple iterations.

Good Performance is Rewarding!

[134]

In this approach, both performance as a non-functional requirement and
software development meeting its functional requirement go hand in hand.
There is a specific Performance Engineering Life Cycle (PELC) that parallels the
steps in the SDLC. At every step, starting from the design and architecture all the
way to deployment, feedback between both the life cycles is used to iteratively
improve the software quality:

SPE—Performance Engineering Life Cycle mirroring Software Development Life Cycle

In both approaches, performance testing and diagnostics are important, followed
by tuning the design/architecture or the code based on the results obtained. Hence
performance testing and measurement tools play an important role in this step.

Chapter 4

[135]

Performance testing and measurement
tools
These tools fall under two broad categories—namely, the ones used for performance
testing and diagnostics, and the ones used for performance metrics gathering and
instrumentation.

Performance testing and diagnostic tools can be classified further as follows:

• Stress-testing tools: These tools are used to supply workload to the system
under test, simulating peak workloads in production. These tools can
be configured to send a continuous stream of input to the application to
simulate high stress or to periodically send a burst of very high traffic—much
exceeding even peak stress—to test the robustness of the system. These tools
are also called load generators. Examples of common stress testing tools used
for web application testing include httpperf, ApacheBench, LoadRunner,
Apache JMeter, and Locust. Another class of tools involves those that
actually record real user traffic and then replay it via the network to simulate
real user load. For example, the popular network packet capturing and
monitoring tool, Wireshark and its console cousin program, tcpdump, can be
used to do this. We won't be discussing these tools in this chapter as they are
general-purpose and examples of usage for them can be found in abundance
on the web.

• Monitoring tools: These tools work with the application code to generate
performance metrics such as the time and memory taken for functions to
execute, the number of function calls made per request-response loop, the
average and peak times spent on each function, and so on.

• Instrumentation tools: Instrumentation tools trace metrics, such as the
time and memory required for each computing step, and also track events,
such as exceptions in code, covering such details as the module/function/
line number where the exception occurred, the timestamp of the event, and
the environment of the application (environment variables, application
configuration parameters, user information, system information, and so on).
Often external instrumentation tools are used in modern web-application
programming systems to capture and analyze such data in detail.

• Code or application profiling tools: These tools generate statistics about
functions, their frequency of duration of calls, and the time spent on each
function call. This is a kind of dynamic program analysis. It allows the
programmer to find critical sections of code where the most time is spent,
allowing them to optimize those sections. Optimization without profiling
is not advised as the programmer may end up optimizing the wrong code,
thereby not surfacing the intended benefits up to the application.

Good Performance is Rewarding!

[136]

Most programming languages come with their own set of instrumentation and
profiling tools. In Python, a set of tools in the standard library (such as the profile
and cProfile modules) do this—this is supplemented by a rich ecosystem of third-
party tools. We will discuss these tools in the coming sections.

Performance complexity
It would be helpful to spend some time discussing what we mean by the
performance complexity of code before we jump into code examples in Python and
discuss tools to measure and optimize performance.

The performance complexity of a routine or function is defined in terms of how they
respond to changes in the input size typically in terms of the time spent in executing
the code.

This is usually represented by the so-called Big-O notation which belongs to a family
of notations called the Bachmann–Landau notation or asymptotic notation.

The letter O is used as the rate of growth of a function with respect to input
size—also called the order of the function.

Commonly used Big-O notations or function orders are shown in the following table
in order of increasing complexity:

Order Complexity Example
1 O(1) Constant Looking for a key in a constant lookup table such as

a HashMap or dictionary in Python
2 O(log (n)) Logarithmic Searching for an item in a sorted array with a binary

search. All operations on a heapq in Python
3 O(n) Linear Searching an item in an array (list in Python) by

traversing it
4 O(n*k) Linear Worst-case complexity of Radix sort
5 O(n * log (n)) n log-star n Worst-case complexity in a mergesort or heapsort

algorithm
6 O(n2) Quadratic Simple sorting algorithms such as bubblesort,

insertion sort, and selection sort. Worst-case
complexity on some sorting algorithms such as
quicksort, shellsort, and so on

Chapter 4

[137]

Order Complexity Example
7 O(2n) Exponential Trying to break a password of size n using brute

force, solving the travelling salesman problem using
dynamic programming

8 O(n!) Factorial Generating all partitions of a set

Table 1: Common Big-O notations for function orders with respect to input size "n"

When implementing a routine or algorithm accepting an input of a certain size n,
the programmer ideally should aim for implementing it in an order that falls in the
first five. Anything which is of the order of O(n) or O(n* log(n)) or lesser indicates
reasonable to good performance.

Algorithms with an order of O(n2) can usually be optimized to work at a lower order.
We will see some examples of this in the sections in the following diagram.

The following diagram shows how each of these orders grow with respect to n:

Graph of growth rate of each order of complexity (y axis) w.r.t input size (x axis)

Good Performance is Rewarding!

[138]

Measuring performance
Now that we've had an overview of what performance complexity is and also of
performance testing and measurement tools, let us take an actual look at the various
ways of measuring performance complexity with Python.

One of the simplest time measurements can be done by using the time command of
a POSIX/Linux system.

This is done by using the following command line:

$ time <command>

For example, here is a screenshot of the time it takes to fetch a very popular page
from the web:

Output of the time command on fetching a web page from the internet via wget

Chapter 4

[139]

See that it shows three classes of time output, namely real, user, and sys. It is
important to know the distinction between these three so let us look at them briefly:

• real: Real time is the actual wall-clock time that elapsed for the operation.
This is the time of the operation from start to finish. It will include any
time the process sleeps or spends blocked—such as time taken for I/O to
complete.

• User: User time is the amount of actual CPU time spent within the process in
user mode (outside the kernel). Any sleep time or time spent in waiting such
as I/O doesn't add to the user time.

• Sys: System time is the amount of CPU time spent on executing system calls
within the kernel for the program. This counts only those functions that
execute in kernel space such as privileged system calls. It doesn't count any
system calls that execute in user space (which is counted in User).

The total CPU time spent by a process is user + sys time. The real or wall-clock time
is the time mostly measured by simple time counters.

Measuring time using a context manager
In Python, it is not very difficult to write a simple function that serves as a context
manager for blocks of code whose execution time you want to measure.

But first we need a program whose performance we can measure.

Take a look at the following steps to learn how to use a context manager for
measuring time:

1. Let us write a program that calculates the common elements between two
sequences as a test program. Here is the code:
def common_items(seq1, seq2):
 """ Find common items between two sequences """

 common = []
 for item in seq1:
 if item in seq2:
 common.append(item)

 return common

Good Performance is Rewarding!

[140]

2. Let us write a simple context-manager timer to time this code. For timing we
will use perf_counter of the time module, which gives the time to the most
precise resolution for short durations:
from time import perf_counter as timer_func
from contextlib import contextmanager

@contextmanager
def timer():
 """ A simple timing function for routines """

 try:
 start = timer_func()
 yield
 except Exception as e:
 print(e)
 raise
 finally:
 end = timer_func()
 print ('Time spent=>',1000.0*(end – start),'ms.')

3. Let us time the function for some simple input data. For this a test function
is useful that generates random data, given an input size:
def test(n):
 """ Generate test data for numerical lists given input size
 """

 a1=random.sample(range(0, 2*n), n)
 a2=random.sample(range(0, 2*n), n)

 return a1, a2

Here is the output of the timer method on the test function on the Python
interactive interpreter:
>>> with timer() as t:
... common = common_items(*test(100))
... Time spent=> 2.0268699999999864 ms.

Chapter 4

[141]

4. In fact both test data generation and testing can be combined in the same
function to make it easy to test and generate data for a range of input sizes:
def test(n, func):
 """ Generate test data and perform test on a given function
 """

 a1=random.sample(range(0, 2*n), n)
 a2=random.sample(range(0, 2*n), n)

 with timer() as t:
 result = func(a1, a2)

5. Now let us measure the time taken for different ranges of input sizes in the
Python interactive console:
>>> test(100, common_items)
 Time spent=> 0.6799279999999963 ms.
>>> test(200, common_items)
 Time spent=> 2.7455590000000085 ms.
>>> test(400, common_items)
 Time spent=> 11.440810000000024 ms.
>>> test(500, common_items)
 Time spent=> 16.83928100000001 ms.
>>> test(800, common_items)
 Time spent=> 21.15130400000004 ms.
>>> test(1000, common_items)
 Time spent=> 13.200749999999983 ms.

Oops, the time spent for 1000 items is less than that for 800! How's that
possible? Let's try again:
>>> test(800, common_items)
 Time spent=> 8.328282999999992 ms.
>>> test(1000, common_items)
 Time spent=> 34.85899500000001 ms.

Now the time spent for 800 items seems to be lesser than that for 400 and
500. And time spent for 1000 items has increased to more than twice what it
was before.
The reason is that our input data is random, which means it will sometimes
have a lot of common items—which takes more time—and sometimes have
much fewer. Hence on subsequent calls the time taken can show a range of
values.

Good Performance is Rewarding!

[142]

In other words, our timing function is useful to get a rough picture, but not
very useful when it comes to getting the true statistical measure of time taken
for program execution, which is more important.

6. For this we need to run the timer many times and take an average.
This is somewhat similar to the amortized analysis of algorithms, which
takes into account both the lower end and upper end of the time taken for
executing algorithms and gives the programmer a realistic estimate
of the average time spent.

Python comes with such a module, which helps to perform such timing analysis,
in its standard library, namely the timeit module. Let us look at this module in
the next section.

Timing code using the timeit module
The timeit module in the Python standard library allows the programmer to
measure the time taken to execute small code snippets. The code snippets can be a
Python statement, an expression, or a function.

The simplest way to use the timeit module is to execute it as a module in the
Python command line.

For example, here is timing data for some simple Python inline code measuring the
performance of a list comprehension calculating squares of numbers in a range:

$ python3 -m timeit '[x*x for x in range(100)]'

100000 loops, best of 3: 5.5 usec per loop

$ python3 -m timeit '[x*x for x in range(1000)]'

10000 loops, best of 3: 56.5 usec per loop

$ python3 -m timeit '[x*x for x in range(10000)]'

1000 loops, best of 3: 623 usec per loop

The result shows the time taken for execution of the code snippet. When run on the
command line, the timeit module automatically determines the number of cycles to
run the code and also calculates the average time spent in a single execution.

Chapter 4

[143]

The results show that the statement we are executing is linear or
O(n) as a range of size 100 takes 5.5 usec and that of 1,000 takes
56.5 usec or about 10 times its time. A usec—or microsecond—is
1 millionth of a second or 1*10-6 seconds.

Here is how to use the timeit module on the Python interpreter in a similar manner:

>>> 1000000.0*timeit.timeit('[x*x for x in range(100)]',
number=100000)/100000.0
6.007622049946804

>>> 1000000.0*timeit.timeit('[x*x for x in range(1000)]',
number=10000)/10000.0
58.761584300373215

Observe that when used in this way, the programmer has to pass
the correct number of iterations as the number argument and, to
average, has to divide by the same number. The multiplication by
1000000 is to convert the time to microseconds (usec).

The timeit module uses a Timer class behind the scenes. The class can be made use
of directly as well as for finer control.

When using this class, timeit becomes a method of the instance of the class to which
the number of cycles is passed as an argument.

The Timer class constructor also accepts an optional setup argument, which sets
up the code for the Timer class. This can contain statements for importing the
module that contains the function, setting up globals, and so on. It accepts multiple
statements separated by semi-colons.

Measuring the performance of our code using timeit
Let us rewrite our test function to test the common items between two sequences.
Now that we are going to use the timeit module, we can remove the context
manager timer from the code. We will also hardcode the call to common_items
in the function.

Good Performance is Rewarding!

[144]

We also need to create the random input outside the test function
otherwise the time taken for it will add to the test function's time
and corrupt our results.
Hence we need to move the variables out as globals in the module
and write a setup function, which will generate the data for us as
a first step.

Our rewritten test function looks like this:

def test():
 """ Testing the common_items function """

 common = common_items(a1, a2)

The setup function with the global variables looks like this:

Global lists for storing test data
a1, a2 = [], []

def setup(n):
 """ Setup data for test function """

 global a1, a2
 a1=random.sample(range(0, 2*n), n)
 a2=random.sample(range(0, 2*n), n)

Let's assume the module containing both the test and common_items functions is
named common_items.py.

The timer test can now be run as follows:

>>> t=timeit.Timer('test()', 'from common_items import test,setup;
setup(100)')
>>> 1000000.0*t.timeit(number=10000)/10000
116.58759460115107

So the time taken for a range of 100 numbers is around 117 usec (0.12 microseconds)
on average.

Executing it now for a few other ranges of input sizes gives the following output:

>>> t=timeit.Timer('test()','from common_items import test,setup;
setup(200)')
>>> 1000000.0*t.timeit(number=10000)/10000

Chapter 4

[145]

482.8089299000567

>>> t=timeit.Timer('test()','from common_items import test,setup;
setup(400)')
>>> 1000000.0*t.timeit(number=10000)/10000
1919.577144399227

>>> t=timeit.Timer('test()','from common_items import test,setup;
setup(800)')
>>> 1000000.0*t.timeit(number=1000)/1000
7822.607815993251

>>> t=timeit.Timer('test()','from common_items import test,setup;
setup(1000)')
>>> 1000000.0*t.timeit(number=1000)/1000
12394.932234004957

So the maximum time taken for this test run is 12.4 microseconds for an input size of
1000 items.

Finding out time complexity – graphs
Is it possible to find out from these results what the time-performance complexity of
our function is? Let us try plotting it in a graph and see the results.

The matplotlib library is very useful in plotting graphs in Python for any type of
input data. We just need the following simple piece of code for this to work:

import matplotlib.pyplot as plt

def plot(xdata, ydata):
 """ Plot a range of ydata (on y-axis) against xdata (on x-axis)
 """

 plt.plot(xdata, ydata)
 plt.show()

The preceding code gives you the following output:

This is our x data.
>>> xdata = [100, 200, 400, 800, 1000]
This is the corresponding y data.
>>> ydata = [117,483,1920,7823,12395]
>>> plot(xdata, ydata)

Good Performance is Rewarding!

[146]

Take a look at the following graph:

Plot of the input range versus time taken for the common_items function

This is clearly not linear, yet of course not quadratic (in comparison with the figure
on Big-O notations). Let us try and plot a graph of O(n*log(n)) superimposed on the
current plot to see if there's a match.

Since we now need two series of ydata, we need another slightly modified function:

def plot_many(xdata, ydatas):
 """ Plot a sequence of ydatas (on y-axis) against xdata
 (on x-axis) """

 for ydata in ydatas:
 plt.plot(xdata, ydata)
 plt.show()

The preceding code gives you the following output:

>>> ydata2=map(lambda x: x*math.log(x, 2), input)

>>> plot_many(xdata, [ydata2, ydata])

Chapter 4

[147]

You get the following graph:

Plot of time complexity of common_items superimposed on the plot of y = x*log(x)

The superimposed plot shows that the function is a close match for the n*log(n)
order, if not exactly the same. So our current implementation's complexity seems to
be roughly O(n*log(n)).

Now that we've done the performance analysis, let us see if we can rewrite our
routine to perform better.

Here is the current code:

def common_items(seq1, seq2):
 """ Find common items between two sequences """

 common = []
 for item in seq1:
 if item in seq2:
 common.append(item)

 return common

Good Performance is Rewarding!

[148]

The routine first does a pass over an outer for loop (of size n) and does a check
in a sequence (also of size n) for the item. Now the second search is also of time
complexity n on average.

However, some items would be found immediately and some items would take
linear time (k) where 1<k<n. On average, the distribution would be somewhere
in between, which is why the code has an average complexity approximating
O(n*log(n)).

A quick analysis will tell you that the inner search can be avoided by converting the
outer sequence to a dictionary, setting values to 1. The inner search will be replaced
with a loop on the second sequence that increments values by 1.

In the end, all common items will have a value greater than 1 in the new dictionary.

The new code is as follows:

def common_items(seq1, seq2):
 """ Find common items between two sequences, version 2.0 """

 seq_dict1 = {item:1 for item in seq1}

 for item in seq2:
 try:
 seq_dict1[item] += 1
 except KeyError:
 pass

 # Common items will have value > 1
 return [item[0] for item in seq_dict1.items() if item[1]>1]

With this change, the timer gives the following updated results:

>>> t=timeit.Timer('test()','from common_items import test,setup;
setup(100)')
>>> 1000000.0*t.timeit(number=10000)/10000
35.777671200048644

>>> t=timeit.Timer('test()','from common_items import test,setup;
setup(200)')
>>> 1000000.0*t.timeit(number=10000)/10000
65.20369809877593

>>> t=timeit.Timer('test()','from common_items import test,setup;
setup(400)')
>>> 1000000.0*t.timeit(number=10000)/10000

Chapter 4

[149]

139.67061050061602

>>> t=timeit.Timer('test()','from common_items import test,setup;
setup(800)')
>>> 1000000.0*t.timeit(number=10000)/10000
287.0645995993982

>>> t=timeit.Timer('test()','from common_items import test,setup;
setup(1000)')
>>> 1000000.0*t.timeit(number=10000)/10000
357.764518300246

Let us plot this and superimpose it on an O(n) graph:

>>> input=[100,200,400,800,1000]
>>> ydata=[36,65,140,287,358]

Note that ydata2 is same as input as we are superimposing with y = x
graph
>>> ydata2=input
>>> plot.plot_many(xdata, [ydata, ydata2])

Let's take a look at the following graph:

Plot of time taken by common_items function (v2) against y = x graph

Good Performance is Rewarding!

[150]

The upper green line is the reference y = x graph and the lower blue line is the plot
of the time taken by our new function. It is pretty obvious that the time complexity is
now linear or O(n).

However, there seems to be a constant factor here as the slopes of the two lines are
different. From a quick calculation one can compute this factor as roughly 0.35.

After applying this change, you will get the following output:

>>> input=[100,200,400,800,1000]
>>> ydata=[36,65,140,287,358]

Adjust ydata2 with the constant factor
>>> ydata2=map(lambda x: 0.35*x, input)
>>> plot.plot_many(xdata, [ydata, ydata2])

The output can be seen in the following graph as follows:

Plot of time taken by common_items function (v2) against y = 0.35*x graph

You can see that the plots pretty much superimpose on each other. So our function is
now performing at O(c*n) where c ~= 0.35.

Chapter 4

[151]

Another implementation of the common_items function is to
convert both sequences to sets and return their intersection. It
would be an interesting exercise for the reader to make this change,
time it, and plot the graphs to determine the time complexity.

Measuring CPU time with timeit
The Timer module by default uses the perf_counter function of the time module as
the default timer function. As mentioned earlier, this function returns the wall-clock
time spent to the maximum precision for small time durations, hence it will include
any sleep time, time spent for I/O, and so on.

This can be made clear by adding a little sleep time to our test function as follows:

def test():
 """ Testing the common_items function using a given input size """

 sleep(0.01)
 common = common_items(a1, a2)

The preceding code will give you the following output:

>>> t=timeit.Timer('test()','from common_items import test,setup;
setup(100)')
>>> 1000000.0*t.timeit(number=100)/100
10545.260819926625

The time jumped by as much as 300 times since we are sleeping 0.01 seconds
(10 milliseconds) upon every invocation, so the actual time spent on the code
is now determined almost completely by the sleep time as the result shows
10545.260819926625 microseconds (or about 10 milliseconds).

Sometimes you may have such sleep times and other blocking or wait times but you
want to measure only the actual CPU time taken by the function. To use this, the
Timer object can be created using the process_time function of the time module as
the timer function.

This can be done by passing in a timer argument when you create the Timer object:

>>> from time import process_time
>>> t=timeit.Timer('test()','from common_items import
test,setup;setup(100)', timer=process_time)
>>> 1000000.0*t.timeit(number=100)/100
345.22438

Good Performance is Rewarding!

[152]

If you now increase the sleep time by a factor of, say, 10, the testing time increases by
that factor, but the return value of the timer remains the same.

For example, here is the result when sleeping for 1 second. The output comes after
about 100 seconds (since we are iterating 100 times), but notice that the return value
(time spent per invocation) doesn't change:

>>> t=timeit.Timer('test()','from common_items import
test,setup;setup(100)', timer=process_time)

>>> 1000000.0*t.timeit(number=100)/100

369.8039100000002

Let us move on to profiling next.

Profiling
In this section, we will discuss profilers and take a deep look at the modules in
the Python standard library, which provides support for deterministic profiling.
We will also look at third-party libraries that provide support for profiling
such as line_profiler and memory_profiler.

Deterministic profiling
Deterministic profiling means that all function calls, function returns, and exception
events are monitored, and precise timings are made for the intervals between these
events. Another type of profiling, namely statistical profiling, randomly samples the
instruction pointer and deduces where time is being spent—but this may not be very
accurate.

Python, being an interpreted language, already has a certain overhead in terms
of metadata kept by the interpreter. Most deterministic profiling tools make use
of this information and hence only add very little extra processing overhead for
most applications. Hence deterministic profiling in Python is not a very expensive
operation.

Profiling with cProfile and profile
The profile and cProfile modules provide support for deterministic profiling in
the Python standard library. The profile module is purely written in Python. The
cProfile module is a C extension that mimics the interface of the profile module
but adds lesser overhead to it when compared to profile.

Chapter 4

[153]

Both modules report statistics that are converted into reportable results using the
pstats module.

We will use the following code, which is a prime number iterator, in order to show
our examples using the profile modules:

class Prime(object):
 """ A prime number iterator for first 'n' primes """

 def __init__(self, n):
 self.n = n
 self.count = 0
 self.value = 0

 def __iter__(self):
 return self

 def __next__(self):
 """ Return next item in iterator """

 if self.count == self.n:
 raise StopIteration("end of iteration")
 return self.compute()

 def is_prime(self):
 """ Whether current value is prime ? """

 vroot = int(self.value ** 0.5) + 1
 for i in range(3, vroot):
 if self.value % i == 0:
 return False
 return True

 def compute(self):
 """ Compute next prime """

 # Second time, reset value
 if self.count == 1:
 self.value = 1

 while True:
 self.value += 2

 if self.is_prime():

Good Performance is Rewarding!

[154]

 self.count += 1
 break

 return self.value

The prime number iterator generates the first n prime numbers given the value of n:

>>> for p in Prime(5):
... print(p)
...
2
3
5
7
11

To profile this code, we just need to pass the code to be executed as a string to the
run method of profile or cProfile module. In the following examples, we will be
using the cProfile module:

Profiling output of the prime iterator function for the first 100 primes

Chapter 4

[155]

See how the profiler reports its output. The output is ordered into six columns as
follows:

• ncalls: The number of calls per function
• tottime: The total time spent in the call
• percall: The percall time (quotient of tottime/ncalls)
• cumtime: The cumulative time in this function plus any child function
• percall: Another percall column (the quotient of cumtime/number of

primitive calls)
• filename: lineno(function): The filename and line number of the

function call

In this case, our function took 4 microseconds to complete with most of that time (3
microseconds) being spent inside the is_prime method, which also dominates the
number of calls at 271.

Here are the outputs of the profiler at n = 1000 and 10000 respectively:

Profiling output of the prime iterator function for the first 1,000 primes

Good Performance is Rewarding!

[156]

Take a look at the following additional output:

Profiling output of the Prime iterator function for the first 10,000 primes

As you can see, at n=1000 it took about 0.043 seconds (43 microseconds) and at
n=10000 it took 0.458 seconds (458 microseconds). Our Prime iterator seems to be
performing at an order close to O(n).

As usual, most of that time is spent in is_primes. Is there a way to reduce that time?

At this point, let us analyze the code.

Prime number iterator class – performance tweaks
A quick analysis of the code tells us that inside is_prime we are dividing the value
by every number in the range from 3 to the successor of the square root of the value.

This contains many even numbers as well—we are doing unnecessary computation,
which we can avoid by dividing only by the odd numbers.

The modified is_prime method is as follows:

 def is_prime(self):
 """ Whether current value is prime ? """

 vroot = int(self.value ** 0.5) + 1
 for i in range(3, vroot, 2):
 if self.value % i == 0:
 return False
 return True

Chapter 4

[157]

With this, the profile for n=1000 and n=10000 looks as follows.

The following is the output of the profiler for n = 1000:

Profiling output of the Prime iterator function for the first 1,000 primes with tweaked code

The following is the output of the profiler for n = 10000:

Profiling output of the Prime iterator function for the first 10,000 primes with tweaked code

You can see that, at 1000, the time has dropped a bit (43 microseconds to
38 microseconds) but at 10000, there is nearly a 50% drop from 458 microseconds
to 232 microseconds. At this point, the function is performing better than O(n).

Good Performance is Rewarding!

[158]

Profiling – collecting and reporting statistics
The way we used cProfile in the example earlier, it ran and reported the statistics
directly. Another way to use the module is to pass a filename argument to which
it writes the statistics, which can later be loaded and interpreted by the pstats
module.

We modify the code as follows:

>>> cProfile.run("list(primes.Prime(100))", filename='prime.stats')

By doing this, the stats, instead of getting printed out, are saved to the file named
prime.stats.

Here is how to parse the statistics using the pstats module and print the results
ordered by the number of calls:

Parsing and printing saved profile results using the pstats module

The pstats module allows sorting the profile results by a number of headers such as
total time (tottime), number of primitive calls (pcalls), cumulative time (cumtime),
and so on. You can see from the output of pstats again that most of the processing
in terms of number of calls are being spent in the is_prime method, as we are
sorting the output by 'ncalls' or the number of function calls.

The Stats class of the pstats module returns a reference to itself after every
operation. This is a very useful aspect of some Python classes and allows us to write
compact one-line code by chaining method calls.

Chapter 4

[159]

Another useful method of the Stats object is to find out the callee/caller
relationship. This can be done by using the print_callers method instead of
print_stats. Here is the output from our current statistics:

Printing callee/caller relationships ordered by primitive calls using the pstats module

Third-party profilers
The Python ecosystem comes with a plethora of third-party modules for solving
most problems. This is true in the case of profilers as well. In this section, we will
take a quick look at a few popular third-party profiler applications contributed by
developers in the Python community.

Line profiler
Line profiler is a profiler application developed by Robert Kern for performing
line-by-line profiling of Python applications. It is written in Cython, an optimizing
static compiler for Python that reduces the overhead of profiling.

Line profiler can be installed via pip as follows:

$ pip3 install line_profiler

Good Performance is Rewarding!

[160]

As opposed to the profiling modules in Python, which profile functions, line profiler
is able to profile code line by line, thus providing more granular statistics.

Line profiler comes with a script called kernprof.py that makes it easy to profile
code using line profiler. One needs only to decorate the functions that need to be
profiled with the @profile decorator when using kernprof.

For example, we realized that most of the time in our prime number iterator was
being spent in the is_prime method. However, line profiler allows us to go into
more detail and find which lines of those functions take the most time.

To do this, just decorate the method with the @profile decorator:

 @profile
 def is_prime(self):
 """ Whether current value is prime ? """

 vroot = int(self.value ** 0.5) + 1
 for i in range(3, vroot, 2):
 if self.value % i == 0:
 return False
 return True

Since kernprof accepts a script as an argument, we need to add some code to invoke
the prime number iterator. To do that, we can append the following at the end of the
primes.py module:

Invoke the code.
if __name__ == "__main__":
 l=list(Prime(1000))

Now, run it with line profiler as follows:

$ kernprof -l -v primes.py

By passing -v to the kernprof script, we tell it to display the profile results in
addition to saving them.

Chapter 4

[161]

Here is the output:

Line profiler results from profiling the is_prime method using n = 1000

Line profiler tells us that the majority of the time—close to 90% of the total time
spent in the method—is spent in the first two lines: the for loop and the reminder
check.

This tells us that, if ever we want to optimize this method, we need to concentrate on
these two aspects.

Memory profiler
Memory profiler is a profiler similar to line profiler in that it profiles Python code
line by line. However, instead of profiling the time taken in each line of code, it
profiles lines by memory consumption.

Memory profiler can be installed the same way as line profiler:

$ pip3 install memory_profiler

Once installed, memory for lines can be printed by decorating the function with the
@profile decorator in a similar way to line profiler.

Good Performance is Rewarding!

[162]

Here is a simple example:

mem_profile_example.py
@profile
def squares(n):
 return [x*x for x in range(1, n+1)]

squares(1000)

Here's how to run this:

Memory profiler profiling a list comprehension of squares of the first 1,000 numbers

Memory profiler shows memory increments line by line. In this case, there is almost
no increment for the line containing the number of squares (the list comprehension)
as the numbers are rather small. The total memory usage remains what it was at the
beginning: about 32 MB.

What happens if we change the value of n to 1,000,000? This can be done by
rewriting the last line of the code as follows:

squares(100000)

Memory profiler profiling a list comprehension of squares of the first 1,000,000 numbers

Chapter 4

[163]

Now you can see that there is a clear memory increment of about 39 MB for the list
comprehension calculating the squares, with a total final memory usage of about
70 MB.

To demonstrate the real usefulness of memory profiler, let us look at another example.

This involves finding the strings from a sequence that are subsequences of any of the
strings present in another sequence, generally containing larger strings.

Substring (subsequence) problem
Let us say you have a sequence containing the following strings:

>>> seq1 = ["capital","wisdom","material","category","wonder"]

And say there is another sequence as follows:

>>> seq2 = ["cap","mat","go","won","to","man"]

The problem is to find the strings in seq2 that are substrings—as is found anywhere
contiguously in any of the strings in seq1:

In this case, the answer is as follows:

>>> sub=["cap","mat","go","won"]

This can be solved using a brute-force search—checking for each string one by one in
each of the parent strings as follows:

def sub_string_brute(seq1, seq2):
 """ Sub-string by brute force """

 subs = []
 for item in seq2:
 for parent in seq1:
 if item in parent:
 subs.append(item)

 return subs

However, a quick analysis will tell you that the time complexity of this function
scales rather badly as the size of the sequences increase. Since every step needs
iteration through two sequences and then a search in each string in the first
sequence, the average performance would be O(n1*n2), where n1, n2 are the sizes of
the sequences respectively.

Good Performance is Rewarding!

[164]

Here are the results of some tests of this function with input sizes (both sequences of
the same size) of random strings varying from length 2 to 10:

Input size Time taken
100 450 usec
1000 52 microseconds
10000 5.4 seconds

Table 2: Input size versus time taken for subsequence solution via brute force

The results indicate the performance is almost exactly O(n2).

Is there a way to rewrite the function to be more performance-efficient? This
approach is captured in the following sub_string function:

def slices(s, n):
 return map(''.join, zip(*(s[i:] for i in range(n))))

def sub_string(seq1, seq2):
 """ Return sub-strings from seq2 which are part of strings in seq1
 """

 # Create all slices of lengths in a given range
 min_l, max_l = min(map(len, seq2)), max(map(len, seq2))
 sequences = {}

 for i in range(min_l, max_l+1):
 for string in seq1:
 # Create all sub sequences of given length i
 sequences.update({}.fromkeys(slices(string, i)))

 subs = []
 for item in seq2:
 if item in sequences:
 subs.append(item)

 return subs

In this approach, we pre-compute all the substrings of a size range from the strings
in seq1 and store it in a dictionary. Then it is a matter of going through the strings in
seq2 and checking if they are in this dictionary and if so adding them to a list.

To optimize the calculation, we only compute strings whose size is in the range of
the minimum and maximum length of the strings in seq2.

Chapter 4

[165]

As with almost all solutions to performance issues, this one trades space for time. By
pre-computing all the substrings, we are expending more space in memory but this
eases the computation time.

The test code looks like this:

import random
import string

seq1, seq2 = [], []

def random_strings(n, N):
 """ Create N random strings in range of 4..n and append
 to global sequences seq1, seq2 """

 global seq1, seq2
 for i in range(N):
 seq1.append(''.join(random.sample(string.ascii_lowercase,
 random.randrange(4, n))))

 for i in range(N):
 seq2.append(''.join(random.sample(string.ascii_lowercase,
 random.randrange(2, n/2))))

def test(N):
 random_strings(10, N)
 subs=sub_string(seq1, seq2)

def test2():
 # random_strings has to be called before this
 subs=sub_string(seq1, seq2)

Here are the timing results of this function using the timeit module:

>>> t=timeit.Timer('test2()',setup='from sub_string import test2,
random_
strings;random_strings(10, 100)')
>>> 1000000*t.timeit(number=10000)/10000.0
1081.6103347984608
>>> t=timeit.Timer('test2()',setup='from sub_string import test2,
random_
strings;random_strings(10, 1000)')
>>> 1000000*t.timeit(number=1000)/1000.0
11974.320339999394

Good Performance is Rewarding!

[166]

>>> t=timeit.Timer('test2()',setup='from sub_string import test2,
random_
strings;random_strings(10, 10000)')
>>> 1000000*t.timeit(number=100)/100.0124718.30968977883
124718.30968977883
>>> t=timeit.Timer('test2()',setup='from sub_string import test2,
random_
strings;random_strings(10, 100000)')
>>> 1000000*t.timeit(number=100)/100.0
1261111.164370086

Here are the summarized results for this test:

Input size Time taken
100 1.08 microseconds
1000 11.97 microseconds
10000 0.12 microseconds
100000 1.26 seconds

Table 3: Input size versus time taken for optimized sub-sequence solution using pre-computed strings

A quick calculation tells us that the algorithm is now performing at O(n). Pretty good!

But this is at the expense of memory in terms of the pre-computed strings. We can
get an estimate of this by invoking memory profiler.

Here is the decorated function for doing this:

@profile
def sub_string(seq1, seq2):
 """ Return sub-strings from seq2 which are part of strings in seq1
 """

 # Create all slices of lengths in a given range
 min_l, max_l = min(map(len, seq2)), max(map(len, seq2))
 sequences = {}

 for i in range(min_l, max_l+1):
 for string in seq1:
 sequences.update({}.fromkeys(slices(string, i)))

 subs = []
 for item in seq2:
 if item in sequences:
 subs.append(item)

Chapter 4

[167]

The test function would now be as follows:

def test(N):
 random_strings(10, N)
 subs = sub_string(seq1, seq2)

Let's test this for the sequence of sizes 1,000 and 10,000 respectively.

Here is the result for an input size of 1,000:

Memory profiler results for testing sub-strings of sequences of size 1,000

Good Performance is Rewarding!

[168]

And here is the result for an input size of 10,000:

Memory profiler results for testing sub-strings of sequences of size 10,000

For the sequence of size of 1,000, the memory usage increased by a paltry 1.4 MB.
For the sequence of size 10,000 it increased by 6.2 MB. Clearly, these are not very
significant numbers.

So the test with memory profiler makes it clear that our algorithm, while being
efficient on time performance, is also memory-efficient.

Other tools
In this section, we will discuss a few more tools that will aid the programmer in
debugging memory leaks and also enable them to visualize their objects and their
relations.

objgraph
objgraph (object graph) is a Python object visualization tool that makes use of the
graphviz package to draw object reference graphs.

Chapter 4

[169]

It is not a profiling or instrumentation tool but can be used along with such tools to
visualize object trees and references in complex programs while hunting for elusive
memory leaks. It allows you to find out references to objects to figure out what
references are keeping an object alive.

As with almost everything in the Python world, it is installable via pip:

$ pip3 install objgraph

However objgraph is really useful only if it can generate graphs. Hence we need to
install the graphviz package and the xdot tool.

In a Debian/Ubuntu system, you will install this as follows:

$ sudo apt install graphviz xdot -y

Let's look at a simple example of using objgraph to find out hidden references:

import objgraph

class MyRefClass(object):
 pass

ref=MyRefClass()
class C(object):pass

c_objects=[]
for i in range(100):
 c=C()
 c.ref=ref
 c_objects.append(c)

import pdb; pdb.set_trace()

We have a class named MyRefClass with a single instances ref that is referred to by
100 instances of the class C created in a for loop. These are references that may cause
memory leaks. Let us see how objgraph allows us to identify them.

When this piece of code is executed, it stops at the debugger (pdb):

$ python3 objgraph_example.py

--Return--

[0] > /home/user/programs/chap4/objgraph_example.py(15)<module>()->None

-> import pdb; pdb.set_trace()

Good Performance is Rewarding!

[170]

(Pdb++) objgraph.show_backrefs(ref, max_depth=2, too_many=2,
filename='refs.png')

Graph written to /tmp/objgraph-xxhaqwxl.dot (6 nodes)

Image generated as refs.png

The left side of the image has been cropped to show only
the relevant part.

Next is the diagram generated by objgraph:

objgraph back references visualization for the object ref

The red box in the preceding diagram says 99 more references, which means that
it is showing one instance of class C and informing us there are 99 more like it—
totaling to 100 instances of C, that refer to the single object ref.

In a complex program where we are unable to track object references that cause
memory leaks, such reference graphs can be put to good use by the programmer.

Pympler
Pympler is a tool that can be used to monitor and measure the memory usage
of objects in a Python application. It works on both Python 2.x and 3.x. It can be
installed using pip as follows:

$ pip3 install pympler

Chapter 4

[171]

The documentation of pympler is rather lacking. However, it's well-known use is to
track objects and print their actual memory usage via its asizeof module.

The following is our sub_string function modified to print the memory usage of the
sequences dictionary (where it stores all the generated substrings):

from pympler import asizeof

def sub_string(seq1, seq2):
 """ Return sub-strings from seq2 which are part of strings in seq1
 """

 # Create all slices of lengths in a given range
 min_l, max_l = min(map(len, seq2)), max(map(len, seq2))
 sequences = {}

 for i in range(min_l, max_l+1):
 for string in seq1:
 sequences.update({}.fromkeys(slices(string, i)))

 subs = []
 for item in seq2:
 if item in sequences:
 subs.append(item)
 print('Memory usage',asizeof.asized(sequences).format())

 return subs

When running this for a sequence size of 10,000:

$ python3 sub_string.py

Memory usage {'awg': None, 'qlbo': None, 'gvap': No....te':

 None, 'luwr':

 None, 'ipat': None}

size=5874384

flat=3145824

The memory size of 5870408 bytes (or around 5.6 MB) is in line with what memory
profiler reported (around 6 MB)

Pympler also comes with a package called muppy which allows us to keep track of all
objects in a program. This can be summarized with the summary package to print out
the summary of memory usage of all objects (classified according to their types) in an
application.

Good Performance is Rewarding!

[172]

Here is a report of our sub_string module run with n =10,000. To do this, the
execution part has to be modified as follows:

if __name__ == "__main__":
 from pympler import summary
 from pympler import muppy
 test(10000)
 all_objects = muppy.get_objects()
 sum1 = summary.summarize(all_objects)
 summary.print_(sum1)

The following shows the output that pympler summarizes at the end of the program:

Summary of memory usage classified by object type by pympler

Programming for performance – data
structures
We've looked at the definition of performance, measuring performance complexity,
and the different tools for measuring program performance. We've also gained
insights by profiling code for statistics, memory usage, and so on.

We also saw a couple of examples of program optimization to improve the time
performance of the code.

In this section, we will take a look at common Python data structures and discuss
what their best and worst performance scenarios are and also discuss some situations
of where they are an ideal fit and where they may not be the best choice.

Chapter 4

[173]

Mutable containers – lists, dictionaries, and
sets
Lists, dictionaries, and sets are the most popular and useful mutable containers
in Python.

Lists are appropriate for object access via a known index. Dictionaries provide a
near-constant time lookup for objects with known keys. Sets are useful to keep
groups of items while dropping duplicates and finding their difference, intersection,
union, and so on in near-linear time.

Let us look at each of these in turn.

Lists
Lists provide a near constant time O(1) order for the following operations:

• get(index) via the [] operator
• The append(item) via the .append method

However, lists perform badly (O(n)) in the following cases:

• Seeking an item via the in operator
• Inserting at an index via the .insert method

A list is ideal in the following cases:

• If you need a mutable store to keep different types or classes of items
(heterogeneous).

• If your search of objects involves getting the item by a known index.
• If you don't have a lot of lookups via searching the list (item in list).
• If any of your elements are non-hashable. Dictionaries and sets require their

entries to be hashable. So in this case, you almost default to using a list.

If you have a huge list—of, say, more than 100,000 items—and you keep finding
that you search it for elements via the in operator, you should replace it with a
dictionary.

Similarly, if you find that you keep inserting to a list instead of appending
to it most of the time, you can think of replacing the list with deque from
the collections module.

Good Performance is Rewarding!

[174]

Dictionaries
Dictionaries provide a constant time order for:

• Setting an item via a key
• Getting an item via a key
• Deleting an item via a key

However, dictionaries take slightly more memory than lists for the same data. A
dictionary is useful in the following situations:

• You don't care about the insertion order of the elements
• You don't have duplicate elements in terms of keys

A dictionary is also ideal where you load a lot of data uniquely indexed by keys from
a source (database or disk) in the beginning of the application and need quick access
to them—in other words, a lot of random reads as against fewer writes or updates.

Sets
The usage scenario of sets lies somewhere between lists and dictionaries. Sets are in
implementation closer to dictionaries in Python—since they are unordered, don't
support duplicate elements, and provide near O(1) time access to items via keys.
They are kind of similar to lists in that they support the pop operation (even if they
don't allow index access!).

Sets are usually used in Python as intermediate data structures for processing other
containers—for operations such as dropping duplicates, finding common items
across two containers, and so on.

Since the order of set operations is exactly the same as that of a dictionary, you can
use them for most cases where a dictionary needs to be used, except that no value is
associated to the key.

Examples include:

• Keeping heterogeneous, unordered data from another collection while
dropping duplicates

• Processing intermediate data in an application for a specific purpose—such
as finding common elements, combining unique elements across multiple
containers, dropping duplicates, and so on

Chapter 4

[175]

Immutable containers – tuples
Tuples are an immutable version of lists in Python. Since they are unchangeable after
creation, they don't support any of the methods of list modification such as insert,
append, and so on.

Tuples have the same time complexity as when using the index and search (via item
in tuple) as lists. However, they take much less memory overhead when compared
to lists; the interpreter optimizes them more as they are immutable.

Hence tuples can be used whenever there are use cases for reading, returning, or
creating a container of data that is not going to be changed but requires iteration.
Some examples are as follows:

• Row-wise data loaded from a data store that is going to have read-only
access. For example, results from a DB query, processed rows from reading a
CSV file, and so on.

• A constant set of values that needs iteration over and over again. For
example, a list of configuration parameters loaded from a configuration file.

• When returning more than one value from a function. In this case, unless one
explicitly returns a list, Python always returns a tuple by default.

• When a mutable container needs to be a dictionary key. For example, when a
list or set needs to be associated to a value as a dictionary key, the quick way
is to convert it to a tuple.

High performance containers – the collections
module
The collection module supplies high performance alternatives to the built-in default
container types in Python, namely list, set, dict, and tuple.

We will briefly look at the following container types in the collections module:

• deque: An alternative to a list container supporting fast insertions and pops
at either ends

• defaultdict: A sub-class of dict that provides factory functions for types to
provide missing values

• OrderedDict: A sub-class of dict that remembers the order of insertion
of keys

• Counter: A dict sub-class for keeping count and statistics of hashable types

Good Performance is Rewarding!

[176]

• ChainMap: A class with a dictionary-like interface for keeping track of
multiple mappings

• namedtuple: A type for creating tuple-like classes with named fields

deque
A deque or double ended queue is like a list but supports nearly constant (O(1)) time
appends and pops from either side as opposed to a list, which has an O(n) cost for
pops and inserts at the left.

Deques also support operations such as rotation for moving k elements from back to
front and reverse with an average performance of O(k). This is often slightly faster
than the similar operation in lists, which involves slicing and appending:

def rotate_seq1(seq1, n):
 """ Rotate a list left by n """
 # E.g: rotate([1,2,3,4,5], 2) => [4,5,1,2,3]

 k = len(seq1) - n
 return seq1[k:] + seq1[:k]

def rotate_seq2(seq1, n):
 """ Rotate a list left by n using deque """

 d = deque(seq1)
 d.rotate(n)
 return d

By a simple timeit measurement, you should find that deques have a slight
performance edge over lists (about 10-15%), in the above example.

defaultdict
Default dicts are dict sub-classes that use type factories to provide default values to
dictionary keys.

A common problem one encounters in Python when looping over a list of items and
trying to increment a dictionary count is that there may not be any existing entry for
the item.

Chapter 4

[177]

For example, if one is trying to count the number of occurrences of a word in a piece
of text:

counts = {}
for word in text.split():
 word = word.lower().strip()
 try:
 counts[word] += 1
 except KeyError:
 counts[word] = 1

We are forced to write code like the preceding or a variation of it.

Another example is when grouping objects according to a key using a specific
condition, for example, trying to group all strings with the same length to a
dictionary:

cities = ['Jakarta','Delhi','Newyork','Bonn','Kolkata','Bangalore','S
eoul']
cities_len = {}
for city in cities:
 clen = len(city)
 # First create entry
 if clen not in cities_len:
 cities_len[clen] = []
 cities_len[clen].append(city)

A defaultdict container solves these problems elegantly by defining a type factory
to supply the default argument for any key that is not yet present in the dictionary.
The default factory type supports any of the default types and defaults to None.

For each type, its empty value is the default value. This means:

0 → default value for integers
[] → default value for lists
'' → default value for strings
{} → default value for dictionaries

The word-count code can then be rewritten as follows:

counts = defautldict(int)
for word in text.split():
 word = word.lower().strip()
 # Value is set to 0 and incremented by 1 in one go
 counts[word] += 1

Good Performance is Rewarding!

[178]

Similarly, for the code which groups strings by their length we can write this:

cities = ['Jakarta','Delhi','Newyork','Bonn','Kolkata','Bangalore','S
eoul']
cities_len = defaultdict(list)
for city in cities:
 # Empty list is created as value and appended to in one go
 cities_len[len(city)].append(city)

OrderedDict
OrderedDict is a sub-class of dict that remembers the order of the insertion of
entries. It kind of behaves as a dictionary and list hybrid. It behaves like a mapping
type but also has list-like behavior in remembering the insertion order plus
supporting methods such as popitem to remove the last or first entry.

Here is an example:

>>> cities = ['Jakarta','Delhi','Newyork','Bonn','Kolkata',
'Bangalore','Seoul']
>>> cities_dict = dict.fromkeys(cities)
>>> cities_dict
{'Kolkata': None, 'Newyork': None, 'Seoul': None, 'Jakarta': None,
'Delhi': None, 'Bonn': None, 'Bangalore': None}

Ordered dictionary
>>> cities_odict = OrderedDict.fromkeys(cities)
>>> cities_odict
OrderedDict([('Jakarta', None), ('Delhi', None), ('Newyork', None),
('Bonn', None), ('Kolkata', None), ('Bangalore', None), ('Seoul',
None)])
>>> cities_odict.popitem()
('Seoul', None)
>>> cities_odict.popitem(last=False)
('Jakarta', None)

You can compare and contrast how the dictionary changes the order around and
how the OrderedDict container keeps the original order.

This allows for a few recipes using the OrderedDict container.

Chapter 4

[179]

Dropping duplicates from a container without losing the
order
Let us modify the cities list to include duplicates:

>>> cities = ['Jakarta','Delhi','Newyork','Bonn','Kolkata',
 'Bangalore','Bonn','Seoul','Delhi','Jakarta','Mumbai']
>>> cities_odict = OrderedDict.fromkeys(cities)
>>> print(cities_odict.keys())
odict_keys(['Jakarta', 'Delhi', 'Newyork', 'Bonn', 'Kolkata',
 'Bangalore', 'Seoul', 'Mumbai'])

See how the duplicates are dropped but the order is preserved.

Implementing a Least Recently Used (LRU) cache
dictionary
An LRU cache gives preference to entries that are recently used (accessed) and drops
those entries that are least used. This is a common caching algorithm used in HTTP
caching servers such as Squid and in places where one needs to keep a limited size
container that keeps recently accessed items preferentially over others.

Here we make use of the behavior of OrderedDict: when an existing key is removed
and re-added, it is added at the end (the right side):

class LRU(OrderedDict):
 """ Least recently used cache dictionary """

 def __init__(self, size=10):
 self.size = size

 def set(self, key):
 # If key is there delete and reinsert so
 # it moves to end.
 if key in self:
 del self[key]

 self[key] = 1
 if len(self)>self.size:
 # Pop from left
 self.popitem(last=False)

Good Performance is Rewarding!

[180]

Here is a demonstration:

>>> d=LRU(size=5)
>>> d.set('bangalore')
>>> d.set('chennai')
>>> d.set('mumbai')
>>> d.set('bangalore')
>>> d.set('kolkata')
>>> d.set('delhi')
>>> d.set('chennai')

>>> len(d)
5
>>> d.set('kochi')
>>> d
LRU([('bangalore', 1), ('chennai', 1), ('kolkata', 1), ('delhi', 1),
('kochi', 1)])

Since a key mumbai was set first and never set again, it became the leftmost one and
got dropped off.

Notice how the next candidate to drop off is bangalore,
followed by chennai. This is because chennai was set
once more after bangalore was set.

Counter
A counter is a subclass of a dictionary to keep a count of hashable objects. Elements
are stored as dictionary keys and their counts get stored as the values. The Counter
class is a parallel for multisets in languages such as C++ or Bag in languages such as
Smalltalk.

A counter is a natural choice for keeping the frequency of items encountered when
processing any container. For example, a counter can be used to keep the frequency
of words when parsing text or the frequency of characters when parsing words.

For example, both of the following code snippets perform the same operation but the
counter one is less verbose and compact.

Chapter 4

[181]

They both return the most common 10 words from the text of the famous Sherlock
Holmes Novel, The Hound of Baskervilles from its Gutenberg version online:

• Using the defaultdict container in the following code:
import requests, operator
 text=requests.get('https://www.gutenberg.org/
files/2852/2852-0.txt').text
 freq=defaultdict(int)
 for word in text.split():
 if len(word.strip())==0: continue
 freq[word.lower()] += 1
 print(sorted(freq.items(), key=operator.itemgetter(1),
reverse=True) [:10])

• Using the Counter class in the following code:
import requests
text = requests.get('https://www.gutenberg.org/files/2852/2852-0.
txt').text
freq = Counter(filter(None, map(lambda x:x.lower().strip(), text.
split())))
print(freq.most_common(10))

ChainMap
A ChainMap is a dictionary-like class that groups multiple dictionaries or similar
mapping data structures together to create a single view that is updateable.

All of the usual dictionary methods are supported. Lookups search successive maps
until a key is found.

The ChainMap class is a more recent addition to Python, having been added in
Python 3.3.

When you have a scenario where you keep updating keys from a source dictionary
to a target dictionary over and over again, a ChainMap class can work in your favor
in terms of performance, especially if the number of updates is large.

Good Performance is Rewarding!

[182]

Here are some practical uses of a ChainMap:

• A programmer can keep the GET and POST arguments of a web framework
in separate dictionaries and keep the configuration updated via a single
ChainMap.

• Keeping multilayered configuration overrides in applications.
• Iterating over multiple dictionaries as a view when there are no overlapping

keys.
• A ChainMap class keeps the previous mappings in its maps attribute.

However, when you update a dictionary with mappings from another
dictionary, the original dictionary state is lost. Here is a simple
demonstration:
>>> d1={i:i for i in range(100)}
>>> d2={i:i*i for i in range(100) if i%2}
>>> c=ChainMap(d1,d2)
Older value accessible via chainmap
>>> c[5]
5
>>> c.maps[0][5]
5
Update d1
>>> d1.update(d2)
Older values also got updated
>>> c[5]
25
>>> c.maps[0][5]
25

namedtuple
A namedtuple is like a class with fixed fields. Fields are accessible via attribute
lookups like a normal class but are also indexable. The entire namedtuple is also
iterable like a container. In other words, a namedtuple behaves like a class and a
tuple combined in one:

>>> Employee = namedtuple('Employee', 'name, age, gender, title,
department')
>>> Employee
<class '__main__.Employee'>

Chapter 4

[183]

Let's create an instance of Employee:

>>> jack = Employee('Jack',25,'M','Programmer','Engineering')
>>> print(jack)
Employee(name='Jack', age=25, gender='M', title='Programmer',
department='Engineering')

We can iterate over the fields of the instance, as if it is an iterator:

>>> for field in jack:
... print(field)
...
Jack
25
M
Programmer
Engineering

Once created, the namedtuple instance, like a tuple, is read-only:

>>> jack.age=32
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

To update values, the _replace method can be used. It returns a new instance with
the specified keyword arguments replaced with new values:

>>> jack._replace(age=32)
Employee(name='Jack', age=32, gender='M', title='Programmer',
department='Engineering')

A namedtuple is much more memory-efficient when compared to a class which has
the same fields. Hence a namedtuple is very useful in the following scenarios:

• A large amount of data needs to be loaded as read-only with keys and values
from a store. Examples are loading columns and values via a DB query or
loading data from a large CSV file.

• When a lot of instances of a class need to be created but not many write or
set operations need to be done on the attributes. Instead of creating class
instances, namedtuple instances can be created to save on memory.

Good Performance is Rewarding!

[184]

• The _make method can be used to load an existing iterable that supplies
fields in the same order to return a namedtuple instance. For example, if
there is an employees.csv file with the columns name, age, gender, title,
and department in that order, we can load them all into a container of
namedtuples using the following command line:
employees = map(Employee._make, csv.reader(open('employees.csv'))

Probabilistic data structures – bloom filters
Before we conclude our discussion on the container data types in Python, let us
take a look at an important probabilistic data structure named Bloom Filter. Bloom
filter implementations in Python behave like containers, but they are probabilistic
in nature.

A bloom filter is a sparse data structure that allows us to test for the presence of
an element in the set. However, we can only positively be sure of whether an element
is not there in the set—that is, we can assert only for true negatives. When a bloom
filter tells us an element is there in the set, it might be there—in other words, there is
a non-zero probability that the element may actually be missing.

Bloom filters are usually implemented as bit vectors. They work in a similar way to
a Python dictionary in that they use hash functions. However, unlike dictionaries,
bloom filters don't store the actual elements themselves. Also elements, once added,
cannot be removed from a bloom filter.

Bloom filters are used when the amount of source data implies an unconventionally
large amount of memory if we store all of it without hash collisions.

In Python, the pybloom package provides a simple bloom filter implementation
(however, at the time of writing, it doesn't support Python 3.x, so the examples here
are shown in Python 2.7.x):

$ pip install pybloom

Let us write a program to read and index words from the text of The Hound of
Baskervilles, which was the example we used in the discussion of the Counter
data structure, but this time using a bloom filter:

bloom_example.py
from pybloom import BloomFilter
import requests

f=BloomFilter(capacity=100000, error_rate=0.01)

Chapter 4

[185]

text=requests.get('https://www.gutenberg.org/files/2852/2852-0.txt').
text

for word in text.split():
 word = word.lower().strip()
 f.add(word)

print len(f)
print len(text.split())
for w in ('holmes','watson','hound','moor','queen'):
 print 'Found',w,w in f

Executing this, we get the following output:

$ python bloomtest.py

9403

62154

Found holmes True

Found watson True

Found moor True

Found queen False

The words holmes, watson, hound, and moor are some of the most
common in the story of The Hound of Baskervilles, so it is reassuring
that the bloom filter finds these words. On the other hand, the word
queen never appears in the text so the bloom filter is correct on that
fact (true negative). The number of the words in the text is 62,154, out
of which only 9,403 got indexed in the filter.

Let us try and measure the memory usage of the bloom filter as opposed to the
Counter. For that we will rely on memory profiler.

For this test, we will rewrite the code using the Counter class as follows:

counter_hound.py
import requests
from collections import Counter

@profile
def hound():
 text=requests.get('https://www.gutenberg.org/files/2852/2852-0.
txt').text
 c = Counter()

Good Performance is Rewarding!

[186]

 words = [word.lower().strip() for word in text.split()]
 c.update(words)

if __name__ == "__main__":
 hound()

And the one using the bloom filter as follows:

bloom_hound.py
from pybloom import BloomFilter
import requests

@profile
def hound():
 f=BloomFilter(capacity=100000, error_rate=0.01)
 text=requests.get('https://www.gutenberg.org/files/2852/2852-0.
txt').text

 for word in text.split():
 word = word.lower().strip()
 f.add(word)

if __name__ == "__main__":
 hound()

Here is the output from running the memory profiler for the first one:

Memory usage by the Counter object when parsing the text of The Hound of the Baskervilles

Chapter 4

[187]

The following result is for the second one:

Memory usage by the Bloom filter for parsing text of The Hound of the Baskervilles

The final memory usage is roughly the same at about 50 MB each. In the case of the
Counter, nearly no memory is used when the Counter class is created but close to
0.7 MB is used when words are added to the counter.

However, there is a distinct difference in the memory growth pattern between both
these data structures.

In the case of the bloom filter, an initial memory of 0.16 MB is allotted to it upon
creation. The addition of the words seems to add nearly no memory to the filter and
hence to the program.

So when should we use a bloom filter as opposed to, say, a dictionary or set in
Python? Here are some general principles and real-world usage scenarios:

• When you are fine with not storing the actual element itself but only
interested in the presence (or absence) of the element. In other words, where
your application use case relies more on checking the absence of data than its
presence.

• When the size of your input data is so large that storing each and every item
in a deterministic data structure (as a dictionary or hashtable) in memory is
not feasible. A bloom filter takes much less data in memory as opposed to a
deterministic data structure.

