ADOBE PHOTOSHOP CC 2015

SCRIPTING GUIDE

© 2015 Adobe Systems Incorporated. All rights reserved.
Adobe® Photoshop® CC 2015 Scripting Guide

Adobe, the Adobe logo, lllustrator, and Photoshop are either registered trademarks or trademarks of Adobe Systems Inc.
in the United States and/or other countries. Apple and Mac OS are trademarks of Apple Computer, Inc., registered in the
United States and other countries. Microsoft and Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and other countries. JavaScript and all Java-related marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are the property of
their respective owners.

The information in this document is furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Adobe Systems Inc. Adobe Systems Inc. assumes no responsibility or liability for
any errors or inaccuracies that may appear in this document. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such license.

Adobe Systems Inc., 345 Park Avenue, San Jose, California 95110, USA.

Contents

1 Introductionciiiiiiiiiiiiiiiiiieeeeeetetttenssnccccssssscscssnness O
About this Manual i e e e e e 6
Conventions IN this GUIdEt e e e e et eaas 6

2 Photoshop Scripting Basicsccoiiiiiiieiiiiniecerrnesccsssessccssneess 8
SCHPHING OVEIVIEW . ..ottt et e et et e et 8

Why use scripts instead of actions? i 8
Scripting SUppPOortin PRotoshop ..o e e 9
JaVaS Pt SUPPOIt .t e 9
Executing other scripts ..ottt e 10

1] = 1 (0] o I o T 10
Executing JavaScripts from AS orVBS ...t e 10
Photoshop Object Model e e e e 11
Containment hierarchy et 1
Application and document classes ..o 12

LAY I ClaSSES vttt et e 12

Layer COMP Class . .viuiti ittt et e e e e e 13

Channel Class ..ot e 13

SElECtiON Class ...ttt e 13

History State classo.viriii i e e e e 13

Document INfo Classot e 13

Path Item, Sub Path Item, and Path Pointclasseso.L. 14

PrefereNCES Class .. vttt e 14

NOTIIEr Class ..ot e e e e 14

CoUNt HEM Class . .v vt e e e e e 14

Color Sampler classouiniit i e e 14

Measurement Scale classo.vuiuiu i e 14

The containment hierarchy and the Photoshop userinterface 14
Additional 0bjects ... e 16
CONSANES « .ottt 16
Creating a sample Hello World scriptoooiii i e e 17
Creating and running an AppleScriptcovuiiiiii i 18
Creatingand running a VBSCHipt . ..ottt e et 19
Creating and running a JavaScriptouiiii i e e 19

3 Scripting Photoshopcciiiiiiiiiiiiiiiieennncseessncsccssnccssesss 21

Viewing Photoshop Objects, Commands,and Methodsooiiiiiiiiiiiiin.... 21
Viewing Photoshop’s AppleScript dictionary ..., 21
Viewing Photoshop’s type library (VBS) ..ot 22

Targeting and Referencing the Application Object ... 22

Creating New Objects in a Scriptoviii i e e ettt 23

Setting the Active ObjJeCtot e e e e e e 25
Setting the active document i e 26

Contents

4
Setting the active layer o 27

Setting the activechannels e 28
OpeNiNg a DOCUMENT e e ettt 28
Opening a file with default fileformat i i 28
Specifying file formatstoopeno 29

SaVING @ DOCUMEBNT L. i e e e e e e e e e e e e 31
Setting Application Preferencesot i e e 32
Allowing or Preventing Dialogsouvntnini e 33
Working with the Photoshop Object Modelo 33
Using the Application objecto 34

Using the Document object ... e e 34
Manipulating a documentobject ...t 35

Working with layer objectsoonii i e 36
Creating an ArtLayerobjecto 37
Creatinga Layer Set objectviiii i e 38
Referencing ArtLayer objectsovvi i e 38

Working with Layer Set objectsot i e 39

Linking layer objectso.oiiui e 40

Applying stylestolayersoiiiiiii i e 40

Using the Text ltemobjectot e 41
Determining alayer'skind oot 41

Adding and manipulating text in a Text ltemobject 42

Working with Selection objects ...t e 42
Creating and definingaselection ... i 43

Stroking the selection border ... e 44

Inverting selectionsot e 44

Expanding, contracting, and feathering selections 44

Filling aselectiono i e 45

Loading and storing selectionsccoouiiiiiiii i 45

Working with Channel objectso e e 46
Changing channel typesouiiiiiii i i e e 46

Using the Document INnfo 0bject e 47

Using history state objects e 47

Using Notifier ObJECtSovi i et e 48

Using the Pathltem object e 49
Working with color ObjJECES ... e 51
SOlid COlOT ClaSSES . . v v ettt e e e e 52

Using hex values for RGB colorouiiiiiiiiii ittt 52

Getting and converting Colorsottt e e 52
COMPANNG COlOTS ittt ettt et e e ettt 53
GettingaWeb-safe color ... 53

WoOrking With FIlters . ..o i ettt e e 53
Other filters « .ot e e e e e e e 54

Understanding Clipboard Interaction ...ttt it ii i eaenes 54
Using the copy and paste commandsouiiiiniiininin i ieie i iiieaeienanan, 54

Using the copy merged command/method ... 55
Working With Unitso e e e e et 56
Ut Values o e e e e e 56

Special unit value typesooiii i e 56

Contents

5

AppleScript unit considerations e 56

Using unit valuesincalculations ... 57

UNItValue USage ..ottt e e e e et et e e 57

Setting ruler and type unitsin ascriptoeiiiiiiiiiiii e 59

Sample Workflow Automation JavaScriptsouvuiiiiiiiiniin i, 60
F e V7 T Tt =Te ISYal o111 Ve R 60
Working with document preferences ..ot i 61
Applying colortoatextitem ..ot 64
Applyingawave filtero e 66
Defining the area of a selectionobject ... 67

Applying a MotionBlur filterot e 71

ActionManagerccoeeeveeesoecssessscsssssssssssssssssssssscscssssee 73

The ScriptListener Plug-Ino e e e et e e 73

Installing ScriptListenero.ii i e e e 73
Action Manager Scripting Objects ..ottt e e 74
Recording a Script using ScriptListener e e 74
Using the Action Manager from JavaScriptc.ouviiriin it eieaaas 75
Using the Action Manager from a VBS SCripto.viuiiiiiiiii it ieaaes 76
Running JavaScript-based Action Manager code from VBScriptccoiiiiiiiiiinian... 79
Running JavaScript-based Action Manager code from AppleScript ..., 80
Using ScriptListener to find eventIDsand class IDsccviiiiiiiiiiiiiiiiieieiiaaenns 81

Userinterfacetoolkitcoviiiiiiiiiieeeeertenrnnreeccccssssccccccensss 84
Changes specific to Photoshop CC 2015 ..ottt e ettt i e iaaaeas 84

Index.cooo..oucoccoooo.uouc.ocoooouuc.ccooo..oouc..coooo.uoc.coooooo.ouuo 85

Introduction

This manual provides an introduction to scripting Adobe®Photoshop®CC 2015 on Mac OS® and Windows®.
Chapter 1 covers the basic conventions used in this manual.
Chapter 2 covers a brief overview of scripting, how to execute scripts, and the Photoshop object model.

Chapter 3 covers Photoshop-specific objects and components and describes advanced techniques for
scripting the Photoshop application. Code examples are provided in three languages:

» AppleScript
» VBScript
> JavaScript™

NoTE: Separate Photoshop scripting reference information is provided for each of these languages
through the Scripting Reference Manuals provided with this installation, or through the object browsers
available for each language. See “Viewing Photoshop’s AppleScript dictionary” on page 21 and “Viewing
Photoshop’s type library (VBS)” on page 22. For information about using the Extend Script Object Model
Viewer, see the JavaScript Tools Guide.

Chapter 4 covers the Action Manager, which allows you to write scripts that target Photoshop functionality
that is not otherwise accessible in the scripting interface.

NoOTE: Please review the README file shipped with Photoshop for late-breaking news, sample scripts, and
information about outstanding issues.

Code and specific language samples appear in monospaced courier font:
app.documents.add

Several conventions are used when referring to AppleScript, VBScript and JavaScript. Please note the
following shortcut notations:

» AS stands for AppleScript
» VBS stands for VBScript
» JS stands for JavaScript

The term “commands” will be used to refer both to commands in AppleScript and methods in VBScript and
JavaScript.

When referring to specific properties and commands, this manual follows the AppleScript naming
convention for that property and the VBScript and JavaScript names appear in parenthesis. For example:

“The display dialogs (DisplayDialogs/displayDialogs) property is part of the Application object”

CHAPTER 1: Introduction Conventions in this Guide 7

In this case, display dialogs refers to the AppleScript property, DisplayDialogs refers to the VBScript
property and displayDialogs refers to the JavaScript property.

For larger blocks of code, scripting examples are listed on separate lines.

layer 1 of layer set 1 of current document

appRef .ActiveDocument .LayerSets (1) .Layers (1)

app.activeDocument.layerSets[0] .layers[0]

Finally, tables are sometimes used to organize lists of values specific to each scripting language.

Photoshop Scripting Basics

This chapter provides an overview of scripting for Photoshop, describes scripting support for the scripting
languages AppleScript, VBScript, and JavaScript, how to execute scripts, and covers the Photoshop object
model. It provides a simple example of how to write your first Photoshop script.

If you are familiar with scripting or programming languages, you most likely will want to skip much of this
chapter. Use the following list to locate information that is most relevant to you.

» For more information on the Photoshop object model, see “Photoshop Object Model” on page 11.

» For information on selecting a scripting language, refer to the Introduction to Scripting guide.

» For examples of scripts created specifically for use with Photoshop, see Chapter 3, “Scripting
Photoshop” on page 21.

» For detailed information on Photoshop objects and commands, please use the reference information
in the three reference manuals provided with this installation: Adobe Photoshop CC 2015 AppleScript
Scripting Reference, Adobe Photoshop CC 2015 Visual Basic Scripting Reference, and Adobe Photoshop CC
2015 JavaScript Scripting Reference.

NOTE: You can also view information about the Photoshop objects and commands through the object
browsers for each of the three scripting languages. See “Viewing Photoshop Objects, Commands, and
Methods” on page 21.

A script s a series of commands that tells Photoshop to perform a set of specified actions, such as applying
different filters to selections in an open document. These actions can be simple and affect only a single
object, or they can be complex and affect many objects in a Photoshop document. The actions can call
Photoshop alone or invoke other applications.

Scripts automate repetitive tasks and are often used as a creative tool to streamline tasks that might be too
time consuming to do manually. For example, you could write a script to generate a number of localized
versions of a particular image or to gather information about the various color profiles used by a collection
of images.

If you are new to scripting, you should acquaint yourself with the basic scripting information provided in
the Introduction to Scripting manual.

If you've used Photoshop Actions, you're already familiar with the enormous benefits of automating
repetitive tasks. Scripting allows you to extend those benefits by allowing you to add functionality that is
not available for Photoshop Actions. For example, you can do the following with scripts and not with
actions:

» You can add conditional logic, so that the script automatically makes “decisions” based on the current
situation. For example, you could write a script that decides which color border to add depending on

CHAPTER 2: Photoshop Scripting Basics Scripting Support in Photoshop 9

the size of the selected area in an image: “If the selected area is smaller than 2 x 4 inches, add a green
border; otherwise add a red border.”

» Asingle script can perform actions that involve multiple applications. For example, depending on the
scripting language you are using, you could target both Photoshop and another Adobe Creative Cloud
Application, such as Adobe Illustrator” CC 2015, in the same script.

You can open, save, and rename files using scripts.

You can copy scripts from one computer to another. If you were using an Action and then switched
computers, you'd have to recreate the Action.

» Scripts provide more versatility for automatically opening files. When opening a file in an action, you
must hard code the file location. In a script, you can use variables for file paths.

NoTE: See Photoshop Help for more information on Photoshop Actions.

Photoshop supports scripting in three scripting languages: AppleScript, VBScript, and JavaScript.
AppleScript and JavaScript run on Mac OS, and JavaScript and VBScript run on Windows. For information
about how to choose which scripting language to use, and for additional information about using these
languages with Adobe applications, see Introduction to Scripting.

See “Creating and running an AppleScript” on page 18, “Creating and running a VBScript” on page 19, and
“Creating and running a JavaScript” on page 19.

You can call JavaScript scripts from AppleScript and VBScript scripts. See “Executing JavaScripts from AS or
VBS” on page 10.

For a file to be recognized by Photoshop as a valid script file it must have the correct file name extension:

Script type File type Extension Platform
AppleScript compiled script .scpt Mac OS®

OSAS file (none)
JavaScript text -Js Mac OS & Windows
ExtendScript -Jsx
VBScript text .vbs Windows
Visual Basic executable .exe Windows

For a JavaScript file to be recognized by Photoshop as a valid script file, it must use eithera .js ora .jsx
extension. On the Mac OS, there is no difference in the way scripts with the two extensions function. On
Windows, if the script files is opened from inside Photoshop, there is no difference between using the . s
and .jsx extension. However, if the script is launched by double-clicking on it, a script with the .5s
extension is interpreted with the Microsoft® JScript engine, and it cannot launch Photoshop. For Windows,
using the .jsx extension is preferable, since it interprets the script with the ExtendScript engine.

CHAPTER 2: Photoshop Scripting Basics Scripting Support in Photoshop 10

Scripts written in JavaScript can be accessed from the Adobe Photoshop Scripts menu (File > Scripts),
which provides quick and easy access to your JavaScripts. By putting a JavaScript file into the appropriate
location on disk, it can be accessed directly from the Photoshop menu.

To install a JavaScript in the Scripts menu, place it in the Scripts folder (Photoshop CC 2015/Presets
/Scripts). The names of the scripts in the Scripts folder, without the file name extension, are displayed in
the Scripts menu. Any number of scripts may be installed in the Scripts menu.

Scripts added to the Scripts folder while Photoshop is running do not appear in the Scripts menu until the
next time you launch the application.

All scripts found in the Scripts folder and sub-folders are displayed at the top level of the File > Scripts
menu. The addition of sub-folders does not add a hierarchical organization to the Scripts menu.

Executing other scripts

The Browse item at the end of the Scripts menu (File > Scripts > Browse) allows you to execute scripts
that are not installed in the Scripts folder. You can also use Browse to select scripts installed in the Scripts
folder after the application was last launched.

Selecting Browse displays a file browser dialog which allows you to select a script file for execution. Only
.js or .jsxfiles are displayed in the browse dialog. When you select a script file, it is executed the same
way as an installed script.

On startup, Photoshop executes all . jsx files that it finds in the startup folders.
» On Windows, the startup folder for user-defined scripts is:

C:\Program Files\Common Files\Adobe\Startup Scripts CC\Adobe Photoshop
» On Mac OS, the startup folder for user-defined scripts is:

~/Library/Application Support/Adobe/Startup Scripts CC/Adobe Photoshop

If your script is in this main startup folder, it is also executed by all other Adobe Creative Suite 6
applications at startup. If such a script is meant to be executed only by Photoshop, it must include code
such as the following:

if (BridgeTalk.appName == "photoshop") {

//continue executing script

For additional details, see the JavaScript Tools Guide.

You can take advantage of JavaScript’s platform-independence by running scripts from AppleScript or
VBScript. You can execute either a single JavaScript statement or a complete JavaScript file. For more
information, please refer to Introduction to Scripting.

CHAPTER 2: Photoshop Scripting Basics Photoshop Object Model 11

A document object model (DOM) is an application programming interface (API), which allows you to
programmatically access various components of a document (as defined for that application) through a
scripting language. For additional information about Adobe object models and the scripting languages
that support them, see Introduction to Scripting.

The Photoshop DOM consists of a hierarchical representation of the Photoshop application, the
documents used in it, and the components of the documents. The DOM allows you to programmatically
access and manipulate the document and its components. For example, through the DOM, you can create
a new document, add a layer to an existing document, or change the background color of a layer. Most of
the functionality available through the Photoshop user interface is available through the DOM.

A good understanding of the Photoshop DOM, and how each aspect of the DOM relates to the Photoshop
application and its documents will make script writing easier.

The Photoshop object model is a containment hierarchy, which means that objects in the model are
identified partially by the objects that contain them. In Photoshop, the app1ication object sits at the top
of the hierarchy. Applications contain a Documents collection. The Documents collection contains
Document objects. A Document object contains an ArtLayers collection, a HistoryStates collection, a
Layers collection, a Layersets collection, and a Channels collection. Through using commands or methods
in the DOM, you can tell Photoshop documents to add and remove objects, or set or change individual
object properties like color, size and shape. In the diagram below, each node in the hierarchy represents a
class in the Photoshop DOM.

The Photoshop object model uses elements (AppleScript) or collections (VBScript, JavaScript) as a
convenient way to group classes. We have not shown object elements or collections in the object model
diagram below. Not all classes are associated with a collection. However, some key classes are grouped by
elements or collection. The following elements/collections exist in Photoshop: Art Layers, Channels,
Color Samplers, Count Items, Documents, Layers, Layer Comps, Layer Sets, History States,
Notifiers, Path Items, Path Points Sub Path Items, and Text Fonts. See Introduction to Scripting for
more information on elements and collections.

NoTE: In Photoshop, VBScript collections index from 1 rather than 0. This stands in contrast to other
VBScript arrays, which index from 0.

CHAPTER 2: Photoshop Scripting Basics Photoshop Object Model 12

Photoshop containment hierarchy Application I
(showing key classes only)

Notifier I Document I Preferencesl

Measure- .
, Layer Count Color Document| |Histor
Selection Channel oun ment Y
Comp Item Sampler Scale Info State
Path Item Art Layer Layer Set
Sub Path Text Item L
[tem (Object) ayer Set
Path L_{ Art Layer
Point

Application and document classes

The application class is the root of the Photoshop object model hierarchy. Scripts must target the
appropriate application in order to run correctly. See “Targeting and Referencing the Application Object”

on page 22.

The Document class is used to make modifications to the document image. By using the Document object
you can crop, rotate or flip the canvas, resize the image or canvas, and trim the image. You could also use
the Document object to get the active layer, then, save the current document, and copy and paste within

the active document or between different documents. For more information on using document objects,
see “Creating New Objects in a Script” on page 23 and “Using the Document object” on page 34.

Layer classes

Photoshop has two types of layers: an Art Layer that can contain image contents and a Layer set that
can contain zero or more art layers.

An Art Layer is a layer class within a document that allows you to work on one element of an image
without disturbing the others. Images are typically composed of multiple layers, defined by a Layer set.
You can change the composition of an image by changing the order and attributes of the layers that
comprise it.

A Text Ttemis a particular type of art layer that allows you to add type to an image. In Photoshop, a
Text Item item isimplemented as a property of the art layer. For more information on text items, see
“Using the Text Item object” on page 41.

CHAPTER 2: Photoshop Scripting Basics Photoshop Object Model 13

A Layer Set is a class that comprises multiple layers. Think of it as a folder on your desktop. Since folders
can contain other folders, a layer set is recursive. That is, one layer set may call another layer set in the
Object Model hierarchy.

For more information on layers, see “Working with layer objects” on page 36.

Layer Comp class

The Layer comp class allows you to create, manage, and view multiple versions of a layout within a single
document.

Channel class

The channel class is used to store pixel information about an image’s color. Image color determines the
number of channels available. An RGB image, for example, has four default channels: one for each primary
color and one for editing the entire image. You could have the red channel active in order to manipulate
just the red pixels in the image, or you could choose to manipulate all the channels at once.

These kinds of channels are related to the document mode and are called component channels. In addition
to the component channels, Photoshop lets you to create additional channels. You can create a spot color
channel, a masked area channel, and a selected area channel.

Using the commands or methods of a channel object, you can create, delete and duplicate channels. You
can also retrieve a channel's histogram, change its kind or change the current channel selection.

For more information on channels, see “Working with Channel objects” on page 46.

