

Hands-On Full-Stack Web Development with GraphQL and React

Build scalable full-stack applications while learning to solve complex problems with GraphQL

Sebastian Grebe

BIRMINGHAM - MUMBAI

 Hands-On Full-Stack Web Development with GraphQL and React

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Kunal Chaudhari

Acquisition Editor: Larissa Pinto

Content Development Editor: Pranay Fereira

Technical Editor: Rutuja Vaze

Copy Editor: Safis Editing
Language Support Editor: Storm Mann, Mary McGowan

Project Coordinator: Pragati Shukla

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Alishon Mendonsa

Production Coordinator: Jisha Chirayil

First published: January 2019

Production reference: 2200319

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78913-452-0

www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free eBook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

Sebastian Grebe is a verified computer science expert for application development. He is a young entrepreneur working on a variety of products. He specializes in web development using modern technologies such as React and FeathersJS, traditional technologies such as PHP and SQL. He developed professionally by merging old and new applications, and developing cross-platform apps with React Native and Ionic.

Currently, he is actively working on his software agency, called Open Mind, which manages various software projects. He is also actively pushing a social network app that utilizes React, Apollo, and Cordova, which is called Coupled. He has worked for various companies as a software engineer and project manager, such as DB Netz AG.

I thank my love, who has been able to give me the time I needed. Her support made every day better. Special thanks to my parents, who encourage me to take my own way in life.

 About the reviewer

Subhash Shah works as a head of technology at AIMDek Technologies Pvt. Ltd. He is an experienced solutions architect with over 12 years of experience and holds a degree in information technology. He is an advocate of open source development and using it to solve critical business problems while reducing cost. His interests include microservices, data analysis, machine learning, artificial intelligence, and databases. He is an admirer of quality code and test-driven development. His technical skills include translating business requirements into scalable architecture, designing sustainable solutions, and project delivery. He is a co-author of MySQL 8 Administrator's Guide and Hands-On High Performance with Spring 5, both published by Packt.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

 	
 Title Page

	
 Copyright and Credits

 	
 Hands-On Full-Stack Web Development with GraphQL and React

	
 www.PacktPub.com

 	
 Why subscribe?

	
 Packt.com

	
 Contributors

 	
 About the author

	
 About the reviewer

	
 Packt is searching for authors like you

	
 Preface

 	
 Who this book is for

	
 What this book covers

	
 To get the most out of this book

 	
 Download the example code files

	
 Conventions used

	
 Get in touch

 	
 Reviews

	
 Preparing Your Development Environment

 	
 Application architecture

 	
 The basic setup

	
 Installing and configuring Node.js

	
 Setting up React

 	
 Preparing and configuring webpack

	
 Render your first React component

	
 Rendering arrays from React state

	
 CSS with webpack

	
 Event handling and state updates with React

	
 Controlling document heads with React Helmet

	
 Production build with webpack

	
 Useful development tools

 	
 Analyzing bundle size

	
 Summary

	
 Setting up GraphQL with Express.js

 	
 Node.js and Express.js

 	
 Setting up Express.js

	
 Running Express.js in development

	
 Routing in Express.js

 	
 Serving our production build

	
 Using Express.js middleware

 	
 Installing important middleware

	
 Express Helmet

	
 Compression with Express.js

	
 CORS in Express.js

	
 Combining Express.js with Apollo

 	
 Writing your first GraphQL schema

	
 Implementing GraphQL resolvers

	
 Sending GraphQL queries

	
 Using multiples types in GraphQL schemas

	
 Writing your first GraphQL mutation

	
 Back end debugging and logging

 	
 Logging in Node.js

	
 Debugging with Postman

	
 Summary

	
 Connecting to The Database

 	
 Using databases in GraphQL

 	
 Installing MySQL for development

	
 Creating a database in MySQL

	
 Integrating Sequelize into our stack

 	
 Connecting to a database with Sequelize

	
 Using a configuration file with Sequelize

	
 Writing database models

 	
 Your first database model

	
 Your first database migration

	
 Importing models with Sequelize

	
 Seeding data with Sequelize

	
 Using Sequelize with Apollo

 	
 Global database instance

	
 Running the first database query

	
 One-to-one relationships in Sequelize

 	
 Updating the table structure with migrations

	
 Model associations in Sequelize

	
 Seeding foreign key data

	
 Mutating data with Sequelize

	
 Many-to-many relationships

 	
 Model and migrations

 	
 Chat model

	
 Message model

	
 Chats and messages in GraphQL

	
 Seeding many-to-many data

	
 Creating a new chat

	
 Creating a new message

	
 Summary

	
 Integrating React into the Back end with Apollo

 	
 Setting up Apollo Client

 	
 Installing Apollo Client

	
 Testing the Apollo Client

	
 Binding the Apollo Client to React

	
 Using the Apollo Client in React

 	
 Querying in React with the Apollo Client

 	
 Apollo HoC query

	
 The Apollo Query component

	
 Mutations with the Apollo Client

 	
 The Apollo Mutation HoC

	
 The Apollo Mutation component

	
 Updating the UI with the Apollo Client

 	
 Refetching queries

	
 Updating the Apollo cache

	
 Optimistic UI

	
 Polling with the Query component

	
 Implementing chats and messages

 	
 Fetching and displaying chats

	
 Fetching and displaying messages

	
 Sending messages through Mutations

	
 Pagination in React and GraphQL

	
 Debugging with the Apollo Client Developer Tools

	
 Summary

	
 Reusable React Components

 	
 Introducing React patterns

 	
 Controlled components

	
 Stateless functions

	
 Conditional rendering

	
 Rendering child components

	
 Structuring our React application

 	
 The React file structure

	
 Efficient Apollo React components

 	
 The Apollo Query component

	
 The Apollo Mutation component

	
 Extending Graphbook

 	
 The React context menu

 	
 FontAwesome in React

	
 React helper components

	
 The GraphQL updatePost mutation

	
 The Apollo deletePost mutation

	
 The React application bar

	
 The React Context API versus Apollo Consumer

 	
 The React Context API

	
 Apollo Consumer

	
 Documenting React applications

 	
 Setting up React Styleguidist

	
 React PropTypes

	
 Summary

	
 Authentication with Apollo and React

 	
 JSON Web Tokens

	
 localStorage versus cookie

	
 Authentication with GraphQL

 	
 Apollo login mutation

	
 The React login form

	
 Apollo sign up mutation

	
 React sign up form

	
 Authenticating GraphQL requests

	
 Accessing the user context from resolver functions

 	
 Chats and messages

	
 CurrentUser GraphQL query

	
 Logging out using React

	
 Summary

	
 Handling Image Uploads

 	
 Setting up Amazon Web Services

 	
 Creating an AWS S3 bucket

	
 Generating AWS access keys

	
 Uploading images to Amazon S3

 	
 GraphQL image upload mutation

	
 React image cropping and uploading

	
 Summary

	
 Routing in React

 	
 Setting up React Router

 	
 Installing React Router

	
 Implementing your first route

	
 Secured routes

	
 Catch-all routes in React Router

	
 Advanced routing with React Router

 	
 Parameters in routes

	
 Querying the user profile

	
 Programmatic navigation in React Router

	
 Remembering the redirect location

	
 Summary

	
 Implementing Server-Side Rendering

 	
 Introduction to server-side rendering

	
 SSR in Express.js

	
 Authentication with SSR

	
 Running Apollo queries with SSR

	
 Summary

	
 Real-Time Subscriptions

 	
 GraphQL and WebSockets

	
 Apollo Subscriptions

 	
 Subscriptions on the Apollo Server

	
 Subscriptions on the Apollo Client

	
 Authentication with Apollo Subscriptions

	
 Notifications with Apollo Subscriptions

	
 Summary

	
 Writing Tests

 	
 Testing with Mocha

 	
 Our first Mocha test

	
 Starting the back end with Mocha

	
 Verifying the correct routing

	
 Testing GraphQL with Mocha

 	
 Testing the authentication

	
 Testing authenticated requests

	
 Testing React with Enzyme

	
 Summary

	
 Optimizing GraphQL with Apollo Engine

 	
 Setting up Apollo Engine

	
 Analyzing schemas with Apollo Engine

	
 Performance metrics with Apollo Engine

	
 Error tracking with Apollo Engine

	
 Caching with Apollo Server and the Client

	
 Summary

	
 Continuous Deployment with CircleCI and Heroku

 	
 Preparing the final production build

 	
 Code-splitting with React Loadable and webpack

	
 Code-splitting with SSR

	
 Setting up Docker

 	
 What is Docker?

	
 Installing Docker

	
 Dockerizing your application

 	
 Writing your first Dockerfile

	
 Building and running Docker containers

	
 Multi-stage Docker production builds

	
 Amazon Relational Database Service

	
 Configuring Continuous Integration

	
 Deploying applications to Heroku

	
 Summary

	
 Other Books You May Enjoy

 	
 Leave a review - let other readers know what you think

 Preface

Hands-On Full-Stack Web Development with GraphQL and React is a hands-on book for web developers who want to enhance their skills and build complete full-stack applications using industry standards.

By the end of the book, you will be proficient in using GraphQL and React for your full-stack development requirements.

This book will help you implement a solid stack by using React, Apollo, Node.js, and SQL using best practices. We'll also focus on solving complex problems

with GraphQL, such as abstracting a multi-table database architecture and handling image uploads.

 Who this book is for

This book is for web developers who want to enhance their skills and build complete full-stack applications using industry standards. The typical reader would be someone who wants to explore how to use GraphQL, React, Node.js, and SQL to write entire applications with this stack.

 What this book covers

Chapter 1, Preparing Your Development Environment, starts with the architecture for our application by going through the core concepts and preparing a working React setup. We will see how React and webpack fit together and cover some basic scenarios when working with React. We will also show the reader how to debug the frontend with React Dev Tools.

Chapter 2, Setting Up GraphQL with Express.js, focuses on setting up Express.js as the primary system to serve our backend. You will learn how to use Express.js' routing functionality to implement various APIs. Furthermore, at the end of the chapter, you will set up an endpoint that accepts GraphQL requests through the Apollo Server package. To guarantee that everything works, we will quickly go through using Postman to test and verify the functionality of the backend.

Chapter 3, Connecting to the Database, discusses how to use GraphQL to store and query data. As an example, traditional SQL is used to build a full application with MySQL. To simplify the database code, we are using Sequelize, which lets us query our SQL Server with a regular JavaScript object and also keeps it open if we use MySQL, MSSQL, PostgreSQL, or just a SQLite file. We will build models and schemas for users and posts in Apollo and Sequelize.

Chapter 4, Integrating React into the Backend with Apollo, explains how to hook Apollo into React and build entire frontend components. This chapter skips the introduction to basic React workflows but explains Apollo-specific configurations.

Chapter 5, Reusable React Components, dives deeper into writing more complex React components and sharing data across them.

Chapter 6, Authentication with Apollo and React, explains the common ways of authenticating a user on the web and in GraphQL and the differences between them. You will be guided through building the complete authentication workflow by using best practices.

Chapter 7, Handling Image Uploads, covers uploading images via Apollo and saving them in a separate object storage such as AWS S3.

Chapter 8, Routing in React, explains how to implement some more features for the end user, such as a profile page. We will accomplish this by installing React Router.

Chapter 9, Implementing Server-Side Rendering, explains that for many applications, server-side rendering is a must. It is important for SEO, but it can also have positive effects on your end users. This chapter will focus on getting your current application moved to a server-rendered setup.

Chapter 10, Real-Time Subscriptions, focuses on how to build a real-time chat functionality, including a notification system. Every second, a new message can come in and the user can be directly informed about it. This functionality will be implemented through a more or less experimental GraphQL and Apollo feature called subscriptions.

Chapter 11, Writing Tests, uses the Mocha and JavaScript unit testing framework. This chapter will primarily focus on testing the GraphQL backend and testing React applications properly.

Chapter 12, Optimizing GraphQL with Apollo Engine, answers the questions how is our GraphQL API performing?, are there any errors?, and how can we improve the GraphQL schema? We answer these questions using Apollo Engine in this chapter.

Chapter 13, Continuous Deployment with CircleCI and Heroku, is where we will look at how to set up our Heroku app and get the option to build and deploy Docker images through a continuous deployment workflow.

 To get the most out of this book

We recommend that you read the first chapter to make sure that you are up to speed with the basic concepts of React and webpack in general. After that, you can pretty much read any chapter you like. Each chapter is standalone, but the chapters are ordered by complexity and may require techniques explained in earlier chapters; the further you are into the book, the more complex the application is.

The application is adapted for real-world use, but some parts are left out, such as proper error handling, and other features that a real-world application would have, including analytics, since they are out of the scope of the book. This book aims to teach you the techniques behind everything. You should, get a good grasp of the building blocks of how to create a web application using React and GraphQL.

It does help if you have been a JavaScript and maybe a React developer for a while, or at least have experience with any other modern JavaScript framework, since many of the concepts are not application-specific but are good practices in general, such as reactive rendering.

But, most of all, it's a book you can use to kick-start your React and GraphQL development learning curve by focusing on the chapters that interest you the most.

 Download the example code files

You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

	Log in or register at www.packt.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Hands-on-Full-Stack-Web-Development-with-GraphQL-and-React. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "We pass our previously created index.html as a template."

A block of code is set as follows:

state = {
 posts: posts
}

Any command-line input or output is written as follows:

mkdir ~/graphbook
cd ~/graphbook

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "After doing so, click on Create."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 Preparing Your Development Environment

The application we are going to build in this book will be a simplified version of Facebook, called Graphbook.

When developing an application, being well-prepared is always a requirement. However, before starting, we need to put our stack together. In this chapter, we will explore whether or not our techniques work well with our development process, what we need before getting started, and which tools can help us when building software.

This chapter explains the architecture for our application by going through the core concepts, the complete process, and the preparation of a working React setup.