• When you are fine with a certain well-defined error rate of false positives with
your dataset—let us say this is 5% out of 1,000,000 pieces of data—you can
configure a bloom filter for this specific error rate and get a data hit rate that
will satisfy your requirements.

Good Performance is Rewarding!

[188]

Some real-world examples of using bloom filters are as follows:

• Security testing: Storing data for malicious URLs in browsers, for example
• Bio-informatics: Testing the presence of a certain pattern (a k-mer) in a

genome
• To avoid storing URLs with just one hit in a distributed web-caching

infrastructure

Summary
This chapter was all about performance. At the start of the chapter, we discussed
performance and SPE. We looked at the two categories of performance testing and
diagnostic tools—namely, stress-testing tools and profiling/instrumentation tools.

We then discussed what performance complexity really means in terms of the
Big-O notation and discussed briefly the common time orders of functions. We
looked at the time taken by functions to execute and learned the three classes
of time usage—namely real, user, and sys in POSIX systems.

We moved on to measuring performance and time in the next section—starting with
a simple context manager timer and moving on to more accurate measurements
using the timeit module. We measured the time taken for certain algorithms
for a range of input sizes. By plotting the time taken against the input size and
superimposing it on the standard time complexity graphs, we were able to get a
visual understanding of the performance complexity of functions. We optimized
the common item problem from its O(n*log(n)) performance to O(n) and the plotted
graphs of time usage confirmed this.

We then started our discussion on profiling code and saw some examples of
profiling using the cProfile module. The example we chose was a prime number
iterator returning the first n primes performing at O(n). Using the profiled data, we
optimized the code a bit, making it perform better than O(n). We briefly discussed
the pstats module and used its Stats class to read profile data and produce custom
reports ordered by a number of available data fields. We discussed two other third-
party profilers—the liner_profiler and the memory_profiler, which profile
code line by line—and discussed the problem of finding sub-sequences among two
sequences of strings, writing an optimized version of them, and measuring its time
and memory usage using these profilers.

Chapter 4

[189]

Among other tools, we discussed objgraph and pympler—the former as a
visualization tool to find relations and references between objects, helping to explore
memory leaks, and the latter as a tool to monitor and report the memory usage of
objects in the code and provide summaries.

In the last section on Python containers, we looked at the best and worst use case
scenarios of standard Python containers—such as list, dict, set, and tuple. We then
studied high performance container classes in the collections module—deque,
defaultdict, OrderedDict, Counter, Chainmap, and namedtuple, with examples
and recipes for each. Specifically, we saw how to create an LRU cache very naturally
using OrderedDict.

Towards the end of the chapter, we discussed a special data structure called the
bloom filter, which is very useful as a probabilistic data structure to report true
negatives with certainty and true positives within a pre-defined error rate.

In the next chapter, we will discuss a close cousin of performance, scalability, where
we will look at the techniques of writing scalable applications and the details of
writing scalable and concurrent programs in Python.

[191]

Writing Applications
that Scale

Imagine the checkout counter of a supermarket on a Saturday evening, the usual
rush-hour time. It is common to see long queues of people waiting to check out with
their purchases. What could a store manager do to reduce the rush and waiting time?

A typical manager would try a few approaches, including telling those manning
the checkout counters to pick up their speed, and to try and redistribute people to
different queues so that each queue roughly has the same waiting time. In other
words, they would manage the current load with available resources by optimizing
the performance of the existing resources.

However, if the store has existing counters that are not in operation—and enough
people at hand to manage them—the manager could enable those counters, and
move people to these new counters. In other words, they would add resources
to the store to scale the operation.

Software systems, too, scale in a similar way. An existing software application can be
scaled by adding compute resources to it.

When the system scales by either adding or making better use of resources inside a
compute node, such as CPU or RAM, it is said to scale vertically or scale up. On the
other hand, when a system scales by adding more compute nodes to it, such as a
creating a load-balanced cluster of servers, it is said to scale horizontally or scale out.

The degree to which a software system is able to scale when compute resources
are added is called its scalability. Scalability is measured in terms of how much the
system's performance characteristics, such as throughput or latency, improve with
respect to the addition of resources. For example, if a system doubles its capacity by
doubling the number of servers, it is scaling linearly.

Writing Applications that Scale

[192]

Increasing the concurrency of a system often increases its scalability. In the
supermarket example given earlier, the manager is able to scale out his operations by
opening additional counters. In other words, they increase the amount of concurrent
processing done in their store. Concurrency is the amount of work that gets done
simultaneously in a system.

In this chapter, we look at the different techniques of scaling a software application
with Python.

We will be following the approximate sketch of the following topics in our
discussion in this chapter:

• Scalability and performance
• Concurrency

 ° Concurrency and parallelism
 ° Concurrency in Python – multithreading

 ° Thumbnail generator
 ° Thumbnail generator – producer/consumer architecture
 ° Thumbnail generator – program end condition
 ° Thumbnail generator – resource constraint using locks
 ° Thumbnail generator – resource constraint using semaphores
 ° Resource constraint – semaphore versus lock
 ° Thumbnail generator – URL rate controller using conditions
 ° Multi-threading – Python and GIL

 ° Concurrency in Python – multiprocessing:
 ° A primality checker
 ° Sorting disk files
 ° Sorting disk files – using a counter
 ° Sorting disk files – using multiprocessing

 ° Multi-threading versus multiprocessing
 ° Concurrency in Python – Asynchronous execution

 ° Pre-emptive versus co-operative multitasking
 ° asyncio in Python

Chapter 5

[193]

 ° Waiting for future – async and await
 ° Concurrent futures – high-level concurrent processing

 ° Concurrency options - how to choose

• Parallel processing libraries:
 ° joblib
 ° PyMP

 ° Fractals – the Mandelbrot set
 ° Fractals – scaling the Mandelbrot set implementation

• Scaling for the web:
 ° Scaling workflows – message queues and task queues
 ° Celery – a distributed task queue

The Mandelbrot set - Using Celery

 ° Serving Python on the web – WSGI
uWSGI – WSGI middleware on steroids
Gunicorn – unicorn for WSGI
Gunicorn versus uWSGI

• Scalability architectures:
 ° Vertical scalability architectures
 ° Horizontal scalability architectures

Scalability and performance
How do we measure the scalability of a system? Let's take an example, and see how
this is done.

Let's say our application is a simple report generation system for employees. It is
able to load employee data from a database, and generate a variety of reports in bulk,
such as pay slips, tax deduction reports, employee leave reports, and more.

The system is able to generate 120 reports per minute—this is the throughput or
capacity of the system expressed as the number of successfully completed operations
in a given unit of time. Let's say the time it takes to generate a report at the server
side (latency) is roughly 2 seconds.

Let's say the architect decides to scale up the system by doubling the RAM on
its server.

Writing Applications that Scale

[194]

Once this is done, a test shows that the system is able to increase its throughput to
180 reports per minute. The latency remains the same at 2 seconds.

So, at this point, the system has scaled close to linear in terms of the memory added.
The scalability of the system expressed in terms of throughput increase is as follows:

Scalability (throughput) = 180/120 = 1.5X

As a second step, the architect decides to double the number of servers on the
backend—all with the same memory. After this step, it's found that the system's
performance throughput has now increased to 350 reports per minute. The scalability
achieved by this step is given as follows:

Scalability (throughput) = 350/180 = 1.9X

The system has now responded much better with a close to linear increase in
scalability.

After further analysis, the architect finds that by rewriting the code that was
processing reports on the server to run in multiple processes instead of a single
process, he is able to reduce the processing time at the server, and hence, the latency
of each request by roughly 1 second per request at peak time. The latency has now
gone down from 2 seconds to 1 second.

The system's performance with respect to latency has become better as follows:

Performance (latency): X = 2/1 = 2X

How does this improve scalability? Since the time taken to process each request
is less now, the system overall will be able to respond to similar loads at a faster
rate than what it was able to earlier. With the exact same resources, the system's
throughput performance, and hence, scalability has increased assuming other factors
remain the same.

Let's summarize what we've discussed so far, as follows:

1. In the first step, the architect increased the throughput of a single system
by scaling it up by adding extra memory as a resource, which increased the
overall scalability of the system. In other words, he scaled the performance of
a single system by scaling up, which boosted the overall performance of the
whole system.

Chapter 5

[195]

2. In the second step, he added more nodes to the system, and hence, its ability
to perform work concurrently, and found that the system responded well
by rewarding him with a near-linear scalability factor. In other words, he
increased the throughput of the system by scaling its resource capacity. Thus,
he increased scalability of the system by scaling out, that is, by adding more
compute nodes.

3. In the third step, he made a critical fix by running a computation in more
than one process. In other words, he increased the concurrency of a single
system by dividing the computation into more than one part. He found that
this increased the performance characteristic of the application by reducing
its latency, potentially setting up the application to handle workloads better at
high stress.

We find that there is a relationship between scalability, performance, concurrency,
and latency. This can be explained as follows:

1. When the performance of one of the components in a system goes up,
generally the performance of the overall system goes up.

2. When an application scales in a single machine by increasing its concurrency,
it has the potential to improve performance, and hence, the net scalability of
the system in deployment.

3. When a system reduces its performance time, or its latency, at the server, it
positively contributes to scalability.

We have captured these relationships in the following table:

Concurrency Latency Performance Scalability
High Low High High
High High Variable Variable
Low High Poor Poor

An ideal system is one that has good concurrency and low latency; such a system has
high performance, and would respond better to scaling up and/or scaling out.

A system with high concurrency, but also high latency, would have variable
characteristics—its performance, and hence, scalability would be potentially
very sensitive to other factors such as current system load, network congestion,
geographical distribution of compute resources and requests, and so on.

Writing Applications that Scale

[196]

A system with low concurrency and high latency is the worst case—it would be
difficult to scale such a system, as it has poor performance characteristics. The
latency and concurrency issues should be addressed before the architect decides to
scale the system horizontally or vertically.

Scalability is always described in terms of variation in performance throughput.

Concurrency
A system's concurrency is the degree to which the system is able to perform work
simultaneously instead of sequentially. An application written to be concurrent in
general, can execute more units of work in a given time than one which is written to
be sequential or serial.

When we make a serial application concurrent, we make the application better utilize
the existing compute resources in the system—CPU and/or RAM—at a given time.
Concurrency, in other words, is the cheapest way of making an application scale
inside a machine in terms of the cost of compute resources.

Concurrency can be achieved using different techniques. The common ones include
the following:

• Multithreading: The simplest form of concurrency is to rewrite the
application to perform parallel tasks in different threads. A thread is the
simplest sequence of programming instructions that can be performed by a
CPU. A program can consist of any number of threads. By distributing tasks
to multiple threads, a program can execute more work simultaneously. All
threads run inside the same process.

• Multiprocessing: Another way to concurrently scale up a program is to
run it in multiple processes instead of a single process. Multiprocessing
involves more overhead than multithreading in terms of message passing
and shared memory. However, programs that perform a lot of CPU-intensive
computations can benefit more from multiple processes than multiple
threads.

• Asynchronous Processing: In this technique, operations are performed
asynchronously with no specific ordering of tasks with respect to time.
Asynchronous processing usually picks tasks from a queue of tasks, and
schedules them to execute at a future time, often receiving the results in
callback functions or special future objects. Asynchronous processing usually
happens in a single thread.

There are other forms of concurrent computing, but in this chapter, we will focus our
attention on only these three.

Chapter 5

[197]

Python, especially Python 3, has built-in support for all these types of concurrent
computing techniques in its standard library. For example, it supports
multi-threading via its threading module, and multiple processes via its
multiprocessing module. Asynchronous execution support is available via the
asyncio module. A form of concurrent processing that combines asynchronous
execution with threads and processes is available via the concurrent.futures
module.

In the coming sections we will take a look at each of these in turn with sufficient
examples.

The asyncio module is available only in Python 3.

Concurrency versus parallelism
We will take a brief look at the concept of concurrency and its close cousin, namely
parallelism.

Both concurrency and parallelism are about executing work simultaneously rather
than sequentially. However, in concurrency, the two tasks need not be executed
at the exact same time; instead, they just need to be scheduled to be executed
simultaneously. Parallelism, on the other hand, requires that both the tasks execute
together at a given moment in time.

To take a real-life example, let's say you are painting two exterior walls of your
house. You have employed just one painter, and you find that he is taking a lot
more time than you thought. You can solve the problem in these two ways:

1. Instruct the painter to paint a few coats on one wall before switching to
the next wall, and doing the same there. Assuming he is efficient, he will
work on both the walls simultaneously (though not at the same time), and
achieve the same degree of finish on both walls for a given time. This is a
concurrent solution.

2. Employ one more painter. Instruct the first painter to paint the first wall, and
the second painter to paint the second wall. This is a parallel solution.

Two threads performing bytecode computations in a single core CPU do not exactly
perform parallel computation, as the CPU can accommodate only one thread at a
time. However, they are concurrent from a programmer's perspective, since the CPU
scheduler performs fast switching in and out of the threads so that they appear to
run in parallel.

Writing Applications that Scale

[198]

However, on a multi-core CPU, two threads can perform parallel computations at
any given time in its different cores. This is true parallelism.

Parallel computation requires that the computation resources increase at least
linearly with respect to its scale. Concurrent computation can be achieved by using
the techniques of multitasking, where work is scheduled and executed in batches,
making better use of existing resources.

In this chapter, we will use the term concurrent uniformly to indicate both
types of execution. In some places, it may indicate concurrent processing
in the traditional way, and in some others, it may indicate true parallel
processing. Use the context to disambiguate.

Concurrency in Python – multithreading
We will start our discussion of concurrent techniques in Python with multithreading.

Python supports multiple threads in programming via its threading module. The
threading module exposes a Thread class, which encapsulates a thread of execution.
Along with this, it also exposes the following synchronization primitives:

• A Lock object, which is useful for synchronized protected access to share
resources, and its cousin RLock

• A Condition object, which is useful for threads to synchronize while waiting
for arbitrary conditions

• An Event object, which provides a basic signaling mechanism between
threads

• A Semaphore object, which allows synchronized access to limited resources
• A Barrier object, which allows a fixed set of threads to wait for each other,

synchronize to a particular state, and proceed

Thread objects in Python can be combined with the synchronized Queue class in the
queue module for implementing thread-safe producer/consumer workflows.

Chapter 5

[199]

Thumbnail generator
Let's start our discussion of multi-threading in Python with the example of a
program used to generate thumbnails of image URLs.

In the example, we are using Pillow, a fork of the Python Imaging Library (PIL) to
perform this operation:

thumbnail_converter.py
from PIL import Image
import urllib.request

def thumbnail_image(url, size=(64, 64), format='.png'):
 """ Save thumbnail of an image URL """

 im = Image.open(urllib.request.urlopen(url))
 # filename is last part of the URL minus extension + '.format'
 pieces = url.split('/')
 filename = ''.join((pieces[-2],'_',pieces[-1].split('.')[0],'_
thumb',format))
 im.thumbnail(size, Image.ANTIALIAS)
 im.save(filename)
 print('Saved',filename)

The preceding code works very well for single URLs.

Let's say we want to convert five image URLs to their thumbnails:

img_urls = ['https://dummyimage.com/256x256/000/fff.jpg',
 'https://dummyimage.com/320x240/fff/00.jpg',
 'https://dummyimage.com/640x480/ccc/aaa.jpg',
 'https://dummyimage.com/128x128/ddd/eee.jpg',
 'https://dummyimage.com/720x720/111/222.jpg']
for url in img_urls:
 thumbnail_image(urls)

Writing Applications that Scale

[200]

Let's see how such a function performs with respect to time taken in the following
screenshot:

Response time of serial thumbnail converter for 5 URLs

The function took approximately 1.7 seconds per URL.

Let's now scale the program to multiple threads so we can perform the conversions
concurrently. Here is the rewritten code to run each conversion in its own thread:

import threading

for url in img_urls:
 t=threading.Thread(target=thumbnail_image,args=(url,))
 t.start()

The timing that this last program now gives is shown in this screenshot:

Response time of threaded thumbnail converter for 5 URLs

With this change, the program returns in 1.76 seconds, almost equal to the time taken
by a single URL in serial execution before. In other words, the program has now
linearly scaled with respect to the number of threads. Note that, we had to make no
change to the function itself to get this scalability boost.

Chapter 5

[201]

Thumbnail generator – producer/consumer
architecture
In the previous example, we saw a set of image URLs being processed by a
thumbnail generator function concurrently by using multiple threads. With the use
of multiple threads, we were able to achieve near linear scalability as compared to
serial execution.

However, in real life, rather than processing a fixed list of URLs, it is more common
for the URL data to be produced by some kind of URL producer. It could be fetching
this data from a database, a comma separated value (CSV) file or from a TCP socket
for example.

In such a scenario, creating one thread per URL would be a tremendous waste of
resources. It takes a certain overhead to create a thread in the system. We need some
way to reuse the threads we create.

For such systems that involve a certain set of threads producing data and another set
of threads consuming or processing data, the producer/consumer model is an ideal
fit. Such a system has the following features:

1. Producers are a specialized class of workers (threads) producing the data.
They may receive the data from a specific source(s), or generate the data
themselves.

2. Producers add the data to a shared synchronized queue. In Python, this
queue is provided by the Queue class in the aptly named queue module.

3. Another set of specialized class of workers, namely consumers, wait on the
queue to get (consume) the data. Once they get the data, they process it and
produce the results.

4. The program comes to an end when the producers stop generating data
and the consumers are starved of data. Techniques like timeouts, polling, or
poison pills can be used to achieve this. When this happens, all threads exit,
and the program completes.

We have rewritten our thumbnail generator to a producer consumer architecture.
The resulting code is given next. Since this is a bit detailed, we will discuss each class
one by one.

Writing Applications that Scale

[202]

First, let's look at the imports—these are pretty self-explanatory:

thumbnail_pc.py
import threading
import time
import string
import random
import urllib.request
from PIL import Image
from queue import Queue

Next is the code for the producer class:

class ThumbnailURL_Generator(threading.Thread):
 """ Worker class that generates image URLs """

 def __init__(self, queue, sleep_time=1,):
 self.sleep_time = sleep_time
 self.queue = queue
 # A flag for stopping
 self.flag = True
 # choice of sizes
 self._sizes = (240,320,360,480,600,720)
 # URL scheme
 self.url_template = 'https://dummyimage.com/%s/%s/%s.jpg'
 threading.Thread.__init__(self, name='producer')

 def __str__(self):
 return 'Producer'

 def get_size(self):
 return '%dx%d' % (random.choice(self._sizes),
 random.choice(self._sizes))

 def get_color(self):
 return ''.join(random.sample(string.hexdigits[:-6], 3))

 def run(self):
 """ Main thread function """

 while self.flag:
 # generate image URLs of random sizes and fg/bg colors
 url = self.url_template % (self.get_size(),
 self.get_color(),
 self.get_color())

Chapter 5

[203]

 # Add to queue
 print(self,'Put',url)
 self.queue.put(url)
 time.sleep(self.sleep_time)

 def stop(self):
 """ Stop the thread """

 self.flag = False

Let's analyze the producer class code:

1. The class is named ThumbnailURL_Generator. It generates the URLs (by
using the service of a website named http://dummyimage.com) of different
sizes, foreground, and background colors. It inherits from the threading.
Thread class.

2. It has a run method, which goes in a loop, generates a random image URL,
and pushes it to the shared queue. Every time, the thread sleeps for a fixed
time, as configured by the sleep_time parameter.

3. The class exposes a stop method, which sets the internal flag to False
causing the loop to break and the thread to finish its processing. This can be
called externally by another thread, typically, the main thread.

Now we have the URL consumer class that consumes the thumbnail URLs and
creates the thumbnails:

class ThumbnailURL_Consumer(threading.Thread):
 """ Worker class that consumes URLs and generates thumbnails """

 def __init__(self, queue):
 self.queue = queue
 self.flag = True
 threading.Thread.__init__(self, name='consumer')

 def __str__(self):
 return 'Consumer'

 def thumbnail_image(self, url, size=(64,64), format='.png'):
 """ Save image thumbnails, given a URL """

 im=Image.open(urllib.request.urlopen(url))

http://dummyimage.com

Writing Applications that Scale

[204]

 # filename is last part of URL minus extension + '.format'
 filename = url.split('/')[-1].split('.')[0] + '_thumb' +
format
 im.thumbnail(size, Image.ANTIALIAS)
 im.save(filename)
 print(self,'Saved',filename)

 def run(self):
 """ Main thread function """

 while self.flag:
 url = self.queue.get()
 print(self,'Got',url)
 self.thumbnail_image(url)

 def stop(self):
 """ Stop the thread """

 self.flag = False

Here's the analysis of the consumer class:

1. The class is named ThumbnailURL_Consumer, as it consumes URLs from the
queue, and creates thumbnail images of them.

2. The run method of this class goes in a loop, gets a URL from the queue, and
converts it to a thumbnail by passing it to the thumbnail_image method.
(Note that this code is exactly the same as that of the thumbnail_image
function we created earlier.)

3. The stop method is very similar, checking for a stop flag every time in the
loop, and ending once the flag has been unset.

Here is the main part of the code—setting up a couple of producers and consumers
each, and running them:

 q = Queue(maxsize=200)
 producers, consumers = [], []

 for i in range(2):
 t = ThumbnailURL_Generator(q)
 producers.append(t)
 t.start()

 for i in range(2):
 t = ThumbnailURL_Consumer(q)
 consumers.append(t)
 t.start()

Chapter 5

[205]

Here is a screenshot of the program in action:

Running the thumbnail producer/consumer program with 4 threads, 2 of each type

In the above program, since the producers keep generating random data without any
end, the consumers will keep consuming it without any end. Our program has no
proper end condition.

Hence, this program will keep running until the network requests are denied or
timed out or the disk space of the machine runs out because of thumbnails.

However, a program solving a real world problem should end in some way that
is predictable.

This could be due to a number of external constraints

• It could be a timeout introduced where the consumers wait for data for a
certain maximum time, and then exit if no data is available during that time.
This, for example, can be configured as a timeout in the get method of the
queue.

• Another technique would be to signal program end after a certain number of
resources are consumed or created. In this program, for example, it could be
a fixed limit to the number of thumbnails created.

In the following section, we will see how to enforce such resource limits by using
threading synchronization primitives such as Locks and Semaphores.

Writing Applications that Scale

[206]

You may have observed that we start a thread using its start
method, though the overridden method in the Thread subclass is run.
This is because, in the parent Thread class, the start method sets up
some state, and then calls the run method internally. This is the right
way to call the thread's run method. It should never be called directly.

Thumbnail generator – resource constraint
using locks
In this section, we will see how to modify the program using a Lock, a synchronization
primitive to implement a counter that will limit the number of images created as a way
to end the program.

Lock objects in Python allows exclusive access by threads to a shared resource.

The pseudo-code would be as follows:

try:
 lock.acquire()
 # Do some modification on a shared, mutable resource
 mutable_object.modify()
finally:
 lock.release()

However, Lock objects support context-managers via the with statement, so this is
more commonly written as follows:

with lock:
 mutable_object.modify()

To implement a fixed number of images per run, our code needs to be supported
to add a counter. However, since multiple threads would check and increment this
counter, it needs to be synchronized via a Lock object.

Chapter 5

[207]

This is our first implementation of the resource counter class using Locks.

class ThumbnailImageSaver(object):
 """ Class which saves URLs to thumbnail images and keeps a counter
"""

 def __init__(self, limit=10):
 self.limit = limit
 self.lock = threading.Lock()
 self.counter = {}

 def thumbnail_image(self, url, size=(64,64), format='.png'):
 """ Save image thumbnails, given a URL """

 im=Image.open(urllib.request.urlopen(url))
 # filename is last two parts of URL minus extension +
'.format'
 pieces = url.split('/')
 filename = ''.join((pieces[-2],'_',pieces[-1].split('.')[0],'_
thumb',format))
 im.thumbnail(size, Image.ANTIALIAS)
 im.save(filename)
 print('Saved',filename)
 self.counter[filename] = 1
 return True

 def save(self, url):
 """ Save a URL as thumbnail """

 with self.lock:
 if len(self.counter)>=self.limit:
 return False
 self.thumbnail_image(url)
 print('Count=>',len(self.counter))
 return True

Since this modifies the consumer class as well, it makes sense to discuss both changes
together. Here is the modified consumer class to accommodate the extra counter
needed to keep track of the images:

class ThumbnailURL_Consumer(threading.Thread):
 """ Worker class that consumes URLs and generates thumbnails """

 def __init__(self, queue, saver):
 self.queue = queue

Writing Applications that Scale

[208]

 self.flag = True
 self.saver = saver
 # Internal id
 self._id = uuid.uuid4().hex
 threading.Thread.__init__(self, name='Consumer-'+ self._id)

 def __str__(self):
 return 'Consumer-' + self._id

 def run(self):
 """ Main thread function """

 while self.flag:
 url = self.queue.get()
 print(self,'Got',url)
 if not self.saver.save(url):
 # Limit reached, break out
 print(self, 'Set limit reached, quitting')
 break

 def stop(self):
 """ Stop the thread """

 self.flag = False

Let's analyze both of these classes. First, we'll look at the new class,
ThumbnailImageSaver:

1. This class derives from the object. In other words, it is not a Thread. It is not
meant to be one.

2. It initializes a lock object and a counter dictionary in its initializer method.
The lock is for synchronizing access to the counter by threads. It also accepts
a limit parameter equal to the number of images it should save.

3. The thumbnail_image method moves to here from the consumer class. It is
called from a save method, which encloses the call in a synchronized context
using the lock.

4. The save method first checks if the count has crossed the configured limit;
when this happens, the method returns False. Otherwise, the image is saved
with a call to thumbnail_image, and the image filename is added to the
counter, effectively incrementing the count.

Chapter 5

[209]

Next, we'll consider the modified ThumbnailURL_Consumer class:

1. The class's initializer is modified to accept an instance of the
ThumbnailImageSaver as a saver argument. The rest of the arguments
remain the same.

2. The thumbnail_image method no longer exists in this class, as it is moved to
the new class.

3. The run method is much simplified. It makes a call to the save method of the
saver instance. If it returns False, it means the limit has been reached, the
loop breaks, and the consumer thread exits.

4. We have also modified the __str__ method to return a unique ID per thread,
which is set in the initializer using the uuid module. This helps to debug
threads in a real-life example.

The calling code also changes a bit, as it needs to set up the new object, and configure
the consumer threads with it:

q = Queue(maxsize=2000)
Create an instance of the saver object
saver = ThumbnailImageSaver(limit=100)

 producers, consumers = [], []
 for i in range(3):
 t = ThumbnailURL_Generator(q)
 producers.append(t)
 t.start()

 for i in range(5):
 t = ThumbnailURL_Consumer(q, saver)
 consumers.append(t)
 t.start()

 for t in consumers:
 t.join()
 print('Joined', t, flush=True)

 # To make sure producers don't block on a full queue
 while not q.empty():
 item=q.get()

 for t in producers:
 t.stop()
 print('Stopped',t, flush=True)

 print('Total number of PNG images',len(glob.glob('*.png')))

Writing Applications that Scale

[210]

The following are the main points to be noted here:

1. We create an instance of the new ThumbnailImageSaver class, and pass it on
to the consumer threads when creating them.

2. We wait on consumers first. Note that, the main thread doesn't call stop, but
join on them. This is because the consumers exit automatically when the
limit is reached, so the main thread should just wait for them to stop.

3. We stop the producers after the consumers exit—explicitly so—since they
would otherwise keep working forever, since there is no condition for the
producers to exit.

We use a dictionary instead of an integer as because of the nature of the data.

Since the images are randomly generated, there is a minor chance of one image URL
being the same as another one created previously, causing the filenames to clash.
Using a dictionary takes care of such possible duplicates.

The following screenshot shows a run of the program with a limit of 100 images.
Note that we can only show the last few lines of the console log, since it produces a
lot of output:

Run of the thumbnail generator program with a limit of 100 images using a Lock

You can configure this program with any limit of the images, and it will always fetch
exactly the same count—nothing more or less.

Chapter 5

[211]

In the next section, we will familiarize ourselves with another synchronization
primitive, namely semaphore, and learn how to implement a resource limiting
class in a similar way using the semaphore.

Thumbnail generator – resource constraint
using semaphores
Locks aren't the only way to implement synchronization constraints and write logic
on top of them in order to limit resources used/generated by a system.

A semaphore, one of the oldest synchronization primitives in computer science, is
ideally suited for such use cases.

A semaphore is initialized with a value greater than zero:

1. When a thread calls acquire on a semaphore that has a positive internal
value, the value gets decremented by one, and the thread continues on its way.

2. When another thread calls release on the semaphore, the value is
incremented by 1.

3. Any thread calling acquire once the value has reached zero is blocked on
the semaphore until it is woken up by another thread calling release.

Due to this behavior, a semaphore is perfectly suited for implementing a fixed limit
on shared resources.

In the following code example, we will implement another class for resource limiting
our thumbnail generator program, this time using a semaphore:

class ThumbnailImageSemaSaver(object):
 """ Class which keeps an exact counter of saved images
 and restricts the total count using a semaphore """

 def __init__(self, limit = 10):
 self.limit = limit
 self.counter = threading.BoundedSemaphore(value=limit)
 self.count = 0

 def acquire(self):
 # Acquire counter, if limit is exhausted, it
 # returns False
 return self.counter.acquire(blocking=False)

 def release(self):

Writing Applications that Scale

[212]

 # Release counter, incrementing count
 return self.counter.release()

 def thumbnail_image(self, url, size=(64,64), format='.png'):
 """ Save image thumbnails, given a URL """

 im=Image.open(urllib.request.urlopen(url))
 # filename is last two parts of URL minus extension +
'.format'
 pieces = url.split('/')
 filename = ''.join((pieces[-2],'_',pieces[-1].split('.')
[0],format))
 try:
 im.thumbnail(size, Image.ANTIALIAS)
 im.save(filename)
 print('Saved',filename)
 self.count += 1
 except Exception as e:
 print('Error saving URL',url,e)
 # Image can't be counted, increment semaphore
 self.release()

 return True

 def save(self, url):
 """ Save a URL as thumbnail """

 if self.acquire():
 self.thumbnail_image(url)
 return True
 else:
 print('Semaphore limit reached, returning False')
 return False

Since the new semaphore-based class keeps the exact same interface as the previous
lock-based class—with a save method—there is no need to change any code on the
consumer!

Only the calling code needs to be changed.

This line in the previous code initialized the ThumbnailImageSaver instance:

saver = ThumbnailImageSaver(limit=100)

Chapter 5

[213]

The preceding line needs to be replaced with the following one:

 saver = ThumbnailImageSemaSaver(limit=100)

The rest of the code remains exactly the same.

Let's quickly discuss the new class using the semaphore before seeing this code
in action:

1. The acquire and release methods are simple wrappers over the same
methods on the semaphore.

2. We initialize the semaphore with a value equal to the image limit in the
initializer.

3. In the save method, we call the acquire method. If the semaphore's limit
is reached, it will return False. Otherwise, the thread saves the image and
returns True. In the former case, the calling thread quits.

The internal count attribute of this class is only there for debugging.
It doesn't add anything to the logic of limiting images.

This class behaves in a way similar way to the previous one, and limits resources
exactly. The following is an example with a limit of 200 images:

Run of the thumbnail generator program with a limit of 200 images using a Semaphore

Writing Applications that Scale

[214]

Resource constraint – semaphore versus lock
We saw two competing versions of implementing a fixed resource constraint in the
previous two examples—one using Lock and another using Semaphore.

The differences between the two versions are as follows:

1. The version using Lock protects all the code that modifies the resource—in
this case, checking the counter, saving the thumbnail, and incrementing the
counter—to make sure that there are no data inconsistencies.

2. The Semaphore version is implemented more like a gate—a door that is open
while the count is below the limit, and through which any number of threads
can pass, and that only closes when the limit is reached. In other words, it
doesn't mutually exclude threads from calling the thumbnail saving function.

Hence, the effect is that the semaphore version would be faster than the version
using Lock.

How much faster? The following timing example for a run of 100 images gives an
idea.

This screenshot shows the time it takes for the Lock version to save 100 images:

Timing the run of the thumbnail generator program—the Lock version—for 100 images

Chapter 5

[215]

The following screenshot shows the time for the semaphore version to save a
similar number:

Timing the run of the thumbnail generator program—the semaphore version—for 100 images

By a quick calculation you can see that the semaphore version is about 4 times faster
than the lock version for the same logic. In other words, it scales 4 times better.

Thumbnail generator – URL rate controller
using conditions
In this section, we will briefly see the application of another important
synchronization primitive in threading, namely the Condition object.

First, we will get a real life example of using a Condition object. We will implement
a throttler for our thumbnail generator to manage the rate of URL generation.

In the producer/consumer systems in real life, the following three kinds of scenario
can occur with respect to the rate of data production and consumption:

1. Producers produce data at a faster pace than consumers can consume. This
causes the consumers to always play catch up with the producers. Excess
data by the producers can accumulate in the queue, which causes the queue
to consume a higher memory and CPU usage in every loop causing the
program to slow down.

2. Consumers consume data at a faster rate than producers. This causes the
consumers to always wait on the queue—for data. This, in itself, is not a
problem as long as the producers don't lag too much. In the worst case, this
leads to half of the system, that is, the consumers, remaining idle, while the
other half—the producers—try to keep up with the demand.

3. Both producers and consumers work at nearly the same pace keeping the
queue size within limits. This is the ideal scenario.

Writing Applications that Scale

[216]

There are many ways to solve this problem. Some of them are as follows:

1. Queue with a fixed size: Producers would be forced to wait until data is
consumed by a consumer once the queue size limit is reached. However
this would almost always keep the queue full.

2. Provide the workers with timeouts plus other responsibilities: Rather than
remain blocked on the queue, producers and/or consumers can use a timeout
to wait on the queue. When they time out they can either sleep or perform
some other responsibilities before coming back and waiting on the queue.

3. Dynamically configure the number of workers: This is an approach where
the worker pool size automatically increases or decreases upon demand.
If one class of workers is ahead, the system will launch just the required
number of workers of the opposite class to keep the balance.

4. Adjust the data generation rate: In this approach, we statically or
dynamically adjust the data generation rate by the producers. For example,
the system can be configured to produce data at a fixed rate, say, 50 URLs in
a minute or it can calculate the rate of consumption by the consumers, and
adjust the data production rate of the producers dynamically to keep things
in balance.

In the following example, we will implement the last approach—to limit the
production rate of URLs to a fixed limit using Condition objects.

A Condition object is a sophisticated synchronization primitive that comes with an
implicit built-in lock. It can wait on an arbitrary condition till it becomes true. The
moment the thread calls wait on the condition, the internal lock is released, but the
thread itself becomes blocked:

cond = threading.Condition()
In thread #1
with cond:
 while not some_condition_is_satisfied():
 # this thread is now blocked
 cond.wait()

Now, another thread can wake up this preceding thread by setting the condition to
True, and then calling notify or notify_all on the condition object. At this point,
the preceding blocked thread is woken up, and continues on its way:

In thread #2
with cond:
 # Condition is satisfied

Chapter 5

[217]

 if some_condition_is_satisfied():
 # Notify all threads waiting on the condition
 cond.notify_all()

Here is our new class namely ThumbnailURLController which implements the rate
control of URL production using a condition object.

class ThumbnailURLController(threading.Thread):
 """ A rate limiting controller thread for URLs using conditions
 """

 def __init__(self, rate_limit=0, nthreads=0):
 # Configured rate limit
 self.rate_limit = rate_limit
 # Number of producer threads
 self.nthreads = nthreads
 self.count = 0
 self.start_t = time.time()
 self.flag = True
 self.cond = threading.Condition()
 threading.Thread.__init__(self)

 def increment(self):
 # Increment count of URLs
 self.count += 1

 def calc_rate(self):
 rate = 60.0*self.count/(time.time() - self.start_t)
 return rate

 def run(self):
 while self.flag:
 rate = self.calc_rate()
 if rate<=self.rate_limit:
 with self.cond:
 # print('Notifying all...')
 self.cond.notify_all()

 def stop(self):
 self.flag = False

 def throttle(self, thread):
 """ Throttle threads to manage rate """
 # Current total rate
 rate = self.calc_rate()

Writing Applications that Scale

[218]

 print('Current Rate',rate)
 # If rate > limit, add more sleep time to thread
 diff = abs(rate - self.rate_limit)
 sleep_diff = diff/(self.nthreads*60.0)

 if rate>self.rate_limit:
 # Adjust threads sleep_time
 thread.sleep_time += sleep_diff
 # Hold this thread till rate settles down with a 5% error
 with self.cond:
 print('Controller, rate is high, sleep more
by',rate,sleep_diff)
 while self.calc_rate() > self.rate_limit:
 self.cond.wait()
 elif rate<self.rate_limit:
 print('Controller, rate is low, sleep less by',rate,sleep_
diff)
 # Decrease sleep time
 sleep_time = thread.sleep_time
 sleep_time -= sleep_diff
 # If this goes off < zero, make it zero
 thread.sleep_time = max(0, sleep_time)

Let's discuss the preceding code before we discuss the changes in the producer class
that will make use of this class:

1. The class is an instance of Thread, so it runs in its own thread of execution. It
also holds a Condition object.

2. It has a calc_rate method, which calculates the rate of generation of URLs
by keeping a counter and using timestamps.

3. In the run method, the rate is checked. If it's below the configured limit, the
condition object notifies all threads waiting on it.

4. Most importantly, it implements a throttle method. This method uses the
current rate, calculated via calc_rate, and uses it to throttle and adjust the
sleep times of the producers. It mainly does these two things:

1. If the rate is more than the configured limit, it causes the calling
thread to wait on the condition object until the rate levels off. It also
calculates an extra sleep time that the thread should sleep in its loop
to adjust the rate to the required level.

2. If the rate is less than the configured limit, then the thread needs
to work faster and produce more data, so it calculates the sleep
difference and lowers the sleep limit accordingly.

Chapter 5

[219]

Here is the code of the producer class to incorporate the changes:

class ThumbnailURL_Generator(threading.Thread):
 """ Worker class that generates image URLs and supports throttling
 via an external controller """

 def __init__(self, queue, controller=None, sleep_time=1):
 self.sleep_time = sleep_time
 self.queue = queue
 # A flag for stopping
 self.flag = True
 # sizes
 self._sizes = (240,320,360,480,600,720)
 # URL scheme
 self.url_template = 'https://dummyimage.com/%s/%s/%s.jpg'
 # Rate controller
 self.controller = controller
 # Internal id
 self._id = uuid.uuid4().hex
 threading.Thread.__init__(self, name='Producer-'+ self._id)

 def __str__(self):
 return 'Producer-'+self._id

 def get_size(self):
 return '%dx%d' % (random.choice(self._sizes),
 random.choice(self._sizes))

 def get_color(self):
 return ''.join(random.sample(string.hexdigits[:-6], 3))

 def run(self):
 """ Main thread function """

 while self.flag:
 # generate image URLs of random sizes and fg/bg colors
 url = self.url_template % (self.get_size(),
 self.get_color(),
 self.get_color())
 # Add to queue
 print(self,'Put',url)
 self.queue.put(url)
 self.controller.increment()

Writing Applications that Scale

[220]

 # Throttle after putting a few images
 if self.controller.count>5:
 self.controller.throttle(self)

 time.sleep(self.sleep_time)

 def stop(self):
 """ Stop the thread """

 self.flag = False

Let's see how the preceding code works:

1. The class now accepts an additional controller object in its initializer. This is
the instance of the controller class given earlier.

2. After putting a URL, it increments the count on the controller. Once the count
reaches a minimum limit (set as 5 to avoid early throttling of the producers),
it calls throttle on the controller, passing itself as the argument.

The calling code also needs quite a few changes. The modified code is shown as
follows:

 q = Queue(maxsize=2000)
 # The controller needs to be configured with exact number of
 # producers
 controller = ThumbnailURLController(rate_limit=50, nthreads=3)
 saver = ThumbnailImageSemaSaver(limit=200)

 controller.start()

 producers, consumers = [], []
 for i in range(3):
 t = ThumbnailURL_Generator(q, controller)
 producers.append(t)
 t.start()

 for i in range(5):
 t = ThumbnailURL_Consumer(q, saver)
 consumers.append(t)
 t.start()

 for t in consumers:
 t.join()

Chapter 5

[221]

 print('Joined', t, flush=True)

 # To make sure producers dont block on a full queue
 while not q.empty():
 item=q.get()
 controller.stop()

 for t in producers:
 t.stop()
 print('Stopped',t, flush=True)

 print('Total number of PNG images',len(glob.glob('*.png')))

The main changes here are the ones listed next:

1. The controller object is created with the exact number of producers that will
be created. This helps the correct calculation of sleep time per thread.

2. The producer threads, themselves, are passed the instance of the controller in
their initializer.

3. The controller is started as a thread before all other threads.

Here is a run of the program configured with 200 images at the rate of 50 images per
minute. We show two images of the running program's output, one at the beginning
of the program and one towards the end.

Starting the thumbnail program with URL rate controller—at 50 URLs per minute

Writing Applications that Scale

[222]

You will find that, when the program starts, it almost immediately slows down,
and nearly comes to a halt, since the original rate is high. What happens here is that
the producers call on the throttle method, and since the rate is high, they all get
blocked on the condition object.

After a few seconds, the rate comes down to the prescribed limit, since no URLs are
generated. This is detected by the controller in its loop, and it calls notify_all on
the threads, waking them up.

After a while you will see that the rate is getting settled around the set limit of 50
URLs per minute.

The thumbnail program with URL rate controller 5-6 seconds after start

Chapter 5

[223]

Towards the end of the program, you will see that the rate has almost settled to the
exact limit:

The thumbnail program with URL rate controller towards the end

We are coming towards the end of our discussion on threading primitives and how
to use them in improving the concurrency of your programs and in implementing
shared resource constraints and controls.

Before we conclude, we will look at an aspect of Python threads which prevents
multi-threaded programs from making full use of the CPU in Python—namely the
GIL or Global Interpreter Lock.

Multithreading – Python and GIL
In Python there is, a global lock that prevents multiple threads from executing native
bytecode at once. This lock is required, since the memory management of CPython
(the native implementation of Python) is not thread-safe.

This lock is called Global Interpreter Lock or just GIL.

Writing Applications that Scale

[224]

Python cannot execute bytecode operations concurrently on CPUs due to the GIL.
Hence, Python becomes almost unsuitable for the following cases:

• When the program depends on a number of heavy bytecode operations,
which it wants to run concurrently

• When the program uses multithreading to utilize the full power of multiple
CPU cores on a single machine

I/O calls and long-running operations typically occur outside the GIL. Therefore,
multithreading is efficient in Python only when it involves some amount of I/O
or such operations – such as image processing.

In such cases, scaling your program to concurrently scale beyond a single process
becomes a handy approach. Python makes this possible via its multiprocessing
module, which is our next topic of discussion.

Concurrency in Python – multiprocessing
The Python standard library provides a multiprocessing module, which allows a
programmer to write programs that scale concurrently using multiple processes
instead of threads.

Since multiprocessing scales computation across multiple processes, it effectively
removes any issues with the GIL in Python. Programs can make use of multiple
CPU cores efficiently using this module.

The main class exposed by this module is the Process class, the analog to the
Thread class in the threading module. It also provides a number of synchronization
primitives, which are almost exact counterparts of their cousins in the threading
module.

We will get started by using an example using the Pool object provided by this
module. It allows a function to execute in parallel over multiple inputs using
processes.

A primality checker
The following function is a simple checker function for primality, that is, whether the
input number is prime or not:

def is_prime(n):
 """ Check for input number primality """

 for i in range(3, int(n**0.5+1), 2):

Chapter 5

[225]

 if n % i == 0:
 print(n,'is not prime')
 return False

 print(n,'is prime')
 return True

The following is a threaded class that uses this last function to check numbers from a
queue for primality:

prime_thread.py
import threading

class PrimeChecker(threading.Thread):
 """ Thread class for primality checking """

 def __init__(self, queue):
 self.queue = queue
 self.flag = True
 threading.Thread.__init__(self)

 def run(self):

 while self.flag:
 try:
 n = self.queue.get(timeout=1)
 is_prime(n)
 except Empty:
 break

We will test it with 1,000 large prime numbers. In order to save space for the list
represented here, what we've done is to take 10 of these numbers and multiply the
list with 100:

 numbers = [1297337, 1116281, 104395303, 472882027, 533000389,
 817504243, 982451653, 112272535095293, 115280095190773,
 1099726899285419]*100

 q = Queue(1000)

 for n in numbers:
 q.put(n)

 threads = []
 for i in range(4):

Writing Applications that Scale

[226]

 t = PrimeChecker(q)
 threads.append(t)
 t.start()

 for t in threads:
 t.join()

We've used four threads for this test. Let's see how the program performs, in the
following screenshot:

Primality checker of 1,000 numbers using a pool of 4 threads

Now, here is the equivalent code using the multiprocessing Pool object:

 numbers = [1297337, 1116281, 104395303, 472882027, 533000389,
 817504243, 982451653, 112272535095293, 115280095190773,
 1099726899285419]*100
 pool = multiprocessing.Pool(4)
 pool.map(is_prime, numbers)

The following screenshot shows its performance over the same set of numbers:

Primality checker of 1,000 numbers using a multiprocessing Pool of 4 processes

Chapter 5

[227]

We learn the following by comparing these numbers:

1. The real time, that is, the wall clock time spent by the process pool version
at 1 minute 9.6 seconds (69.6 seconds) is nearly 50% lesser than that of the
thread pool version at 2 minute 12 seconds (132 seconds).

2. However, notice that the user time—that is, the time spent inside the CPU for
user code—for the process pool version at 4 minute 22 seconds (262 seconds)
is nearly two times more than that of the thread pool version at 2 minutes 12
seconds (132 seconds).

3. The real and user CPU time of the thread pool version is exactly the same at
2 minutes 12 seconds. This is a clear indication that the threaded version was
able to execute effectively, only in one of the CPU cores.

This means that the process pool version was able to better make use of all the CPU
cores, since, for the 50% of the real time of the thread pool version, it was able to
make use of the CPU time twice over.

Hence, the real performance boost in terms of CPU time/real time for the two
programs is as follows:

1. Threaded version → 132 seconds/132 seconds = 1
2. Process version → 262 seconds/69.6 seconds = 3.76 ~= 4

The real performance ratio of the process version to the threaded version is, hence,
given as follows:

4/1 = 4

The machine on which the program was executed has a four-core CPU. This clearly
shows that the multiprocess version of the code was able to utilize all the four cores
of the CPU nearly equally.

This is because the threaded version is being restricted by the GIL, whereas the
process version has no such restriction and can freely make use of all the cores.

In the next section, let's move on to a more involved problem—that of sorting
disk-based files.

Writing Applications that Scale

[228]

Sorting disk files
Imagine you have hundreds of thousands of files on the disk, each containing a
certain fixed number of integers in a given range. Let's say we need the files to be
sorted and merged into a single file.

If we decide to load all this data into memory, it will need large amounts of RAM.
Let's do a quick calculation for a million files, each containing around 100 integers in
the range of 1 to 10,000 for a total of 100,000,000 or 100 million integers.

Let's assume each of the files is loaded as a list of integers from the disk—we will
ignore string processing, and the like for the time being.

Using sys.getsizeof, we can get a rough calculation going:

>>> sys.getsizeof([100000]*1000)*100000/(1024.0*1024.0)

769.04296875

So, the entire data will take close to 800 MB if loaded into memory at once. Now this
may not look like a large memory footprint at first, but the larger the list, the more
system resources it takes to sort it in memory as one large list.

Here is the simplest code for sorting of all the integers present in the disk files after
loading them into memory:

sort_in_memory.py
import sys

all_lists = []

for i in range(int(sys.argv[1])):
 num_list = map(int, open('numbers/numbers_%d.txt' %
i).readlines())
 all_lists += num_list

print('Length of list',len(all_lists))
print('Sorting...')
all_lists.sort()
open('sorted_nums.txt','w').writelines('\n'.join(map(str, all_lists))
+ '\n')
print('Sorted')

This preceding code loads a certain number of files from the disk, each containing
100 integers in the range 1 to 10,000. It reads each file, maps it to a list of integers, and
adds each list to a cumulative list. Finally, the list is sorted and written to a file.

Chapter 5

[229]

The following table shows the time taken to sort a certain number of disk files:

Number of files (n) Time taken for sorting
1000 17.4 seconds
10000 101 seconds
100000 138 seconds
1000000 NA

As you can see, the time taken scales pretty reasonably—less than O(n). However,
this is one problem where more than the time, it is the space—in terms of memory
and operations on it—that matters.

For example, in the machine that was used to conduct the test, an 8 -GB RAM, 4-core
CPU laptop with 64-bit Linux, the test with a million numbers didn't finish. Instead,
it caused the system to hang, so it was not completed.

Sorting disk files – using a counter
If you look at the data, you find that there is an aspect that allows us to treat the
problem as more about space than time. This is the observation that the integers are
in a fixed range with a maximum limit of 10,000.

Hence, instead of loading all the data as separate lists and merging them, one can use
a data structure like a counter.

Here is the basic idea of how this works:

1. Initialize a data structure—a counter, where each integer starts from 1…
10,000 the maximum entry is initialized to zero.

2. Load each file and convert the data to a list. For any number found in the list,
increment its count in the counter data structure initialized in Step 1.

3. Finally, loop through the counter, and output each number with a count
greater than zero so many times, and save the output to a file. The output is
your merged and sorted single file:
sort_counter.py
import sys
import collections

MAXINT = 100000

def sort():
 """ Sort files on disk by using a counter """

Writing Applications that Scale

[230]

counter = collections.defaultdict(int)
for i in range(int(sys.argv[1])):
filename = 'numbers/numbers_%d.txt' % i
for n in open(filename):
counter[n] += 1
print('Sorting...')

with open('sorted_nums.txt','w') as fp:
for i in range(1, MAXINT+1):
 count = counter.get(str(i) + '\n', 0)
if count>0:
fp.write((str(i)+'\n')*count)

print('Sorted')

In the preceding code, we use a defaultdict from the collections module as the
counter. Whenever we encounter an integer, we increment its count. In the end, the
counter is looped through, and each item is output as many times as it was found.

The sort and merge happen due to the way we have converted the problem from
one of sorting integers to one of keeping a count and outputting in a naturally sorted
order.

The following table summarizes the time taken for the sorting of numbers against the
size of the input – in terms of number of disk files:

Number of files (n) Time taken for sorting
1000 16.5 seconds
10000 83 seconds
100000 86 seconds
1000000 359 seconds

Though the performance for the smallest case – that of 1,000 files is similar to that
for the in-memory sort, the performance becomes better as the size of the input
increases. This code also manages to finish the sorting of a million files or 100 million
integers - in about 5m 59s.

Chapter 5

[231]

In timing measurements for processes that read files, there is always
the effect of buffer caches in the kernel. You will find that running the
same performance test successively shows a tremendous improvement,
as Linux caches the contents of the files in its buffer cache. Hence,
subsequent tests for the same input size should be done after clearing
the buffer cache. In Linux, this can be done by the following command:
$ echo 3 > /proc/sys/vm/drop_caches

In our tests for successive numbers, we don't reset the buffer caches
as shown before. This means that runs for higher numbers enjoy a
performance boost from the caches created during the previous runs.
However, since this is done uniformly for each test, the results are
comparable. The cache is reset before starting the test suite for a specific
algorithm.

This algorithm also requires much less memory, since, for each run, the memory
requirements are the same since we are using an array of integers up to MAXINT
and just incrementing the count.

Here is the memory usage of the sort in-memory program for 100,000 files using the
memory_profiler, which we have encountered in the previous chapter.

Memory usage of in-memory sort program for an input of 100,000 files

Writing Applications that Scale

[232]

The following screenshot shows the memory usage for the sort counter for the same
number of files:

Memory usage of counter sort program for an input of 100,000 files

The memory usage of the in-memory sort program at 465 MB is more than six times
that of the counter sort program at 70 MB. Also note, that the sorting operation itself
takes extra memory of nearly 10 MB in the in-memory version.

Sorting disk files – using multiprocessing
In this section, we rewrite the counter sorting program using multiple processes. The
approach is to scale the processing input files for more than one process by splitting
the list of file paths to a pool of processes – and planning to take advantage of the
resulting data parallelism.

Here is the rewrite of the code:

sort_counter_mp.py
import sys
import time
import collections
from multiprocessing import Pool

MAXINT = 100000

def sorter(filenames):

Chapter 5

[233]

 """ Sorter process sorting files using a counter """

 counter = collections.defaultdict(int)

 for filename in filenames:
for i in open(filename):
counter[i] += 1

return counter

def batch_files(pool_size, limit):
""" Create batches of files to process by a multiprocessing Pool """
batch_size = limit // pool_size

filenames = []

for i in range(pool_size):
batch = []
for j in range(i*batch_size, (i+1)*batch_size):
filename = 'numbers/numbers_%d.txt' % j
batch.append(filename)

filenames.append(batch)

return filenames

def sort_files(pool_size, filenames):
""" Sort files by batches using a multiprocessing Pool """

with Pool(pool_size) as pool:
counters = pool.map(sorter, filenames)
with open('sorted_nums.txt','w') as fp:
for i in range(1, MAXINT+1):
count = sum([x.get(str(i)+'\n',0) for x in counters])
if count>0:
fp.write((str(i)+'\n')*count)
print('Sorted')
if __name__ == "__main__":
limit = int(sys.argv[1])
pool_size = 4
filenames = batch_files(pool_size, limit)
sort_files(pool_size,

Writing Applications that Scale

[234]

It is exactly the same code as earlier with the following changes:

1. Instead of processing all the files as a single list, the filenames are put in
batches, with batches equaling the size of the pool.

2. We use a sorter function, which accepts the list of filenames, processes them,
and returns a dictionary with the counts.

3. The counts are summed for each integer in the range from 1 to MAXINT, and
so many numbers are written to the sorted file.

The following table shows the data for processing a different number of files for pool
sizes of 2 and 4 respectively:

Number of files (n) Pool size Time taken for sorting
1,000 2 18 seconds

4 20 seconds
10,000 2 92 seconds

4 77 seconds
100,000 2 96 seconds

4 86 seconds
1,000,000 2 350 seconds

4 329 seconds

The numbers tell an interesting story:

1. The multiple process version one with 4 processes (equal to number of cores
in the machine) has better numbers overall when compared to the one with 2
processes and the single process one.

2. However, the multiple-process version doesn't seem to offer much of a
performance benefit when compared to the single-process version. The
performance numbers are very similar and any improvement is within
bounds of error and variation. For example, for 1 million number input
the multiple process with 4 processes has just an 8% improvement over the
single-process one.

3. This is because the bottleneck here is the processing time it takes to load the
files into memory—in file I/O—not the computation (sorting), as the sorting
is just an increment in the counter. Hence the single process version is pretty
efficient as it is able to load all the file data in the same address space. The
multiple-process ones are able to improve this a bit by loading the files in
multiple address spaces, but not by a lot.

Chapter 5

[235]

This example shows that, in situations where there is not much computation done
but the bottleneck is disk or file I/O, the impact of scaling by multiprocessing is
much less.

Multithreading versus multiprocessing
Now that we have come to the end of our discussion on multiprocessing, it is a good
time to compare and contrast the scenarios where one needs to choose between
scaling using threads in a single process or using multiple processes in Python.

Here are some guidelines.

Use multithreading in the following cases:

1. The program needs to maintain a lot of shared states, especially mutable
ones. A lot of the standard data structures in Python, such as lists,
dictionaries, and others, are thread-safe, so it costs much less to maintain a
mutable shared state using threads than via processes.

2. The program needs to keep a low memory foot-print.
3. The program spends a lot of time doing I/O. Since the GIL is released by

threads doing I/O, it doesn't affect the time taken by the threads to perform
I/O.

4. The program doesn't have a lot of data-parallel operations which it can scale
across multiple processes

Use multiprocessing in these scenarios:

• The program performs a lot of CPU-bound heavy computing such as
byte-code operations, number crunching, and the like on reasonably
large inputs.

• The program has inputs which can be parallelized into chunks and whose
results can be combined afterwards—in other words, the input of the
program yields well to data-parallel computations.

• The program doesn't have any limitations on memory usage, and you are on
a modern machine with a multicore CPU and large enough RAM.

• There is not much shared mutable state between processes that need to be
synchronized—this can slow down the system, and offset any benefits gained
from multiple processes.

• Your program is not heavily dependent on I/O—file or disk I/O or
socket I/O.

Writing Applications that Scale

[236]

Concurrecy in Python – Asynchronous
Execution
We have seen two different ways to perform concurrent execution using multiple
threads and multiple processes. We saw different examples of using threads and
their synchronization primitives. We also saw a couple of examples using multi-
processing with slightly varied outcomes.

Apart from these two ways to do concurrent programming, another common
technique is that of asynchronous programming or asynchronous I/O.

In an asynchronous model of execution, tasks are picked to be executed from a queue
of tasks by a scheduler, which executes these tasks in an interleaved manner. There
is no guarantee that the tasks will be executed in any specific order. The order of
execution of tasks depends upon how much processing time a task is willing to yield
to another task in the queue. Put in other words, asynchronous execution happens
through co-operative multitasking.