Selection class

The selection class is used to specify an area of pixels in the active document (or in a selected layer of the
active document) that you want to work with. For more information on selections, see “Working with
Selection objects” on page 42.

History State class

The History State class is a palette object that keeps track of changes made to a document. Each time
you apply a change to an image, the new state of that image is added to the palette. These states are
accessible from document object and can be used to reset the document to a previous state. A history
state can also be used to fill a selection. For more information on history objects, see “Using history state
objects” on page 47.

NoTteE: In AppleScript, if you create a document and then immediately try to get history state, Photoshop
returns an error. You must first activate Photoshop—make it the front-most application—before you can
access history states.

Document Info class

The Document Info class stores metadata about a document. Metadata is any data that helps to describe
the content or characteristics of a file. For more information on document info, see “Using the Document
Info object” on page 47.

CHAPTER 2: Photoshop Scripting Basics Photoshop Object Model 14

Path Item, Sub Path Item, and Path Point classes

The path 1tem class represents information about a drawing object, such as the outline of a shape, or a
curved line.The sub Path Itemclass is contained in the path Item class, and provides the actual geometry
of the shape. The Path Point class contains information about each point in a sub path. See “Using the
Pathltem object” on page 49.

Preferences class

The preferences class allows you to access and set the user preference settings. See “Working with
document preferences” on page 61.

Notifier class

The Notifier object ties an event to a script. For example, if you would like Photoshop to automatically
create a new document when you open the application, you could tie a script that creates a Document
object to an open Application event. For more information on notifiers, see “Using Notifier objects” on

page 48.

Count Item class

The count Item object provides scripting support for the Count Tool.
Color Sampler class

The color sampler object provides scripting support for the Color Sampler Tool.

Measurement Scale class

The Measurement Scale object provides scripting support for the new Measurement Scale feature that
allows you to set a scale for your document.

The following table provides describes how each object relates to the Photoshop user interface.

To create this object without using a

Object name Description script

Application The Photoshop application. Start the Photoshop application.

Document The working object, in which you create layers, In Photoshop, choose File > New or
channels, actions, and so on. In a script, you File > Open.

name, open, or save a document as you would
afile in the application.

Selection The selected area of a layer or document. Choose the marquee or lasso tools and
drag your mouse.

CHAPTER 2: Photoshop Scripting Basics

Photoshop Object Model 15

Object name

Description

To create this object without using a
script

Path Item

Channel

Art Layer

Layer Set

Layer Comp

Document
Info

Notifier

Preferences

History State

Color Sampler

Count Item

Measurement
Scale

A drawing object, such as the outline of a
shape or a straight or curved line

Pixel information about an image’s color.

A layer class within a document that allows
you to work on one element of an image
without affecting other elements in the image.

A collection of art Layer objects. Group is the
current name in the Photoshop UI. Layer Set
was the name used in an earlier version of
Photoshop. The Object name stays the same to
keep backward compatibility.

A snapshot of a state of the layersin a
document.

Metadata about a Document object.

NoTE: Metadata is any data that helps to
describe the content or characteristics of a file,
such filename, creation date and time, author
name, the name of the image stored in the file,
etc.

Notifies a script when an event occurs; the
event then triggers the script to execute. For
example, when a user clicks an OK button, the
notifier object tells the script what to do next.

The application preference settings.

Stores a version of the document in the state
the document was in each time you saved it.

NOTE: You can use a History State object to
filla selection object or to reset the
document to a previous state.

Represents a color sampler in your document.

Represents a counted item in the document.

Represents the measurement scale for your
document.

Choose the path selection or pen tools
and draw a path with the mouse.

Choose Window > Channels.

Choose Layer > New > Layer or
Window > Layers.

Choose Layer > New > Group.

Choose Window > Layer Comp. Then
select the New Layer Comp icon.

Choose File > File Info.

Choose File > Scripts > Script Events
Manager.

Choose Edit > Preferences in
Windows, or Photoshop >
Preferences in Mac OS.

Choose Window > History, and then
choose a history state from the History
palette.

Choose the Color Sampler Tool, and
click in the document.

Choose the Count Tool and click in the
document.

The Measurement Scale object cannot
be created, but you can change its
properties by using Analysis >
Measurement Scale > Custom.

CHAPTER 2: Photoshop Scripting Basics Photoshop Object Model 16

The Photoshop object model includes additional objects beyond the ones described in the containment
hierarchy above. Most of these classes are used as types for properties or to provide information (as
arguments) for commands or methods. For example:

» The color value (SolidColor/SolidColor) class provides the type for the background color
(backgroundColor/backgroundColor) and foreground color
(ForegroundColor/foregroundColor) properties of the application object. See “Working with
color objects” on page 51.

» Open and save options for documents are defined as classes, and these are passed to the commands
that open and save documents; e.g., the BMP save options (BMPSaveOptions/BMPSaveOptions)

class can be passed as an argument to the save (saveas/saveas) command or method. See “Opening
a Document” on page 28 and “Saving a Document” on page 31.

An additional important component of the Photoshop object model for JavaScript and VBScript are
constants. Constants are a type of value that defines a property. For example, with the kind property of an
Art Layer object, you can define only specific kinds that Photoshop allows. For general information about
constants, see Introduction to Scripting.

NotE: Throughout this document, actual values of enumerations for VBScript are given using the following
format:

newLayerRef .Kind = 2 '2 indicates psLayerKind --> 2 (psTextLayer)

The ' before the explanation creates a comment and prevents the text to the right of the ' from being read
by the scripting engine. For more information about using comments, see Introduction to Scripting.

For example, look up the art artLayer object in either the Adobe Photoshop CC 2015 JavaScript Scripting
Reference or in the Adobe Photoshop CC 2015 Visual Basic Scripting Reference. One of the properties of this
object is kind (kind). The value type for that property contains a link to the constant that define the
allowed values for the property. For VBScript, the constant is psLayerkind, for JavaScript, the constant is
LayerkKind. Click the link to view the values you can use to define the kind property.

NortE: Different objects can use the same property name with different constant values. The constant
values for the channel object’s kind property are different than the constant values for the art Layer
object’s kind property.

CHAPTER 2: Photoshop Scripting Basics Creating a sample Hello World script 17

This section demonstrates a very simple script in each of the three scripting languages for Photoshop.
Traditionally, the first thing to accomplish in any programming environment is the display of a "Hello
World" message.

Our Hello World scripts will do the following:
1. Open the Photoshop application.
2. Create a new Document object.

When we create the document, we will also create a variable named docref and then assign a
reference to the document as the value of docref. The document will be 4 inches wide and 2 inches
high.

3. Create an Art Layer object.

In our script, we will create a variable named artLayerRef and then assign a reference to the
Art Layer object as the value of artLayerRref.

4. Define artLayerRef as a text item.
5. Set the contents of the text item to "Hello World".

NortEe: We will also include comments throughout the scripts. In fact, because this is our first script, we will
use comments to excess.

These steps mirror a specific path in the containment hierarchy, as illustrated below.

Application I
Document I
Art Layer

Text Item

CHAPTER 2: Photoshop Scripting Basics Creating a sample Hello World script 18

You must open the Apple® Script Editor application in order to complete this procedure.
NoTE: The default location for the Script Editor is Applications > AppleScript > Script Editor.
To create and run your first Photoshop AppleScript:
1. Enter the following script in the Script Editor:

NoTE: The lines preceded by “--" are comments. Entering the comments is optional.

-- Sample script to create a new text item and
-- change its contents.

--target Photoshop CC 2015

tell application "Adobe Photoshop CC 2015"

-- Create a new document and art layer.

set docRef to make new document with properties -
{width:4 as inches, height:2 as inches}

set artLayerRef to make new art layer in docRef

-- Change the art layer to be a text layer.
set kind of artLayerRef to text layer

-- Get a reference to the text object and set its contents.
set contents of text object of artLayerRef to "Hello, World"
end tell

2. Click Run to run the script. Photoshop creates a new document, adds a new layer, changes the layer’s
type to text and sets the text to “Hello, World”

NoTE: If you encounter errors, refer to Introduction to Scripting, which has a section on AppleScript
debugging.

CHAPTER 2: Photoshop Scripting Basics

Follow these steps to create and run a VBScript that displays the text Hello World! in a Photoshop
document.

To create and run your first Photoshop VBScript:
1. Type the following script into a script or text editor.
NoOTE: Entering comments is optional.

Dim appRef
Set appRef = CreateObject("Photoshop.Application")

' Remember current unit settings and then set units to
' the value expected by this script

Dim originalRulerUnits

originalRulerUnits = appRef.Preferences.RulerUnits
appRef .Preferences.RulerUnits = 2

' Create a new 2x4 inch document and assign it to a variable.
Dim docRef

Dim artLayerRef

Dim textItemRef

Set docRef = appRef.Documents.Add (2, 4)

' Create a new art layer containing text
Set artLayerRef = docRef.ArtLayers.Add
artLayerRef.Kind = 2

' Set the contents of the text layer.
Set textItemRef = artLayerRef.TextItem
textItemRef.Contents = "Hello, World!"

' Restore unit setting
appRef .Preferences.RulerUnits = originalRulerUnits

2. Save file as a text file with a . vbs file name extension.
3. Double-click the file in Windows Explorer to run the script.

The script opens Photoshop.

Follow these steps to create and run a JavaScript that displays the text Hello World! in a Photoshop
document.

Creating a sample Hello World script

19

Because you will be actually using Photoshop to run your JavaScripts, it is not necessary to include code

that opens Photoshop at the beginning of the script.

NoTE: Adobe has created the Extend Script scripting language to augment JavaScript for use with

Photoshop. You can use the Extend Script command #target to target the Photoshop application and

create the ability to open JavaScripts that manipulate Photoshop from anywhere in your file system. See

the “Script Ul” chapter of the JavaScript Tools Guide for more information.

CHAPTER 2: Photoshop Scripting Basics Creating a sample Hello World script 20

To create and run your first Photoshop JavaScript:
1. Type the following script.
NoTE: Entering comments is optional.

// Hello Word Script

// Remember current unit settings and then set units to
// the value expected by this script

var originalUnit = preferences.rulerUnits
preferences.rulerUnits = Units.INCHES

// Create a new 2x4 inch document and assign it to a variable
var docRef = app.documents.add(2, 4)

// Create a new art layer containing text
var artLayerRef = docRef.artlayers.add()
artLayerRef .kind = LayerKind.TEXT

// Set the contents of the text layer.
var textItemRef = artLayerRef.textItem
textItemRef.contents = "Hello, World"

// Release references
docRef = null
artLayerRef = null
textItemRef null

// Restore original ruler unit setting
app.preferences.rulerUnits = originalUnit

2. Savefile as a text file with a . jsx file name extension in the Presets/Scripts folder in your Adobe
Photoshop CC 2015 directory.

NortE: You must place your JavaScripts in the Presets/Scripts folder in order to make the scripts
accessible from the File > Scripts menu in Photoshop. The scripts do not appear on the File > Scripts
menu until you restart the application.

NoTE: Photoshop also supports JavaScript files that use a . js extension.
3. Do either of the following:

> |f Photoshop is already open, choose File > Scripts > Browse, and then navigate to the Presets >
Scripts folder and choose your script.

> Start or restart Photoshop, and then choose File > Scripts, and then select your script from the
Scripts menu.

Scripting Photoshop

This chapter demonstrates several techniques for using the Photoshop Document Object Model (DOM) to
create scripts to use specifically with Photoshop.

You will also learn how to use the reference manuals and object model browsers to find information about
the objects, classes, properties, commands, and even some values (called constants or enumerations) you
can use to create AppleScripts, VBScript scripts, and JavaScripts for Photoshop.

Tip: Throughout this chapter, the explanation of how to create a script is followed by instructions for
locating information about the specific elements used in the script. Using these instructions will help you
quickly understand how to script Photoshop.

The Photoshop reference material for each of the three scripting languages is found in the reference
manuals provided in this installation:

» Adobe Photoshop CC 2015 AppleScript Scripting Reference
» Adobe Photoshop CC 2015 Visual Basic Scripting Reference
» Adobe Photoshop CC 2015 JavaScript Scripting Reference

In addition, you can also access reference material by using the associated object model browser for each
language:

» For AppleScript, use the AppleScript Script Editor to view the Photoshop AppleScript Dictionary.

» ForVBScript, use the VBA editor in Microsoft Word, or the Visual Basic Object Browser in Visual Basic, or
Visual Studio.

» For JavaScript, use the ExtendScript Object Model Viewer. See the JavaScript Tools Guide for more
information.

You use Apple’s Script Editor application to view the dictionary.
NoTE: The default location for the Script Editor is Applications > AppleScript > Script Editor.
To view the AppleScript dictionary:
1. In Script Editor, choose File > Open Dictionary.
Script Editor displays an Open Dictionary dialog.
2. Choose Adobe Photoshop CC, and then click Open.

Script Editor opens Photoshop and then displays the Photoshop dictionary, which lists objects as well
as the commands, properties and elements associated with each object. The dictionary also lists the
parameters for each command.

21

CHAPTER 3: Scripting Photoshop Targeting and Referencing the Application Object 22

NortEe: The Photoshop AppleScript Dictionary does not display the complete list of open and save formats.

You can use the VBA editor in Microsoft Word to display the objects and commands available for VBScript
in Photoshop.

To view the VBS object library in Microsoft Word:

1.

2.

5.

Start Word, and then choose Tools > Macro > Visual Basic Editor.

Choose Tools > References, and then select the Adobe Photoshop Type Library check box and click
OK.

Choose View > Object Browser.

Choose Photoshop CC type library from the list of open libraries shown in the top-left pull-down
menu.

Choose an object class to display more information abut the class.

You can also use the object browser in the Visual Basic development environment to display the objects
and commands available for VBScript in Photoshop.

To view the VBS object library in the Visual Basic development environment:

1.

2.

Start Visual Studio 2005, or Visual Basic.

Select View > Object Browser.

In the Browse drop-down box, select Edit Custom Component Set.
On the COM tab, find “Adobe Photoshop CC Object Library”. Select it.

Click Add. The selected library appears in the “Selected Projects and Components” portion of the
window.

Click OK.

Now the Photoshop Library is loaded into the object browser. Click on the plus sign next to the
Photoshop Library icon.

Click on the plus sign next to the Photoshop objects icon.

The objects defined in the Photoshop library are listed. You can select one to display more information
about the class.

Because you run your AppleScript and VBScript scripts from outside the Photoshop application, the first
thing your script should do is indicate that the commands be executed in Photoshop.

NoTE: In JavaScript, you do not need to target the Application object because you open the scripts from
the Photoshop application itself. (See “Creating and running a JavaScript” on page 19.)

CHAPTER 3: Scripting Photoshop Creating New Objects in a Script 23

AS

VBS

JS

To target Photoshop in AppleScript, you must enclosing your script in the following statements:
tell application "Adobe Photoshop CC 2015"

end tell

NoTE: Because you include all commands in the te11 block, there is no need to reference the
Application object throughout the script.

In VBScript, do the following to target the application:

Dim appRef
Set appRef = CreateObject ("Photoshop.Application")

In JavaScript, because you do not need to reference an application object, all properties and methods of
the application are accessible without any qualification. You can reference the application as part of the
containment hierarchy or leave it out, whichever makes your scripts easier for you to read.

To reference the application object, use the pre-defined global object app, rather than the class name.
The following statements are equivalent:

var docRef = app.documents[1]

and

var docRef=documents [1]

NoTE: Many JavaScript samples throughout this guide do not reference the application object.

To create a new document in the Photoshop application, you select File > New. To create other types of
objects within a document, such as a layer, channel, or path, you use the Window menu or choose the New
icon on the appropriate palette. This section demonstrates how to accomplish these same tasks in a script.

To create an object in a script, you name the type of object you want to create and then use the following
command:

> AS: make
» VBS: add
>» JS: add ()

As you can see in the “Photoshop Object Model” on page 11, the Document object contains all other
objects except the Application, Notifier, and Preferences objects. Therefore, you must reference the
Document object when adding objects other than bocument and Notifier objects to your script. (It is not
possible to add a new Preferences object.)

NoOTE: In VBScript and JavaScript, you use the object’s collection name to name the object type. For
example, you add a document to the Documents collection; you add an art layer to the art layers
collection. See Introduction to Scripting for more information on elements and collections.

CHAPTER 3: Scripting Photoshop Creating New Objects in a Script 24

AS

VBS

The following statement creates a Document object in an AppleScript.
make new document

You can also use the set command to create a variable to hold a reference to a new document. In the
following example, the variable named docref holds a reference to the new document:

set docRef to make new document

To create an object other than a document, you must reference the bocument object that contains the
object. The following sample creates an art layer in the document contained in the variable named
docRef.

make new art layer in docRef

NoTE: When you create object in AppleScript, you actually add the object to an element the same way you
add a VBScript or JavaScript object to a collection. However, in AppleScript, the element name is implied in
the make or set statement. For example, the statement:

make new document

actually means:

make new document in the documents element

Do the following to find out more about creating objects in an AppleScript:

» Look up the make and set commands in the Adobe Photoshop CC 2015 AppleScript Scripting Reference
or in the Photoshop AppleScript Dictionary. See “Viewing Photoshop’s AppleScript dictionary” on

page 21.

» To find out which commands can be used with an object, look up the object in the Adobe Photoshop
CC 2015 AppleScript Scripting Reference. If an object has valid commands, there will be a“Valid
Commands” list at the end of the object description.

In VBScript, you can use the add method only with the collection name. The adda method is not valid with
objects other than collection objects. Also, in VBScript, you must reference the application object when
creating when creating, or referring to, an object in your script.

For example, to create a document in a VBScript script, you cannot use the object name, as in the following
sample, which creates a Document object:

appRef .Document .Add ()
You must use the collection name, which is a plural form of the object name, as follows:
appRef .Documents.Add ()

NoOTE: In this sample statement, the application object is referenced via a variable named appRref. See
“Targeting and Referencing the Application Object” on page 22 for more information.

To add an artLayer object, you must reference both the application and Document objects that will
contain the art layer. The following sample references the application object using the variable appref
and the bocument object using the document’s index rather than the documents name.

appRef .Documents (1) .ArtLayers.Add ()

NoTE: In Photoshop, VBScript collections index from 1 rather than 0. That is to say, the first document
created has index 1, rather than index 0.

CHAPTER 3: Scripting Photoshop Setting the Active Object 25

JS

If you look up in the Document object in the Adobe Photoshop CC 2015 Visual Basic Scripting Reference or in
the Visual Basic Object Browser, you will see that there is no add () method for the object. However, the
Add () method is available for the Documents object. Similarly, the artLayer object does not have an
Add () method; the artLayers object does.

NoTE: The Layers object is an exception because, although it is a collection object, it does not include an
Add () method. The Layers collection includes both ArtLayer and Layerset objects, which are created
with the 2dd method on either the ArtLayers or Layersets collections. For more information, look up
the Layers object in the Adobe Photoshop CC 2015 Visual Basic Scripting Reference.

In JavaScript, you can use the add () method only with the collection name.The add () method is not valid
with objects other than collection objects.

Similar to VBScript, the JavaScript statement to create a document is:
documents.add ()

and not:

document .add ()

NoTE: You can include an Application object reference if you wish. The following statement is equivalent
to the previous sample:

app.documents.add ()

To add an ArtLayer object, you must reference the bocument object that contains the layer, and use the
add () method for the ArtLayers collection, using the artLayers property of Document.

documents [0] .artLayers.add ()

As with VBScript, the add () method is associated with the JavaScript Documents object but not with the
Document object. Similarly, the artLayer object does not have an add () method; the artLayers object
does.

NOTE: The Layers collection object does not include an add () method. For more information, look up the
Layers object in the Adobe Photoshop CC 2015 JavaScript Scripting Reference.

To work on a an object in the Photoshop application, you must make the object the front-most, or active
object. For example, to work in a layer, you must first bring the layer to the front.