This chapter covers the following topics:

	Architecture and technology

	Thinking critically about how to architect a stack

	Building the React and GraphQL stack

	Installing and configuring Node.js

	Setting up a React development environment with webpack, Babel, and other requirements

	Debugging React applications using Chrome DevTools and React Developer Tools

	Using webpack-bundle-analyzer to check the bundle size

 Application architecture

Since its initial release in 2015, GraphQL has become the new alternative to the standard SOAP and REST APIs. GraphQL is a specification, like SOAP and REST, that you can follow to structure your application and data flow. It is so innovative because it allows you to query specific fields of entities, such as users and posts. This functionality makes it very good for targeting multiple platforms at the same time. Mobile apps may not need all of the data displayed inside the browser on a desktop computer. The query you send consists of a JSON-like object defining which information your platform requires. For example, a query for a post may look like this:

post {
 id
 text
 user {
 user_id
 name
 }
}

GraphQL resolves the correct entities and data as specified in your query object. Every field in GraphQL represents a function that resolves to a value. Those functions are called Resolver functions. The return value could be just the corresponding database value, such as the name of a user, or it could be a date, which is formatted by your server before returning it.

GraphQL is completely database agnostic and can be implemented in any programming language.

To skip the step of implementing our own GraphQL library, we are going to use Apollo, which is a GraphQL server for the Node.js ecosystem. Thanks to the team behind Apollo, this is very modular. Apollo works with many of the common Node.js frameworks, such as Hapi, Koa, and Express.js.

We are going to use Express.js as our basis because it is used on a wide scale in the Node.js and GraphQL community.

GraphQL can be used with multiple database systems and distributed systems to offer a straightforward API over all your services. It allows developers to unify existing systems and handle data fetching for client applications.

How you combine your databases, external systems, and other services in one server back end is up to you.

In this book, we are going to use a MySQL server via Sequelize as our data storage.

SQL is the most well-known and commonly used database query language, and with Sequelize we have a modern client library for our Node.js server to connect with our SQL server.

HTTP is the standard protocol to access a GraphQL API. It also applies to Apollo Servers. GraphQL is not fixed to one network protocol, however.

We will build the front end of our Graphbook application with React. React is a JavaScript UI framework released by Facebook, which has introduced many techniques that are now commonly used for building interfaces on the web as well as on native environments.

Using React comes with a bunch of significant advantages. When building a React application, you always split your code into many components, targeting their efficiency and ability to be reused. Of course, you can do this without using React, but it makes it very easy. Furthermore, React teaches you how to update application states as well as the UI reactively. You never update the UI and then the data separately.

React makes rerendering very efficient by using a virtual DOM, which compares the virtual and actual DOM and updates it accordingly. Only when there is a difference between the virtual and real DOM does React apply these changes. This logic stops the browser from recalculating layout, Cascading Style Sheets, and other computations that negatively impact the overall performance of your application.

Throughout this book, we are going to use the Apollo client library. It naturally integrates with React and our Apollo Server.

If we put all this together, the result is the main stack consisting of Node.js, Express.js, Apollo, SQL, Sequelize, and React.

 The basic setup

The basic setup to make an application work is the logical request flow, which looks as follows:

Here's how the logical request flow works:

	The client requests our site.

	The Express.js server handles these requests and serves a static HTML file.

	The client downloads all necessary files, according to this HTML file. The files also include a bundled JavaScript file.

	This bundled JavaScript file is our React application. After executing all JavaScript code from this file, all required Ajax alias GraphQL requests are made to our Apollo Server.

	Express.js receives the requests and passes them to our Apollo endpoint.

	Apollo queries all requested data from all available systems, such as our SQL server or third-party services, merges the data, and sends it back as JSON.

	React can render the JSON data to HTML.

This workflow is the basic setup to make an application work. In some cases, it makes sense to offer server-side rendering for our client. The server would need to render and send all XMLHttpRequests itself before returning the HTML to the client. The user will save one or more round trips if the server sends the requests on the initial load. We will focus on this topic in a later chapter, but that's the application architecture in a nutshell. With that in mind, let's get hands-on and set up our development environment.

 Installing and configuring Node.js

The first step for preparing for our project is to install Node.js. There are two ways to do this:

	One option is to install the Node Version Manager (NVM). The benefit of using NVM is that you are easily able to run multiple versions of Node.js side by side and this handles the installation process for you on nearly all UNIX-based systems, such as Linux and macOS. Within this book, we do not need the option to switch between different versions of Node.js.

	The other option is to install Node.js via the package manager of your distribution if you are using Linux. The official PKG file is for Mac, whilst the MSI file is for Windows. We are going to use the regular Linux package manager for this book as it is the easiest method.

You can find the Downloads section of Node.js at the following link, https://nodejs.org/en/download/.

We are taking the second option above. It covers the regular server configurations and is easy to understand. I will keep this as short as possible and skip all other options, such as Chocolatey for Windows or Brew for Mac, which are very specialized for those specific operating systems.

I assume that you are using a Debian-based system for ease of use with this book. It has got the normal APT package manager and repositories to easily install Node.js and MySQL. If you are not using a Debian-based system, you can look up the matching commands to install Node.js at https://nodejs.org/en/download/package-manager/.

Our project is going to be new so that we can use Node.js 10 without any problems. You can skip the following installation of Node.js if you are running version 6 or higher:

	First, let's add the correct repository for our package manager by running:

curl -sL https://deb.nodesource.com/setup_10.x | sudo -E bash –

	Next, install Node.js and the build tools for native modules, using the following command:

sudo apt-get install -y nodejs build-essential

	Finally, let's open a terminal now and verify that the installation was successful:

node --version

The installation of Node.js via the package manager will automatically install npm.

Great. You're now set up to run server-side JavaScript with Node.js and install Node.js modules for your projects with npm.

All of the dependencies that our project relies on are available at https://npmjs.com and can be installed with npm or Yarn, if you are comfortable with these.

 Setting up React

The development environment for our project is ready. In this section, we are going to install and configure React, which is one primary aspect of this book. Let's start by creating a new directory for our project:

mkdir ~/graphbook
cd ~/graphbook

Our project will use Node.js and many npm packages. Create a package.json file to install and manage all of the dependencies for our project.

This stores information about the project, such as the version number, name, dependencies, and much more.

Just run npm init to create an empty package.json file:

npm init

Npm will ask some questions, such as asking for the package name, which is, in fact, the project name. Enter Graphbook to insert the name of your application in the generated package.json file.

I prefer to start with version number 0.0.1 since the default version number npm offered with 1.0.0 represents the first stable release for me. However, it is your choice which version you use here.

You can skip all other questions using the Enter key to save the default values of npm. Most of them are not relevant because they just provide information such as a description or the link to the repository. We are going to fill the other fields, such as the scripts while working through this book. You can see an example of the command line in the following screenshot:

The first and most crucial dependency for this book is React. Use npm to add React to our project:

npm install --save react react-dom

This command installs two npm packages from https://npmjs.com into our project folder under node_modules.

Npm automatically edited our package.json file since we provided the --save option and added those packages with the latest available version numbers.

You might be wondering why we installed two packages although we only needed React. The react package provides only React-specific methods. All React hooks, such as componentDidMount, componentWillReceivesProps, and even React's component class, come from this package. You need this package to write React applications at all.

In most cases, you won't even notice that you have used react-dom. This package offers all functions to connect the actual DOM of the browser with your React application. Usually, you use ReactDOM.render to render your application at a specific point in your HTML and only once in your code. We will cover the rendering of React in a later chapter.

There is also a function called ReactDOM.findDOMNode, which gives you direct access to a DOMNode, but I hardly discourage using this since any changes on DOMNodes are not available in React itself. I personally have never needed to use this function, so try to avoid it if possible.

 Preparing and configuring webpack

Our browser requests an index.html file when accessing our application. It specifies all of the files that are required to run our application. We need to create the index.html, which we serve as the entry point of our application:

	Create a separate directory for our index.html file:

mkdir public
touch index.html

	Then, save this inside index.html:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
 scale=1.0">
 <meta http-equiv="X-UA-Compatible" content="ie=edge">
 <title>Graphbook</title>
 </head>
 <body>
 <div id="root"></div>
 </body>
</html>

As you can see, no JavaScript is loaded here. There is only div with the root id. This div tag is the DOMNode in which our application will be rendered by ReactDOM.

So, how do we get React up and running with this index.html file?

To accomplish this, we need to use a web application bundler. It prepares and bundles all our application assets. All of the required JavaScript files and node_modules are bundled and minified; SASS and SCSS preprocessors are transpiled to CSS as well as being merged and minified.

To name a few application bundler packages, there are webpack, Parcel, and Gulp. For our use case, we will use webpack. It is the most common module bundler, which has a large community surrounding it. To bundle our JavaScript code, we need to install webpack and all of its dependencies as follows:

npm install --save-dev @babel/core babel-eslint babel-loader @babel/preset-env @babel/preset-react clean-webpack-plugin css-loader eslint file-loader html-webpack-plugin style-loader url-loader webpack webpack-cli webpack-dev-server @babel/plugin-proposal-decorators @babel/plugin-proposal-function-sent @babel/plugin-proposal-export-namespace-from @babel/plugin-proposal-numeric-separator @babel/plugin-proposal-throw-expressions @babel/plugin-proposal-class-properties

This command adds all of the development tools to devDependencies in the package.json file that are needed to allow the bundling of our application. They are only installed in a development environment and are skipped in production.

As you can see in the preceding code, we also installed eslint, which goes through our code on the fly and checks it for errors. We need an eslint configuration file, which, again, we install from https://npmjs.com. The following handy shortcut installs the eslint configuration created by the people at Airbnb, including all peer dependencies. Execute it straight away:

npx install-peerdeps --dev eslint-config-airbnb

Create a .eslintrc file in the root of your project folder to use the airbnb configuration:

{
 "extends": ["airbnb"],
 "env": {
 "browser": true,
 "node": true
 },
 "rules": {
 "react/jsx-filename-extension": "off"
 }
}

In short, this .eslinrc file loads the airbnb config; we define the environments where our code is going to run, and we turn off one default rule.

The react/jsx-filename-extension rule throws a warning when using JSX syntax inside a file not ending in .jsx. Our files will end with .js, so we enable this rule.

If you aren't already aware, setting up webpack can be a bit of a hassle, There are many options that can interfere with each other and lead to problems when bundling your application. Let's create a webpack.client.config.js file in the root folder of your project.

Enter the following:

const path = require('path');
const HtmlWebpackPlugin = require('html-webpack-plugin');
const CleanWebpackPlugin = require('clean-webpack-plugin');
const buildDirectory = 'dist';
const outputDirectory = buildDirectory + '/client';
module.exports = {
 mode: 'development',
 entry: './src/client/index.js',
 output: {
 path: path.join(__dirname, outputDirectory),
 filename: 'bundle.js'
 },
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: {
 loader: 'babel-loader'
 }
 },
 {
 test: /\.css$/,
 use: ['style-loader', 'css-loader']
 }
]
 },
 devServer: {
 port: 3000,
 open: true
 },
 plugins: [
 new CleanWebpackPlugin({
 cleanOnceBeforeBuildPatterns: [path.join(__dirname,
 buildDirectory)]
 }),
 new HtmlWebpackPlugin({
 template: './public/index.html'
 })
]
};

The webpack configuration file is just a regular JavaScript file in which you can require node_modules and custom JavaScript files. This is the same as everywhere else inside Node.js. Let's quickly go through all of the main properties of this configuration. Understanding these will make future custom webpack configs much easier. All of the important points are explained below:

	HtmlWebpackPlug: This automatically generates an HTML file that includes all of the webpack bundles. We pass our previously created index.html as a template.

	CleanWebpackPlugin: This empties all of the provided directories to clean old build files. The cleanOnceBeforeBuildPatterns property specifies an array of folders which are cleaned before the build process is started.

	The entry field tells webpack where the starting point of our application is. This file needs to be created by us.

	The output object specifies how our bundle is called and where it should be saved. For us, this is dist/client/bundle.js.

	Inside module.rules, we match our file extensions with the correct loaders. All JavaScript files (except those located in node_modules) are transpiled by Babel, specified by babel-loader , so that we can use ES6 features inside our code. Our CSS gets processed by style-loader and css-loader. There are many more loaders for JavaScript, CSS, and other file extensions available.

	The devServer feature of webpack enables us to run the React code directly. It includes hot reloading code in the browser without rerunning a build or refreshing the browser tab.

If you need a more detailed overview of the webpack configuration, have a look at the official documentation here: https://github.com/webpack/docs/wiki/configuration.

With this in mind, let's move on. We are missing the src/client/index.js file from our webpack configuration, so let's create it as follows:

mkdir src/client
cd src/client
touch index.js

You can leave this file empty for the moment. It can be bundled by webpack without content inside. We are going to change it later in this chapter.

To spin up our development webpack server, we add a command to package.json , which we can run using npm.

Add this line to the scripts object inside package.json:

"client": "webpack-dev-server --devtool inline-source-map --hot --config webpack.client.config.js"

Now execute npm run client in your console, and watch how a new browser window opens. We are running webpack-dev-server with the newly created configuration file.

Sure, the browser is still empty, but if you inspect the HTML with Chrome DevTools, you can see that we have already got a bundle.js file and our index.html file was taken as a template.

We have accomplished including our empty index.js file with the bundle and can serve it to the browser. Next, we'll render our first React component inside our template index.html file.

 Render your first React component

There are many best practices for React. The central philosophy behind it is to split up our code into separate components where possible. We are going to cover this approach in more detail later in Chapter 5, Reusable React Components.

Our index.js file is the main starting point of our front end code, and this is how it should stay. Do not include any business logic in this file. Instead, keep it as clean and slim as possible.