Asynchronous execution usually happens in a single thread. This means no true data
parallelism or true parallel execution can happen. Instead, the model only provides a
semblance of parallelism.

As execution happens out of order, asynchronous systems need a way to return the
results of function execution to the callers. This usually happens with callbacks, which
are functions to be called when the results are ready or using special objects that
receive the results, often called futures.

Python 3 provides support for this kind of execution via its asyncio module using
coroutines. Before we go on to discuss this, we will spend some time understanding
pre-emptive multitasking versus cooperative multitasking, and how we can
implement a simple cooperative multitasking scheduler in Python using generators.

Pre-emptive versus cooperative
multitasking
The programs we wrote earlier using multiple threads were examples of
concurrency. However, we didn't have to worry about how and when the operating
system chose to run the thread—we just had to prepare the threads (or processes),
provide the target function, and execute them. The scheduling is taken care of by the
operating system.

Chapter 5

[237]

Every few ticks of the CPU clock, the operating system pre-empts a running thread,
and replaces it with another one in a particular core. This can happen due to different
reasons, but the programmer doesn't have to worry about the details. He just
creates the threads, sets them up with the data they need to process, uses the correct
synchronization primitives, and starts them. The operating system does the rest
including switching and scheduling.

This is how almost all modern operating systems work. It guarantees each thread
a fair share of the execution time, all other things being equal. This is known as
pre-emptive multitasking.

There is another type of scheduling which is the opposite of pre-emptive
multitasking. This is called as co-operative multitasking, where the operating
system plays no role in deciding the priority and execution of competing threads or
processes. Instead, a process or thread willingly yields control for another process
or thread to run. Alternatively, a thread can replace another thread which is idling
(sleeping) or waiting for I/O.

This is the technique used in the asynchronous model of concurrent execution using
co-routines. A function, while waiting for data, say a call on the network that is yet to
return, can yield control for another function or task to run.

Before we go to discuss actual co-routines using asyncio let's write our own
co-operative multitasking scheduler using simple Python generators. It is not
very difficult to do this as you can see below.

generator_tasks.py
import random
import time
import collections
import threading

def number_generator(n):
 """ A co-routine that generates numbers in range 1..n """

 for i in range(1, n+1):
 yield i

def square_mapper(numbers):
 """ A co-routine task for converting numbers to squares """

 for n in numbers:
 yield n*n

def prime_filter(numbers):

Writing Applications that Scale

[238]

 """ A co-routine which yields prime numbers """

 primes = []
 for n in numbers:
 if n % 2 == 0: continue
 flag = True
 for i in range(3, int(n**0.5+1), 2):
 if n % i == 0:
 flag = False
 break

 if flag:
 yield n

def scheduler(tasks, runs=10000):
 """ Basic task scheduler for co-routines """

 results = collections.defaultdict(list)

 for i in range(runs):
 for t in tasks:
 print('Switching to task',t.__name__)
 try:
 result = t.__next__()
 print('Result=>',result)
 results[t.__name__].append(result)
 except StopIteration:
 break

 return results

Let's analyze the preceding code:

• We have four functions—three generators, since they use the yield keyword
to return the data, and a scheduler, which runs a certain set of tasks

• The square_mapper function accepts an iterator, which returns integers
iterating through it, and yields the squares of the members

• The prime_filter function accepts a similar iterator, and filters out numbers
that are not prime, yielding only prime numbers

• The number_generator function acts as the input iterator to both these
functions, providing them with an input stream of integers

Chapter 5

[239]

Let's now look at the calling code which ties all the four functions together.

 import sys

 tasks = []
 start = time.clock()

 limit = int(sys.argv[1])

 # Append sqare_mapper tasks to list of tasks
 tasks.append(square_mapper(number_generator(limit)))
 # Append prime_filter tasks to list of tasks
 tasks.append(prime_filter(number_generator(limit)))

 results = scheduler(tasks, runs=limit)
 print('Last prime=>',results['prime_filter'][-1])
 end = time.clock()
 print('Time taken=>',end-start)

Here is an analysis of the calling code:

• The number generator is initialized with a count, which is received via the
command-line argument. It is passed to the square_mapper function. The
combined function is added as a task to the tasks list.

• A similar operation is performed for the prime_filter function.
• The scheduler method is run by passing the task list to it, which it runs by

iterating through a for loop, running each task one after another. The results
are appended to a dictionary using the function's name as the key, and
returned at the end of execution.

• We print the last prime number's value to verify correct execution, and also
the time taken for the scheduler to process.

Writing Applications that Scale

[240]

Let's see the output of our simple cooperative multitasking scheduler for a limit of
10. This allows us to capture all the input in a single command window, as seen in
the following screenshot:

Output of the simple co-operative multitasking program example for an input of 10

Let's analyze the output:

1. The output of the square_mapper and prime_filter functions alternates
on the console. This is because the scheduler switches between them in the
for loop. Each of the functions are co-routines (generators) so they yield
execution—that is the control is passed from one function to the next—and
vice-versa. This allows both functions to run concurrently, while maintaining
state and producing output.

2. Since we used generators here, they provide a natural way of generating the
result plus yielding control in one go, using the yield keyword.

Chapter 5

[241]

The asyncio module in Python
The asyncio module in Python provides support for writing concurrent,
single-threaded programs using co-routines. It is available only in Python 3.

A co-routine using the asyncio module is one that uses either of the following
approaches:

• Using the async def statement for defining functions
• Being decorated using the @asyncio.coroutine expression

Generator-based co-routines use the second technique, and they yield from
expressions.

Co-routines created using the first technique typically use the await <future>
expression to wait for the future to be completed.

Co-routines are scheduled for execution using an event loop, which connects the
objects and schedules them as tasks. Different types of event loop are provided for
different operating systems.

The following code rewrites our earlier example of a simple cooperative multitasking
scheduler to use the asyncio module:

asyncio_tasks.py
import asyncio

def number_generator(m, n):
 """ A number generator co-routine in range(m...n+1) """
 yield from range(m, n+1)

async prime_filter(m, n):
 """ Prime number co-routine """

 primes = []
 for i in number_generator(m, n):
 if i % 2 == 0: continue
 flag = True

 for j in range(3, int(i**0.5+1), 2):
 if i % j == 0:
 flag = False
 break

 if flag:

Writing Applications that Scale

[242]

print('Prime=>',i)
primes.append(i)

At this point the co-routine suspends execution
so that another co-routine can be scheduled
await asyncio.sleep(1.0)
return tuple(primes)

async def square_mapper(m, n):
""" Square mapper co-routine """
squares = []

for i in number_generator(m, n):
print('Square=>',i*i)
squares.append(i*i)
At this point the co-routine suspends execution
so that another co-routine can be scheduled
await asyncio.sleep(1.0)
return squares

def print_result(future):
print('Result=>',future.result())

Here is how the preceding code works:

1. The number_generator function is a co-routine that yields from the sub-
generator range(m, n+1), which is an iterator. This allows this co-routine to
be called in other co-routines.

2. The square_mapper function is a co-routine of the first type using the async
def keyword. It returns a list of squares using numbers from the number
generator.

3. The prime_filter function is of the same type. It also uses the number
generator, and appends prime numbers to a list and returns it.

4. Both co-routines yield to the other by sleeping, using the asyncio.sleep
function and waiting on it. This allows both co-routines to work concurrently
in an interleaved fashion.

Here is the calling code with the event loop and the rest of the plumbing:

loop = asyncio.get_event_loop()
future = asyncio.gather(prime_filter(10, 50), square_mapper(10, 50))
future.add_done_callback(print_result)
loop.run_until_complete(future)

loop.close()

Chapter 5

[243]

Here is the output of the program. Observe how the results of each of the tasks is
being printed in an interleaved fashion.

Result of executing the asyncio task calculating prime numbers and squares

Let's analyze how the preceding code worked line by line, while following a
top-to-bottom approach:

1. We first get an asyncio event loop using the factory function asyncio.
get_event_loop. This returns the default event loop implementation for the
operating system.

2. We set up an asyncio future object by using the gather method of the
module. This method is used to aggregate results from a set of co-routines
or futures passed as its argument. We pass both the prime_filter and the
square_mapper to it.

3. A callback is added to the future object—the print_result function. It will
be automatically called once the future's execution is completed.

4. The loop is run until the future's execution is completed. At this point, the
callback is called and it prints the result. Note how the output appears
interleaved—as each task yields to the other one using the sleep function of
the asyncio module.

5. The loop is closed and terminates is operation.

Writing Applications that Scale

[244]

Waiting for a future – async and await
We discussed how one could wait for data from a future inside a co-routine using
await. We saw an example that uses await to yield control to other co-routines. Let's
now look at an example that waits for I/O completion on a future, which returns
data from the web.

For this example, you need the aiohttp module which provides an HTTP client
and server to work with the asyncio module and supports futures. We also need the
async_timeout module which allows timeouts on asynchronous co-routines. Both
these modules can be installed using pip.

Here is the code—this is a co-routine that fetches a URL using a timeout and awaits
the future, that is, the result of the operation:

async_http.py
import asyncio
import aiohttp
import async_timeout

@asyncio.coroutine
def fetch_page(session, url, timeout=60):
""" Asynchronous URL fetcher """

with async_timeout.timeout(timeout):
response = session.get(url)
return response

The following is the calling code with the event loop:

loop = asyncio.get_event_loop()
urls = ('http://www.google.com',
 'http://www.yahoo.com',
 'http://www.facebook.com',
 'http://www.reddit.com',
 'http://www.twitter.com')

session = aiohttp.ClientSession(loop=loop)
tasks = map(lambda x: fetch_page(session, x), urls)
Wait for tasks
done, pending = loop.run_until_complete(asyncio.wait(tasks,
 timeout=120))
loop.close()

for future in done:

Chapter 5

[245]

 response = future.result()
 print(response)
 response.close()
 session.close()

loop.close()

What are we doing in the preceding code?

1. We create an event loop and a list of URLs to be fetched. We also create an
instance of aiohttp ClientSession object which is a helper for fetching
URLs.

2. We create a map of tasks by mapping the fetch_page function to each of
the URLs. The session object is passed as first argument to the fetch_page
function.

3. The tasks are passed to the wait method of asyncio with a timeout of 120
seconds.

4. The loop is run until complete. It returns two sets of futures—done and
pending.

5. We iterate through the future that is done, and print the response by fetching
it using the result method of the future.

You can see the result of the operation (the first few lines, as many lines are output)
in the following screenshot:

Output of program doing an async fetch of URLs for 5 URLs

Writing Applications that Scale

[246]

As you can see, we are able to print the responses in terms of a simple summary.
How about processing the response to get more details about it such as the actual
response text, the content length, status code, and so on?

The function below parses a list of done futures—waiting for the response data via
await on the read method of the response. This returns the data for each response
asynchronously:

async def parse_response(futures):
""" Parse responses of fetch """
for future in futures:
response = future.result()
data = await response.text()
 print('Response for URL',response.url,'=>', response.status,
len(data))
 response.close()

The details of the response object—the final URL, status code, and length of data—
are output by this method for each response before closing the response.

We only need to add one more processing step on the list of completed responses for
this to work:

session = aiohttp.ClientSession(loop=loop)
Wait for futures
tasks = map(lambda x: fetch_page(session, x), urls)
done, pending = loop.run_until_complete(asyncio.wait(tasks,
 timeout=300))

One more processing step to parse responses of futures
loop.run_until_complete(parse_response(done))

session.close()
loop.close()

Note how we chain the co-routines together. The final link in the chain is the parse_
response co-routine, which processes the list of done futures before the loop ends.

Chapter 5

[247]

The following screenshot shows the output of the program:

Output of program doing fetching and response processing of 5 URLs asynchronously

A lot of complex programming can be done using the asyncio module. One can
wait for futures, cancel their execution, and run asyncio operations from multiple
threads. A full discussion is beyond the scope of this chapter.

We will move on to another model for executing concurrent tasks in Python, namely
the concurrent.futures module.

Concurrent futures – high-level
concurrent processing
The concurrent.futures module provides high-level concurrent processing using
either threads or processes, while asynchronously returning data using future
objects.

It provides an executor interface which exposes mainly two methods, which are as
follows:

• submit: Submits a callable to be executed asynchronously, returning a
future object representing the execution of the callable.

• map: Maps a callable to a set of iterables, scheduling the execution
asynchronously in the future object. However, this method returns the
results of processing directly instead of returning a list of futures.

There are two concrete implementations of the executor interface:
ThreadPoolExecutor executes the callable in a pool of threads, and
ProcessPoolExecutor does so in a pool of processes.

Writing Applications that Scale

[248]

Here is a simple example of a future object that calculates the factorial of a set of
integers asynchronously:

from concurrent.futures import ThreadPoolExecutor, as_completed
import functools
import operator

def factorial(n):
 return functools.reduce(operator.mul, [i for i in range(1, n+1)])

with ThreadPoolExecutor(max_workers=2) as executor:
 future_map = {executor.submit(factorial, n): n for n in range(10,
21)}
 for future in as_completed(future_map):
 num = future_map[future]
 print('Factorial of',num,'is',future.result())

The following is a detailed explanation of the preceding code:

• The factorial function computes the factorial of a given number iteratively
by using functools.reduce and the multiplication operator

• We create an executor with two workers, and submit the numbers (from 10 to
20) to it via its submit method

• The submission is done via a dictionary comprehension, returning a
dictionary with the future as the key and the number as the value

• We iterate through the completed futures, which have been computed, using
the as_completed method of the concurrent.futures module

• The result is printed by fetching the future's result via the result method

Chapter 5

[249]

When executed, the program prints its output, rather in order, as shown in the next
screenshot:

Output of concurrent futures factorial program

Disk thumbnail generator
In our earlier discussion of threads, we used the example of the generation of
thumbnails for random images from the Web to demonstrate how to work with
threads, and process information.

In this example, we will do something similar. Here, rather than processing random
image URLs from the Web, we will load images from disk, and convert them to
thumbnails using the concurrent.futures function.

We will reuse our thumbnail creation function from before. On top of that, we will
add concurrent processing.

First, here are the imports:

import os
import sys
import mimetypes
from concurrent.futures import ThreadPoolExecutor,
ProcessPoolExecutor, as_completed

Writing Applications that Scale

[250]

Here is our familiar thumbnail creation function:

def thumbnail_image(filename, size=(64,64), format='.png'):
 """ Convert image thumbnails, given a filename """

 try:
 im=Image.open(filename)
 im.thumbnail(size, Image.ANTIALIAS)

 basename = os.path.basename(filename)
 thumb_filename = os.path.join('thumbs',
 basename.rsplit('.')[0] + '_thumb.png')
 im.save(thumb_filename)
 print('Saved',thumb_filename)
 return True

 except Exception as e:
 print('Error converting file',filename)
 return False

We will process images from a specific folder—in this case, the Pictures
subdirectory of the home folder. To process this, we will need an iterator that yields
image filenames. We have written one next with the help of the os.walk function:

def directory_walker(start_dir):
 """ Walk a directory and generate list of valid images """

 for root,dirs,files in os.walk(os.path.expanduser(start_dir)):
 for f in files:
 filename = os.path.join(root,f)
 # Only process if it's a type of image
 file_type = mimetypes.guess_type(filename.lower())[0]
 if file_type != None and file_type.startswith('image/'):
 yield filename

As you can see, the preceding function is a generator.

Chapter 5

[251]

Here is the main calling code, which sets up an executor and runs it over the folder:

 root_dir = os.path.expanduser('~/Pictures/')
 if '--process' in sys.argv:
 executor = ProcessPoolExecutor(max_workers=10)
 else:
 executor = ThreadPoolExecutor(max_workers=10)

 with executor:
 future_map = {executor.submit(thumbnail_image, filename):
 filename for filename in directory_walker(root_dir)}
 for future in as_completed(future_map):
 num = future_map[future]
 status = future.result()
 if status:
 print('Thumbnail of',future_map[future],'saved')

The preceding code uses the same technique of submitting arguments to a function
asynchronously, saving the resultant futures in a dictionary and then processing the
result as and when the futures are finished, in a loop.

To change the executor to use processes, one simply needs to replace
ThreadPoolExecutor with ProcessPoolExecutor; the rest of the code remains the
same. We have provided a simple command-line flag, --process, to make this easy.

Here is an output of a sample run of the program using both thread and process
pools on the ~/Pictures folder—generating around 2000+ images in roughly the
same time.

Output of concurrent futures disk thumbnail program—using thread and process executor

Writing Applications that Scale

[252]

Concurrency options – how to choose?
We are at the end of our discussion of concurrency techniques in Python. We
discussed threads, processes, asynchronous I/O, and concurrent futures. Naturally, a
question arises—when to pick what?

This question has been already answered for the choice between threads and
processes, where the decision is mostly influenced by the GIL.

Here are some rough guidelines for picking your concurrency options.

• Concurrent futures versus multiprocessing: Concurrent futures provide
an elegant way to parallelize your tasks using either a thread or process
pool executor. Hence, it is ideal if the underlying application has similar
scalability metrics with either threads or processes, since it's very easy to
switch from one to the other as we've seen in a previous example. Concurrent
futures can be chosen also when the result of the operation needn't be
immediately available. Concurrent futures is a good option when the data
can be finely parallelized and the operation can be executed asynchronously,
and when the operations involve simple callables without requiring complex
synchronization techniques.
Multiprocessing should be chosen if the concurrent execution is more
complex, and not just based on data parallelism, but has aspects like
synchronization, shared memory, and so on. For example, if the program
requires processes, synchronization primitives, and IPC, the only way to
truly scale up then, is to write a concurrent program using the primitives
provided by the multiprocessing module.
Similarly when your multithreaded logic involves simple parallelization of
data across multiple tasks, one can choose concurrent futures with a thread
pool. However if there is a lot of shared state to be managed with complex
thread synchronization objects—one has to use thread objects and switch to
multiple threads using threading module to get finer control of the state.

• Asynchronous I/O vs threaded concurrency: When your program doesn't
need true concurrency (parallelism), but is dependent more on asynchronous
processing and callbacks, then asyncio is the way to go. Asyncio is a good
choice when there are lot of waits or sleep cycles involved in the application,
such as waiting for user input, waiting for I/O, and so on, and one needs to
take advantage of such wait or sleep times by yielding to other tasks via co-
routines. Asyncio is not suitable for CPU-heavy concurrent processing, or for
tasks involving true data parallelism.

Chapter 5

[253]

AsyncIO seems to be suitable for request-response loops, where a lot of I/O
happens – so its good for writing web application servers which do not have
real-time data requirements.

You can use the points just listed as rough guidelines when deciding on the correct
concurrency package for your applications.

Parallel processing libraries
Apart from the standard library modules that we've discussed so far, Python is also
rich in its ecosystem of third-party libraries, which support parallel processing in
symmetric multi-processing (SMP) or multi-core systems.

We will take a look at a couple of such packages, that are somewhat distinct and
present some interesting features.

Joblib
joblib is a package that provides a wrapper over multiprocessing to execute code
in loops in parallel. The code is written as a generator expression, and interpreted to
execute in parallel over CPU cores using multiprocessing modules behind the scenes.

For example, take the following code which calculates square roots for first
10 numbers:

>>> [i ** 0.5 for i in range(1, 11)]
[1.0, 1.4142135623730951, 1.7320508075688772, 2.0, 2.23606797749979,
2.449489742783178, 2.6457513110645907, 2.8284271247461903, 3.0,
3.1622776601683795]

This preceding code can be converted to run on two CPU cores by the following:

>>> import math
>>> from joblib import Parallel, delayed
 [1.0, 1.4142135623730951, 1.7320508075688772, 2.0,
 2.23606797749979, 2.449489742783178, 2.6457513110645907,
 2.8284271247461903, 3.0, 3.1622776601683795]

Writing Applications that Scale

[254]

Here is another example: this is our primality checker that we had written earlier to
run using multiprocessing, rewritten to use the joblib package:

prime_joblib.py
from joblib import Parallel, delayed

def is_prime(n):
 """ Check for input number primality """

 for i in range(3, int(n**0.5+1), 2):
 if n % i == 0:
 print(n,'is not prime')
 return False

 print(n,'is prime')
 return True

if __name__ == "__main__":
 numbers = [1297337, 1116281, 104395303, 472882027, 533000389,
 817504243, 982451653, 112272535095293, 115280095190773,
 1099726899285419]*100
 Parallel(n_jobs=10)(delayed(is_prime)(i) for i in numbers)

If you execute and time the preceding code, you will find the performance metrics
very similar to that of the version using multiprocessing.

PyMP
OpenMP is an open API, which supports shared memory multiprocessing in
C/C++ and Fortran. It uses special work-sharing constructs such as pragmas (special
instructions to compilers) indicating how to split work among threads or processes.

For example, the following C code using the OpenMP API indicates that the array
should be initialized in parallel using multiple threads:

int parallel(int argc, char **argv)
{
 int array[100000];

 #pragma omp parallel for
 for (int i = 0; i < 100000; i++) {
array[i] = i * i;
 }

return 0;
}

Chapter 5

[255]

PyMP is inspired by the idea behind OpenMP, but uses the fork system call to
parallelize code executing in expressions such as for loops across processes. For this,
PyMP also provides support for shared data structures such as lists and dictionaries,
and also provides a wrapper for numpy arrays.

We will look at an interesting and exotic example—that of fractals—to illustrate how
PyMP can be used to parallelize code and obtain performance improvement.

NOTE: The PyPI package for PyMP is named pymp-pypi so make
sure you use this name when trying to install it via pip. Also note
that it doesn't do a good job of pulling its dependencies such as
numpy, so these have to be installed separately.

Fractals – the Mandelbrot set
The following is the code listing of a very popular class of complex numbers,
which when plotted, produces very interesting fractal geometries, namely,
the Mandelbrot set:

mandelbrot.py
import sys
import argparse
from PIL import Image

def mandelbrot_calc_row(y, w, h, image, max_iteration = 1000):
 """ Calculate one row of the Mandelbrot set with size wxh """

 y0 = y * (2/float(h)) - 1 # rescale to -1 to 1

 for x in range(w):
 x0 = x * (3.5/float(w)) - 2.5 # rescale to -2.5 to 1

 i, z = 0, 0 + 0j
 c = complex(x0, y0)
 while abs(z) < 2 and i < max_iteration:
 z = z**2 + c
 i += 1

 # Color scheme is that of Julia sets
 color = (i % 8 * 32, i % 16 * 16, i % 32 * 8)

Writing Applications that Scale

[256]

 image.putpixel((x, y), color)

def mandelbrot_calc_set(w, h, max_iteration=10000, output='mandelbrot.
png'):
 """ Calculate a mandelbrot set given the width, height and
 maximum number of iterations """

 image = Image.new("RGB", (w, h))

 for y in range(h):
 mandelbrot_calc_row(y, w, h, image, max_iteration)

 image.save(output, "PNG")

if __name__ == "__main__":
 parser = argparse.ArgumentParser(prog='mandelbrot',
description='Mandelbrot fractal generator')
 parser.add_argument('-W','--width',help='Width of the
image',type=int, default=640)
 parser.add_argument('-H','--height',help='Height of the
image',type=int, default=480)
 parser.add_argument('-n','--niter',help='Number of
iterations',type=int, default=1000)
 parser.add_argument('-o','--output',help='Name of output image
file',default='mandelbrot.png')

 args = parser.parse_args()
 print('Creating Mandelbrot set with size %(width)sx%(height)s,
#iterations=%(niter)s' % args.__dict__)
 mandelbrot_calc_set(args.width, args.height, max_iteration=args.
niter, output=args.output)

The preceding code calculates a Mandelbrot set using a certain number of c and a
variable geometry (width x height). It is complete with argument parsing to produce
fractal images of varying geometries, and supports different iterations.

For simplicity's sake, and for producing rather more beautiful
pics than what Mandelbrot usually does, the code takes some
liberties, and uses the color scheme of a related fractal class,
namely, Julia sets.

Chapter 5

[257]

How does it work ? Here is an explanation of the code .

1. The mandelbrot_calc_row function calculates a row of the Mandelbrot
set for a certain value of the y coordinate for a certain number of maximum
iterations. The pixel color values for the entire row, from 0 to width w for the
x coordinate, is calculated. The pixel values are put into the Image object that
is passed to this function.

2. The mandelbrot_calc_set function calls the mandelbrot_calc_row
function for all values of the y coordinate ranging from 0 to the height h of
the image. An Image object (via the Pillow library) is created for the given
geometry (width x height), and filled with pixel values. Finally, we save this
image to a file, and we've got our fractal!

Without further ado, let's see the code in action.

Here is the image that our Mandelbrot program produces for the default number of
iterations namely 1000.

Mandelbrot set fractal image for 1,000 iterations

Writing Applications that Scale

[258]

Here is the time it takes to create this image.

Timing of single process Mandelbrot program—for 1,000 iterations

However, if you increase the number of iterations—the single process version slows
down quite a bit. Here is the output when we increase the number of iterations by
10X—for 10,000 iterations:

Timing of single process Mandelbrot program—for 10,000 iterations

If we look at the code, we can see that there is an outer for loop in the mandelbrot_
calc_set function, which sets things in motion. It calls mandelbrot_calc_row for
each row of the image ranging from 0 to the height of the function, varied by the y
coordinate.

Since each invocation of the mandelbrot_calc_row function calculates one row
of the image, it naturally fits into a data parallel problem, and can be parallelized
sufficiently easily.

In the next section, we will see how to do this using PyMP.

Chapter 5

[259]

Fractals – scaling the Mandelbrot set
implementation
We will use PyMP to parallelize the outer for loop across many processes in a rewrite
of the previous simple implementation of the Mandelbrot set, to take advantage of
the inherent data parallelism in the solution.

Here is the PyMP version of the two functions of the Mandelbrot program. The rest of
the code remains the same.

mandelbrot_mp.py
import sys
from PIL import Image
import pymp
import argparse

def mandelbrot_calc_row(y, w, h, image_rows, max_iteration = 1000):
 """ Calculate one row of the mandelbrot set with size wxh """

 y0 = y * (2/float(h)) - 1 # rescale to -1 to 1

 for x in range(w):
 x0 = x * (3.5/float(w)) - 2.5 # rescale to -2.5 to 1

 i, z = 0, 0 + 0j
 c = complex(x0, y0)
 while abs(z) < 2 and i < max_iteration:
 z = z**2 + c
 i += 1

 color = (i % 8 * 32, i % 16 * 16, i % 32 * 8)
 image_rows[y*w + x] = color

def mandelbrot_calc_set(w, h, max_iteration=10000, output='mandelbrot_
mp.png'):
 """ Calculate a mandelbrot set given the width, height and
 maximum number of iterations """

 image = Image.new("RGB", (w, h))
 image_rows = pymp.shared.dict()

 with pymp.Parallel(4) as p:

Writing Applications that Scale

[260]

 for y in p.range(0, h):
 mandelbrot_calc_row(y, w, h, image_rows, max_iteration)

 for i in range(w*h):
 x,y = i % w, i // w
 image.putpixel((x,y), image_rows[i])

 image.save(output, "PNG")
 print('Saved to',output)

The rewrite mainly involved converting the code to one that builds the Mandelbrot
image line by line, each line of data being computed separately and in a way that it
can be computed in parallel—in a separate process.

• In the single process version, we put the pixel values directly in the image in
the mandelbrot_calc_row function. However, since the new code executes
this function in parallel processes, we cannot modify the image data in it
directly. Instead, the new code passes a shared dictionary to the function,
and it sets the pixel color values in it using the location as key and the pixel
RGB value as value.

• A new shared data structure—a shared dictionary—is hence added to the
mandelbrot_calc_set function, which is finally iterated over, and the pixel
data, filled, in the Image object, which is then saved to the final output.

• We use four PyMP parallel processes, as the machine has four CPU cores,
using a with context and enclosing the outer for loop inside it. This causes the
code to execute in parallel in four cores, each core calculating approximately
25% of the rows. The final data is written to the image in the main process.

Here is the result timing of the PyMP version of the code:

Timing of parallel process Mandelbrot program using PyMP—for 10000 iterations

Chapter 5

[261]

The program is about 33% faster in real time. In terms of CPU usage, you can see that
the PyMP version has a higher ratio of user CPU time to real CPU time, indicating a
higher usage of the CPU by the processes than the single process version.

We can write an even more efficient version of the program by avoiding
the shared data structure image_rows which is used to keep the pixel
values of the image. This version however uses that to show the features
of PyMP. The code archives of this book contain two more versions of
the program—one that uses multiprocessing and another that uses PyMP
without the shared dictionary.

This is the output fractal image produced by this run of the program:

Mandelbrot set fractal image for 10000 iterations using PyMP

You can observe that the colors are different, and this image provides more detail
and a finer structure than the previous one due to the increased number of iterations.

Writing Applications that Scale

[262]

Scaling for the web
So far, all the scalability and concurrency techniques we discussed were involved
with scalability within the confines of a single server or machine—in other words,
scaling up. In real world, applications also scale by scaling out, that is, by spreading
their computation over multiple machines. This is how most real-world web
applications run and scale at present.

We will look at a few techniques, scaling out an application in terms of scaling
communications/workflows, scaling computation, and horizontal scaling using
different protocols.

Scaling workflows – message queues
and task queues
One important aspect of scalability is to reducing coupling between systems. When
two systems are tightly coupled, they prevent each other from scaling beyond a
certain limit.

For example, a code written serially, where data and computation is tied into the
same function, prevents the program from taking advantage of the existing resources
like multiple CPU cores. When the same program is rewritten to use multiple threads
(or processes) and a message passing system like a queue in between, we find it
scales well to multiple CPUs. We've seen such examples aplenty in our concurrency
discussion.

In a much similar way, systems over the Web scale better when they are decoupled.
The classic example is the client/server architecture of the Web itself, where clients
interact via well-known RestFUL protocols like HTTP, with servers located in
different places across the world.

Message queues are systems that allow applications to communicate in a decoupled
manner by sending messages to each other. The applications typically run in
different machines or servers connected to the Internet, and communicate via
queuing protocols.

One can think of a message queue as a scaled-up version of the multi-threaded
synchronized queue, with applications on different machines replacing the threads,
and a shared, distributed queue replacing the simple in-process queue.

Chapter 5

[263]

Message queues carry packets of data called messages, which are delivered from
the Sending Applications to the Receiving Applications. Most Message Queues
provide store and forward semantics, where the message is stored on the queue till
the receiver is available to process the message.

Here is a simple schematic model of a Message Queue:

Schematic model of a distributed message queue

The most popular and standardized implementation of a message queue or message-
oriented middleware (MoM) is the Advanced Message Queuing Protocol (AMQP).
AMQP provides features such as queuing, routing, reliable delivery, and security.
The origins of AMQP are in the financial industry, where reliable and secure
message delivery semantics are of critical importance.

The most popular implementations of AMQP (version 1.0) are Apache Active MQ,
RabbitMQ, and Apache Qpid.

RabbitMQ is a MoM written in Erlang. It provides libraries in many languages
including Python. In RabbitMQ, a message is always delivered via exchanges via
routing keys which indicate the queues to which the message should be delivered.

We won't be discussing RabbitMQ in this section anymore, but will move on to a
related, but slightly different, middleware with a varying focus, namely, Celery.

Writing Applications that Scale

[264]

Celery – a distributed task queue
Celery is a distributed task queue written in Python, which works using distributed
messages. Each execution unit in celery is called a task. A task can be executed
concurrently on one or more servers using processes called workers. By default,
Celery achieves this using multiprocessing, but it can also use other backends
such as gevent, for example.

Tasks can be executed synchronously or asynchronously with results available in the
future, like objects. Also, task results can be stored in storage backend such as Redis,
databases, or in files.

Celery differs from message queues in that the basic unit in celery is an executable
task—a callable in Python—rather than just a message.

Celery, however, can be made to work with message queues. In fact, the default
broker for passing messages in celery is RabbitMQ, the popular implementation of
AMQP. Celery can also work with Redis as the broker backend.

Since Celery takes a task, and scales it over multiple workers, over multiple servers,
it is suited to problems involving data parallelism as well as computational scaling.
Celery can accept messages from a queue and distribute it over multiple machines
as tasks for implementing a distributed e-mail delivery system, for example, and
achieve horizontal scalability. Or, it can take a single function and perform parallel
data computation by splitting the data over multiple processes, achieving parallel
data processing.

In the following example, we will take our Mandelbrot fractal program and,
rewrite it to work with Celery. We will try to scale the program by performing data
parallelism, in terms of computing the rows of the Mandelbrot set over multiple
celery workers—in a similar way to what we did with PyMP.

The Mandelbrot set using Celery
For implementing a program to take advantage of Celery, it needs to be implemented
as a task. This is not as difficult as it sounds. Mostly, it just involves preparing an
instance of the celery app with a chosen broker backend, and decorating the callable
we want to parallelize—using the special decorator @app.task where app is an
instance of Celery.

Chapter 5

[265]

We will look at this program listing step by step, since it involves a few new things.
The software requirements for this session are as follows:

• Celery
• An AMQP backend; RabbitMQ is preferred
• Redis as a result storage backend

First we will provide the listing for the Mandelbrot tasks module:

mandelbrot_tasks.py
from celery import Celery

app = Celery('tasks', broker='pyamqp://guest@localhost//',
 backend='redis://localhost')

@app.task
def mandelbrot_calc_row(y, w, h, max_iteration = 1000):
 """ Calculate one row of the mandelbrot set with size w x h """

 y0 = y * (2/float(h)) - 1 # rescale to -1 to 1

 image_rows = {}
 for x in range(w):
 x0 = x * (3.5/float(w)) - 2.5 # rescale to -2.5 to 1

 i, z = 0, 0 + 0j
 c = complex(x0, y0)
 while abs(z) < 2 and i < max_iteration:
 z = z**2 + c
 i += 1

 color = (i % 8 * 32, i % 16 * 16, i % 32 * 8)
 image_rows[y*w + x] = color

 return image_rows

Writing Applications that Scale

[266]

Let's analyze the preceding code:

• We first do the imports required for Celery. This requires importing the
Celery class from the celery module.

• We prepare an instance of the Celery class as the Celery app using
AMQP as the message broker and Redis as the result backend. The AMQP
configuration will use whatever AMQP MoM is available on the system.
(In this case, it is RabbitMQ.)

• We have a modified version of mandelbrot_calc_row. In the PyMP version,
the image_rows dictionary was passed as an argument to the function. Here,
the function calculates it locally and returns a value. We will use this return
value at the receiving side to create our image.

• We decorated the function using @app.task, where app is the Celery
instance. This makes it ready to be executed as a Celery task by the
Celery workers.

Next is the main program, which calls the task for a range of y input values and
creates the image:

celery_mandelbrot.py
import argparse
from celery import group
from PIL import Image
from mandelbrot_tasks import mandelbrot_calc_row

def mandelbrot_main(w, h, max_iterations=1000,
output='mandelbrot_celery.png'):
 """ Main function for mandelbrot program with celery """

 # Create a job – a group of tasks
 job = group([mandelbrot_calc_row.s(y, w, h, max_iterations) for y
in range(h)])
 # Call it asynchronously
 result = job.apply_async()

 image = Image.new('RGB', (w, h))

 for image_rows in result.join():
 for k,v in image_rows.items():
 k = int(k)
 v = tuple(map(int, v))

Chapter 5

[267]

 x,y = k % args.width, k // args.width
 image.putpixel((x,y), v)

 image.save(output, 'PNG')
 print('Saved to',output)

The argument parser is the same, so is not reproduced here.

This last bit of code introduces some new concepts in Celery, so needs some
explanation. Let's analyze the code in some detail:

1. The mandelbrot_main function is similar to the previous mandelbrot_calc_
set function in its arguments.

2. This function sets up a group of tasks, each performing mandelbrot_calc_
row execution on a given y input over the entire range of y inputs from 0 to
the height of the image. It uses the group object of Celery to do this. A group
is a set of tasks which can be executed together.

3. The tasks are executed by calling the apply_async function on
the group. This executes the tasks asynchronously in the background in
multiple workers. We get an async result object in return—the tasks are not
completed yet.

4. We then wait on this result object by calling join on it, which returns the
results—the rows of the image as a dictionary from each single execution
of the mandelbrot_calc_row task. We loop through this, and do integer
conversions for the values, since Celery returns data as strings, and put the
pixel values in the image.

5. Finally, the image is saved in the output file.

Writing Applications that Scale

[268]

So, how does Celery execute the tasks? This needs the Celery program to run,
processing the tasks module with a certain number of workers. Here is how we start
it in this case:

Celery console—workers starting up with the Mandelbrot task as target

The command starts Celery with tasks loaded from the module mandelbrot_tasks.
py with a set of 4 worker processes. Since the machine has 4 CPU cores, we have
chosen this as the concurrency.

Note that Celery will automatically default the workers to the
number of cores if not specifically configured.

The program ran under 15 seconds, twice as fast in as the single-process version, and
also the PyMP version.

Chapter 5

[269]

If you observe the Celery console, you will find a lot of messages getting echoed,
since we configured Celery with the INFO log level. All these are info messages with
data on the tasks and their results:

The following screenshot shows the result of the run for 10000 iterations. This
performance is slightly better than that of the similar run by the PyMP version earlier,
by around 20 seconds:

Celery Mandelbrot program for a set of 10000 iterations.

Celery is used in production systems in many organizations. It has plugins for some
of the more popular Python web application frameworks. For example, Celery
supports Django out-of-the-box with some basic plumbing and configuration. There
are also extension modules such as django-celery-results, which allow the
programmer to use the Django ORM as a Celery results backend.

It is beyond the scope of this chapter and book to discuss this in detail, so the reader
is advised to refer to the documentation available on this on the Celery project
website.

Serving with Python on the Web – WSGI
Web Server Gateway Interface (WSGI) is a specification for a standard interface
between Python web application frameworks and web servers.

In the early days of Python web applications, there was a problem connecting web
application frameworks to web servers, since there was no common standard.
Python web applications were designed to work with one of the existing standards
of CGI, FastCGI, or mod_python (Apache). This meant that an application written to
work with one web server might not be able to work with another. In other words,
interoperability between the uniform application and web server was missing.

Writing Applications that Scale

[270]

WSGI solved this problem by specifying a simple, but uniform, interface between
servers and web application frameworks to allow for portable web application
development.

WSGI specifies two sides: the server (or gateway) side, and the application or
framework side. A WSGI request gets processed as follows:

• The server side executes the application, providing it with an environment
and a callback function

• The application processes the request, and returns the response to the server
using the provided callback function

Here is a schematic diagram showing the interaction between a web server and web
application using WSGI:

Schematic diagram showing WSGI protocol interaction

The following is the simplest function that is compatible with the application or
framework side of WSGI:

def simple_app(environ, start_response):
 """Simplest possible application object"""

 status = '200 OK'
 response_headers = [('Content-type', 'text/plain')]
 start_response(status, response_headers)
 return ['Hello world!\n']

Chapter 5

[271]

The preceding function can be explained as follows:

1. The environ variable is a dictionary of environment variables passed from
the server to the application as defined by the Common Gateway Interface
(CGI) specification. WSGI makes a few of these environment variables
mandatory in its specification.

2. The start_response is a callable provided as a callback from the server side
to the application side, to start response processing on the server side. It must
take two positional arguments. The first should be a status string with an
integer status code, and the second, a list of (header_name, header_value),
tuples describing the HTTP response header.

For more details, the reader can refer to the WSGI specification v1.0.1,
which is published on the Python language website as PEP 3333.
Python Enhancement Proposal (PEP) is a design document on the
Web, that describes a new feature or feature suggestion for Python,
or provides information to the Python community about an existing
feature. The Python community uses PEPs as a standard process for
describing, discussing, and adopting new features and enhancements
to the Python programming language and its standard library.

WSGI middleware components are software that implement both sides of the
specification, and hence, provide capabilities such as the following:

• Load balancing of multiple requests from a server to an application
• Remote processing of requests by forwarding requests and responses over a

network
• Multi-tenancy or co-hosting of multiple servers and/or applications in the

same process
• URL-based routing of requests to different application objects

The middleware sits in between the server and application. It forwards requests from
server to the application and responses from application to the server.

There are a number of WSGI middleware an architect can choose from. We will
briefly look at two of the most popular ones, namely, uWSGI and Gunicorn.

Writing Applications that Scale

[272]

uWSGI – WSGI middleware on steroids
uWSGI is an open source project and application, which aims to build a full stack for
hosting services. The WSGI of the uWSGI project stems from the fact that the WSGI
interface plugin for Python was the first one developed in the project.

Apart from WSGI, the uWSGI project also supports Perl Webserver Gateway
Interface (PSGI) for Perl web applications, and the rack web server interface for
Ruby web applications. It also provides gateways, load balancers, and routers for
requests and responses. The Emperor plugin of uWSGI provides management and
monitoring of multiple uWSGI deployments of your production system across
servers.

The components of uWSGI can run in preforked, threaded, asynchronous. or green-
thread/co-routine modes.

uWSGI also comes with a fast and in-memory caching framework, which allows
the responses of the web applications to be stored in multiple caches on the
uWSGI server. The cache can also be backed with a persistence store such as a file.
Apart from a multitude of other things, uWSGI also supports virtualenv based
deployments in Python.

uWSGI also provides a native protocol that is used by the uWSGI server. uWSGI
version 1.9 also adds native support for the web sockets.

Here is a typical example of a uWSGI configuration file:

[uwsgi]

the base directory (full path)
chdir = /home/user/my-django-app/
Django's wsgi file
module = app.wsgi
the virtualenv (full path)
home = /home/user/django-virtualenv/
process-related settings
master = true
maximum number of worker processes
processes = 10
the socket
socket = /home/user/my-django-app/myapp.sock
clear environment on exit
vacuum = true

Chapter 5

[273]

A typical deployment architecture with uWSGI looks like that depicted in the
following diagram. In this case, the web server is Nginx, and the web application
framework is Django. uWSGI is deployed in a reverse-proxy configuration with
Nginx, forwarding requests and responses between Nginx and Django:

uWSGI deployment with Nginx and Django

The Nginx web server supports a native implementation of the uWSGI
protocol since version 0.8.40. There is also a proxy module support for
uWSGI in Apache named mod_proxy_uwsgi.

uWSGI is an ideal choice for Python web application production deployments where
one needs a good balance of customization with high performance and features. It is
the swiss-army-knife of components for WSGI web application deployments.

Writing Applications that Scale

[274]

Gunicorn – unicorn for WSGI
The Gunicorn project is another popular WSGI middleware implementation,
which is open source. It uses a preforked model, and is a ported version from the
unicorn project of Ruby. There are different worker types in Gunicorn, like uWSGI
supporting synchronous and asynchronous handling of requests. The asynchronous
workers make use of the Greenlet library which is built on top of gevent.

There is a master process in Gunicorn that runs an event loop, processing and
reacting to various signals. The master manages the workers, and the workers
process the requests, and send responses.

Gunicorn versus uWSGI
Here are a few guidelines when choosing whether to go with Gunicorn or uWSGI for
your Python web application deployments:

• For simple application deployments which don't need a lot of customization,
Gunicorn is a good choice. uWSGI has a bigger learning curve when
compared to Gunicorn, and it takes a while to get used to. The defaults in
Gunicorn work pretty well for most deployments.

• If your deployment is homogenously Python, then Gunicorn is a good
choice. On the other hand, uWSGI allows you to perform heterogeneous
deployments due to its support for other stacks such as PSGI and Rack.

• If you want a more full-featured WSGI middleware, which is heavily
customizable, then uWSGI is a safe bet. For example, uWSGI makes Python
virtualenv-based deployments simple, whereas, Gunicorn doesn't natively
support virtualenv; instead, Gunicorn itself has to be deployed in the virtual
environment.

• Since Nginx supports uWSGI natively, it is very commonly deployed along
with Nginx on production systems. Hence, if you use Nginx, and want a full-
featured and highly customizable WSGI middleware with caching, uWSGI is
the default choice.

• With respect to performance, both Gunicorn and uWSGI score similarly on
different benchmarks published on the web.

Chapter 5

[275]

Scalability architectures
As discussed, a system can scale vertically, or horizontally, or both. In this section, we
will briefly look at a few of the architectures that an architect can choose from when
deploying his systems to production to take advantage of the scalability options.

Vertical scalability architectures
Vertical scalability techniques come in the following two flavors:

• Adding more resources to an existing system: This could mean adding
more RAM to a physical or virtual machine, adding more vCPUs to a virtual
machine or VPS, and so on. However, none of these options are dynamic, as
they require stopping, reconfiguring, and restarting the instance.

• Making better use of existing resources in the system: We have spent a
lot of this chapter discussing this approach. This is when an application
is rewritten to make use of the existing resources, such as multiple CPU
cores, and more effectively by concurrency techniques such as threading,
multiple processes, and/or asynchronous processing. This approach scales
dynamically, since no new resource is added to the system, and hence, there
is no need for a stop/start.

Horizontal scalability architectures
Horizontal scalability involves a number of techniques that an architect can add to
his tool box, and pick and choose from. They include the ones listed next:

• Active redundancy: This is the simplest technique of scaling out, which
involves adding multiple, homogenous processing nodes to a system
typically fronted with a load balancer. This is a common practice for scaling
out web application server deployments. Multiple nodes make sure that,
even if one or a few of the systems fail, the remaining systems continue to
carry out request processing, ensuring no downtime for your application.
In a redundant system, all the nodes are actively in operation, though only
one or a few of them may be responding to requests at a specific time.

• Hot standby: A hot standby (hot spare) is a technique used to switch to a
system that is ready to server requests, but is not active until the moment the
main system goes down. A hot spare is in many ways exactly similar to the
main node(s) that is serving the application. In the event of a critical failure,
the load balancer is configured to switch to the hot spare.

Writing Applications that Scale

[276]

The hot spare itself may be a set of redundant nodes instead of just a single node.
Combining redundant systems with a hot spare ensures maximum reliability and
failover.

A variation of a hot standby is a software standby, which provides
a mode in the application that switches the system to a minimum
Quality of Service (QoS) instead of offering the full feature at extreme
load. An example is a web application that switches to the read-only
mode under high loads, serving most users but not allowing writes.

• Read replicas: The response of a system that is dependent on read-heavy
operations on a database can be improved by adding read-replicas of the
database. Read replicas are essentially database nodes that provide hot
backups (online backups), which constantly sync from the main database
node. Read replicas, at a given point in time, may not be exactly consistent
with the main database node, but they provide eventual consistency with
SLA guarantees.
Cloud service providers such as Amazon make their RDS database service
available with a choice of read replicas. Such replicas can be distributed
geographically closer to your active user locations to ensure less response
time and failover in case the master node goes down, or doesn't respond.
Read replicas basically offer your system a kind of data redundancy.

• Blue-green deployments: This is a technique where two separate systems
(labeled blue and green in the literature) are run side by side. At any given
moment, only one of the systems is active and is serving requests. For
example, blue is active, green is idle.
When preparing a new deployment, it is done on the idle system. Once the
system is ready, the load balancer is switched to the idle system (green), and
away from the active system (blue). At this point, green is active, and blue is
idle. The positions are reversed again in the next switch.
Blue-green deployments, if done correctly, ensure zero to minimum
downtime of your production applications.

• Failure monitoring and/or restart: A failure monitor is a system that detects
failure of critical components—software or hardware—of your deployments,
and either notifies you, and/or takes steps to mitigate the downtime.
For example, you can install a monitoring application on your server
that detects when a critical component, say, a Celery or RabbitMQ server,
goes down, sends an e-mail to the DevOps contact, and also tries to restart
the daemon.

Chapter 5

[277]

Heartbeat monitoring is another technique where a software actively sends
pings or heartbeats to a monitoring software or hardware, which could be in
the same machine or another server. The monitor will detect the downtime
of the system if it fails to send the heartbeat after a certain interval, and could
then inform and/or try to restart the component.
Nagios is an example of a common production monitoring server, usually
deployed in a separate environment, and monitors your deployment servers.
Other examples of system-switch monitors and restart components are
Monit and Supervisord.
Apart from these techniques, the following best practices should be followed
when performing system deployments to ensure scalability, availability, and
redundancy/failover:

• Cache it: Use caches, and, if possible, distributed caches, in your system
as much as possible. Caches can be of various types. The simplest possible
cache is caching static resources on the content delivery network (CDN)
of your application service provider. Such a cache ensures geographic
distribution of resources closer to your users, which reduces response,
and hence, page-load times.
A second kind of cache is your application's cache, where it caches responses
and database query results. Memcached and Redis are commonly used for
these scenarios, and they provide distributed deployments, typically, in
master/slave modes. Such caches should be used to load and cache most
commonly requested content from your application with proper expiry times
to ensure that the data is not too stale.
Effective and well-designed caches minimize system load, and avoid
multiple, redundant operations that can artificially increase load on a system
and decrease performance:

• Decouple: As much as possible, decouple your components to take
advantage of the shared geography of your network. For example, a message
queue may be used to decouple components in an application that need
to publish and subscribe data instead of using a local database or sockets
in the same machine. When you decouple, you automatically introduce
redundancy and data backup to your system, since the new components you
add for decoupling—message queues, task queues, and distributed caches—
typically come with their own stateful storage and clustering.
The added complexity of decoupling is the configuration of the extra
systems. However, in this day and age, with most systems being able to
perform auto configuration or provide simple web-based configurations,
this is not an issue.

Writing Applications that Scale

[278]

You can refer to literature for application architectures that provide
effective decoupling, such as observer patterns, mediators, and other such
middleware:

• Gracefully degrade: Rather than being unable to answer a request and
providing timeouts, arm your systems with graceful degradation behaviors.
For example, a write-heavy web application can switch to the read-
only mode under heavy load when it finds that the database node is not
responding. Another example is when a system which provides heavy, JS-
dependent dynamic web pages could switch to a similar static page under
heavy loads on the server when the JS middleware is not responding well.
Graceful degradation can be configured on the application itself, or on the
load balancers, or both. It is a good idea to prepare your application itself to
provide a gracefully downgraded behavior, and configure the load balancer
to switch to that route under heavy loads.

• Keep data close to the code: A golden rule of performance-strong software
is to provide data closer to where the computation is. For example, if your
application is making 50 SQL queries to load data from a remote database for
every request, then you are not doing this correctly.
Providing data close to the computation reduces data access and transport
times, and hence, processing times, decreasing latency in your application,
and making it more scalable.
There are different techniques for this: caching, as discussed earlier, is a
favored technique. Another one is to split your database to a local and
remote one, where most of the reads happen from the local read replica, and
writes (which can take time) happen to a remote write master. Note that
local, in this sense, may not mean the same machine, but typically, the same
data center, sharing the same subnet if possible.
Also, common configurations can be loaded from an on-disk database
like SQLite or local JSON files, reducing the time it takes for preparing the
application instances.
Another technique is to not store any transactional state in the application
tier or the frontend, but to move the state closer to the backend where the
computation is. Since this makes all application server nodes equal in terms
of not having any intermediate state, it also allows you to front them with a
load-balancer, and provide a redundant cluster of equals, any of which can
serve a given request.

• Design according to SLAs: It is very important for an architect to understand
the guarantees that the application provides to its users, and design the
deployment architecture accordingly.

Chapter 5

[279]

The CAP theorem ensures that, if a network partition in a distributed system fails,
the system can guarantee only one of consistency or availability at a given time. This
groups distributed systems into two common types, namely, CP and AP systems.

Most web applications in today's world are AP. They ensure availability, but data
is only eventually consistent, which means they will serve stale data to users in case
one of the systems in the network partition, say the master DB node, fails.

On the other hand, a number of businesses such as banking, finance, and healthcare
need to ensure consistent data, even if there is a network partition failure. These are
CP systems. The data in such systems should never be stale, so, in case of a choice
between availability and consistent data, they will choose the latter.

The choice of software components, application architecture, and the final
deployment architecture are influenced by these constraints. For example, an AP
system can work with NoSQL databases which guarantee eventual consistent
behavior. It can make better use of caches. A CP system, on the other hand, may need
ACID guarantees provided by Relational Database Systems (RDBMs).

Summary
In this chapter, we reused a lot of ideas and concepts that you learned in the previous
chapter on performance.

We started with a definition of scalability, and looked at its relationship with other
aspects like concurrency, latency, and performance. We briefly compared and
contrasted concurrency and its close cousin, parallelism.

We then went on to discuss various concurrency techniques in Python with detailed
examples and performance comparisons. We used a thumbnail generator with
random URLs from the Web as an example to illustrate the various techniques of
implementing concurrency using multi-threading in Python. You also learned and
saw an example of the producer/consumer pattern, and, using a couple of examples,
learned how to implement resource constraints and limits using synchronization
primitives.

Next we discussed how to scale applications using multiprocessing and saw a couple
of examples using the multiprocessing module—such as a primality checker which
showed us the effects of GIL on multiple threads in Python and a disk file sorting
program which showed the limits of multiprocessing when it comes to scaling
programs using a lot disk I/O .

Writing Applications that Scale

[280]

We looked at asynchronous processing as the next technique of concurrency. We saw
a generator based co-operative multitasking scheduler and also its counterpart using
asyncio. We saw a couple of examples using asyncio and learned how to perform
URL fetches using the aiohttp module asynchronously. The section on concurrent
processing compared and contrasted concurrent futures with other options on
concurrency in Python while sketching out a couple of examples.

We used Mandelbrot fractals as an example to show how to implement data parallel
programs and showed an example of using PyMP to scale a Mandelbrot fractal
program across multiple processes and hence multiple cores.

Next we went on to discuss how to scale your programs out on the Web. We briefly
discussed the theoretical aspect of message queues and task queues. We looked at
Celery, the Python task queue library, and rewrote the Mandelbrot program to scale
using Celery workers, and did performance comparisons.

WSGI, Python's way of serving web applications over web servers, was the next
topic of discussion. We discussed the WSGI specification, and compared and
contrasted two popular WSGI middleware, namely, uWSGI and Gunicorn.

Towards the end of the chapter, we discussed scalability architectures, and looked
at the different options of scaling vertically and horizontally on the Web. We
also discussed some best practices an architect should follow while designing,
implementing, and deploying distributed applications on the web for achieving
high scalability.

In the next chapter, we discuss the issue of security in software architecture and
discuss aspects of security the architect should be aware of and strategies for making
your applications secure.

[281]

Security – Writing
Secure Code

Security of software applications (or lack of it) has been attracting a lot of importance
in the past few years in the industry and the media. It seems that every other
day, we hear about an instance or two of malicious hackers causing massive data
breaches in software systems in different parts of the world, and causing millions
of dollars worth of losses. The victims are either government departments, financial
institutions, firms handling sensitive customer data such as passwords, credit cards,
and so on.

Software security and secure coding has assumed more importance than ever due
to the unprecedented amounts of data being shared across software and hardware
systems—the explosion of smart personal technologies such as smart phones, smart
watches, smart music players, and other smart systems has aided this immense
traffic of data across the Internet in a big way. With the advent of IPv6 and expected
large scale adoption of IoT devices (Internet of Things) in the next few years, the
amount of data is only going to increase exponentially.

As we discussed in the first chapter, security is an important aspect of software
architecture. Apart from architecting systems with secure principles, architects
should also try to imbibe their team with secure coding principles to minimize
security pitfalls in the code written by them.

In this chapter, we will look at the principles of architecting secure systems, and also
look at tips and techniques for writing secure code in Python.

Security – Writing Secure Code

[282]

The topics we will be discussing can be summed up in the following list:

• Information security architecture
• Secure coding
• Common security vulnerabilities
• Is Python secure?

 ° Reading input
 ° Evaluating arbitrary input
 ° Overflow errors
 ° Serializing objects
 ° Security issues with web applications

• Strategies for Security – Python
• Secure coding strategies

Information security architecture
A secure architecture involves creating a system that is able to provide access to
data and information to authorized people and systems while preventing any
unauthorized access. Creating an architecture for information security for your
systems involves the following aspects:

• Confidentiality: A set of rules or procedures that restricts the envelope of
access to information in the system. Confidentiality ensures that data is not
exposed to unauthorized access or modification.

• Integrity: Integrity is the property of the system which ensures that the
information channels are trustworthy and reliable and that the system is free
from external manipulations. In other words, integrity ensures the data can
be trusted as it flows through the system across its components.

• Availability: Property that the system will ensure a level of service to
its authorized users according to its Service Level Agreements (SLAs).
Availability ensures that the system will not deny service to its
authorized users.

Chapter 6

[283]

The three aspects of confidentiality, integrity, and availability, often called the CIA
triad form the corner stones of building an information security architecture for
your system.

CIA triad of information security architecture

These aspects are aided by other characteristics, such as the following:

• Authentication: This verifies the identity of the participants of a transaction,
and ensures that they are actually those who they purport to be. Examples
are digital certificates used in e-mail, public keys used to log in to systems,
and the like.

• Authorization: This gives rights to a specific user/role to perform a specific
task or groups of related tasks. Authorization ensures that certain groups of
users are tied to certain roles, which limit their access and modification rights
in the system.

• Non-reputability: This refers to security techniques that guarantee that users
involved in a transaction cannot later deny that the transaction happened.
For example, a sender of an e-mail cannot later deny that they had sent
the e-mail; a recipient of a bank funds transfer cannot later deny that they
received the money, and so on.