In scripting, the same rule applies. If your script creates two or more documents, the commands and
methods in your script are executed on the active document. Therefore, to ensure that your commands are
acting on the correct document, it is good programming practice to designate the active document
before executing any commands or methods in the script.

To set an active object, do the following:
» In AppleScript, you use the current property of the parent object.

» InVBScript, you use the Activeobject property of the parent object (such as Act iveDocument or
ActivelLayer).

» In JavaScript, you use the activeobject property of the parent object (such as activeDocument or
activeLayer).

CHAPTER 3: Scripting Photoshop Setting the Active Object 26

AS

VBS

NoTE: The parent object is the object that contains the specified object. For example, the application is the
parent of the document; a document is the parent of a layer, selection, or channel.

For example, if you look at the app1ication object in the Adobe Photoshop CC 2015 JavaScript Scripting
Reference, or in the ExtendScript Object Model Viewer, you find one of its properties is act iveDocument; if
you look at the Document object, you will find act iveLayer and activeHistoryState as properties.
Similarly, if you look at application in the Adobe Photoshop CC 2015 AppleScript Scripting Reference, or in
the Photoshop AppleScript Dictionary, you find it has the property of current, and so on.

For sample scripts that set active objects, see the following sections.

» “Setting the active document” on page 26

» “Setting the active layer” on page 27

» “Setting the active channels” on page 28

The following examples demonstrate how to set the active document.

--create 2 documents
set docRef to make new document with properties -
{width:4 as inches, height:4 as inches}
set otherDocRef to make new document with properties -
{width:4 as inches, height:6 as inches}

--make docRef the active document

set current document to docRef

--here you would include command statements

--that perform actions on the active document. Then, you could
--make a different document the active document

--use the current document property of the application class to
--bring otherDocRef front-most as the new active document
set current document to otherDocRef

'Create 2 documents
Set docRef = app.Documents.Add (4, 4)
Set otherDocRef = app.Documents.Add (4,6)

'make docRef the active document

Set app.ActiveDocument = docRef

'here you would include command statements

'"that perform actions on the active document. Then, you could
'make a different document the active document

'use the ActiveDocument property of the Application object to
'bring otherDocRef front-most as the new active document
Set app.ActiveDocument = otherDocRef

CHAPTER 3: Scripting Photoshop Setting the Active Object 27

JS

AS

VBS

JS

// Create 2 documents
var docRef = app.documents.add(4, 4)
var otherDocRef = app.documents.add (4,6)

//make docRef the active document

app.activeDocument = docRef

//here you would include command statements

//that perform actions on the active document. Then, you could
//make a different document the active document

//use the activeDocument property of the Application object to
//bring otherDocRef front-most as the new active document
app.activeDocument = otherDocRef

The following examples demonstrate how to use the current layer (Activelayer/activeLayer)
property of the Document object to set the active layer. In order to set the active layer for a document, the
document itself must be the current document.

set current layer of current document to layer “Layer 1” of current document

NoTE: By default, Photoshop names the layers “Layer 1, “Layer2’, etc.

‘' This example assumes appRef and docRef have been previously defined and assigned
‘' to the application object and a document object that contains at least one layer.
appRef .ActiveDocument = docRef

docRef .ActivelLayer = docRef.Layers (1)

Look up the ActiveLayer property on the Document object in the Adobe Photoshop CC 2015 Visual Basic
Scripting Reference, or in the Visual Basic Object Browser.

NOTE: You can also use the name of the layer to indicate which layer to use. By default, Photoshop names
the layers “Layer 1", “Layer2”. See “Referencing ArtLayer objects” on page 38.

// This example assumes docRef has been previously defined and assigned to a
// document object that contains at least one layer.

activeDocument = docRef

docRef .activelayer = docRef.layers[0]

Look up the activeLayer property on the Document object in the Adobe Photoshop CC 2015 JavaScript
Scripting Reference, or in the ExtendScript Object Model Viewer.

NoOTE: You can also use the name of the layer to indicate which layer to use. By default, Photoshop names
the layers “Layer 1", “Layer2”. See “Referencing ArtLayer objects” on page 38.

CHAPTER 3: Scripting Photoshop Opening a Document 28

AS

VBS

JS

More than one channel can be active at a time, so the current channels
(ActiveChannels/activeChannels) property of the Document object takes an array of channels as a
value. In order to set the active channels of a document, it must be the active document.

Set the active channels to the first and third channel using a channel array:

set current channels of current document to -
{ channel 1 of current document, channel 3 of current document }

Alternatively, select all component channels using the component channels property of the bocument
object.

set current channels of current document to component channels -
of current document

Set the active channels of the active document to the first and third channel using a channel array:

‘ This example assumes docRef is already the ActiveDocument
Dim theChannels

theChannels = Array (docRef.Channels (1), docRef.Channels(3))
docRef .ActiveChannels = theChannels

Alternatively, select all component channels using the component Channels property of the Document
object:

appRef .ActiveDocument .ActiveChannels= _
appRef .ActiveDocument . ComponentChannels

Set the active channels to the first and third channel using a channel array:

theChannels = new Array (docRef.channels[0], docRef.channels[2])
docRef .activeChannels = theChannels

Alternatively, select all component channels by using the componentChannels property of the bocument
object:

app.activeDocument .activeChannels =
activeDocument .componentChannels

You use the open/open/open () command of the app1ication object to open an existing document. You
must specify the document name (that is, the path to the file that contains the document) with the
command.

Because Photoshop supports many different file formats, the open/open/open () command lets you
specify the format of the document you are opening. If you do not specify the format, Photoshop infers the
type of file for you, which is called the file's default format. The following examples open a document by
inferring the most appropriate format to use:

CHAPTER 3: Scripting Photoshop

AS

VBS

JS

Opening a Document 29

set theFile to alias "Applications:Documents:MyFile"
open theFile

fileName = "C:\MyFile"
Set docRef = appRef.Open (fileName)

var fileRef = File(app.path + "/Samples/Fish.psd")
var docRef = app.open(fileRef)

Notice that in JavaScript, you must create a File object and then pass a reference to the object to the
open () command.

Open Classes Open
Options
Raw Camera EPS
Open Open Open Options Open
Options Options Options Options

For the document types on the following list, you can set options to specify how the document will be
opened, such as the height and width of the window in which the document is opened, which page to
open to in a multi-page file, etc.

PhotoCD
CameraRaw
RawFormat

Adobe PDF

Y Y VY Y

EPS

To find out which options you can set for each of file type, look up the properties for the OpenOptions
objects that begin with the file format name. For example:

» In the Adobe Photoshop CC 2015 AppleScript Scripting Reference look up the Photo CD open options
class or the EPS open objects class.

» In the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, or the Adobe Photoshop CC 2015
JavaScript Scripting Reference, look up the PhotoCDOpenoOptions Or EPSOpenOptions objects.

The following examples demonstrate how to open a generic (multi-page/multi-image) PDF document
with the following specifications:

» The document will open in RGB mode with a resolution of 72 pixels/inch.

» Antialiasing will be used to minimize the jagged appearance of the edges of images in the document.

CHAPTER 3: Scripting Photoshop Opening a Document

AS

VBS

JS

» The document will open to page 3.

» The document’s original shape will change to conform to the height and width properties if the
original shape is not twice as wide as it is tall.

tell application "Adobe Photoshop CC 2015"

set myFilePath to alias "OS X 10.5.8 US:Users:psauto:Desktop:opal_ screen.pdf"

with timeout of 300 seconds

open myFilePath as PDF with options -
{class:PDF open options, -
mode:RGB, resolution:72, use antialias:true, page:3}

end timeout

end tell

Dim appRef
Set appRef = CreateObject ("Photoshop.Application")

'Remember unit settings and set to values expected by this script
Dim originalRulerUnits

originalRulerUnits = appRef.Preferences.RulerUnits

appRef .Preferences.RulerUnits = 1 'value of 1 = psPixels

'Create a PDF option object

Dim pdfOpenOptionsRef

Set pdfOpenOptionsRef = CreateObject ("Photoshop.PDFOpenOptions™)
pdfOpenOptionsRef.AntiAlias = True

pdfOpenOptionsRef.Mode = 2 ' psOpenRGB
pdfOpenOptionsRef.Resolution = 72

pdfOpenOptionsRef.Page = 3

' open the file
Dim docRef
Set docRef = appRef.Open (“C:\\PDFFiles\MyFile.pdf”, pdfOpenOptionsRef)

'Restore unit setting
appRef .Preferences.RulerUnits = originalRulerUnits

NorTE: The ExtendScript File object expects Universal Resource Identifier (URI) notation. Please see the
JavaScript Tools Guide for more information.

// Set the ruler units to pixels

var originalRulerUnits = app.preferences.rulerUnits
app.preferences.rulerUnits = Units.PIXELS

// Get a reference to the file that we want to open
var fileRef = new File(“/c/pdffiles/myfile.pdf”)

// Create a PDF option object

var pdfOpenOptions = new PDFOpenOptions
pdfOpenOptions.antiAlias = true
pdfOpenOptions.mode = OpenDocumentMode .RGB
pdfOpenOptions.resolution = 72
pdfOpenOptions.page = 3

// open the file

app.open(fileRef, pdfOpenOptions)

// restore unit settings
app.preferences.rulerUnits = originalRulerUnits

30

CHAPTER 3: Scripting Photoshop Saving a Document 31

AS

Options for saving documents in Photoshop are illustrated below. To find out which properties you can
specify for a specific file format save option, look up the object that begins with the file format name. For
example, to find out about properties for saving an . eps file, do the following:

» Inthe Adobe Photoshop CC 2015 AppleScript Scripting Reference, look up the class Eps save options.

» In the Adobe Photoshop CC 2015 Visual Basic Scripting Reference or in the Adobe Photoshop CC 2015
JavaScript Scripting Reference look up EPSSaveOptions.

Save Classes Save
Options
Photosh ict Fi Pict
otoshop| | BMP GIF EPS JPEG PDF Pict File Resource
Pixar PNG el
TIFF Raw DSC1 DSC2 RGB Targa

NoOTE: It is important to note that the open and save formats are not identical. See “Specifying file formats
to open” on page 29 for comparison.

NortE: The following optional formats are available only when installed explicitly:
Alias PIX

Electric Image

>

>

» SGIRGB
» Wavefront RLA
>

Softimage
The following scripts save a document as a . jpeg file.

tell application "Adobe Photoshop CC 2015"
make new document
set myFile to "OS X 10.5.8 US:Users:psauto:Desktop:Rat.jpg"
set myOptions to -
{class:JPEG save options, embed color profile:false, -
format options:standard, matte:background color matte}
save current document in file myFile as JPEG with options -
myOptions appending no extension without copying
end tell

CHAPTER 3: Scripting Photoshop Setting Application Preferences 32

VBS

JS

AS

VBS

Dim appRef,docRef
Set appRef = CreateObject ("Photoshop.Application")
Set docRef = appRef.Documents.Add ()

Set jpgSaveOptions = CreateObject ("Photoshop.JPEGSaveOptions")

jpgSaveOptions.EmbedColorProfile = True

jpgSaveOptions.FormatOptions = 1 'for psStandardBaseline

jpgSaveOptions.Matte = 1 'for psNoMatte

jpgSaveOptions.Quality = 1

appRef .ActiveDocument .SaveAs "c:\temp\myFile2",
jpgSaveOptions, True, 2 'for psLowercase

app.documents.add(4, 4)

jpgFile = new File("/Temp001l.jpeg")

jpgSaveOptions = new JPEGSaveOptions ()

jpgSaveOptions.embedColorProfile = true

jpgSaveOptions.formatOptions = FormatOptions.STANDARDBASELINE

jpgSaveOptions.matte = MatteType.NONE

jpgSaveOptions.quality = 1

app.activeDocument .saveAs (jpgFile, jpgSaveOptions, true,
Extension.LOWERCASE)

Your script can set application preferences such as color picker, file saving options, guide-grid-slice
settings, and so on.

NoTE: The properties in the settings class/pPreferences object correlate to the Photoshop CC
Preferences dialog options, which you display by choosing Photoshop > Preferences on Mac OS or

Edit > Preferences in Windows versions of Photoshop. For explanations of individual preferences, please
refer to Photoshop Help.

You use properties of the settings class to set application preferences in AppleScript. The following script
sets ruler and type unit settings:

set ruler units of settings to inch units
set type units of settings to pixel units

In the Adobe Photoshop CC 2015 AppleScript Scripting Reference, or in the Photoshop AppleScript
Dictionary, look up class settings-object to view all of the settings properties you can use.

The preferences object is a property of the application object. When you use the preferences object
in a VBScript script, you must indicate its containment in the Application object.

appRef .Preferences.RulerUnits = 2 'for PsUnits --> 2 (psInches)
appRef .Preferences.TypeUnits = 1 'for PsTypeUnits --> 1 (psPixels)

In the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, or in the Visual Basic Object Browser, look
up the preferences object to view all of the settings properties you can use. Additionally, look up the
pPreferences property on the application object.

CHAPTER 3: Scripting Photoshop Allowing or Preventing Dialogs 33

JS

AS

VBS

JS

The preferences object is a property of the Application object.

preferences.rulerUnits = Units.INCHES
preferences.typeUnits = TypeUnits.PIXELS

In the Adobe Photoshop CC 2015 JavaScript Scripting Reference, or in the ExtendScript Object Model Viewer,
look up the preferences object to view all of the settings properties you can use. Additionally, look up
the preferences property on the application object.

It is important to be able to control dialogs properly from a script. If a dialog appears, your script stops
until a user dismisses the dialog. This is normally fine in an interactive script that expects a user to be
sitting at the machine. But if you have a script that runs in an unsupervised (batch) mode, you do not want
dialogs to be displayed and stop your script.

You use the display dialogs (DisplayDialogs/displayDialogs) property of the application object
to control whether or not dialogs are displayed.

NortE: Using dialogs in your script is roughly equivalent to using stops in a Photoshop action.
The following script prevents dialogs from being displayed:
set display dialogs to never

In the Adobe Photoshop CC 2015 AppleScript Scripting Reference or in the Photoshop AppleScript Dictionary,
look up the class application to find the values you can use for the display dialogs property.

To set dialog preferences, you use the DisplayDialogs property of the aApplication object.

appRef .DisplayDialogs = 3
'for PsDialogModes --> 3 (psDisplayNoDialogs)

Note that, because pisplayDialogs is a property of the Application object, you must reference the
Application objectin the script to get to the property.

In the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, or in the Visual Basic Object Browser, look
up the Application object property pisplayDialogs. You'll see the value type for this property is the
constant PsDialogModes. You can also look up the options for PsDialogModes.

To set dialog preferences, you use the displayDialogs property of the application object.
displayDialogs = DialogModes.NO

In the Adobe Photoshop CC 2015 JavaScript Scripting Reference, or in the ExtendScript Object Model Viewer,
look up the application object property displaybialogs, and then look up the constant DialogModes.

This section contains information about using the objects in the Photoshop Object Model. For information
on object models, see Introduction to Scripting and “Photoshop Object Model” on page 11.

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 34

This section describes how and when to use the application object in a script. It also describes how to
use some properties of the Application object.

You use the properties and commands of the application object to work with Photoshop functionality
and objects such as the following:

> Global Photoshop settings or preferences, such as unit values or color settings — See “Setting
Application Preferences” on page 32.

» Documents — You can add or open documents and set the active document. “Opening a Document”
on page 28 and “Setting the Active Object” on page 25.

» Actions — You can execute actions created either via scripting or using the Actions palette in the
Photoshop application. See “Action Manager” on page 73.

You can use 2pplication object properties to get information such as the following:
» Alist of fonts installed on the system.
> AS:set theFonts to fonts

NortE: In AppleScript, fonts is a separate collection, and does not require a reference to the
application object to retrieve it.

> VBS:Set fontsInstalled = AppRef .Fonts
> JS:var fontsInstalled = app.fonts

» The amount of unused memory available to Adobe Photoshop, using the free memory
(FreeMemory/freeMemory) property of the Application object.

» The location of the Preferences folder, using the preferences folder
(PreferencesFolder/preferencesFolder) property of the Application object.

For further information, look up the properties of the application object in the reference manual or the
object browser of the language you are using.

The Document object can represent any open document in Photoshop. You can think of a Document object
as a file; you can also think of it as a canvas. You work with the Document object to do the following:

» Access script objects contained in the bocument object, such as artLayer or Channel objects. See
“Photoshop Object Model” on page 11 for more information.

» Manipulate a specific Document object, using commands or methods. For example, you could crop,
rotate or flip the canvas, resize the image or canvas, and trim the image. See “Manipulating a
document object” on page 35 for a demonstration.

Get the active layer. See “Setting the active layer” on page 27.

Save the current document. See “Saving a Document” on page 31.

7

Copy and paste within the active document or between different documents. See “Understanding
Clipboard Interaction” on page 54.

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model

AS

VBS

Manipulating a document object

The following examples demonstrate how to do the following:
Save the existing ruler unit preferences, and set ruler units to inches
Open an existing file as a document (using file Ducky.tif)

Change the size of the image to 4 inches wide and 4 inches high.

>
>
>
» Change the size of the document window (or canvas) to 4 inches high and 4 inches wide.
» Trim the top and bottom of the image.

» Crop the image.

» Flip the entire window.

Restore the original ruler units.

NoOTE: See “Setting Application Preferences” on page 32 for information on ruler units.

tell application "Adobe Photoshop CC 2015"
set saveUnit to ruler units of settings
set ruler units of settings to inch units
set duckFile to alias -
"OS X 10.5.8 US:Applications:Adobe Photoshop CC 2015:Samples:Ducky.tif"
open duckFile
set docRef to current document
resize image docRef width 4 height 4
resize canvas docRef width 4 height 4
trim docRef basing trim on top left pixel with top trim -
and bottom trim without left trim and right trim
set ruler units of settings to pixel units
crop current document bounds {100, 200, 400, 500} angle 45 width 20 height 20
flip canvas docRef direction horizontal
set ruler units of settings to saveUnit
end tell

Dim appRef, docRef
Set appRef = CreateObject ("Photoshop.Application")

'save original ruler units, then set ruler units to inches
startRulerUnits = appRef.Preferences.RulerUnits
appRef .Preferences.RulerUnits = 2 'for PsUnits --> 2 (psInches)

Set docRef = appRef.Open (appRef.Path & "\Samples\Ducky.tif")
docRef .ResizeImage 4,4
docRef .ResizeCanvas 4,4

'"Trim the document with

' type = 1 (psTopLeftPixel)

' top=true, left=false, bottom=true, right=false
docRef .Trim 1, True, False, True,False

'the crop command uses unit values
'so change the ruler units to pixels
appRef .Preferences.RulerUnits = 1 ' (psPixels)

35

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 36

JS

'Crop the document with

' angle=45, width=20,height=20

docRef .Crop Array(100,200,400,500),45,20,20
docRef .FlipCanvas 1 ' psHorizontal

'restore ruler units
appRef .Preferences.RulerUnits = startRulerUnits

//save original ruler units, then assign it to inches
startRulerUnits = app.preferences.rulerUnits
app.preferences.rulerUnits = Units.INCHES

//get a reference to the file, and open it
var fileRef = new File (app.path + "/samples/ducky.tif")
var docRef = app.open(fileRef)

//this sample script assumes the ruler units have been set to inches
docRef .resizeImage(4,4)

docRef .resizeCanvas(4,4)

docRef .trim(TrimType.TOPLEFT, true, false, true, false)

//the crop command uses unit values

//so change the ruler units to pixels
app.preferences.rulerUnits =Units.PIXELS

docRef .crop (new Array(100,200,400,500), 45, 20, 20)
docRef .flipCanvas (Direction.HORIZONTAL)

//restore original preferences
app.preferences.rulerUnits = startRulerUnits

The Photoshop object model contains two types of layer objects:

» ArtLayer objects, which can contain image contents and are basically equivalent to Layers in the
Photoshop application.

NOTE: An ArtLayer object can also contain text if you use the kind property to set the artLayer
object’s type to text layer.