The index.js file should include this code:

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';

ReactDOM.render(<App/>, document.getElementById('root'));

The release of ECMAScript 2015 introduced the import feature. We use it to require our npm packages, react and react-dom , and our first custom React component, which we must write now.

Of course, it is essential for us to cover the sample Hello World program.

Create the App.js file next to your index.js file, with the following content:

import React, { Component } from 'react';

export default class App extends Component {
 render() {
 return (
 <div>Hello World!</div>
)
 }
}

This class is exported and then imported by the index.js file. As explained before, we are now actively using ReactDOM.render in our index.js file.

The first parameter of ReactDOM.render is the component that we want to render, which is the App class displaying the Hello World! message. The second parameter is the browser's DOMNode, where it should render. We receive DOMNode with plain document.getElementById JavaScript.

We defined our root element when we created the index.html file before. After saving the App.js file, webpack will try to build everything again. However, it shouldn't be able to do that. Webpack will encounter a problem bundling our index.js file because of the <App /> tag syntax we are using in the ReactDOM.render method. It was not transpiled to a normal JavaScript function.

We configured webpack to load Babel for our JS file but did not tell Babel what to transpile and what not to transpile.

Let's create a .babelrc file in the root folder with this content:

{
 "plugins": [
 ["@babel/plugin-proposal-decorators", { "legacy": true }],
 "@babel/plugin-proposal-function-sent",
 "@babel/plugin-proposal-export-namespace-from",
 "@babel/plugin-proposal-numeric-separator",
 "@babel/plugin-proposal-throw-expressions",
 ["@babel/plugin-proposal-class-properties", { "loose": false }]
],
 "presets": ["@babel/env","@babel/react"]
}

You may have to restart the server because the .babelrc file is not reloaded when changes happen to the file. After a few moments, you should see the standard Hello World! message in your browser.

Here, we told Babel to use @babel/preset-env and @babel/preset-react, installed together with webpack. These presets allow Babel to transform specific syntax such as JSX, which we use to create normal JavaScript that all browsers can understand and that webpack is able to bundle. Furthermore, we are using some Babel plugins we installed too, because they transform specific syntax not covered by the presets.

 Rendering arrays from React state

Hello World! is a must for every good programming book, but this is not what we are aiming for when we use React.

A social network such as Facebook or Graphbook, which we are writing at the moment, needs a news feed and an input to post news. Let's implement this.

For the simplicity of the first chapter, we do this inside App.js.

We should work with some fake data here since we have not yet set up our GraphQL API. We can replace this later with real data.

Define a new variable above your App class like this:

const posts = [{
 id: 2,
 text: 'Lorem ipsum',
 user: {
 avatar: '/uploads/avatar1.png',
 username: 'Test User'
 }
},
{
 id: 1,
 text: 'Lorem ipsum',
 user: {
 avatar: '/uploads/avatar2.png',
 username: 'Test User 2'
 }
}];

We now render these two fake posts in React.

Replace the current content of your render method with the following code:

const { posts } = this.state;

return (
 <div className="container">
 <div className="feed">
 {posts.map((post, i) =>
 <div key={post.id} className="post">
 <div className="header">

 <h2>{post.user.username}</h2>
 </div>
 <p className="content">
 {post.text}
 </p>
 </div>
)}
 </div>
 </div>
)

We iterate over the posts array with the map function, which again executes the inner callback function, passing each array item as a parameter one by one. The second parameter is just called i and represents the index of the array element we are processing. Everything returned from the map function is then rendered by React.

We merely return HTML by putting each post's data in ES6 curly braces. The curly braces tell React to interpret and evaluate the code inside them as JavaScript.

As you can see in the preceding code, we are extracting the posts we want to render from the component's state with a destructuring assignment. This data flow is very convenient because we can update the state at any point later in our application and the posts will rerender.

To get our posts into the state, we can define them inside our class with property initializers. Add this to the top of the App class:

state = {
 posts: posts
}

The older way of implementing this—without using the ES6 feature—was to create a constructor:

constructor(props) {
 super(props);

 this.state = {
 posts: posts
 };
}

Upon initialization of the App class, the posts will be inserted into its state and rendered. It is vital that you run super before having access to this.

The preceding method is much cleaner, and I recommend this for readability purposes. When saving, you should be able to see rendered posts. They should look like this:

source: https://www.vecteezy.com/

The images I am using here are freely available. You can use any other material that you have got, as long as the path matches the string from the posts array. You can find those images in the official GitHub repository of this book.

 CSS with webpack

The posts from the preceding picture have not been designed yet. I have already added CSS classes to the HTML our component returns.

Instead of using CSS to make our posts look better, another method is to use CSS-in-JS using packages such as styled-components, which is a React package. Other alternatives include Glamorous and Radium, for example. There are numerous reasons why we do not switch to such a workflow and stay with good old CSS. With those other tools, you are not able to use SASS, SCSS, or LESS effectively. Personally, I need to work with other people, such as screen and graphics designers, who can provide and use CSS, but do not program styled-components. There is always a prototype or existing CSS that can be used, so why should I spend time translating this to styled-components CSS when I could just continue with standard CSS?

There is no right or wrong option here; you are free to implement the styling in any way you like. However, in this book, we keep using good old CSS.

What we've already done in our webpack.client.config.js file is to specify a CSS rule, as you can see in the following code snippet:

{
 test: /\.css$/,
 use: ['style-loader', 'css-loader'],
},

The style-loader injects your bundled CSS right into the DOM. The css-loader will resolve all import or url occurrences in your CSS code.

Create a style.css file in /assets/css and fill in the following:

body {
 background-color: #f6f7f9;
 margin: 0;
 font-family: 'Courier New', Courier, monospace
}
p {
 margin-bottom: 0;
}
.container {
 max-width: 500px;
 margin: 70px auto 0 auto;
}
.feed {
 background-color: #bbb;
 padding: 3px;
 margin-top: 20px;
}
.post {
 background-color: #fff;
 margin: 5px;
}
.post .header {
 height: 60px;
}
.post .header > * {
 display: inline-block;
 vertical-align: middle;
}
.post .header img {
 width: 50px;
 height: 50px;
 margin: 5px;
}
.post .header h2 {
 color: #333;
 font-size: 24px;
 margin: 0 0 0 5px;
}
.post p.content {
 margin: 5px;
 padding: 5px;
 min-height: 50px;
}

Refreshing your browser leaves you with the same old HTML as before.

This problem happens because webpack is a module bundler and does not know anything about CSS; it only knows JavaScript. We must import the CSS file somewhere in our code.

Instead of using index.html and adding a head tag, we can use webpack and our CSS rule to load it right in App.js. This solution is very convenient, since all of the required CSS throughout our application gets minified and bundled. Webpack automates this process.

In your App.js file, add the following behind the React import statement:

import '../../assets/css/style.css';

Webpack magically rebuilds our bundle and refreshes our browser tab.

You have now successfully rendered fake data via React and styled it with bundled CSS from webpack. It should look something like this:

 source: https://www.vecteezy.com/

The output looks very good already.

 Event handling and state updates with React

At the beginning of this project, it would be great to have a simple textarea where you can click a button and then have a new post added to the static posts array we wrote in the App class.

Add this above the div with the feed class:

<div className="postForm">
 <form onSubmit={this.handleSubmit}>
 <textarea value={postContent} onChange={this.handlePostContentChange}
 placeholder="Write your custom post!"/>
 <input type="submit" value="Submit" />
 </form>
</div>

You can use forms in React without any problems. React can intercept the submit event of requests by giving the form an onSubmit property, which will be a function to handle the logic behind the form.

We are passing the postContent variable to the value property of textarea to have what's called a controlled component.

Create an empty string variable at the state property initializer, as follows:

state = {
 posts: posts,
 postContent: ''
}

Then, extract this from the class state inside the render method:

const { posts, postContent } = this.state;

Now, the new state variable stays empty, although, you can write inside textarea. This issue occurs because you are directly changing the DOM element but did not bind the change event to an existing React function. This function has the task of updating the React internal state that is not automatically connected to the browser's DOM state.

In the preceding code, we already passed the update function called this.handlePostContentChange to the onChange property of textarea.

The logical step is to implement this function:

handlePostContentChange = (event) => {
 this.setState({postContent: event.target.value})
}

Maybe you are used to writing this a little differently, like this:

handlePostContentChange(event) {
 this.setState({postContent: event.target.value})
}

Both variants differ a lot. Try it out for yourself.

When using the second variant, executing the function will lead to an error. The scope inside the function will be wrong, and you won't have access to the class via this.

In this case, you would need to write a constructor for your class and manually bind the scope to your function as follows:

this.handlePostContentChange = this.handlePostContentChange.bind(this);

You easily end up with five more additional lines of code when writing the constructor to bind the scope correctly.

The first variant uses the ES6 arrow function, which takes care of the right scope for you. I recommend this variant since it is very clean and you save time understanding and writing code.

Look at your browser again. The form is there, but it is not pretty, so add this CSS:

form {
 padding-bottom: 20px;
}
form textarea {
 width: calc(100% - 20px);
 padding: 10px;
 border-color: #bbb;
}
form [type=submit] {
 border: none;
 background-color: #6ca6fd;
 color: #fff;
 padding: 10px;
 border-radius: 5px;
 font-size: 14px;
 float: right;
}

The last step is to implement the handleSubmit function for our form:

handleSubmit = (event) => {
 event.preventDefault();
 const newPost = {
 id: this.state.posts.length + 1,
 text: this.state.postContent,
 user: {
 avatar: '/uploads/avatar1.png',
 username: 'Fake User'
 }
 };
 this.setState((prevState) => ({
 posts: [newPost, ...prevState.posts],
 postContent: ''
 }));
}

The preceding code looks more complicated than it is, but I am going to explain it quickly.

We need to run event.preventDefault to stop our browser from actually trying to submit the form and reload the page. Most people coming from jQuery or other JavaScript frameworks will know this.

Next, we save our new post in the newPost variable that we want to add to our feed.

We are faking some data here to simulate a real-world application. For our test case, the new post id is the number of posts in our state variable plus one. React wants us to give every child in the ReactDOM a unique id. By counting the number of posts, we simulate the behavior of a real back end giving us unique ids for our posts.

The text for our new post comes from the postContent variable from the component state.

Furthermore, we do not yet have a user system by now, that our GraphQL server can use to give us the newest posts, including the matching users with their avatars. We simulate this by having a static user object for all the new posts we create.

Finally, we update the component state again. This is where it gets a bit complicated. We are not passing an object as if we are doing it inside the handlePostContentChange function; we are passing an update function.

This approach gives us the current state reliably. Generally, I recommend using a function instead of using just an object. It automatically protects you against problems of race condition, where multiple functions manipulate the state. Always have in mind that the setState function is asynchronous.

The return value of the function is the state object we would normally have used directly. Thanks to the ES6 spread operator, we can prepend the newPost variable before the old posts, which will render the latest post at the top of our list. The textarea is cleared by passing an empty string into setState for the postContent field.

Now go ahead and play with your working React form. Do not forget that all posts you create do not persist since they are only held in the local memory of the browser and not saved to a database. Consequently, refreshing deletes your posts.

 Controlling document heads with React Helmet

When developing a web application, it is crucial that you can control your document heads. You might want to change the title or description, based on the content you are presenting.

React Helmet is a great package that offers this on the fly, including overriding multiple headers and server-side rendering.

Install it with the following command:

npm install --save react-helmet

You can add all standard HTML headers with React Helmet.

I recommend keeping standard head tags inside your template. They have the advantage that, before React has rendered, there is always the default document head. For our case, you can directly apply a title and description in App.js.

Import react-helmet at the top of the file:

import { Helmet } from 'react-helmet';

Add Helmet itself directly above postForm div:

<Helmet>
 <title>Graphbook - Feed</title>
 <meta name="description" content="Newsfeed of all your friends on
 Graphbook" />
</Helmet>

If you reload the browser and watch the title on the tab bar of your browser carefully, you will see that it changes from Graphbook to Graphbook - Feed. This behavior happens because we already defined a title inside index.html. When React finishes rendering, the new document head is applied.

 Production build with webpack

The last step for our React setup is to have a production build. Until now, we were only using webpack-dev-server, but this naturally includes an unimproved development build. Furthermore, webpack automatically spawns a web server. In a later chapter, we introduce Express.js as our web server so we won't need webpack to host it.

A production bundle does merge all JavaScript files, but also CSS files into two separate files. Those can be used directly in the browser. To bundle CSS files, we will rely on another webpack plugin, called MiniCss:

npm install --save-dev mini-css-extract-plugin

We do not want to change the current webpack.client.config.js file, because it is made for development work. Add this command to the scripts object of your package.json:

"client:build": "webpack --config webpack.client.build.config.js"

This command runs webpack using an individual production webpack config file. Let's create this one. First, clone the original webpack.client.config.js file and rename it webpack.client.build.config.js.

Change the following things in the new file:

	The mode needs to be production, not development.

	Require the MiniCss plugin:

const MiniCssExtractPlugin = require('mini-css-extract-plugin');

	Replace the current CSS rule:

{
 test: /\.css$/,
 use: [{ loader: MiniCssExtractPlugin.loader,
 options: {
 publicPath: '../'
 }
 }, 'css-loader'],
},

We no longer use the style-loader but instead use the MiniCss plugin. The plugin goes through the complete CSS code, merges it in a separate file, and removes the import statements from the bundle.js we generate in parallel.

	Lastly, add the plugin to the plugins at the bottom of the configuration file:

new MiniCssExtractPlugin({
 filename: 'bundle.css',
})

	Remove the entire devServer property.

When running the new configuration, it won't spawn a server or browser window; it only creates a production JavaScript and CSS bundle, and requires them in our index.html file. According to our webpack.client.build.config.js file, those three files are going to be saved to the dist/client folder.

You can run this command by executing npm run client:build.