Security – Writing Secure Code

[284]

Secure coding
Secure coding is the practice of software development that guards programs against
security vulnerabilities, and makes it resistant to malicious attacks right from
program design to implementation. It is about writing code that is inherently secure,
as opposed to thinking of security as a layer which is added on later.

The philosophies behind secure coding include the following:

• Security is an aspect to be considered right from the design and development
of a program or application; it is not an afterthought.

• Security requirements should be identified early in the development cycle,
and these should be propagated to subsequent stages of development of the
system to make sure that compliance is maintained.

• Use threat modeling to anticipate security threats to the system from the
beginning. Threat modeling involves the following:

1. Identifying important assets (code/data)
2. Decomposing the application into components
3. Identifying and categorizing threats to each asset or component
4. Ranking the threats based on an established risk model
5. Developing threat mitigation strategies

The practice or strategies of secure coding include the following main tasks:

1. Definition of areas of interest of the application: Identify important assets
in code/data of the application which are critical and need to be secured.

2. Analysis of software architecture: Analyze the software architecture for
obvious security flaws. Secure interaction between components in order to
help ensure data confidentiality and integrity. Ensure confidential data is
protected via proper authentication and authorization techniques. Ensure
availability is built into the architecture from the ground up.

3. Review of implementation details: Review the code using secure coding
techniques. Ensure peer review is done with a view to finding security holes.
Provide feedback to the developer and make sure the required changes
are made.

4. Verification of logic and syntax: Review code logic and syntax to
ensure there are no obvious loopholes in the implementation. Make sure
programming is done keeping with in commonly available secure coding
guidelines of the programming language/platform.

Chapter 6

[285]

5. Whitebox/Unit Testing: The developer unit tests his code with security tests
apart from tests ensuring functionality. Mock data and/or APIs can be used
to virtualize third party data/API required for testing.

6. Blackbox Testing: The application is tested by an experienced QA engineer
who looks for security loopholes such as unauthorized access to data,
pathways accidentally exposing code and or data, weak passwords or hashes
etc. The testing reports are fed back the stakeholders including the architect
to make sure the loopholes identified are fixed.

Common security vulnerabilities
So what are the common security vulnerabilities, a professional programmer today
should be prepared to face and mitigate during the course of their career? Looking at
the available literature, these can be organized into a few specific categories:

• Overflow errors: These include the popular and often abused buffer
overflow errors, and the lesser known but still vulnerable arithmetic or
integer overflow errors:

 ° Buffer overflow: Buffer overflows are produced by programming
errors that allow an application to write past the end or beginning of
a buffer. Buffer overflows allow attackers to take control of systems
by gaining access to the applications stack or heap memory by
carefully crafted attack data.

 ° Integer or arithmetic overflow: These errors occur when an
arithmetic or mathematical operation on integers produces a result
that is too large for the maximum size of the type used to store it.

Integer overflows can create security vulnerabilities if they are not properly
handled. In programming languages supporting signed and unsigned
integers, overflows can cause the data to wrap and produce negative
numbers, allowing the attacker with a result similar to buffer overflows to
gain access to heap or stack memory outside the program execution limits.

Security – Writing Secure Code

[286]

• Unvalidated/Improperly validated input: A very common security
issue with modern web applications, unvalidated input can cause major
vulnerabilities, where attackers can trick a program into accepting malicious
input such as code data or system commands, which, when executed, can
compromise a system. A system that aims to mitigate this type of attack
should have filters to check and remove content that is malicious, and only
accept data that is reasonable and safe to the system.
Common subtypes of this type of attack include SQL injections, Server-Side
Template Injections, Cross-Site-Scripting (XSS), and Shell Execution Exploits.
Modern web application frameworks are vulnerable to this kind of attack
due to use of HTML templates which mix code and data, but many of them
have standard mitigation procedures such as escaping or filtering of input.

• Improper access control: Modern day applications should define separate
roles for their classes of users, such as regular users, and those with special
privileges, such as superusers or administrators. When an application fails
to do this or does it incorrectly, it can expose routes (URLs) or workflows
(series of actions specified by specific URLs containing attack vectors), which
can either expose sensitive data to attackers, or, in the worst case, allow an
attacker to compromise and take control of the system.

• Cryptography issues: Simply ensuring that access control is in place is not
enough for hardening and securing a system. Instead, the level and strength
of security should be verified and ascertained; otherwise, your system can
still be hacked or compromised. Some examples are as follows:

 ° HTTP instead of HTTPS: When implementing RESTFul web
services, make sure you favor HTTPS (SSL/TLS) over HTTP. In
HTTP, all communication is in plain text between the client and
server, and can be easily captured by passive network sniffers or
carefully crafted packet capture software or devices installed in
routers.
Projects like letsencrypt have made life easy for system
administrators for procuring and updating free SSL certificates, so
securing your servers using SSL/TLS is easier these days than ever
before.

Chapter 6

[287]

 ° Insecure authentication: Prefer secure authentication techniques
on a web server over insecure ones. For example, prefer HTTP
Digest authentication to Basic authentication on web servers, as, in
the latter, passwords are sent in the clear. Similarly, use Kerberos
authentication in a large shared network over less secure alternatives
such as Lightweight Directory Access Protocol (LDAP) or NT LAN
Manager (NTLM).

 ° Use of weak passwords: Easy-to-guess or default/trivial passwords
are the bane of many modern-day web applications.

 ° Reuse of secure hashes/secret keys: Secure hashes or secret keys
are usually specific to an application or project and should never be
reused across applications. Whenever required, generate fresh hashes
and or keys.

 ° Weak encryption techniques: Ciphers used in encrypting
communication, either on the server (SSL certificates) or personal
computers (GPG/PGP keys), should use high-grade security – of at
least 2048 bits and use peer-reviewed and crypto-safe algorithms.

 ° Weak hashing techniques: Just as in ciphers, hashing techniques
used to keep secrets and salts of sensitive data such as passwords,
should be careful in choosing strong algorithms. For example, if one
is writing an application that requires hashes to be computed and
stored today, they would be better off using the SHA-1 or SHA-2
algorithms rather than the weaker MD5.

 ° Invalid or expired certificates/keys: Web masters often forget
to keep their SSL certificates updated, and this can become a big
problem, compromising the security of their web servers, as invalid
certificates offer no protection. Similarly, personal keys such as GPG
or PGP public/private key pairs used for e-mail communication
should be kept updated.

 ° Password enabled SSH: SSH access to remote systems using clear
text passwords is a security hole. Disable password-based access and
only enable access via authorized SSH keys for specific users only.
Disable remote root SSH access.

Security – Writing Secure Code

[288]

• Information leak: A lot of web servers systems—mostly due to open
configuration, or misconfiguration, or due to lack of validation of inputs—
can reveal a lot of information about themselves to an attacker. Some
examples are as follows:

 ° Server meta information: Many web servers leak information about
themselves via their 404 pages, and sometimes, via their landing
pages. Here is an example:

404 page of a web server exposing server meta information

By simply requesting for a non-existing page, we came to know that
the site seen in the preceding screenshot runs Apache version 2.4.10
on a Debian Server. For a crafty attacker, this is often information
enough to try out specific attacks for that particular web-server/OS
combination.

 ° Open index pages: Many websites don't protect their directory
pages, and leave them open for world access. This screenshot shows
an example:

Open index page of a web server

Chapter 6

[289]

Open ports: It is a common error to provide world-access to an application's
ports running on remote web servers instead of limiting access to them by
specific IP addresses or security groups by using firewalls – such as iptables.
A similar error is to allow a service to run on 0.0.0.0 (all IP addresses on the
server) for a service which is only consumed on the localhost. This makes it
easy for attackers to scan for such ports using network reconnaissance tools
such as nmap/hping3, and the like, and plan their attack.

• Open access to files/folders/databases: A very poor practice is to provide
open or world access to application configuration files, log files, process ID
files, and other artifacts so that any logged-in user can access and obtain
information from these files. Instead, such files should be part of security
policies to ensure that only specific roles with the required privileges have
access to the files.

• Race conditions: A race condition exists when a program has two or more
actors trying to access a certain resource, but the output depends on the
correct order of access, which cannot be ensured. An example is two threads
trying to increment a numerical value in shared memory without proper
synchronization.
Crafty attackers can take advantage of the situation to insert malicious code,
change a filename, or sometimes, take advantage of small time gaps in the
processing of code to interfere with the sequence of operations.

• System clock drifts: This is the phenomena on where the system or local
clock time on a server slowly drifts away from the reference time due to
improper or missing synchronization. Over time, the clock drift can cause
serious security flaws such as error in SSL certificate validation, which can
be exploited by highly sophisticated techniques like timing attacks where an
attacker tries to take control over the system by analyzing the time taken to
execute cryptographic algorithms. Time synchronization protocols like NTP
can be used to mitigate this.

• Insecure file/folder operations: Programmers often make assumptions about
the ownership, location, or attributes of a file or folder that might not be true
in practice. This can result in conditions where a security flaw can occur or
where we may not detect tampering with the system. Some examples are as
follows:

 ° Failing to check results after a write operation, assuming it succeeded
 ° Assuming local file paths are always local files (whereas, they might

be symbolic links to system files for which the application may not
have access)

Security – Writing Secure Code

[290]

 ° Improperly using sudo in executing system commands, which, if not
done correctly, can cause loopholes, which can be used to gain root
access of the system

 ° Generous use of permissions on shared files or folders,
for example, turning on all the execute bits of a program which
should be limited to a group, or open home folders which can be
read by any logged in user

 ° Using unsafe serialization and deserialization of code or data objects

It is beyond the scope of this chapter to visit each and every type of vulnerability
in this list. However, we will make an earnest attempt to review and explain the
common classes of software vulnerabilities that affect Python, and some of its web
frameworks in the coming section.

Is Python secure?
Python is a very readable language with simple syntax, and typically, one clearly
stated way to do things. It comes with a set of well-tested and compact standard
library modules. All of this seems to indicate that Python should be a very secure
language.

But is it so?

Let's look at a few examples in Python, and try to analyze the security aspect of
Python and its standard libraries.

For the purposes of usefulness, we will demonstrate the code examples shown in
this section using both Python 2.x and Python 3.x versions. This is because a number
of security vulnerabilities that are present in Python 2.x versions are fixed in the
recent 3.x versions. However, since many Python developers are still using some
form or the other of Python 2.x, the code examples would be useful to them, and also
illustrate the importance of migrating to Python 3.x.

All examples are executed on a machine running the Linux (Ubuntu 16.0), x86_64
architecture:

$ python3
Python 3.5.2 (default, Jul 5 2016, 12:43:10)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> print (sys.version)
3.5.2 (default, Jul 5 2016, 12:43:10)
[GCC 5.4.0 20160609]

Chapter 6

[291]

$ python2
Python 2.7.12 (default, Jul 1 2016, 15:12:24)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> print sys.version
2.7.12 (default, Jul 1 2016, 15:12:24)
[GCC 5.4.0 20160609]

Python 3.x version used for these examples are Python 3.5.2,
and the Python 2.x version used is Python 2.7.12. All examples
are executed on a machine running the Linux (Ubuntu 16.0),
64 bit x86 architecture.
Most of the examples will use one version of code, which will
run both in Python 2.x and Python 3.x. In cases where this is
not possible, two versions of the code will be listed.

Reading input
Let's look at this program that is a simple guessing game. It reads a number from the
standard input, and compares it with a random number. If it matches, the user wins,
otherwise, the user has to try again:

guessing.py
import random

Some global password information which is hard-coded
passwords={"joe": "world123",
 "jane": "hello123"}

def game():
 """A guessing game """

 # Use 'input' to read the standard input
 value=input("Please enter your guess (between 1 and 10): ")
 print("Entered value is",value)

Security – Writing Secure Code

[292]

 if value == random.randrange(1, 10):
 print("You won!")
 else:
 print("Try again")

if __name__ == "__main__":
 game()

The preceding code is simple, except that it has some sensitive global data, which
is the passwords of some users in the system. In a realistic example, these could be
populated by some other functions, which read the passwords and cache them in
memory.

Let's try the program with some standard inputs. We will initially run it with Python
2.7, as follows:

$ python2 guessing.py
Please enter your guess (between 1 and 10): 6
('Entered value is', 6)
Try again

$ python2 guessing.py
Please enter your guess (between 1 and 10): 8
('Entered value is', 8)
You won!

Now, let's try a "non-standard" input:

$ python2 guessing.py
Please enter your guess (between 1 and 10): passwords
('Entered value is', {'jane': 'hello123', 'joe': 'world123'})
Try again

Note how the preceding run exposed the global password data!

The problem is that in Python 2, the input value is evaluated as an expression
without doing any check, and when it is printed, the expression prints its value. In
this case, it happens to match a global variable, so its value is printed out.

Now let's look at this one:

$ python2 guessing.py
Please enter your guess (between 1 and 10): globals()
('Entered value is', {'passwords': {'jane': 'hello123',
'joe' : 'world123'}, '__builtins__': <module '__builtin__' (built-
in)>,
 '__file__': 'guessing.py', 'random':

Chapter 6

[293]

<module 'random' from '/usr/lib/python2.7/random.pyc'>,
 '__package__': None, 'game':
<function game at 0x7f6ef9c65d70>,
 '__name__': '__main__', '__doc__': None})
Try again

Now, not only has it exposed the passwords, it has exposed the complete global
variables in the code including the passwords. Even if there were no sensitive data in
the program, a hacker using this approach can reveal valuable information about the
program such as variable names, function names, packages used, and so on.

What is the fix for this? For Python 2, one solution is to replace input, which
evaluates its contents by passing directly to eval, with raw_input, which doesn't
evaluate the contents. Since raw_input doesn't return a number, it needs to be
converted to the target type. (This can be done by casting the return data to an int.)
The following code does not only that, but also adds an exception handler for the
type conversion for extra safety:

guessing_fix.py
import random

passwords={"joe": "world123",
 "jane": "hello123"}

def game():
 value=raw_input("Please enter your guess (between 1 and 10): ")
 try:
 value=int(value)
 except TypeError:
 print ('Wrong type entered, try again',value)
 return

 print("Entered value is",value)
 if value == random.randrange(1, 10):
 print("You won!")
 else:
 print("Try again")

if __name__ == "__main__":
 game()

Security – Writing Secure Code

[294]

Let's see how this version fixes the security hole in evaluating inputs

$ python2 guessing_fix.py
Please enter your guess (between 1 and 10): 9
('Entered value is', 9)
Try again

$ python2 guessing_fix.py
Please enter your guess (between1 and 10): 2
('Entered value is', 2)
You won!

$ python2 guessing_fix.py
Please enter your guess (between 1 and 10): passwords
(Wrong type entered, try again =>, passwords)

$ python2 guessing_fix.py
Please enter your guess (between 1 and 10): globals()
(Wrong type entered, try again =>, globals())

The new program is now much more secure than the first version.

This problem is not there in Python 3.x as the following illustration shows. (We are
using the original version to run this.)

$ python3 guessing.py
Please enter your guess (between 1 and 10): passwords
Entered value is passwords
Try again

$ python3 guessing.py
Please enter your guess (between 1 and 10): globals()
Entered value is globals()
Try again

Evaluating arbitrary input
The eval function in Python is very powerful, but it is also dangerous, since it allows
one to pass arbitrary strings to it, which can evaluate to potentially dangerous code
or commands.

Chapter 6

[295]

Let's look at this rather silly piece of code as a test program to see what eval can do:

test_eval.py
import sys
import os

def run_code(string):
 """ Evaluate the passed string as code """

 try:
 eval(string, {})
 except Exception as e:
 print(repr(e))

if __name__ == "__main__":
 run_code(sys.argv[1])

Let's assume a scenario where an attacker is trying to exploit this piece of code to
find out the contents of the directory where the application is running. (For the time
being, you can assume the attacker can run this code via a web application, but
hasn't got direct access to the machine itself.)

Let's assume the attacker tries to list the contents of the current folder:

$ python2 test_eval.py "os.system('ls -a')"
NameError("name 'os' is not defined",)

This preceding attack doesn't work, because eval takes a second argument, which
provides the global values to use during evaluation. Since, in our code, we are
passing this second argument as an empty dictionary, we get the error, as Python is
unable to resolve the os name.

So does this mean, eval is safe? No it's not. Let's see why.

What happens when we pass the following input to the code?

$ python2 test_eval.py "__import__('os').system('ls -a')"
. guessing_fix.py test_eval.py test_input.py
.. guessing.py test_format.py test_io.py

We can see that we are still able to coax eval to do our bidding by using the built-in
function __import__.

Security – Writing Secure Code

[296]

The reason why this works is because names such as __import__ are available in
the default built-in __builtins__ global. We can deny eval this by specifically
passing this as an empty dictionary via the second argument. Here is the modified
version:

test_eval.py
import sys
import os

def run_code(string):
 """ Evaluate the passed string as code """

 try:
 # Pass __builtins__ dictionary as empty
 eval(string, {'__builtins__':{}})
 except Exception as e:
 print(repr(e))

if __name__ == "__main__":
 run_code(sys.argv[1])

Now the attacker is not able to exploit via the built-in __import__:

$ python2 test_eval.py "__import__('os').system('ls -a')"
NameError("name '__import__' is not defined",)

However, this doesn't still make eval any safer, as it is open to slightly longer, but
clever attacks. Here is one such attack:

$ python2 test_eval.py "(lambda f=(lambda x: [c for c in [].__
class__.__bases__[0].__subclasses__() if c.__name__ == x][0]):
f('function')(f('code')(0,0,0,0,'BOOM',(), (),(),'','',0,''),{})())()"
Segmentation fault (core dumped)

We are able to core dump the Python interpreter with a rather obscure looking piece
of malicious code. How did this happen ?

Here is a somewhat detailed explanation of the steps.

First, let's consider this:

>>> [].__class__.__bases__[0]
<type 'object'>

This is nothing but the base-class object. Since we don't have access to the built-ins,
this is an indirect way to get access to it.

Chapter 6

[297]

Next, the following line of code loads all the sub-classes of object currently loaded
in the Python interpreter:

>>> [c for c in [].__class__.__bases__[0].__subclasses__()]

Among them, what we want is the code object type. This can be accessed by
checking the name of the item via the __name__ attribute:

>>> [c for c in [].__class__.__bases__[0].__subclasses__() if c.__
name__ == 'code']

Here is the same achieved by using an anonymous lambda function:

>>> (lambda x: [c for c in [].__class__.__bases__[0].__subclasses__()
if c.__name__ == x])('code')
[<type 'code'>]

Next, we want to execute this code object. However, code objects cannot be called
directly. They need to be tied to a function in order for them to be called. This is
achieved by wrapping the preceding lambda function in an outer lambda function:

>>> (lambda f: (lambda x: [c for c in [].__class__.__bases__[0].__
subclasses__() if c.__name__ == x])('code'))
<function <lambda> at 0x7f8b16a89668

Now our inner lambda function can be called in two steps:

>>> (lambda f=(lambda x: [c for c in [].__class__.__bases__[0].__
subclasses__() if c.__name__ == x][0]): f('function')(f('code')))
<function <lambda> at 0x7fd35e0db7d0>

We finally invoke the code object via this outer lambda function by passing mostly
default arguments. The code-string is passed as the string BOOM, which is, of course,
a bogus code-string that causes the Python interpreter to segfault, producing a
core-dump:

>>> (lambda f=(lambda x:
[c for c in [].__class__.__bases__[0].__subclasses__() if c.__name__
== x][0]):
f('function')(f('code')(0,0,0,0,'BOOM',(), (),(),'','',0,''),{})())()
Segmentation fault (core dumped)

This shows that eval in any context, even bereft of built-in module support, is
unsafe, and can be exploited by a clever and malicious hacker to crash the Python
interpreter, and thereby, possibly gain control over the system.

Note that the same exploit works in Python 3 as well, but we need some modification
in the arguments to the code object, as in Python 3, code objects takes an extra
argument. Also, the code-string and some arguments must be the byte type.

Security – Writing Secure Code

[298]

The following is the exploit running on Python 3. The end result is the same:

$ python3 test_eval.py
"(lambda f=(lambda x: [c for c in ().__class__.__bases__[0].__
 subclasses__()
 if c.__name__ == x][0]): f('function')(f('code')(0,0,0,0,0,b't\x00\
 x00j\x01\x00d\x01\x00\x83\x01\x00\x01d\x00\x00S',(),
 (),(),'','',0,b''),{})())()"
Segmentation fault (core dumped)

Overflow errors
In Python 2, the xrange() function produces an overflow error if the range cannot fit
into the integer range of Python:

>>> print xrange(2**63)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
OverflowError: Python int too large to convert to C long

The range() function also overflows with a slightly different error:

>>> print range(2**63)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
OverflowError: range() result has too many items

The problem is that xrange() and range() use plain integer objects (type <int>)
instead of automatically getting converted to the long type, which is limited only by
the system memory.

However, this problem is fixed in the Python 3.x versions, as types int and long
are unified into one (int type), and the range() objects manage the memory
internally. Also, there is no longer a separate xrange() object:

>>> range(2**63)
range(0, 9223372036854775808)

Here is another example of integer overflow errors in Python, this time for the len
function.

Chapter 6

[299]

In the following examples, we try the len function on instances of two classes A and
B, whose magic method __len__ has been over-ridden to provide support for the
len function. Note that A is a new-style class, inheriting from object and B is an
old-style class:

len_overflow.py

class A(object):
 def __len__(self):
 return 100 ** 100

class B:
 def __len__(self):
 return 100 ** 100

try:
 len(A())
 print("OK: 'class A(object)' with 'return 100 ** 100' - len
 calculated")
except Exception as e:
 print("Not OK: 'class A(object)' with 'return 100 ** 100' - len
 raise Error: " + repr(e))

try:
 len(B())
 print("OK: 'class B' with 'return 100 ** 100' - len calculated")
except Exception as e:
 print("Not OK: 'class B' with 'return 100 ** 100' - len raise
 Error: " + repr(e))

Here is the output of the code when executed with Python2:

$ python2 len_overflow.py
Not OK: 'class A(object)' with 'return 100 ** 100' - len raise Error:
OverflowError('long int too large to convert to int',)
Not OK: 'class B' with 'return 100 ** 100' - len raise Error:
TypeError('__len__() should return an int',)

The same code is executed in Python 3 as follows:

$ python3 len_overflow.py
Not OK: 'class A(object)' with 'return 100 ** 100' - len raise Error:
OverflowError("cannot fit 'int' into an index-sized integer",)
Not OK: 'class B' with 'return 100 ** 100' - len raise Error:
OverflowError("cannot fit 'int' into an index-sized integer",)

Security – Writing Secure Code

[300]

The problem in the preceding code is that len returns integer objects, and in this
case, the actual value is too large to fit inside an int, so Python raises an overflow
error. In Python 2, however, for the case when the class is not derived from object,
the code executed is slightly different, which anticipates an int object, but gets long
and throws a TypeError instead. In Python 3, both examples return overflow errors.

Is there a security issue with integer overflow errors such as this?

On the ground, it depends on the application code and the dependent module code
used, and how they are able to deal with or mask the overflow errors.

However, since Python is written in C, any overflow errors which are not
correctly handled in the underlying C code can lead to buffer overflow exceptions,
where an attacker can write to the overflow buffer and hijack the underlying process,
thereby gaining control over the application.

Typically, if a module or data structure is able to handle the overflow error and raise
exceptions preventing further code execution, the chances of code exploitation are
reduced.

Serializing objects
It is very common for Python developers to use the pickle module and its C
implementation cousin cPickle for serializing objects in Python. However, both
these modules allow unchecked execution of code, as they don't enforce any kind
of type check or rules on the objects being serialized to verify whether it is a benign
Python object or a potential command that can exploit the system.

NOTE: In Python3, both the cPickle and pickle modules
are merged into a single pickle module.

Here is an illustration via a shell exploit, which lists the contents of the root folder (/)
in a Linux/POSIX system:

test_serialize.py
import os
import pickle

class ShellExploit(object):
 """ A shell exploit class """

Chapter 6

[301]

 def __reduce__(self):
 # this will list contents of root / folder.
 return (os.system, ('ls -al /',)

def serialize():
 shellcode = pickle.dumps(ShellExploit())
 return shellcode

def deserialize(exploit_code):
 pickle.loads(exploit_code)

if __name__ == '__main__':
 shellcode = serialize()
 deserialize(shellcode)

The previous code simply packages a ShellExploit class, which, upon pickling,
returns the command for listing the contents of the root filesystem / by way of the
os.system() method. The Exploit class thus masquerades malicious code into a
pickle object, which, upon unpickling, executes the code, and exposes the contents
of the root folder of the machine to the attacker. The output of the preceding code is
shown here:

Output of the shell exploit code for serializing using pickle, exposing contents of / folder.

As you can see, the output clearly lists the contents of the root folder.

Security – Writing Secure Code

[302]

What is the work-around to prevent such exploits?

First of all, don't use an unsafe module like pickle for serialization in your
applications. Instead, rely on a safer alternative like json or yaml. If your
application really is dependent on using the pickle module for some reason, then
use sand-boxing software or code jails to create safe environments that prevent
execution of malicious code on the system.

For example, here is a slight modification of the earlier code, now with a simple
chroot jail, which prevents code execution on the actual root folder. It uses a local
safe_root/ subfolder as the new root via a context-manager hook. Note that this is a
simple minded example. An actual jail would be much more elaborate than this:

test_serialize_safe.py
import os
import pickle
from contextlib import contextmanager

class ShellExploit(object):
 def __reduce__(self):
 # this will list contents of root / folder.
 return (os.system, ('ls -al /',))

@contextmanager
def system_jail():
 """ A simple chroot jail """

 os.chroot('safe_root/')
 yield
 os.chroot('/')

def serialize():
 with system_jail():
 shellcode = pickle.dumps(ShellExploit())
 return shellcode

def deserialize(exploit_code):
 with system_jail():
 pickle.loads(exploit_code)

if __name__ == '__main__':
 shellcode = serialize()
 deserialize(shellcode)

Chapter 6

[303]

With this jail in place, the code executes as follows:

Output of the shell exploit code for serializing using pickle, with a simple chroot jail.

No output is produced now, because this is a fake jail, and Python cannot find the
ls command in the new root. Of course, in order to make this work in a production
system, a proper jail should be set up, which allows programs to execute, but at the
same time, prevents or limits malicious program execution.

How about other serialization formats like JSON ? Can such exploits work with
them? Let's see using an example.

Here is the same serialization code written using the json module:

test_serialize_json.py
import os
import json
import datetime

class ExploitEncoder(json.JSONEncoder):
 def default(self, obj):
 if any(isinstance(obj, x) for x in (datetime.datetime,
 datetime.date)):
 return str(obj)

 # this will list contents of root / folder.
 return (os.system, ('ls -al /',))

def serialize():
 shellcode = json.dumps([range(10),
 datetime.datetime.now()],
 cls=ExploitEncoder)
 print(shellcode)
 return shellcode

Security – Writing Secure Code

[304]

def deserialize(exploit_code):
 print(json.loads(exploit_code))

if __name__ == '__main__':
 shellcode = serialize()
 deserialize(shellcode)

Note how the default JSON encoder has been overridden using a custom encoder
named ExploitEncoder. However, as the JSON format doesn't support such
serializations, it returns the correct serialization of the list passed as input:

$ python2 test_serialize_json.py
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], "2017-04-15 12:27:09.549154"]
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], u'2017-04-15 12:27:09.549154']

With Python3, the exploit fails as Python3 raises an exception.

Output of the shell exploit code for serializing using json, with Python3

Security issues with web applications
So far, we have seen four types of security issues with Python, namely, those with
reading input, evaluating expressions, overflow errors, and serialization issues. All
our examples so far have been with Python on the console.

However, almost all of us interact with web applications on a daily basis, many
of which are written in Python web frameworks such as Django, Flask, Pyramid,
and others. Hence, it is more likely that we are exposed to security issues in such
applications. We will look at a few examples here.

Chapter 6

[305]

Server Side Template Injection
Server Side Template Injection (SSTI) is an attack using the server-side templates
of common web frameworks as an attack vector. The attack uses weaknesses in the
way user input is embedded on the templates. SSTI attacks can be used to figure out
internals of a web application, execute shell commands, and even fully compromise
the servers.

We will see an example using a very popular web application framework in Python,
namely, Flask.

The following is the sample code for a rather simple web application in Flask with an
inline template:

ssti-example.py
from flask import Flask
from flask import request, render_template_string, render_template

app = Flask(__name__)

@app.route('/hello-ssti')
defhello_ssti():
 person = {'name':"world", 'secret':
'jo5gmvlligcZ5YZGenWnGcol8JnwhWZd2lJZYo=='}
 if request.args.get('name'):
 person['name'] = request.args.get('name')

 template = '<h2>Hello %s!</h2>' % person['name']
 return render_template_string(template, person=person)

if __name__ == "__main__":
 app.run(debug=True)

Running it on the console, and opening it in the browser allows us to play around
with the hello-ssti route:

$ python3 ssti_example.py
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger pin code: 163-936-023

Security – Writing Secure Code

[306]

First, let's try some benign inputs:

Here is another example.

Chapter 6

[307]

Next, let's try with some crafty inputs which an attacker may use.

What is happening here?

Since the template uses unsafe %s string templates, it evaluates anything that is
passed to it into Python expressions. We passed {{ person.secret }}, which, in
the Flask templating language (Flask uses Jinja2 templating), got evaluated to the
value of the key secret in the dictionary person, effectively exposing the secret key
of the app!

We can perform even more ambitious attacks, as this hole in the code allows an
attacker to try the full power of Jinja templates, including for loops. Here is
an example:

Security – Writing Secure Code

[308]

The URL used for the attack is as follows:

http://localhost:5000/hello-ssti?name={% for item in person %}<p>{{
item, person[item] }}</p>{% endfor %}

This goes through a for loop, and tries to print all contents of the person dictionary.

This also allows an attacker easy access to the sensitive server-side configuration
parameters. For example, he can print out the Flask configuration by passing the
name parameter as {{ config }}.

Here is the screenshot of the browser, printing the server configuration using
this attack.

Server-Side Template Injection – Mitigation
We saw in the previous section some examples of using server side templates as an
attack vector to expose sensitive information of the web application/server. In this
section, we will see how the programmer can safeguard his code against such attacks.

In this specific case, the fix for this is to use the specific variable that we want in the
template, rather than the dangerous, allow-all %s string. Here is the modified code
with the fix:

ssti-example-fixed.py
from flask import Flask
from flask import request, render_template_string, render_template

app = Flask(__name__)

@app.route('/hello-ssti')
defhello_ssti():
 person = {'name':"world", 'secret':

Chapter 6

[309]

jo5gmvlligcZ5YZGenWnGcol8JnwhWZd2lJZYo=='}
 if request.args.get('name'):
 person['name'] = request.args.get('name')

 template = '<h2>Hello {{ person.name }} !</h2>'
 return render_template_string(template, person=person)

if __name__ == "__main__":
 app.run(debug=True)

Now the earlier attacks all fizzle off.

Here is the browser screenshot for the first attack:

Here is the browser screenshot for the next attack.

Security – Writing Secure Code

[310]

Denial of Service
Now let's look at another attack that is commonly used by malicious hackers,
namely, Denial of Service (DoS).

DoS attacks target vulnerable routes or URLs in a web application, and sends them
crafty packets or URLs, which either force the server to perform infinite loops
or CPU-intensive computations, or force it to load huge amounts of data from
databases, which puts a lot of load on the server CPU, preventing the server from
executing other requests.

A DDoS or distributed DoS attack is when the DoS attack is
performed in a choreographed way using multiple systems targeting
a single domain. Usually thousands of IP addresses are used, which
are managed via botnets.

We will see a minimal example of a DoS attack using a variation of our previous
example:

ssti-example-dos.py
from flask import Flask
from flask import request, render_template_string, render_template

app = Flask(__name__)

TEMPLATE = '''
<html>
 <head><title> Hello {{ person.name }} </title></head>
 <body> Hello FOO </body>
</html>
'''

@app.route('/hello-ssti')
defhello_ssti():
 person = {'name':"world", 'secret':
'jo5gmvlligcZ5YZGenWnGcol8JnwhWZd2lJZYo=='}
 if request.args.get('name'):
 person['name'] = request.args.get('name')

 # Replace FOO with person's name
 template = TEMPLATE.replace("FOO", person['name'])
 return render_template_string(template, person=person)

if __name__ == "__main__":
 app.run(debug=True)

Chapter 6

[311]

In the preceding code, we use a global template variable named TEMPLATE, and use
the safer {{ person.name }} template variable as the one used with the SSTI fix.
However, the additional code here is a replacement of the holding name FOO with the
name value.

This version has all the vulnerabilities of the original code, even with the %s code
removed. For example, take a look at the following screenshot of the browser
exposing the {{ person.secret }} variable value in the body, but not in the
title of the page.

This is due to this following line of code that we added shown as follows:

 # Replace FOO with person's name
 template = TEMPLATE.replace("FOO", person['name'])

Security – Writing Secure Code

[312]

Any expression passed is evaluated, including the arithmetic ones. For example:

This opens up pathways to simple DoS attacks by passing in CPU-intensive
computations that the server cannot handle. For example, in the following attack, we
pass in a very large computation of a number, which occupies the CPU of the system,
slows the system down and makes the application non-responsive:

An example demonstrating a DoS style attack using computationally intensive code.

http://localhost:5000/hello-ssti?name=Tom

Chapter 6

[313]

The URL used for this attack is http://localhost:5000/hello-ssti?name=Tom
{{ 100*100000000 }}.

By passing in the arithmetical expression {{ 100**100000000 }}, which is
computationally intensive, the server is overloaded and cannot handle other
requests.

As you can see in the previous screenshot, the request never completes, and also
prevents the server from responding to other requests; as you can see from how a
normal request to the same application on a new tab opened on the right side is also
held up causing the effect of a DoS style attack:

A new tab opened on the right side of the tab with attack vector shows
that the application has become unresponsive

http://localhost:5000/hello-ssti?name=Tom

Security – Writing Secure Code

[314]

Cross-Site Scripting (XSS)
The code that we used in the earlier section to demonstrate a minimalistic DOS
attack is also vulnerable to script injection. Here is an illustration:

A simple demonstration of XSS scripting using server side templates and JavaScript injection

The URL used for this attack is as follows:

http://localhost:5000/hello-ssti?name=Tom<script>alert("You are under
attack!")</script>

These kinds of script injection vulnerabilities can lead to XSS, a common form of web
exploit where attackers are able to inject malicious scripts into your server's code,
which are loaded from other websites, and take control of it.

Mitigation – DoS and XSS
We saw a few examples of DoS attacks and simple XSS attacks in the previous
section. Now let's look at how the programmer can take steps in his code to mitigate
such attacks.

Chapter 6

[315]

In the previous specific example that we have used for illustration, the fix is to
remove the line that replaces the string FOO with the name value, and to replace
it with the parameter template itself. For good measure, we also make sure that
the output is properly escaped by using the escape filter, |e, of Jinja 2. Here is the
rewritten code:

ssti-example-dos-fix.py
from flask import Flask
from flask import request, render_template_string, render_template

app = Flask(__name__)

TEMPLATE = '''
<html>
 <head><title> Hello {{ person.name | e }} </title></head>
 <body> Hello {{ person.name | e }} </body>
</html>
'''

@app.route('/hello-ssti')
defhello_ssti():
 person = {'name':"world", 'secret':
'jo5gmvlligcZ5YZGenWnGcol8JnwhWZd2lJZYo=='}
 if request.args.get('name'):
 person['name'] = request.args.get('name')
 return render_template_string(TEMPLATE, person=person)

if __name__ == "__main__":
 app.run(debug=True)

Now that both of the vulnerabilities are mitigated, the attacks have no effect, and fail
harmlessly.

Security – Writing Secure Code

[316]

Here is an screenshot demonstrating the DoS attack .

Here is the one, demonstrating the XSS attack.

Similar vulnerabilities due to bad code in server side templates exist in other
Python web frameworks such as Django, Pyramid, Tornado, and others. However,
a step-by-step discussion on each of these is beyond the scope of this chapter. The
interested reader is directed to security resources on the web discussing such issues.

Chapter 6

[317]

Strategies for security – Python
We have discussed quite a few vulnerabilities that exist in the core Python
programming language, and also taken a look at some of the common security issues
affecting Python web applications.

The time is ripe now to go through strategies—tips and techniques that a security
architect can use so that their team can apply secure coding principles to mitigate
security issues right from the stage of program design and development:

• Reading input: While reading console input, prefer raw input over input,
as the former doesn't evaluate Python expressions, but returns input as plain
strings. Any type conversions or validations should be done manually, and
exceptions are thrown or errors returned if types don't match. For reading
passwords, use libraries such as getpass, and also perform validations on
the returned data. Any evaluation of the data can be safely done once the
validations succeed.

• Evaluating expressions: As we've seen in our examples, eval always has
loopholes whichever way it is used. Hence, the best strategy with Python is
to avoid using eval and its cousin exec. If you have to use eval, make it a
point to never use it with user input strings, or data read from third-party
libraries, or APIs on which you have no control. Use eval only with input
sources and return values from functions that you have control of and that
you trust.

• Serialization: Don't use pickle or cPickle for serialization. Favor other
modules such JSON or YAML. If you absolutely have to use pickle/
cPickle, use mitigation strategies such as a chroot jail or sandbox to avoid
the bad effects of malicious code execution, if any.

• Overflow errors: Guard against integer overflows by using exception
handlers. Python doesn't suffer from pure buffer overflow errors, as it always
checks its containers for read/write access beyond the bounds and throws
exceptions. For overridden __len__ methods on classes, catch the overflow
or TypeError exceptions as required.

• String formatting: Prefer the newer and safer format method of template
strings over the older and unsafe %s interpolation.

Security – Writing Secure Code

[318]

For example:

def display_safe(employee):
 """ Display details of the employee instance """

 print("Employee: {name}, Age: {age},
 profession: {job}".format(**employee))

def display_unsafe(employee):
 """ Display details of employee instance """

 print ("Employee: %s, Age: %d,
 profession: %s" % (employee['name'],
 employee['age'],
 employee['job']))

>>> employee={'age': 25, 'job': 'software engineer', 'name':
'Jack'}
>>> display_safe(employee)
Employee: Jack, Age: 25, profession: software engineer
>>> display_unsafe(employee)
Employee: Jack, Age: 25, profession: software engineer

• Files: When working with files, it is a good idea to use the with context
managers to make sure that the file descriptors are closed after the operation.
For example, favor this approach:
with open'somefile.txt','w') as fp:
fp.write(buffer)

And avoid the following:
fp = open('somefile.txt','w')
fp.write(buffer)

This will also ensure that the file descriptor is closed if any exception occurs
during file read or write instead of keeping open file handles in the system.

Chapter 6

[319]

• Handling passwords and sensitive information: When validating sensitive
information like passwords, it is a good idea to compare cryptographic
hashes rather than comparing the original data in memory:

 ° This way, even if an attacker is able to pry out sensitive data from
the program by exploits such as shell execution exploits or due to
weaknesses in input data evaluation, the actual sensitive data is
protected from immediate breach. Here is a simple approach for this:
compare_passwords.py - basic
import hashlib
import sqlite3
import getpass

def read_password(user):
 """ Read password from a password DB """
 # Using an sqlite db for demo purpose

 db = sqlite3.connect('passwd.db')
 cursor = db.cursor()
 try:
 passwd=cursor.execute("select password from passwds
where user='%(user)s'" % locals()).fetchone()[0]
 return hashlib.sha1(passwd.encode('utf-8')).
hexdigest()
 except TypeError:
 pass

def verify_password(user):
 """ Verify password for user """

 hash_pass = hashlib.sha1(getpass.getpass("Password:
").encode('utf-8')).hexdigest()
 print(hash_pass)
 if hash_pass==read_password(user):
 print('Password accepted')
 else:
 print('Wrong password, Try again')

if __name__ == "__main__":
 import sys
 verify_password(sys.argv[1])

Security – Writing Secure Code

[320]

A more cryptographically correct technique is to use strong password-
hashing libraries with built-in salt and a fixed number of hashing rounds.
Here is an example using the passlib library in Python:
crypto_password_compare.py
import sqlite3
import getpass
from passlib.hash import bcrypt

def read_passwords():
 """ Read passwords for all users from a password DB """
 # Using an sqlite db for demo purpose

 db = sqlite3.connect('passwd.db')
 cursor = db.cursor()
 hashes = {}

 for user,passwd in cursor.execute("select user,password from
passwds"):
 hashes[user] = bcrypt.encrypt(passwd, rounds=8)

 return hashes

def verify_password(user):
 """ Verify password for user """

 passwds = read_passwords()
 # get the cipher
 cipher = passwds.get(user)
 if bcrypt.verify(getpass.getpass("Password: "), cipher):
 print('Password accepted')
 else:
 print('Wrong password, Try again')

if __name__ == "__main__":
 import sys
 verify_password(sys.argv[1])

Chapter 6

[321]

For the purpose of illustration, a passwd.db sqlite database has been created
with two users and their passwords, as seen in the following screenshot:

Here is the code in action:

Note that for purposes of clarity, the typed password is shown
here—it won't be shown in the actual program, since it uses the
getpass library.

Here is the code in action:
$ python3 crytpo_password_compare.py jack
Password: test
Wrong password, Try again

$ python3 crytpo_password_compare.py jack
Password: reacher123
Password accepted

• Local data: Wherever possible, avoid storing sensitive data local to functions.
Any input validation or evaluation loophole in the functions can be exploited
to gain access to the local stack, and hence, to the local data. Always store
sensitive data encrypted or hashed separate modules.
The following is a simple illustration:
def func(input):
 secret='e4fe5775c1834cc8bd6abb712e79d058'
 verify_secret(input, secret)
 # Do other things

Security – Writing Secure Code

[322]

The above function is unsafe for the secret key 'secret', as any attacker
gaining access to the function's stack can gain access to the secret as well.
Such secrets are better kept in a separate module. If you are using the secret
for hashing and verification, the following code is much safer than the first,
since it does not expose the original value of the 'secret':
 # This is the 'secret' encrypted via bcrypt with eight rounds.
 secret_hash='$2a$08$Q/lrMAMe14vETxJC1kmxp./JtvF4vI7/b/
VnddtUIbIzgCwA07Hty'
 def func(input):
 verify_secret(input, secret_hash)

• Race conditions: Python provides an excellent set of threading primitives.
If your program uses multiple threads and shared resources, follow these
guidelines to synchronize access to resources to avoid race conditions
and deadlocks:

 ° Protect resources that can be writeable concurrently by a mutex
(threading.Lock)

 ° Protect resources that need to be serialized with respect to multiple,
but limited, concurrent accesses by a semaphore (threading.
BoundedSemaphore)

 ° Use condition objects to wake up synchronize multiple
threads waiting on a programmable condition or function
(threading.Condition)

For programs using multiple processes, similar counterparts provided by
the multiprocessing library should be used to manage concurrent access
to resources.

Chapter 6

[323]

• Keep your system up to date: Though this may sound clichéd, keeping up
to date with respect to security updates of packages in your system and
with security news in general, especially on packages that impact your
application, is a simple way to keep your system and application secure. A
number of websites provide constant updates on the state of security of a
number of opensource projects including Python and its standard library
modules.
These reports usually go by the name of Common Vulnerabilities and
Exposures (CVEs)—and sites such as Mitre (http://cve.mitre.org)
provide a constant stream of updates.
A search for Python on this sites shows 213 results:

Results for 'python' keyword search on Mitre CVE list

http://cve.mitre.org/
http://cve.mitre.org

Security – Writing Secure Code

[324]

Architects, DevOps engineers, and webmasters can also tune in to their system
package updates, and keep security updates always enabled by default. For remote
severs, upgrading to the latest security patches every two to three months is highly
recommended.

• Similarly, the Python Open Web Application Security Project (OWASP)
project is a free, third-party project aimed at creating a hardened version of
Python more resilient to security threats than the standard CPython. It is
part of the larger OWASP initiative.

• The Python OWASP project makes available its Python bug-reports, tools,
and other artifacts via the website and associated GitHub projects. The main
website for this is, and most of the code is available from, the GitHub project
page at: https://github.com/ebranca/owasp-pysec/.

Home page of the OWASP Python security project

It is a good idea for the stakeholders to keep track of this project, run their tests, and
read their reports to keep up to date on Python security aspects.

https://github.com/ebranca/owasp-pysec/
https://github.com/ebranca/owasp-pysec/

Chapter 6

[325]

Secure coding strategies
We are coming towards the end of our discussion on the security aspects of software
architecture. It is a good time to summarize the strategies that one should try and
impart to a software development team from a security architect's point of view.
The following is a table summarizing the top 10 of these.

SL Strategy How it helps
1 Validate inputs Validate inputs from all untrusted data sources. Proper input

validation can eliminate a vast majority of software vulnerabilities.
2 Keep it simple Keep program design as simple as possible. Complex designs

increase the chances of security errors being made in their
implementation, configuration, and deployment.

3 Principle of
least privilege

Every process should execute with the least set of system
privileges necessary to complete the work. For example, to read
data from /tmp, one doesn't need root permission, but any
unprivileged user is fine.

4 Sanitize data Sanitize data read from and sent to all third-party systems such
as databases, command shells, COTs components, third-party
middlewares, and so on. This lessens the chances of SQL injection,
shell exploit, or other similar attacks.

5 Authorize
access

Separate parts of your application by roles that need specific
authentication via login or other privileges. Don't mix different
parts of applications together in the same code that requires
different levels of access. Employ proper routing to make sure that
no sensitive data is exposed via unprotected routes.

6 Perform
effective QA

Good security testing techniques are effective in identifying and
eliminating vulnerabilities. Fuzz testing, penetration testing, and
source code audits should be performed as part of the program.

7 Practice defense
in layers

Mitigate risks with multiple layers of security. For example,
combining secure programming techniques with secure runtime
configuration will reduce the chances of any remaining code
vulnerabilities being exposed in the runtime environment.

8 Define security
requirements

Identify and document the security constraints in the early lifecycle
of the system, and keep updating them, making sure that any
further features down the line keep up with these requirements.

9 Model threats Use threat modeling to anticipate the threats to which the software
will be subjected.

10 Architect and
design for
security policies

Create and maintain a software architecture that enforces a
pattern of consistent security policies across your system and its
subsystems.

Security – Writing Secure Code

[326]

Summary
In this chapter, we started by looking at the details of a system architecture that has
information security built-in. We went on to define secure coding, and looked at the
philosophies and principles behind the practice of secure coding.

We then studied the different types of security vulnerabilities encountered in
software systems, such as buffer overflows, input validation issues, access control
issues, cryptographic weaknesses, information leaks, insecure file operations,
and so on.

We then went on to a detailed discussion on Python security issues with a lot of
examples. We looked in detail at reading and evaluating input, overflow errors,
and serialization issues. We then went on to look at the common vulnerabilities in
Python web application frameworks by using Flask as the web application server
for illustration. We saw how one can exploit the weaknesses on web application
templates, and perform attacks such as SSTI, XSS, and DoS. We also saw few
examples of how to mitigate these attacks.

We then went on to list specific techniques in Python for writing secure code. We
looked in detail at managing cryptographic hashes of passwords and other sensitive
data in code, and discussed a couple of examples of doing this the right way. The
importance of keeping oneself updated with security news and projects, and keeping
the system updated with security patches was also mentioned.

Finally, we summarized the top 10 secure coding strategies that a security architect
can impart to their team in order to create secure code and systems.

In the next chapter, we take a look at one of the most interesting aspects of software
engineering and design, namely that of Design Patterns.

[327]

Design Patterns in Python
Design patterns simplify building software by reusing successful designs and
architectures. Patterns build on the collective experience of software engineers
and architects. When faced with a problem that needs new code to be written, an
experienced software architect tends to make use of the rich ecosystem of available
design/architecture patterns.

Patterns evolve when a specific design proves successful in solving certain classes of
problem repeatedly. When experts find that a specific design or architecture helps
them to solve classes of related problems consistently, they tend to apply it more and
more, codifying the structure of the solution into a pattern.

Python (given that it's a language which supports dynamic types and high-level
object oriented structures such as classes and metaclasses, first-class functions,
co-routines, callable objects, and so on) is a very rich playground for constructing
reusable design and architecture patterns. In fact, as opposed to languages such
as C++ or Java, you often find there are multiple ways of implementing a specific
design pattern in Python. Also, more often than not, you find that the Pythonic way
of implementing a pattern is more intuitive and illustrative than, say, copying a
standard implementation from C++/Java into Python.

This chapter's focus is mostly on this latter aspect—illustrating how one can build
design patterns which are more Pythonic than those in the usual books and literature
on this topic. It doesn't aim to be a comprehensive guide to design patterns, though
we would be covering most of the usual aspects as we head into the content.

The topics we plan to cover in this chapter are as follows:

• Design patterns elements
• Categories of design patterns
• Pluggable hashing algorithms
• Summing up pluggable hashing algorithms

Design Patterns in Python

[328]

• Patterns in Python – Creational
 ° The Singleton pattern
 ° The Borg pattern
 ° The Factory pattern
 ° The Prototype pattern
 ° The Builder pattern

• Patterns in Python – Structural
 ° The Adapter pattern
 ° The Facade pattern
 ° The Proxy pattern

• Patterns in Python – Behavioral
 ° The Iterator pattern
 ° The Observer pattern
 ° The State pattern

Design patterns – elements
A design pattern attempts to record those aspects of a recurring design in object-
oriented systems that solve a problem or a class of problems.

When we inspect design patterns, we find that almost all of them have the following
elements:

• Name: A well-known handle or title, which is commonly used to describe the
pattern. Having standard names for design patterns aids communication and
increases our design vocabulary.

• Context: This is the situation in which the problem arises. A context can
be generic such as Develop a web application software, or specific such as
Implementing resource-change notification in a shared memory implementation of
the publisher-subscriber system.

Chapter 7

[329]

• Problem: Describes the actual problem that the pattern is applied to. A
problem can be described in terms of its forces, which are as follows:

 ° Requirements: The requirements that the solution should fulfill, for
example, the publisher-subscriber pattern implementation must support
HTTP.

 ° Constraints: The constraints to the solution, if any, for example, the
Scalable peer-to-peer publisher pattern should not exchange more than three
messages for publishing a notification.

 ° Properties: The properties of the solution which are desirable to
have, for example, The solution should work equally well on the Windows
and Linux platforms.

• Solution: Shows the actual solution to the problem. It describes the structure
and responsibilities, the static relationships, and the runtime interactions
(collaborations) of the elements making up the solution. A solution should
also discuss which forces of the problem it solves and doesn't solve. A
solution should also try to mention its consequences, that is, the results and
trade-offs of applying a pattern.

A design pattern solution almost never resolves all the forces of
the problem leading to it, but leaves some of them open to related
or alternate implementations.

Categories of design patterns
Design patterns can be categorized in different ways according to the criteria chosen.
A commonly accepted way of categorizing patterns is based on their purpose. In
other words, we ask the pattern what class of problem the pattern solves.

This kind of categorization gives us three neat varieties of pattern classes. These are
as follows:

• Creational: These patterns solve the problems associated with object creation
and initialization. These are problems that occur the earliest in the life cycle
of problem solving with objects and classes. Take a look at the following
examples:

 ° The Factory pattern: The "How do I make sure I can create related
class instances in a repeatable and predictable fashion?" question is
solved by the Factory class of patterns.

Design Patterns in Python

[330]

 ° The Prototype pattern: The "What is a smart approach to instantiate
an object, and then create hundreds of similar objects by just copying
across this one object ?" question is solved by Prototype patterns.

 ° Singleton and related patterns: The "How do I make sure that any
instance of a class I create is created and initialized just once" or
"How do I make sure that any instances of a class share the same
initial state ?" questions are solved by the Singleton and related
patterns.

• Structural: These patterns concern themselves with the composition and
assembling of objects into meaningful structures, which provides the
architect and developer with reusable behaviors, where "the whole is more
than the sum of its parts". Naturally, they occur in the next step of problem
solving with objects, once they are created. Examples of such problems are as
follows:

 ° The Proxy pattern: "How do I control access to an object and its
methods via a wrapper, behavior on top?"

 ° The Composite pattern: "How can I represent an object which is
made of many components at the same time using the same class for
representing the part and the whole—for example, a Widget tree ?"

• Behavioral: These patterns solve the problems originating with runtime
interactions of objects, and how they distribute responsibilities. Naturally,
they occur at a later stage, once the classes are created, and then combined
into larger structures. The following are a couple of examples:

 ° Using the Median pattern in the following case: "Ensure that all
the objects use loose coupling to refer to each other at runtime to
promote run-time dynamism for interactions"

 ° Using the Observer pattern in the following case: "An object wants
to be notified when the state of a resource changes, but it does not
want to keep polling the resource to find this out. There may be many
such instances of objects in the system"

The order of Creational, Structural, and Behavioral patterns implicitly
embeds the life cycle of objects in a system at runtime. Objects are
first created (Creational), then combined into useful structures
(Structural), and then they interact (Behavioral).

Chapter 7

[331]

Let's now turn our attention to the subject of this chapter, namely, implementing
patterns in Python in Python's own inimitable way. We will look at an illustrative
example to get started.

Pluggable hashing algorithms
Let's look at the following problem.

You want to read data from an input stream—a file or network socket—and hash the
contents in a chunked manner. You write some code as follows:

hash_stream.py
from hashlib import md5

def hash_stream(stream, chunk_size=4096):
 """ Hash a stream of data using md5 """

 shash = md5()

 for chunk in iter(lambda: stream.read(chunk_size), ''):
 shash.update(chunk)

 return shash.hexdigest()

All code is in Python3, unless explicitly mentioned otherwise.

>>> import hash_stream

>>> hash_stream.hash_stream(open('hash_stream.py'))

'e51e8ddf511d64aeb460ef12a43ce480'

So that works, as expected.

Now let's say you want a more reusable and versatile implementation, one that will
work with multiple hashing algorithms. You first attempt to modify the previous
code, but quickly realize that this means rewriting a lot of code, which is not a very
smart way of doing it:

hash_stream.py
from hashlib import sha1
from hashlib import md5

def hash_stream_sha1(stream, chunk_size=4096):

Design Patterns in Python

[332]

 """ Hash a stream of data using sha1 """

 shash = sha1()

 for chunk in iter(lambda: stream.read(chunk_size), ''):
 shash.update(chunk.encode('utf-8'))

 return shash.hexdigest()

def hash_stream_md5(stream, chunk_size=4096):
 """ Hash a stream of data using md5 """

 shash = md5()

 for chunk in iter(lambda: stream.read(chunk_size), ''):
 shash.update(chunk.encode('utf-8'))

 return shash.hexdigest()

>>> import hash_stream

>>> hash_stream.hash_stream_md5(open('hash_stream.py'))

'e752a82db93e145fcb315277f3045f8d'

>>> hash_stream.hash_stream_sha1(open('hash_stream.py'))

'360e3bd56f788ee1a2d8c7eeb3e2a5a34cca1710'

You realize that you can reuse a lot of code by using a class. Being an experienced
programmer, you may end up with something like the following after a few iterations:

hasher.py
class StreamHasher(object):
 """ Stream hasher class with configurable algorithm """

 def __init__(self, algorithm, chunk_size=4096):
 self.chunk_size = chunk_size
 self.hash = algorithm()

 def get_hash(self, stream):

 for chunk in iter(lambda: stream.read(self.chunk_size), ''):
 self.hash.update(chunk.encode('utf-8'))

 return self.hash.hexdigest()

Chapter 7

[333]

First let's try this with md5, as follows:

>>> import hasher

>>> from hashlib import md5

>>> md5h = hasher.StreamHasher(algorithm=md5)

>>> md5h.get_hash(open('hasher.py'))

'7d89cdc1f11ec62ec918e0c6e5ea550d'

Now let's use sha1:

>>> from hashlib import sha1

>>> shah_h = hasher.StreamHasher(algorithm=sha1)

>>> shah_h.get_hash(open('hasher.py'))

'1f0976e070b3320b60819c6aef5bd6b0486389dd'

As must be evident by now, you can build different hasher objects, each with a
specific algorithm, which will return the corresponding hash digest of the stream
(in this case, a file).

Now lets summarize what we just did here.

We first developed a function, hash_stream, which took in a stream object, and
hashed it chunk-wise using the md5 algorithm. We then developed a class named
StreamHasher, which allowed us to configure it using one algorithm at a time,
thereby making the code more reusable. We obtained the hash digest by way of
get_hash, which accepts the stream object as argument.

Now let's turn our attention to what else Python can do for us.

Our class is versatile with respect to different hashing algorithms, and is definitely
more reusable, but is there a way to call it as if it were a function? That would be
rather neat, wouldn't it?

The following is a slight reimplementation of our StreamHasher class, which does
just that:

hasher.py
class StreamHasher(object):
 """ Stream hasher class with configurable algorithm """

 def __init__(self, algorithm, chunk_size=4096):
 self.chunk_size = chunk_size
 self.hash = algorithm()

 def __call__(self, stream):

Design Patterns in Python

[334]

 for chunk in iter(lambda: stream.read(self.chunk_size), ''):
 self.hash.update(chunk.encode('utf-8'))

 return self.hash.hexdigest()

What did we do in the last code ? We simply renamed the get_hash function to
Get_Call. Let's see what effect this has:

>>> from hashlib import md5, sha1

>>> md5_h = hasher.StreamHasher(md5)

>>> md5_h(open('hasher.py'))

'ad5d5673a3c9a4f421240c4dbc139b22'

>>> sha_h = hasher.StreamHasher(sha1)

>>> sha_h(open('hasher.py'))

'd174e2fae1d6e1605146ca9d7ca6ee927a74d6f2'

We are able to call the instance of the class as if it were a function by simply passing
the file object to it.