» Layer Set objects, which can contain zero or more ArtLayer objects.
When you create a layer you must specify whether you are creating an ArtLayer or a Layer Set.

NoTE: Both the ArtLayer and Layerset objects have corresponding collection objects, ArtLayers and
LayerSets, Which have an add/add/add () command.You can reference, but not add, ArtLayer and
LayersSet objects using the Layers collection object, because, unlike other collection objects, it does not
have an add/add/add () command.

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 37

AS

VBS

JS

The following examples demonstrate how to create an ArtLayer object filled with red at the beginning of
the current document.

tell application "Adobe Photoshop CC 2015"
make new document
make new art layer at beginning of current document -
with properties {name:"MyBlendLayer", blend mode:normal}
select all current document
fill selection of current document with contents -
{class:RGB color, red:255, green:0, blue:0}
end tell

Dim appRef
Set appRef = CreateObject ("Photoshop.Application")

' Create a new art layer at the beginning of the current document
Dim docRef

Dim layerObj

Set docRef = appRef.Documents.Add ()

Set layerObj = appRef.ActiveDocument.ArtLayers.Add
layerObj.Name = "MyBlendLayer"

layerObj.BlendMode = 2 'psNormalBlend

' Select all so we can apply a fill to the selection
appRef .ActiveDocument .Selection.SelectAll

' Create a color to be used with the fill command
Dim colorObj

Set colorObj = CreateObject ("Photoshop.SolidColor")
colorObj.RGB.Red = 255

colorObj.RGB.Green = 0

colorObj.RGB.Blue = 0

' Now apply fill to the current selection
appRef .ActiveDocument .Selection.Fill colorObj

//make a new document
app.documents.add ()

// Create a new art layer at the beginning of the current document
var layerRef = app.activeDocument.artLayers.add()

layerRef .name = "MyBlendLayer"

layerRef .blendMode = BlendMode.NORMAL

// Select all so we can apply a f£ill to the selection
app.activeDocument.selection.selectAll

// Create a color to be used with the £ill command
var colorRef = new SolidColor

colorRef.rgb.red = 255

colorRef.rgb.green = 100

colorRef.rgb.blue = 0

// Now apply £ill to the current selection
app.activeDocument.selection.fill (colorRef)

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 38

AS

VBS

JS

The following examples show how to create a Layer Set object after the creating the first aArtLayer
object in the current document:

tell application "Adobe Photoshop CC 2015"
make new document with properties {name:"My Document"}
make new art layer at beginning of current document
make new layer set after layer 1 of current document
end tell

Dim appRef
Set appRef = CreateObject ("Photoshop.Application")

'Make a new document and a first layer in the document
appRef .Documents.Add ()
appRef .ActiveDocument .ArtLayers.Add ()

' Get a reference to the first layer in the document
Dim layerRef
Set layerRef = appRef.ActiveDocument.Layers (1)

' Create a new LayerSet (it will be created at the beginning of the document)
Dim newLayerSetRef
Set newLayerSetRef = appRef.ActiveDocument.LayerSets.Add

' Move the new layer to after the first layer
newlLayerSetRef .Move layerRef, 4 'psPlaceAfter

// make a new document and a layer in the document
app.documents.add ()
app.activeDocument .artLayers.add ()

// Get a reference to the first layer in the document
var layerRef = app.activeDocument.layers[0]

// Create a new LayerSet (it will be created at the beginning of the // document)
var newLayerSetRef = app.activeDocument.layerSets.add()

// Move the new layer to after the first layer
newLayerSetRef .move (layerRef, ElementPlacement.PLACEAFTER)

Referencing ArtLayer objects

When you create a layer in the Photoshop application (rather than a script), the layer is added to the Layers
palette and given a number. These numbers act as layer names and do not correspond to the index
numbers of ArtLayer objects you create in a script.

Your script—VBScript or JavaScript—will always consider the layer at the top of the list in the Layers
palette as the first layer in the index. For example, if your document has four layers, the Photoshop
application names them Background Layer, Layer 1, Layer 2, and Layer 3. Normally, Layer 3 would be at the
top of the list in the Layers palette because you added it last.

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 39

AS

VBS
JS

AS

VBS

JS

You can use the following syntax to refer to the layers by the names given them by the Application:

layer 1 of layer set 1 of current document

NortE: Unlike object references in JavaScript or VBScript, AppleScript object reference names do not
remain constant. Refer to an AppleScript language guide or text book for information on referencing a file
using either as alias or to a reference to file.

Layers ("Layer 3") .name

layers["Layer 3"].name //using the collection name and square brackets for the collection

Existing layers can be moved into layer sets. The following examples show how to create a Layer set
object, duplicate an existing ArtLayer object, and move the duplicate object into the layer set.

set current document to document "My Document"

set layerSetRef to make new layer set at end of current document

set newlLayer to duplicate layer "Layer 1" of current document -
to end of current document

move newlLayer to end of layerSetRef

In AppleScript, you can also duplicate a layer directly into the destination layer set.

set current document to document "My Document"
set layerSetRef to make new layer set at end of current document
duplicate layer "Layer 1" of current document to end of layerSetRef

In VBScript you can duplicate and place the layer with the same method.

Dim appRef, docRef
Set appRef = CreateObject ("Photoshop.Application")

'Make a new document and a first layer in the document
Set docRef = appRef.Documents.Add ()
appRef .ActiveDocument .ArtLayers.Add ()

Set layerSetRef = docRef.LayerSets.Add ()
Set layerRef = docRef.ArtLayers(l) .Duplicate(layerSetRef, 2)

In JavaScript you can place the layer during the duplication method.

// create a document and an initial layer
var docRef = app.documents.add ()
docRef .artLayers.add ()

var layerSetRef = docRef.layerSets.add()
var layerRef = docRef.artLayers[0] .duplicate (layerSetRef,
ElementPlacement . PLACEATEND)

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 40

AS

VBS

JS

AS

VBS

JS

Linking layer objects

Scripting also supports linking and unlinking layers. You link layers together so that you can move or
transform the layers in a single statement.

make new art layer in current document with properties {name:"L1"}

make new art layer in current document with properties {name:"L2"}

link art layer "L1" of current document with art layer "L2" of -
current document

Look up the 1ink command in the Adobe Photoshop CC 2015 AppleScript Scripting Reference or in the
Photoshop AppleScript Dictionary.

Set layerlRef = docRef.ArtLayers.Add ()
Set layer2Ref = docRef.ArtLayers.Add()
layerlRef.Link layer2Ref

Look up Link in as a method of the artLayer object in the Adobe Photoshop CC 2015 Visual Basic Scripting
Reference, or in the Visual Basic Object Browser. Additionally, look up add as a method of the ArtLayers
object.

var layerRefl = docRef.artlayers.add()
var layerRef2 = docRef.artlLayers.add()
layerRefl.link (layerRef?2)

Look up 1ink () as a method of the artLayer object in the Adobe Photoshop CC 2015 JavaScript Scripting
Reference, or in the ExtendScript Object Model Viewer. Additionally, look up add () as a method of the
ArtLayers object.

Applying styles to layers

NorTE: This procedure corresponds directly to dragging a style from the Photoshop Styles palette to a layer.

Your script can apply styles to an ArtLayer object. To apply a style in a script, you use the apply layer
style/ApplyStyle/applyStyle () command with the style’s name as an argument enclosed in straight
double quotes.

NoOTE: The layer style names are case sensitive.

Please refer to Photoshop Help for a list of styles and for more information about styles and the Styles
palette.

The following examples set the Puzzle layer style to the layer named “L1."

apply layer style art layer "L1" of current document using "Puzzle (Image)"

Look up the apply layer style command in the Adobe Photoshop CC 2015 AppleScript Scripting Reference
or in the Photoshop AppleScript Dictionary.

docRef .ArtLayers ("L1") .ApplyStyle "Puzzle (Image)"

Look up applystyle as a method of the ArtLayer object in the Adobe Photoshop CC 2015 Visual Basic
Scripting Reference, or in the Visual Basic Object Browser.

docRef .artLayers["L1"] .applyStyle ("Puzzle (Image)")

Look up applystyle () asa method of the artLayer object in the Adobe Photoshop CC 2015 JavaScript
Scripting Reference, or in the ExtendScript Object Model Viewer.

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 41

AS
VBS

JS

AS

VBS

JS

You can change an existing ArtLayer object to a text layer, that is, a Text Item object, if the layer is empty.
Conversely you can change a Text Itemobject to an ArtLayer object. This “reverse” procedure rasterizes
the text in the layer object.

The Text Ttemobject is a property of the artLayer object. However, to create a new text layer, you must
create a new ArtLayer object and then set the art layer's kind/Kind/kind property to text layer (2
(psTextLayer) / LayerKind . TEXT).

To set or manipulate text in a text layer, you use the text-object (TextItem/TextItem) object, whichis
contained in the text object/TextItem/textItem property of the artLayer object.

The following examples create an ArtLayer object and then use the kind property to convert it to a text
layer.

make new art layer in current document with properties { kind: text layer }

set newLayerRef = docRef.ArtlLayers.Add()
newLayerRef .Kind = 2
'2 indicates psTextLayer

var newLayerRef = docRef.artlLayers.add()
newLayerRef .kind = LayerKind.TEXT

See “Photoshop Object Model” on page 11 for information on the relationship between artLayer objects
and TextItem objects.

Also, look up the following:

» TheKind/kind and TextItem/textItem properties of the artLayer objectin the Adobe Photoshop
CC 2015 Visual Basic Scripting Reference, Adobe Photoshop CC 2015 JavaScript Scripting Reference, or in
the Visual Basic Object Browser and the ExtendScript Object Model Viewer.

» The kind and text object properties of the class art 1ayer in the Adobe Photoshop CC 2015
AppleScript Scripting Reference or in the Photoshop AppleScript Dictionary.

Determining a layer’s kind

The following examples use an if statement to check whether an existing layer is a text layer.
if (kind of layerRef is text layer) then

endif

If layerRef.Kind = 2 Then '2 indicates psTextLayer

End If

if (newLayerRef.kind == LayerKind.TEXT)

(...}

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 42

AS

VBS

JS

Adding and manipulating text in a Text Item object

The following examples add and right-justify text in a text layer.

set layerRef to make new art layer in current document with properties-
{kind:text layer}

set contents of text object of layerRef to "Hello, World!"

set justification of text object of layerRef to right

Set textLayerRef = docRef.ArtLayers.Add ()
textLayerRef .Kind = 2
textLayerRef .Name = "my text"

Set textItemRef = docRef.ArtLayers("my text").TextItem
textItemRef.Contents = "Hello, World!"
textItemRef.Justification = 3

'3 = psRight (for the constant value psJustification)

var textLayerRef = docRef.artLayers.add()
textLayerRef .name = "my text"
textLayerRef .kind = LayerKind.TEXT

var textItemRef = docRef.artlayers["my text"].textItem
textItemRef.contents = "Hello, World!"
textItemRef.justification = Justification.RIGHT

NOTE: The text-object (TextItem/TextItem) object hasakind kKind/kind) property, which can be set
to either point text (psPointText/TextType.POINTTEXT) Of paragraph text

(psParagraphText /TextType . PARAGRAPHTEXT.) When a new text-object is created, its kind property
is automatically set to point text.

The text-object properties height, width, and leading are valid only when the text item's kind
property is set to paragraph text.

To familiarize yourself with this objects, properties, and commands in the scripting references, do the
following:

» Inthe Adobe Photoshop CC 2015 AppleScript Scripting Reference or in the Photoshop AppleScript
Dictionary, look up the text -object properties and methods.

» In the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, or in the Visual Basic Object Browser
look up the TextItem property of the ArtLayer object. To find the properties and methods you can
use with a text layer, look up the TextItem object.

In the Adobe Photoshop CC 2015 JavaScript Scripting Reference, or in the ExtendScript Object Model Viewer,
look up the textItem property of the ArtLayer object. To find the properties and methods you can use
with a text layer, look up the TextItem object.

You use a selection object to allow your scripts to act only on a specific, selected section of your
document or a layer within a document. For example, you can apply effects to a selection or copy the
current selection to the clipboard.

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 43

AS

VBS

The selection object is a property of the Document object. Look up the following for more information:

» In the Adobe Photoshop CC 2015 AppleScript Scripting Reference or in the Photoshop AppleScript
Dictionary, look up the command select. Also, look up the selection property of the bocument
object, and the selection-object.

» In the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, or in the Visual Basic Object Browser,
look up selection as a property of the Document object. Also, look up the select as a method of the
Selection object.

» Inthe Adobe Photoshop CC 2015 JavaScript Scripting Reference, or in the ExtendScript Object Model
Viewer, look up selection as a property of the bocument object. Also, look up the select asa
method of the selection object.

NOTE: You cannot create a new selection object. The property selection (Selection/selection) on
the Document object contains a pre-existing selection object for the document. Use the select
(select/select) command to specify the area for the selection.

Creating and defining a selection

To create a selection, you use the select/select/select () command of the selection object.

You define a selection by specifying the coordinates on the screen that describe the selection’s corners.
Since your document is a 2-dimensional object, you specify coordinates using the x-and y-axes as follows:

» You use the x-axis to specify the horizontal position on the canvas.
» You use the y-axis to specify the vertical position on the canvas.

The origin point in Photoshop, that is, x-axis = 0 and y-axis = 0, is the upper left corner of the screen.The
opposite corner, the lower right, is the extreme point of the canvas. For example, if your canvas is 1000 x
1000 pixels, then the coordinate for the lower right corner is x-axis = 1000 and y-axis = 1000.

You specify coordinate points that describe the shape you want to select as an array, which then becomes
the argument or parameter value for the select/select/select () command.

The following examples assume that the ruler units have been set to pixels and create a selection by:
1. Creating a variable to hold a new document that is 500 x 500 pixels in size.

2. Creating a variable to hold the coordinates that describe the selected area (that is, the selection
object).

3. Adding an array as the selection variable’s value.

4. Using the Document object’s selection property, and the selection object’s select command to
select an area. The area’s coordinates are the selection variable’s values.

set docRef to make new document with properties {height:500, width:500}
set shapeRef to {{o0, 0}, {0, 100}, {100, 100}, {100, 0}}
select current document region shapeRef

DocRef = appRef.Documents.Add
ShapeRef = Array(Array (0, 0), Array (0, 100), Array(100,100), Array(100,0))
docRef .Selection.Select ShapeRef

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 44

JS

AS

VBS

JS

var docRef = app.documents.add (500, 500)
var shapeRef = [

[0,0],

[0,1007,

[100,100]7,

[100,0]
1

docRef .selection.select (shapeRef)

Stroking the selection border

The following examples use the stroke (Stroke/stroke ()) command of the selection object to stroke
the boundaries around the current selection and set the stroke color and width.

NoTE: The transparency parameter cannot be used for background layers.

stroke selection of current document using color -
{class:CMYK color, cyan:20, magenta:50, yellow:30, black:0} -
width 5 location inside blend mode vivid light opacity 75 -
without preserving transparency

Set strokeColor = CreateObject ("Photoshop.SolidColor")
strokeColor.CMYK.Cyan = 20

strokeColor.CMYK.Magenta = 50

strokeColor.CMYK.Yellow = 30

strokeColor.CMYK.Black = 0

appRef .ActiveDocument .Selection.Stroke strokeColor, 5, 1, 15, 75, False

strokeColor = new SolidColor

strokeColor.cmyk.cyan = 20

strokeColor.cmyk.magenta = 50
strokeColor.cmyk.yellow = 30

strokeColor.cmyk.black = 0
app.activeDocument.selection.stroke (strokeColor, 2,

StrokeLocation.OUTSIDE, ColorBlendMode.VIVIDLIGHT, 75,
false)

Inverting selections

You can use the invert (Invert/invert ()) command of the selection object to a selection so you
can work on the rest of the document, layer or channel while protecting the selection.

>» AS: invert selection of current document
» VBS: selRef.Invert

> JS: selRef . invert ()

Expanding, contracting, and feathering selections

You can change the size of a selected area using the expand, contract, and feather commands.

The values are passed in the ruler units stored in Photoshop preferences and can be changed by your
scripts. If your ruler units are set to pixels, then the following examples will expand, contract, and feather

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 45

by five pixels. See section “Setting Application Preferences” on page 32 for examples of how to change
ruler units.

AS expand selection of current document by pixels 5
contract selection of current document by pixels 5
feather selection of current document by pixels 5

VBS Dim selRef
Set selRef = appRef.ActiveDocument.Selection

selRef .Expand 5
selRef.Contract 5
selRef .Feather 5

JS var selRef = app.activeDocument.selection
selRef.expand(5)
selRef .contract(5)
selRef.feather(5)

Filling a selection

You can fill a selection either with a color or a history state.
To fill with a color:

AS fill selection of current document with contents -
{class:RGB color, red:255, green:0, blue:0} blend mode -
vivid light opacity 25 without preserving transparency

VBS Set fillColor = CreateObject ("Photoshop.SolidColor™")
fillColor.RGB.Red = 255
fillColor.RGB.Green = 0
fillColor.RGB.Blue = 0
selRef.Fill fillColor, 15, 25, False

JS var fillColor = new SolidColor ()
fillColor.rgb.red = 255
fillColor.rgb.green = 0
fillColor.rgb.blue = 0
app.activeDocument.selection.fill (£illColor, ColorBlendMode.VIVIDLIGHT,
25, false)

To fill the current selection with the tenth item in the history state:

NoTE: See “Using history state objects” on page 47 for information on History State objects.

AS fill selection of current document with contents history state 10-
of current document

VBS selRef .Fill docRef .HistoryStates(10)

JS selRef.fill (app.activeDocument.historyStates[9])

Loading and storing selections

You can store selection objects in, or load them from, channel objects. To store a selection in a channel,
it should have its kind (kind/kind) property set to a type that indicates that channel holds a selected area:
selected area channel (psSelectedAreaAlphaChannel)/ ChannelType.SELECTEDARER). The following

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 46

examples use the store (Store/store()) command of the selection object to store the current
selection in a channel named My channel and extend the selection with any selection that is currently in
that channel.

AS set myChannel to make new channel of current document with properties -
{name: "My Channel", kind::selected area channel}
store selection of current document into channel -
"My Channel" of current document combination type extended

VBS Set chanRef = docRef.Channels.Add
chanRef .Name = "My Channel"
chanRef.Kind = 3 'psSelectedAreaAlphaChannel

docRef .Selection.Store docRef.Channels ("My Channel"), 2
'PsSelectionType is 2 (psExtendSelection)

JS var chanRef = docRef.channels.add()
chanRef .name = "My Channel"
chanRef .kind = ChannelType.SELECTEDAREA

docRef .selection.store (docRef .channels ["My Channel"], SelectionType.EXTEND)

To restore a selection that has been saved to a channel object, use the 1oad (Load/load) method.

AS set myChannel to make new channel of current document with properties -
{name: "My Channel"}
load selection of current document from channel "My Channel" of -
current document combination type extended

VBS selRef .Load docRef.Channels ("My Channel"), 2
'PsSelectionType is 2 (psExtendSelection)

JS selRef.load (docRef.channels["My Channel"], SelectionType.EXTEND)

See section “Understanding Clipboard Interaction” on page 54 for examples on how to copy, cut and paste
selections.

The channel object gives you access to much of the available functionality on Photoshop channels. You
can create, delete, and duplicate channels or retrieve a channel's histogram and change its kind. See
“Creating New Objects in a Script” on page 23 for information on creating a channel object in your script.

7

You can set or get (that is, find out about) a channel object’s type using the kind property. See “Loading
and storing selections” on page 45 for script samples that demonstrate how to create a selected area
channel.

Changing channel types

You can change the kind of any channel except component channels. The following examples
demonstrate how to change a masked area channel to a selected area channel:

NoTE: Component channels are related to the document mode. Refer to Photoshop Help for information
on channels, channel types, and document modes.