Look in the dist/client folder, and you will see three files. You can open the index.html in your browser. Sadly, the images are broken because the image URLs are not right anymore. We accept this for the moment because it will be automatically fixed when we have a working back end.

You are now finished with the basic setup of React.

 Useful development tools

When working with React, you will want to know why your application rendered in the way that it did. You need to know which properties your components received and how their current state looks. Since this is not displayed in the DOM or anywhere else in Chrome DevTools, you need a separate plugin.

Facebook has got you covered. Visit https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi and install React Developer Tools. This plugin allows the inspection of React applications and components. When opening Chrome DevTools again, you will see that there is a new tab at the end of the row.

If you are unable to see this tab, you may need to restart Chrome completely. You can also find React Developer Tools for Firefox.

This plugin allows you to view, search, and edit all of the components of your ReactDOM.

The left-hand panel looks much like the regular DOM tree (Elements) in Chrome DevTools, but instead of showing HTML markup, you see all of the components you used inside a tree. ReactDOM rendered this tree into real HTML, as follows:

The first component in the current version of Graphbook should be <App />.

By clicking a component, your right-hand panel will show its properties, state, and context. You can try this with the App component, which is the only real React component:

The App class is the first component of our application. This is the reason why it received no props. Children can receive properties from their parents; with no parent, there are no props.

Now test the App class and play around with the state. You will see that changing it rerenders your ReactDOM and updates the HTML. You can edit the postContent variable, which inserts the new text inside the textarea. As you can see, all events are thrown, and your handler runs. Updating the state always triggers a rerender, so try to update the state as little as possible.

 Analyzing bundle size

People that are trying to use as little bandwidth as possible will want to keep their bundle size low. I recommend that you always keep an eye on this, especially when requiring more modules via npm. In this case, you can quickly end up with a huge bundle size, since npm packages tend to require other npm packages themselves.

To protect us against this, we need a method to analyze the bundle size. Only the production build is worth checking. As previously mentioned, the development build includes React in a development release with source maps and so on.

Thanks to webpack, there is a simple solution for analyzing our bundle. This solution is called webpack-bundle-analyzer, and it does exactly what it sounds like.

Install this with the following:

npm install --save-dev webpack-bundle-analyzer

You then need to add two commands to the scripts object in the package.json:

	"stats": "webpack --profile --json --config webpack.client.build.config.js > stats.json"

	"analyze": "webpack-bundle-analyzer stats.json"

The first command creates a production build as well as a stats.json file in the root folder. This file holds the information we need.

The analyze command spins up the webpack-bundle-analyzer, showing us how our bundle is built together and how big each package that we use is.

Do this as follows:

npm run stats
npm run analyze

You can visually see our bundle and package sizes. Remove unnecessary packages in your projects and see how your bundle is reorganized. You can take an example from the following screenshot:

This diagram looks a lot like WinDirStat which is a software to display the disk usage of your computer. We can identify the packages that make up the majority of our bundle.

 Summary

In this chapter, we completed a working React setup. This is a good starting point for our front end. We can write and build static web pages with this setup.

The next chapter primarily focuses on our setup for the back end. We will configure Express.js to accept our first requests and pass all GraphQL queries to Apollo. Furthermore, you will also learn how to use Postman to test your API.

 Setting up GraphQL with Express.js

The basic setup and prototype for our front end are now complete. Going further, we need to get our GraphQL server running to begin implementing the back end. Apollo and Express.js are going to build the basis for our back end.

This chapter explains the installation process for Express.js, as well as the configuration of our GraphQL endpoint. We will quickly go through all the essential features of Express.js and the debugging tools for our back end.

This chapter covers the following points:

	Express.js installation and explanation

	Routing in Express.js

	Middleware in Express.js

	Binding Apollo Server to a GraphQL endpoint

	Serving static assets with Express.js

	Back end debugging and logging

 Node.js and Express.js

One primary goal of this book is to set up a GraphQL API, which is then consumed by our React front end. To accept network requests (especially GraphQL requests), we are going to set up a Node.js web server.

The most significant competitors in the Node.js web server area are Express.js, Koa, and Hapi. In this book, we are going to use Express.js. Most tutorials and articles about Apollo rely on it.

Express.js is also the most used Node.js web server out there and explains itself as a Node.js web framework, offering all the main features needed to build web applications.

Installing Express.js is pretty easy. We can use npm in the same way as in the first chapter:

npm install --save express

This command adds the latest version of Express to package.json.

In the first chapter, we created all JavaScript files directly in the src/client folder. Now, let's create a separate folder for our server-side code. This separation gives us a tidy directory structure. We will create the folder with the following command:

mkdir src/server

We can now continue with the configuration of Express.js.

 Setting up Express.js

As always, we need a root file loaded with all the main components that combines them to a real application.

Create an index.js file in the server folder. This file is the starting point for the back end. Here's how we go about it:

	First, we import express from node_modules, which we just installed. We can use import here since our back end gets transpiled by Babel. We are also going to set up webpack for the server-side code in a later in Chapter 9, Implementing Server-Side Rendering.

import express from 'express';

	We initialize the server with the express command. The result is stored in the app variable. Everything our back end does is executed through this object.

const app = express();

	Then, we specify the routes that accept requests. For this straightforward introduction, we accept all HTTP GET requests matching any path, by using the app.get method. Other HTTP Methods are catchable with app.post, app.put, and so on.

app.get('*', (req, res) => res.send('Hello World!'));
app.listen(8000, () => console.log('Listening on port 8000!'));

To match all paths, you use an asterisk, which generally stands for any in the programming environment, as we have done it in the preceding app.get line.

The first parameter for all app.METHOD functions are the path to match. From here, you can provide an unlimited list of callback functions, which are executed one by one. We are going to look at this feature later in the Routing with Express.js section.

A callback always receives the client request as the first parameter and the response as the second parameter, which the server is going to send. Our first callback is going to use the send response method.

The send function sends merely the HTTP response. It sets the HTTP body as specified. So, in our case, the body shows Hello World!, and the send function takes care of all necessary standard HTTP headers, such as Content-Length.

The last step to make our server publicly available is to tell Express.js on which port it should listen for requests. In our code, we are using 8000 as the first parameter of app.listen. You can replace 8000 with any port or URL you want to listen on. The callback is executed when the HTTP server binding has finished, and requests can be accepted on this port.

This is the easiest setup we can have for Express.js.

 Running Express.js in development

To launch our server, we have to add a new script to our package.json.

We will add the following line to the scripts property of the package.json file:

"server": "nodemon --exec babel-node --watch src/server src/server/index.js"

As you can see, we are using a command called nodemon. We need to install it first:

npm install --save nodemon

Nodemon is an excellent tool for running a Node.js application. It can restart your server when the source changes.

For example, to get the above command working follow the steps below:

	Furthermore, we must install the @babel/node package, because we are transpiling the back end code with Babel, using the --exec babel-node option. It allows the use of the import statement:

npm install --save-dev @babel/node

Providing --watch as the option following a path or file will permanently track changes on that file or folder and reload the server to represent the latest state of your application. The last parameter refers to the actual file being the starting execution point for the back end.

	Start the server now:

npm run server

When you now go to your browser and enter http://localhost:8000, you will see the text Hello World! from our Express.js callback function.

Chapter 3, Connecting to the Database, covers how Express.js routing works in detail.

 Routing in Express.js

Understanding routing is essential to extend our back end code. We are going to play through some simple routing examples.

In general, routing stands for how an application responds to specific endpoints and methods.

In Express.js, one path can respond to different HTTP methods and can have multiple handler functions. These handler functions are executed one by one in the order they were specified in the code. A path can be a simple string, but also a complex regular expression or pattern.

When using multiple handler functions—either provided as an array or multiple parameters—be sure to pass next to every callback function. When you call next, you hand over the execution from one callback function to the next function in the row. Those functions can also be middleware. We'll cover this in the next section.

Here is a simple example. Replace this with the current app.get line:

app.get('/', function (req, res, next) {
 console.log('first function');
 next();
}, function (req, res) {
 console.log('second function');
 res.send('Hello World!');
});

When you look at the server logs in the terminal, you will see both first function and second function printed. If you remove the execution of next and try to reload the browser tab, the request will time out. This problem occurs because neither res.send nor res.end, or any alternative is called. The second handler function is never executed when next is not run.

As previously discussed, the Hello World! message is nice but not the best we can get. In development, it is completely okay for us to run two separate servers: one for the front end and one for the back end.

 Serving our production build

We can serve our production build of the front end through Express.js. This approach is not great for development purposes but is useful for testing the build process and seeing how our live application will act.

Again, replace the previous routing example with the following:

import path from 'path';

const root = path.join(__dirname, '../../');

app.use('/', express.static(path.join(root, 'dist/client')));
app.use('/uploads', express.static(path.join(root, 'uploads')));
app.get('/', (req, res) => {
 res.sendFile(path.join(root, '/dist/client/index.html'));
});

The path module offers many functionalities for working with the directory structures.

We use the global __dirname variable to get our project's root directory. The variable holds the path of the current file. Using path.join with ../../ and __dirname gives us the real root of our project.

Express.js provides the use function which runs a series of commands when a given path matches. When executing this function without a path, it is executed for every request.

We use this feature to serve our static files (the avatar images) with express.static. They include bundle.js and bundle.css, created by npm run client:build.

In our case, we first pass '/' with express.static following it. The result of this is that all files and folders in dist are served beginning with '/'. Other paths in the first parameter of app.use, such as '/example', would lead to the result that our bundle.js would be downloadable under '/example/bundle.js' instead.

For example, all avatar images are served under '/uploads/'.

We are now prepared to let the client download all necessary files. The initial route for our client is '/' specified by app.get. The response to this path is index.html. We run res.sendFile and the file path to return this file—that is all we have to do here.

Be sure to execute npm run client:build first. Otherwise, you will receive an error message that these files were not found. Furthermore, when running npm run client, the dist folder is deleted, so you have to rerun the build process.

Refreshing the browser now presents you with the post feed and form from Chapter 1, Preparing Your Development Environment.

The next section focuses on the great functionality of middleware functions in Express.js.

 Using Express.js middleware

Express.js provides great ways to write efficient back ends without duplicating code.

Every middleware function receives a request, a response, and next. It needs to run next to pass control further to the next handler function. Otherwise, you will receive a timeout. Middleware allows us to pre- or post-process the request or response object, execute custom code, and much more. We previously covered a simple example of handling requests in Express.js.

Express.js can have multiple routes for the same path and HTTP method. The middleware can decide which function should be executed.

The following code is an easy example showing what can generally be accomplished with Express.js:

	The root path '/' is used to catch any request.

app.get('/', function (req, res, next) {

	We randomly generate a number with Math.random between 1 and 10.

var random = Math.random() * (10 -1) + 1;

	If the number is higher than 5, we run the next('route') function to skip to the next app.get with the same path.

if (random > 5) next('route')

This route will log us 'second'.

	If the number is lower than 0.5, we execute the next function without any parameters and go to the next handler function. This handler will log us 'first'.

 else next()
}, function (req, res, next) {
 res.send('first');
})

app.get('/', function (req, res, next) {
 res.send('second');
})

You do not need to copy this code as it is just an explanatory example. This functionality can come in handy when covering special treatments such as admin users and error handling.

 Installing important middleware

For our application, we have already used one built-in Express.js middleware: express.static. Throughout this book, we continue to install further middleware:

npm install --save compression cors helmet

Now, execute the import statement on the new packages inside the server index.js file so that all dependencies are available within the file:

import helmet from 'helmet';
import cors from 'cors';
import compress from 'compression';

Let's see what these packages do and how we can use them.

 Express Helmet

Helmet is a tool that allows you to set various HTTP headers to secure your application.

We can enable the Express.js Helmet middleware as follows in the server index.js file:

app.use(helmet());
app.use(helmet.contentSecurityPolicy({
 directives: {
 defaultSrc: ["'self'"],
 scriptSrc: ["'self'", "'unsafe-inline'"],
 styleSrc: ["'self'", "'unsafe-inline'"],
 imgSrc: ["'self'", "data:", "*.amazonaws.com"]
 }
}));
app.use(helmet.referrerPolicy({ policy: 'same-origin' }));

We are doing multiple things here at once. We add some XSS(Cross-Site-Scripting) protection tactics and remove the X-Powered-By HTTP header and some other useful things just by using the helmet() function in the first line.

You can look up the default parameters, as well as other functionalities of Helmet, at, https://github.com/helmetjs/helmet. Always be conscious when implementing security features and do your best to verify your attack protection methods.

Furthermore, to ensure that no one can inject malicious code, we are using the Content-Security-Policy HTTP header or, in short, CSP. This header prevents attackers from loading resources from external URLs.

As you can see, we also specify the imgSrc field, which tells our client that only images from these URLs should be loaded, including Amazon Web Services (AWS). We will see how to upload images to it in Chapter 7, Handling Image Uploads, of this book.

Read more about CSP and how it can make your platform more secure at, https://helmetjs.github.io/docs/csp/.

The last enhancement is to set the Referrer HTTP header only when making requests on the same host. When going from domain A to domain B, for example, we do not include the referrer, which is the URL the user is coming from. This enhancement stops any internal routing or requests being exposed to the internet.

It is important to initialize Helmet very high in your Express router so that all responses are affected.

 Compression with Express.js

Enabling compression for Express.js saves you and your user bandwidth, and this is pretty easy to do. The following code must also be added to the server index.js file:

app.use(compress());

This middleware compresses all responses going through it. Remember to add it very high in your routing order so that all requests are affected.

Whenever you have middleware like this, or multiple routes matching the same path, you need to check the initialization order. The first matching route is executed unless you run the next command. All routes that are defined afterward will not be executed.

 CORS in Express.js

We want our GraphQL API to be accessible from any website, app, or system. A good idea might be to build an app or offer the API to other companies or developers so that they can use it. When using APIs via Ajax, the main problem is that the API needs to send the correct Access-Control-Allow-Origin header.