So our class not only gives us reusable and versatile code, but also acts as if it were
a function. This is done by making our class a callable type in Python by simply
implementing the magic method __call__ .

Callables in Python are any object that can be called. In other words, x
is a callable if we can perform x()—with or without params, depending
upon how the __call__ method is overridden. Functions are the
simplest and most familiar callables.
In Python, foo(args) is syntactic sugar for foo.__call__(args).

Summing up pluggable hashing algorithm
So what does the previous example illustrate? It illustrates the power of Python
in dealing with an existing problem, which would be solved traditionally in other
programming languages, in a more exotic and powerful way due to the power of
Python and the way it does things—in this case, by making any object callable by
overriding a special method.

But what is the pattern we have achieved here? We said at the start of the chapter
that something is a pattern only if it solves a class of problems. Is there a pattern
hidden in this particular illustration?

Chapter 7

[335]

Yes there is—this is an implementation of the Strategy behavioral pattern:

The Strategy pattern is used when we need different behaviors from a class and we should be
able to configure a class with one of many available behaviors or algorithms.

In this particular case, we needed a class which supports different algorithms to
perform the same thing—hashing data from a stream using chunks, and returning
the digest. The class accepted the algorithm as a parameter, and since all algorithms
support the same method for returning data (the hexdigest method), we were able
to implement the class in a very simple way.

Let's continue our journey to discover some other interesting patterns we can write
using Python, and its unique way of solving problems. We will follow the order of
the Creational, Structural, and Behavioral patterns in this journey.

Our approach to the discussion on patterns that follows is very pragmatic.
It may not use the formal language used by the popular Gang-of-Four
(G4) patterns—the most elemental approach to design patterns. Our focus
is on demonstrating the power of Python in building patterns rather than
getting the formalisms right.

Patterns in Python – creational
In this section, we will take a look at a few of the common creational patterns.
We will start with Singleton, and then go on to Prototype, Builder, and Factory,
in that order.

The Singleton pattern
The Singleton pattern is one of the most well-known and easily understood patterns
in the entire pantheon of design patterns. It is usually defined as:

A Singleton is a class which has only one instance and a well-defined point of access to it.

The requirements of a Singleton can be summarized as follows:

• A class must have only one instance accessible via a well-known access point.
• The class must be extensible by inheritance without breaking the pattern.
• The simplest Singleton implementation in Python is shown next. It is done by

overriding the __new__ method of the base object type:
singleton.py
class Singleton(object):

Design Patterns in Python

[336]

 """ Singleton in Python """

 _instance = None

 def __new__(cls):
 if cls._instance == None:
 cls._instance = object.__new__(cls)
 return cls._instance

>>> from singleton import Singleton

>>> s1 = Singleton()

>>> s2 = Singleton()

>>> s1==s2

True

• Since we would be requiring this check for a while, let's define a function for
the same:
def test_single(cls):
 """ Test if passed class is a singleton """
 return cls() == cls()

• Now let's see if our Singleton implementation satisfies the second
requirement. We will define a simple subclass to test this:
class SingletonA(Singleton):
 pass

>>> test_single(SingletonA)
True

Cool! So our simple implementation passes the test. Are we done here now?

Well, the point with Python, as we discussed before, is that it provides a number of
ways to implement patterns due to its dynamism and flexibility. So, let's stay with
with Singleton for a while, and see if we can get some illustrative examples which
would give us insights into the power of Python:

class MetaSingleton(type):
 """ A type for Singleton classes (overrides __call__) """

 def __init__(cls, *args):
 print(cls,"__init__ method called with args", args)
 type.__init__(cls, *args)

Chapter 7

[337]

 cls.instance = None

 def __call__(cls, *args, **kwargs):
 if not cls.instance:
 print(cls,"creating instance", args, kwargs)
 cls.instance = type.__call__(cls, *args, **kwargs)
 return cls.instance

class SingletonM(metaclass=MetaSingleton):
 pass

The preceding implementation moves the logic of creating a Singleton to the type of
the class, namely, its metaclass.

We first create a type for Singletons, named MetaSingleton, by extending the type
and overriding the __init__ and __call__ methods on the metaclass. Then we
declare that the SingletonM class, SingletonM, uses the metaclass.

>>> from singleton import *
<class 'singleton.SingletonM'> __init__ method called with args
('SingletonM', (), {'__module__': 'singleton', '__qualname__':
'SingletonM'})
>>> test_single(SingletonM)
<class 'singleton.SingletonM'> creating instance ()
True

The following is a peep into what is happening behind the scenes in the new
implementation of the Singleton:

• Initializing a class variable: We can either do it at the class level (just after
the class declaration) as we saw in the previous implementation, or we can
put it in the metaclass __init__ method. This is what we are doing here for
the _instance class variable, which will hold the single instance of the class.

• Overriding class creation: One can either do it at the class level
by overriding the __new__ method of class as we saw in previous
implementation, or, equivalently, we can do it in the metaclass by
overriding its __call__ method. This is what the new implementation does.

When we override a class's __call__ method, it affects its instance,
and instances become callable. Similarly, when we override a
metaclass's _call_ method, it affects its classes, and modifies the
way the classes are called—in other words, the way the class creates
its instances.

Design Patterns in Python

[338]

Let's take a look at the pros and cons in the metaclass approach over the class
approach:

• One benefit is that we can create any number of new top-level classes
which get the Singleton behavior via the metaclass. Using the default
implementation, every class has to inherit the top-level class Singleton or its
subclasses to obtain the Singleton behavior. The metaclass approach provides
more flexibility with respect to class hierarchies.

• However, the metaclass approach can be interpreted as creating slightly
obscure and difficult-to-maintain code as opposed to the class approach.
This is because fewer Python programmers understand metaclasses and
metaprogramming when compared to those who understand classes. This
may be a disadvantage with the metaclass solution.

Now let's think out of the box, and see if we can solve the Singleton problem in a
slightly different way.

The Singleton – do we need a Singleton?
Let's paraphrase the first requirement of a Singleton in a slightly different way:

A class must provide a way for all its instances to share the same initial state.

To explain that, let's briefly look at what a Singleton pattern actually tries to achieve.

When a Singleton ensures it has only one instance, what it guarantees is that the class
provides one single state when it is created and initialized. In other words, what a
Singleton actually gives is a way for a class to ensure a single shared state across all
its instances.

In other words, the first requirement of the Singleton pattern can be paraphrased in a
slightly different form, which has the same end result as the first form.

A class must provide a way for all its instances to share the same initial state.

The technique of ensuring just a single actual instance at a specific memory location is just
one way of achieving this.

Ah! So what has been happening so far is that we have been expressing the pattern
in terms of the implementation details of less flexible and versatile programming
languages. With a language such as Python, we need not stick pedantically to this
original definition.

Chapter 7

[339]

Let's look at the following class:

class Borg(object):
 """ I am not a Singleton """

 __shared_state = {}
 def __init__(self):
 self.__dict__ = self.__shared_state

This pattern ensures that when you create a class, you specifically initialize all of its
instances with a shared state which belongs to the class (since it is declared at the
class level).

What we really care about in a Singleton is actually this shared state, so Borg works
without worrying about all instances being exactly the same.

Since this is Python, it does this by initializing a shared state dictionary on the class,
and then instantiating the instance's dictionary to this value, thereby ensuring that all
instances share the same state.

The following is a specific example of Borg in action:

class IBorg(Borg):
 """ I am a Borg """

 def __init__(self):
 Borg.__init__(self)
 self.state = 'init'

 def __str__(self):
 return self.state

>>> i1 = IBorg()
>>> i2 = IBorg()
>>> print(i1)
init
>>> print(i2)
init
>>> i1.state='running'
>>> print(i2)
running
>>> print(i1)
running
>>> i1==i2
False

Design Patterns in Python

[340]

By using Borg, we managed to create a class whose instances share the same state,
even though the instances are actually not the same. And the state change was
propagated across the instances; as the preceding example shows, when we change
the value of state in i1, it also changes in i2.

What about dynamic values? We know they will work in a Singleton, since it's the
same object always, but what about the Borg?

>>> i1.x='test'
>>> i2.x
'test'

So we attached a dynamic attribute x to instance i1, and it appeared in instance i2 as
well. Neat!

So let's see if Borg offers any benefits over Singleton:

• In a complex system where we may have multiple classes inheriting from a
root Singleton class, it may be difficult to impose the requirement of a single
instance due to import issues or race conditions—for example, if a system is
using threads. The Borg pattern circumvents these problems neatly by doing
away with the requirement for a single instance in memory.

• The Borg pattern also allows for simple sharing of state across the Borg class
and all its subclasses. This is not the case for a Singleton, since each subclass
creates its own state. We will see an example illustrating this next.

State sharing – Borg versus Singleton
A Borg pattern always shares the same state from the top class (Borg) down to all the
subclasses. This is not the case with a Singleton. Let's see an illustration.

For this exercise, we will create two subclasses of our original Singleton class,
namely, SingletonA and SingletonB:

>>> class SingletonA(Singleton): pass
...
>>> class SingletonB(Singleton): pass
...

Let's create a subclass of SingletonA, namely, SingletonA1:

>>> class SingletonA1(SingletonA): pass
...

Chapter 7

[341]

Now let's create instances:

>>> a = SingletonA()
>>> a1 = SingletonA1()
>>> b = SingletonB()

Let's attach a dynamic property, x, with a value 100 to a:

>>> a.x = 100
>>> print(a.x)
100

Let's check if this is available on the a1 instance of the SingletonA1 subclass:

>>> a1.x
100

Good! Now let's check if it is available on the b instance:

>>> b.x
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'SingletonB' object has no attribute 'x'

Oops! So, it appears that SingletonA and SingletonB don't share the same state.
This is why a dynamic attribute that is attached to an instance of SingletonA
appears in the instance of its sub-classes, but doesn't appear on the instance of a
sibling or peer subclass namely SingletonB – because it is a different branch of the
class hierarchy from the top-level Singleton class.

Let's see if Borgs can do any better.

First, let's create the classes and their instances:

>>> class ABorg(Borg):pass
...
>>> class BBorg(Borg):pass
...
>>> class A1Borg(ABorg):pass
...
>>> a = ABorg()
>>> a1 = A1Borg()
>>> b = BBorg()

Design Patterns in Python

[342]

Now let's attach a dynamic attribute x to a with value 100:

>>> a.x = 100
>>> a.x
100
>>> a1.x
100

Let's check if the instance of the sibling class Borg also gets it:

>>> b.x
100

This proves that the Borg pattern is much better at state sharing across classes and
sub classes than the Singleton pattern, and it does so without a lot of fuss or the
overhead of ensuring a single instance.

Let's now move on to other creational patterns.

The Factory pattern
The Factory pattern solves the problem of creating instances of related classes to
another class, which usually implements instance creation via a single method,
usually defined on a parent Factory class and overridden by subclasses (as needed).

The Factory pattern provides a convenient way for the client (user) of a class to
provide a single entry point to create instances of classes and subclasses, usually, by
passing in parameters to a specific method of the Factory class: the factory method.

Let's look at a specific example:

from abc import ABCMeta, abstractmethod

class Employee(metaclass=ABCMeta):
 """ An Employee class """

 def __init__(self, name, age, gender):
 self.name = name
 self.age = age
 self.gender = gender

 @abstractmethod

Chapter 7

[343]

 def get_role(self):
 pass

 def __str__(self):
 return "{} - {}, {} years old {}".format(self.__class__.
 __name__,
 self.name,
 self.age,
 self.gender)

class Engineer(Employee):
 """ An Engineer Employee """

 def get_role(self):
 return "engineering"

class Accountant(Employee):
 """ An Accountant Employee """

 def get_role(self):
 return "accountant"

class Admin(Employee):
 """ An Admin Employee """

 def get_role(self):
 return "administration"

We have created a general Employee class with some attributes and three subclasses,
namely, Engineer, Accountant, and Admin.

Since all of them are related classes, a Factory class is useful to abstract away the
creation of instances of these classes.

The following is our EmployeeFactory class:

class EmployeeFactory(object):
 """ An Employee factory class """

 @classmethod
 def create(cls, name, *args):

Design Patterns in Python

[344]

 """ Factory method for creating an Employee instance """

 name = name.lower().strip()

 if name == 'engineer':
 return Engineer(*args)
 elif name == 'accountant':
 return Accountant(*args)
 elif name == 'admin':
 return Admin(*args)

The class provides a single create factory method that accepts a name parameter,
which is matched to the class's name and instance created accordingly. The rest of
the arguments are parameters required for instantiating the class's instance, which is
passed unchanged to its constructor.

Let's see our Factory class in action:

>>> factory = EmployeeFactory()
>>> print(factory.create('engineer','Sam',25,'M'))
Engineer - Sam, 25 years old M
>>> print(factory.create('engineer','Tracy',28,'F'))
Engineer - Tracy, 28 years old F

>>> accountant = factory.create('accountant','Hema',39,'F')
>>> print(accountant)

Accountant - Hema, 39 years old F
>>> accountant.get_role()

accounting
>>> admin = factory.create('Admin','Supritha',32,'F')
>>> admin.get_role()
'administration'

The following are a few interesting notes about our Factory class:

• A single factory class can create instances of any class in the Employee
hierarchy.

• In the Factory pattern, it is conventional to use one Factory class associated
to a class family (a class and its subclass hierarchy). For example, a
Person class could use a PersonFactory, an automobile class could use
AutomobileFactory, and so on.

Chapter 7

[345]

• The factory method is usually decorated as a classmethod in Python. This
way it can be called directly via the class namespace. For example:
 >>> print(EmployeeFactory.create('engineer','Vishal',24,'M'))
 Engineer - Vishal, 24 years old M

In other words, an instance of the Factory class is really not required for this
pattern.

The Prototype pattern
The Prototype design pattern allows a programmer to create an instance of a class
as a template instance, and then create new instances by copying or cloning this
Prototype.

A Prototype is most useful in the following cases:

• When the classes instantiated in a system are dynamic, that is, they are
specified as part of a configuration, or can otherwise change at runtime.

• When the instances only have a few combinations of initial state. Rather than
keeping track of the state and instantiating an instance each time, it is more
convenient to create prototypes matching each state and clone them.

A Prototype object usually supports copying itself via the clone method.

The following is a simple implementation of the Prototype in Python:

import copy

class Prototype(object):
 """ A prototype base class """

 def clone(self):
 """ Return a clone of self """
 return copy.deepcopy(self)

The clone method is implemented using the copy module, which performs a
deepcopy on the object? and returns a clone.

Design Patterns in Python

[346]

Let's see how this works. For that, we need to create a meaningful subclass:

class Register(Prototype):
 """ A student Register class """

 def __init__(self, names=[]):
 self.names = names

>>> r1=Register(names=['amy','stu','jack'])
>>> r2=r1.clone()
>>> print(r1)
<prototype.Register object at 0x7f42894e0128>
>>> print(r2)
<prototype.Register object at 0x7f428b7b89b0>

>>> r2.__class__
<class 'prototype.Register'>

Prototype – deep versus shallow copy
Now let's take a deeper look at the implementation details of our Prototype class.

You may notice that we use the deepcopy method of the copy module to implement
our object cloning. This module also has a copy method, which implements shallow
copying.

If you implement shallow copying, you will find that all objects are copied via a
reference. This is fine for immutable objects such as strings or tuples, as they can't
be changed.

However, for mutables such as lists or dictionaries, this is a problem since the state
of the instance is shared instead of being wholly owned by the instance, and any
modification of a mutable in one instance will modify the same object in the cloned
instances as well!

Let's see an example. We will use a modified implementation of our Prototype class,
which uses shallow copying, to demonstrate this:

class SPrototype(object):
 """ A prototype base class using shallow copy """

 def clone(self):
 """ Return a clone of self """
 return copy.copy(self)

Chapter 7

[347]

The SRegister class inherits from the new prototype class:

class SRegister(SPrototype):
 """ Sub-class of SPrototype """

 def __init__(self, names=[]):
 self.names = names

>>> r1=SRegister(names=['amy','stu','jack'])
>>> r2=r1.clone()

Let's add a name to the names register of instance r1:

>>> r1.names.append('bob')

Now let's check r2.names:

>>> r2.names
['amy', 'stu', 'jack', 'bob']

Oops! This is not what we wanted, but due to the shallow copy, both r1 and r2 end
up sharing the same names list, as only the reference is copied over, not the entire
object. This can be verified by a simple inspection:

>>> r1.names is r2.names
True

A deep copy, on the other hand, calls copy recursively for all objects contained in
the cloned (copied) object, so nothing is shared, but each clone will end up having its
own copy of all the referenced objects.

Prototype using metaclasses
We've seen how to build the Prototype pattern using classes. Since we've already
seen a bit of meta-programming in Python in the Singleton pattern example, let's find
out whether we can do the same in Prototype.

What we need to do is attach a clone method to all the Prototype classes.
Dynamically attaching a method to a class like this can be done in its metaclass via
the __init__ method of the metaclass.

Design Patterns in Python

[348]

This provides a simple implementation of Prototype using metaclasses:

import copy

class MetaPrototype(type):

 """ A metaclass for Prototypes """

 def __init__(cls, *args):
 type.__init__(cls, *args)
 cls.clone = lambda self: copy.deepcopy(self)

class PrototypeM(metaclass=MetaPrototype):
 pass

The PrototypeM class now implements a Prototype pattern. Let's see an illustration
by using a subclass:

class ItemCollection(PrototypeM):
 """ An item collection class """

 def __init__(self, items=[]):
 self.items = items

First we create an ItemCollection object:

>>> i1=ItemCollection(items=['apples','grapes','oranges'])
>>> i1
<prototype.ItemCollection object at 0x7fd4ba6d3da0>

Now we clone it as follows:

>>> i2 = i1.clone()

The clone is clearly a different object:

>>> i2
<prototype.ItemCollection object at 0x7fd4ba6aceb8>

And it has its own copy of the attributes:

>>> i2.items is i1.items
False

Chapter 7

[349]

Combining patterns using metaclasses
It is possible to create interesting and customized patterns by using the power of
metaclasses. The following example illustrates a type which is both a Singleton as
well as a Prototype:

class MetaSingletonPrototype(type):
 """ A metaclass for Singleton & Prototype patterns """

 def __init__(cls, *args):
 print(cls,"__init__ method called with args", args)
 type.__init__(cls, *args)
 cls.instance = None
 cls.clone = lambda self: copy.deepcopy(cls.instance)

 def __call__(cls, *args, **kwargs):
 if not cls.instance:
 print(cls,"creating prototypical instance", args, kwargs)
 cls.instance = type.__call__(cls,*args, **kwargs)
 return cls.instance

Any class using this metaclass as its type would show both Singleton and Prototype
behavior.

It may look a bit strange to have a single class combine what look like conflicting
behaviors into one, since a Singleton allows only one instance and a Prototype allows
cloning to derive multiple instances, but if we think of patterns in terms of their APIs
then it begins to feel a bit more natural:

• Calling the class using the constructor would always return the same
instance – it behaves like the Singleton pattern.

• Calling clone on the class's instance would always return cloned instances.
The instances are always cloned using the Singleton instance as the source –
it behaves like the Prototype pattern.

Here, we have modified our PrototypeM class to now use the new metaclass:

class PrototypeM(metaclass=MetaSingletonPrototype):
 pass

Since ItemCollection continues to subclass PrototypeM, it automatically gets the
new behavior.

Design Patterns in Python

[350]

Take a look at the following code:

>>> i1=ItemCollection(items=['apples','grapes','oranges'])
<class 'prototype.ItemCollection'> creating prototypical instance ()
{'items': ['apples'
, 'grapes', 'oranges']}
>>> i1
<prototype.ItemCollection object at 0x7fbfc033b048>
>>> i2=i1.clone()

The clone method works as expected, and produces a clone:

>>> i2
<prototype.ItemCollection object at 0x7fbfc033b080>
>>> i2.items is i1.items
False

However, building an instance via the constructor always returns the Singleton
(Prototype) instance only as it invokes the Singleton API:

>>> i3=ItemCollection(items=['apples','grapes','mangoes'])
>>> i3 is i1
True

Metaclasses allow powerful customization of class creation. In this specific
example, we created a combination of behaviors which included both Singleton
and Prototype patterns into one class via a metaclass. The power of Python using
metaclasses allows the programmer to go beyond traditional patterns and come up
with creative techniques.

The Prototype factory
A prototype class can be enhanced with a helper Prototype factory or registry
class, which can provide factory functions for creating prototypical instances of a
configured family or group of products. Think of this as a variation on our previous
Factory pattern.

The following is the code for this class. Notice that we inherit it from Borg to share
state automatically from the top of the hierarchy:

class PrototypeFactory(Borg):
 """ A Prototype factory/registry class """

 def __init__(self):

Chapter 7

[351]

 """ Initializer """

 self._registry = {}

 def register(self, instance):
 """ Register a given instance """

 self._registry[instance.__class__] = instance

 def clone(self, klass):
 """ Return cloned instance of given class """

 instance = self._registry.get(klass)
 if instance == None:
 print('Error:',klass,'not registered')
 else:
 return instance.clone()

Let's create a few subclasses of Prototype, whose instances we can register on
the factory:

class Name(SPrototype):
 """ A class representing a person's name """

 def __init__(self, first, second):
 self.first = first
 self.second = second

 def __str__(self):
 return ' '.join((self.first, self.second))

class Animal(SPrototype):
 """ A class representing an animal """

 def __init__(self, name, type='Wild'):
 self.name = name
 self.type = type

 def __str__(self):
 return ' '.join((str(self.type), self.name))

Design Patterns in Python

[352]

We have two classes: one, a Name class another, an animal class, both of which inherit
from SPrototype.

First create a name and animal object:

>>> name = Name('Bill', 'Bryson')
>>> animal = Animal('Elephant')
>>> print(name)
Bill Bryson
>>> print(animal)
Wild Elephant

Now, let's create an instance of PrototypeFactory:

>>> factory = PrototypeFactory()

Now let's register the two instances on the factory:

>>> factory.register(animal)
>>> factory.register(name)

Now the factory is ready to clone any number of instances from the configured
instances:

>>> factory.clone(Name)
<prototype.Name object at 0x7ffb552f9c50>

>> factory.clone(Animal)
<prototype.Animal object at 0x7ffb55321a58>

The factory, rightfully, complains if we try to clone a class whose instance is not
registered:

>>> class C(object): pass
...
>>> factory.clone(C)
Error: <class '__main__.C'> not registered

The factory class shown here could be enhanced with a check for the
existence of the clone method on the registered class to make sure any
class that is registered is obeying the API of the Prototype class. This is
left as an exercise to the reader.

Chapter 7

[353]

It is instructive to discuss a few aspects of the specific example we have chosen if the
reader hasn't observed them already:

• The PrototypeFactory class is a Factory class, so it is usually a Singleton. In
this case, we have made it a Borg, as we've seen that Borgs make a better fist
of state sharing across class hierarchies.

• The Name class and Animal class inherit from SPrototype, since their
attributes are integers and strings which are immutable; so, a shallow copy is
fine here. This is unlike our first Prototype subclass.

• Prototypes preserve the class creation signature in the prototypical instance,
namely the clone method. This makes it easy for the programmer, as he/she
does not to have to worry about the class creation signature, the order and
type of parameters to __new__, and hence, the __init__ methods, but only
has to call clone on an existing instance.

The Builder pattern
A Builder pattern separates out the construction of an object from its representation
(assembly) so that the same construction process can be used to build different
representations.

In other words, using a Builder pattern one can conveniently create different types or
representative instances of the same class, each using a slightly different building or
assembling process.

Formally, the Builder pattern uses a Director class, which instructs the Builder
object to build instances of the target class. Different types (classes) of builders help
to build slightly different variations on the same class.

Let's look at an example:

class Room(object):
 """ A class representing a Room in a house """

 def __init__(self, nwindows=2, doors=1, direction='S'):
 self.nwindows = nwindows
 self.doors = doors
 self.direction = direction

 def __str__(self):
 return "Room <facing:%s, windows=#%d>" % (self.direction,
 self.nwindows)
class Porch(object):

Design Patterns in Python

[354]

 """ A class representing a Porch in a house """

 def __init__(self, ndoors=2, direction='W'):
 self.ndoors = ndoors
 self.direction = direction

 def __str__(self):
 return "Porch <facing:%s, doors=#%d>" % (self.direction,
 self.ndoors)

class LegoHouse(object):
 """ A lego house class """

 def __init__(self, nrooms=0, nwindows=0,nporches=0):
 # windows per room
 self.nwindows = nwindows
 self.nporches = nporches
 self.nrooms = nrooms
 self.rooms = []
 self.porches = []

 def __str__(self):
 msg="LegoHouse<rooms=#%d, porches=#%d>" % (self.nrooms,
 self.nporches)

 for i in self.rooms:
 msg += str(i)

 for i in self.porches:
 msg += str(i)

 return msg

 def add_room(self,room):
 """ Add a room to the house """

 self.rooms.append(room)

 def add_porch(self,porch):
 """ Add a porch to the house """

 self.porches.append(porch)

Chapter 7

[355]

Our example shows three classes, which are as follows:

• A Room and Porch class each representing a room and porch of a house—a
room has windows and doors, and a porch has doors.

• A LegoHouse class representing a toy example for an actual house (We are
imagining a kid building a house with lego blocks here, with rooms and
porches.) The Lego house will consist of any number of rooms and porches.

Let's try and create a simple LegoHouse instance with one room and one porch, each
with the default configuration:

>>> house = LegoHouse(nrooms=1,nporches=1)
>>> print(house)
LegoHouse<rooms=#1, porches=#1>

Are we done ? No! Notice that our LegoHouse is a class that doesn't fully construct
itself in its constructor. The rooms and porches are not really built yet, only their
counters are initialized.

So we need to build the rooms and porches separately, and add them to the house.
Let's do that:

>>> room = Room(nwindows=1)
>>> house.add_room(room)
>>> porch = Porch()
>>> house.add_porch(porch)
>>> print(house)
LegoHouse<rooms=#1, porches=#1>
Room <facing:S, windows=#1>
Porch <facing:W, doors=#1>

Now you see that our house is fully built. Printing it displays not only the number of
rooms and porches, but also details about them. All good!

Now, imagine that you need to build 100 such different house instances, each with
different configurations of rooms and porches, and often the rooms themselves have
varying numbers of windows and directions!

(Maybe you are building a mobile game which uses Lego Houses where cute little
characters such as Trolls or Minions stay and do interesting things.)

It is pretty clear from the example that writing code like the last will not scale to
solve the problem.

Design Patterns in Python

[356]

This is where the Builder pattern can help you. Let's start with a simple LegoHouse
builder.

class LegoHouseBuilder(object):
 """ Lego house builder class """

 def __init__(self, *args, **kwargs):
 self.house = LegoHouse(*args, **kwargs)

 def build(self):
 """ Build a lego house instance and return it """

 self.build_rooms()
 self.build_porches()
 return self.house

 def build_rooms(self):
 """ Method to build rooms """

 for i in range(self.house.nrooms):
 room = Room(self.house.nwindows)
 self.house.add_room(room)

 def build_porches(self):
 """ Method to build porches """

 for i in range(self.house.nporches):
 porch = Porch(1)
 self.house.add_porch(porch)

The following are the main aspects of this class:

• You configure the Builder class with the target class configuration—the
number of rooms and porches in this case.

• It provides a build method, which constructs and assembles (builds) the
components of the house—in this case, Rooms and Porches, according to the
specified configuration.

• The build method returns the constructed and assembled house.

Chapter 7

[357]

Now building different types of Lego Houses with different designs of rooms and
porches is just two lines of code:

>>> builder=LegoHouseBuilder(nrooms=2,nporches=1,nwindows=1)
>>> print(builder.build())
LegoHouse<rooms=#2, porches=#1>
Room <facing:S, windows=#1>
Room <facing:S, windows=#1>
Porch <facing:W, doors=#1>

We will now build a similar house, but with rooms that have two windows each:

>>> builder=LegoHouseBuilder(nrooms=2,nporches=1,nwindows=2)
>>> print(builder.build())
LegoHouse<rooms=#2, porches=#1>
Room <facing:S, windows=#2>
Room <facing:S, windows=#2>
Porch <facing:W, doors=#1>

Let's say you find you are continuing to build a lot of Lego Houses with this
configuration. You can encapsulate it in a subclass of the Builder so that the
preceding code itself is not duplicated a lot:

class SmallLegoHouseBuilder(LegoHouseBuilder):
""" Builder sub-class building small lego house with 1 room and 1
 porch and rooms having 2 windows """

 def __init__(self):
 self.house = LegoHouse(nrooms=2, nporches=1, nwindows=2)

Now, the house configuration is burned into the new builder class, and building one
is as simple as this:

>>> small_house=SmallLegoHouseBuilder().build()
>>> print(small_house)
LegoHouse<rooms=#2, porches=#1>
Room <facing:S, windows=#2>
Room <facing:S, windows=#2>
Porch <facing:W, doors=#1>

You can also build many of them (say 100, 50 for the Trolls and 50 for the Minions)
as follows:

>>> houses=list(map(lambda x: SmallLegoHouseBuilder().build(),
range(100)))
>>> print(houses[0])
LegoHouse<rooms=#2, porches=#1>

Design Patterns in Python

[358]

Room <facing:S, windows=#2>
Room <facing:S, windows=#2>
Porch <facing:W, doors=#1>

>>> len(houses)
100

One can also create more exotic builder classes which do some very specific things.
For example, the following is a builder class which creates houses with rooms and
porches always facing north:

class NorthFacingHouseBuilder(LegoHouseBuilder):
 """ Builder building all rooms and porches facing North """

 def build_rooms(self):

 for i in range(self.house.nrooms):
 room = Room(self.house.nwindows, direction='N')
 self.house.add_room(room)

 def build_porches(self):

 for i in range(self.house.nporches):
 porch = Porch(1, direction='N')
 self.house.add_porch(porch)

>>> print(NorthFacingHouseBuilder(nrooms=2, nporches=1, nwindows=1).
build())
LegoHouse<rooms=#2, porches=#1>
Room <facing:N, windows=#1>
Room <facing:N, windows=#1>
Porch <facing:N, doors=#1>

And, by using Python's multiple inheritance power, one can combine any such
builders into new and interesting subclasses. The following, for example, is a builder
that produces north-facing small houses:

class NorthFacingSmallHouseBuilder(NorthFacingHouseBuilder,
SmallLegoHouseBuilder):
 pass

Chapter 7

[359]

As expected, it always produces North-facing, small houses with 2 windowed rooms
repeatedly. Not very interesting maybe, but very reliable indeed:

>>> print(NorthFacingSmallHouseBuilder().build())
LegoHouse<rooms=#2, porches=#1>
Room <facing:N, windows=#2>
Room <facing:N, windows=#2>
Porch <facing:N, doors=#1>

Before we conclude our discussion on Creational Patterns, let's summarize some
interesting aspects of these creational patterns and their interplay, as follows:

• Builder and Factory: The Builder pattern separates out the assembling
process of a class's instance from its creation. A Factory on the other hand
is concerned with creating instances of different sub-classes belonging to
the same hierarchy using a unified interface. A builder also returns the built
instance as a final step, whereas a Factory returns the instance immediately,
as there is no separate building step.

• Builder and Prototype: A Builder can, internally, use a prototype for creating
its instances. Further instances from the same builder can then be cloned
from this instance. For example, it is instructive to build a Builder class
which uses one of our Prototype metaclasses to always clone a prototypical
instance.

• Prototype and Factory: A Prototype factory can, internally, make use of a
Factory pattern to build the initial instances of the classes in question.

• Factory and Singleton: A Factory class is usually a Singleton in traditional
programming languages. The other option is to make its methods a class or
static method so there is no need to create an instance of the Factory itself. In
our examples, we made it a Borg instead.

We will now move on to the next class of patterns: Structural Patterns.

Design Patterns in Python

[360]

Patterns in Python – structural
Structural patterns concern themselves with the intricacies of combining classes or
objects to form larger structures that are more than the sum of their parts.

Structural patterns implement this in these two distinct ways:

• By using class Inheritance to compose classes into one. This is the static
approach.

• By using object composition at runtime to achieve combined functionality.
This approach is more dynamic and flexible.

Python, by virtue of supporting multiple inheritance, can implement both of these
very well. Being a language with dynamic attributes and using the power of magic
methods, Python can also do object composition and the resultant method wrapping
pretty well also. So, with Python, a programmer is indeed in a good place with
respect to implementing structural patterns.

We will be discussing the following structural patterns in this section: Adapter,
Facade, and Proxy.

The Adapter pattern
As the name implies, the Adapter pattern wraps or adapts an existing
implementation of a specific interface into another interface which a client expects.
The Adapter is also called a Wrapper.

You very often adapt objects into interfaces or types you want when you program,
most often without realizing this.

Example:

Look at the following list containing two instances of a fruit and detailing how many:

>>> fruits=[('apples',2), ('grapes',40)]

Let's say you want to quickly find the number of fruits, given a fruit name.
The list doesn't allow you to use the fruit as a key, which is a more suitable
interface for the operation.

What do you do ? Well, you simply convert the list to a dictionary:

>>> fruits_d=dict(fruits)
>>> fruits_d['apples']
2

Chapter 7

[361]

Voilà! You got the object in a form that is more convenient for you, adapted to your
programming needs. This is a kind of data or object adaptation.

Programmers do such data or object adaptation almost continuously in their code
without realizing it. Adaptation of code or data is more common than you think.

Let's consider a class Polygon, representing a regular or irregular Polygon of any
shape:

class Polygon(object):
 """ A polygon class """

 def __init__(self, *sides):
 """ Initializer - accepts length of sides """
 self.sides = sides

 def perimeter(self):
 """ Return perimeter """

 return sum(self.sides)

 def is_valid(self):
 """ Is this a valid polygon """

 # Do some complex stuff - not implemented in base class
 raise NotImplementedError

 def is_regular(self):
 """ Is a regular polygon ? """

 # True: if all sides are equal
 side = self.sides[0]
 return all([x==side for x in self.sides[1:]])

 def area(self):
 """ Calculate and return area """

 # Not implemented in base class
 raise NotImplementedError

This preceding class describes a generic, closed Polygon geometric figure in
geometry.

Design Patterns in Python

[362]

We have implemented some basic methods such as
perimeter and is_regular, the latter returning whether
the Polygon is a regular one such as a hexagon or pentagon.

Let's say we want to implement specific classes for a few regular geometric shapes
such as a triangle or rectangle. We can implement these from scratch, of course.
However, since a Polygon class is available, we can try to reuse it, and adapt it to
our needs.

Let's say the Triangle class requires the following methods:

• is_equilateral: Returns whether the triangle is an equilateral one
• is_isosceles: Returns whether the triangle is an isosceles triangle
• is_valid: Implements the is_valid method for a triangle
• area: Implements the area method for a triangle

Similarly the Rectangle class, needs the following methods:

• is_square: Returns whether the rectangle is a square
• is_valid: Implements the is_valid method for a rectangle
• area: Implements the area method for a rectangle

The following is the code for an adapter pattern, reusing the Polygon class for the
Triangle and Rectangle classes.

The following is the code for the Triangle class:

import itertools

class InvalidPolygonError(Exception):
 pass

class Triangle(Polygon):
 """ Triangle class from Polygon using class adapter """

 def is_equilateral(self):
 """ Is this an equilateral triangle ? """

 if self.is_valid():
 return super(Triangle, self).is_regular()

 def is_isosceles(self):
 """ Is the triangle isosceles """

Chapter 7

[363]

 if self.is_valid():
 # Check if any 2 sides are equal
 for a,b in itertools.combinations(self.sides, 2):
 if a == b:
 return True
 return False

 def area(self):
 """ Calculate area """

 # Using Heron's formula
 p = self.perimeter()/2.0
 total = p
 for side in self.sides:
 total *= abs(p-side)

 return pow(total, 0.5)

 def is_valid(self):
 """ Is the triangle valid """

 # Sum of 2 sides should be > 3rd side
 perimeter = self.perimeter()
 for side in self.sides:
 sum_two = perimeter - side
 if sum_two <= side:
 raise InvalidPolygonError(str(self.__class__) + "is
invalid!")

 return True

Take a look at the following Rectangle class:

class Rectangle(Polygon):
 """ Rectangle class from Polygon using class adapter """

 def is_square(self):
 """ Return if I am a square """

 if self.is_valid():
 # Defaults to is_regular
 return self.is_regular()

 def is_valid(self):

Design Patterns in Python

[364]

 """ Is the rectangle valid """

 # Should have 4 sides
 if len(self.sides) != 4:
 return False

 # Opposite sides should be same
 for a,b in [(0,2),(1,3)]:
 if self.sides[a] != self.sides[b]:
 return False

 return True

 def area(self):
 """ Return area of rectangle """

 # Length x breadth
 if self.is_valid():
 return self.sides[0]*self.sides[1]

Now let's see classes in action.

Let's create an equilateral triangle for the first test:

>>> t1 = Triangle(20,20,20)
>>> t1.is_valid()
True

An equilateral triangle is also isosceles:

>>> t1.is_equilateral()
True
>>> t1.is_isosceles()
True

Let's calculate the area:

>>> t1.area()
173.20508075688772

Let's try a triangle which is not valid:

>>> t2 = Triangle(10, 20, 30)
>>> t2.is_valid()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

Chapter 7

[365]

 File "/home/anand/Documents/ArchitectureBook/code/chap7/adapter.py",
line 75, in is_valid
 raise InvalidPolygonError(str(self.__class__) + "is invalid!")
adapter.InvalidPolygonError: <class 'adapter.Triangle'>is invalid!

Its dimensions show it is a straight line, not a triangle. The is_valid
method is not implemented in the base class, hence the subclasses need to
override it to provide a proper implementation. In this case, we raise an
exception if the triangle is invalid.

The following is an illustration of the Rectangle class in action:

>>> r1 = Rectangle(10,20,10,20)
>>> r1.is_valid()
True
>>> r1.area()
200
>>> r1.is_square()
False
>>> r1.perimeter()
60

Let's create a square:

>>> r2 = Rectangle(10,10,10,10)
>>> r2.is_square()
True

The Rectangle/Triangle classes shown here are examples of class adapters.
This is because they inherit the class that they want to adapt, and provide the
methods expected by the client, often delegating the computation to the base-class's
methods. This is evident in the is_equilateral and is_square methods of the
Triangle and Rectangle classes respectively.

Let's look at an alternative implementation of the same classes—this time, via object
composition, in other words, object adapters:

import itertools

class Triangle (object) :
 """ Triangle class from Polygon using class adapter """

 def __init__(self, *sides):
 # Compose a polygon
 self.polygon = Polygon(*sides)

Design Patterns in Python

[366]

 def perimeter(self):
 return self.polygon.perimeter()

 def is_valid(f):
 """ Is the triangle valid """

 def inner(self, *args):
 # Sum of 2 sides should be > 3rd side
 perimeter = self.polygon.perimeter()
 sides = self.polygon.sides

 for side in sides:
 sum_two = perimeter - side
 if sum_two <= side:
 raise InvalidPolygonError(str(self.__class__) +
 "is invalid!")

 result = f(self, *args)
 return result

 return inner

 @is_valid
 def is_equilateral(self):
 """ Is this equilateral triangle ? """

 return self.polygon.is_regular()

 @is_valid
 def is_isosceles(self):
 """ Is the triangle isoscles """

 # Check if any 2 sides are equal
 for a,b in itertools.combinations(self.polygon.sides, 2):
 if a == b:
 return True
 return False

 def area(self):
 """ Calculate area """

 # Using Heron's formula
 p = self.polygon.perimeter()/2.0
 total = p

Chapter 7

[367]

 for side in self.polygon.sides:
 total *= abs(p-side)

 return pow(total, 0.5)

This class works similarly to the other one, even though the internal details are
implemented via object composition rather than class inheritance:

>>> t1=Triangle(2,2,2)
>>> t1.is_equilateral()
True
>>> t2 = Triangle(4,4,5)
>>> t2.is_equilateral()
False
>>> t2.is_isosceles()
True

The main differences between this implementation and the class adapter are as
follows:

• The object adapter class doesn't inherit from the class we want to adapt from.
Instead, it composes an instance of the class.

• Any wrapper methods are forwarded to the composed instance, for example,
the perimeter method.

• All attribute access to the wrapped instance has to be specified explicitly
in this implementation. Nothing comes for free since we are not inheriting
the class. (For example, inspect the way we access the sides attribute of the
enclosed polygon instance.)

Observe how we converted the previous is_valid method to a
decorator in this implementation. This is because many methods carry out
a first check on is_valid, and then perform their actions, so it is an ideal
candidate for a decorator. This also aids rewriting this implementation to
a more convenient form, which is discussed next.

One problem with the object adapter implementation, as shown in the preceding
implementation, is that any attribute reference to the enclosed adapted instance has
to be made explicitly. For example, had we forgotten to implement the perimeter
method for the Triangle class here, there would have been no method at all to call,
as we aren't inheriting from the Adapter class.

Design Patterns in Python

[368]

The following is an alternate implementation, which makes use of the power of
one of Python's magic methods, namely __getattr__, to simplify this. We are
demonstrating this implementation on the Rectangle class:

class Rectangle(object):
 """ Rectangle class from Polygon using object adapter """

 method_mapper = {'is_square': 'is_regular'}

 def __init__(self, *sides):
 # Compose a polygon
 self.polygon = Polygon(*sides)

 def is_valid(f):
 def inner(self, *args):
 """ Is the rectangle valid """

 sides = self.sides
 # Should have 4 sides
 if len(sides) != 4:
 return False

 # Opposite sides should be same
 for a,b in [(0,2),(1,3)]:
 if sides[a] != sides[b]:
 return False

 result = f(self, *args)
 return result

 return inner

 def __getattr__(self, name):
 """ Overloaded __getattr__ to forward methods to wrapped
 instance """

 if name in self.method_mapper:
 # Wrapped name
 w_name = self.method_mapper[name]
 print('Forwarding to method',w_name)
 # Map the method to correct one on the instance
 return getattr(self.polygon, w_name)
 else:

Chapter 7

[369]

 # Assume method is the same
 return getattr(self.polygon, name)

 @is_valid
 def area(self):
 """ Return area of rectangle """

 # Length x breadth
 sides = self.sides
 return sides[0]*sides[1]

Let's look at examples using this class:

>>> r1=Rectangle(10,20,10,20)
>>> r1.perimeter()
60
>>> r1.is_square()
Forwarding to method is_regular
False

You can see that we are able to call the method is_perimeter on the Rectangle
instance even though no such method is actually defined on the class. Similarly,
is_square seems to work magically. What is happening here?

The magic method __getattr__ is invoked by Python on an object if it cannot find
an attribute in the usual ways – by first looking up the object's dictionary, then its
class's dictionary, and so on. It takes a name, and hence provides a hook on a class,
to implement a way to provide method lookups by routing them to other objects.

In this case, the __getattr__ method does the following:

• Checks for the attribute name in the method_mapper dictionary. This is a
dictionary we have created on the class, which maps a method name that we
want to call on the class (as a key) to the actual method name on the wrapped
instance (as a value). If an entry is found, it is returned.

• If no entry is found on the method_mapper dictionary, the entry is passed as
such to the wrapped instance to be looked up by the same name.

• We use getattr in both cases to look up and return the attribute from the
wrapped instance.

Design Patterns in Python

[370]

• Attributes can be anything—data attributes or methods. For example, see
how we refer to the sides attribute of the wrapped polygon instance as if
it belonged to the Rectangle class in the method area and the is_valid
decorator.

• If an attribute is not present on the wrapped instance, it raises an
AttributeError:
 >>> r1.convert_to_parallelogram(angle=30)
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "adapter_o.py", line 133, in __getattr__
 return getattr(self.polygon, name)
 AttributeError: 'Polygon' object has no attribute 'convert_to_
parallelogram'

Object adapters implemented using this technique are much more versatile, and lead
to less code than regular object adapters where every method has to be explicitly
written and forwarded to the wrapped instance.

The Facade pattern
A facade is a structural pattern that provides a unified interface to multiple interfaces
in a subsystem. The Facade pattern is useful where a system consists of multiple
subsystems, each with its own interfaces, but presents some high-level functionality,
which needs to be captured, as a general top-level interface to the client.

A classic example of an object in everyday life which is a Facade is an automobile.

For example, a car consists of an engine, power train, axle and wheel assembly,
electronics, steering systems, brake systems, and other such components.

However, usually, you don't have to bother whether the brake in your car is a
disc-brake, or whether its suspension is coil-spring or McPherson struts, do you?

This is because the car manufacturer has provided a Facade for you to operate
and maintain the car which reduces the complexity and provides you with simpler
sub-systems which are easy to operate by themselves, such as the following:

• The ignition system to start the car
• The steering system to maneuver it
• The clutch-accelerator-brake system to control it
• The gear and transmission system to manage the power and speed

Chapter 7

[371]

A lot of complex systems around us are Facades. Like the car example, a computer
is a Facade, an Industrial Robot is another. All factory control systems are facades,
supplying a few dashboards and controls for the engineer to tweak the complex
systems behind it, and keep them running.

Facades in Python
The Python standard library contains a lot of modules which are good examples of
Facades. The compiler module, which provides hooks to parse and compile Python
source code, is a Facade to the lexer, parser, AST tree generator, and the like.

The following shows the help contents of this module:

Design Patterns in Python

[372]

In the next page of the help contents, you can see how this module acts as a facade
to other modules which are used to implement the functions defined in this package.
(Look at PACKAGE CONTENTS at the bottom of the screenshot):

Let's look at sample code for a Facade pattern. In this example, we will model a Car
with a few of its multiple subsystems.

The following is the code for all the subsystems:

class Engine(object):
 """ An Engine class """

 def __init__(self, name, bhp, rpm, volume, cylinders=4,
 type='petrol'):
 self.name = name
 self.bhp = bhp
 self.rpm = rpm
 self.volume = volume
 self.cylinders = cylinders
 self.type = type

 def start(self):
 """ Fire the engine """

Chapter 7

[373]

 print('Engine started')

 def stop(self):
 """ Stop the engine """
 print('Engine stopped')

class Transmission(object):
 """ Transmission class """

 def __init__(self, gears, torque):
 self.gears = gears
 self.torque = torque
 # Start with neutral
 self.gear_pos = 0

 def shift_up(self):
 """ Shift up gears """

 if self.gear_pos == self.gears:
 print('Cannot shift up anymore')
 else:
 self.gear_pos += 1
 print('Shifted up to gear',self.gear_pos)

 def shift_down(self):
 """ Shift down gears """

 if self.gear_pos == -1:
 print("In reverse, can't shift down")
 else:
 self.gear_pos -= 1
 print('Shifted down to gear',self.gear_pos)

 def shift_reverse(self):
 """ Shift in reverse """

 print('Reverse shifting')
 self.gear_pos = -1

 def shift_to(self, gear):
 """ Shift to a gear position """

 self.gear_pos = gear

Design Patterns in Python

[374]

 print('Shifted to gear',self.gear_pos)

class Brake(object):
 """ A brake class """

 def __init__(self, number, type='disc'):
 self.type = type
 self.number = number

 def engage(self):
 """ Engage the break """

 print('%s %d engaged' % (self.__class__.__name__,
 self.number))

 def release(self):
 """ Release the break """

 print('%s %d released' % (self.__class__.__name__,
 self.number))

class ParkingBrake(Brake):
 """ A parking brake class """

 def __init__(self, type='drum'):
 super(ParkingBrake, self).__init__(type=type, number=1)

class Suspension(object):
 """ A suspension class """

 def __init__(self, load, type='mcpherson'):
 self.type = type
 self.load = load

class Wheel(object):
 """ A wheel class """

 def __init__(self, material, diameter, pitch):
 self.material = material
 self.diameter = diameter

Chapter 7

[375]

 self.pitch = pitch

class WheelAssembly(object):
 """ A wheel assembly class """

 def __init__(self, brake, suspension):
 self.brake = brake
 self.suspension = suspension
 self.wheels = Wheel('alloy', 'M12',1.25)

 def apply_brakes(self):
 """ Apply brakes """

 print('Applying brakes')
 self.brake.engage()

class Frame(object):
 """ A frame class for an automobile """

 def __init__(self, length, width):
 self.length = length
 self.width = width

As you can see, we have covered a good number of the subsystems in a car, or those
which are essential, at least.

The following code for the Car class combines them as a Facade with two methods,
to start and stop the car:

class Car(object):
 """ A car class - Facade pattern """

 def __init__(self, model, manufacturer):
 self.engine = Engine('K-series',85,5000, 1.3)
 self.frame = Frame(385, 170)
 self.wheel_assemblies = []
 for i in range(4):
 self.wheel_assemblies.append(WheelAssembly(Brake(i+1),
 Suspension(1000)))

 self.transmission = Transmission(5, 115)
 self.model = model
 self.manufacturer = manufacturer
 self.park_brake = ParkingBrake()
 # Ignition engaged

Design Patterns in Python

[376]

 self.ignition = False

 def start(self):
 """ Start the car """

 print('Starting the car')
 self.ignition = True
 self.park_brake.release()
 self.engine.start()
 self.transmission.shift_up()
 print('Car started.')

 def stop(self):
 """ Stop the car """

 print('Stopping the car')
 # Apply brakes to reduce speed
 for wheel_a in self.wheel_assemblies:
 wheel_a.apply_brakes()

 # Move to 2nd gear and then 1st
 self.transmission.shift_to(2)
 self.transmission.shift_to(1)
 self.engine.stop()
 # Shift to neutral
 self.transmission.shift_to(0)
 # Engage parking brake
 self.park_brake.engage()
 print('Car stopped.')

Let's build an instance of the Car first:

>>> car = Car('Swift','Suzuki')
>>> car
<facade.Car object at 0x7f0c9e29afd0>

Let's now take the car out of the garage and go for a spin:

>>> car.start()
Starting the car
ParkingBrake 1 released
Engine started
Shifted up to gear 1

From the preceding output you can see that our car has started.

Chapter 7

[377]

Now that we have driven it for a while, we can stop the car. As you may have
guessed, stopping is more involved than starting!

>>> car.stop()
Stopping the car
Shifted to gear 2
Shifted to gear 1
Applying brakes
Brake 1 engaged
Applying brakes
Brake 2 engaged
Applying brakes
Brake 3 engaged
Applying brakes
Brake 4 engaged
Engine stopped
Shifted to gear 0
ParkingBrake 1 engaged
Car stopped.
>>>

Facades are useful for taking the complexity out of systems so that working with
them becomes easier. As the preceding example shows, it would've been awfully
difficult if we hadn't built the start and stop methods the way we did in this
example. These methods hide the complexity behind the actions involved with
subsystems in starting and stopping a Car.

This is what a Facade does best.

The proxy pattern
A proxy pattern wraps another object to control access to it. Some usage scenarios
are as follows:

• We need a virtual resource closer to the client, which acts in place of the real
resource in another network, for example, a remote proxy.

• We need to control/monitor access to a resource, for example, a network
proxy and an instance counting proxy.

• We need to protect a resource or object (protection proxy) because direct
access to it would cause security issues or compromise it, for example, a
reverse proxy server.

Design Patterns in Python

[378]

• We need to optimize access to results from a costly computation or network
operation so that the computation is not performed every time, for example,
a caching proxy

A proxy always implements the interface of the object it is proxying to, its target
in other words. This can be either via inheritance or via composition. In Python,
the latter can be done more powerfully by overriding the __getattr__ method,
as we've seen in the Adapter example.

An instance-counting proxy
We will start with an example that demonstrates using the proxy pattern to keep
track of instances of a class. We will reuse our Employee class and its subclasses
from the Factory pattern here:

class EmployeeProxy(object):
 """ Counting proxy class for Employees """

 # Count of employees
 count = 0

 def __new__(cls, *args):
 """ Overloaded __new__ """
 # To keep track of counts
 instance = object.__new__(cls)
 cls.incr_count()
 return instance

 def __init__(self, employee):
 self.employee = employee

 @classmethod
 def incr_count(cls):
 """ Increment employee count """
 cls.count += 1

 @classmethod
 def decr_count(cls):
 """ Decrement employee count """
 cls.count -= 1

 @classmethod
 def get_count(cls):

Chapter 7

[379]

 """ Get employee count """
 return cls.count

 def __str__(self):
 return str(self.employee)

 def __getattr__(self, name):
 """ Redirect attributes to employee instance """

 return getattr(self.employee, name)

 def __del__(self):
 """ Overloaded __del__ method """
 # Decrement employee count
 self.decr_count()

class EmployeeProxyFactory(object):
 """ An Employee factory class returning proxy objects """

 @classmethod
 def create(cls, name, *args):
 """ Factory method for creating an Employee instance """

 name = name.lower().strip()

 if name == 'engineer':
 return EmployeeProxy(Engineer(*args))
 elif name == 'accountant':
 return EmployeeProxy(Accountant(*args))
 elif name == 'admin':
 return EmployeeProxy(Admin(*args))

We haven't duplicated the code for the employee subclasses,
as these are already available in the Factory pattern
discussion.

We have two classes here: the EmployeeProxy and the original factory class
modified to return instances of EmployeeProxy instead of employee. The modified
factory class makes it easy for us to create proxy instances instead of having to do
it ourselves.

Design Patterns in Python

[380]

The proxy, as implemented here, is a composition or object proxy, as it wraps around
the target object (employee) and overloads __getattr__ to redirect attribute access
to it. It keeps track of the count of instances by overriding the __new__ and __del__
methods for instance creation and instance deletion respectively.

Let's see an example of using the Proxy:

>>> factory = EmployeeProxyFactory()
>>> engineer = factory.create('engineer','Sam',25,'M')
>>> print(engineer)
Engineer - Sam, 25 years old M

This prints details of the engineer via proxy, since we have
overridden the __str__ method in the proxy class, which
calls the same method of the employee instance.

>>> admin = factory.create('admin','Tracy',32,'F')
>>> print(admin)
Admin - Tracy, 32 years old F

Let's check the instance count now. This can be done either via the instances or via
the class, since anyway it references a class variable:

>>> admin.get_count()
2
>>> EmployeeProxy.get_count()
2

Let's delete the instances, and see what happens!

>>> del engineer
>>> EmployeeProxy.get_count()
1
>>> del admin
>>> EmployeeProxy.get_count()
0

The weak reference module in Python provides a proxy object
which performs something very similar to what we have
implemented, by proxying access to class instances.

Chapter 7

[381]

The following is an example:

>>> import weakref
>>> import gc
>>> engineer=Engineer('Sam',25,'M')

Let's check the reference count of the new object:

>>> len(gc.get_referrers(engineer))
1

Now create a weak reference to it:

>>> engineer_proxy=weakref.proxy(engineer)

The weakref object acts in all respects like the object it's proxying for:

>>> print(engineer_proxy)
Engineer - Sam, 25 years old M
>>> engineer_proxy.get_role()
'engineering'

However, note that a weakref proxy doesn't increase the reference count of the
proxied object:

>>> len(gc.get_referrers(engineer))
 1

Patterns in Python – behavioral
Behavioral patterns are the last stage in the complexity and functionality of patterns.
They also come last chronologically in the object life cycle in a system since objects
are first created then built into larger structures, before they interact with each other.

These patterns encapsulate models of communication and interaction between
objects. These patterns allow us to describe complex workflows that may be difficult
to follow at runtime.

Typically, Behavioral patterns favor object composition over inheritance as usually,
the interacting objects in a system would be from separate class hierarchies.

In this brief discussion, we will look at the following patterns: Iterator, Observer,
and State.

Design Patterns in Python

[382]

The Iterator pattern
An iterator provides a way to access elements of a container object sequentially
without exposing the underlying object itself. In other words, an iterator is a proxy
that provides a single method of iterating over a container object.

Iterators are everywhere in Python, so there is no special need to introduce them.

All container/sequence types in Python, that is, list, tuple, str, and set, implement
their own iterators. Dictionaries also implement iterators over their keys.

In Python, an iterator is any object that implements the magic method __iter__, and
also responds to the iter function returning the iterator instance.

Usually, the iterator object that is created is hidden behind the scenes in Python.

For example, we iterate through a list as follows:

>>> for i in range(5):

... print(i)

...

0

1

2

3

4

Internally, something very similar to the following happens:

>>> I = iter(range(5))

>>> for i in I:

... print(i)

...