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 47

AS
VBS

JS

AS

VBS

JS

set kind of myChannel to selected area channel

channelRef.ind = 3 'for psSelectedAreaAlphaChannel
'from the constant value PsChannelType

channelRef .kind = ChannelType.SELECTEDAREA

In Photoshop, you can associate information with a document by choosing File > File Info.

To accomplish this task in a script, you use the info-object (Document Info/DocumentInfo) object,
which is stored in the info (Info/info) property of the bocument object. The following examples
demonstrate how to use the Document Info object to set the copyrighted status and owner URL of a
document.

set docInfoRef to info of current document

get EXIF of docInfoRef

set copyrighted of docInfoRef to copyrighted work

set owner url of docInfoRef to "http://www.adobe.com"
get EXIF of docInfoRef

Set docInfoRef = docRef.Info
docInfoRef.Copyrighted = 1 'for psCopyrightedWork
docInfoRef.OwnerUrl = "http://www.adobe.com"

docInfoRef = docRef.info
docInfoRef.copyrighted = CopyrightedType.COPYRIGHTEDWORK
docInfoRef.ownerUrl = "http://www.adobe.com"

For information about other types of information (properties) you can associate with a document, look up
the following:

» Inthe Adobe Photoshop CC 2015 AppleScript Scripting Reference or in the Photoshop AppleScript
Dictionary, look up the properties for the class info-object.

» In the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, the Adobe Photoshop CC 2015
JavaScript Scripting Reference, the Visual Basic Object Browser or the ExtendScript Object Model
Viewer, look up the properties for the Document Info object.

Photoshop keeps a history of the actions that affect documents. Each time you apply a change to an image
in the Photoshop application, you create a history state; you can access a document’s history states from
the History palette by selecting Window > History. See Photoshop Help for additional information about
History State.

In a script, you can access a Document object’s history states using the Historystates object, which is a
property of the Document object. You can use a HistoryStates object to reset a document to a previous
state or tofill a selection object.

The following examples revert the document contained in the variable docre £ back to the form and
properties it had when it was first opened or created. Using history states in this fashion gives you the
ability to undo modifications to the document.

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 48

AS

VBS
JS

AS

VBS

JS

set current history state of current document to history state 1 -
of current document

docRef .ActiveHistoryState = docRef.HistoryStates (1)

docRef .activeHistoryState = docRef.historyStates[0]

NoTE: Reverting back to a previous history state does not remove any later states from the history
collection. Use the purge command to remove later states from the History States collection as shown
below:

> AS: purge history caches

> VBS: appRef .Purge (2) 'for psPurgeTarget --> 2 (psHistoryCaches)

>» JS: app.purge (PurgeTarget . HISTORYCACHES)

The example below saves the current state, applies a filter, and then reverts back to the saved history state.

set savedState to current history state of current document

filter current layer of current document using motion blur with options -
{class:motion blur, angle:20, radius:20}

set current history state of current document to savedState

Set savedState = docRef.ActiveHistoryState
docRef .ArtLayers (1) .ApplyMotionBlur 20, 20
docRef .ActiveHistoryState = savedState

savedState = docRef.activeHistoryState
docRef .artLayers[0] .applyMotionBlur(20, 20)
docRef .activeHistoryState = savedState

You use the Not ifier object to tie an event to a script. For example, if you would like Photoshop to
automatically create a new document when you open the application, you could tie a script that creates a
Document object to an open Application event.

NoTE: This type of script corresponds to selecting Start Application in the Script Events Manager
(File > Scripts > Script Events Manager) in the Photoshop application. Please refer to Photoshop Help for
information on using the Script Events Manager.

The make (add/add) command requires you to specify an event ID to identify the event to set up
notification for. Many event IDs are listed in an Appendix in the Adobe Photoshop CC 2015 JavaScript
Scripting Reference, Adobe Photoshop CC 2015 Visual Basic Scripting Reference, and Adobe Photoshop CC2015
AppleScript Scripting Reference. Some events also operate on several types of objects, and the make
(rdd/add) command requires an additional argument for a class ID, which identifies the object. For
example, the “New” command is used for Document, Art Layer, and Channel objects.

NoOTE: You can determine the event and class IDs of any recordable event by using ScriptListener. See
“Using ScriptListener to find event IDs and class IDs” on page 81.

The following example shows how to set up event notification for an “Open Document” event. First the
script ensures that event notification is enabled, then it sets up the event to trigger the execution of the
Welcome.jsx file. Once the script completes, any time you open a document outside of a script, it triggers
the notification, which runs the . jsx file. This . jsx file displays an alert box.

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 49

AS

VBS

JS

AS

NorteE: Notification generally does not take effect on events that occur inside of a script, because these
events are embedded with in an "AdobeScriptAutomation Scripts" event.

tell application "Adobe Photoshop CC 2015"

try
delete notifiers
end try
make new notifier with properties {event:"Opn ", -
event file:alias "OS X 10.5.8 US:Users:psauto:Desktop:Welcome.jsx"}
end tell

Dim appRef,eventFile
Set appRef = CreateObject ("Photoshop.Application")

appRef .NotifiersEnabled = True
eventFile = appRef.Path & "Presets\Scripts\Event Scripts Only\Welcome.jsx"
appRef .Notifiers.Add "Opn ", eventFile

app.notifiersEnabled = true
var eventFile = new File(app.path +

"/Presets/Scripts/Event Scripts Only/Welcome.jsx")
app.notifiers.add("Opn ", eventFile)

To create a PathItemobject, you must add a PathItemto the PathItems element or collection for a
document. This requires that you first create an array of pathpPoint Info objects, which specify the
coordinates of the corners or anchor points of your path. Then you create an array of subPathInfo objects
to contain the pathproint arrays.Once you have the points and a subpath, you can add a new pathItem.

The following script creates a PathItem object that is a straight line.

--line #1--it’s a straight line so the coordinates for anchor, left, and
--right for each point have the same coordinates
tell application "Adobe Photoshop CC 2015"
set ruler units of settings to pixel units
set type units of settings to pixel units
set docRef to make new document with properties {height:700, width:500, -
name: "Snow Cone"}

set pathPointInfol to {class:path point info, kind:corner point, -

anchor: {100, 100}, left direction:{100, 100}, right direction:{100, 100}}
set pathPointInfo2 to {class:path point info, kind:corner point, -

anchor: {150, 200}, left direction:{150, 200}, right direction: {150, 200}}
set subPathInfol to -

{class:sub path info, -

entire sub path:{pathPointInfol, pathPointInfo2}, -

operation:shape xor, closed:false}

set newPathItem to make new path item in docRef with properties -
{entire path:{subPathInfol}, name:"Line", kind:normal}
end tell

CHAPTER 3: Scripting Photoshop Working with the Photoshop Object Model 50

VBS

JS

Dim appRef, docRef
Dim lineArray (1), lineArray2(1l), lineSubPathArray(0), myPathItem
Set appRef = CreateObject ("Photoshop.Application")

' create a document to work with
Set docRef = appRef.Documents.Add (5000, 7000, 72, "Simple Line")

'line #1--it’s a straight line so the coordinates for anchor, left, and
'right for each point have the same coordinates

'First create the array of PathPointInfo objects. The line has two points,
'so there are two PathPointInfo objects.

Set lineArray(0) = CreateObject ("Photoshop.PathPointInfo")
lineArray(0) .Kind = 2 ' for PsPointKind --> 2 (psCornerPoint)
lineArray (0) .Anchor = Array (100, 100)

lineArray(0) .LeftDirection = lineArray (0) .Anchor
lineArray (0) .RightDirection = lineArray (0) .Anchor

Set lineArray(l) = CreateObject ("Photoshop.PathPointInfo")
lineArray(1l) .Kind = 2

lineArray (1) .Anchor = Array (150, 200)

lineArray (1) .LeftDirection = lineArray (1) .Anchor
lineArray (1) .RightDirection = lineArray (1) .Anchor

'Next create a SubPathInfo object, which will hold the line array

'in its EntireSubPath property.

Set lineSubPathArray(0) = CreateObject ("Photoshop.SubPathInfo")
lineSubPathArray (0) .Operation = 2 'for PsShapeOperation --> 2 (psShapeXOR)
lineSubPathArray (0) .Closed = false

lineSubPathArray (0) .EntireSubPath = lineArray

'create the PathItem object using Add. This method takes the SubPathInfo object
'and returns a PathItem object, which is added to the pathItems collection

'for the document.

Set myPathItem = docRef.PathItems.Add("A Line", lineSubPathArray)

' stroke it so we can see something
myPathItem.StrokePath(2) 'for PsToolType --> 2 (psBrush)

// create a document to work with
var docRef = app.documents.add (5000, 7000, 72, "Simple Line")

//line #1--it’s a straight line so the coordinates for anchor, left, and //right
//for each point have the same coordinates
// First create the array of PathPointInfo objects. The line has two points,
// so there are two PathPointInfo objects.
var lineArray = new Array ()

lineArray[0] = new PathPointInfo

lineArray[0] .kind = PointKind.CORNERPOINT

lineArray [0] .anchor = Array (100, 100)

lineArray[0] .leftDirection = lineArray[0] .anchor

lineArray[0] .rightDirection = lineArray[0] .anchor

lineArray[1l] = new PathPointInfo

lineArray[1] .kind = PointKind.CORNERPOINT

lineArray[1] .anchor = Array (150, 200)

lineArray[1l] .leftDirection = lineArray[1l] .anchor

lineArray[1] .rightDirection = lineArray[1l].anchor

CHAPTER 3: Scripting Photoshop Working with color objects 51

AS

VBS

JS

// Next create a SubPathInfo object, which holds the line array
// in its entireSubPath property.
var lineSubPathArray = new Array ()
lineSubPathArray[0] = new SubPathInfo()
lineSubPathArray[0] .operation = ShapeOperation.SHAPEXOR
lineSubPathArray[0] .closed = false
lineSubPathArray[0] .entireSubPath = lineArray

//create the path item, using add. This method takes the SubPathInfo object
//and returns a PathItem object, which is added to the pathItems collection
// for the document.

var myPathItem = docRef.pathItems.add("A Line", lineSubPathArray) ;

// stroke it so we can see something
myPathItem.strokePath (ToolType.BRUSH)

Your scripts can use the same range of colors that are available from the Photoshop user interface. Each
color model has its own set of properties. For example, the RGB color (RGBColor/RGBColor) class
contains three properties: red, blue and green. To set a color in this class, you indicate values for each of
the three properties.

In VBScript and JavaScript, the solidcolor class contains a property for each color model. To use this
object, you first create an instance of a solidcolor object, then set appropriate color model properties for
the object. Once a color model has been assigned to a solidcolor object, the solidcolor object cannot
be reassigned to a different color model.

The following examples demonstrate how to set a color using the cMYK color class.

set foreground color to {class:CMYK color, cyan:20.0,-
magenta:90.0, yellow:50.0, black:50.0}

'create a SolidColor array

Dim solidColorRef

Set solidColorRef = CreateObject ("Photoshop.SolidColor")
solidColorRef.CMYK.Cyan = 20

solidColorRef.CMYK.Magenta = 90
solidColorRef.CMYK.Yellow = 50

solidColorRef.CMYK.Black = 50

appRef .ForegroundColor = solidColorRef

//create a solid color array

var solidColorRef = new SolidColor ()
solidColorRef.cmyk.cyan = 20
solidColorRef.cmyk.magenta = 90
solidColorRef.cmyk.yellow = 50
solidColorRef.cmyk.black = 50
foregroundColor = solidColorRef

CHAPTER 3: Scripting Photoshop

AS

VBS

Working with color objects 52

Solid color classes

The solid color classes available in Photoshop are illustrated below.

Color Classes
Solid
Color
RGB CMYK Gray HSB Lab No
Color Color Color Color Color Color

Using hex values for RGB color

You can express RGB colors as hex (or hexadecimal) values. A hex value contains three pairs of numbers
which represent red, blue and green (in that order).

In AppleScript, the hex value is represented by the hex value string property in class RGB hex color, and
you use the convert color command described below to retrieve the hex value.

In VBScript and JavaScript, the RaBColor object has a string property called HexvValue/hexvalue.

The following examples convert an RGB color to its CMYK equivalent.

The following script, which assumes an RGB color model, gets the foreground color and then uses the
convert command of the color class to convert the color to its CMYK equivalent.

get foreground color
convert color foreground color to CMYK

Look up the following in the Adobe Photoshop CC 2015 AppleScript Scripting Reference or in the Photoshop
AppleScript Dictionary:

» Inthe“Objects” section, the foreground color property of the class application
» In the“Commands”section, convert

The following script uses an 1f Then statement and the mode1 property of the solidcolor object to
determine the color model in use. The 1£ Then statement returns a solidcolor object; if it returns an RGB
object, the cmyk property of the solidcolor object then allows you to access the color with its CMYK
equivalent.

Dim someColor
If (someColor.model = 2) Then

someColor. cmyk

'someColor.model = 2 indicates psColorModel --> 2 (psRGBModel)
End If

CHAPTER 3: Scripting Photoshop Working with Filters 53

JS

AS
VBS

JS

Look up the following in the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, or in the Visual Basic
Object Browser:

» model and cmyk as properties of the solidcolor object

This example uses the foregroundcolor property of the application object to get the original color to
be converted. The cmyk property of the solidcolor object that foregroundcolor refers to provides a
way to access the cmyk equivalent of the rgb color.

var someColor = foregroundColor.cmyk

Look up the following in the Adobe Photoshop CC 2015 JavaScript Scripting Reference, or in the ExtendScript
Object Model Viewer:

» cmyk as a property of the solidcolor object

» foregroundColor as a property of the application object

Comparing colors

Using the equal colors (IsEqual/isEqual) command, you can compare colors. The following
statements return true if the foreground color is visually equal to background color.

>» AS: if equal colors foreground color with background color then
> VBS: If (appRef.ForegroundColor.IsEqual (appRef.BackgroundColor)) Then

>» JS: if (app.foregroundColor.isEqual (backgroundColor))

Getting a Web-safe color

To convert a color to a web safe color use the web safe color command on AppleScript and the
NearestWebColor/nearestWebColor property of the solidcolor object for VBScript and JavaScript.
set myWebSafeColor to web safe color for foreground color

Dim myWebSafeColor
Set myWebSafeColor = appRef.ForegroundColor.NearestWebColor

var webSafeColor = new RGBColor ()
webSafeColor = app.foregroundColor.nearestWebColor

To apply a filter in AppleScript, you use the £i1ter command with an option from the class filter
options. InVBScript and JavaScript, you use a specific filter method. For example, to apply a Gaussian blur
filter, you use the ApplyGaussianBlur/applyGaussianBlur () method. All filter methods belong to the
ArtLayer object.

NoTE: Please refer to Photoshop Help for information about the effects produced by individual filter types.

The following examples apply the Gaussian blur filter to the active layer.

CHAPTER 3: Scripting Photoshop Understanding Clipboard Interaction 54

AS

VBS

JS

Use the £i1ter command and then both specify the layer and the name of the filter and any options.

filter current layer of current document using gaussian blur -
with options {radius:5}

NoTE: In the Adobe Photoshop CC 2015 AppleScript Scripting Reference, or in the Photoshop AppleScript
Dictionary, look up the filter command; also look up class filter options.

appRef .docRef .Activelayer.ApplyGaussianBlur 5

NoTE: In the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, on in the Visual Basic Object Browser
look up the ApplyGaussianBlur method and other methods of the ArtLayer object whose name begins
with “Apply

docRef .activelayer.applyGaussianBlur (5)

NoTE: In the Adobe Photoshop CC 2015 JavaScript Scripting Reference, or in the ExtendScript Object Model
Viewer look up the applyGaussianBlur () method and other methods of the artLayer object whose
name begins with “apply.”

Other filters

If the filter type that you want to use on your layer is not part of the scripting interface, you can use the
Action Manager from a JavaScript to run a filter. If you are using AppleScript or VBScript, you can run the
JavaScript from your script. See “Action Manager” on page 73 for information on using the Action
Manager. Also, see “Executing JavaScripts from AS or VBS” on page 10.

The clipboard commands in Photoshop operate on ArtLayer, Selection, and Document objects. The
commands can be used to operate on objects within a single document, or to move information between
documents.

The clipboard commands of the art layer (ArtLayer/ArtLayer) and selection
(Selection/Selection) objects are:

» copy (Copy/copy)

» copymerged (Copy Merge parameter value/copy (merge parameter value))

» cut (Cut/cut)

The clipboard commands of the document /Document /Document object are:

» paste (Paste/paste)

» paste into (Paste IntoSelection parameter value/paste (intoSelection parameter value))

NoreE: For information on copy, copy merged, paste, paste into, and cut functions, see Photoshop Help.

The following examples copy the contents of the background layer to the clipboard, create a new
document, and then paste the clipboard contents to the new document. The scripts assume that thereis a
document already open in Photoshop and that the document has a background layer.

CHAPTER 3: Scripting Photoshop Understanding Clipboard Interaction 55

NoTeE: If your script creates a new document in which you paste the clipboard contents, be sure the
document uses the same ruler units as the original document. See “Setting Application Preferences” on
page 32 for information.

AS NoTE: On Mac OS, Photoshop must be the front-most application when executing these commands. You
must use the activate command to activate the application before executing any clipboard commands.

tell application "Adobe Photoshop CC 2015"
activate
select all of current document

copy
set current layer of current document to layer "Background" -

of current document
set newDocRef to make new document
paste newDocRef
end tell

VBS 'make firstDocument the active document
Set docRef = appRef.ActiveDocument
docRef .ArtLayers ("Background") . Copy

Set newDocRef = appRef.Documents.Add (8, 6, 72, "New Doc")
newDocRef . Paste

JS //make firstDocument the active document
var docRef = app.activeDocument
docRef .artLayers ["Background"] . copy ()

var newDocRef = app.documents.add(8, 6, 72, "New Doc")
newDocRef .paste ()

You can also perform a merged copy to copy all visible layers in the selected area. In AppleScript, you use
the copy merged command. For VBScript and JavaScript, you use the copy/copy command, passing in a
value of True/true for the optional merge parameter.

AS NoTE: On Mac OS, Photoshop must be the front-most application when executing these commands. You
must use the activate command to activate the application before executing any clipboard commands.

set docRef to make new document
make new art layer of docRef
select all of docRef

copy merged selection of docRef

VBS docRef .Selection.Copy True

Look up the copy method for the ArtLayer and selection objects in the Adobe Photoshop CC 2015 Visual
Basic Scripting Reference, or in the Visual Basic Object Browser

JS docRef .selection.copy (true)

Look up the copy () method for the ArtLayer and selection objects in the Adobe Photoshop CC 2015
JavaScript Scripting Reference, or in the ExtendScript Object Model Viewer.

CHAPTER 3: Scripting Photoshop Working with Units 56

Photoshop provides two rulers for documents. Using properties on the settings-object
(Preferences/Preferences) object, you can set the measurement units for the rulers in your script. The
rulers are:

» A graphics ruler used for most graphical layout measurements or operations on a document where
height, width, or position are specified.

You set measurement unit types for the graphics ruler using the ruler units
(RulerUnits/rulerUnits) property.

» Atype ruler, which is active when using the type tool.

You set measurement unit types for the type ruler using the type units (TypeUnits/typeUnits)
property.

NoTE: These settings correspond to those found in the Photoshop preference dialog under Photoshop >
Preferences > Units & Rulers on Mac OS or Edit > Preferences > Units & Rulers in Windows.

All languages support plain numbers for unit values. These values are treated as being of the type
currently specified for the appropriate ruler.

For example, if the ruler units are currently set to inches and the following VBScript statement sets a
document’s size to 3 inches by 3 inches:

docRef .ResizeImage 3,3

If the ruler units had been set to pixels, the document would be 3 pixels by 3 pixels. To ensure that your
scripts produce the expected results you should check and set the ruler units to the type appropriate for
your script. After executing a script the original values of the ruler settings should be restored if changed in
the script. See “Setting ruler and type units in a script” on page 59 for directions on setting unit values.