For example, if you build the API, publicize it under https://api.example.com, and try to access it from https://example.com without setting the correct header, it won't work. The API would need to set at least example.com inside the Access-Control-Allow-Origin header to allow this domain to access its resources. It seems a bit tedious, but it makes your API open to cross-site requests which you should always be aware of.

Allow CORS (Cross-origin resource sharing) requests with the following command to the index.js file:

app.use(cors());

This command handles all of the problems we usually have with cross-origin requests at once. It merely sets a wildcard with * inside of Access-Control-Allow-Origin, allowing anyone from anywhere to use your API, at least in the first instance. You can always secure your API by offering API keys or by only allowing access to logged-in users. Enabling CORS only allows the requesting site to receive the response.

Furthermore, the command also implements the OPTIONS route for the whole application.

The OPTIONS method or request is made every time we use Cross-origin resource sharing. This action is what's called a preflight request, which ensures that the responding server trusts you. If the server does not respond correctly to the OPTIONS preflight, the actual method, such as POST, will not be made by the browser at all.

Our application is now ready to serve all routes appropriately and respond with the right headers.

We can move on now and finally set up a GraphQL server.

 Combining Express.js with Apollo

First things first; we need to install the Apollo and GraphQL dependencies:

npm install --save apollo-server-express graphql graphql-tools

Apollo offers an Express.js-specific package that integrates itself into the web server. There is also a standalone version without Express.js. Apollo allows you to use the available Express.js middleware. In some scenarios, you may need to offer non-GraphQL routes to proprietary clients who do not implement GraphQL or are not able to understand JSON responses. There are still reasons to offer some fallbacks to GraphQL. In those cases, you can rely on Express.js, since you are already using it.

Create a separate folder for services. A service can be GraphQL or other routes:

mkdir src/server/services/
mkdir src/server/services/graphql

Our GraphQL service must handle multiple things for initialization. Let's go through all of them one by one:

	We require the apollo-server-express and graphql-tools packages.

import { ApolloServer } from 'apollo-server-express';
import { makeExecutableSchema } from 'graphql-tools';

	We must combine the GraphQL schema with the resolver functions. We import the corresponding schema and resolver functions at the top from separate files. The GraphQL schema is the representation of the API, that is, the data and functions a client can request or run. Resolver functions are the implementation of the schema. Both need to match 100 percent. You cannot return a field or run a mutation that is not inside the schema.

import Resolvers from './resolvers';
import Schema from './schema';

	The makeExecutableSchema function of the graphql-tools package merges the GraphQL schema and the resolver functions, resolving the data we are going to write. The makeExecutableSchema function throws an error when you define a query or mutation that is not in the schema. The resulting schema is executable by our GraphQL server resolving the data or running the mutations we request.

const executableSchema = makeExecutableSchema({
 typeDefs: Schema,
 resolvers: Resolvers
});

	We pass this as a schema parameter to the Apollo Server. The context property contains the request object of Express.js. In our resolver functions, we can access the request if we need to.

const server = new ApolloServer({
 schema: executableSchema,
 context: ({ req }) => req
});

	This index.js file exports the initialized server object, which handles all GraphQL requests.

export default server;

Now that we are exporting the Apollo Server, it needs to be imported somewhere else, of course. I find it convenient to have one index.js file on the services layer so that we only rely on this file if a new service is added.

Create an index.js file in the services folder and enter the following code:

import graphql from './graphql';

export default {
 graphql,
};

The preceding code requires our index.js file from the graphql folder and re-exports all services in one big object. We can define further services here if we need them.

To make our GraphQL server publicly accessible to our clients, we are going to bind the Apollo Server to the /graphql path.

Import the services index.js file in the server/index.js file as follows:

import services from './services';

The services object only holds the graphql index. Now we must bind the GraphQL server to the Express.js web server with the following code:

const serviceNames = Object.keys(services);

for (let i = 0; i < serviceNames.length; i += 1) {
 const name = serviceNames[i];
 if (name === 'graphql') {
 services[name].applyMiddleware({ app });
 } else {
 app.use(`/${name}`, services[name]);
 }
}

For convenience, we loop through all indexes of the services object and use the index as the name of the route the service will be bound to. The path would be /example for the example index in the services object. For a typical service, such as a REST interface, we rely on the standard app.use method of Express.js.

Since the Apollo Server is kind of special, when binding it to Express.js, we need to run the applyMiddleware function provided by the initialized Apollo Server and avoid using the app.use function of Express.js. Apollo automatically binds itself to the /graphql path because it is the default option. You could also include a path parameter if you want it to respond from a custom route.

Two things are missing now: the schema and the resolvers. The schema is next on our to-do list.

 Writing your first GraphQL schema

Let's start by creating a schema.js inside the graphql folder. You can also stitch multiple smaller schemas to one bigger schema. This would be cleaner and would make sense when your application, types, and fields grow. For this book, one file is okay and we insert the following code into the schema.js file:

const typeDefinitions = `
 type Post {
 id: Int
 text: String
 }

 type RootQuery {
 posts: [Post]
 }

 schema {
 query: RootQuery
 }
`;

export default [typeDefinitions];

The preceding code represents a basic schema, which would be able to at least serve the fake posts array from Chapter 1, Preparing Your Development Environment, excluding the users.

First, we define a new type called Post. A Post type has id as Int and text as String.

For our GraphQL server, we need a type called RootQuery. The RootQuery type wraps all of the queries a client can run. It can be anything from requesting all posts, all users, or posts by just one user, and so on. You can compare this to all GET requests as you find them with a common REST API. The paths would be /posts, /users, and /users/ID/posts to represent the GraphQL API as a REST API. When using GraphQL, we only have one route, and we send the query as a JSON-like object.

The first query we will have is going to return an array of all of the posts we have got.

If we query for all posts and want to return each user with its corresponding post, this would be a sub-query that would not be represented in our RootQuery type but in the Post type itself. You will see how it is done later.

At the end of the JSON-like schema, we add RootQuery to the schema property. This type is the starting point for the Apollo Server.

Later, we are going to add the mutation key to the schema where we implement a RootMutation type. It is going to serve all of the actions a user can run. Mutations are comparable to the POST, UPDATE, PATCH, and DELETE requests of a REST API.

At the end of the file, we export the schema as an array. If we wanted to, we could push other schemas to this array to merge them.

The last thing missing here is the implementation of our resolvers.

 Implementing GraphQL resolvers

Now that the schema is ready, we need the matching resolver functions.

Create a resolvers.js file in the graphql folder as follows:

const resolvers = {
 RootQuery: {
 posts(root, args, context) {
 return [];
 },
 },
};

export default resolvers;

The resolvers object holds all types as a property. We set up RootQuery, holding the posts query in the same way as we did in our schema. The resolvers object must equal the schema but recursively merged. If you want to query a subfield, such as the user of a post, you have to extend the resolvers object with a Post object containing a user function next to RootQuery.

If we send a query for all posts, the posts function is executed. There, you can do whatever you want, but you need to return something that matches the schema. So, if you have an array of posts as the response type of RootQuery, you cannot return something different, such as just one post object instead of an array. In that case, you would receive an error.

Furthermore, GraphQL checks the data type of every property. If id is defined as Int, you cannot return a regular MongoDB id since these ids are of type String. GraphQL would throw an error too.

GraphQL will parse or cast specific data types for you if the value type is matching. For example, a string with the value of 2.1 is parsed to Float without any problems. On the other hand, an empty string cannot be converted to Float, and an error would be thrown. It is better to directly have the correct data types, because this saves you casting and also prevents unwanted problems.

Our posts query will return an empty array, which would be a correct response for GraphQL. We will come back to the resolver functions later, but it is okay for the moment. You should be able to start the server again.

 Sending GraphQL queries

We can test this query using any HTTP client, such as Postman, Insomnia, or any you are used to. This book covers HTTP clients in the next section of this chapter. If you want to send the following queries on your own, you can read the next section and come back here.

You can test our new function when you send the following JSON as a POST request to http://localhost:8000/graphql:

{
 "operationName": null,
 "query": "{
 posts {
 id
 text
 }
 }",
 "variables": {}
}

The operationName field is not required to run a query, but it is great for logging purposes.

The query object is a JSON-like representation of the query we want to execute. In this example, we run the RootQuery posts and request the id and text fields of every post. We do not need to specify RootQuery because it is the highest layer of our GraphQL API.

The variables property can hold parameters such as user the ids by which we want to filter the posts, for example. If you want to use variables, they need to be defined in the query by their name too.

For developers who are not used to tools like Postman, there is also the option to open the GraphQL endpoint in a separate browser tab. You will be presented with a GraphQLi instance made for sending queries easily. Here, you can insert the content of the query property and hit the play button. Because we set up Helmet to secure our application, we need to deactivate it in development. Otherwise, the GraphQLi instance is not going to work. Just wrap the Helmet initialization inside this if statement:

if(process.env.NODE_ENV === 'development')

This short condition only activates Helmet when the environment is in development. Now you can send the request with GraphQLi or any HTTP client.

The resulting answer of POST should look like the following code snippet:

{
 "data": {
 "posts": []
 }
}

We received the empty posts array as expected.

Going further, we want to respond with the fake data we statically wrote in our client to come from our back end. Copy the posts array from App.js above the resolvers object. We can respond to the GraphQL request with this filled posts array.

Replace the content of the posts function in the GraphQL resolvers with this:

return posts;

You can rerun the POST request and receive both fake posts. Apparently, the response does not include the user object we have in our fake data. We must define a user property on the post type in our schema to fix this issue.

 Using multiples types in GraphQL schemas

Let's create a User type and use it with our posts. First, add it somewhere to the schema:

type User {
 avatar: String
 username: String
}

Now that we have a User type, we need to use it inside the Post type. Add it to the Post type as follows:

user: User

The user field allows us to have a sub-object inside our posts with the post's author information.

Our extended query to test this looks like the following:

"query":"{
 posts {
 id
 text
 user {
 avatar
 username
 }
 }
}"

You cannot just specify the user as a property of the query. Instead, you need to provide a sub-selection of fields. This is required whenever you have multiple GraphQL types stacked inside each other. Then, you need to select the fields your result should contain.

Running the updated query gives us the fake data, which we already have in our front end code; just the posts array as it is.

We have made good progress with querying data, but we also want to be able to add and change data.

 Writing your first GraphQL mutation

One thing our client already offered was to add new posts to the fake data temporarily. We can realize this in the back end by using GraphQL mutations.

Starting with the schema, we need to add the mutation as well as the input types as follows:

input PostInput {
 text: String!
}

input UserInput {
 username: String!
 avatar: String!
}

type RootMutation {
 addPost (
 post: PostInput!
 user: UserInput!
): Post
}

GraphQL inputs are not more than types. Mutations can use them as parameters inside requests. They may look weird, because our current output types look almost the same. However, it would be wrong to have an id property on PostInput, for example, since the back end chooses the id and the client cannot give it. Consequently, it does make sense to have separate objects for input and output types.

The addPost function receiving our two new required input types—PostInput and UserInput, is a new feature here. Those functions are called mutations, since they mutate the current state of the application. The response to this mutation is an ordinary Post object. When creating a new post with the addPost mutation, we will directly get the created post from the back end in response.

The exclamation mark in the schema tells GraphQL that the field is a required parameter.

The RootMutation type corresponds to the RootQuery type and is an object that holds all of our GraphQL mutations.

The last step is to enable the mutations in our schema for the Apollo Server:

schema {
 query: RootQuery
 mutation: RootMutation
}

Usually, the client does not send the user with the mutation. This is because the user is authenticated first, before adding a post, and through that, we already know which user initiated the Apollo request. However, we can ignore this for the moment and implement authentication later in Chapter 6, Authentication with Apollo and React.

The addPost resolver function needs to be implemented now in the resolvers.js file.

Add the following RootMutation object to the RootQuery in resolvers.js:

RootMutation: {
 addPost(root, { post, user }, context) {
 const postObject = {
 ...post,
 user,
 id: posts.length + 1,
 };
 posts.push(postObject);
 return postObject;
 },
},

This resolver extracts the post and user objects from the mutation's parameters, which are passed in the second argument of the function. Then, we build the postObject variable. We want to add our posts array as property by destructuring the post input and adding the user object. The id field is just the length of the posts array plus one.

The postObject variable looks like a post from the posts array now. Our implementation does the same as the front end is already doing. The return value of our addPost function is the postObject. To get this working, you need to change the initialization of the posts array from const to let. Otherwise, the array will be static and unchangeable.

You can run this mutation via your preferred HTTP client like this:

{
 "operationName": null,
 "query": "mutation addPost($post : PostInput!, $user: UserInput!) {
 addPost(post : $post, user: $user) {
 id
 text
 user {
 username
 avatar
 }
 }
 }",
 "variables": {
 "post": {
 "text": "You just added a post."
 },
 "user": {
 "avatar": "/uploads/avatar3.png",
 "username": "Fake User"
 }
 }
}

Here, we are using the variables property to send the data we want to insert in our back end. We need to pass them as parameters within the query string. We define both parameters with a dollar sign and the awaited data type inside the operation string. Those variables marked with a dollar sign can then be mapped into the actual action we want to trigger on the back end. Again, we need to send a selection of fields our response should have.

The result will have a data object including an addPost field. The addPost field holds the post, which we send with our request.

Query the posts again, and you will see that there are now three posts. Great, it worked!

As with our client, this is only temporary until we restart the server. We'll cover how to persist data in a SQL database in Chapter 3, Connecting to the Database.

Next, we'll cover the various ways to debug your back end properly.

 Back end debugging and logging

There are two things that are very important here: the first is that we need to implement logging for our back end in case we receive errors from our users, and the second is that we need to look into Postman to debug our GraphQL API efficiently.