0

1

2

3

4

Chapter 7

[383]

Every sequence type implements its own iterator type as well in Python. Examples
for this are given as follows:

• Lists:
>>> fruits = ['apple','oranges','grapes']

>>> iter(fruits)

<list_iterator object at 0x7fd626bedba8>

• Tuples:
>>> prices_per_kg = (('apple', 350), ('oranges', 80), ('grapes',
120))

>>> iter(prices_per_kg)

<tuple_iterator object at 0x7fd626b86fd0>

• Sets:
>>> subjects = {'Maths','Chemistry','Biology','Physics'}

>>> iter(subjects)

<set_iterator object at 0x7fd626b91558>

Even dictionaries come with their own special key iterator type in Python3:

>>> iter(dict(prices_per_kg))

<dict_keyiterator object at 0x7fd626c35ae8>

We will explore a small example of implementing your own iterator class/type in
Python now:

class Prime(object):
 """ An iterator for prime numbers """

 def __init__(self, initial, final=0):
 """ Initializer - accepts a number """
 # This may or may not be prime
 self.current = initial
 self.final = final

 def __iter__(self):
 return self

 def __next__(self):
 """ Return next item in iterator """
 return self._compute()

 def _compute(self):

Design Patterns in Python

[384]

 """ Compute the next prime number """

 num = self.current

 while True:
 is_prime = True

 # Check this number
 for x in range(2, int(pow(self.current, 0.5)+1)):
 if self.current%x==0:
 is_prime = False
 break

 num = self.current
 self.current += 1

 if is_prime:
 return num

 # If there is an end range, look for it
 if self.final > 0 and self.current>self.final:
 raise StopIteration

This preceding class is a prime number iterator, which returns prime numbers
between two limits:

>>> p=Prime(2,10)
>>> for num in p:
... print(num)
...
2
3
5
7
>>> list(Prime(2,50))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

The prime number iterator without the end limit is an infinite iterator. For example,
the following iterator will return all prime numbers starting from 2 and will
never stop:

>>> p = Prime(2)

Chapter 7

[385]

However by combining this with the itertools module, one can extract specific data
that one wants from such infinite iterators.

For example here, we use it with the islice method of itertools to compute the
first 100 prime numbers:

>>> import itertools
>>> list(itertools.islice(Prime(2), 100))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379,
383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461,
463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541]

Similarly, the following are the first 10 prime numbers ending with 1 in the unit's
place using the filterfalse method:

>>> list(itertools.islice(itertools.filterfalse(lambda x: x % 10 != 1,
Prime(2)), 10))
[11, 31, 41, 61, 71, 101, 131, 151, 181, 191]

In a similar way, the following are the first 10 palindromic primes:

>>> list(itertools.islice(itertools.filterfalse(lambda x:
str(x)!=str(x)[-1::-1], Prime(2)), 10))
[2, 3, 5, 7, 11, 101, 131, 151, 181, 191]

Interested readers are referred to the documentation on the itertools module and
its methods to find fun and interesting ways to use and manipulate data for such
infinite generators.

The Observer pattern
The Observer pattern decouples objects, but at the same time allows one set of objects
(Subscribers) to keep track of the changes in another object (the Publisher). This
avoids one-to-many dependency and references while keeping their interaction alive.

This pattern is also called Publish-Subscribe.

Design Patterns in Python

[386]

The following is a rather simple example using an Alarm class, which runs in its own
thread and generates periodic alarms every second (by default). It also works as a
Publisher class, notifying its subscribers whenever the alarm happens.

import threading
import time

from datetime import datetime

class Alarm(threading.Thread):
 """ A class which generates periodic alarms """

 def __init__(self, duration=1):
 self.duration = duration
 # Subscribers
 self.subscribers = []
 self.flag = True
 threading.Thread.__init__(self, None, None)

 def register(self, subscriber):
 """ Register a subscriber for alarm notifications """

 self.subscribers.append(subscriber)

 def notify(self):
 """ Notify all the subscribers """

 for subscriber in self.subscribers:
 subscriber.update(self.duration)

 def stop(self):
 """ Stop the thread """

 self.flag = False

 def run(self):
 """ Run the alarm generator """

 while self.flag:
 time.sleep(self.duration)
 # Notify
 self.notify()

Chapter 7

[387]

Our subscriber is a simple DumbClock class, which subscribes to the Alarm object for
its notifications and, using that, updates its time:

class DumbClock(object):
 """ A dumb clock class using an Alarm object """

 def __init__(self):
 # Start time
 self.current = time.time()

 def update(self, *args):
 """ Callback method from publisher """

 self.current += args[0]

 def __str__(self):
 """ Display local time """

 return datetime.fromtimestamp(self.current).
 strftime('%H:%M:%S')

Let's get these objects ticking:

1. First create the alarm with a notification period of 1 second. This allows:
>>> alarm=Alarm(duration=1)

2. Next create the DumbClock object:
>>> clock=DumbClock()

3. Finally, register the clock object on the alarm object as an observer so that it
can receive notifications:
>>> alarm.register(clock)

4. Now the clock will keep receiving updates from the alarm. Every time you
print the clock, it will show the current time correct to the second:
>>> print(clock)
10:04:27

After a while, it will show you the following:
>>> print(clock)
10:08:20

Design Patterns in Python

[388]

5. Then it will sleep for a while and print:
>>> print(clock);time.sleep(20);print(clock)
10:08:23
10:08:43

The following are some aspects to keep in mind when implementing observers:

• References to subscribers: Publishers can choose to keep a reference to
subscribers or use a Mediator pattern to get a reference when required.
A Mediator pattern decouples many objects in a system from strongly
referencing each other. In Python, for example, this could be a collection of
weak references or proxies or an object managing such a collection if both
publisher and subscriber objects are in the same Python runtime. For remote
references, one can use a remote proxy.

• Implementing Callbacks: In this example, the Alarm class directly updates
the state of the subscriber by calling its update method. An alternate
implementation is for the publisher to simply notify the subscribers, at which
point they query the state of the Publisher using a get_state type of method
to implement their own state change:
This is the preferred option for a Publisher which may be interacting with
subscribers of different types/classes. This also allows for decoupling code
from the Publisher to the Subscriber as the publisher doesn't have to change
its code if the update or notify method of the Subscriber changes.

• Synchronous versus Asynchronous: In this example, the notify is called in
the same thread as the Publisher when the state is changed since the clock
needs reliable and immediate notifications to be accurate. In an asynchronous
implementation, this could be done asynchronously so that the main thread
of the Publisher continues running; for example this may be the preferred
approach in systems using asynchronous execution, which returns a future
object upon notification, but the actual notification may occur sometime later.

Since we've already encountered asynchronous processing in Chapter 5, Writing
Applications That Scale, we will conclude our discussion on the Observer pattern with
one more example, showing an asynchronous example where the Publisher and
Subscriber interact asynchronously. We will be using the asyncio module in Python
for this.

For this example, we will be using the domain of news publishing. Our publisher
gets news stories from various sources as news URLs which are tagged to
certain specific news channels. Examples of such channels could be—"sports",
"international", "technology", "India", and so on.

Chapter 7

[389]

News subscribers register for news channels they're interested in, consuming news
stories as URLs. Once they get a URL they fetch the data of the URL asynchronously.
The publisher-to-subscriber notification also happens asynchronously.

The following is the source code for our publisher:

 import weakref
 import asyncio

 from collections import defaultdict, deque

 class NewsPublisher(object):
 """ A news publisher class with asynchronous notifications """

 def __init__(self):
 # News channels
 self.channels = defaultdict(deque)
 self.subscribers = defaultdict(list)
 self.flag = True

 def add_news(self, channel, url):
 """ Add a news story """

 self.channels[channel].append(url)

 def register(self, subscriber, channel):
 """ Register a subscriber for a news channel """

 self.subscribers[channel].append(weakref.proxy(subscriber))

 def stop(self):
 """ Stop the publisher """

 self.flag = False

 async def notify(self):
 """ Notify subscribers """

 self.data_null_count = 0

 while self.flag:
 # Subscribers who were notified
 subs = []

 for channel in self.channels:
 try:

Design Patterns in Python

[390]

 data = self.channels[channel].popleft()
 except IndexError:
 self.data_null_count += 1
 continue

 subscribers = self.subscribers[channel]
 for sub in subscribers:
 print('Notifying',sub,'on channel',channel,'with
 data=>',data)
 response = await sub.callback(channel, data)
 print('Response from',sub,'for
 channel',channel,'=>',response)
 subs.append(sub)

 await asyncio.sleep(2.0)

The publisher's notify method is asynchronous. It goes through list of channels,
finds the subscribers to each of them, and calls back to the subscriber using its
callback method, supplying it with the most recent data from the channel.

The callback method itself being asynchronous, it returns a future and no final
processed result. Further processing of this future occurs asynchronously inside the
fetch_urls method of the subscriber.

The following is the source code for the subscriber:

import aiohttp

class NewsSubscriber(object):
 """ A news subscriber class with asynchronous callbacks """

 def __init__(self):
 self.stories = {}
 self.futures = []
 self.future_status = {}
 self.flag = True

 async def callback(self, channel, data):
 """ Callback method """

 # The data is a URL
 url = data
 # We return the response immediately
 print('Fetching URL',url,'...')
 future = aiohttp.request('GET', url)

Chapter 7

[391]

 self.futures.append(future)

 return future

 async def fetch_urls(self):

 while self.flag:

 for future in self.futures:
 # Skip processed futures
 if self.future_status.get(future):
 continue

 response = await future

 # Read data
 data = await response.read()

 print('\t',self,'Got data for URL',response.
 url,'length:',len(data))
 self.stories[response.url] = data
 # Mark as such
 self.future_status[future] = 1

 await asyncio.sleep(2.0)

Notice how both the callback and fetch_urls methods are both declared as
asynchronous. The callback method passes the URL from the publisher to the
aiohttp module's GET method, which simply returns a future.

The future is appended as a local list of futures, which is processed again
asynchronously by the fetch_urls method to get the URL data, which is
then appended to the local stories dictionary with the URL as the key.

The following is the asynchronous loop part of the code.

Design Patterns in Python

[392]

Take a look at the following steps:

1. To get things started, we create a publisher and add some news stories via
specific URLs to couple of channels on the publisher:
 publisher = NewsPublisher()

 # Append some stories to the 'sports' and 'india' channel

 publisher.add_news('sports', 'http://www.cricbuzz.com/
 cricket-news/94018/collective-dd-show-hands-massive-loss-to-
 kings-xi-punjab')

 publisher.add_news('sports', 'https://sports.ndtv.com/
 indian-premier-league-2017/ipl-2017-this-is-how-virat-kohli-
 recovered-from-the-loss-against-mumbai-indians-1681955')

publisher.add_news('india','http://www.business-standard.com/
article/current-affairs/mumbai-chennai-and-hyderabad-airports-put-
on-hijack-alert-report-117041600183_1.html')
 publisher.add_news('india','http://timesofindia.indiatimes.
com/india/pakistan-to-submit-new-dossier-on-jadhav-to-un-report/
articleshow/58204955.cms')

2. We then create two subscribers, one listening to the sports channel and the
other to the india channel:
 subscriber1 = NewsSubscriber()
 subscriber2 = NewsSubscriber()
 publisher.register(subscriber1, 'sports')
 publisher.register(subscriber2, 'india')

3. Now we create the asynchronous event loop:
 loop = asyncio.get_event_loop()

4. Next, we add the tasks as co-routines to the loop to get the asynchronous
loop to start its processing. We need to add the following three tasks:

 ° publisher.notify():
 ° subscriber.fetch_urls(): (one for each of the two subscribers)

Chapter 7

[393]

5. Since both the publisher and subscriber processing loops never exit, we add a
timeout to processing via its wait method:
 tasks = map(lambda x: x.fetch_urls(), (subscriber1,
subscriber2))
 loop.run_until_complete(asyncio.wait([publisher.notify(), *tas
ks], timeout=120))

 print('Ending loop')
 loop.close()

The following is our asynchronous Publisher and Subscriber(s) in action, on
the console.

We now move on to the last pattern in our discussion of design patterns, namely the
State pattern.

The State pattern
A State pattern encapsulates the internal state of an object in another class (state
object). The object changes its state by switching the internally encapsulated state
object to different values.

Design Patterns in Python

[394]

A State object and its related cousin, Finite State Machine (FSM) allow a
programmer to implement state transitions seamlessly across different states for the
object without requiring complex code.

In Python, the State pattern can be implemented easily, since Python has a magic
attribute for an object's class: the __class__ attribute.

It may sound a bit strange, but in Python this attribute can be modified on the
dictionary of the instance! This allows the instance to dynamically change its class,
something which we can take advantage of to implement this pattern in Python.

The following is a simple example showing this:

>>> class C(object):
... def f(self): return 'hi'
...
>>> class D(object): pass
...
>>> c = C()
>>> c
<__main__.C object at 0x7fa026ac94e0>
>>> c.f()
'hi'
>>> c.__class__=D
>>> c
<__main__.D object at 0x7fa026ac94e0>
>>> c.f()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'D' object has no attribute 'f'

We were able to change the class of the object c at runtime. In this example, this
proved dangerous, since C and D are unrelated classes, so this is never a smart thing
to do in such cases. This is evident in the way c forgot its f method when it changed
to an instance of class D (D has no f method).

However, for related classes, and more specifically, subclasses of a parent class
implementing the same interface, this gives a lot of power, and can be used to
implement patterns such as State.

In the following example, we have used this technique to implement the State
pattern. It shows a computer which can switch from one state to another.

Chapter 7

[395]

Notice how we are using an iterator to define this class since an iterator defines
movement to the next position naturally according to its nature. We are taking
advantage of this fact to implement our State pattern:

import random

class ComputerState(object):
 """ Base class for state of a computer """

 # This is an iterator
 name = "state"
 next_states = []
 random_states = []

 def __init__(self):
 self.index = 0

 def __str__(self):
 return self.__class__.__name__

 def __iter__(self):
 return self

 def change(self):
 return self.__next__()

 def set(self, state):
 """ Set a state """

 if self.index < len(self.next_states):
 if state in self.next_states:
 # Set index
 self.index = self.next_states.index(state)
 self.__class__ = eval(state)
 return self.__class__
 else:
 # Raise an exception for invalid state change
 current = self.__class__
 new = eval(state)
 raise Exception('Illegal transition from %s to %s' %
(current, new))
 else:
 self.index = 0
 if state in self.random_states:

Design Patterns in Python

[396]

 self.__class__ = eval(state)
 return self.__class__

 def __next__(self):
 """ Switch to next state """

 if self.index < len(self.next_states):
 # Always move to next state first
 self.__class__ = eval(self.next_states[self.index])
 # Keep track of the iterator position
 self.index += 1
 return self.__class__
 else:
 # Can switch to a random state once it completes
 # list of mandatory next states.
 # Reset index
 self.index = 0
 if len(self.random_states):
 state = random.choice(self.random_states)
 self.__class__ = eval(state)
 return self.__class__
 else:
 raise StopIteration

Now let's define some concrete subclasses of the ComputerState class.

Each class can define a list of next_states which is a set of legal states the current
state can switch to. It can also define a list of random states which are random legal
states it can switch to once it has switched to the next state.

For example, the following is the first state: the off state of the computer. The next
compulsory state is of course the on state. Once the computer is on, this state can
move off to any of the other random states.

Hence the definition is as follows:

class ComputerOff(ComputerState):
 next_states = ['ComputerOn']
 random_states = ['ComputerSuspend', 'ComputerHibernate',
'ComputerOff']

Chapter 7

[397]

Similarly, the following are the definitions of the other state classes:

class ComputerOn(ComputerState):
 # No compulsory next state
 random_states = ['ComputerSuspend', 'ComputerHibernate',
'ComputerOff']

class ComputerWakeUp(ComputerState):
 # No compulsory next state
 random_states = ['ComputerSuspend', 'ComputerHibernate',
'ComputerOff']

class ComputerSuspend(ComputerState):
 next_states = ['ComputerWakeUp']
 random_states = ['ComputerSuspend', 'ComputerHibernate',
'ComputerOff']

class ComputerHibernate(ComputerState):
 next_states = ['ComputerOn']
 random_states = ['ComputerSuspend', 'ComputerHibernate',
'ComputerOff']

Finally, the following is the class for the Computer which uses the state classes to set
its internal state.

class Computer(object):
 """ A class representing a computer """

 def __init__(self, model):
 self.model = model
 # State of the computer - default is off.
 self.state = ComputerOff()

 def change(self, state=None):
 """ Change state """

 if state==None:
 return self.state.change()
 else:
 return self.state.set(state)

 def __str__(self):
 """ Return state """
 return str(self.state)

Design Patterns in Python

[398]

The following are some interesting aspects of this implementation:

• State as an iterator: We have implemented the ComputerState class as an
iterator. This is because a state has, naturally, a list of immediate future states
it can switch to and nothing else. For example, a computer in an Off state
can move only to the On state next. Defining it as an iterator allows us to take
advantage of the natural progression of an iterator from one state to next.

• Random States: We have implemented the concept of random states in this
example. Once a computer moves from one state to its mandatory next state
(On to Off, Suspend to WakeUp), it has a list of random states available to
move on to. A computer that is On need not always be switched off. It can
also go to Sleep (Suspend) or Hibernate.

• Manual Change: The computer can move to a specific state via the second
optional argument of the change method. However, this is possible only if
the state change is valid; otherwise an exception is raised.

We will now see our State pattern in action.

The computer is off to start with, of course:

>>> c = Computer('ASUS')
>>> print(c)
ComputerOff

Let's see some automatic state changes:

>>> c.change()
<class 'state.ComputerOn'>

And now, let the state machine decide its next states—note these are random states
till the computer enters a state where it has to mandatorily move on to the next state:

>>> c.change()
<class 'state.ComputerHibernate'>

Now the state is Hibernate, which means the next state has to be On as it is a
compulsory next state:

>>> c.change()
<class 'state.ComputerOn'>
>>> c.change()
<class 'state.ComputerOff'>

Chapter 7

[399]

Now the state is Off, which means the next state has to be On:

>>> c.change()
<class 'state.ComputerOn'>

The following are all random state changes:

>>> c.change()
<class 'state.ComputerSuspend'>
>>> c.change()
<class 'state.ComputerWakeUp'>
>> c.change()
<class 'state.ComputerHibernate'>

Now, since the underlying state is an iterator, one can even iterate on the state using
a module such as itertools.

The following is an example of this – iterating on the next five states of the computer:

>>> import itertools
>>> for s in itertools.islice(c.state, 5):
... print (s)
...
<class 'state.ComputerOn'>
<class 'state.ComputerOff'>
<class 'state.ComputerOn'>
<class 'state.ComputerOff'>
<class 'state.ComputerOn'>

Now let's try some manual state changes:

>>> c.change('ComputerOn')
<class 'state.ComputerOn'>
>>> c.change('ComputerSuspend')
<class 'state.ComputerSuspend'>

>>> c.change('ComputerHibernate')
Traceback (most recent call last):
 File "state.py", line 133, in <module>
 print(c.change('ComputerHibernate'))
 File "state.py", line 108, in change
 return self.state.set(state)
 File "state.py", line 45, in set
 raise Exception('Illegal transition from %s to %s' %
 (current, new))
Exception: Illegal transition from <class '__main__.ComputerSuspend'>
to <class '__main__.ComputerHibernate'>

Design Patterns in Python

[400]

We get an exception when we try an invalid state transition, as the computer cannot
go directly from Suspend to Hibernate. It has to wake up first!

>>> c.change('ComputerWakeUp')
<class 'state.ComputerWakeUp'>
>>> c.change('ComputerHibernate')
<class 'state.ComputerHibernate'>

All good now.

We have completed our discussion of design patterns in Python, so it is time to
summarize what we've learned so far.

Summary
In this chapter, we took a detailed tour of object-oriented design patterns, and found
out new and different ways to implement them in Python. We started with an
overview of design patterns and their classification into Creational, Structural, and
Behavioral patterns.

We went on to see an example of a Strategy design pattern, and saw how to
implement this in a Pythonic manner. We then began our formal discussion of
patterns in Python.

In Creational patterns, we covered the Singleton, Borg, Prototype, Factory, and
Builder patterns. We saw why Borg is usually a better approach than Singleton
in Python due to its ability to keep state across class hierarchies. We saw the
interplay between the Builder, Prototype, and Factory patterns, and saw a few
examples. Everywhere possible, metaclass discussions were introduced, and pattern
implementations were done using metaclasses.

In Structural patterns, our focus was on the Adapter, Facade, and Proxy patterns.
We saw detailed examples using the Adapter pattern, and discussed approaches
via inheritance and object composition. We saw the power of magic methods
in Python when we implemented the Adapter and Proxy patterns via the
__getattr__ technique.

In Facade, using a Car class, we saw a detailed example on how Facade helps
programmers conquer complexity and provide generic interfaces over the
subsystems. We also saw that many Python standard library modules are
themselves facades.

In the Behavioral section, we discussed the Iterator, Observer, and State patterns. We
saw how iterators are part and parcel of Python. We implemented an iterator as a
generator for building Prime numbers.

Chapter 7

[401]

We saw a simple example of the Observer pattern by using an Alarm class
as a Publisher and a clock class as Subscriber. We also saw an example of an
asynchronous observer pattern using the asyncio module in Python.

Finally, we ended our discussion of patterns with the State pattern. We discussed
a detailed example, switching the states of a computer through allowable state
changes, and how one can use Python's __class__ as a dynamic attribute to change
the class of an instance. In the implementation of State, we borrowed techniques
from the Iterator pattern, and implemented the State example class as an Iterator.

In our next chapter, we move on from design to the next-higher paradigm of patterns
in software architectures: architectural patterns.

[403]

Python – Architectural
Patterns

Architectural patterns are the highest level of patterns in the pantheon of patterns
in software. Architectural patterns allow the architects to specify the fundamental
structure of an application. The architectural pattern chosen for a given software
problem governs the rest of its activities, such as the design of systems involved,
communication between different parts of the system, and so on.

There are a number of architectural patterns to choose from depending upon the
problem at hand. Different patterns solve different classes or families of problems,
creating their own style or class of architecture. For example, a certain class of patterns
solves the architecture of client/server systems, another helps to build distributed
systems, and a third helps to design highly decoupled peer-to-peer systems.

In this chapter, we will discuss and focus on a few architectural patterns that are
encountered often in the Python world. Our pattern of discussion in the chapter
will be to take a well-known architectural pattern, and explore one or two popular
software applications or frameworks that implement it, or a variation of it.

We will not discuss a lot of code in this chapter—the usage of code will be limited to
those patterns where an illustration using a program is absolutely essential. On the
other hand, most of the discussion will be on the architectural details, participating
subsystems, variations in the architecture implemented by the chosen application/
framework, and the like.

There are any number of architecture patterns that we can look at. In this chapter, we
will focus on MVC and its related patterns, event-driven programming architectures,
microservices architectures, and pipes and filters.

Python – Architectural Patterns

[404]

We will be covering the following topics in this chapter:

• Introducing MVC:
 ° Model View Template—Django
 ° Flask microframework

• Event-driven programming:
 ° Chat server and client using select
 ° Event-driven versus concurrent programming
 ° Twisted

Twisted chat server and client

 ° Eventlet
Eventlet chat server

 ° Greenlets and gevent

Gevent chat server

• Microservices architecture:
 ° Microservice frameworks in Python
 ° Microservice example
 ° Microservice advantages

• Pipe and filter architecture:
 ° Pipe and filter in Python—examples

Introducing MVC
Model View Controller (MVC) is a well-known and popular architectural
pattern for building interactive applications. MVC splits the application into
three components: the Model, the View, and the Controller.

Chapter 8

[405]

MVC architecture

The three components perform the following responsibilities:

• Model: The model contains the core data and logic of the application.
• View: The view(s) form the output of the application to the user. They

display information to the user. Multiple views of the same data are possible.
• Controller: The controller receives and processes user inputs such as

keyboard clicks or mouse clicks/movements, and converts them into
change requests for the model or the view.

Separation of concerns using these three components avoids tight coupling
between the data of the application and its representation. It allows for multiple
representations (views) of the same data (model), which can be computed and
presented according to user input received via the controller.

The MVC pattern allows the following interactions:

• A model can change its data depending upon inputs received from the
controller.

• The changed data is reflected on the views, which are subscribed to changes
in the model.

Python – Architectural Patterns

[406]

• Controllers can send commands to update the model's state, such as when
making changes to a document. Controllers can also send commands to
modify the presentation of a view without any change to the model, such as
zooming in on a graph or chart.

• The MVC pattern implicitly includes a change propagation mechanism to
notify each component of changes on the other dependent components.

• A number of web applications in the Python world implement MVC or a
variation of it. We will look at a couple of them, namely Django and Flask, in
the coming sections.

Model Template View (MTV) – Django
The Django project is one of the most popular web application frameworks in the
Python world. Django implements something like an MVC pattern, but with some
subtle differences.

The Django (core) component architecture is illustrated in the following diagram:

Django core component architecture

Chapter 8

[407]

The core components of the Django framework are as follows:

• An Object Relational Mapper (ORM), which acts as a mediator between
data models (Python) and the database (RDBMS)—this can be thought of as
the Model layer.

• A set of callback functions in Python, which renders the data to the user
interface for a specific URL—this can be thought of as the VIEW layer. The
view focuses on building and transforming the content rather than on its
actual presentation.

• A set of HTML templates to render content in different presentations. The
view delegates to a specific template, which is responsible for how the data is
presented.

• A regular expression-based URL DISPATCHER, which connects relative
paths on the server to specific views and their variable arguments. This can
be thought of as a rudimentary Controller.

• In Django, since the presentation is performed by the TEMPLATE layer and
only the content mapping done by the VIEW layer, Django is often described
as implementing the MTV framework.

• The Controller in Django is not very well defined—it can be thought of as the
entire framework itself—or limited to the URL DISPATCHER layer.

Django admin – automated model-centric
views
One of the most powerful components of the Django framework is its automatic
admin system, which reads metadata from the Django models, and generates quick,
model-centric admin views, where administrators of the system can view and edit
data models via simple HTML forms.

Python – Architectural Patterns

[408]

For illustration, the following is an example of a Django model that describes a term
that is added to a website as a glossary term (a glossary is a list or index of words
that describes the meaning of words related to a specific subject, text, or dialect):

from django.db import models

class GlossaryTerm(models.Model):
 """ Model for describing a glossary word (term) """

 term = models.CharField(max_length=1024)
 meaning = models.CharField(max_length=1024)
 meaning_html = models.CharField('Meaning with HTML markup',
 max_length=4096, null=True, blank=True)
 example = models.CharField(max_length=4096, null=True, blank=True)

 # can be a ManyToManyField?
 domains = models.CharField(max_length=128, null=True, blank=True)

 notes = models.CharField(max_length=2048, null=True, blank=True)
 url = models.CharField('URL', max_length=2048, null=True,
blank=True)
 name = models.ForeignKey('GlossarySource', verbose_name='Source',
blank=True)

 def __unicode__(self):
 return self.term

 class Meta:
 unique_together = ('term', 'meaning', 'url')

This is combined with an admin system that registers a model for an automated
admin view:

from django.contrib import admin

admin.site.register(GlossaryTerm)
admin.site.register(GlossarySource)

Chapter 8

[409]

The following is a screenshot of the automated admin view (HTML form) for adding
a glossary term via the Django admin interface:

Django automated admin view (HTML form) for adding a glossary term

A quick observation tells you how the Django admin is able to generate the correct
field type for the different data fields in the model, and generate a form for adding
the data. This is a powerful pattern present in Django that allows one to generate
automated admin views for adding/editing models with almost no coding effort.

Let's now look at another popular Python web application framework, namely Flask.

Flexible Microframework – Flask
Flask is a micro web framework that uses a minimalistic philosophy for building web
applications. Flask relies on just two libraries: the Werkzeug (http://werkzeug.
pocoo.org/) WSGI toolkit and the Jinja2 templating framework.

http://werkzeug.pocoo.org/
http://werkzeug.pocoo.org/

Python – Architectural Patterns

[410]

Flask comes with simple URL routing via decorators. The micro word in Flask
indicates that the core of the framework is small. Support for databases, forms, and
others is provided by multiple extensions that the Python community has built
around Flask.

The core Flask can thus be thought of as an MTV framework minus the M (View
Template), since the core does not implement support for models.

Here is an approximate schematic diagram of the Flask component architecture:

Schematic diagram of Flask components

A simple Flask application using templates looks something like this:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def index():
 data = 'some data'
 return render_template('index.html', **locals())

We can find a few components of the MVC pattern right here:

• The @app.route decorator routes requests from the browser to the index
function. The application router can be thought of as the controller.

• The index function returns the data, and renders it using a template.
The index function can be thought of as generating the view or the view
component.

Chapter 8

[411]

• Flask uses templates like Django to keep the content separate from the
presentation. This can be thought of as the template component.

• There is no specific model component in Flask core. However, this can be
added on with the help of additional plugins.

• Flask uses a plugin architecture to support additional features. For example,
models can be added on by using Flask-SQLAlchemy, RESTful API support
using Flask-RESTful, serialization using Flask-marshmallow, and others.

Event-driven programming
Event-driven programming is a paradigm of system architecture where the logic
flow within the program is driven by events such as user actions, messages from
other programs, or hardware (sensor) inputs.

In event-driven architectures, there is usually a main event loop, which listens for
events and then triggers callback functions with specific arguments when an event
is detected.

In modern operating systems such as Linux, support for events on input file
descriptors such as sockets or opened files is implemented by system calls such as
select, poll, and epoll.

Python provides wrappers to these system calls via its select module. It is not very
difficult to write a simple event-driven program using the select module in Python.

The following set of programs together implement a basic chat server and client in
Python using the power of the select module.

Chat server and client using I/O multiplexing
with the select module
Our chat server uses the select system call via the select module to create
channels where clients can connect to and talk with each other. It handles the events
(sockets) that are input ready–if the event is a client connecting to the server, it
connects and performs a handshake; if the event is data to be read from standard
input, the server reads the data, or else it passes the data received from one client to
the others.

Python – Architectural Patterns

[412]

Here is our chat server:

chatserver.py

import socket
import select
import signal
import sys
from communication import send, receive

class ChatServer(object):
 """ Simple chat server using select """

 def serve(self):
 inputs = [self.server,sys.stdin]
 self.outputs = []

 while True:

 inputready,outputready,exceptready = select.
select(inputs, self.outputs, [])

 for s in inputready:

 if s == self.server:
 # handle the server socket
 client, address = self.server.accept()

 # Read the login name
 cname = receive(client).split('NAME: ')[1]

 # Compute client name and send back
 self.clients += 1
 send(client, 'CLIENT: ' + str(address[0]))
 inputs.append(client)

 self.clientmap[client] = (address, cname)

Chapter 8

[413]

 self.outputs.append(client)

 elif s == sys.stdin:
 # handle standard input – the server exits
 junk = sys.stdin.readline()
 break
 else:
 # handle all other sockets
 try:
 data = receive(s)
 if data:
 # Send as new client's message...
 msg = '\n#[' + self.get_name(s) + ']>> ' +
data
 # Send data to all except ourselves
 for o in self.outputs:
 if o != s:
 send(o, msg)
 else:
 print('chatserver: %d hung up' %
s.fileno())
 self.clients -= 1
 s.close()
 inputs.remove(s)
 self.outputs.remove(s)

 except socket.error as e:
 # Remove
 inputs.remove(s)
 self.outputs.remove(s)

 self.server.close()

if __name__ == "__main__":
 ChatServer().serve()

Since the code of the chat server is big, we are only including the main
function, namely the serve function here showing how the server uses
select-based I/O multiplexing. A lot of code in the serve function has
also been trimmed to keep the printed code small.
The complete source code can be downloaded from the code archive of
this book from the book's website.
The chat server can be stopped by sending a single line of empty input.

Python – Architectural Patterns

[414]

The chat client also uses the select system call. It uses a socket to connect to the
server, and then waits for events on the socket plus the standard input. If the event is
from the standard input, it reads the data. Otherwise, it sends the data to the server
via the socket:

chatclient.py
import socket
import select
import sys
from communication import send, receive

class ChatClient(object):
 """ A simple command line chat client using select """

 def __init__(self, name, host='127.0.0.1', port=3490):
 self.name = name
 # Quit flag
 self.flag = False
 self.port = int(port)
 self.host = host
 # Initial prompt
 self.prompt='[' + '@'.join((name, socket.gethostname().
split('.')[0])) + ']> '
 # Connect to server at port
 try:
 self.sock = socket.socket(socket.AF_INET, socket.SOCK_
STREAM)
 self.sock.connect((host, self.port))
 print('Connected to chat server@%d' % self.port)
 # Send my name...
 send(self.sock,'NAME: ' + self.name)
 data = receive(self.sock)
 # Contains client address, set it
 addr = data.split('CLIENT: ')[1]
 self.prompt = '[' + '@'.join((self.name, addr)) + ']> '
 except socket.error as e:
 print('Could not connect to chat server @%d' % self.port)
 sys.exit(1)

 def chat(self):

Chapter 8

[415]

 """ Main chat method """

 while not self.flag:
 try:
 sys.stdout.write(self.prompt)
 sys.stdout.flush()

 # Wait for input from stdin & socket
 inputready, outputready,exceptrdy = select.select([0,
self.sock], [],[])

 for i in inputready:
 if i == 0:
 data = sys.stdin.readline().strip()
 if data: send(self.sock, data)
 elif i == self.sock:
 data = receive(self.sock)
 if not data:
 print('Shutting down.')
 self.flag = True
 break
 else:
 sys.stdout.write(data + '\n')
 sys.stdout.flush()

 except KeyboardInterrupt:
 print('Interrupted.')
 self.sock.close()
 break

if __name__ == "__main__":
 if len(sys.argv)<3:
 sys.exit('Usage: %s chatid host portno' % sys.argv[0])

 client = ChatClient(sys.argv[1],sys.argv[2], int(sys.argv[3]))
 client.chat()

The chat client can be stopped by pressing Ctrl + C on the Terminal.

Python – Architectural Patterns

[416]

In order to send data to and fro via sockets, both these scripts use a third module,
named communication, which has a send and a receive function. This module
uses pickle to serialize and deserialize data in the send and receive functions,
respectively:

communication.py
import pickle
import socket
import struct

def send(channel, *args):
 """ Send a message to a channel """

 buf = pickle.dumps(args)
 value = socket.htonl(len(buf))
 size = struct.pack("L",value)
 channel.send(size)
 channel.send(buf)

def receive(channel):
 """ Receive a message from a channel """

 size = struct.calcsize("L")
 size = channel.recv(size)
 try:
 size = socket.ntohl(struct.unpack("L", size)[0])
 except struct.error as e:
 return ''

 buf = ""

 while len(buf) < size:
 buf = channel.recv(size - len(buf))

 return pickle.loads(buf)[0]

The following are some screenshots of the server running and two clients that are
connected to each other via the chat server:

Chapter 8

[417]

Here is the screenshot of client #1, named andy, connected to the chat server:

Chat session of chat client #1 (client name: andy)

Similarly, here is a client named betty who is connected to the chat server and is
talking to andy:

Chat session of chat client #2 (client name: betty)

Python – Architectural Patterns

[418]

Some interesting points of the program are as follows:

• See how the clients are able to see each other's messages. This happens
because the server sends the data sent by one client to all the other connected
clients. Our chat server prefixes the messages with a hash (#) to indicate that
this message is from another client.

• See how the server sends connection and disconnection information of a
client to all other clients. This informs the clients when another client is
connected to or disconnected from the session.

• The server echoes messages when a client disconnects saying that the client
hung up.

The preceding chat server and client example is a minor variation
of the author's own Python recipe in the ASPN Cookbook at
https://code.activestate.com/recipes/531824.

The simple select-based multiplexing is taken to the next level by libraries such as
Twisted, Eventlet, and Gevent in order to build systems that provide high-level
event-based programming routines to the programmer, typically based on a core
event loop very similar to the loop of our chat server example.

We will discuss the architecture of these frameworks in the following sections.

Event-driven programming versus concurrent
programming
The example we saw in the previous section uses the technique of asynchronous
events as we saw in the chapter on concurrency. This is different from true
concurrent or parallel programming.

Event programming libraries also work on the technique of asynchronous events.
There is only a single thread of execution in which tasks are interleaved one after
another based on the events received.

https://code.activestate.com/recipes/531824

Chapter 8

[419]

In the following diagram, consider a truly parallel execution of three tasks by three
threads or processes:

Parallel execution of three tasks using three threads

Contrast this with what happens when the tasks are executed via event-driven
programming as depicted in the following diagram:

Asynchronous execution of three tasks in a single thread

In the asynchronous model, there is only one single thread of execution with tasks
executing in an interleaved fashion. Each task gets its own slot of processing time in
the event loop of the asynchronous processing server, but only one task executes at
a given time. Tasks yield control back to the loop so that it can schedule a different
task in the next time slice from the task that is being executed currently. As we
have seen in Chapter 5, Writing Applications that Scale, this is a kind of cooperative
multitasking.

Python – Architectural Patterns

[420]

Twisted
Twisted is an event-driven networking engine with support for multiple protocols,
such as DNS, SMTP, POP3, IMAP, and so on. It also comes with support for writing
SSH clients and servers, and to build messaging and IRC clients and servers.

Twisted also provides a set of patterns (styles) to write common servers and clients,
such as web server/client (HTTP), publish/subscribe patterns, messaging clients and
servers (SOAP/XML-RPC), and others.

It uses the Reactor design pattern, which multiplexes and dispatches events from
multiple sources to their event handlers in a single thread.

It receives messages, requests, and connections coming from multiple concurrent
clients, and processes these posts sequentially using event handlers without
requiring concurrent threads or processes.

The reactor pseudo-code looks, approximately, as follows:

while True:
 timeout = time_until_next_timed_event()
 events = wait_for_events(timeout)
 events += timed_events_until(now())
 for event in events:
 event.process()

Twisted uses callbacks to call event handlers as and when an event happens. To
handle a specific event, a callback is registered for that event. Callbacks can be used
for regular processing, and also for managing exceptions (errbacks).

Like the asyncio module, Twisted uses an object such as futures in order to wrap
the results of a task execution, whose actual results are still not available. In Twisted,
these objects are called Deferreds.

Deferred objects have a pair of callback chains: one for processing results (callbacks)
and one for managing errors (errbacks). When the result of an execution is obtained,
a Deferred object is created, and its callbacks and/or errbacks are called in the order
in which they were added.

Chapter 8

[421]

Here is an architecture diagram of Twisted, showing the high-level components:

Twisted—Core Components

Twisted – a simple web client
The following is a simple example of a web HTTP client using Twisted, fetching a
given URL and saving its contents to a specific filename:

twisted_fetch_url.py
from twisted.internet import reactor
from twisted.web.client import getPage
import sys

def save_page(page, filename='content.html'):
 print type(page)
 open(filename,'w').write(page)
 print 'Length of data',len(page)
 print 'Data saved to',filename

def handle_error(error):
 print error

def finish_processing(value):
 print "Shutting down..."
 reactor.stop()

if __name__ == "__main__":
 url = sys.argv[1]

Python – Architectural Patterns

[422]

 deferred = getPage(url)
 deferred.addCallbacks(save_page, handle_error)
 deferred.addBoth(finish_processing)

 reactor.run()

As you can see in the preceding code, the getPage method returns a deferred, and
not the data of the URL. To the deferred, we add two callbacks: one for processing
the data (the save_page function) and another for handling errors (the handle_
error function). The addBoth method of the deferred adds a single function as both
callback and errback.

The event processing is started by running the reactor. In the finish_processing
callback, which is called at the end, the reactor is stopped. Since event handlers are
called in the order that they are added, this function will be called only at the very
end.

When the reactor is run, the following events happen:

• The page is fetched and the deferred is created.
• The callbacks are called in order on the deferred. First the save_page

function is called, which saves contents of the page to the content.html file.
Then a handle_error event handler is called, which prints any error string.

• Finally, finish_processing is called, which stops the reactor, and the event
processing ends, exiting the program.

At the time of writing, Twisted is not yet available for Python3, so
the preceding code is written for Python2.

• When you run the code, you will see that the following output is produced:
$ python2 twisted_fetch_url.py http://www.google.com
Length of data 13280
Data saved to content.html
Shutting down...

Chat server using Twisted
Let's now see how we can write a simple chat server in Twisted on lines similar to
our chat server using the select module.

In Twisted, servers are built by implementing protocols and protocol factories. A
protocol class typically inherits from the Twisted Protocol class.

Chapter 8

[423]

A factory is nothing but a class that serves as a factory pattern for protocol objects.

Using this, here is our chat server using Twisted:

from twisted.internet import protocol, reactor

class Chat(protocol.Protocol):
 """ Chat protocol """

 transports = {}
 peers = {}

 def connectionMade(self):
 self._peer = self.transport.getPeer()
 print 'Connected',self._peer

 def connectionLost(self, reason):
 self._peer = self.transport.getPeer()
 # Find out and inform other clients
 user = self.peers.get((self._peer.host, self._peer.port))
 if user != None:
 self.broadcast('(User %s disconnected)\n' % user, user)
 print 'User %s disconnected from %s' % (user, self._peer)

 def broadcast(self, msg, user):
 """ Broadcast chat message to all connected users except
 'user' """

 for key in self.transports.keys():
 if key != user:
 if msg != "<handshake>":
 self.transports[key].write('#[' + user + "]>>> " +
msg)
 else:
 # Inform other clients of connection
 self.transports[key].write('(User %s connected
from %s)\n' % (user, self._peer))

 def dataReceived(self, data):
 """ Callback when data is ready to be read from the socket """

 user, msg = data.split(":")
 print "Got data=>",msg,"from",user
 self.transports[user] = self.transport
 # Make an entry in the peers dictionary

Python – Architectural Patterns

[424]

 self.peers[(self._peer.host, self._peer.port)] = user
 self.broadcast(msg, user)

class ChatFactory(protocol.Factory):
 """ Chat protocol factory """

 def buildProtocol(self, addr):
 return Chat()

if __name__ == "__main__":
 reactor.listenTCP(3490, ChatFactory())
 reactor.run()

Our chat server is a bit more sophisticated than the one before as it performs the
following additional steps:

1. It has a separate handshake protocol using the special <handshake> message.
2. When a client connects, it is broadcast to other clients, informing them of the

client's name and connection details.
3. When a client disconnects, other clients are informed about this.

The chat client also uses Twisted and uses two protocols—namely
a ChatClientProtocol for communication with the server and a
StdioClientProtocol for reading data from standard input and echoing data
received from the server to the standard output.

The latter protocol also connects the former one to its input, so that any data that is
received on the standard input is sent to the server as a chat message.

Take a look at the following code:

import sys
import socket
from twisted.internet import stdio, reactor, protocol

class ChatProtocol(protocol.Protocol):
 """ Base protocol for chat """

 def __init__(self, client):
 self.output = None
 # Client name: E.g: andy
 self.client = client

Chapter 8

[425]

 self.prompt='[' + '@'.join((self.client, socket.gethostname().
split('.')[0])) + ']> '

 def input_prompt(self):
 """ The input prefix for client """
 sys.stdout.write(self.prompt)
 sys.stdout.flush()

 def dataReceived(self, data):
 self.processData(data)

class ChatClientProtocol(ChatProtocol):
 """ Chat client protocol """

 def connectionMade(self):
 print 'Connection made'
 self.output.write(self.client + ":<handshake>")

 def processData(self, data):
 """ Process data received """

 if not len(data.strip()):
 return

 self.input_prompt()

 if self.output:
 # Send data in this form to server
 self.output.write(self.client + ":" + data)

class StdioClientProtocol(ChatProtocol):
 """ Protocol which reads data from input and echoes
 data to standard output """

 def connectionMade(self):
 # Create chat client protocol
 chat = ChatClientProtocol(client=sys.argv[1])
 chat.output = self.transport

 # Create stdio wrapper
 stdio_wrapper = stdio.StandardIO(chat)
 # Connect to output

Python – Architectural Patterns

[426]

 self.output = stdio_wrapper
 print "Connected to server"
 self.input_prompt()

 def input_prompt(self):
 # Since the output is directly connected
 # to stdout, use that to write.
 self.output.write(self.prompt)

 def processData(self, data):
 """ Process data received """

 if self.output:
 self.output.write('\n' + data)
 self.input_prompt()

class StdioClientFactory(protocol.ClientFactory):

 def buildProtocol(self, addr):
 return StdioClientProtocol(sys.argv[1])

def main():
 reactor.connectTCP("localhost", 3490, StdioClientFactory())
 reactor.run()

if __name__ == '__main__':
 main()

Chapter 8

[427]

Here are some screenshots of the two clients andy and betty communicating
using this chat server and client:

Chat client using Twisted chat server—session for client #1 (andy)

Here is the second session, for the client betty:

Chat client using Twisted chat server—session for client #2 (betty)

Python – Architectural Patterns

[428]

You can follow the flow of the conversation by alternately looking at the screenshots.

Note the connection and disconnection messages are sent by the server when user
betty connects and user andy disconnects respectively.

Eventlet
Eventlet is another well-known networking library in the Python world that allows
one to write event-driven programs using the same concept of asynchronous
execution.

Eventlet uses co-routines for this purpose with the help of a set of so-called
green threads, which are lightweight user-space threads that perform cooperative
multitasking.

Eventlet uses an abstraction over a set of green threads, the Greenpool class, in order
to perform its tasks.

The Greenpool class runs a predefined set of Greenpool threads (default is 1000),
and provides ways to map functions and callables to the threads in different ways.

Here is the multiuser chat server rewritten using Eventlet:

eventlet_chat.py

import eventlet
from eventlet.green import socket

participants = set()

def new_chat_channel(conn):
 """ New chat channel for a given connection """

 data = conn.recv(1024)
 user = ''

 while data:
 print("Chat:", data.strip())
 for p in participants:
 try:
 if p is not conn:
 data = data.decode('utf-8')

Chapter 8

[429]

 user, msg = data.split(':')
 if msg != '<handshake>':
 data_s = '\n#[' + user + ']>>> says ' + msg
 else:
 data_s = '(User %s connected)\n' % user

 p.send(bytearray(data_s, 'utf-8'))
 except socket.error as e:
 # ignore broken pipes, they just mean the participant
 # closed its connection already
 if e[0] != 32:
 raise
 data = conn.recv(1024)

 participants.remove(conn)
 print("Participant %s left chat." % user)

if __name__ == "__main__":
 port = 3490
 try:
 print("ChatServer starting up on port", port)
 server = eventlet.listen(('0.0.0.0', port))

 while True:
 new_connection, address = server.accept()
 print("Participant joined chat.")
 participants.add(new_connection)
 print(eventlet.spawn(new_chat_channel,
 new_connection))

 except (KeyboardInterrupt, SystemExit):
 print("ChatServer exiting.")

This server can be used with the Twisted chat client that we've seen
in the previous example, and behaves in exactly the same way.
Hence, we will not show running examples of this server.

The Eventlet library internally uses greenlets, a package that provides green
threads on Python runtime. We will see greenlet and a related library, Gevent, in the
following section.

Python – Architectural Patterns

[430]

Greenlets and Gevent
Greenlet is a package that provides a version of green or microthreads on top of the
Python interpreter. It is inspired by Stackless, a version of CPython that supports
microthreads called stacklets. However, greenlets are able to run on the standard
CPython runtime.

Gevent is a Python networking library providing a high-level synchronous API on
top of libev, the event library written in C.

Gevent is inspired by gevent, but it features a more consistent API and better
performance.

Like Eventlet, gevent does a lot of monkey patching on system libraries to provide
support for cooperative multitasking. For example, gevent comes with its own
sockets, just like Eventlet does.

Unlike Eventlet, gevent also requires explicit monkey patching to be done by the
programmer. It provides a method to do this on the module itself.

Without further ado, let's look at the multiuser chat server using gevent:

gevent_chat_server.py

import gevent
from gevent import monkey
from gevent import socket
from gevent.server import StreamServer

monkey.patch_all()

participants = set()

def new_chat_channel(conn, address):
 """ New chat channel for a given connection """

 participants.add(conn)
 data = conn.recv(1024)
 user = ''

 while data:
 print("Chat:", data.strip())
 for p in participants:
 try:

Chapter 8

[431]

 if p is not conn:
 data = data.decode('utf-8')
 user, msg = data.split(':')
 if msg != '<handshake>':
 data_s = '\n#[' + user + ']>>> says ' + msg
 else:
 data_s = '(User %s connected)\n' % user

 p.send(bytearray(data_s, 'utf-8'))
 except socket.error as e:
 # ignore broken pipes, they just mean the participant
 # closed its connection already
 if e[0] != 32:
 raise
 data = conn.recv(1024)

 participants.remove(conn)
 print("Participant %s left chat." % user)

if __name__ == "__main__":
 port = 3490
 try:
 print("ChatServer starting up on port", port)
 server = StreamServer(('0.0.0.0', port), new_chat_channel)
 server.serve_forever()
 except (KeyboardInterrupt, SystemExit):
 print("ChatServer exiting.")

The code for the gevent-based chat server is almost the same as the one using
Eventlet. The reason for this is that they work in very similar ways, by handling
control to a callback function when a new connection is made. In both cases the
callback function is named new_chat_channel, which has the same functionality
and hence very similar code.

The differences between the two are as follows:

• gevent provides its own TCP server class—StreamingServer–so we use that
instead of listening on the module directly.

• In the gevent server, for every connection the new_chat_channel handler is
invoked, hence the participant set is managed there.

• Since the gevent server has its own event loop, there is no need to create
a while loop for listening for incoming connections as we had to do with
Eventlet.

Python – Architectural Patterns

[432]

This example works exactly the same as the previous ones and works with the
Twisted chat client.

Microservice architecture
Microservice architecture is an architectural style of developing a single application
as a suite of small independent services, each running in its own process and
communicating via lightweight mechanisms—typically, using HTTP protocol.

Microservices are independently deployable components, and usually have zero or
minimalistic central management or configuration.

Microservices can be thought of as a specific implementation style for Service
Oriented Architectures (SOA), where, instead of building a monolith application
top-down, the application is built as a dynamic group of mutually interacting,
independent services.

Traditionally, enterprise applications were built in a monolithic pattern, typically
consisting of these three layers:

1. A client-side user interface (UI) layer consisting of HTML and JavaScript.
2. A server-side application consisting of the business logic.
3. A database and data access layer, which holds the business data.

On the other hand, a microservices architecture will split this layer into multiple
services. For example, the business logic, instead of being in a single application, will
be split into multiple component services, whose interactions define the logic flow
inside the application. The services might query a single database or independent
local databases, with the latter configuration being more common.

Data in microservices architectures are usually processed and returned in the form of
document objects—typically encoded in JSON.

Chapter 8

[433]

The following schematic diagram illustrates the difference of a monolithic
architecture from a microservices one:

Monolithic (left) versus microservices (right) Architecture

Microservice frameworks in Python
With microservices being more of a philosophy or style of architecture, there are
no distinct classes of software frameworks that one can say is the right fit for them.
However, one can still make a few educated projections for the properties that a
framework should have for it being a good choice for building a microservices
architecture for your web application in Python. These properties include the
following:

• The component architecture should be flexible. The framework should not be
rigid in the component choices that it stipulates to make the different parts of
the system work.

• The core of the framework should be lightweight. This makes sense, since if
we start off with, say, a lot of dependencies for the microservices framework
itself, the software starts feeling heavy right in the beginning. This may cause
issues in deployment, testing, and so on.

Python – Architectural Patterns

[434]

• The framework should support zero or minimalistic configuration.
Microservices architectures are usually configured automatically (zero
configuration) or with a minimal set of configuration inputs that are available
at one place. Usually the configuration is itself available as a microservice
for other services to query and make the sharing of configuration easy,
consistent, and scalable.

• It should make it very easy to take an existing piece of business logic, say,
coded as a class or a function, and turn it into an HTTP or RCP service. This
allows reuse and smart refactoring of code.

If you use these principles and look around in the Python software ecosystem, you
will figure out that a few web application frameworks fit the bill, whereas a few
don't.

For example, Flask and its single-file counterpart Bottle are good candidates for a
microservices framework due to their minimal footprint, small core, and simple
configuration.

A framework such as Pyramid can also be used for a microservices architecture since
it promotes flexibility of choice of components and eschews tight integration.

A more sophisticated web framework such as Django makes a poor choice for
a microservices framework due to exactly the opposite reasons–tight vertical
integration of components, lack of flexibility in choosing components, complex
configuration, and so on.

Another framework that is written specifically for implementing microservices in
Python is Nameko. Nameko is geared toward testability of the application, and it
provides support for different protocols for communication such as HTTP, RPC
(over AMQP)—a Pub-Sub system, and a Timer service.

We will not be going into details of these frameworks. On the other hand, we will
take a look at architecting and designing a real-life example of a web application
using microservices.

Chapter 8

[435]

Microservices example – restaurant
reservation
Let's take a real-life example for a Python web application, and try to design it as a
set of microservices.

Our application is a restaurant reservation app that helps users make a reservation
for a certain number of people at a specific time in a restaurant close to their current
location. Assume that reservations are only done for the same day.

The application needs to do the following:

1. Return a list of restaurants open for business at the time for which the user
wants to make the reservation.

2. For a given restaurant, return enough meta information, such as cuisine
choices, rating, pricing, and so on, and allow the user to filter the restaurants
based on their criteria.

3. Once the user has made a choice, allow them to make a reservation at the
selected restaurant for a certain number of people for a given time.

Each of these requirements is granular enough to have its own microservice.

Hence, our application will be designed with the following set of microservices:

• A service that uses the user's location, and returns a list of restaurants that
are open for business and that support the online reservation API.

• A second service that retrieves metadata for a given hotel, given the
restaurant ID. The application can use this metadata to compare against the
user's criteria to see if it's a match.

• A third service, which, given a restaurant ID, the user's information, the
number of seats required, and the time of reservation, uses the reservation
API to make a reservation for seats, and returns the status.

The core parts of the application logic now fit these three microservices. Once they
are implemented, the plumbing—in terms of calling these services and performing a
reservation—will happen in the application logic directly.

Python – Architectural Patterns

[436]

We will not be showing any code for this application as that is a project on its own,
but we will show the reader how the microservices look like in terms of their APIs
and return data:

Architecture of restaurant reservation application using microservices

A microservice usually returns data in the form of JSON. For example, our first
service, which returns a list of restaurants, would return a JSON similar to the
one that follows:

GET /restaurants?geohash=tdr1y1g1zgzc

{
 "8f95e6ad-17a7-48a9-9f82-07972d2bc660": {
 "name": "Tandoor",
 "address": "Centenary building, #28, MG Road b-01"
 "hours": "12.00 – 23.30"
 },
 "4307a4b1-6f35-481b-915b-c57d2d625e93": {
 "name": "Karavalli",
 "address": "The Gateway Hotel, 66, Ground Floor"
 "hours": "12.30 – 01:00"
 },
 ...
}

Chapter 8

[437]

The second service, which returns restaurant metadata, would mostly return a JSON
like this one:

GET /restaurants/8f95e6ad-17a7-48a9-9f82-07972d2bc660

{

 "name": "Tandoor",
 "address": "Centenary building, #28, MG Road b-01"
 "hours": "12.00 – 23.30",
 "rating": 4.5,
 "cuisine": "north indian",
 "lunch buffet": "no",
 "dinner buffet": "no",
 "price": 800

}

Next is the interaction for the third one, which does a booking given the restaurant ID.

Since this service needs the user to provide information for the reservation, it needs
a JSON payload with the details of booking. Hence, this is best done as an HTTP
POST call:

POST /restaurants/reserve

The service in this case will use the following given payload as the POST data:

{
 "name": "Anand B Pillai",
 "phone": 9880078014,
 "time": "2017-04-14 20:40:00",
 "seats": 3,
 "id": "8f95e6ad-17a7-48a9-9f82-07972d2bc660"
}

It will return a JSON like the following as a response:

{
 "status": "confirmed",
 "code": "WJ7D2B",
 "time": "2017-04-14 20:40:00",
 "seats": 3
}

With this design in place, it is not very difficult to implement the application in a
framework of your choice, be it Flask, Bottle, Nameko, or anything else.

Python – Architectural Patterns

[438]

Microservices – advantages
So what are the advantages of using microservices over a monolithic application?
Let's take a look at some of the important ones:

• Microservices enhance separation of concern by splitting the application
logic into multiple services. This improves cohesion, and decreases coupling.
There is no need for a top-down, upfront design of the system, since the
business logic is not in a single place. Instead, the architect can focus on the
interplay and communication between the microservices and the application,
and let the design and architecture of the microservices itself emerge
iteratively through refactoring.

• Microservices improve testability, since now each part of the logic is
independently testable as a separate service, and hence is easy to isolate
from other parts and test.

• Teams can be organized around the business capabilities rather than around
tiers of the application or technology layers. Since each microservice includes
logic, data, and deployment, companies using microservices encourage
cross-functional roles. This helps to build a more agile organization.

• Microservices encourage decentralized data. Usually, each service will have
its own local database or data store instead of the central database that is
preferred by monolithic applications.

• Microservices facilitate continuous delivery and integration, and fast
deployments. Since a change to business logic might often need only a small
change in one or a few services, testing and redeployment can be often done
in tight cycles, and in most cases, can be fully automated.

Pipe and Filter architectures
Pipe and Filter is a simple architectural style that connects a number of components
that process a stream of data, each connected to the next component in the
processing pipeline via a Pipe.

The Pipe and Filter architecture is inspired by the Unix technique of connecting the
output of an application to the input of another via pipes on the shell.

Chapter 8

[439]

The pipe and filter architecture consists of one or more data sources. The data source
is connected to data filters via pipes. Filters process the data they receive, passing
them to other filters in the pipeline. The final data is received at a Data Sink:

Pipe and Filter Architecture

Pipe and filter are used commonly for applications that perform a lot of data
processing such as data analytics, data transformation, metadata extraction,
and so on.