Please refer to Photoshop Help for information about available unit value types.

Special unit value types

The unit values used by Photoshop are length units, representing values of linear measurement. Support is
also included for pixel and percent unit values. These two unit value types are not, strictly speaking, length
values but are included because they are used extensively by Photoshop for many operations and values.

AppleScript unit considerations

AppleScript provides an additional way of working with unit values. You can provide values with an
explicit unit type where unit values are used. When a typed value is provided its type overrides the ruler’s
current setting.

For example, to create a document which is 4 inches wide by 5 inches high you would write:

make new document with properties {width:inches 4, -
height:inches 5}

CHAPTER 3: Scripting Photoshop Working with Units 57

The values returned for a Photoshop property that uses units is returned as a value of the current ruler
type. Getting the height of the document created above:

set docHeight to height of current document

returns a value of 5.0, which represents 5 inches based on the current ruler settings.

In AppleScript, you can optionally ask for a property value as a particular type.
set docHeight to height of current document as points

This returns a value of 360 (5 inches x 72 points per inch).

The points and picas unit value types are PostScript points, with 72 points per inch. The traditional
points and traditional picas unit value types are based on classical type setting values, with 72.27
points per inch.

You can convert, or coerce, a unit value from one value type to another. For example, the following script
converts a point value to an inch value.

set pointValue to 72 as points
set inchValue to pointValue as inches

When this script is run, the variable inchvalue will contain inches 1, which is 72 points converted to
inches. This conversion ability is built in to the AppleScript language.

NoOTE: The unit values cmunits and mmunits cannot be used in this way with a corresponding reference to
cm or mm. They are not supported by the AppleScript terminology.

Using unit values in calculations

To use a unit value in a calculation in Applescript it is necessary to first convert the value to a number (unit
value cannot be used directly in calculations). To multiply an inch value write:

set newValue to (inchValue as number) * 5

NoTE: In AppleScript you can get and set values as pixels or percent as you would any other unit value
type. You cannot, however, convert a pixel or percent value to another length unit value as you can with
other length value types. Trying to run the following script will result in an error.

set pixelValue to 72 as pixels
-- Next line will result in a coercion error when run
set inchValue to pixelValue as inches

NorTE: Because Photoshop is a pixel-oriented application you may not always get back the same value as
you pass in when setting a value. For example, if ruler units is set to mm units, and you create a
document that is 30 x 30, the value returned for the height or width will be 29.99 if your document
resolution is set to 72 ppi. The scripting interface assumes settings are measured by ppi.

The following tables list the properties of the classes/objects that are defined to use unit values. Unit
values for these properties, unless otherwise indicated in the table, are based the graphics ruler setting.

CHAPTER 3: Scripting Photoshop

To use this table, do one of the following:

Working with Units

58

» Look up the properties of the class in the Adobe Photoshop CC 2015 AppleScript Scripting Reference, or
in the Photoshop AppleScript Dictionary.

» Look up the property of the object in the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, the
Adobe Photoshop CC 2015 JavaScript Scripting Reference, the Visual Basic Object Browser, or the
ExtendScript Object Model Viewer.

AppleScript VBScript JavaScript
Class/object properties properties properties
Document height Height height
width width width
EPS open options height Height height
width width width
PDF open options height Height height
width width width
lens flare open options height Height height
width Wwidth width
offset filter horizontal offset HorizontalOffset horizontalOffset
vertical offset VerticalOffset verticalOffset
Text Item baseline shift+* BaselineShift+* baselineShift*
first line indent* FirstLineIndent* firstLineIndent%*
height Height height
hyphenation zone* HyphenationZone* hyphenationZonex*
leading* Leading¥* leading*
left indent* LeftIndent* leftIndent*
position Position position
right indent* RightIndent* rightIndent*
space before* SpaceBefore* spaceBefore*
space after* SpaceAfter* spaceAfter*
width Width width

* Unit values based on type ruler setting.

The following table lists the commands that use unit values as parameters or arguments. In some cases the
parameters are required. The VBScript and JavaScript methods are preceded by the object to which they

belong.

To use this table:

» For AppleScript commands, look up the command in the “Commands” chapter of the Adobe
Photoshop CC 2015 AppleScript Scripting Reference, or use the Photoshop AppleScript Dictionary.

» For VBScript methods, look up the method in the Methods table of the object in the “Interface”
chapter of the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, or use the Visual Basic Object

Browser.

» For JavaScript methods, look up the method in the Methods table of the object in the “Object
Reference” chapter in the Adobe Photoshop CC 2015 JavaScript Scripting Reference, or use the
ExtendScript Object Model Viewer.

CHAPTER 3: Scripting Photoshop Working with Units 59

AS

VBS

JS

AppleScript VBScript JavaScript

crop Document . Crop document .crop

(bounds, height, width) (Bounds, Height, Width) (bounds, height, width)
resize canvas Document .ResizeCanvas document .resizeCanvas
(height, width) (Height, Width) (height, width)

resize image Document .ResizeImage document .resizeImage
(height, width) (Height, Width) (height, width)
contract Selection.Contract selection.contract

(by) (By) (by)

expand Selection.Expand selection.expand

(by) (By) (by)

feather Selection.Feather selection.feather

(by) (By) (by)

select border Selection.SelectBorder selection.selectBorder
(width) (Width) (width)

translate Selection.Translate selection.translate
(delta x, delta y) (DeltaX, DeltaY) (deltaX, deltay)
translate boundary Selection.TranslateBoundary selection.translateBoundary
(delta x, delta vy) (DeltaX, DeltaY) (deltaX, deltay)

The unit type settings of the two Photoshop rulers control how numbers are interpreted when dealing
with properties and parameters that support unit values. Be sure to set the ruler units as needed at the
beginning of your scripts and save and restore the original ruler settings when your script has completed.

In AppleScript ruler unitsand type units are properties of the settings-object, accessed through
the Application object's settings property as shown below.

set ruler units of settings to inch units
set type units of settings to pixel units
set point size of settings to postscript size

In VBScript RulerUnits and TypeUnits are properties of the preferences object, accessed through the
Application object's Preferences property as shown below.

appRef .Preferences.RulexrUnits = 2 'for PsUnits --> 1 (psInches)
appRef .Preferences.TypeUnits = 1 'for PsTypeUnits --> 1 (psPixels)
appRef .Preferences.PointSize = 2
'2 indicates psPointType --> 2 (PsPostScriptPoints)

In JavaScript rulerunits and typeUnits are properties of the preferences object, accessed through
the application object's preferences property as shown below.

app.preferences.rulerUnits = Units.INCHES
app.preferences.typeUnits = TypeUnits.PIXELS
app.preferences.pointSize = PointType.POSTSCRIPT

NoTE: Remember to reset the unit settings back to the original values at the end of a script. See “Working
with document preferences” on page 61 for an example of how to do this.

CHAPTER 3: Scripting Photoshop Sample Workflow Automation JavaScripts 60

The following sample workflow automation JavaScripts are provided with Photoshop and demonstrate
various kinds of scripting usage. The scripts are located in the presets/scripts folder in your application
directory. See “Creating and running a JavaScript” on page 19 for information on the presets/scripts
folder.

Script name Description

Layer Comps to Files.jsx Saves layer comps as files.

Layer Comps to PDF.jsx Saves layer comps as a PDF presentation.

Layer Comps to WPG.jsx Saves layer comps as a Web photo gallery.

Export Layers to Files.jsx Exports each layer in the document to a separate file.

Script Events Manager.jsx Enables and disables notifier objects.

Image Processor.jsx Processes camera raw images into various file formats.

Load Files into Stack.jsx Loads separate files into an image stack in a single document.

Merge to HDR.jsx Combines multiple images of the same scene or image, capturing the
dynamic range of a scene in a single High Dynamic Range (HDR)
image.

This section demonstrates how to use the information contained in the previous sections of this chapter to
create scripts that do the following:

» Configure document preferences.

» Apply color to text items. In this section, you will also learn how to do the following:
> (Create a reference to an existing document.
> Create a layer object and make the layer a text layer.

» Rasterize text so that wave and blur processing can be applied to words. In these sections you will also
learn how to do the following:

> Select and work with a specific area of a layer by creating a selection object.
> Apply wave and motion blur filters to selected text.

Note: When you finish the lesson in each of the following sections, save the script you have created in the
lesson. Each lesson builds upon the script created in the previous lesson.

CHAPTER 3: Scripting Photoshop Advanced Scripting 61

AS

The sample scripts in this section activate a Photoshop application object and then save the default
configuration settings into variables so that they can be restored later when the script completes. These
are the default configurations you probably set up in the Preferences dialog when you initially installed
and configured Photoshop.

NoTE: To view or set the Preferences on Mac OS, choose Photoshop > Preferences > Units & Rulers; in
Windows choose Edit > Preferences > Units & Rulers.

Next, the scripts set the following preferences to the following values:

Preference Setto Whatitdoes

rulers inches Uses inches as the unit of measurement for graphics.

units pixels Uses pixels as the unit of measurement for text (type).

dialog never Suppresses the use of dialogs so that your script executes without the user being
modes asked for input (such as clicking an OK button) at various stages of the process.

NorTE: dialog modes is not an option in the Photoshop application.

Next, the script declares variables that store document dimensions in inches and document resolution in
pixels. The script then declares a display resolution, and assigns the text "Hello, World!" to a string variable.

Next, an if statement checks whether a Document object has been created and then creates a new
Document object if none exists.

Finally, the script restores the original preferences.
To work with document preferences:

1. Create and run the following script. See “Creating and running an AppleScript” on page 18 for details.

tell application "Adobe Photoshop CC 2015"
--make Photoshop CC the active (front-most) application
activate

--create variables for the default settings

set theStartRulerUnits to ruler units of settings
set theStartTypeUnits to type units of settings
set theStartDisplayDialogs to display dialogs

--change the settings

set ruler units of settings to inch units
set type units of settings to pixel units
set display dialogs to never

--create variables for default document settings
set theDocWidthInInches to 4

set theDocHeightInInches to 2

set theDocResolution to 72

set theDocString to "Hello, World!"

CHAPTER 3: Scripting Photoshop Advanced Scripting 62

--check to see whether any documents are open

--1f none are found, create a document

--use the default document settings as its properties

if (count of documents) is 0 then

make new document with properties -

{width:theDocWidthInInches, height:theDocHeightInInches, -
resolution:theDocResolution, name:theDocString}

end if

--change the settings back to the original units stored in the variables
set ruler units of settings to theStartRulerUnits

set type units of settings to theStartTypeUnits

set display dialogs to theStartDisplayDialogs

end tell
2. InPhotoshop, choose Photoshop > Preferences > Units & Rulers to verify that your preferences have
been returned to your original settings.
3. After viewing the document in Photoshop, close the document without saving it.
4. Save the script as HelloWorldbDoc.
VBS To work with document preferences:

1.

Create the following script. See “Creating and running a VBScript” on page 19 for details.

'create variables for default preferences, new preferences
Dim startRulerUnits

Dim startTypeUnits

Dim docWidthInInches

Dim docHeightInInches

Dim resolution

Dim helloWorldStr

Dim appRef

Set appRef = CreateObject ("Photoshop.Application")

'assign default preferences to save values in variables
startRulerUnits = appRef.Preferences.RulerUnits
startTypeUnits = appRef.Preferences.TypeUnits
startDisplayDialogs = appRef.DisplayDialogs

'set new preferences and document defaults

appRef .Preferences.RulerUnits = 2 'for PsUnits --> 2 (psInches)

appRef .Preferences.TypeUnits = 1 'for PsTypeUnits --> 1 (psPixels)

appRef .DisplayDialogs = 3 'for PsDialogModes --> 3 (psDisplayNoDialogs)
docWidthInInches = 4

docHeightInInches = 2

resolution = 72

helloWorldStr = "Hello, World!"

'see if any documents are open
'if none, create one using document defaults
If appRef.Documents.Count = 0 Then
appRef .Documents.Add docWidthInInches, docHeightInInches, resolution,
helloWorldStr
End If

CHAPTER 3: Scripting Photoshop Advanced Scripting 63

3.
4.

'restore beginning preferences

appRef .Preferences.RulerUnits = startRulerUnits

appRef .Preferences.TypeUnits = startTypeUnits

appRef .DisplayDialogs = startDisplayDialogs

Double click the file name in Windows Explorer to run the script.

In Photoshop, choose Edit > Preferences > Units & Rulers to verify that your preferences have been
returned to your original settings.

After viewing the document in Photoshop, close the document without saving it.

Name the script HelloWorldboc and save it.

JS To work with document preferences:

1.

Create the following script.

NoOTE: See “Creating and running a JavaScript” on page 19 for details on creating a JavaScript.

//create and assign variables for default preferences
startRulerUnits = app.preferences.rulerUnits
startTypeUnits = app.preferences.typeUnits
startDisplayDialogs = app.displayDialogs

//change settings
app.preferences.rulerUnits = Units.INCHES
app.preferences.typeUnits = TypeUnits.PIXELS
app.displayDialogs = DialogModes.NO

//create and assign variables for document settings
docWidthInInches = 4

docHeightInInches = 2

resolution = 72

docName = “Hello World”

//use the length property of the documents object to
//find out if any documents are open
//if none are found, add a document
if (app.documents.length == 0)
app.documents.add (docWidthInInches, docHeightInInches, resolution, docName)

//restore beginning preferences

app.preferences.rulerunits = startRulerUnits
app.preferences.typeunits = startTypeUnits

app.displayDialogs = startDisplayDialogs

Name the script HelloWorldDoc . jsx and save it in the Presets/Scripts folder.
Open Photoshop and choose File > Scripts > HelloWorldDoc to run the script.

Choose Edit > Preferences > Units & Rulers to verify that your preferences have been returned to
your original settings.

After viewing the document in Photoshop, close the document without saving it.

Save the script.

CHAPTER 3: Scripting Photoshop Advanced Scripting 64

In this section, we will add a layer to the HelloworldDoc script, then change the layer to a text object that
displays the text Hello, World! in red.

Before you begin, do the following:

» Make sure Photoshop is closed.

» Open the script file Hel1oWorldpoc in your script editor application.
AS To create and specify details in a text item:

1. Type the following code into the HelloWorldpoc script immediately before the statements at the end
of the file that restore original preferences.

--create a variable named theDocRef
--assign the current (active) document to it
set theDocRef to the current document

--create a variable that contains a color object of the RGB color class
--whose color is red
set theTextColor to {class:RGB color, red:255, green:0, blue:O}

--create a variable for the text layer, create the layer as an art layer object
--and use the kind property of the art layer object to make it a text layer
set theTextLayer to make new art layer in theDocRef with -

properties {kind:text layer}

--Set the contents, size, position and color of the text layer
set contents of text object of theTextLayer to "Hello, World!"
set size of text object of theTextLayer to 36

set position of text object of theTextLayer to {0.75 as inches, 1 as inches}
set stroke color of text object of theTextLayer to theTextColor

2. Run the complete script. Be patient while Photoshop executes your commands one by one.
3. After viewing the document in Photoshop, close the document without saving it.

NoTE: Look up the following classes in the Adobe Photoshop CC 2015 AppleScript Scripting Reference or in
the Photoshop AppleScript Dictionary to see if you understand how you used them in this script:

» RGBcolor class

» art layer class

CHAPTER 3: Scripting Photoshop Advanced Scripting 65

VBS To create and specify details in a text item:

1. Type the following code into the HelloWorldpoc scriptimmediately before the statements at the end
of the file that restore original preferences.

'create a reference to the active (current) document
Set docRef = appRef.ActiveDocument

' create a variable named textColor

'create a SolidColor object whose color is red
'assign the object to textColor

Set textColor = CreateObject ("Photoshop.SolidColor")
textColor.RGB.Red = 255

textColor.RGB.Green = 0

textColor.RGB.Blue = 0

'create an art layer object using the

'Add method of the ArtLayers class

'assign the layer to the variable newTextLayer
Set newTextLayer = docRef.ArtLayers.Add ()

'use the Kind property of the Art Layers class to
'make the layer a text layer

newTextLayer.Kind = 2
newTextLayer.TextItem.Contents = helloWorldStr
newTextLayer.TextItem.Position = Array(0.75, 1)
newTextLayer.TextItem.Size = 36
newTextLayer.TextItem.Color = textColor

2. Run the complete script. Be patient while Photoshop executes your commands one by one.
3. After viewing the document in Photoshop, close the document without saving it.

NortE: Look up the following classes in the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, or in
the Visual Basic Object Browser to see if you understand how you used them in this script:

» SolidColor

» ArtLayer

CHAPTER 3: Scripting Photoshop Advanced Scripting 66

JS To create and specify details in a text item:

1.

3.

Type the following code into the Hel1loWworldpoc script immediately before the statements at the end
of the file that restore original preferences.

//create a reference to the active document
docRef = app.activeDocument

//create a variable named textColor

//create a SolidColor object whose color is red
//assign the object to textColor

textColor = new SolidColor

textColor.rgb.red = 255

textColor.rgb.green = 0

textColor.rgb.blue = 0

helloWorldText = "Hello, World!"

//create a variable named newTextLayer

//use the add() method of the artlLayers class to create a layer object
//assign the object to newTextLayer

newTextLayer = docRef.artLayers.add ()

//use the kind property of the artlLayer class to make the layer a text layer
newTextLayer.kind = LayerKind.TEXT

newTextLayer.textItem.contents helloWorldText
newTextLayer.textItem.position = Array(0.75, 1)
newTextLayer.textItem.size = 36
newTextLayer.textItem.color = textColor

Save the script, and then open Photoshop and select the script from the Scripts menu (choose File >
Script > HelloWorldDoc). Be patient while Photoshop executes your commands one by one.

After viewing the document in Photoshop, close Photoshop without saving the document.

NoTE: Look up the following classes in the Adobe Photoshop CC 2015 JavaScript Scripting Reference, or in the
ExtendScript Object Model Viewer to see if you understand how you used them in this script:

» SolidColor

» ArtLayer. Notice that the Layerkind . TEXT value of the kind property uses the Layerkind constant.

Constants are always depicted in upper case letters in Photoshop JavaScripts.

In this section we'll apply a wave filter to the word Hello in our document. This entails the following steps:

» Set the document width and height to pixels and then rasterize the text object in the Text Layer.

NoOTE: Because text is a vector graphic and cannot apply a wave filter to vector graphics, we must first
convert the image to a bitmap. Rasterizing converts mathematically defined vector artwork to pixels.
For more information on rasterizing, refer to Photoshop Help.

Select the area of the layer to which we want to apply the wave filter.

NoOTE: See “Defining the area of a selection object” on page 67 in order to understand the code within
the script that accomplishes this task.

CHAPTER 3: Scripting Photoshop Advanced Scripting 67

» Apply a wave filter to the selection.

NoTE: The wave is a truncated sine curve.

Defining the area of a selection object

To define the area of a selection object, we create an array of coordinates, or points specified in pixels
within the document. The array indicates the coordinates that define the outside corners of a rectangular
area that begins at the top left corner of the document and extends half way across the document.

NoOTE: You can define any number of points for a selected area. The number of coordinates determines the
shape of the selection. The last coordinate defined must be the same as the first so that the area is a closed
selection path.

NoTE: See “Photoshop Object Model” on page 11 for information on selection objects and other
Photoshop objects.

The array values in order are:

>

Upper left corner of the selection: o0, o

> o indicates the left-most column in the document.

> o indicates the top row in the document.

Upper right corner of the selection: theDocWidthInPixels / 2, 0

> theDocWidthInPixels / 2 indicates the column in the middle of the document; that is, the
column whose coordinate is the total number of columns in the document divided by 2.

NoOTE: The value of theDocWidthInPixels is the total number of pixels that defines the document’s
horizontal dimension. Columns are arranged horizontally.

> o indicates the top row in the document.
Lower right corner: theDocWidthInPixels / 2, theDocHeightInPixels
> theDocWidthInPixels / 2 indicates the middle of the document.