So, let's get started with logging.

 Logging in Node.js

The most popular logging package for Node.js is called winston. Configure winston by following the steps below:

	Install winston with npm:

npm install --save winston

	We create a new folder for all of the helper functions of the back end:

mkdir src/server/helpers

	Then, insert a logger.js file in the new folder with the following content:

import winston from 'winston';

let transports = [
 new winston.transports.File({
 filename: 'error.log',
 level: 'error',
 }),
 new winston.transports.File({
 filename: 'combined.log',
 level: 'verbose',
 }),
];

if (process.env.NODE_ENV !== 'production') {
 transports.push(new winston.transports.Console());
}

const logger = winston.createLogger({
 level: 'info',
 format: winston.format.json(),
 transports,
});

export default logger;

This file can be imported everywhere where we want to log.

In the preceding code, we defined the standard transports for winston. A transport is nothing more than the way in which winston separates and saves various log types in different files.

The first transport generates an error.log file where only real errors are saved.

The second transport is a combined log where we save all other log messages, such as warnings or info logs.

If we are running the server in a development environment, which we are currently doing, we add a third transport. We will also directly log all messages to the console while developing on the server.

Most people who are used to JavaScript development know the difficulty with console.log. By directly using winston, we can see all messages in the terminal, but we do not need to clean the code from console.log either, as long as the things we log make sense, of course.

To test this, we can try the winston logger in the only mutation we have.

In resolvers.js, add this to the top of the file:

import logger from '../../helpers/logger';

Now, we can extend the addPost function by logging the following:

logger.log({ level: 'info', message: 'Post was created' });

When you send the mutation now, you will see that the message was logged to the console.

Furthermore, if you look in the root folder of your project, you will see the error.log and combined.log files. The combined.log file should contain the log from the console.

Now that we can log all operations on the server, we should explore Postman to send requests comfortably.

 Debugging with Postman

Some time ago, Postman started as a Chrome app, which was installed through the Chrome Web Store.

Since Chrome apps will be deprecated, the guys behind Postman switched to a native implementation.

You can install Postman by downloading the appropriate file from the download section at, https://www.getpostman.com/apps.

There are numerous other HTTP client tools, such as Postman, that are useful for debugging your application. You are free to use your tool of choice. Some other great clients that I personally use are Insomnia, SoapUI, and Stoplight, but there are many more. In this book, we use Postman, as it is the most popular from my point of view.

When you have finished the installation, it should look something like this:

As you can see, I have already created a collection called Book in the left-hand panel. This collection includes our two requests: one to request all posts and one to add a new post.

As an example, the following screenshot shows you how the Add Post mutation looks in Postman:

The request body looks pretty much like what we saw before.

In my case, I need to write the query inline because Postman is not able to handle multi-row text inside JSON. If this is not the case for you, please ignore it.

Be sure to select application/json as Content-Type next to the raw format.

The URL is localhost, including port 8000 as expected.

If you add a new request, you can use the Ctrl + S shortcut to save it. You need to select a collection and a name to save it. One major downfall of using Postman (at least with GraphQL APIs) is that we are, of course, only using POST. It would be great to have some kind of indication of what we are doing here, for example, a query or a mutation. We will also see how to use authorization in Postman when we have implemented it.

Postman also has other great features, such as automated testing, monitoring, and mocking a fake server.

In later chapters, it will become more complicated to configure Postman for all requests. In such cases, I like to use Apollo Client Developer Tools, which perfectly integrate into the front end and make use of Chrome DevTools. What's great about Apollo Client Developer Tools is that they use Apollo Client we configure in the front end code and therefore reuse the authentication we built into our front end.

 Summary

At this point, we have set up our Node.js server with Express.js and bound Apollo Server to respond to requests on a GraphQL endpoint. We are able to handle queries, return fake data, and mutate that data with GraphQL mutations.

Furthermore, we can log every process in our Node.js server. Debugging an application with Postman leads to a well-tested API, which can be used later in our front end.

In the next chapter, we will learn how to persist data in a SQL server. We will also implement models for our GraphQL types and cover migrations for our database. We need to replace our current resolver functions with queries via Sequelize.

There is a lot to do here, so read on for more.

 Connecting to The Database

Our back end and front end can communicate, create new posts, and respond with a list of all posts while using fake data. The next step on our list will be to use a database, such as an SQL server, to serve as data storage.

We want our backend to persist data to our SQL database by using Sequelize. Our Apollo Server should use this data for queries and mutations, as needed. In order for this to happen, we must implement database models for our GraphQL entities.

This chapter will cover the following points:

	Using databases with GraphQL

	Using Sequelize in Node.js

	Writing database models

	Performing database migrations with Sequelize

	Seeding data with Sequelize

	Using Apollo together with Sequelize

 Using databases in GraphQL

GraphQL is a protocol for sending and receiving data. Apollo is one of the many libraries that you can use to implement that protocol. Neither GraphQL (in its specifications) nor Apollo work directly on the data layer. Where the data that you put into your response comes from, and where the data that you send with your request is saved, are up to the user to decide.

This logic indicates that the database and the services that you use do not matter to Apollo, as long as the data that you respond with matches the GraphQL schema.

As we are living in the Node.js ecosystem in this project and book, it would be fitting to use MongoDB. MongoDB offers a great client library for Node.js, and also uses JavaScript as its native choice of language for interactions and querying.

The general alternative to a database system like MongoDB is a typical SQL server with proven stability and enormous spreading. One case that I encounter more and more frequently involves systems and applications relying on older code bases and databases that need upgrades. A great way to accomplish this is to get an over-layering API level with GraphQL. In this scenario, the GraphQL server receives all requests, and, one by one, you can replace the existing code bases that the GraphQL server relies on. In these cases, it is helpful that GraphQL is database agnostic.

In this book, we will use SQL via Sequelize in order to see this feature in a real-world use case. For future purposes, it will also help you to handle problems with existing SQL-based systems.

 Installing MySQL for development

MySQL is an excellent starting point for getting on track in a developmental career. It is also well-suited to local development on your machine, since the setup is pretty easy.

How to set up MySQL on your machine depends on the operating system. As we mentioned in Chapter 1, Preparing Your Development Environment, we are assuming that you are using a Debian-based system. For this, you can use the following instructions. If you already have a working setup for MySQL or Apache, these commands may not work, or may not be required in the first place.

Do not follow these instructions when setting up a real SQL server for public and production use. A professional setup includes many security features to protect you against attacks. This installation should only be used in development, on your local machine.

Execute the following steps to get MySQL running:

	First, you should always install all of the updates available for your system:

sudo apt-get update && sudo apt-get upgrade -y

We want to install MySQL and a GUI, in order to see what we have inside of our database. The most common GUI for a MySQL server is phpMyAdmin. It requires the installation of a web server and PHP. We are going to install Apache as our web server.

If, at any point in the process, you receive an error stating that the package could not be found, ensure that your system is Debian-based. The installation process is tested on Ubuntu 18.04, but can differ on other systems. You can easily search for the matching package for your system on the internet.

	Install all dependencies with the following command:

sudo apt-get install apache2 mysql-server php php-pear php-mysql

	After the installation, you will need to run the MySQL setup in the root shell. You will have to enter the root password for this. Alternatively, you can run sudo -i:

su -

	Now, you can execute the MySQL installation command; follow the steps as prompted. From my point of view, you can ignore most of these steps, but be careful when you are asked for the root password of your MySQL instance. Since this is a development server on your local machine, you can skip the security settings:

mysql_secure_installation

	We must create a separate user for development, aside from the root and phpMyAdmin user. It is discouraged to use the root user at all. Log in to our MySQL Server with the root user in order to accomplish this:

mysql -u root

	Now, run the following SQL command. You can replace the PASSWORD string with the password that you want. It is the password that you will use for the database connection in your application, but also when logging in to phpMyAdmin. This command creates a user called devuser, with root privileges that are acceptable for local development:

GRANT ALL PRIVILEGES ON *.* TO 'devuser'@'%' IDENTIFIED BY 'PASSWORD';

	You can install phpMyAdmin, since our MySQL server has been set up. You will be asked for a web server when executing the following command. Select apache2 with the spacebar, and navigate to ok by hitting the Tab key. Select the automatic setup method for phpMyAdmin, when asked for it. You should not do this manually.

Furthermore, phpMyAdmin will want you to enter a password. I recommend that you choose the same password that you chose for the root user:

sudo apt-get install phpmyadmin

	After the installation, we will need to set up Apache, in order to serve phpMyAdmin. The following ln command creates a symbolic link in the root folder of the Apache public HTML folder. Apache will now serve phpMyAdmin:

cd /var/www/html/
sudo ln -s /usr/share/phpmyadmin

We can now visit phpMyAdmin under http://localhost/phpmyadmin and log in with the newly created user. It should look like the following screenshot:

We have now finished the complete database installation for our development environment.

PhpMyAdmin chooses the language according to your environment, so it might differ slightly from the preceding screenshot.

For other operating systems, there are great prebuilt packages. I recommend that all Windows users use XAMPP, and that Mac users use MAMP. These offer an easy installation process for what we did manually on Linux. They also implement MySQL, Apache, and PHP, including phpMyAdmin.

 Creating a database in MySQL

Before we begin with the implementation of our back end, we need to add a new database that we can use.

You are free to do this via the command line or phpMyAdmin. As we have just installed phpMyAdmin, we are going to use it, of course.

You can run raw SQL commands in the SQL tab of phpMyAdmin. The corresponding command to create a new database looks as follows:

CREATE DATABASE graphbook_dev CHARACTER SET utf8 COLLATE utf8_general_ci;

Otherwise, you can follow the next steps to use the graphical method. In the left-hand panel, click on the New button.

You will be presented with a screen like the following. It shows all databases including their collation of your MySQL server:

Enter a database name, such as graphbook_dev, and then choose the uft8_general_ci collation. After doing so, click on Create.

You will see a page that says, No tables found in database, which is correct (for now). This will change later, when we have implemented our database models, such as posts and users.

In the next chapter, we will start to set up Sequelize in Node.js, and will connect it to our SQL server.

 Integrating Sequelize into our stack

We have just set up a MySQL database, and we want to use it inside of our Node.js back end. There are many libraries to connect and query your MySQL database. We are going to use Sequelize in this book.

Alternatives include Waterline ORM and js-data, which offer the same functionalities as Sequelize. What's great about these is that they not only offer SQL dialects, but also feature database adapters for MongoDB, Redis, and more. So, if you need an alternative, check them out.

Sequelize is an ORM for Node.js. It supports the PostgreSQL, MySQL, SQLite, and MSSQL standards.

Install Sequelize in your project via npm. We will also install a second package, called mysql2:

npm install --save sequelize mysql2

The mysql2 package allows Sequelize to speak with our MySQL server.

Sequelize is just a wrapper around the various libraries for the different database systems. It offers great features for intuitive model usage, as well as functions for creating and updating database structures and inserting development data.

Typically, you would run sequelize init before starting with the database connection or models, but I prefer a more custom approach. From my point of view, this is a bit cleaner. This approach is also why we are setting up the database connection in an extra file, and do not rely on boilerplate code.

You can take a look at the official tutorial in the Sequelize documentation if you want to see how it would usually be done. The approach that we are taking and the one from the tutorial do not differ much, but it is always good to see another way of doing things. The documentation can be seen at http://docs.sequelizejs.com/manual/tutorial/migrations.html.

Let's start by setting Sequelize up in our backend.

 Connecting to a database with Sequelize

The first step is to initialize the connection from Sequelize to our MySQL server. To do this, we will create a new folder and file, as follows:

mkdir src/server/database
touch src/server/database/index.js

Inside of the index.js database, we will establish a connection to our database with Sequelize. Internally, Sequelize relies on the mysql2 package, but we do not use it on our own, which is very convenient:

import Sequelize from 'sequelize';

const sequelize = new Sequelize('graphbook_dev', 'devuser', 'PASSWORD', {
 host: 'localhost',
 dialect: 'mysql',
 operatorsAliases: false,
 pool: {
 max: 5,
 min: 0,
 acquire: 30000,
 idle: 10000,
 },
});

export default sequelize;

As you can see, we require Sequelize from the node_modules, and then create an instance of it. The following properties are important for Sequelize:

	We pass the database name as the first parameter, which we just created.

	The second and third parameters are the credentials of our devuser. Replace them with the username and password that you entered for your database. The devuser has all user rights, and can read and write all of the databases in our MySQL server. This makes development a lot easier.

	The fourth parameter is a general options object that can hold many more properties. The preceding object is an example configuration.

	The host of our MySQL database is our local machine alias, localhost. If this is not the case, you can also specify the IP or URL of the MySQL server.

	The dialect is, of course, mysql.

	The operatorsAliases property specifies which strings can be used as aliases by Sequelize, or whether they can be used at all. An example would look as follows:

[Op.gt]: 6 // > 6
$gt: 6 // same as using Op.gt (> 6)

This example is taken from the Sequelize documentation. Generally, it is discouraged to use operators aliases at all. This is why you should disable it, and should always sanitize user input, to avoid SQL injections.

If you want to read more about this topic and what possibilities Sequelize gives you for operator aliases, you can find more information at http://docs.sequelizejs.com/manual/tutorial/querying.html#operators-aliases.

	With the pool option, you tell Sequelize the configuration for every database connection. The preceding configuration allows for a minimum of zero connections, which means that Sequelize should not maintain one connection, but should create a new one whenever it is needed. The maximum number of connections is five. This option also relates to the number of replica sets that your database system has.

	The idle field of the pool option specifies how long a connection can be unused before it gets closed and removed from the pool of active connections.

	When trying to establish a new connection to our MySQL server, the timeout before the connection is aborted is defined by the acquire option. In cases in which a connection cannot be created, this option helps to stop your server from freezing.