The filters can be running on the same machine, and they use actual Unix pipes or
shared memory for communication. However, in large systems, these usually run
on separate machines, and the pipes need not be actual pipes, but any kind of data
channel such as sockets, shared memory, queues, and the like.

Multiple filter pipelines can be connected together to perform complex data
processing and data staging.

A very good example of a Linux application that works using this architecture is
gstreamer—the multimedia processing library that can perform a number of tasks
on multimedia video and audio including play, record, edit, and stream.

Pipe and filter in Python
In Python, we encounter pipes in their most pure form in the multiprocessing
module. The multiprocessing module provides pipes as a way to communicate from
one process to another.

A pipe is created as a pair of parent and child connections. What is written on one
side of the connection can be read on the other side and vice versa.

This allows us to build very simple pipelines of data processing.

For example, on Linux, the number of words in a file can be computed by this series
of commands:

$ cat filename | wc -w

Python – Architectural Patterns

[440]

We will write a simple program that mimics this pipeline using the multiprocessing
module:

pipe_words.py
from multiprocessing import Process, Pipe
import sys

def read(filename, conn):
 """ Read data from a file and send it to a pipe """

 conn.send(open(filename).read())

def words(conn):
 """ Read data from a connection and print number of words """

 data = conn.recv()
 print('Words',len(data.split()))

if __name__ == "__main__":
 parent, child = Pipe()
 p1 = Process(target=read, args=(sys.argv[1], child))
 p1.start()
 p2 = Process(target=words, args=(parent,))
 p2.start()
 p1.join();p2.join()

Here is an analysis of the workflow:

1. A pipe is created, and two connections are obtained.
2. The read function is executed as a process, passing one end of the pipe

(child) and the filename to be read.
3. This process reads the file, writing the data to the connection.
4. The words function is executed as a second process, passing the other end of

the pipe to it.
5. When this function executes as a process, it reads the data from the

connection, and prints the number of words.

Chapter 8

[441]

The following screenshot shows the output of both the shell command and the
preceding program on the same file:

Output of a shell command using pipes and its equivalent Python program

You do not need to use an object that looks like an actual pipe in order to create
pipelines. On the other hand, generators in Python provide an excellent way to create
a set of callables, which call each other, and consume and process each other's data,
producing a pipeline of data processing.

Here is the same example as the previous one, rewritten to use generators, and this
time, to process all the files in the folder matching a particular pattern:

pipe_words_gen.py

A simple data processing pipeline using generators
to print count of words in files matching a pattern.
import os

def read(filenames):
 """ Generator that yields data from filenames as (filename, data)
tuple """

 for filename in filenames:
 yield filename, open(filename).read()

def words(input):
 """ Generator that calculates words in its input """

 for filename, data in input:
 yield filename, len(data.split())

Python – Architectural Patterns

[442]

def filter(input, pattern):
 """ Filter input stream according to a pattern """

 for item in input:
 if item.endswith(pattern):
 yield item

if __name__ == "__main__":
 # Source
 stream1 = filter(os.listdir('.'), '.py')
 # Piped to next filter
 stream2 = read(stream1)
 # Piped to last filter (sink)
 stream3 = words(stream2)

 for item in stream3:
 print(item)

Here is a screenshot of the output:

Output of a pipeline using generators that print the word count of Python programs

One can verify the output of a program such as the preceding
one using this command:
$ wc -w *.py

Chapter 8

[443]

Here is another program that uses another couple of data filtering generators to build
a program, which watches files matching a specific pattern and prints information
about the most recent file—something similar to what is done by the watch program
on Linux:

pipe_recent_gen.py
Using generators, print details of the most recently modified file
matching a pattern.

import glob
import os
from time import sleep

def watch(pattern):
 """ Watch a folder for modified files matching a pattern """

 while True:
 files = glob.glob(pattern)
 # sort by modified time
 files = sorted(files, key=os.path.getmtime)
 recent = files[-1]
 yield recent
 # Sleep a bit
 sleep(1)

def get(input):
 """ For a given file input, print its meta data """
 for item in input:
 data = os.popen("ls -lh " + item).read()
 # Clear screen
 os.system("clear")
 yield data

if __name__ == "__main__":
 import sys

 # Source + Filter #1
 stream1 = watch('*.' + sys.argv[1])

 while True:
 # Filter #2 + sink
 stream2 = get(stream1)
 print(stream2.__next__())
 sleep(2)

Python – Architectural Patterns

[444]

The details of this last program should be self-explanatory to the reader.

Here is the output of our program on the console, watching over Python source files:

Output of the program that watches over recently modified Python source files

If we create an empty Python source file, say example.py, the output changes in
two seconds:

Output of the watch program changes, always showing the most recently modified file

The underlying technique of using generators (co-routines) to build such pipelines is
to connect the output of one generator to the input of the next. By connecting many
such generators in a series, one can build data processing pipelines that vary in
complexity from simple to complex.

Of course, one can use a number of techniques for building pipelines apart from
this. Some common choices are producer-consumer tasks connected using queues,
which can use threads or processes. We have seen examples of this in the chapter on
scalability.

Microservices can also build simple processing pipelines by connecting the input of
one microservice to the output of another.

Chapter 8

[445]

In the Python third-party software ecosystem, there are a number of modules and
frameworks that allow you to build complex data pipelines. Celery, though a task
queue, can be used to build simple batch processing workflows with limited pipeline
support. Pipelining is not the main feature of Celery, but it has limited support for
chaining tasks that can be used for this purpose.

Luigi is another robust framework that is written for complex, long-running
batch processing jobs that require a pipe and filter architecture. Luigi comes with
built-in support for Hadoop jobs, so it makes it a good choice for building data
analytics pipelines.

Summary
In this chapter, we looked at some common architectural patterns of building
software. We started with the Model View Controller architecture, and looked
at examples in Django and Flask. You learned about the components of an MVC
architecture, and learned that Django implements a variant of MVC using templates.

We looked at Flask as an example of a micro framework that implements the
minimal footprint of a web application by using a plugin architecture with additional
services that can be added on.

We went on to discuss the event-driven programming architecture, which is a kind
of asynchronous programming using co-routines and events. We started with a
multiuser chat example using the select module in Python. From there, we went on
to discuss larger frameworks and libraries.

We discussed the architecture of Twisted and its components. We also discussed
Eventlet and its close cousin gevent. For each of these frameworks, we saw an
implementation of the multiuser chat server.

Next, we took up microservices as an architecture, which builds scalable services
and deployments by splitting the core business logic across multiple services. We
designed an example of a restaurant reservation application using microservices,
and briefly looked at the landscape of Python web frameworks, which can be used to
build microservices.

Python – Architectural Patterns

[446]

Toward the end of the chapter, we saw the architecture of using pipes and Filters for
serial and scalable data processing. We built a simple example of actual pipes using
the multiprocessing module in Python, which mimicked a Unix pipe command.
We then looked at the technique of building pipelines using generators, and saw
a couple of examples. We summarized techniques for building pipelines and
frameworks available in the Python third-party software ecosystem.

This brings us to the end of the chapter on application architectures. In the next
chapter, we will look at deployability, namely the aspect of deploying software to
environments such as production systems.

[447]

Deploying Python
Applications

Pushing code to production is often the last step in taking an application from
development to the customer. Though this is an important activity, it often gets
overlooked in the scheme of importance in a software architect's checklist.

It is a pretty common and fatal mistake to assume that, if a system works in the
development environment, it will also work dutifully in production. For one thing, the
configuration of a production system is often very different from that of a development
environment. Many optimizations and debugging that are available and taken for
granted in a developer's box, are often not available in the production setup.

Deployment to production is an art rather than an exact science. The complexity
of deployment of a system depends on a number of factors, such as the language
the system is developed in, its runtime portability and performance, the number
of configuration parameters, whether the system is deployed in a homogeneous or
heterogeneous environment, binary dependencies, geographic distribution of the
deployments, deployment automation tooling, and a host of other factors.

In recent years, Python, as an open source language, has matured in the level of
automation and support it provides for deploying packages to production systems.
With its rich availability of built-in and third-party support tools, the pain and hassle
for production deployments and maintaining deployment systems up to date has
decreased.

Deploying Python Applications

[448]

In this chapter, we will discuss, briefly, deployable systems and the concept of
deployability. We'll take some time to understand the deployment of Python
applications, and the tools and processes that the architect can add to his repertoire
in order to ease the deploying and maintenance of his production systems' running
applications, written using Python. We will also look at techniques and best practices
that an architect can adopt to keep his production systems chugging along healthily
and securely, without frequent downtimes.

Here are the list of topics we will be talking about in this chapter.

• Deployability
 ° Factors affecting deployability
 ° Tiers of software deployment architecture

• Software Deployment in Python
 ° Packaging Python code

PIP
Virtualenv
Virtualenv and PIP
PyPI—the Python Package Index
Packaging and submission of an application
PyPA

 ° Remote deployments using Fabric
 ° Remote deployments using Ansible
 ° Managing remote daemons using Supervisor

• Deployment—patterns and best practices

Deployability
The deployability of a software system is the ease with which it can be taken from
development to production. It can be measured in terms of the effort—in terms of
man-hours, or complexity—in terms of the number of disparate steps required for
deploying code from a development to production environment.

It is a common mistake to assume that a code that runs well in a development or
staging system would behave in a similar way in a production system. It is not often
the case due to the vastly dissimilar requirements that a production system has when
compared to a development one.

Chapter 9

[449]

Factors affecting deployability
Here is a brief look at some of the factors that differentiate a production system from
a development one, which can often give rise to unexpected issues in deployment
leading to Production Gotchas:

• Optimizations and debugging: It is very common for development systems
to turn off optimizations in code.
If your code is running in an interpreted runtime like Python, it is common
to turn on debug configurations, which allows the programmer to generate
generous tracebacks when an exception occurs. Also any Python interpreter
optimizations are usually turned off.
On the other hand, in production systems, the reverse is true – as
optimizations are turned on and debugging is turned off. This usually
requires additional configuration to be enabled for the code to work in
a similar way. It is also possible (though rare) that the program gives a
different behavior upon optimization under certain circumstances than it
does when running unoptimized.

• Dependencies and versions: A development environment, usually, has a
rich installation of development and support libraries for running multiple
applications that a developer may be working on. Quite often, these may be
dependencies which are themselves not stale, since developers often work on
bleeding edge code.
Production systems, on the other hand, need to be carefully prepared using
a precompiled list of dependencies and their versions. It is quite common
to specify only mature or stable versions for deployment on production
systems. Hence, if a developer had relied on a feature or bug-fix which
was available on an unstable (alpha, beta or release-candidate) version of a
downstream dependency, one may find—too late—that the feature doesn't
work in production as intended.
Another common problem is undocumented dependencies or dependencies
that need to be compiled from source code—this is often a problem with first-
time deployments.

Deploying Python Applications

[450]

• Resource configuration and access privileges: Development systems and
production systems often differ in level, privilege, and details of access of
resources locally and in the network. A development system may have a
local database, whereas, production systems tend to use separate hosting
for application and database systems. A development system may use a
standard configuration file, while, in production, the configuration may
have to be generated specifically for a host or an environment using specific
scripts. Similarly, in production, the application may be required to run with
lesser privileges as a specific user/group, whereas, in development, it may
be common to run the program as the root or superuser. Such disparities
in user privileges and configuration may affect resource access and might
cause software to fail in production, when it runs fine on the development
environment.

• Heterogeneous production environments: Code is usually developed in
development environments, which are usually homogeneous. But it may
often be required to be deployed on heterogeneous systems in production.
For example, software may be developed on Linux, but there may be a
requirement for a customer deployment on Windows.
The complexity of deployments increases proportionally to heterogeneity in
environments. Well-managed staging and testing environments are required
before such code is taken to production. Also, heterogeneous systems make
dependency management more complex, as a separate list of dependencies
needs to be maintained for each target system architecture.

• Security: In development and testing environments, it is somewhat common
to give a wide berth to security aspects to save time and to reduce the
configuration complexity for testing. For example, in a web application,
routes which need logins may be disabled by using special development
environment flags to facilitate quick programming and testing.
Similarly, systems used in development environments may often use easy-
to-guess passwords, such as database systems, web application logins, and
others, to make routine recall and usage easy. Also, role-based authorization
may be ignored to facilitate testing.
However, security is critical in production, so these aspects require the
opposite treatment. Routes which need logins should be enforced as such.
Strong passwords should be used. Role-based authentication needs to be
enforced. These can often cause subtle bugs in production where a feature
which works in the development environment fails in production.

Chapter 9

[451]

Since these and other similar problems are the bane of deploying code in production,
standard practices have been defined to make the life of the DevOps practitioner
a bit easier. Most companies follow the practice of using isolated environments to
develop, test, and validate code and applications before pushing them to production.
Let us take a look at this.

Tiers of software deployment
architecture
To avoid complexities in taking the code from development to testing, and further
to production, it is common to use a multitiered architecture for each stage of the life
cycle of the application before deployment to production.

Let's take a look at some of the following common deployment tiers:

• Development/Test/Stage/Production: This is the traditional four-tiered
architecture.

 ° The developers push their code to a development environment,
where unit tests and developer tests are run. This environment
will always be on the latest trunk or bleeding edge of the code.
Frequently, this environment is skipped and replaced with the
local setup on developer's laptops.

 ° The software is then tested by QA or testing engineers on a test
environment using black-box techniques. They may also run
performance tests on this environment. This environment is always
behind the development environment in terms of code updates.
Usually, internal releases, tags, or code dumps are used to sync the
QA environment from the development environment.

 ° The staging environment tries to mirror the production environment
as closely as possible. It is the pre-production stage, where the software
is tested on an environment as close as possible to the deployment
one to identify issues that may occur in production in advance. This
is the environment where usually stress or load tests are run. It also
allows the DevOps engineer to test out his deployment automation
scripts, cron jobs, and verify system configuration.

Deploying Python Applications

[452]

 ° Production is, of course, the final tier where software that is tested
from staging is pushed and deployed. A number of deployments
often use identical staging/production tiers, and simply switch from
one to the other.

• Development and Test/Stage/Production: This is a variation of the previous
tier, where the development environment also performs the double duty
of a testing environment. This system is used in companies with agile
software development practices, where code is pushed at least once a week
to production, and there is no space or time to keep and manage a separate
testing environment. When there is no separate development environment
– that is when developers use their laptops for programming – the testing
environment is also a local one.

• Development and Test/ Stage and Production: In this setup, staging and
production environments are exactly the same with multiple servers used.
Once a system is tested and verified in staging, it is pushed to production
by simply switching the hosts—the current production system switches to
staging, and staging switches to production.

Apart from these, it is possible to have more elaborate architectures where a separate
Integration environment is used for integration testing, a Sandbox environment for
testing experimental features, and so on.

Using a staging system is important to ensure that software is well tested and
orchestrated in a production-like environment, before pushing the code to
production.

Software deployment in Python
As mentioned earlier, Python developers are richly blessed in the various tools
offered by Python, and its third-party ecosystem in easing and automating the
deployment of applications and code written using Python.

In this section, we will briefly take a look at some of these tools.

Packaging Python code
Python comes with built in support for packaging applications for a variety of
distributions—source, binary, and specific OS-level packaging.

Chapter 9

[453]

The primary way of packaging source code in Python is to write a setup.py file. The
source can then be packaged with the help of the in-built distutils library, or the
more sophisticated and rich setuptools framework.

Before we get introduced to the guts of Python packaging, let us get familiar with a
couple of closely related tools, namely, pip and virtualenv.

PIP
PIP stands for the recursive acronym PIP installs packages. Pip is the standard and
suggested tool to install packages in Python.

We've seen PIP in action throughout this book, but so far, we've never seen pip itself
getting installed, have we?

Let's see this in the following screenshot:

Downloading and installing pip for Python3

Deploying Python Applications

[454]

The pip installation script is available at https://bootstrap.pypa.io/get-pip.py.

The steps should be self-explanatory.

In the preceding example, there was already a pip version, so the
action upgraded the existing version instead of doing a fresh install.
We can see the version details by trying the program with the –
version option, as follows:

Take a look at the following screenshot:

Printing the current version of pip (pip3)

See how pip clearly prints its version number along with the directory location of the
installation, plus the Python version for which it is installed.

To distinguish between pip for the Python2 and Python3
versions, remember that the version installed for Python3 is
always named pip3. The Python2 version is pip2 , or just pip.

To install a package using PIP, simply provide the package name via the command
install. For example, the following screenshot shows installing the numpy package
using pip:

https://bootstrap.pypa.io/get-pip.py

Chapter 9

[455]

We will not go into further details of using pip here. Instead, let's take a look at
another tool that works closely with pip in installing the Python software.

Virtualenv
Virtualenv is a tool that allows developers to create sand-boxed Python
environments for local development. Let's say that you want to maintain two
different versions of a particular library or framework for two different applications
you are developing side by side.

If you are going to install everything to the system Python, then you can keep
only one version at a given time. The other option is to create different system
Python installations in different root folders—say, /opt instead of /usr. However,
this creates additional overhead and management headaches of paths. Also, it
wouldn't be possible to get write permission to these folders if you want the version
dependency to be maintained on a shared host where you don't have superuser
permissions.

Virtualenv solves the problems of permissions and versions in one go. It creates
a local installation directory with its own Python executable standard library and
installer (defaults to pip).

Once the developer has activated the virtual environment thus created, any further
installations goes to this environment instead of the system Python environment.

Virtualenv can be installed using pip.

The following screenshot shows creating a virtualenv named appvenv using the
virtualenv command, and activating the environment along with installing a
package to the environment.

Deploying Python Applications

[456]

The installation also installs PIP, setuptools, and other dependencies.

See how the python and pip commands point to the ones inside
the virtual environment. The pip –version command clearly
shows the path of pip inside the virtual environment folder.

From Python 3.3 onwards, support for virtual environments is built into the Python
installation via the new venv library.

Chapter 9

[457]

The following screenshot shows installing a virtual environment in Python 3.5 using
this library, and installing some packages into it. As usual, take a look at Python and
pip executable paths:

The preceding screenshot also shows how to upgrade pip
itself via the pip command.

Virtualenv and pip
Once you've set up a virtual environment for your application(s) and installed the
required packages, it is a good idea to generate the dependencies and their versions.
This can be easily done via the following command using pip:

$ pip freeze

Deploying Python Applications

[458]

This command asks pip to output a list of all the installed Python packages
along with their versions. This can be saved to a requirements file, and the setup
duplicated on the server for mirroring deployments:

The following screenshot shows recreating the same setup in another virtual
environment via the -r option of the pip install command, which accepts such
a file as input:

Chapter 9

[459]

Our source virtual environment was in Python2, and the target was in
Python3. However, pip was able to install the dependencies from the
requirements.txt file without any issues whatsoever.

Relocatable virtual environments
The suggested way to copy package dependencies from one virtual environment
to another is to perform a freeze, and install via pip as illustrated in the previous
section. For example, this is the most common way to freeze Python package
requirements from a development environment, and recreate it successfully
on a production server.

One can also try and make a virtual environment relocatable so that it can be
archived and moved to a compatible system:

Creating a relocatable virtual environment

Here is how it works:

1. First, the virtual environment is created as usual.
2. It is then made relocatable by running virtualenv –relocatable lenv

on it.
3. This changes some of the paths used by setuptools as relative paths, and sets

up the system to be relocatable.
4. Such a virtual environment is relocatable to another folder in the same

machine, or to a folder in a remote and similar machine.

Deploying Python Applications

[460]

A relocatable virtual environment doesn't guarantee that it
will work if the remote environment differs from the machine
environment. For example, if your remote machine is a different
architecture, or even uses a different Linux distribution with
another type of packaging, the relocation will fail to work. This is
what is meant by the words similar machine.

PyPI
We learned that PIP is the standardized tool to do package installations in Python.
It is able to pick up any package by name as long as it exists. It is also able to install
packages by version, as we saw with the example of the requirements file.

But where does PIP fetch its packages from?

To answer this, we turn to the Python Package Index, more commonly known as
PyPI.

Python Package Index (PyPI) is the official repository for hosting metadata for third-
party Python packages on the Web. As the name implies, it is an index to the Python
packages on the Web whose metadata is published and indexed on a server. PyPI is
hosted at the URL http://pypi.python.org.

PyPI hosts close to a million packages at present. The packages are submitted to PyPI
using Python's packaging and distribution tools, distutils, and setuptools, which
have hooks for publishing package metadata to PyPI. A number of packages also
host the actual package data in PyPI, although PyPI can be used to point to package
data sitting in a URL on another server.

When you install a package using pip, it actually performs the search for the package
on PyPI, and downloads the metadata. It uses the metadata to find out the package's
download URL and other information, such as further downstream dependencies,
which it uses to fetch and install the package for you.

http://pypi.python.org/
http://pypi.python.org/
http://pypi.python.org

Chapter 9

[461]

Here is a screenshot of PyPI, which shows the actual count of the packages at the
time of writing this:

A developer can do quite a few things directly on the PyPI site:

1. Register using e-mail address and log in to the site.
2. After logging in, submit your package directly on the site.
3. Search for packages via keywords.
4. Browse for packages via a number of top-level trove classifiers, such as

Topics, Platforms/Operating Systems, Development Status, Licenses,
and so on.

Now that we are familiar with the suite of all Python packaging and installation tools
and their relationships, let us try out a small example of packaging a trivial Python
module and submitting it to PyPI.

Deploying Python Applications

[462]

Packaging and submission of an application
Remember that we had developed a mandelbrot program, which uses pymp to
scale, in Chapter 5, Writing Applications that Scale. We will use it as an example of a
program to develop a package, and a setup.py file, which we will use to submit the
application to PyPI.

We will package the mandelbrot application in a main package consisting of two
sub-packages as follows:

• mandelbrot.simple: The sub-package (sub-module) consisting of the basic
implementation of mandelbrot

• mandelbrot.mp: The sub package (sub-module) having the PyMP
implementation of mandelbrot

Here is our folder structure for the package:

Folder layout of the mandelbrot package

Let us quickly analyze the folder structure of the application which we will be
packaging:

• The top directory is named mandelbrot. It has an __init__.py, a README,
and a setup.py file.

• This directory has two sub directories—mp and simple.

Chapter 9

[463]

• Each of these subfolders consists of two files, namely, __init__.py
and mandelbrot.py. These subfolders will form our sub-modules, each
containing the respective implementation of the mandelbrot set.

For the purpose of installing the mandelbrot modules as executable
scripts, the code has been changed to add a main method to each of
our mandelbrot.py modules.

The __init__.py files
The __init__.py files allow to convert a folder inside a Python application as a
package. Our folder structure has three of them: the first one is for the top-level
package mandelbrot, and the rest two for each of the sub-packages, namely,
mandelbrot.simple and mandelbrot.mp.

The top-level __init__.py is empty. The other two have the following single line:

from . import mandelbrot

The relative imports are to make sure that the sub-packages are
importing the local mandelbrot.py module instead of the top-
level mandelbrot package.

The setup.py file
The setup.py file is the central point of the entire package. Let us take a look at it:

from setuptools import setup, find_packages
setup(
 name = "mandelbrot",
 version = "0.1",
 author = "Anand B Pillai",
 author_email = "abpillai@gmail.com",
 description = ("A program for generating Mandelbrot fractal
images"),
 license = "BSD",
 keywords = "fractal mandelbrot example chaos",
 url = "http://packages.python.org/mandelbrot",
 packages = find_packages(),
 long_description=open('README').read(),
 classifiers=[
 "Development Status :: 4 - Beta",
 "Topic :: Scientific/Engineering :: Visualization",

Deploying Python Applications

[464]

 "License :: OSI Approved :: BSD License",
],
 install_requires = [
 'Pillow>=3.1.2',
 'pymp-pypi>=0.3.1'
],
 entry_points = {
 'console_scripts': [
 'mandelbrot = mandelbrot.simple.mandelbrot:main',
 'mandelbrot_mp = mandelbrot.mp.mandelbrot:main'
]
 }
)

A full discussion of the setup.py file is outside the scope of this chapter, but do note
these few key points:

• The setup.py file allows the author to create a lot of package metadata
such as name, author name, e-mail, package keywords, and others. These
are useful in creating the package meta information, which helps people to
search for the package in PyPI once it's submitted.

• One of the main fields in this file is packages, which is the list of packages
(and sub-packages) that is created by this setup.py file. We make use of
the find_packages helper function provided by the setuptools module
to do this.

• We provide the installment requirements in the install-requires key,
which lists the dependencies one by one in a PIP-like format.

• The entry_points key is used to configure the console scripts (executable
programs) that this package installs. Let us look at one of them:

mandelbrot = mandelbrot.simple.mandelbrot:main

This tells the package resource loader to load the module named
mandelbrot.simple.mandelbrot, and execute its function main
when the script mandelbrot is invoked.

Installing the package
The package can be now installed using this command:

$ python setup.py install

Chapter 9

[465]

The following screenshot of the installation shows a few of the initial steps:

We have installed this package to a virtual environment
named env3.

Submitting the package to PyPI
The setup.py file plus setuptools/distutils ecosystem in Python is useful, not just to
install and package code, but also to submit code to the Python package index.

It is very easy to register your package to PyPI. There are just the following two
requirements:

• A package with a proper setup.py file
• An account on the PyPI website

Deploying Python Applications

[466]

We will now submit our new mandelbrot package to PyPI by performing the
following steps:

1. First, one needs to create a .pypirc file in one's home directory containing
some details—mainly the authentication details for the PyPI account.
Here is the author's .pypirc file with the password obscured:

2. Once this is done, registration is as simple as running setup.py with the
register command:
$ python setup.py register

The next screenshot shows the actual command in action on the console:

However, this last step has only registered the package by submitting its
metadata. No package data, as in the source code data, has been submitted as
part of this step.

Chapter 9

[467]

3. To submit the source code also to PyPI, the following command should
be run:
$ python setup.py sdist upload

Here's a view of our new package on the PyPI server:

Now the package is installable via pip, completing the cycle of software
development: that is, first packaging, then deployment, and finally, installation.

Deploying Python Applications

[468]

PyPA
Python Packaging Authority (PyPA) is a working group of Python developers who
maintain the standards and the relevant applications related to packaging in Python.

PyPA has their website at https://www.pypa.io/, and they maintain the
application on GitHub at https://github.com/pypa/.

The following table lists the projects that are maintained by PyPA. You've already
seen some of these, such as pip, virtualenv, and setuptools; others may be new:

Project Description
setuptools A collection of enhancements to Python distutils
virtualenv A tool for creating sandbox Python environments
pip A tool for installing Python packages
packaging Core Python utilities for packaging used by pip and setuptools
wheel An extension to setuptools for creating wheel distributions, which are

an alternative to Python eggs (ZIP files) and specified in PEP 427
twine A secure replacement for setup.py upload
warehouse The new PyPI application, which can be seen at https://pypi.org
distlib A low-level library implementing functions relating to packaging and

distribution of Python code
bandersnatch A PyPI mirroring client to mirror the contents of PyPI

Interested developers can go visit the PyPA site and sign up for one of the projects -
and contribute to them in terms of testing, submitting patches and so on by visiting
the github repository of PyPA.

Remote deployments using Fabric
Fabric is a command-line tool and library written in Python, which helps to automate
remote deployments on servers via a set of well-defined wrappers over the SSH
protocol. It uses the ssh-wrapper library, paramiko, behind the scenes.

Fabric works with Python 2.x versions only. However, there is a fork Fabric3 which
works for both the Python 2.x and 3.x versions.

When using fabric, a DevOps user usually deploys his remote system administrator
commands as Python functions in a fabfile named as fabfile.py.

Fabric works best when the remote systems are already configured with the ssh
public keys of the user's machine from where he performs deployments, so there is
no need to supply a username and password.

https://www.pypa.io/
https://www.pypa.io/
https://www.pypa.io/
https://github.com/pypa/
https://github.com/pypa/
https://github.com/pypa/
https://pypi.org/

Chapter 9

[469]

Here is an example of remote deployment on a server. In this case, we are installing
our mandelbrot application on a remote server.

The fabfile looks as follows. See that it is written for Python3:

from fabric.api import run

def remote_install(application):

 print ('Installing',application)
 run('sudo pip install ' + application)

Here is an example of running this, installing it on a remote server:

DevOps engineers and system administrators can use a predefined set of fabfiles
for automating different system and application deployment tasks across
multiple servers.

Though it is written in Python, Fabric can be used to automate
deployment of any kind of remote server administration and
configuration tasks.

Deploying Python Applications

[470]

Remote deployments using Ansible
Ansible is a configuration management and deployment tool written in Python.
Ansible can be thought of as a wrapper over SSH with scripts with support for
orchestration via tasks which can be assembled in easy-to-manage units called
playbooks which map a group of hosts to a set of roles.

Ansible uses "facts" which are system and environment information it gathers before
it runs tasks. It uses the facts to check if there is any need to change any state before
running a task to get the desired outcome.

This makes it safe for Ansible tasks to be run on a server in a repeated fashion.
Well-written Ansible tasks are idempotent in that they have zero to few side effects
on the remote system.

Ansible is written in Python and can be installed using pip.

It uses its own hosts file, namely /etc/ansible/hosts to keep the host information
against which it runs its tasks.

A typical ansible host file may look as follows:

[local]
127.0.0.1

[webkaffe]
139.162.58.8

The following is a snippet from an Ansible playbook named dependencies.
yaml which installs a few Python packages via pip on a remote host named
webkaffeStyle:

- hosts: webkaffe
 tasks:
 - name: Pip - Install Python Dependencies
 pip:
 name="{{ python_packages_to_install | join(' ') }}"

 vars:
 python_packages_to_install:
 - Flask
 - Bottle
 - bokeh

Chapter 9

[471]

Here is an image of running this playbook on the command line using ansible-
playbook:

Ansible is an easy and efficient way of managing remote dependencies and, due to
its idempotent playbooks, is much better than Fabric at the task.

Managing remote daemons using Supervisor
Supervisor is a client/server system, which is useful to control processes on Unix
and Unix-like systems. It consists mainly of a server daemon process named
supervisord and a command-line client, which interacts with the server named
supervisorctl.

Supervisor also comes with a basic webserver, which can be accessed via port 9001. It
is possible to view the state of running processes, and also to start/stop them via this
interface. Supervisor doesn't run on any version of Windows.

Supervisor is an application written using Python, and hence, is installable via pip. It
runs only on Python 2.x versions.

Applications to be managed via supervisor should be configured via the supervisor
daemons configuration file. By default, such files sit in the /etc/supervisor.d/
conf folder.

However, it is possible to run Supervisor locally by installing it to a virtual
environment, and keeping the configuration local to the virtual environment. In fact,
this is a common way to run multiple supervisor daemons, each managing processes
specific to the virtual environment.

Deploying Python Applications

[472]

We won't go into details or examples of using Supervisor, but here are some benefits
of using Supervisor vs a traditional approach like system rc.d scripts:

• Decoupling process creation/management and process control can be
achieved by using a client/server system. The supervisor.d file manages
the processes via subprocesses. The user can get the process state information
via supervisorctl, the client. Also, whereas most traditional rc.d processes
require root or sudo access, supervisor processes can be controlled by normal
users of the system via the client or through the web UI.

• Since supervisord starts processes via subprocesses, they can be configured
to automatically restart upon crash. It is also easier to get a more accurate
status of the subprocesses rather than relying on PID files.

• Supervisor supports process groups allowing users to define processes in
a priority order. Processes can be started and stopped in a specific order
as a group. This allows implementation of a fine-grained process control
when there is a temporal dependency between creation of processes in an
application. (Process B requires A to be running, C requires B to be running,
and the like.)

We will complete the discussion in this chapter with an overview of the common
deployment patterns, which an architect can choose from to solve common issues
with deployability.

Deployment – patterns and best practices
There are different deployment approaches or patterns that can be used to
address issues like down-times, reduce risks with deployment, and for a seamless
development and deployment of software.

• Continuous deployment: Continuous deployment is a deployment model
where software is ready to go live at any time. Continuous delivery is
possible only if tiers, including development, testing, and staging, are
integrated continuously. In a continuous deployment model, multiple
production deployments can occur in a day, and automatically, via a
deployment pipeline. Since one is constantly deploying incremental changes,
the continuous deployment mode minimizes deployment risks. In agile
software development houses, it also helps the customer to track progress
directly by seeing live code in production almost as soon as it leaves
development and testing. There is also the added advantage of getting user
feedback faster allowing faster iterations to the code and features.

Chapter 9

[473]

• BlueGreen deployment: We already discussed this in Chapter 5, Writing
Applications that Scale. Blue green deployments keep two production
environments, closely identical to each other. At a given instance, one
environment is live (Blue). You prepare your new deployment changes
to the other environment (Green), and, once tested and ready to go live,
switch your systems—Green becomes active and Blue becomes the backup.
BlueGreen deployments reduce deployment risks considerably, since, for
anything that goes wrong with the new deployment, you just need to switch
your router or load-balancer to the new environment. Usually, in typical
BlueGreen systems, one system is the production (live) and other the staging,
and you switch the roles between them.

• Canary releases: If you want to test the changes in your software on a subset
of users before deploying it for the entire audience of your customers, you
can use this approach. In canary release, the changes are rolled out to a small
subset of users first. A simple approach is dogfooding, where the changes are
rolled out internally to the employees first. Another approach is beta-testing,
where a select group of audience is invited to test out your early features.
Other involved approaches include selecting users based on their geographic
location, demographics, and profiles. Canary releases, apart from insulating
the company from sudden user reaction to badly managed features, also
allow you to manage load and capacity scaling in an incremental way. For
example, if a particular feature becomes popular, and starts driving, say,
100X users to your servers than before, a traditional deployment may cause
server failures and availability issues as opposed to a gradual deployment
using a Canary release. Geographical routing is a technique that can be used
to select a subset of users if you don't want to do complex user profiling and
analysis. This is where the load is sent more to nodes deployed in a particular
geography or data center as opposed to other nodes. Canary release is also
related to the concept of incremental rollout or phased rollout.

• Bucket testing (A/B testing): This is the technique of deploying two
dissimilar versions of an application or a webpage to production to test out
which version is more popular and/or has more engagement. In production,
a subset of your audience sees the A version of the app (or page)—the control
or basic version—and the other subset sees the B version or the modified
(variant) version. Usually, this is a 50-50 split, though, as with Canary
releases, user profiles, geo locations, or other complex models can be used.
User experience and engagement is collected using an analytics dashboard,
and then it is determined whether the change had a positive, negative, or
neutral response.

• Induced chaos: This is a technique of purposely introducing errors or
disabling part of a production deployment system to test its resilience to
failures and/or level of availability.

Deploying Python Applications

[474]

Production servers have the problem of drift—unless you use continuous
deployment or similar approaches for sync, production servers, usually, tend to
drift away from the standard configuration. One way to test your system is to
intentionally disable part of the production system—this can be done, for example,
by disabling a random 50% of the nodes in a load-balancer configuration, and see
how the rest of the system performs.

A similar approach in finding out and weeding unused parts of code is to inject
random secrets in parts of the configuration using, say, an API that you suspect is
redundant and no longer required. You then observe how the application performs
in production. Since a random secret will fail the API, if there is an active part of the
application which still uses the dependent code, it will fail in production. Otherwise,
it is an indication that the code can be safely removed.

Netflix has a tool called Chaos Monkey, which automatically injects failures in
production systems, and then measures the impact.

Induced Chaos allows the DevOps engineer and architect to understand weak points
in the system, learn about systems which are undergoing configuration drift, and
find and weed out unnecessary or unused parts of an application.

Summary
This chapter was about deploying your Python code to production. We looked at
the different factors that affect the deployability of a system. We went on to discuss
the tiers in deployment architecture, such as the traditional four-tiered and the
three- and two-tiered architectures, including combinations of development, testing,
staging/QA, and production tiers.

We then went on to discuss the details of packaging Python code. We discussed
the tools of PIP and virtualenv in detail. We looked at how pip and virtualenv
can work together, and how to install a set of requirements using pip, and set up
similar virtual environments using it. We also took a quick look at relocatable virtual
environments.

We then went to discuss PyPI—the Python Package Index which hosts Python third-
party packages on the web. We then went through a detailed example of setting up
a Python package using setuptools and the setup.py file. We used the mandelbrot
application as an example in this case.

We ended that discussion by showing how to register the package to PyPI using its
metadata, and also how to upload the package data including its code. We also took
a brief look at PyPA, the Python Packaging Authority and their projects.

Chapter 9

[475]

After that, two tools, both developed in Python, were discussed—Fabric for remote
automated deployments, and Supervisor for remote management of processes on
Unix systems. We finished the chapter with an overview of the common deployment
patterns that one can use to solve deployment problems.

In the final chapter of this book, we talk about a variety of techniques of Debugging
your code to identify potential issues.

[477]

Techniques for Debugging
Debugging a program can often be as hard or, sometimes, even more difficult
than writing it. Quite often, programmers seem to spend an awful amount of time
hunting for that elusive bug, the reason for which may be staring them in the face,
yet not revealing itself.

Many developers, even the good ones, find troubleshooting a difficult art. Most
often, programmers resort to complicated debugging techniques when simple
approaches such as properly placed print statements and strategically commented
code would do the trick.

Python has its own set of problems when it comes to debugging code. Being a
dynamically typed language, type-related exceptions, which happen due to the
programmer assuming a type to be something (when it's something else), are pretty
common in Python. Name errors and attribute errors fall in a similar category too.

In this chapter, we will exclusively focus on this lesser discussed aspect of software.

Here is a topic-wise listing of what we are going to encounter in this chapter:

• Maximum subarray problem:
 ° The power of "print"
 ° Analysis and rewrite
 ° Timing and optimizing the code

• Simple debugging tricks and techniques:
 ° Word searcher program
 ° Word searcher program—debugging step 1
 ° Word searcher program—debugging step 2
 ° Word searcher program—final code

Techniques for Debugging

[478]

 ° Skipping blocks of code
 ° Stopping execution
 ° External dependencies—using wrappers
 ° Replacing functions with their return value/data (mocking)
 ° Saving to/loading data from files as cache
 ° Saving to/loading data from memory as cache
 ° Returning random/mock data
 ° Generating random patient data

• Logging as a debugging technique:
 ° Simple application logging
 ° Advanced logging—logger objects
 ° Advanced logging—custom formatting and loggers
 ° Advanced logging—writing to syslog

• Debugging tools—using debuggers:
 ° A debugging session with pdb
 ° Pdb—similar tools
 ° iPdb
 ° Pdb++

• Advanced debugging—tracing:
 ° The trace module
 ° The iptrace program
 ° System call tracing using strace

Okay, so let's debug it!

Maximum subarray problem
For starters, let's look at an interesting problem. In this problem, the goal is to find
the maximum contiguous subarray of an array (sequence) of integers having mixed
negative and positive numbers.

For example, say we have the following array:

>>> a = [-5, 20, -10, 30, 15]

Chapter 10

[479]

It is pretty obvious with a quick scan that the maximum sum is for the subarray [20,
-10, 30, 15], giving a sum of 55.

Let's say, as a first cut, you write this piece of code:

import itertools

max_subarray: v1
def max_subarray(sequence):
 """ Find sub-sequence in sequence having maximum sum """

 sums = []

 for i in range(len(sequence)):
 # Create all sub-sequences in given size
 for sub_seq in itertools.combinations(sequence, i):
 # Append sum
 sums.append(sum(sub_seq))

 return max(sums)

Now let's try it out:

>>> max_subarray([-5, 20, -10, 30, 15])

65

This output seems clearly wrong, as any manual addition of any subarray in the
array doesn't seem to yield a number more than 55. We need to debug the code.

The power of "print"
In order to debug the preceding example, a simple, strategically placed print
statement does the trick. Let's print out the subsequences in the inner for loop:

The function is modified as follows:

max_subarray: v1

def max_subarray(sequence):
 """ Find sub-sequence in sequence having maximum sum """

 sums = []
 for i in range(len(sequence)):
 for sub_seq in itertools.combinations(sequence, i):
 sub_seq_sum = sum(sub_seq)
 print(sub_seq,'=>',sub_seq_sum)
 sums.append(sub_seq_sum)

 return max(sums)

Techniques for Debugging

[480]

Now the code executes and prints this output:

>>> max_subarray([-5, 20, -10, 30, 15])

((), '=>', 0)

((-5,), '=>', -5)

((20,), '=>', 20)

((-10,), '=>', -10)

((30,), '=>', 30)

((15,), '=>', 15)

((-5, 20), '=>', 15)

((-5, -10), '=>', -15)

((-5, 30), '=>', 25)

((-5, 15), '=>', 10)

((20, -10), '=>', 10)

((20, 30), '=>', 50)

((20, 15), '=>', 35)

((-10, 30), '=>', 20)

((-10, 15), '=>', 5)

((30, 15), '=>', 45)

((-5, 20, -10), '=>', 5)

((-5, 20, 30), '=>', 45)

((-5, 20, 15), '=>', 30)

((-5, -10, 30), '=>', 15)

((-5, -10, 15), '=>', 0)

((-5, 30, 15), '=>', 40)

((20, -10, 30), '=>', 40)

((20, -10, 15), '=>', 25)

((20, 30, 15), '=>', 65)

((-10, 30, 15), '=>', 35)

((-5, 20, -10, 30), '=>', 35)

((-5, 20, -10, 15), '=>', 20)

((-5, 20, 30, 15), '=>', 60)

((-5, -10, 30, 15), '=>', 30)

((20, -10, 30, 15), '=>', 55)

65

Chapter 10

[481]

The problem is clear now by looking at the output of the print statements.

There is a subarray [20, 30, 15] (highlighted in bold in the preceding output),
which produces the sum 65. However, this is not a valid subarray, as the elements
are not contiguous in the original array.

Clearly, the program is wrong and needs a fix.

Analysis and rewrite
A quick analysis tells us that the use of itertools.combinations is the culprit here.
We used it as a way to quickly generate all the subarrays of different lengths from
the array, but using combinations does not respect the order of items, and generates
all combinations producing subarrays that are not contiguous.

Clearly, we need to rewrite this. Here is a first attempt at the rewrite:

max_subarray: v2

def max_subarray(sequence):
 """ Find sub-sequence in sequence having maximum sum """

 sums = []

 for i in range(len(sequence)):
 for j in range(i+1, len(sequence)):
 sub_seq = sequence[i:j]
 sub_seq_sum = sum(sub_seq)
 print(sub_seq,'=>',sub_seq_sum)
 sums.append(sum(sub_seq))

 return max(sums)

Now the output is as follows:

>>> max_subarray([-5, 20, -10, 30, 15])
([-5], '=>', -5)
([-5, 20], '=>', 15)
([-5, 20, -10], '=>', 5)
([-5, 20, -10, 30], '=>', 35)
([20], '=>', 20)
([20, -10], '=>', 10)
([20, -10, 30], '=>', 40)
([-10], '=>', -10)
([-10, 30], '=>', 20)
([30], '=>', 30)
40

Techniques for Debugging

[482]

The answer is not correct again, as it gives the suboptimal answer 40, not the correct
one, which is, 55. Again, the print statement comes to the rescue, as it tells us clearly
that the main array itself is not being considered—we have an off-by-one bug.

An off-by-one or one-off error occurs in programming when an array
index used to iterate over a sequence (array) is off either by one less or one
more than the correct value. This is often found in languages where the
index for sequences starts from zero, such as C/C++, Java, or Python.

In this case, the off-by-one error is in this line:

 "sub_seq = sequence[i:j]"

The correct code should, instead, be as follows:

 "sub_seq = sequence[i:j+1]"

With this fix, our code produces the output as expected:

max_subarray: v2

def max_subarray(sequence):
 """ Find sub-sequence in sequence having maximum sum """

 sums = []

 for i in range(len(sequence)):
 for j in range(i+1, len(sequence)):
 sub_seq = sequence[i:j+1]
 sub_seq_sum = sum(sub_seq)
 print(sub_seq,'=>',sub_seq_sum)
 sums.append(sub_seq_sum)

 return max(sums)

Here is the output:

>>> max_subarray([-5, 20, -10, 30, 15])
([-5, 20], '=>', 15)
([-5, 20, -10], '=>', 5)
([-5, 20, -10, 30], '=>', 35)
([-5, 20, -10, 30, 15], '=>', 50)
([20, -10], '=>', 10)
([20, -10, 30], '=>', 40)
([20, -10, 30, 15], '=>', 55)

Chapter 10

[483]

([-10, 30], '=>', 20)
([-10, 30, 15], '=>', 35)
([30, 15], '=>', 45)
55

Let us assume at this point that you consider the code to be complete.

You pass the code on to a reviewer, and they mention that your code,
though called max_subarray, actually forgets to return the subarray itself,
instead returning only the sum. There is also the feedback that you don't
need to maintain an array of sums.

You combine this feedback and produce a version 3.0 of the code, which fixes both
the issues:

max_subarray: v3

def max_subarray(sequence):
 """ Find sub-sequence in sequence having maximum sum """

 # Trackers for max sum and max sub-array
 max_sum, max_sub = 0, []

 for i in range(len(sequence)):
 for j in range(i+1, len(sequence)):
 sub_seq = sequence[i:j+1]
 sum_s = sum(sub_seq)
 if sum_s > max_sum:
 # If current sum > max sum so far, replace the values
 max_sum, max_sub = sum_s, sub_seq

 return max_sum, max_sub

>>> max_subarray([-5, 20, -10, 30, 15])
(55, [20, -10, 30, 15])

Note that we removed the print statement in this last version, as the logic was
already correct, and so there was no need for debugging.

All good.

Techniques for Debugging

[484]

Timing and optimizing the code
If you analyze the code a bit, you'll find that the code performs two passes through
the full sequence, one outer and one inner. So if the sequence contains n items, the
code performs n*n passes.

We know from Chapter 4, Good Performance is Rewarding!, on performance that such a
piece of code performs at the order of O(n2). We can measure the real time spent on
the code by using simple context-manager using the with operator.

Our context manager looks as follows:

import time
from contextlib import contextmanager

@contextmanager
def timer():
 """ Measure real-time execution of a block of code """

 try:
 start = time.time()
 yield
 finally:
 end = (time.time() - start)*1000
 print 'time taken=> %.2f ms' % end

Let's modify the code to create an array of random numbers of different sizes to
measure the time taken. We will write a function for this:

import random

def num_array(size):
 """ Return a list of numbers in a fixed random range
 of given size """

 nums = []
 for i in range(size):
 nums.append(random.randrange(-25, 30))
 return nums

Chapter 10

[485]

Let's time our logic for various sizes of arrays, beginning with 100:

>>> with timer():
... max_subarray(num_array(100))
... (121, [7, 10, -17, 3, 21, 26, -2, 5, 14, 2, -19, -18, 23, 12, 8,
 -12, -23, 28, -16, -19, -3, 14, 16, -25, 26, -16, 4, 12, -23, 26,
 22, 12, 23])
time taken=> 16.45 ms

For an array of 1,000, the code will be as follows:

>>> with timer():
... max_subarray(num_array(100))
... (121, [7, 10, -17, 3, 21, 26, -2, 5, 14, 2, -19, -18, 23, 12, 8,
 -12, -23, 28, -16, -19, -3, 14, 16, -25, 26, -16, 4, 12, -23, 26,
 22, 12, 23])
time taken=> 16.45 ms

So this takes about 3.3 seconds.

It can be shown that with an input size of 10,000, the code will take around 2 to 3
hours to run.

Is there a way to optimize the code? Yes, there is an O(n) version of the same code,
which looks like this:

def max_subarray(sequence):
 """ Maximum subarray – optimized version """

 max_ending_here = max_so_far = 0

 for x in sequence:
 max_ending_here = max(0, max_ending_here + x)
 max_so_far = max(max_so_far, max_ending_here)

 return max_so_far

With this version, the time taken is much better:

>>> with timer():
... max_subarray(num_array(100))
... 240
time taken=> 0.77 ms

Techniques for Debugging

[486]

For an array of 1,000, the time taken is as follows:

>>> with timer():
... max_subarray(num_array(1000))
... 2272
time taken=> 6.05 ms

For an array of 10,000, the time is around 44 milliseconds:

>>> with timer():
... max_subarray(num_array(10000))
... 19362
time taken=> 43.89 ms

Simple debugging tricks and techniques
We saw the power of the simple print statement in the previous example. In a
similar way, other simple techniques can be used to debug programs without
requiring to resort to a debugger.

Debugging can be thought of as a step-wise process of exclusion until the
programmer arrives at the truth—the cause of the bug. It essentially involves the
following steps:

• Analyze the code and come up with a set of probable assumptions (causes)
that may be the source of the bug.

• Test out each of the assumptions one by one by using appropriate debugging
techniques.

• At every step of the test, you either arrive at the source of the bug—as the
test succeeds telling you the problem was with the specific cause you were
testing for; or the test fails and you move on to test the next assumption.

• You repeat the last step until you either arrive at the cause or you discard the
current set of probable assumptions. Then you restart the entire cycle until
you (hopefully) find the cause.

Chapter 10

[487]

Word searcher program
In this section, we will look at some simple debugging techniques one by one using
examples. We will start with the example of a word searcher program that looks for
lines containing a specific word in a list of files—and appends and returns the lines
in a list.

Here is the listing of the code for the word searcher program:

import os
import glob

def grep_word(word, filenames):
 """ Open the given files and look for a specific word.
 Append lines containing word to a list and
 return it """

 lines, words = [], []

 for filename in filenames:
 print('Processing',filename)
 lines += open(filename).readlines()

 word = word.lower()
 for line in lines:
 if word in line.lower():
 lines.append(line.strip())

 # Now sort the list according to length of lines
 return sorted(words, key=len)

You may have noticed a subtle bug in the preceding code—it appends to the wrong
list. It reads from the list "lines," and appends to the same list, which will cause the
list to grow forever; the program will go into an infinite loop when it encounters
even a single line containing the given word.

Let's run the program on the current directory:

>>> parse_filename('lines', glob.glob('*.py'))
(hangs)

On any day, you may find this bug easily. On a bad day, you may be stuck on this
for a while, not noticing that the same list being read from is being appended to.

Techniques for Debugging

[488]

Here are a few things that you can do:

• As the code is hanging and there are two loops, find out the loop that causes
the problem. To do this, either put a print statement between the two loops,
or put a sys.exit function, which will cause the interpreter to exit at that
point.

• A print statement can be missed by a developer, especially if the code has
many other print statements, but sys.exit can never be missed of course.

Word searcher program – debugging step 1
The code is rewritten as follows to insert a specific sys.exit(…) call between the
two loops:

import os
import glob

def grep_word(word, filenames):
 """ Open the given files and look for a specific word.
 Append lines containing word to a list and
 return it """

 lines, words = [], []

 for filename in filenames:
 print('Processing',filename)
 lines += open(filename).readlines()

 sys.exit('Exiting after first loop')

 word = word.lower()
 for line in lines:
 if word in line.lower():
 lines.append(line.strip())

 # Now sort the list according to length of lines
 return sorted(words, key=len)

When trying it out a second time, we get this output:

>>> grep_word('lines', glob.glob('*.py'))
Exiting after first loop

Chapter 10

[489]

Now it's pretty clear that the problem is not in the first loop. You can now proceed
to debug the second loop (we are assuming that you are totally blind to the wrong
variable usage, so you are figuring out the issue the hard way, by debugging).

Word searcher program – debugging step 2
Whenever you suspect a block of code inside a loop to be causing a bug, there are a
few tricks to debug this, and confirm your suspicion. These include the following:

• Put a strategic continue just preceding the block of code. If the problem
disappears, then you've confirmed that the specific block or any next block
is the issue. You can continue to move down your continue statement until
you identify the specific block of code that is causing the issue.

• Make Python skip the code block by prefixing it with if 0:. This is more
useful if the block is a line of code or a few lines of code.

• If there is a lot of code inside a loop, and the loop executes many times,
print statements may not help you much, as a ton of data will be printed,
and it would be difficult to sift and scan through it and find out where the
problem is.

In this case, we will use the first trick to figure out the issue. Here is the modified
code:

def grep_word(word, filenames):
 """ Open the given files and look for a specific word.
 Append lines containing word to a list and
 return it """

 lines, words = [], []

 for filename in filenames:
 print('Processing',filename)
 lines += open(filename).readlines()

 # Debugging steps
 # 1. sys.exit
 # sys.exit('Exiting after first loop')

 word = word.lower()
 for line in lines:
 if word in line.lower():

Techniques for Debugging

[490]

 words.append(line.strip())
 continue

 # Now sort the list according to length of lines
 return sorted(words, key=len)

>>> grep_word('lines', glob.glob('*.py'))
[]

Now the code executes, making it pretty clear that the problem is in the processing
step. Hopefully, from there it is just one step to figure out the bug, as the
programmer has finally got his eye on the line causing the issue by way of the
process of debugging.

Word searcher program – final code
We have spent some time figuring out issues in the program by following a couple
of debugging steps documented in the previous sections. With this, our hypothetical
programmer was able to find the issue in the code and solve it.

Here is the final code with the bug fixed:

def grep_word(word, filenames):
 """ Open the given files and look for a specific word.
 Append lines containing word to a list and
 return it """

 lines, words = [], []

 for filename in filenames:
 print('Processing',filename)
 lines += open(filename).readlines()

 word = word.lower()
 for line in lines:
 if word in line.lower():
 words.append(line.strip())

 # Now sort the list according to length of lines
 return sorted(words, key=len)

Chapter 10

[491]

The output is as follows:

>>> grep_word('lines', glob.glob('*.py'))
['for line in lines:', 'lines, words = [], []',
 '#lines.append(line.strip())',
 'lines += open(filename).readlines()',
 'Append lines containing word to a list and',
 'and return list of lines containing the word.',
 '# Now sort the list according to length of lines',
 "print('Lines => ', grep_word('lines', glob.glob('*.py')))"]

Let's summarize the simple debugging tricks that we've learned so far in this section,
and also look at a few related tricks and techniques.

Skipping blocks of code
A programmer can skip code blocks that they suspect of causing a bug during
debugging. If the block is inside a loop, this can be done by skipping execution with
a continue statement. We've seen an example of this already.

If the block is outside of a loop, this can be done by using if 0, and moving the
suspect code to the dependent block, as follows:

if 0:
 # Suspected code block
 perform_suspect_operation1(args1, args2, ...)
 perform_suspect_operation2(…)

If the bug disappears after this, then you're sure that the problem lies in the
suspected block of code.

This trick has its own deficiency, in that it requires indenting large blocks of code to
the right, which once the debugging is finished, should be indented back. Hence it is
not advised for anything more than five or six lines of code.

Stopping execution
If you're in the middle of a hectic programming session, and you're trying to figure
out an elusive bug, having already tried print statements, using the debugger, and
other approaches, a rather drastic, but often fantastically useful, approach is to stop
the execution just before or at the suspected code path using a function, sys.exit
expression.

Techniques for Debugging

[492]

A sys.exit(<strategic message>) expression stops the program dead in its
tracks, so this can't be missed by the programmer. This is often very useful in the
following scenarios:

• A complex piece of code has an elusive bug depending upon specific values
or ranges of input, which causes an exception that is caught and ignored, but
later causes an issue in the program.

• In this case, checking for the specific value or range and then exiting the code
using the right message in the exception handler via sys.exit will allow you
to pinpoint the problem. The programmer can then decide to fix the issue by
correcting the input or variable processing code.
When writing concurrent programs, wrong usage of resource locking or
other issues can make it difficult to track bugs like deadlocks, race conditions,
and others. Since debugging multithreaded or multiple process programs via
the debugger is very difficult, a simple technique is to put sys.exit in the
suspect function after implementing the correct exception-handling code.

• When your code has a serious memory leak or an infinite loop, then it
becomes difficult to debug after a while, and you're not able to pinpoint the
problem otherwise. Moving a sys.exit(<message>) line from one line of
code to the next until you identify the problem can be used as a last resort.

External dependencies – using wrappers
In cases where you suspect the problem is not inside your function, but in a function
that you are calling from your code, this approach can be used.

Since the function is outside of your control, you can try and replace it with a
wrapper function in a module where you have control.

For example, the following is generic code for processing serial JSON data. Let's
assume that the programmer finds a bug with processing of certain data (maybe
having a certain key-value pair), and suspects the external API to be the source of
the bug. The bug may be that the API times out, returns a corrupt response, or in the
worst case, causes a crash:

import external_api
def process_data(data):
 """ Process data using external API """

 # Clean up data—local function
 data = clean_up(data)

Chapter 10

[493]

 # Drop duplicates from data—local function
 data = drop_duplicates(data)

 # Process line by line JSON
 for json_elem in data:
 # Bug ?
 external_api.process(json_elem)

One way to verify this is to dummy or fake the API for the specific ranges or values of
the data. In this case, it can be done by creating a wrapper function as follows:

def process(json_data, skey='suspect_key',svalue='suspect_value'):
 """ Fake the external API except for the suspect key & value """

 # Assume each JSON element maps to a Python dictionary

 for json_elem in json_data:
 skip = False

 for key in json_elem:
 if key == skey:
 if json_elem[key] == svalue:
 # Suspect key,value combination - dont process
 # this JSON element
 skip = True
 break

 # Pass on to the API
 if not skip:
 external_api.process(json_elem)

def process_data(data):
 """ Process data using external API """

 # Clean up data—local function
 data = clean_up(data)
 # Drop duplicates from data—local function
 data = drop_duplicates(data)

 # Process line by line JSON using local wrapper
 process(data)

Techniques for Debugging

[494]

If your suspicion is indeed correct, this will cause the problem to disappear. You can
then use this as a test code, and communicate with the stakeholders of the external
API to get the problem fixed, or write code to make sure that the problem key-value
pair is skipped in data sent to the API.