> theDocHeightInPixels indicates the bottom row in the document; that is row whose coordinate
is the total number of rows in the document.

NoOTE: The value of theDocHeight InPixels is the total number of pixels that determine the vertical
dimension of the document. Rows are stacked vertically.

Lower left corner: 0, theDocHeight InPixels

> o indicates the left-most column in the document.

> theDocHeightInPixels indicates the bottom row in the document
Upper left corner of the selection: o0, o

> This closes the selection path back at the initial point.

CHAPTER 3: Scripting Photoshop Advanced Scripting 68

AS To select an area and apply a wave filter to it:

1. Type the following code into the script file Hel1loWworldboc just above the statements that restore
original preferences:

--create new variables to contain the document object’s width and height
--determine width and height values by multiplying the

--width and height in inches by the resolution

--(which equals the number of pixels per inch)

set theDocWidthInPixels to theDocWidthInInches * theDocResolution

set theDocHeightInPixels to theDocHeightInInches * theDocResolution

--use the rasterize command of the art layer object
rasterize theTextLayer affecting text contents

--create a variable named theSelRegion
--assign an array of coordinates as its value
set theSelRegion to {{0, 0}, =
{theDocWidthInPixels / 2, 0}, -
{theDocWidthInPixels / 2, theDocHeightInPixels}, =
{0, theDocHeightInPixels}, -
{

» 0}}

0
0

--replace the document object with the selection object
--so that the wave is applied only to the selected text
select theDocRef region theSelRegion combination type replaced

--apply the wave filter using the filter command of the
--wave filter class (inherited from the filter options super class)
filter current layer of theDocRef using wave filter -
with options {class:wave filter, number of generators:1, minimum wavelength:1,-
maximum wavelength:100, minimum amplitude:5, maximum amplitude:10, -
horizontal scale:100, vertical scale:100, wave type:sine, -
undefined areas:repeat edge pixels, random seed:0}

2. Choose Run to run the script.
3. After viewing the document in Photoshop, close the document without saving it.
4. Save the script in the Script Editor.

NoTE: Look up the following classes in the Adobe Photoshop CC 2015 AppleScript Scripting Reference, or in
the Photoshop AppleScript Dictionary to see if you understand how you used them in this script:

» wave filter class
» art layer class: rasterize command, filter command

» document class: select command, combination type parameter

CHAPTER 3: Scripting Photoshop Advanced Scripting 69

VBS To select an area and apply a wave filter to it:

1.

3.

4,

Type the following code into the script file He11loWor1dDoc just above the statements at the end of the
file that restore original preferences:

'create new variables to contain doc width and height

'convert inches to pixels by multiplying the number of inches by
'the resolution (which equals number of pixels per inch)
docWidthInPixels = docWidthInInches * resolution
docHeightInPixels = docHeightInInches * resolution

'use the Rasterize () method of the ArtLayer class to

'convert the text in the ArtLayer object (contained in the newTextLayer variable)
'to postscript text type

newTextLayer.Rasterize (1)

'create an array to define the selection property

'of the Document object

'define the selected area as an array of points in the document
docRef.Selection.Select Array (Array (0, 0), _

Array (docWidthInPixels / 2, 0), _

Array (docWidthInPixels / 2, docHeightInPixels), _

Array (0, docHeightInPixels), Array (0, 0))

'use the ApplyWave () method of the ArtLayer class

'to apply the wave of the selected text
newTextLayer.ApplyWave 1, 1, 100, 5, 10, 100, 100, 1, 1, O
Double click the file name in Windows Explorer to run the script.

After viewing the document in Photoshop, close the document without saving it.

Save the script.

NoTE: Look up the following classes in the Adobe Photoshop CC 2015 Visual Basic Scripting Reference, or in
the Visual Basic Object Browser to see if you understand how you used them in this script:

» ArtLayer class: applywave method, Rasterize method

» Selection class: select method

CHAPTER 3: Scripting Photoshop Advanced Scripting 70

JS To select an area and apply a wave filter to it:

1.

3.

Type the following code into the script file Hel1loWworildboc just above the statements that restore
original preferences:

//create new variables to contain doc width and height

//convert inches to pixels by multiplying the number of inches by
//the resolution (which equals number of pixels per inch)
docWidthInPixels = docWidthInInches * resolution
docHeightInPixels = docHeightInInches * resolution

//use the rasterize method of the artLayer class
newTextLayer.rasterize (RasterizeType.TEXTCONTENTS)

//create a variable to contain the coordinate values
//for the selection object

selRegion = Array (Array (0, 0),

Array (docWidthInPixels / 2, 0),

Array (docWidthInPixels / 2, docHeightInPixels),
Array (0, docHeightInPixels),

Array (0, 0))

//use the select method of the selection object

//to create an object and give it the selRegion values
//as coordinates

docRef .selection.select (selRegion)

newTextLayer.applyWave (1, 1, 100, 5, 10, 100, 100,
WaveType.SINE, UndefinedAreas.WRAPAROUND, O0)

Save the script, and then open Photoshop and select the script from the Scripts menu (choose File >
Script > HelloWorldDoc).

After viewing the document in Photoshop, close Photoshop without saving the document.

NoTE: Look up the following classes in the Adobe Photoshop CC 2015 JavaScript Scripting Reference, or in the
ExtendScript Object Model Viewer to see if you understand how you used them in this script:

>

ArtLayer

> rasterize () method. Notice that the RasterizeType . TEXTCONTENTS argument uses the
RasterizeType constant. Constants are always depicted in upper case letters in Photoshop
JavaScripts.

> applyWave () method

CHAPTER 3: Scripting Photoshop Advanced Scripting 71

AS

VBS

In this section, we will apply a different filter to the other half of our document.

To apply a motionblur filter to HelloWorldDoc:

1.

2.

Type the following code into the script file HelloworldbDoc just above the statements that restore
original preferences.

--change the value of the variable theSelRegion

--to contain the opposite half of the screen

set theSelRegion to {{theDocWidthInPixels / 2, 0}, -
{theDocWidthInPixels, 0}, =
{theDocWidthInPixels, theDocHeightInPixels}, -
{theDocWidthInPixels / 2, theDocHeightInPixels}, -
{theDocWidthInPixels / 2, 0}}

select theDocRef region theSelRegion combination type replaced
filter current layer of theDocRef using motion blur -

with options {class:motion blur, angle:45, radius:5}
deselect theDocRef

Choose Run to run the script.

NOTE: Look up the motion blur classin the Adobe Photoshop CC 2015 AppleScript Scripting Reference, or in
the Photoshop AppleScript Dictionary to see if you understand how you used it in this script:

To apply a motionblur filter to HelloWorldDoc:

1.

2.

Type the following code into the script file Hel1loWorldDoc just above the statements that restore
original preferences.

docRef.Selection.Select Array (Array (docWidthInPixels / 2, 0), _
Array (docWidthInPixels, 0), _

Array (docWidthInPixels, docHeightInPixels), _

Array (docWidthInPixels / 2, docHeightInPixels), _

Array (docWidthInPixels / 2, 0))

newTextLayer.ApplyMotionBlur 45, 5

docRef.Selection.Deselect

Double click on the file in Windows Explorer to run the script.

NoOTE: Look up the ArtLayer class: ApplyMot ionBlur method in the Adobe Photoshop CC 2015 Visual Basic
Scripting Reference, or in the Visual Basic Object Browser to see if you understand how you used it in this
script:

CHAPTER 3: Scripting Photoshop Advanced Scripting 72

JS

To apply a motionblur filter to HelloWorldDoc:

1. Type the following code into the script file Hel1loWworldboc just above the statements that restore
original preferences.

//change the value of selRegion to the other half of the document
selRegion = Array (Array (docWidthInPixels / 2, 0),

Array (docWidthInPixels, 0),

Array (docWidthInPixels, docHeightInPixels),

Array (docWidthInPixels / 2, docHeightInPixels),

Array (docWidthInPixels / 2, 0))

docRef .selection.select (selRegion)
newTextLayer.applyMotionBlur (45, 5)

docRef .selection.deselect ()

2. Save the script, and then open Photoshop and select the script from the Scripts menu (choose File >
Script > HelloWorldDoc).

NoOTE: Look up the ArtLayer class applyMotionBlur () method in the Adobe Photoshop CC 2015
JavaScript Scripting Reference, or in the ExtendScript Object Model Viewer to see if you understand how
you used it in this script.

Action Manager

Photoshop actions allow you to save time by automating repetitive tasks. You create and run actions in the
application interface using the Actions palette.

You can also manage actions in scripts using a utility called the Action Manager. The Action Manager allows
you to write scripts that target Photoshop functionality that is not otherwise accessible in the scripting
interface, such as third party plug-ins and filters. The only requirement for using the Action Manager is that
the task that you want to access from the Action Manager is recordable.

This chapter describes how to use the Action Manager and the scripting interface objects it includes.

Before you use the Action Manager, you must install the ScriptListener plug-in. ScriptListener records a file
with scripting code corresponding to the actions you perform in the Ul.

Tip: Because ScriptListener records most of your actions, install ScriptListener only when you are creating
Action Manager scripts. Leaving ScriptListener installed continuously will not only create large files that
occupy memory on your hard drive, it can slow Photoshop performance.

When you perform a task or series of tasks in Photoshop, ScriptListener creates several files, which contain
code that represents the actions taken in Photoshop:

» ScriptingListenerdS.log, containing JavaScript code,
» ScriptingListenerVB.log, containing VBScript code (Windows only).
ScriptListener creates these files on the desktop.

NoTE: There is no AppleScript interface to the Action Manager. However, you can access the Action
Manager from an AppleScript by executing a JavaScript from AppleScript. See “Running JavaScript-based
Action Manager code from AppleScript” on page 80.

The ScriptListener plug-in is available online at:
http://www.adobe.com/devnet/photoshop/scripting.html.
To install the ScriptListener:
1. Select thefile scriptListener.81i and then choose Edit > Copy.
2. Paste the file copy to the following location:

. .\Adobe Photoshop CC 2015\Plug-Ins
3. Open Photoshop.

NoTeE: If Photoshop is already open, close it and then start it again. This will allow Photoshop to load
the plug-in.

73

http://www.adobe.com/devnet/photoshop/scripting.html

CHAPTER 4: Action Manager Action Manager Scripting Objects 74

To uninstall the ScriptListener:
1. Close Photoshop.
2. Delete thefile scriptListener.8li from the following location:
. .\Adobe Photoshop CC 2015\Plug-Ins
3. Deletethelogfiles scriptingListenerds.logand ScriptingListenerVB.log from your desktop.

NoTE: In Windows, even though you remove the ScriptListener from the Automate folder, it may continue
to record actions. To prevent the scriptingListenerJds. log file from becoming too large, delete it each
time you finish playing a Photoshop action.

The objects Action Descriptor, Action List, and Action Reference are part of the Action Manager
functionality. For detailed information about these objects, see the appropriate reference manual, or use
the object browser for the language you are using.

NoOTE: These objects are not available in AppleScript.

The section demonstrates how to create a script log file using ScriptListener. We will record the actions
necessary to apply the emboss filter to a document. (By default, the Emboss filter is available only via the
Photoshop interface.)

NoTE: ScriptListener must be installed in the automate folder before you begin the following procedure.
See “Installing ScriptListener” on page 73.

To make the Emboss filter scriptable:
1. Open Photoshop, then open a document.
2. Choose Window > Actions, then choose New Action from the Actions palette menu.
3. Name the action, then click Record.
4. Choose Filter > Stylize > Emboss.
5. Using the following settings:
> Angle: 135
> Height: 3
> Amount: 100
6. Click OK.
7. Check for the script log files:
> InWindows, the log files are in your desktop.

> On Mac OS, the log files are on the desktop.

CHAPTER 4: Action Manager Using the Action Manager from JavaScript 75

The section demonstrates how to use the contents of the scriptingListenerds.log log to create your
script. Before you begin this section, you need have already recorded an action. The example in this
section assumes you have followed the instructions in “Recording a Script using ScriptListener” on

page 74.

The procedures in this section use the Action Manager to make the Emboss filter available to the scripting
interface.

To create a JavaScript from the ScriptListener output:

1.

Do one of the following:
> Open scriptingListenerds.logon the desktop.

At the end of the file you will see code similar to the following (although your numbers may be
different):

var 1d19 = charIDToTypeID("Embs") ;

var desc4 = new ActionDescriptor() ;

var 1d20 = charIDToTypeID("Angl");

desc4 .putInteger(id20, 135);

var id21 = charIDToTypeID("Hght") ;
desc4.putInteger(id21, 3);

var i1id22 = charIDToTypeID("Amnt") ;

desc4 .putInteger(id22, 100);
executeAction(id19, desc4 ,DialogModes.NO) ;

NoTE: ScriptListener separates logged commands with horizontal lines composed of equal signs
(=====...).If this is not the first action recorded in the log, you can easily locate the most recent action;
it follows the final equal sign line.

Copy the JavaScript code associated with the emboss action from scriptListenerds. log to another
file, called emboss . jsx.

In the emboss . jsx script, identify the values that you used with the filter (135, 3 and 100). Substitute
the filter specification values with variable names.

In the following example, 135 has been replaced with angle; 3 has been replaced with height; 100
has been replaced with amount.

var id1l9 = charIDToTypeID("Embs") ;
var desc4 = new ActionDescriptor () ;
var 1d20 = charIDToTypeID("Angl");
desc4 .putInteger(id20, angle);
var i1d21 = charIDToTypeID("Hght") ;
desc4 .putInteger(id21, height);
var id22 = charIDToTypeID("Amnt") ;
desc7.putInteger(id22, amount) ;
executeAction(id1l9, desc4,DialogModes.NO) ;

CHAPTER 4: Action Manager Using the Action Manager from a VBS Script 76

4. Wrap the code in a JavaScript function. In the following example, the function name is emboss.

function emboss (angle, height, amount)

{

var idl9 = charIDToTypeID("Embs") ;

var desc4 = new ActionDescriptor() ;

var 1d20 = charIDToTypeID("Angl") ;

desc4 .putInteger(id20, angle);

var id21 = charIDToTypeID("Hght") ;

desc4 .putInteger(id21, height);

var id22 = charIDToTypeID("Amnt") ;
desc7.putInteger(id22, amount) ;
executeAction(id19, desc4 ,DialogModes.NO) ;

}

5. Touse a JavaScript to apply the Emboss filter to a document, include the emboss function in the
JavaScript and call the function with the desired parameters. For example, the following example
applies the Emboss filter with angle 75, height 2, and amount 89. (See “Opening a Document” on
page 28, for help in writing the code to open a document within the script.)

// Open the document in the script
var fileRef = new File("/c/myfile™")
var docRef = app.open(fileRef)

//Call emboss with desired parameters
emboss (75, 2, 89);
//finish the script

//include the function in the script file
function emboss (angle, height, amount)

{

var i1id32 = charIDToTypeID("Embs") ;

var desc7 = new ActionDescriptor() ;

var id33 = charIDToTypeID("Angl");
desc7.putInteger(id33, angle);

var id34 = charIDToTypeID("Hght");
desc7.putInteger(id34, height);

var i1id35 = charIDToTypeID("Amnt") ;
desc7.putInteger(id35, amount) ;
executeAction(id32, desc7,DialogModes.NO) ;

}

6. Open Photoshop, to apply the emboss filter by selecting File > Scripts > Browse, and then browsing
to the location of your emboss.jsx script. Select Open to run the script.

The section demonstrates how to use the contents of the scriptingListenerVB.log log to create your
script. Before you begin this section, you need to have already recorded an action. The example in this
section assumes you have followed the instructions in “Recording a Script using ScriptListener” on

page 74.

The procedures in this section use the Action Manager to make the Emboss filter available to the scripting
interface.

CHAPTER 4: Action Manager Using the Action Manager from a VBS Script 77

To create a VBScript from the ScriptListener output:
1. Open scriptingListenerVB.log from the desktop.

At the end of the file you will see code similar to the following (although your numbers may be
different):

DIM objApp

SET objApp = CreateObject ("Photoshop.Application")
REM Use dialog mode 3 for show no dialogs

DIM dialogMode

dialogMode = 3

DIM id9

id9 = objApp.CharIDToTypeID("Embs")

DIM desc4

SET desc4 = CreateObject ("Photoshop.ActionDescriptor")
DIM idlo

1d10 = objApp.CharIDToTypeID("Angl")

Call desc4.PutInteger(id10, 135)

DIM idl1l

idll = objApp.CharIDToTypelID("Hght")

Call desc4.PutInteger(idll, 3)

DIM idl2

idl2 = objApp.CharIDToTypeID("Amnt")

Call desc4.PutInteger(idl2, 100)

Call objApp.ExecuteAction(id9, desc4, dialogMode)

NoTE: ScriptListener separates logged commands with horizontal lines composed of equal signs
(====..). If this is not the first action recorded in the log, you can easily locate the most recent action;
it follows the final equal sign line.

2. Copy the VBScript code associated with the emboss action from scriptListenerVB.log to another
file, called emboss . vbs.

3. Inthe emboss.vbs script, identify the values that you used with the filter (135, 3, and 100). Substitute
the filter specification values with variable names.

In the following example, 135 has been replaced with angle, 3 has been replaced with height, and
100 has been replaced with amount.

DIM objApp

SET objApp = CreateObject ("Photoshop.Application")
REM Use dialog mode 3 for show no dialogs

DIM dialogMode

dialogMode = 3

DIM id9

id9 = objApp.CharIDToTypeID("Embs")

DIM desc4

SET desc4 = CreateObject ("Photoshop.ActionDescriptor")
DIM idlo

id10 = objApp.CharIDToTypeID("Angl")

Call desc4.PutInteger(id10, angle)

DIM idl1l

idll = objApp.CharIDToTypelID("Hght")

Call desc4.PutInteger(idll, height)

DIM idl2

idl2 = objApp.CharIDToTypeID("Amnt")

Call desc4.PutInteger(idl2, amount)

Call objApp.ExecuteAction(id9, desc4, dialogMode)

CHAPTER 4: Action Manager Using the Action Manager from a VBS Script 78

4. Wrap the code in a VBScript function. In the following example, the function name is Emboss. The
creation of the Photoshop application object needs to be outside of the function, as we will explain in
the next step.

DIM objApp
SET objApp = CreateObject ("Photoshop.Application")

Function Emboss(angle, height, amount)
REM Use dialog mode 3 for show no dialogs
DIM dialogMode
dialogMode = 3

DIM id9

id9 = objApp.CharIDToTypeID("Embs")

DIM desc4

SET desc4 = CreateObject ("Photoshop.ActionDescriptor")
DIM id1lo0

1d10 = objApp.CharIDToTypeID("Angl")

Call desc4.PutInteger(id10, angle)

DIM idil1l

idll = objApp.CharIDToTypelID("Hght")

Call desc4.PutInteger(idll, height)

DIM id1l2

idl2 = objApp.CharIDToTypeID("Amnt")

Call desc4.PutInteger(idl2, amount)

Call objApp.ExecuteAction(id9, desc4, dialogMode)
End Function

5. To use aVBScript to apply the Emboss filter to a document, include the emboss function in the script
and call the function with the desired parameters. For example, the following example applies the
Emboss filter with angle 75, height 2, and amount 89. Before the script calls the function, it needs to
have an open document. (See “Opening a Document” on page 28, for help in writing the code to open
a document within the script.) Since the script is opening a document, it needs access to the
Photoshop DOM when it calls the application .open method, so the script must create the
Photoshop.Application object before it opens a new document.