Executing the preceding code will instantiate Sequelize, and will successfully create a connection to our MySQL server. Going further, we need to handle multiple databases for every environment in which our application can run, from development to production. You will see that in the next section.

 Using a configuration file with Sequelize

The previous setup for our database connection with Sequelize is fine, but it is not made for later deployment. The best option is to have a separate configuration file that is read and used according to the environment that the server is running in.

For this, create a new index.js file inside a separate folder (called config), next to the database folder:

mkdir src/server/config
touch src/server/config/index.js

Your sample configuration should look like the following code, if you have followed the instructions for creating a MySQL database. The only thing that we did here was to copy our current configuration into a new object indexed with the development or production environment:

module.exports = {
 "development": {
 "username": "devuser",
 "password": "PASSWORD",
 "database": "graphbook_dev",
 "host": "localhost",
 "dialect": "mysql",
 "operatorsAliases": false,
 "pool": {
 "max": 5,
 "min": 0,
 "acquire": 30000,
 "idle": 10000
 }
 },
 "production": {
 "host": process.env.host,
 "username": process.env.username,
 "password": process.env.password,
 "database": process.env.database,
 "logging": false,
 "dialect": "mysql",
 "operatorsAliases": false,
 "pool": {
 "max": 5,
 "min": 0,
 "acquire": 30000,
 "idle": 10000
 }
 }
}

Sequelize expects a config.json file inside of this folder by default, but this setup will allow us a more custom approach in later chapters. The development environment directly store the credentials for your database whereas the production configuration uses environment variables to fill them.

We can remove the configuration that we hardcoded earlier and replace the contents of our index.js database file to require our configFile, instead.

This should look like the following code snippet:

import Sequelize from 'sequelize';
import configFile from '../config/';

const env = process.env.NODE_ENV || 'development';
const config = configFile[env];

const sequelize = new Sequelize(config.database, config.username,
 config.password, config);

const db = {
 sequelize,
};

export default db;

In the preceding code, we are using the NODE_ENV environmental variable to get the environment that the server is running in. We read the config file and pass the correct configuration to the Sequelize instance. The environmental variable will allow us to add a new environment, such as production, at a later point in the book.

The Sequelize instance is then exported for use throughout our application. We use a special db object for this. You will see why we are doing this later on.

Next, you will learn how to generate and write models and migrations for all of the entities that our application will have.

 Writing database models

After creating a connection to our MySQL server via Sequelize, we want to use it. However, our database is missing a table or structure that we can query or manipulate. Creating those is the next thing that we need to do.

Currently, we have two GraphQL entities: User and Post.

Sequelize lets us create a database schema for each of our GraphQL entities. The schema is validated when inserting or updating rows in our database. We already wrote a schema for GraphQL in the schema.js file used by Apollo Server, but we need to create a second one for our database. The field types, as well as the fields themselves, can vary between the database and the GraphQL schema.

GraphQL schemas can have more fields than our database model, or vice versa. Perhaps you do not want to export all data from your database through the API, or maybe you generate data for your GraphQL API on the fly, when requesting data.

Let's create the first model for our posts. Create two new folders (one called models, and the other, migrations) next to the database folder:

mkdir src/server/models
mkdir src/server/migrations

Creating each model in a separate file is much cleaner than having one big file for all models.

 Your first database model

We will use the Sequelize CLI to generate our first database model. Install it globally with the following command:

npm install -g sequelize-cli

This gives you the ability to run the sequelize command inside of your Terminal.

The Sequelize CLI allows us to generate the model automatically. This can be done by running the following command:

sequelize model:generate --models-path src/server/models --migrations-path src/server/migrations --name Post --attributes text:text

Sequelize expects us to run the command in the folder in which we have run sequelize init, by default. Our file structure is a bit different, because we have two layers with src/server. For this reason, we specify the path manually, with the first two parameters: --models-path and --migrations-path.

The --name parameter gives our model a name under which it can be used. The --attributes option specifies the fields that the model should include.

If you are increasingly customizing your setup, you may want to know about other options that the CLI offers. You can view the manual for every command easily, by appending --help as an option: sequelize model:generate --help.

This command creates a post.js model file in your models folder, and a database migration file, named XXXXXXXXXXXXXX-create-post.js, in your migrations folder. The X is the timestamp when generating the files with the CLI. You will see how migrations work in the next section.

The following model file was created for us:

'use strict';

module.exports = (sequelize, DataTypes) => {
 var Post = sequelize.define('Post', {
 text: DataTypes.TEXT
 }, {});

 Post.associate = function(models) {
 // associations can be defined here
 };

 return Post;
};

We are using the define Sequelize function to create a database model:

	The first parameter is the name of the database model.

	The second option is the field configuration for this model.

There are many more options that Sequelize offers us to customize our database models. If you want to look up which options are available, you can find them at http://docs.sequelizejs.com/manual/tutorial/models-definition.html.

A post object has the id, text, and user properties. The user will be a separate model, as seen in the GraphQL schema. Consequently, we only need to configure the id and text as columns of a post.

The id is the key that uniquely identifies a data record from our database. We do not specify this when running the model:generate command, because it is generated by MySQL automatically.

The text column is just a MySQL TEXT field, which allows us to write pretty long posts. Alternatively, there are other MySQL field types, with MEDIUMTEXT, LONGTEXT, and BLOB, which could save more characters. A regular TEXT column should be fine for our use case.

The Sequelize CLI created a model file, exporting a function that, after execution, returns the real database model. You will soon see why this a great way of initializing our models.

Let's take a look at the migration file that is also created by the CLI.

 Your first database migration

Until now, MySQL has not known anything about our plan to save posts inside of it. Our database tables and columns need to be created, of course, and this is why the migration file was created.

A migration file has multiple advantages, such as the following:

	Migrations allow us to track database changes through our regular version control system, such as Git or SVN. Every change to our database structure should be covered in a migration file.

	It also enables us to write updates that automatically apply database changes for new versions of our application.

Our first migration file creates a Posts table and adds all required columns, as follows:

'use strict';

module.exports = {
 up: (queryInterface, Sequelize) => {
 return queryInterface.createTable('Posts', {
 id: {
 allowNull: false,
 autoIncrement: true,
 primaryKey: true,
 type: Sequelize.INTEGER
 },
 text: {
 type: Sequelize.TEXT
 },
 createdAt: {
 allowNull: false,
 type: Sequelize.DATE
 },
 updatedAt: {
 allowNull: false,
 type: Sequelize.DATE
 }
 });
 },
 down: (queryInterface, Sequelize) => {
 return queryInterface.dropTable('Posts');
 }
};

By convention, the model name is pluralized in migrations, but it is singular inside of model definitions. Our table names are also pluralized. Sequelize offers options to change this.

A migration has two properties, as follows:

	The up property states what should be done when running the migration.

	The down property states what is run when undoing a migration.

As stated previously, the id and text column are created, as well as two additional datetime columns, to save the creation and update time.

The id field has set autoIncrement and primaryKey to true. The id will count upward, from one to nearly infinite, for each post in our table. This id uniquely identifies posts for us. Passing allowNull with false disables the feature to insert a row with an empty field value.

To execute this migration, we use the Sequelize CLI again, as follows:

sequelize db:migrate --migrations-path src/server/migrations --config src/server/config/index.js

Look inside of phpMyAdmin. Here, you will find the new table, called Posts. The structure of the table should look as follows:

All of the fields were created as we desired.

Furthermore, two additional fields, createdAt and updatedAt, were created. These two fields are what are called timestamps, and are used to tell when a row was either created or updated. The fields were created by Sequelize automatically. If you do not want this, you can set the timestamps property in the model to false.

Every time that you use Sequelize and its migration feature, you will have an additional table, called SequelizeMeta. The contents of the table should look as follows:

Sequelize saves every migration that has been executed. If we add further fields in development or in a new release cycle, we can write a migration that runs all table alterings for us as an update. Sequelize skips all migrations that are saved inside of the meta table.

One major step is to bind our model to Sequelize. This process can be automated by running sequelize init, but understanding it will teach us way more than relying on premade boilerplate commands.

 Importing models with Sequelize

We want to import all of our database models at once, in a central file. Our database connection instantiator will then use this file on the other side.

Create an index.js file in the models folder, and fill in the following code:

import Sequelize from 'sequelize';
if (process.env.NODE_ENV === 'development') {
 require('babel-plugin-require-context-hook/register')()
}

export default (sequelize) => {
 let db = {};

 const context = require.context('.', true, /^\.\/(?!index\.js).*\.js$/,
 'sync')
 context.keys().map(context).forEach(module => {
 const model = module(sequelize, Sequelize);
 db[model.name] = model;
 });

 Object.keys(db).forEach((modelName) => {
 if (db[modelName].associate) {
 db[modelName].associate(db);
 }
 });

 return db;
};

This file will also be generated when running sequelize init, but I have split up the setup of the database connection and this part into different files. Usually, this would happen in just one file.

To summarize what happens in the preceding code, we search for all files ending with .js in the same folder as the current file, and load them all with the require.context statement. In development, we must execute the babel-plugin-require-context-hook/register hook to load the require.context function at the top. This package must be installed with npm, with the following command:

npm install --save-dev babel-plugin-require-context-hook

We need to load the plugin with the start of our development server, so, open the package.json file and edit the server script, as follows:

nodemon --exec babel-node --plugins require-context-hook --watch src/server src/server/index.js

When the plugin is loaded and we run the require('babel-plugin-require-context-hook/register')() function, the require.context method is available for us. Make sure that you set the NODE_ENV variable to development; otherwise, this won't work.

In production, the require.context function is included in the generated bundle of webpack.

The loaded model files export a function with the following two parameters:

	Our sequelize instance, after creating a connection to our database

	The sequelize class itself, including the data types it offers, such as integer or text

Running the exported functions imports the actual Sequelize model. When all models are imported, we loop through them and check whether they have a function called associate. If this is the case, we execute the associate function, and, through that, we establish relations between multiple models. Currently, we have not set up an association, but that will change later in this chapter.

Now, we want to use our models. Go back to the index.js database file and import all models through the aggregation index.js file that we just created:

import models from '../models';

Before exporting the db object at the end of the file, we need to run the models wrapper to read all model .js files. We pass our Sequelize instance as a parameter, as follows:

const db = {
 models: models(sequelize),
 sequelize,
};

The new database object in the preceding command has sequelize and models as a property. Under models, you can find the Post model, and every new model that we are going to add later.

The database index.js file is ready, and can be used now. You should import this file only once, because it can get messy when creating multiple instances of Sequelize. The pool functionality won't work correctly, and we will end up with more connections than the maximum of five that we specified earlier.

We create the global database instance in the index.js file of the root server folder. Add the following code:

import db from './database';

We require the database folder and the index.js file inside this folder. Loading the file instantiates the Sequelize object, including all database models.

Going forward, we want to query some data from our database via the GraphQL API that we implemented in Chapter 2, Setting Up GraphQL with Express.js.

 Seeding data with Sequelize

We should fill the empty Posts table with our fake data. To accomplish this, we will use Sequelize's feature for seeding data to our database.

Create a new folder, called seeders:

mkdir src/server/seeders

Now, we can run our next Sequelize CLI command, in order to generate a boilerplate file:

sequelize seed:generate --name fake-posts --seeders-path src/server/seeders

Seeders are great for importing test data into a database for development. Our seed file has the timestamp and the words fake-posts in the name, and should look as follows:

'use strict';

module.exports = {
 up: (queryInterface, Sequelize) => {
 /*
 Add altering commands here.
 Return a promise to correctly handle asynchronicity.

 Example:
 return queryInterface.bulkInsert('Person', [{
 name: 'John Doe',
 isBetaMember: false
 }], {});
 */
 },
 down: (queryInterface, Sequelize) => {
 /*
 Add reverting commands here.
 Return a promise to correctly handle asynchronicity.

 Example:
 return queryInterface.bulkDelete('Person', null, {});
 */
 }
};

As you can see in the preceding code snippet, nothing is done here. It is just an empty boilerplate file. We need to edit this file to create the fake posts that we already had in our backend. This file looks like our migration from the previous section. Replace the contents of the file with the following code:

'use strict';

module.exports = {
 up: (queryInterface, Sequelize) => {
 return queryInterface.bulkInsert('Posts', [{
 text: 'Lorem ipsum 1',
 createdAt: new Date(),
 updatedAt: new Date(),
 },
 {
 text: 'Lorem ipsum 2',
 createdAt: new Date(),
 updatedAt: new Date(),
 }],
 {});
 },
 down: (queryInterface, Sequelize) => {
 return queryInterface.bulkDelete('Posts', null, {});
 }
};

In the up migration, we are bulk inserting two posts, through the queryInterface and its bulkInsert command. For this, we pass an array of posts, excluding the id and the associated user. The id is created automatically, and the user is saved in a separate table later on. The QueryInterface of Sequelize is the general interface that Sequelize uses to talk to all databases.

In our seed file, we need to add the createdAt and updatedAt field, since Sequelize does not set up default values for the timestamp columns in MySQL. In reality, Sequelize takes care of the default values of those fields by itself, but not when seeding data. If you do not provide these values, the seed will fail, because NULL is not allowed for createdAt and updatedAt.

The down migration bulk deletes all rows in the table, since this is the apparent reverse action of the up migration.

Execute all of the seeds from the seeders folder with the following command:

sequelize db:seed:all --seeders-path src/server/seeders --config src/server/config/index.js

Sequelize does not check or save if a seed has been run already, as we are doing it with the preceding command. This means that you can run seeds multiple times if you want to.

The following screenshot shows a filled Posts table:

The demo posts are now inside of our database.

We will cover how to use Sequelize with our Apollo Server, and how to add the relationship between the user and their posts, in the next section.

 Using Sequelize with Apollo

The database object is initialized upon starting the server within the root index.js file. We pass it from this global location down to the spots where we rely on the database. This way, we do not import the database file repeatedly, but have a single instance that handles all database queries for us.