Replacing functions with their return value/
data (mocking)
In modern web application programming, you are never too far away from a
blocking I/O call in your program. This can be a simple URL request, a slightly
involved external API request, or maybe a costly database query and such calls can
be the sources of bugs.

You may find either of the following situations:

• The return data from such a call could be the cause of an issue.
• The call itself is the cause of an issue, such as I/O or network errors,

timeouts, or resource contentions.

When you encounter problems with costly I/O, replicating them can often be a
problem. This is because of the following reasons:

• The I/O calls take time, so debugging this costs you a lot of wasted time, not
allowing you to focus on the real issue.

• Subsequent calls may not be repeatable with respect to the issue, as external
requests may return slightly different data every time.

• If you are using an external paid API, the calls may actually cost you money,
so you cannot exhaust a lot of such calls on debugging and testing.

A common technique that is very useful in these cases is to save the return data of
these APIs/functions, and then mock the functions by using their return data to
replace the functions/APIs themselves. This is an approach similar to mock testing,
but it is used in the context of debugging.

Let's look at an example of an API that returns business listings on websites, given a
business address including details like its name, street address, city, and so on. The
code looks like this:

import config

search_api = 'http://api.%(site)s/listings/search'

def get_api_key(site):

Chapter 10

[495]

 """ Return API key for a site """

 # Assumes the configuration is available via a config module
 return config.get_key(site)

def api_search(address, site='yellowpages.com'):
 """ API to search for a given business address
 on a site and return results """

 req_params = {}
 req_params.update({
 'key': get_api_key(site),
 'term': address['name'],
 'searchloc': '{0}, {1}, {1}'.format(address['street'],
 address['city'],
 address['state'])})
 return requests.post(search_api % locals(),
 params=req_params)

def parse_listings(addresses, sites):
 """ Given a list of addresses, fetch their listings
 for a given set of sites, process them """

 for site in sites:
 for address in addresses:
 listing = api_search(address, site)
 # Process the listing
 process_listing(listing, site)

def process_listings(listing, site):
 """ Process a listing and analzye it """

 # Some heavy computational code
 # whose details we are not interested.

The code makes a few assumptions, one of which is that every site
has the same API URL and parameters. Note that this is only for
illustration purposes. In reality, each site will have very different
API formats including its URL and the parameters it accepts.

Note that in this last piece of code, the actual work is being done in the process_
listings function, the code for which is not shown, as the example is illustrative.

Techniques for Debugging

[496]

Let's say you are trying to debug this function. However, due to a delay or error
in the API calls, you find you are wasting a lot of valuable time in fetching the
listings themselves. What are some of the techniques that you can use to avoid this
dependency? Here are a few things that you can do:

• Instead of fetching listings via API, save them to files, to a database, or an
in-memory store, and load them on demand.

• Cache the return value of the api_search function via a caching or memoize
patterns so that further calls after the first call, return data from memory.

• Mock the data, and return random data that has the same characteristics as
the original data.

We will look at each of these in turn.

Saving to / loading data from files as cache
In this technique, you construct a filename using unique keys from the input data.
If a matching file exists on disk, it is opened and the data is returned; otherwise,
the call is made and the data is written. This can be achieved by using a file caching
decorator as the following code illustrates:

import hashlib
import json
import os

def unique_key(address, site):
 """ Return a unique key for the given arguments """

 return hashlib.md5(''.join((address['name'],
 address['street'],
 address['city'],
 site)).encode('utf-8')).hexdigest()

def filecache(func):
 """ A file caching decorator """

 def wrapper(*args, **kwargs):
 # Construct a unique cache filename

Chapter 10

[497]

 filename = unique_key(args[0], args[1]) + '.data'

 if os.path.isfile(filename):
 print('=>from file<=')
 # Return cached data from file
 return json.load(open(filename))

 # Else compute and write into file
 result = func(*args, **kwargs)
 json.dump(result, open(filename,'w'))

 return result

 return wrapper

@filecache
def api_search(address, site='yellowpages.com'):
 """ API to search for a given business address
 on a site and return results """

 req_params = {}
 req_params.update({
 'key': get_api_key(site),
 'term': address['name'],
 'searchloc': '{0}, {1}, {1}'.format(address['street'],
 address['city'],
 address['state'])})
 return requests.post(search_api % locals(),
 params=req_params)

Here's how this preceding code works:

1. The api_search function is decorated with filecache as a decorator.
2. Then filecache uses unique_key as the function to calculate the unique

filename for storing the results of an API call. In this case, the unique_key
function uses the hash of a combination of the business name, street, and city,
plus the site queried for in order to build the unique value.

3. The first time the function is called, the data is fetched via API and stored in
the file. During further invocations, the data is returned directly from the file.

This works pretty well in most cases. Most data is loaded just once, and on further
calls, returned from the file cache. However, this suffers from the problem of stale
data, as once the file is created, the data is always returned from it. Meanwhile, the
data on the server may have changed.

Techniques for Debugging

[498]

This can be solved by using an in-memory key-value store and saving the data
there instead of in files on disk. One can use well-known key-value stores such as
Memcached, MongoDB, or Redis for this purpose. In the following example, we'll
show you how to replace the filecache decorator with a memory cached decorator
using Redis.

Saving to / loading data from memory as cache
In this technique, a unique in-memory cache key is constructed using unique values
from the input arguments. If the cache is found on the cache store by querying using
the key, its value is returned from the store; or else the call is made and the cache is
written. To ensure that data is not too stale, a fixed time-to-live (TTL) is used. We
use Redis as the cache store engine:

from redis import StrictRedis

def memoize(func, ttl=86400):
 """ A memory caching decorator """

 # Local redis as in-memory cache
 cache = StrictRedis(host='localhost', port=6379)

 def wrapper(*args, **kwargs):
 # Construct a unique key

 key = unique_key(args[0], args[1])
 # Check if its in redis
 cached_data = cache.get(key)
 if cached_data != None:
 print('=>from cache<=')
 return json.loads(cached_data)
 # Else calculate and store while putting a TTL
 result = func(*args, **kwargs)
 cache.set(key, json.dumps(result), ttl)

 return result

 return wrapper

Note that we are reusing the definition of unique_key from
the previous code example.

Chapter 10

[499]

The only thing that changes in the rest of the code is that we replace the filecache
decorator with the memoize one:

@memoize
def api_search(address, site='yellowpages.com'):
 """ API to search for a given business address
 on a site and return results """

 req_params = {}
 req_params.update({
 'key': get_api_key(site),
 'term': address['name'],
 'searchloc': '{0}, {1}, {1}'.format(address['street'],
 address['city'],
 address['state'])})
 return requests.post(search_api % locals(),
 params=req_params)

The advantages of this version over the previous one are as follows:

• The cache is stored in memory. No additional files are created.
• The cache is created with a TTL, beyond which it expires. So the problem of

stale data is circumvented. The TTL is customizable, and defaults to a day
(86,400 seconds) in this example.

There are a few other techniques for mocking external API calls and similar
dependencies. Some of these are listed as follows:

• Using a StringIO object in Python to read/write data, instead of using a file.
For example, the filecache or memoize decorators can be easily modified to
use a StringIO object.

• Using a mutable default argument, such as a dictionary or a list, as a cache
and writing results to it. Since a mutable argument in Python holds its state
after repeated calls, it effectively works as an in-memory cache.

• Replacing an external API with a call to a replacement/dummy API call
to a service on the local machine (127.0.0.1 IP address) by editing the
system's host file, adding an entry for the host in question, and putting
its IP as 127.0.0.1. The call to localhost can always return a standard
(canned) response.

Techniques for Debugging

[500]

For example, on Linux and other POSIX systems, you can add a line like this in the
/etc/hosts file:

Only for testing—comment out after that!
127.0.0.1 api.website.com

Note that this technique is a very useful and clever approach as
long as you remember to comment out such lines after testing!

Returning random/mock data
Another technique, which is mostly useful for performance testing and debugging, is
to feed functions with data that is similar, but not the same as the original data.

Let's say, for example, that you are working on an application that works with
patient/doctor data for patients under a specific insurance scheme (say Medicare/
Medicaid in the US, ESI in India) to analyze and find out patterns such as common
ailments, top 10 health issues in terms of government expenses, and so on.

Let's say that your application is expected to load and analyze tens of thousands
of rows of patient data from a database at one time, which is expected to scale
to 1-2 million under peak load. You want to debug the application and find out
performance characteristics under such a load, but you don't have any real data,
as the data is in the collection stage.

In such scenarios, libraries or functions that generate and return mock data are very
useful. In this section, we will use a third-party Python library to accomplish this.

Generating random patient data
Let's assume that for a patient we need the following basic fields:

• Name
• Age
• Gender
• Health issue
• Doctor's name
• Blood group
• Insured or not
• Date of last visit to doctor

Chapter 10

[501]

The schematics library in Python provides a way to generate such data structures
using simple types, which can then be validated, transformed, and also mocked.

The schematics library is installable via pip using the following command:

$ pip install schematics

To generate a model of a person with just their name and age is as simple as writing
a class in schematics:

from schematics import Model
from schematics.types import StringType, DecimalType

class Person(Model):
 name = StringType()
 age = DecimalType()

To generate mock data, a mock object is returned, and a primitive is created using this:

>>> Person.get_mock_object().to_primitive()

{'age': u'12', 'name': u'Y7bnqRt'}

>>> Person.get_mock_object().to_primitive()

{'age': u'1', 'name': u'xyrh40EO3'}

One can create custom types using schematics. For the Patient model, for
example, let's say that we are only interested in the age group 18-80, so we
need to return age data in that range.

The following custom type does that for us:

from schematics.types import IntType

class AgeType(IntType):
 """ An age type for schematics """

 def __init__(self, **kwargs):
 kwargs['default'] = 18
 IntType.__init__(self, **kwargs)

 def to_primitive(self, value, context=None):
 return random.randrange(18, 80)

Techniques for Debugging

[502]

Also, since the names returned by the schematics library are just random strings,
they have some room for improvement. The following NameType class improves
upon it by returning names containing a clever mix of vowels and consonants:

import string
import random

class NameType(StringType):
 """ A schematics custom name type """

 vowels='aeiou'
 consonants = ''.join(set(string.ascii_lowercase) - set(vowels))

 def __init__(self, **kwargs):
 kwargs['default'] = ''
 StringType.__init__(self, **kwargs)

 def get_name(self):
 """ A random name generator which generates
 names by clever placing of vowels and consontants """

 items = ['']*4

 items[0] = random.choice(self.consonants)
 items[2] = random.choice(self.consonants)

 for i in (1, 3):
 items[i] = random.choice(self.vowels)

 return ''.join(items).capitalize()

 def to_primitive(self, value, context=None):
 return self.get_name()

When combining both of these new types, our Person class looks much better when
returning mock data:

class Person(Model):
 name = NameType()
 age = AgeType()

Chapter 10

[503]

>>> Person.get_mock_object().to_primitive()

{'age': 36, 'name': 'Qixi'}

>>> Person.get_mock_object().to_primitive()

{'age': 58, 'name': 'Ziru'}

>>> Person.get_mock_object().to_primitive()

{'age': 32, 'name': 'Zanu'}

In a similar way, it is rather easy to come up with a set of custom types and standard
types to satisfy all the fields required for a Patient model:

class GenderType(BaseType):
 """A gender type for schematics """

 def __init__(self, **kwargs):
 kwargs['choices'] = ['male','female']
 kwargs['default'] = 'male'
 BaseType.__init__(self, **kwargs)

class ConditionType(StringType):
 """ A gender type for a health condition """

 def __init__(self, **kwargs):
 kwargs['default'] = 'cardiac'
 StringType.__init__(self, **kwargs)

 def to_primitive(self, value, context=None):
 return random.choice(('cardiac',
 'respiratory',
 'nasal',
 'gynec',
 'urinal',
 'lungs',
 'thyroid',
 'tumour'))

import itertools

class BloodGroupType(StringType):
 """ A blood group type for schematics """

 def __init__(self, **kwargs):
 kwargs['default'] = 'AB+'

Techniques for Debugging

[504]

 StringType.__init__(self, **kwargs)

 def to_primitive(self, value, context=None):
 return ''.join(random.choice(list(itertools.product(['AB','A',
'O','B'],['+','-']))))

Now, combining all these with some standard types and default values into a
Patient model, we get the following code:

class Patient(Model):
 """ A model class for patients """

 name = NameType()
 age = AgeType()
 gender = GenderType()
 condition = ConditionType()
 doctor = NameType()
 blood_group = BloodGroupType()
 insured = BooleanType(default=True)
 last_visit = DateTimeType(default='2000-01-01T13:30:30')

Now, creating random data of any size is as easy as invoking the get_mock_object
method on the Patient class for any number n:

patients = map(lambda x: Patient.get_mock_object().to_primitive(),
range(n))

For example, to create 10,000 random sets of patient data, we use the following:

>>> patients = map(lambda x: Patient.get_mock_object().to_primitive(),
range(1000))

This data can be input to the processing functions as mock data until the real data is
made available.

Note: The Faker library in Python is also useful for generating
a wide variety of fake data such as names, addresses, URIs,
random text, and the like.

Let's now move on from these simple tricks and techniques to something more
involved, mainly configuring logging in your applications.

Chapter 10

[505]

Logging as a debugging technique
Python comes with standard library support for logging via the aptly named
logging module. Though print statements can be used as a quick and rudimentary
tool for debugging, real-life debugging mostly requires that the system or application
generate some logs. Logging is useful because of the following reasons:

• Logs are usually saved to specific log files, typically, with timestamps,
and remain at the server for a while until they are rotated out. This makes
debugging easy even if the programmer is debugging the issue some time
after it happened.

• Logging can be done at different levels—from the basic INFO to the
verbose DEBUG levels—changing the amount of information output by
the application. This allows the programmer to debug at different levels of
logging to extract the information they want, and figure out the problem.

• Custom loggers can be written, which can perform logging to various
outputs. At its most basic, logging is done to log files, but one can also write
loggers that write to sockets, HTTP streams, databases, and the like.

Simple application logging
To configure simple logging in Python is rather easy and is shown as follows:

>>> import logging

>>> logging.warning('I will be back!')

WARNING:root:I will be back!

>>> logging.info('Hello World')

>>>

Nothing happens on executing the preceding code, because, by default, logging is
configured at the WARNING level. However, it is pretty easy to configure logging to
change its level.

The following code changes logging to log at the info level, and also adds a target
file to save the log:

>>> logging.basicConfig(filename='application.log', level=logging.DEBUG)

>>> logging.info('Hello World')

If we inspect the application.log file, we will find that it contains the following lines:

INFO:root:Hello World

Techniques for Debugging

[506]

In order to add timestamps to the log lines, we need to configure the logging format.
This can be done as follows:

>>> logging.basicConfig(format='%(asctime)s %(message)s')

Combining this, we get the final logging configuration as follows:

>>> logging.basicConfig(format='%(asctime)s %(message)s',
filename='application.log', level=logging.DEBUG)

>>> logging.info('Hello World!')

Now, the contents of application.log look something like the following:

INFO:root:Hello World

2016-12-26 19:10:37,236 Hello World!

Logging supports variable arguments, which are used to supply arguments to a
template string supplied as the first argument.

Direct logging of arguments separated by commas doesn't work. For example:

>>> import logging

>>> logging.basicConfig(level=logging.DEBUG)

>>> x,y=10,20

>>> logging.info('Addition of',x,'and',y,'produces',x+y)

--- Logging error ---

Traceback (most recent call last):

 File "/usr/lib/python3.5/logging/__init__.py", line 980, in emit

 msg = self.format(record)

 File "/usr/lib/python3.5/logging/__init__.py", line 830, in format

 return fmt.format(record)

 File "/usr/lib/python3.5/logging/__init__.py", line 567, in format

 record.message = record.getMessage()

 File "/usr/lib/python3.5/logging/__init__.py", line 330, in getMessage

 msg = msg % self.args

TypeError: not all arguments converted during string formatting

Call stack:

 File "<stdin>", line 1, in <module>

Message: 'Addition of'

Arguments: (10, 'and', 20, 'produces', 30)

Chapter 10

[507]

However, we can use the following:

>>> logging.info('Addition of %s and %s produces %s',x,y,x+y)

INFO:root:Addition of 10 and 20 produces 30

The earlier example works nicely.

Advanced logging – logger objects
Logging using the logging module directly works in most simple situations.
However, in order to extract the maximum value out of the logging module, we
should work with logger objects. It also allows us to perform a lot of customizations
such as custom formatters, custom handlers, and so on.

Let's write a function that returns such a custom logger. It accepts the application
name, the logging level, and two more options—the log filename, and whether to
turn console logging on or not:

import logging
def create_logger(app_name, logfilename=None,
 level=logging.INFO, console=False):

 """ Build and return a custom logger. Accepts the application
name,
 log filename, loglevel and console logging toggle """

 log=logging.getLogger(app_name)
 log.setLevel(logging.DEBUG)
 # Add file handler
 if logfilename != None:
 log.addHandler(logging.FileHandler(logfilename))

 if console:
 log.addHandler(logging.StreamHandler())

 # Add formatter
 for handle in log.handlers:
 formatter = logging.Formatter('%(asctime)s : %(levelname)-8s -
%(message)s', datefmt='%Y-%m-%d %H:%M:%S')

 handle.setFormatter(formatter)

 return log

Techniques for Debugging

[508]

Let's inspect the function:

1. Instead of using logging directly, it creates a logger object using the
logging.getLogger factory function.

2. By default, the logger object is useless as it has not been configured with any
handlers. Handlers are stream wrappers that take care of logging to a specific
stream, such as the console, files, sockets, and so on.

3. The configuration is done on this logger object, such as setting the level (via
the setLevel method) and adding handlers such as FileHandler for logging
to a file and StreamHandler for logging to the console.

4. Formatting of the log message is done on the handlers, and not on the
logger object per se. We use a standard format of <timestamp>: <level>—
<message> using the date format for the timestamp of YY-mm-dd HH:MM:SS.

Let's see this in action:

>>> log=create_logger('myapp',logfilename='app.log', console=True)

>>> log

<logging.Logger object at 0x7fc09afa55c0>

>>> log.info('Started application')

2016-12-26 19:38:12 : INFO - Started application

>>> log.info('Initializing objects...')

2016-12-26 19:38:25 : INFO - Initializing objects…

Inspecting the app.log file in the same directory reveals the following contents:

2016-12-26 19:38:12 : INFO —Started application

2016-12-26 19:38:25 : INFO —Initializing objects…

Advanced logging – custom formatting and loggers
We looked at how we can create and configure logger objects according to our
requirements. Sometimes, one needs to go over and above, and print extra data in
the log lines, which helps debugging.

A common problem that arises in debugging applications, especially those that are
performance critical, is to find out how much time each function or method takes.
Now, though this can be found out by methods such as profiling the application
using profilers and by using some techniques discussed previously like timer context
managers, quite often, a custom logger can be written to do the trick.

Chapter 10

[509]

Let's assume that your application is a business listing API server, which responds to
listing API requests like the one we discussed in an earlier section. When it starts off,
it needs to initialize a number of objects and load some data from the DB.

Assume that as part of performance optimization, you have tuned these routines,
and would like to record how much time these take. We'll see if we can write a
custom logger to do it for us:

import logging
import time
from functools import partial

class LoggerWrapper(object):
 """ A wrapper class for logger objects with
 calculation of time spent in each step """

 def __init__(self, app_name, filename=None,
 level=logging.INFO, console=False):
 self.log = logging.getLogger(app_name)
 self.log.setLevel(level)

 # Add handlers
 if console:
 self.log.addHandler(logging.StreamHandler())

 if filename != None:
 self.log.addHandler(logging.FileHandler(filename))

 # Set formatting
 for handle in self.log.handlers:

 formatter = logging.Formatter('%(asctime)s [%(timespent)s]:
%(levelname)-8s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
 handle.setFormatter(formatter)

 for name in ('debug','info','warning','error','critical'):
 # Creating convenient wrappers by using functools
 func = partial(self._dolog, name)
 # Set on this class as methods
 setattr(self, name, func)

 # Mark timestamp

Techniques for Debugging

[510]

 self._markt = time.time()

 def _calc_time(self):
 """ Calculate time spent so far """

 tnow = time.time()
 tdiff = int(round(tnow - self._markt))

 hr, rem = divmod(tdiff, 3600)
 mins, sec = divmod(rem, 60)
 # Reset mark
 self._markt = tnow
 return '%.2d:%.2d:%.2d' % (hr, mins, sec)

 def _dolog(self, levelname, msg, *args, **kwargs):
 """ Generic method for logging at different levels """

 logfunc = getattr(self.log, levelname)
 return logfunc(msg, *args, extra={'timespent': self._calc_
time()})

We have built a custom class named LoggerWrapper. Let's analyze the code and see
what it does:

1. The __init__ method of this class is very similar to our create_logger
function written before. It takes the same argument, constructs handler
objects, and configures logger. However, this time, the logger object
is part of the outer LoggerWrapper instance.

2. The formatter takes an additional variable template named timespent.
3. No direct logging methods seem to be defined. However, using the partial

functions technique, we wrap the _dolog method at the different levels of
logging, and set them on the class as logging methods, dynamically, by
using setattr.

4. The _dolog method calculates the time spent in each routine by using a
marker timestamp—initialized the first time, and then reset in every call.
The time spent is sent to the logging methods using a dictionary argument
named extra.

Chapter 10

[511]

Let's see how the application can use this logger wrapper to measure the time spent
in critical routines. Here is an example that assumes a Flask web application:

 # Application code
 log=LoggerWrapper('myapp', filename='myapp.log',console=True)

 app = Flask(__name__)
 log.info("Starting application...")
 log.info("Initializing objects.")
 init()
 log.info("Initialization complete.")
 log.info("Loading configuration and data …")
 load_objects()
 log.info('Loading complete. Listening for connections …')
 mainloop()

Note that the time spent is logged inside square brackets just after the timestamp.

Let's say that this last code produces an output like the following:

2016-12-26 20:08:28 [00:00:00]: INFO —Starting application...

2016-12-26 20:08:28 [00:00:00]: INFO - Initializing objects.

2016-12-26 20:08:42 [00:00:14]: INFO - Initialization complete.

2016-12-26 20:08:42 [00:00:00]: INFO - Loading configuration and data
...

2016-12-26 20:10:37 [00:01:55]: INFO - Loading complete. Listening
for connections

From the log lines, it's evident that the initialization took 14 seconds, whereas the
loading of configuration and data took 1 minute and 55 seconds.

By adding similar log lines, you can get a quick and reasonably accurate estimate of
the time spent on critical pieces of the application. Being saved in log files, another
added advantage is that you don't need to specially calculate and save it anywhere
else.

Using this custom logger, note that the time shown as time
spent for a given log line is the time spent in the routine of the
previous line.

Techniques for Debugging

[512]

Advanced logging – writing to syslog
POSIX systems such as Linux and Mac OS X have a system log file, which the
application can write to. Typically, this file is present as /var/log/syslog.
Let's see how Python logging can be configured to write to the system log file.

The main change that you need to make is to add a system log handler to the logger
object like this:

log.addHandler(logging.handlers.SysLogHandler(address='/dev/log'))

Let's modify our create_logger function to enable it to write to syslog, and see the
complete code in action:

import logging
import logging.handlers

def create_logger(app_name, logfilename=None, level=logging.INFO,
 console=False, syslog=False):
 """ Build and return a custom logger. Accepts the application
 name,
 log filename, loglevel and console logging toggle and syslog
toggle """

 log=logging.getLogger(app_name)
 log.setLevel(logging.DEBUG)
 # Add file handler
 if logfilename != None:
 log.addHandler(logging.FileHandler(logfilename))

 if syslog:
 log.addHandler(logging.handlers.SysLogHandler(address='/dev/
 log'))

 if console:
 log.addHandler(logging.StreamHandler())

 # Add formatter
 for handle in log.handlers:
 formatter = logging.Formatter('%(asctime)s : %(levelname)-8s
 - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
 handle.setFormatter(formatter)

 return log

Chapter 10

[513]

Now let's try to create a logger while logging to syslog:

>>> create_logger('myapp',console=True, syslog=True)
>>> log.info('Myapp - starting up…')

Let's inspect syslog to see if it actually got logged:

$ tail -3 /var/log/syslog

Dec 26 20:39:54 ubuntu-pro-book kernel: [36696.308437] psmouse serio1:
TouchPad at isa0060/serio1/input0 - driver resynced.

Dec 26 20:44:39 ubuntu-pro-book 2016-12-26 20:44:39 : INFO - Myapp -
starting up...

Dec 26 20:45:01 ubuntu-pro-book CRON[11522]: (root) CMD (command -v
debian-sa1 > /dev/null && debian-sa1 1 1)

The output shows that it did.

Debugging tools – using debuggers
Most programmers tend to think of debugging as something that they ought to
do with a debugger. In this chapter, we have so far seen that, more than an exact
science, debugging is an art, which can be done using a lot of tricks and techniques
rather than directly jumping to a debugger. However, sooner or later, we expected to
encounter the debugger in this chapter—and here we are!

The Python Debugger, or pdb as it is known, is part of the Python runtime.

Pdb can be invoked when running a script from the beginning as follows:

$ python3 -m pdb script.py

However, the most common way in which programmers invoke pdb is to insert the
following line at a place in the code where you want to enter the debugger:

import pdb; pdb.set_trace()

Let's use this, and try to debug an instance of the first example in this chapter, that
is, the sum of the max subarray. We will debug the O(n) version of the code as an
example:

def max_subarray(sequence):
 """ Maximum subarray - optimized version """

 max_ending_here = max_so_far = 0
 for x in sequence:

Techniques for Debugging

[514]

 # Enter the debugger
 import pdb; pdb.set_trace()
 max_ending_here = max(0, max_ending_here + x)
 max_so_far = max(max_so_far, max_ending_here)

 return max_so_far

A debugging session with pdb
The debugger is entered in the very first loop immediately after the program is run:

>>> max_subarray([20, -5, -10, 30, 10])

> /home/user/programs/maxsubarray.py(8)max_subarray()

-> max_ending_here = max(0, max_ending_here + x)

-> for x in sequence:

(Pdb) max_so_far

20

You can stop the execution using s. Pdb will execute the current line, and stop:

> /home/user/programs/maxsubarray.py(7)max_subarray()

-> max_ending_here = max(0, max_ending_here + x)

You can inspect the variables by simply typing them and pressing Enter:

(Pdb) max_so_far

20

The current stack trace can be printed using w or where. An arrow (→) indicates the
current stack frame:

(Pdb) w

 <stdin>(1)<module>()

> /home/user/programs/maxsubarray.py(7)max_subarray()

-> max_ending_here = max(0, max_ending_here + x)

The execution can be continued until the next breakpoint by using c or continue:

> /home/user/programs/maxsubarray.py(6)max_subarray()
-> for x in sequence:

(Pdb) max_so_far

20

(Pdb) c

Chapter 10

[515]

> /home/user/programs/maxsubarray.py(6)max_subarray()

-> for x in sequence:

(Pdb) max_so_far

20

(Pdb) c

> /home/user/programs/maxsubarray.py(6)max_subarray()

-> for x in sequence:

(Pdb) max_so_far

35

(Pdb) max_ending_here

35

In the preceding code, we continued three iterations of the for loop until the max
value changed from 20 to 35. Let's inspect where we are in the sequence:

(Pdb) x

30

We have one more item to go in the list, namely, the last one. Let's inspect the source
code at this point using the l or the list command:

(Pdb) l
 1
 2 def max_subarray(sequence):
 3 """ Maximum subarray - optimized version """
 4
 5 max_ending_here = max_so_far = 0
 6 -> for x in sequence:
 7 max_ending_here = max(0, max_ending_here + x)
 8 max_so_far = max(max_so_far, max_ending_here)
 9 import pdb; pdb.set_trace()
 10
 11 return max_so_far

One can traverse up and down the stack frames by using the u or up and d or down
commands, respectively:

(Pdb) up

> <stdin>(1)<module>()

(Pdb) up

Techniques for Debugging

[516]

*** Oldest frame

(Pdb) list

[EOF]

(Pdb) d

> /home/user/programs/maxsubarray.py(6)max_subarray()

-> for x in sequence:

Let's now return from the function:

(Pdb) r

> /home/user/programs/maxsubarray.py(6)max_subarray()

-> for x in sequence:

(Pdb) r

--Return--

> /home/user/programs/maxsubarray.py(11)max_subarray()->45

-> return max_so_far

The return value of the function is 45.

Pdb has a lot of other commands than what we covered here. However, we don't
intend for this session to be a fully fledged pdb tutorial. Interested programmers
can refer to the documentation on the web to learn more.

Pdb – similar tools
The Python community has built a number of useful tools that build on top of Pdb,
but add more useful functionality, developer's ease-of-use, or both.

iPdb
Basically, iPdb is iPython-enabled pdb. It exports functions to access the iPython
debugger. It also has tab completion, syntax highlighting, and better traceback, and
introspection methods.

iPdb can be installed with pip.

Chapter 10

[517]

The following screenshot shows a session of debugging using iPdb, the same function
as we did with pdb before. Observe the syntax highlighting that iPdb provides:

iPdb in action, showing syntax highlighting

Also note that iPdb provides a fuller stack trace as opposed to Pdb:

iPdb in action, showing a fuller stack trace than pdb

Note that iPdb uses iPython as the default runtime instead of Python.

Techniques for Debugging

[518]

Pdb++
Pdb++ is a drop-in replacement for pdb with features similar to iPdb, but it works on
the default Python runtime instead of requiring iPython. Pdb++ is also installable
via pip.

Once pdb++ is installed, it takes over at all places that import Pdb, so no code change
is required at all.

Pdb++ does smart command parsing. For example, if there are variable names
conflicting with the standard Pdb commands, Pdb will give preference to the
command over displaying the variable contents. Pdb++ figures this out intelligently.

Here is a screenshot showing Pdb++ in action, including syntax highlighting, tab
completion, and smart command parsing:

Pdb++ in action—Note the smart command parsing, where the c variable is interpreted correctly

Advanced debugging – tracing
Tracing of a program right from the beginning can often be used as an advanced
debugging technique. Tracing allows a developer to trace program execution, find
caller/callee relationships, and figure out all functions executed during the run
of a program.

Chapter 10

[519]

The trace module
Python comes with a default trace module as part of its standard library.

The trace module takes one of the –trace, --count, or –listfuncs options.
The first option traces and prints all the source lines as they are executed. The
second option produces an annotated list of files, which shows how many times
a statement was executed. The latter simply displays all the functions executed by
running of the program.

The following is a screenshot of the subarray problem being invoked by the –trace
option of the trace module:

Tracing program execution using the trace module by using its –trace option.

As you can see, the trace module traced the entire program execution, printing the
lines of code one by one. Since most of this code is a for loop, you actually see the
lines of code in the loop getting printed the number of times the loop was executed
(five times).

The –trackcalls option traces and prints the relationships between the caller and
callee functions.

Techniques for Debugging

[520]

There are many other options to the trace module such as tracking calls, generating
annotated file listings, reports, and so on. We won't be having an exhaustive
discussion regarding these, as the reader can refer to the documentation of this
module on the web to read more about it.

The lptrace program
When debugging servers and trying to find out performance or other issues on
production environments, what a programmer needs is not often the Python system
or stack trace as given by the trace module, but to attach to a process in real time
and see which functions are getting executed.

iptrace can be installed using pip. Note that it doesn't
work with Python3.

The lptrace package allows you to do this. Instead of giving a script to run, it
attaches to an existing process running a Python program via its process ID, such as
running servers, applications, and the like.

In the following screenshot, you can see iptrace debugging the Twisted chat server
that we developed in Chapter 8, Architectural Patterns—The Pythonic Approach, live.
The session shows the activity when the client andy has connected:

The iptrace command debugging a chat server in Twisted

Chapter 10

[521]

There are lots of log lines, but you can observe how some well-known methods of
the Twisted protocol are being logged such as connectionMade when the client
has connected. Socket calls such as accept can also be seen as part of accepting the
connection from the client.

System call tracing using strace
strace is a Linux command, which allows a user to trace system calls and signals
invoked by a running program. It is not exclusive to Python, but it can be used
to debug any program. strace can be used in combination with iptrace to
troubleshoot programs with respect to their system calls.

strace is similar to iptrace in that it can be made to attach to a running process. It
can also be invoked to run a process from the command line, but it is more useful
when running attached to a process such as a server.

For example, this screenshot shows the strace output when running attached to our
chat server:

The strace command attached to the Twisted chat server

The strace command corroborates the conclusion of the lptrace command of the
server waiting on an epoll handle for incoming connections.

Techniques for Debugging

[522]

This is what happens when a client connects:

The strace command showing system calls for a client connecting to the Twisted chat server

strace is a very powerful tool, which can be combined with tools specific for
the runtime (such as lptrace for Python) in order to do advanced debugging in
production environments.

Summary
In this chapter, we learned about different debugging techniques with Python. We
started with the simple print statement and followed it with simple tricks to debug
a Python program such as using the continue statement in a loop, strategically
placing the sys.exit calls between code blocks, and so on.

We then looked at debugging techniques in some detail, especially on mocking and
randomizing data. Techniques such as caching in files and in-memory databases
such as Redis were discussed with examples.

An example using Python schematics library showed generating random data for a
hypothetical application in the healthcare domain.

Chapter 10

[523]

The next section was about logging and using it as a debugging technique. We
discussed simple logging using the logging module, advanced logging using the
logger object, and wrapped up the discussion by creating a logger wrapper with its
custom formatting for logging the time taken inside functions. We also studied an
example of writing to syslog.

The end of the chapter was devoted to a discussion on debugging tools. You learned
the basic commands of pdb, the Python debugger, and took a quick look at similar
tools that provide a better experience, namely, iPdb and Pdb++. We ended the
chapter with a brief discussion on tracing tools such as lptrace and the ubiquitous
strace program on Linux.

[525]

Index
Symbols
__init__.py files 463

A
accessibility testing 89
Advanced Message Queuing Protocol

(AMQP) 263
antipatterns

about 39
functional constructs, overusing 39
mixed Indentation 39
string literal types, mixing 39

arbitrary input
evaluating 294, 295, 297
objects, serializing 300-304
overflow errors 298, 300

asymptotic notation 136
async

using 244-246
asynchronous execution 236
asynchronous processing 196
asyncio module 197, 241, 242
availability, quality attributes

about 26
fault detection 26
fault prevention 27
fault recovery 27

await
using 244, 246, 247

B
Bachmann-Landau notation 136
behavorial pattern

about 381

Iterator pattern 382-385
Observer pattern 385-393
State pattern 393-400

Black-box testing 87
bloom filters 184-188
BlueGreen deployment 473
Borg

versus Singleton 340, 341
Bucket testing (A/B testing) 473
Builder pattern 353, 355, 357, 358

C
canary releases 473
Celery

about 264
Gunicorn 274
serving, with Python on web 269-271
uWSGI 272, 273
with Mandelbrot set 264-269

ChainMap 181, 182
Chaos Monkey 474
code

cohesion and coupling, measuring 50-53
commenting 49
string and text, processing 54

code coverage
about 105
measuring, coverage.py used 105, 106
measuring, nose2 used 106, 107
measuring, py.test used 107

code, documenting
about 40
class docstrings 43, 44
code comments 40
docstrings function 41

[526]

external documentation 40
inline documentation 40
module docstrings 44
user manuals 40

code or application profiling tools 135
code, refactoring

about 77
code smells, fixing 80, 82
complexity, fixing 78, 79
styling and coding conventions, fixing 82

code smells
about 64
at class level 64
at method/function level 65

collections module
about 175
ChainMap 181, 182
counter 180
defaultdict 176, 177
deque 176
duplicates, dropping from container

without losing order 179
least recently used (LRU) cache dictionary,

implementing 179
namedtuple 182, 183
OrderedDict 178

comma separated value (CSV) 201
Common Gateway Interface (CGI) 271
Composite pattern 330
concurrency

about 196
asynchronous processing 196
in Python, with multithreading 198
multiprocessing 196
multithreading 196
versus parallelism 197

concurrent futures
concurrency options 252
disk thumbnail generator 249-251
for high-level concurrent

processing 247, 249
joblib package 253, 254
Mandelbrot set 255, 256, 257, 261
parallel processing libraries 253
PyMP 254, 255

concurrent.futures module 197

concurrent programming
versus, event-driven programming 418, 419

Confidentiality, Integrity, and Availability
(CIA) 283

connectionMade 521
content delivery network (CDN) 277
context manager

used, for managing time 139, 140, 142
continuous deployment 472
cooperative multitasking

about 237
versus pre-emptive multitasking 236-240

co-routines
using 241

counter
about 180
used, for sorting disk files 229, 230, 232

cProfile 153
creational pattern

about 335
Borg, versus Singleton 340, 341
deep, versus shallow copy 346
deep, versuss shallow copy 347
Factory pattern 342-345
factory patterns 329
patterns combining, metaclasses used 349
Prototype pattern 345, 346
prototype patterns 330
Prototype, using metaclasses 347, 348
Singleton and related patterns 330
Singleton pattern 335-340

Cross-Site Scripting (XSS) 314
cyclomatic complexity 65, 66

D
Data Sink 439
debugging, advanced

lptrace program 520, 521
system call tracing, strace used 521, 522
trace module 519
tracing 518

debugging technique, logging as
about 505
custom formatting and

loggers 508, 510, 511
logger objects 507, 508

[527]

simple application logging 505, 507
syslog, writing to 512, 513

debugging tools
debuggers used 513
debugging session, pdb used 514, 515
iPdb 516, 517
Pdb++ 518

debugging, tricks and techniques
about 486
code blocks, skipping 491
data, loading from files as cache 496-498
data, loading from memory

as cache 498, 499
data saving to, from files as cache 496
data saving to, from memory

as cache 498, 499
execution, skipping 491, 492
functions, replacing with return value/data

(Mocking) 494-496
random/mock data, returning 500
random patient data, generating 500-504
word searcher program 487
word searcher program,

debugging step 1 488, 489
word searcher program,

debugging step 2 489, 490
word searcher program, final code 490, 491
wrappers, using 492-494

deep
versus shallow copy 346, 347

Default dicts 176, 177
Deferreds 420
Denial of Service (DOS) 310-313
deployability

about 448
factors 449, 450

deployability, quality attributes
about 29
factors 29, 30

deque 176
design patterns

about 328, 329
categories 329, 330
elements 328, 329
pluggable hashing algorithms 331-334

design patterns, categories
about 329

behavioral pattern 330
creational pattern 329
structural pattern 330

deterministic profiling 152
dictionaries 174
disk files

sorting 228, 229
sorting, with counter 229, 230
sorting, with multiprocessing 234

disk thumbnail generator 249-251
doctests 113, 115, 116

E
Event-driven programming

about 411
chat server and client, I/O multiplexing

with select module used 411, 414,
416-418

chat server, Twisted used 422, 424, 427, 428
Eventlet 428, 429
Greenlets and Gevent 430, 431
twisted 420
twisted, web client 421, 422
versus, concurrent programming 418, 419

Eventlet 428, 429
executor interface

map method 247
submit method 247

F
Fabric

used, for remote deployments 468, 469
Factory pattern 329, 342, 344, 345
Finite State Machine (FSM) 394
Flake8 64
Flask 409-411
functional testing 87
future

about 236
waiting for, with async and await 244-247

G
Global Interpreter Lock (GIL)

about 224
for multithreading 223, 224

[528]

used for multithreading 223
Gevent 430, 431
Greenlets 430, 431
Gunicorn

about 274
versus uWSGI 274

H
horizontal scalability architectures

about 278, 279
active redundancy 275
best practices 277
blue-green deployments 276
hot standby 275
read replicas 276

I
installation testing 88
instrumentation tools 135
integration tests

about 117, 118
writing, approaches 118, 119

iPdb 516, 517
Iterator pattern 382, 383, 385

J
joblib package 253, 254

L
late binding techniques

about 62
brokers/registry lookup services 62
creational patterns,using 63
deployment time binding 62
notification services 62
plugin mechanisms 62
static analysis, tools 63

Lightweight Directory Access Protocol
(LDAP) 287

line profiler 159-161
lists 173
locks

used, for implementing resource
constraint(s) 207-209

versus semaphores 214, 215
lptrace program 520, 521

M
maintainability 34
Mandelbrot set

about 255-258, 261
Celery, using 264-269
mandelbrot_calc_row function 257
mandelbrot_calc_set function 257

McCabe 64
memory profiler 161-163
message-oriented middleware (MoM) 263
message queues 262
Microservice architecture

about 432, 433
advantages 438
Microservice frameworks 433
restaurant reservation example 435-437

Model Template View (MTV) 406, 407
Model View Controller (MVC)

about 404-406
automated model-centric views 407-409
Flexible Microframework 409-411

modifiability
about 34, 55
Abstract common services 57
aspects 34
code smells 64, 65
cyclomatic complexity 65, 66
explicit interfaces, providing 55
Inheritance techniques, using 58-61
late binding techniques, using 62
metrics, testing for 66
Pylint, running 69-76
two-way dependencies, reducing 56, 57

modifiability, quality attributes
about 18
affecting, factors 21

modularity 34
Monit 277
monitoring tools 135
MTBF 26
MTTR 26
multiprocessing

about 196, 224

[529]

disk files, sorting 228, 229
primality checker 224, 225, 227
used, for sorting disk files 234
versus multithreading 235

multiprocessing module 197
multithreading

about 196
for concurrency, in Python 198
versus multiprocessing 235
with Python and GIL 224

N
namedtuple 182, 183
nose2 101, 102
NT LAN Manager (NTLM) 287

O
Object Relational Mapper (ORM) 407
Objgraph (object graph) 16, 80-170
Observer pattern 387-392
OrderedDic 178
order of the function 136

P
parallelism

versus concurrency 197
parallel processing libraries 253
Pdb 516
Pdb++ 518
performance

about 133
code or application profiling tools 135
complexity 136, 137
instrumentation tools 135
measuring 193, 194, 196
monitoring tools 135
software performance engineering 133, 134
stress testing tools 135
testing and measurement tools 135

Performance Engineering Life
Cycle (PGLC) 134

performance, measuring
about 138, 139
code timing, timeit module used 142, 143
CPU time measuring, timeit used 151

time complexity, finding 145-150
timeit used 143, 144
time measuring, context

manager used 139-142
performance, programming

about 172
bloom filters 184, 185, 187
dictionaries 174
high performance containers 175
immutable containers 175
lists 173
mutable containers 173
Probabilistic data structures 184
sets 174

performance testing
about 88
load testing 88
scalability testing 88
stress testing 88

Perl Webserver Gateway
Interface (PSGI) 272

Pip 453, 454
Pipe and Filter architecture

about 438, 439
in Python 439-445

pluggable hashing algorithms
about 331-334
summing up 334, 335

pre-emptive multitasking
about 237
versus cooperative multitasking 236-240

primality checker 224-227
profiling

about 152
deterministic profiling 152
prime number iterator class 156, 157
statistics, collecting 158
statistics, reporting 158
third-party profilers 159
with cProfile and profile 152-156

Prototype pattern
about 330, 345, 346
Builder pattern 353-358
Prototype factory 350, 352

Proxy pattern 330
Publish-Subscribe 385
Pycodestyle 64

[530]

Pyflakes 63
Pylint

about 63
running 69-76

PyMP 254, 255
Pympler 170-172
py.test

used, for testing 103, 104
Python

about 35, 36
asyncio module 241, 242
concurrency, with multithreading 198
reading input 291-294
security 290, 291
used for multithreading 223

Python Enhancement
Proposal (PEP) 47, 48, 271

Python Imaging Library (PIL) 199, 257
Python Open Web Application Security

Project (OWASP) project 324
Python Package Index (PyPI) 460
Python Packaging Authority (PyPA)

about 468
URL 468

Q
quality attributes

about 17
availability 26, 27
deployability 29, 30
modifiability 18-20
performance 25
scalability 23, 24
security 27, 28
testability 21-23

Quality of Service (QoS) 276

R
RabbitMQ 263
readability

about 34, 35
antipatterns 37, 38
code, documenting 39-41
code, refactor and review 48
coding and style guidelines, following 47
techniques 39

Receiving Applications 263
Relational Database Systems (RDBMs) 279
resource constraint(s)

implementing, with locks 207-209
implementing, with semaphores 212, 213

Response For Class (RFC) 90
reusability 34
RLock 198
root-mean-squared (RMS) 49

S
scalability

about 191
measuring 193-195

scalability architectures
about 275
horizontal scalability architectures 275-279
vertical scalability architectures 275

scalability, quality attributes
about 23
horizontal scalability 24
vertical scalability 24

scale horizontally 191
scale out 191
scale up 191
scale vertically 191
scaling

message queues 262, 263
on web 262
task queues 262, 263
workflows 262

secure architecture 282
secure coding

about 284
strategies 284

security issues
Cross-Site Scripting (XSS) 314
Cross-Site Scripting (XSS),

mitigation 315, 316
Denial of Service (DOS) 310-313
Denial of Service (DOS),

mitigation 315, 316
Server Side Template

Injection (SSTI) 305-308
Server Side Template Injection (SSTI),

mitigation 308

[531]

with web applications 304
security, quality attributes

about 27
authenticity 28
integrity 28
origin 28

security, strategies
about 317
expressions, evaluating 317
files 318
local data 321
overflow errors 317
passwords and sensitive information,

handling 319-321
race conditions 322
reading input 317
security updates 323
serialization 317
string formatting 317

security testing 88
security vulnerabilities

about 285-288
cryptography issues 286, 287
improper access control 286
information leak 288, 289
insecure file operations 290
overflow errors 285
race conditions 289
unvalidated input 286

Selenium Web Driver
used, for test automation 120-122

semaphores
used, for implementing resource

constraint(s) 212, 213
versus locks 214, 215

Sending Applications 262
Server Side Template

Injection (SSTI) 305, 307
Service Oriented Architectures (SOA) 432
sets 174
setup.py file 464
Singleton pattern 335-338
Software Architecture

aspects 4
characteristics 5-9, 11
defining 2
importance 11-13

versus design 3
software deployment

about 452
application, packaging 462
application, submission 462
Fabric, using for remote

deployments 468, 469
__init__.py files 463
package, installing 464, 465
package, submitting to PyPI 465, 467
Pip 453, 454
PyPI 460, 461
Python code, packaging 453
setup.py file 463, 464
Supervisor, used for managing remote

daemons 471
Virtualenv 455, 456
Virtualenv and pip 457-459
virtual environments, relocatable 459

software deployment architecture, tiers
about 451
Development and Test/ Stage and

Production 452
Development and Test/Stage/

Production 452
Development/Test/Stage/

Production 451, 452
software deployment, patterns

BlueGreen deployment 473
Bucket testing (A/B testing) 473
Canary releases 473
Chaos Monkey 474
continuous deployment 472
induced chaos 473

Software Development Life
Cycle (SDLC) 133

Software Performance
Engineering (SPE) 133

State pattern 398-400
strace

used, for system call tracing 521, 522
stress testing tools 135
structural pattern

about 330, 360
Adapter pattern 360-369
Composite pattern 330
Facade pattern 370, 371

[532]

Facades 371
instance-counting proxy 378-380
proxy pattern 330, 377

subarray
analysis and rewrite 481-483
code, optimizing 484, 485
code, timing 484, 485
issues 478, 479
print, power 479, 481

Supervisor
about 277
used, for managing remote daemons 471

symmetric multiprocessing (SMP) 253
System Architecture

versus Enterprise Architecture 13-16

T
task 264
task queues 262
testability

about 86
architectural, aspects 87, 88
control and isolate external

dependencies 91-95
predictability, improving 90
reduce system complexity 89
software testability 86
strategies 89

testability, quality attributes 21-23
test automation

about 120
Selenium Web Driver used 120, 121

Test-Driven Development (TDD)
about 122
with palindromes 123-129

third-party profilers
line profiler 159-161
memory profiler 161-163
substring (subsequence) problem 163-168

threading module 197, 198
thumbnail generator

about 199, 200
producer/consumer architecture 201-206
resource constraint(s), implementing with

locks 207-209

resource constraint(s), implementing with
semaphores 211, 213

URL rate controller, implementing with
conditions 215-223

timeit module
used, for code timing 142, 143
used, for measuring CPU time 151
used, for measuring performance 143, 144

trace module 519, 520
tuples 175
twisted

about 420
chat server, using for 422, 424, 427, 428

two-way dependencies
reducing 56, 57

U
unit testing 87, 96
URL rate controller

implementing, with conditions 215-223
usability testing 88
uWSGI

about 272, 273
versus Gunicorn 274

V
vertical scalability architectures

about 275
existing resources, using in system 275
resources, adding to existing system 275

Virtualenv
about 455, 456
and pip 457

W
web

scaling on 262
Web Content Accessibility Guidelines

(WCAG) 89
Web Server Gateway

Interface (WSGI) 269-271
White-box testing

about 87
code coverage 105

[533]

integration tests 117, 119
mocking 108
nose2 101, 102
principles 95
py.test, testing with 102, 104
test automation 120

unit test case 99, 101
unit testing 96
unit testing, in action 97-99

workers 264

	Cover
	Copyright
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Credits
	Preface
	Chapter 1: Principles of Software Architecture
	Defining software architecture
	Software architecture versus design
	Aspects of software architecture

	Characteristics of software architecture
	An architecture defines a structure
	An architecture picks a core set of elements
	An architecture captures early design decisions
	An architecture manages stakeholder requirements
	An architecture influences the organizational structure
	An architecture is influenced by its environment
	An architecture documents the system
	An architecture often conforms to a pattern

	Importance of software architecture
	System versus enterprise architecture
	Architectural quality attributes
	Modifiability
	Testability
	Scalability
	Performance
	Availability
	Security
	Deployability

	Summary

	Chapter 2: Writing Modifiable and Readable Code
	What is modifiability?
	Aspects related to modifiability
	Understanding readability
	Python and readability
	Readability – antipatterns
	Techniques for readability
	Document your code
	Follow coding and style guidelines
	Review and refactor code
	Commenting the code

	Fundamentals of modifiability – cohesion and coupling
	Measuring cohesion and coupling
	Measuring cohesion and coupling – string and text processing

	Exploring strategies for modifiability
	Providing explicit interfaces
	Reducing two-way dependencies
	Abstract common services
	Using inheritance techniques
	Using late binding techniques

	Metrics – tools for static analysis
	What are code smells?
	Cyclomatic complexity – the McCabe metric
	Testing for metrics

	Running Static Checkers

	Refactoring code
	Refactoring code – fixing complexity
	Refactoring code – fixing code smells
	Refactoring code – fixing styling and coding issues

	Summary

	Chapter 3: Testability – Writing Testable Code
	Understanding testability
	Software testability and related attributes
	Testability – architectural aspects
	Testability – strategies
	Reduce system complexity
	Improving predictability
	Control and isolate external dependencies

	White-box testing principles
	Unit testing
	Unit testing in action
	Extending our unit test case

	Nosing around with nose2
	Testing with py.test
	Code coverage
	Measuring coverage using coverage.py
	Measuring coverage using nose2
	Measuring coverage using pytest

	Mocking things up
	Tests inline in documentation – doctests
	Integration tests
	Test automation
	Test automation using Selenium WebDriver

	Test-driven development
	TDD with palindromes
	Summary

	Chapter 4: Good Performance is Rewarding!
	What is performance?
	Software performance engineering
	Performance testing and measurement tools
	Performance complexity
	Measuring performance
	Measuring time using a context manager
	Timing code using the timeit module
	Measuring the performance of our code using timeit

	Finding out time complexity – graphs
	Measuring CPU time with timeit

	Profiling
	Deterministic profiling
	Profiling with cProfile and profile
	Prime number iterator class – performance tweaks

	Profiling – collecting and reporting statistics
	Third-party profilers
	Line profiler
	Memory profiler
	Substring (subsequence) problem

	Other tools
	Objgraph
	Pympler

	Programming for performance – data structures
	Mutable containers – lists, dictionaries, and sets
	Lists
	Dictionaries
	Sets

	Immutable containers – tuples
	High performance containers – the collections module
	deque
	defaultdict
	OrderedDict
	Counter
	ChainMap
	namedtuple

	Probabilistic data structures – bloom filters

	Summary

	Chapter 5: Writing Applications that Scale
	Scalability and performance
	Concurrency
	Concurrency versus parallelism
	Concurrency in Python – multithreading

	Thumbnail generator
	Thumbnail generator – producer/consumer architecture
	Thumbnail generator – resource constraint using locks
	Thumbnail generator – resource constraint using semaphores
	Resource constraint – semaphore versus lock
	Thumbnail generator – URL rate controller using conditions

	Multithreading – Python and GIL
	Concurrency in Python – multiprocessing
	A primality checker
	Sorting disk files
	Sorting disk files – using a counter
	Sorting disk files – using multiprocessing

	Multithreading versus multiprocessing
	Concurrecy in Python – Asynchronous Execution

	Pre-emptive versus cooperative multitasking
	The asyncio module in Python
	Waiting for a future – async and await
	Concurrent futures – high-level concurrent processing
	Disk thumbnail generator
	Concurrency options – how to choose?
	Parallel processing libraries
	Joblib
	PyMP
	Fractals – the Mandelbrot set
	Fractals – scaling the Mandelbrot set implementation

	Scaling for the web
	Scaling workflows – message queues and task queues
	Celery – a distributed task queue
	The Mandelbrot set using Celery
	Serving with Python on the Web—WSGI
	uWSGI – WSGI middleware on steroids
	Gunicorn – unicorn for WSGI
	Gunicorn versus uWSGI
	Scalability architectures
	Vertical scalability architectures
	Horizontal scalability architectures

	Summary

	Chapter 6: Security – Writing Secure Code
	Information security architecture
	Secure coding
	Common security vulnerabilities
	Is Python secure?
	Reading input
	Evaluating arbitrary input
	Overflow errors
	Serializing objects

	Security issues with web applications
	Server Side Template Injection
	Server-Side Template Injection – Mitigation
	Denial of Service
	Cross-Site Scripting (XSS)
	Mitigation – DoS and XSS

	Strategies for security – Python
	Secure coding strategies
	Summary

	Chapter 7: Design Patterns in Python
	Design patterns – elements
	Categories of design patterns
	Pluggable hashing algorithms
	Summing up pluggable hashing algorithm

	Patterns in Python – Creational
	The Singleton pattern
	The Singleton – do we need a Singleton?

	State sharing – Borg versus Singleton
	The Factory pattern
	The Prototype pattern
	Prototype – deep versus shallow copy
	Prototype using metaclasses
	Combining patterns using metaclasses
	The Prototype factory

	The Builder pattern

	Patterns in Python – Structural
	The Adapter pattern
	The Facade pattern
	Facades in Python

	The Proxy pattern
	An instance-counting proxy

	Patterns in Python – Behavioral
	The Iterator pattern
	The Observer pattern
	The State pattern

	Summary

	Chapter 8: Python – Architectural Patterns
	Introducing MVC
	Model Template View (MTV) – Django
	Django admin – automated model-centric views
	Flexible Microframework – Flask

	Event-driven programming
	Chat server and client using I/O multiplexing with the select module
	Event-driven programming versus concurrent programming
	Twisted
	Twisted – a simple web client
	Chat server using Twisted

	Eventlet
	Greenlets and Gevent

	Microservice architecture
	Microservice frameworks in Python
	Microservices example – restaurant reservation
	Microservices – advantages

	Pipe and Filter architectures
	Pipe and filter in Python

	Summary

	Chapter 9: Deploying Python Applications
	Deployability
	Factors affecting deployability

	Tiers of software deployment architecture
	Software deployment in Python
	Packaging Python code
	PIP
	Virtualenv
	Virtualenv and pip
	Relocatable virtual environments
	PyPI
	Packaging and submission of an application
	The __init__.py files
	The setup.py file
	Installing the package
	Submitting the package to PyPI

	PyPA
	Remote deployments using Fabric
	Remote deployments using Ansible
	Managing remote daemons using Supervisor

	Deployment – patterns and best practices
	Summary

	Chapter 10: Techniques for Debugging
	Maximum subarray problem
	The power of "print"
	Analysis and rewrite
	Timing and optimizing the code

	Simple debugging tricks and techniques
	Word searcher program
	Word searcher program – debugging step 1
	Word searcher program – debugging step 2
	Word searcher program – final code
	Skipping blocks of code
	Stopping execution
	External dependencies – using wrappers
	Replacing functions with their return value/data (mocking)
	Saving to / loading data from files as cache
	Saving to / loading data from memory as cache
	Returning random/mock data

	Logging as a debugging technique
	Simple application logging
	Advanced logging – logger objects
	Advanced logging – custom formatting and loggers
	Advanced logging – writing to syslog

	Debugging tools—using debuggers
	A debugging session with pdb
	Pdb – similar tools
	iPdb
	Pdb++

	Advanced debugging – tracing
	The trace module
	The lptrace program
	System call tracing using strace

	Summary

	Index