DIM objApp
SET objApp = CreateObject ("Photoshop.Application")

'Open the document in the script
filename = “C:\MyFile”

DIM docRef

SET docRef = objApp.Open (filename)

'Call emboss with desired parameters
Call Emboss(75, 2, 89)

CHAPTER 4: Action Manager Running JavaScript-based Action Manager code from VBScript 79

Function Emboss(angle, height, amount)
REM Use dialog mode 3 for show no dialogs
DIM dialogMode
dialogMode = 3

DIM id9

id9 = objApp.CharIDToTypeID("Embs")

DIM desc4

SET desc4 = CreateObject ("Photoshop.ActionDescriptor")
DIM idilo0

id10 = objApp.CharIDToTypeID("Angl")

Call desc4.PutInteger(idl0, angle)

DIM idl1l

id1l = objApp.CharIDToTypeID("Hght")

Call desc4.PutInteger(idll, height)

DIM idil2

id12 = objApp.CharIDToTypeID("Amnt")

Call desc4.PutInteger(idl2, amount)

Call objApp.ExecuteAction(id9, desc4, dialogMode)
End Function

6. Apply the emboss filter script by double clicking on the file emboss . vbs. This launches Photoshop,
opens the file and applies the emboss filter to the file.

You can also access JavaScript-based Action Manager code from a VBScript using the boJavascriptFile
method. Use the VBscript object browser for more information on the application.DoJavaScriptFile
method.

To execute JavaScript-based Action Manager code from a VBScript:

1. Follow steps 1-4 in “Using the Action Manager from JavaScript” on page 75. You will end up with a file
(emboss . §sx) containing the following JavaScript code:

function emboss (angle, height, amount)

{
var 1id32 = charIDToTypeID("Embs") ;
var desc7 = new ActionDescriptor() ;
var id33 = charIDToTypeID("Angl");
desc7.putInteger (id33, angle);
var id34 = charIDToTypeID("Hght");
desc7.putInteger(id34, height);
var i1d35 = charIDToTypeID("Amnt") ;
desc7.putInteger(id35, amount) ;
executeAction(id32, desc7);

}

2. Atthe end of the file emboss . jsx, add the following line of JavaScript code, which executes the
emboss function with arguments passed to it from an external invocation. See Introduction to Scripting
for more information about passing arguments from a VBScript to a JavaScript.

// Call emboss with values provided in the "arguments" collection
emboss (arguments [0], arguments[1l], arguments[2]);

CHAPTER 4: Action Manager Running JavaScript-based Action Manager code from AppleScript 80

3. From aVBScript you can then run the Emboss filter by saying (this example assumes emboss.jsx is
found in C:\):

Set objApp = CreateObject ("Photoshop.Application")

'Open the document in the script
filename = “C:\MyFile”

DIM docRef

SET docRef = objApp.Open (filename)

objApp.DoJavaScriptFile "C:\emboss.jsx", Array (75, 2, 89)

There is no Action Manager functionality in AppleScript. However, you can execute JavaScript code and
files from AppleScript using the do javascript command. For further information, please refer to
Introduction to Scripting.

1. Follow steps 1-4 in “Using the Action Manager from JavaScript” on page 75. You will end up with a file
(emboss . §sx) containing the following JavaScript code:

function emboss (angle, height, amount)

{
var id32 = charIDToTypeID("Embs") ;
var desc7 = new ActionDescriptor() ;
var id33 = charIDToTypeID("Angl");
desc7.putInteger(id33, angle);
var id34 = charIDToTypeID("Hght") ;
desc7.putInteger (id34, height);
var id35 = charIDToTypeID("Amnt") ;
desc7.putInteger(id35, amount) ;
executeAction(id32, desc7);

}

2. Atthe end of the file emboss . §sx, add the following line of JavaScript code, which executes the
emboss function with arguments passed to it from an external invocation. See Introduction to Scripting
for more information about passing arguments from a AppleScript to a JavaScript.

// Call emboss with values provided in the "arguments" collection
emboss (arguments [0], arguments[1l], arguments[2]);

3. Thefollowing AppleScript code sample opens a document and runs the Emboss filter on it:

tell application "Adobe Photoshop CC 2015"
set theFile to alias “Application:Documents:MyFile”
open theFile
do javascript (file <path to Emboss.jsx>) -
with arguments { 75,2,89 }
end tell

CHAPTER 4: Action Manager Using ScriptListener to find event IDs and class IDs 81

The section demonstrates how to use ScriptListener to determine event IDs and class IDs for actions taken
by Photoshop. These event and class IDs are used to set up notification using the Notifier class.

You can determine the event ID for any recordable action by using ScriptListener. Simply install the
ScriptListener plug in, as described in “Installing ScriptListener” on page 73. Then execute the action you
want to find the event ID for. The event is logged in the Script Listener log file. (See “The ScriptListener
Plug-In” on page 73) If the event applies to several different classes of objects, the class ID is also logged in
the log file.

The following examples show how to find the event ID for the “Open Document” event, and the event and
class IDs for the “New” event, which applies to several different classes.

Finding the event ID for the “Open Document” event
1. Make sure that the ScriptListener plug in is installed.
2. Open Photoshop, then open a document.

3. Find the ScriptListener log file and open it. You can use either the VBScript log file or the JavaScript log
file. In the JavaScript version of the file, you will see code that looks something like this at the end of
the file, everything below the row of equal signs the log of the last action taken:

// s==ss==s=s=cssscsssosscsssosscossosscossosssossoossomsas

var idl4 = charIDToTypeID("Opn ");

var desc5 = new ActionDescriptor () ;

var idl5 = charIDToTypeID("null");

desc5.putPath(id1l5, new File("C:\\Program Files\\Adobe\\Adobe Photoshop CC 2015\\
Samples\\Fish.psd"));

executeAction(idl4, desc5, DialogModes.NO) ;

4. The executeaAction method runs the action from a script, and it needs the event ID to identify which
action to take. The first argument, in this case id14, provides the event ID to the method. You can see
the variable 1d14 defined several lines earlier, and it shows that the event ID for the Open Document
actionis "opn .

5. You can now use this event ID to set up event notification on Open Document from your scripts. In
JavaScript, for example:

var eventFile = new File(app.path +
"/Presets/Scripts/Event Scripts Only/Welcome.jsx")
app.notifiers.add("Opn ", eventFile)

Finding the event ID and class ID for the “New” event

1. Make sure that the ScriptListener plug in is installed.

2. Open Photoshop, then create a new document using File > New.

3. Next, create a new channel, using the Create New Channel icon on the Channels palette.

4. Find the ScriptListener log file and open it. You can use either the VBScript log file or the JavaScript log
file. We have recorded two actions, so we are interested in looking at the last two sections in the file
that are delimited by the rows of equal signs. In the JavaScript log file, you will see code that looks
something like this:

CHAPTER 4: Action Manager Using ScriptListener to find event IDs and class IDs 82

// ==s==m==mmmmmmmmmmomcmocmooooooooeoooooooooo
var idl7 = charIDToTypeID("Mk ");

var desc6 = new ActionDescriptor () ;

var id1l8 = charIDToTypeID("Nw ");

var desc7 = new ActionDescriptor () ;

var 1d19 = charIDToTypeID("Md ");

var 1d20 = charIDToTypeID("RGBM") ;
desc7.putClass(id19, id20);

var id21 = charIDToTypeID("Wdth") ;

var id22 = charIDToTypeID("#R1lt");
desc7.putUnitDouble(id21, id22, 800.000000) ;
var id23 = charIDToTypeID("Hght") ;

var id24 = charIDToTypeID("#R1lt");
desc7.putUnitDouble (id23, i1d24, 800.000000) ;
var i1id25 = charIDToTypeID("Rslt");

var id26 = charIDToTypeID("#Rsl");
desc7.putUnitDouble(id25, id26, 72.000000) ;
var 1d27 = stringIDToTypelID("pixelScaleFactor");
desc7.putDouble(1id27, 1.000000) ;

var i1id28 = charIDToTypeID("F1 ");

var id29 = charIDToTypeID("F1 ");

var id30 = charIDToTypeID("Wht ");
desc7.putEnumerated(id28, id29, id30);

var 1d31 = charIDToTypeID("Dpth");
desc7.putInteger(id31, 8);

var id32 = stringIDToTypeID("profile");
desc7.putString(id32, "sRGB IEC61966-2.1");
var id33 = charIDToTypeID("Dcmn") ;
desc6.putObject (1d18, id33, desc7);
executeAction(idl7, descé, DialogModes.NO) ;

var id34 = charIDToTypeID("Mk ");
var desc8 = new ActionDescriptor() ;
var i1id35 = charIDToTypeID("Nw ");
var desc9 = new ActionDescriptor() ;
var id36 = charIDToTypeID("ClrI");
var 1d37 charIDToTypeID("MskI") ;
var i1id38 = charIDToTypeID("MskA");
desc9.putEnumerated(id36, id37, id38);
var id39 = charIDToTypeID("Clr ");
var descl0 = new ActionDescriptor() ;
var 1id40 = charIDToTypeID("Rd ");
descl0.putDouble(id40, 255.000000) ;
var id41l = charIDToTypeID("Grn ");
descl0.putDouble(id41, 0.000000) ;
var id42 = charIDToTypeID("Bl ");
descl0.putDouble(id42, 0.000000) ;
var id43 = charIDToTypeID("RGBC") ;
desc9.putObject (1d39, id43, desclO0);
var id44 = charIDToTypeID("Opct");
desc9.putInteger(id44, 50);

var id45 = charIDToTypeID("Chnl") ;
desc8.putObject (1d35, id45, desc9);
executeAction(id34, desc8, DialogModes.NO) ;

5. The first section represents the scripting code to execute the “New Document” event. The second
section represents the scripting code for the “New Channel” event.

CHAPTER 4: Action Manager Using ScriptListener to find event IDs and class IDs 83

6. The executeAction method for both of these actions takes an argument whose value is defined as
"Mk . (See id17 and id34.) This is the event ID for the “New” action. This action also needs to know
what class to use, the class ID for the event.

7. Theputobject method identifies the class the action operates on. The second argument to
putobject provides us with the class ID that we need. In the first action, 1d33 is defined as "Demn", in
the second action, id4s is defined as "chn1". These provide our class IDs for Document and Channel,
respectively.

8. You can now use these event and class IDs to set up event notification on the New Document and New
Channel events from your scripts. In JavaScript, for example:

var eventFile = new File(app.path +

"/Presets/Scripts/Event Scripts Only/Welcome.jsx")
app.notifiers.add("Mk ", eventFile, "Dcmn")
app.notifiers.add("Mk ", eventFile, "Chnl")

User interface toolkit

Adobe provides the ScriptUl component, which works with the ExtendScript JavaScript interpreter to
provide JavaScript scripts with the ability to create and interact with user interface elements. It provides an
object model for windows and user-interface control elements within Adobe applications.

The ScriptUl component is used by several Adobe products. For functionality common to all products
using ScriptUIl, see the documentation bundled with the ExtendScript Toolkit CC.

Script-generated Ul in the 2015 release of Photoshop has now been enhanced to support HiDPI/Retina
displays and look consistent with the overall application Ul. There’s also a difference in the way the ScriptUI
grouping widget works in Photoshop.

For more information, see Photoshop Ul toolkit for plug-ins and scripts.

84

https://helpx.adobe.com/photoshop/using/ScriptUI.html

Index

A

Action Manager
defined, 73

running JavaScript code from AppleScript, 80
running JavaScript code from VBScript, 79

scripting objects, 74
using from JavaScript, 75
using from VBScript, 76
actions
vs. scripts, 8
working with, 73
Actions palette, 73
active objects, setting, 25
Adobe Photoshop object model, 11, 33
AppleScript
conventions, 6
creating, 18
executing JavaScript from, 10
running, 18
unit value considerations, 56
Applescript
viewing dictionary, 21
Application object
defined, 12
display dialogs, 33
referencing, 22
relationship to user interface, 14
targeting, 22
using, 34
Art Layer object
adding in JavaScript, 25
adding in VBScript, 24
applying styles, 40
creating, 37
defined, 12
filters, 53
making text layer, 41
referencing, 38
relationship to user interface, 15
working with, 36

C

calculations, unit values, 57
Channel object
activating, 28

changing type, 46
defined, 13
relationship to user interface, 15
setting the active channel, 28
working with, 46
Channel object, kinds of, 13
class IDs, finding with ScriptListener, 81
classes, finding, 21
clipboard commands, 54
collections, VBScript indexing, 11
Color object
in the DOM, 16
Color objects
applying to text, 64
comparing, 53
defined, 51
getting and converting, 52
setting hex values, 52
solid color classes, 52
web safe, 53
working with, 51
Color Sampler object
defined, 14
relationship to user interface, 15
commands
conventions, 6
viewing, 21
component channels, 13
conditional logic, 8

constants
defined, 16
finding, 16, 21

containment hierarchy, 11
conventions, 6
copy and paste commands, 54
copy merged command, 55
Count Item object
defined, 14
relationship to user interface, 15

D

dialogs, controlling, 33
display dialogs, 33
Document Info object
defined, 13
relationship to user interface, 15

85

using, 47
Document object
activating, 26
adding, 24
defined, 12
document information, 47
manipulating, 35
opening, 28
relationship to user interface, 14
saving, 31
unit values, 58
using, 34

document object model (DOM), See object model

E

enumerated values

finding, 21
EPS open options object, unit values, 58
event IDs, finding with ScriptListener, 81
event notification, setting up, 48

F

file extensions
script files, 9
files
inferring format, 28
opening, 28
opening using specific settings, 29
saving, 31
specifying format, 29
filters
additional, 54
applying motionblur, 71
applying wave, 66-70
making scriptable, 74
working with, 53

H

Hello World script, 17-20
hex color values, setting, 52
hierarchy, 11
History State object
defined, 13
purging, 48
relationship to user interface, 15
reverting, 48
using, 47
history states
defined, 47

images, changing composition, 12

J

JavaScript
conventions, 6
creating, 19
executing, 10
executing from AppleScript, 10
executing from VBScript, 10
running, 19
support, 10
using Action Manager, 75

workflow automation sample, 60

L

layer classes, 12
Layer Comp object
defined, 13
relationship to user interface, 15
Layer objects
activating, 27
adding, 25
applying styles, 40
creating, 37
defined, 12
determining kind, 41
linking, 40
referencing, 38
testing for text layers, 41
working with, 36
Layer Set object
creating, 38
defined, 12
relationship to user interface, 15
working with, 36, 39

lens flare open options object, unit values, 58

logic, conditional, 8

M

masked area channels, 13
Measurement Scale object
defined, 14
relationship to user interface, 15
measurement units
document preferences, 61
working with, 56
merged copies, 55
metadata defined, 15

86

Index

methods
conventions, 6
viewing, 21
motionblur filters, defining, 71

N

Notifier object
defined, 14
finding class IDs, 81
finding event IDs, 81
relationship to user interface, 15
using, 48

(o)

object model
concepts, 11
working with, 33
objects
Also see individual objects
activating, 25
Adobe Photoshop object model, 11
creating in a script, 23-25
hierarchy, 11
viewing, 21
offset filter object, unit values, 58
Open options classes, 16

P

parent objects defined, 26
paste commands, 54
Path Item object
creating a straight line, 49
defined, 14
relationship to user interface, 15
Path Point object defined, 14
paths, creating, 49
PDF open options object, unit values, 58
Photoshop object model, 11
preferences
setting, 32
working with, 61
Preferences object
defined, 14
relationship to user interface, 15
properties
conventions, 6
finding, 21

R

ruler units
defined, 56
setting, 59
value usage, 57
values, 56

S

Save options classes, 16
saving documents, 31
Script Editor
using, 18
scripting languages
example scripts, 17
supported, 9
ScriptListener
finding class IDs, 81
finding event IDs, 81
installing, 73
log files, 73
recording scripts, 74
uninstalling, 74
scripts
advanced, 60
capabilities, 8
creating, 60
creating objects, 23-25
defined, 8
executing, 10
file locations, 10
functionality, 9
recording, 74
startup, 10
valid file extensions, 9
vs. actions, 8
selected area channels, 13
Selection object
creating, 43
defined, 13
defining area, 67
feathering, 44
filling, 45
inverting, 44
loading, 45
relationship to user interface, 14
resizing, 44
restoring, 46
storing, 45
stroking, 44
working with, 42
Solid Color classes, 52

87

Index

spot color channels, 13
startup scripts, 10
stroking
selections, 44
text, 64
styles, applying to layers, 40
Sub Path Item object defined, 14

T

text
applying color, 64
formatting, 42
layers, 41
stroking, 64

Text Item object
creating, 41
defined, 12
formatting text, 42
unit values, 58
working with, 41
text layers, 41
The, 54
type library, VBScript, 22
type units
defined, 56
setting, 59
typographic conventions, 6

U

units
AppleScript considerations, 56
as parameters, 58
as properties, 57
in arguments, 58
in calculations, 57
setting, 59
special types, 56
value usage, 57
values, 56
working with, 56

\'

value types
constants, 16
VBScript
conventions, 6
creating, 19
executing JavaScript from, 10
running, 19
type library, 22

using Action Manager, 76

w

wave filters, applying, 66-70
web safe color, 53
workflow automation, JavaScript, 60

88

	Adobe® Photoshop® CC 2015 Scripting Guide
	Introduction
	About this Manual
	Conventions in this Guide

	Photoshop Scripting Basics
	Scripting Overview
	Why use scripts instead of actions?

	Scripting Support in Photoshop
	JavaScript support
	Executing other scripts

	Startup scripts
	Executing JavaScripts from AS or VBS

	Photoshop Object Model
	Containment hierarchy
	Application and document classes
	Layer classes
	Layer Comp class
	Channel class
	Selection class
	History State class
	Document Info class
	Path Item, Sub Path Item, and Path Point classes
	Preferences class
	Notifier class
	Count Item class
	Color Sampler class
	Measurement Scale class

	The containment hierarchy and the Photoshop user interface
	Additional objects
	Constants

	Creating a sample Hello World script
	Creating and running an AppleScript
	Creating and running a VBScript
	Creating and running a JavaScript

	Scripting Photoshop
	Viewing Photoshop Objects, Commands, and Methods
	Viewing Photoshop’s AppleScript dictionary
	Viewing Photoshop’s type library (VBS)

	Targeting and Referencing the Application Object
	Creating New Objects in a Script
	Setting the Active Object
	Setting the active document
	Setting the active layer
	Setting the active channels

	Opening a Document
	Opening a file with default file format
	Specifying file formats to open

	Saving a Document
	Setting Application Preferences
	Allowing or Preventing Dialogs
	Working with the Photoshop Object Model
	Using the Application object
	Using the Document object
	Manipulating a document object

	Working with layer objects
	Creating an ArtLayer object
	Creating a Layer Set object
	Referencing ArtLayer objects

	Working with Layer Set objects
	Linking layer objects
	Applying styles to layers

	Using the Text Item object
	Determining a layer’s kind
	Adding and manipulating text in a Text Item object

	Working with Selection objects
	Creating and defining a selection
	Stroking the selection border
	Inverting selections
	Expanding, contracting, and feathering selections
	Filling a selection
	Loading and storing selections

	Working with Channel objects
	Changing channel types

	Using the Document Info object
	Using history state objects
	Using Notifier objects
	Using the PathItem object

	Working with color objects
	Solid color classes
	Using hex values for RGB color
	Getting and converting colors
	Comparing colors
	Getting a Web-safe color

	Working with Filters
	Other filters

	Understanding Clipboard Interaction
	Using the copy and paste commands
	Using the copy merged command/method

	Working with Units
	Unit values
	Special unit value types
	AppleScript unit considerations
	Using unit values in calculations

	Unit value usage
	Setting ruler and type units in a script

	Sample Workflow Automation JavaScripts
	Advanced Scripting
	Working with document preferences
	Applying color to a text item
	Applying a wave filter
	Defining the area of a selection object

	Applying a MotionBlur filter

	Action Manager
	The ScriptListener Plug-In
	Installing ScriptListener

	Action Manager Scripting Objects
	Recording a Script using ScriptListener
	Using the Action Manager from JavaScript
	Using the Action Manager from a VBS Script
	Running JavaScript-based Action Manager code from VBScript
	Running JavaScript-based Action Manager code from AppleScript
	Using ScriptListener to find event IDs and class IDs

	User interface toolkit
	Changes specific to Photoshop CC 2015

	Index