The services that we want to publicize through the GraphQL API need access to our MySQL database. The first step is to implement the posts into our GraphQL API. It should respond with the fake posts from the database we just inserted.

 Global database instance

To pass the database down to our GraphQL resolvers, we create a new object in the server index.js file:

import db from './database';

const utils = {
 db,
};

We create a utils object directly under the import statement of the database folder.

The utils object holds all of the utilities that our services might need access to. This can be anything, from third-party tools, to our MySQL, or any other database, such as in the preceding code.

Replace the line where we import the services folder, as follows:

import servicesLoader from './services';
const services = servicesLoader(utils);

The preceding code might look weird to you, but what we are doing here is executing the function that is the result of the import statement, and passing the utils object as a parameter. We must do this in two separate lines, as the import syntax does not allow it in just one line; so, we must first import the function exported from the services folder into a separate variable.

Until now, the return value of the import statement was a simple object. We have to change this to match our requirements.

To do this, go to the services index.js file and change the contents of the file, as follows:

import graphql from './graphql';

export default utils => ({
 graphql: graphql(utils),
});

We surrounded the preceding services object with a function, which was then exported. That function accepts only one parameter, which is our utils object.

That object is then given to a new function, called graphql. Every service that we are going to use has to be a function that accepts this parameter. It allows us to hand over any property that we want to the deepest point in our application.

When executing the preceding exported function, the result is the regular services object we used before. We only wrapped it inside of a function to pass the utils object.

The graphql import that we are doing needs to accept the utils object.

Open the index.js file from the graphql folder and replace everything but the require statements at the top with the following code:

export default (utils) => {
 const executableSchema = makeExecutableSchema({
 typeDefs: Schema,
 resolvers: Resolvers.call(utils),
 });

 const server = new ApolloServer({
 schema: executableSchema,
 context: ({ req }) => req,
 });

 return server;
};

Again, we surrounded everything with a function that accepts the utils object. The aim of all this is to have access to the database within our GraphQL resolvers.

To accomplish this, we are using the Resolvers.call function of JavaScript. The function allows us to set the owner object of the exported Resolvers function. What we are saying here is that the scope of the Resolvers is the utils object.

So, within the Resolvers function, accessing this now gives us the utils object. At the moment, the Resolvers are just a simple object, but because we use the call method, we must also return a function from the resolvers.js file.

Surround the resolvers object in this file with a function, and return the resolvers object from inside of the function:

export default function resolver() {
 ...
 return resolvers;
}

We cannot use the arrow syntax, as before. ES6 arrow syntax would automatically take a scope, but we want the call function to take over here.

An alternative way of doing this would be to also hand over the utils object as a parameter. I think the way that we have chosen is a bit cleaner, but handle it as you like.

 Running the first database query

Now, we want to finally use the database. Add the following code to the top of the export default function resolver statement:

const { db } = this;
const { Post } = db.models;

The this keyword is the owner of the current method, and holds the db object, as stated previously. We extract the database models from the db object that we built in the previous section.

The good thing about models is that you do not need to write raw queries against the database. You have already told Sequelize which fields and tables it can use by creating a model. At this point, you are able to use Sequelize's methods to run queries against the database within your resolvers.

We can query all posts through the Sequelize model, instead of returning the fake posts from before. Replace the posts property within the RootQuery with the following code:

posts(root, args, context) {
 return Post.findAll({order: [['createdAt', 'DESC']]});
},

In the preceding code, we search and select all of the posts that we have in our database. We are using the Sequelize findAll method and returning the result of it. The return value will be a JavaScript promise, which automatically gets resolved when the database is finished collecting the data.

A typical news feed, such as on Twitter or Facebook, orders the posts according to the creation date. That way, you have the newest posts at the top and the oldest at the bottom. Sequelize expects an array of arrays as a parameter of the order property that we pass as the first parameter to the findAll method. The results are ordered by the creation date.

There are many other methods that Sequelize offers. You can query for just one entity, count them, find them, create them if they are not found, and much more. You can look up the methods that Sequelize provides at http://docs.sequelizejs.com/manual/tutorial/models-usage.html#data-retrieval-finders.

As we are not using the demo posts array anymore, you can remove it from the resolvers.js file.

You can start the server with npm run server and execute the GraphQL posts query from Chapter 2, Setting Up GraphQL with Express.js, again. The output will look as follows:

{
 "data": {
 "posts": [{
 "id": 1,
 "text": "Lorem ipsum 1",
 "user": null
 },
 {
 "id": 2,
 "text": "Lorem ipsum 2",
 "user": null
 }]
 }
}

The id and text fields look fine, but the user object is null. This happened because we did not define a user model or declare a relationship between the user and the post model. We will change this in the next section.

 One-to-one relationships in Sequelize

We need to associate each post with a user, to fill the gap that we have created in our GraphQL response. A post has to have an author. It would not make sense to have a post without an associated user.

First, we will generate a User model and migration. We will use the Sequelize CLI again, as follows:

sequelize model:generate --models-path src/server/models --migrations-path src/server/migrations --name User --attributes avatar:string,username:string

The migration file creates the Users table and adds the avatar and username column. A data row looks like a post in our fake data, but it also includes an autogenerated ID and two timestamps, as you have seen before.

The relationships of the users to their specific posts is still missing as we have only created the model and migration file. We still have to add the relationship between posts and users. This is covered in the next section.

What every post needs, of course, is an extra field, called userId. This column acts as the foreign key to reference a unique user. Then, we can join the user relating to each post.

MySQL offers great documentation for people that are not used to foreign key constraints. If you are one of them, you should read up on this topic at https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html.

 Updating the table structure with migrations

We have to write a third migration, adding the userId column to our Post table, but also including it in our database Post model.

Generating a boilerplate migration file is very easy with the Sequelize CLI:

sequelize migration:create --migrations-path src/server/migrations --name add-userId-to-post

You can directly replace the content, as follows:

'use strict';

module.exports = {
 up: (queryInterface, Sequelize) => {
 return Promise.all([
 queryInterface.addColumn('Posts',
 'userId',
 {
 type: Sequelize.INTEGER,
 }),
 queryInterface.addConstraint('Posts', ['userId'], {
 type: 'foreign key',
 name: 'fk_user_id',
 references: {
 table: 'Users',
 field: 'id',
 },
 onDelete: 'cascade',
 onUpdate: 'cascade',
 }),
]);
 },

 down: (queryInterface, Sequelize) => {
 return Promise.all([
 queryInterface.removeColumn('Posts', 'userId'),
]);
 }
};

This migration is a bit more complex, and I will explain it on a step-by-step basis.

In the up migration, we are using the queryInterface to first add the userId column to the Posts table.

Secondly, we add a foreign key constraint, with the addConstraint function. The constraint represents the relationship between both the user and the post entities. The relationship is saved in the userId column of the Post table.

I experienced some issues when running the migrations without using Promise.all, which ensures that all promises in the array are resolved. Returning only the array did not run both the addColumn and addConstraint methods.

The preceding addConstraint function receives the foreign key string as a type which says that the data type is the same as the corresponding column in the Users table. We want to give our constraint the custom name fk_user_id, in order to identify it later.

Then, we specify the references field for the userId column. Sequelize requires a table, which is the Users table, and the field that our foreign key relates to, which is the id column of the User table. This is everything that is required to get a working database relationship.

Furthermore, we change the onUpdate and onDelete constraints to cascade. What this means is that, when a user either gets deleted or has their user ID updated, the change is reflected in the user's posts. Deleting a user results in deleting all posts of a user, and updating a user's ID updates the ID on all of the user's posts. We do not need to handle all of this in our application code, which would be inefficient.

There is a lot more about this topic in the Sequelize documentation. If you want to read up on this, you can find more information at http://docs.sequelizejs.com/class/lib/query-interface.js~QueryInterface.html.

Rerun the migration, in order to see what changes occurred:

sequelize db:migrate --migrations-path src/server/migrations --config src/server/config/index.js

The benefit of running migrations through Sequelize is that it goes through all of the possible migrations from the migrations folder. It excludes those that are already saved inside of the SequelizeMeta table, and then chronologically runs the migrations that are left. Sequelize can do this because the timestamp is included in every migration's filename.

After running the migration, there should be a Users table, and the userId column should be added to the Posts table.

Take a look at the relation view of the Posts table in phpMyAdmin. You can find it under the Structure view, by clicking on Relation view:

As you can see in the preceding screenshot, we have our foreign key constraint. The correct name was taken, and the cascade option, too.

If you receive an error when running migrations, you can easily undo them, as follows:

sequelize db:migrate:undo --migrations-path src/server/migrations --config src/server/config/index.js

This command undoes the most recent migrations. Always be conscious of what you do here. Keep a backup if you are unsure whether everything works correctly.

You can also revert all migrations at once, or only revert to one specific migration, so that you can go back to a specific timestamp:

sequelize db:migrate:undo:all --to XXXXXXXXXXXXXX-create-posts.js --migrations-path src/server/migrations --config src/server/config/index.js

Leave out the parameter --to to undo all migrations.

We have now established the database relationship, but Sequelize must know about the relationship, too. You will learn how this is done in the next section.

 Model associations in Sequelize

Now that we have the relationship configured with the foreign key, it also needs to be configured inside of our Sequelize model.

Go back to the Post model file and replace the associate function with the following:

Post.associate = function(models) {
 Post.belongsTo(models.User);
};

The associate function gets evaluated inside of our aggregating index.js file, where all model files are imported.

We are using the belongsTo function, which tells Sequelize that every post belongs to exactly one user. Sequelize gives us a new function on the Post model, called getUser, to retrieve the associated user. The naming is done by convention, as you can see. Sequelize does all of this automatically.

Do not forget to add the userId as a queryable field to the Post model itself, as follows:

userId: DataTypes.INTEGER,

The User model needs to implement the reverse association, too. Add the following code to the User model file:

User.associate = function(models) {
 User.hasMany(models.Post);
};

The hasMany function means the exact opposite of the belongsTo function. Every user can have multiple posts associated in the Post table. It can be anything, from zero to multiple posts.

You can compare the new data layout with the preceding one. Up to this point, we had the posts and users inside of one big array of objects. Now, we have split every object into two tables. Both tables connect to each other through the foreign key. This is required every time we run the GraphQL query to get all posts, including their authors.

So, we must extend our current resolvers.js file. Add the Post property to the resolvers object, as follows:

Post: {
 user(post, args, context) {
 return post.getUser();
 },
},

The RootQuery and RootMutation were the two main properties that we had so far. The RootQuery is the starting point where all GraphQL queries begin.

With the old demo posts, we were able to directly return a valid and complete response, since everything that we needed was in there already. Now, a second query, or a JOIN, is needed to collect all necessary data for a complete response.

The Post entity is introduced to our resolvers, where we can define functions for every property of our GraphQL schema. Only the user is missing in our response; the rest is there. That is why we have added the user function to the resolvers.

The first parameter of the function is the post model instance that we are returning inside of the RootQuery resolver.

Then, we use the getUser function that Sequelize gave us. Executing the getUser function runs the correct MySQL SELECT query, in order to get the correct user from the Users table. It does not run a real MySQL JOIN, but only queries the user in a separate MySQL command. Later on, you will learn another method for running a JOIN directly, which is more efficient.

However, if you query for all posts via the GraphQL API, the user will still be null. We have not added any users to the database yet, so let's insert them next.

 Seeding foreign key data

The challenge of adding users is that we have already introduced a foreign key constraint to the database. You can follow these instructions to learn how to get it working:

	We use the Sequelize CLI to generate an empty seeders file, as follows:

sequelize seed:generate --name fake-users --seeders-path src/server/seeders

	Fill in the following code to insert the fake users:

'use strict';

module.exports = {
 up: (queryInterface, Sequelize) => {
 return queryInterface.bulkInsert('Users', [{
 avatar: '/uploads/avatar1.png',
 username: 'TestUser',
 createdAt: new Date(),
 updatedAt: new Date(),
 },
 {
 avatar: '/uploads/avatar2.png',
 username: 'TestUser2',
 createdAt: new Date(),
 updatedAt: new Date(),
 }],
 {});
 },
 down: (queryInterface, Sequelize) => {
 return queryInterface.bulkDelete('Users', null, {});
 }
};

The preceding code looks like the seeders file for the posts, but instead, we are now inserting users with the correct fields. Every user receives an auto-incremented ID by our MySQL server when inserting a user.

	We must maintain the relationships as configured in our database. Adjust the posts seed file to reflect this, and add a userId to both posts in the up migration:

return queryInterface.bulkInsert('Posts', [{
 text: 'Lorem ipsum 1',
 userId: usersRows[0].id,
 createdAt: new Date(),
 updatedAt: new Date(),
},
{
 text: 'Lorem ipsum 2',
 userId: usersRows[1].id,
 createdAt: new Date(),
 updatedAt: new Date(),
}],
{});

We created the users seed file after the post seeders file. This means that the posts are inserted before the users exist, because of the timestamps of the files. Generally, this is not a problem, but since we have introduced a foreign key constraint, we are not able to insert posts with a userId when the underlying user does not exist in our database. MySQL forbids this.

There is also another problem. The current posts in our table do not receive a userId, and we do not want to write a separate migration or seed to fix those posts.

There are two options here. You can either manually truncate the tables through phpMyAdmin and SQL statements, or you can use the Sequelize CLI. It is easier to use the CLI, but the result will be the same either way. The following command will undo all seeds:

sequelize db:seed:undo:all --seeders-path src/server/seeders --config src/server/config/index.js

When undoing seeds, the tables are not truncated, and therefore, the autoIncrement index is not set back to one, but stays at the current index. Reverting seeds multiple times raises the user's or post's ID, and therefore, stops the seeds from working. The userId column in the post seed cannot be hardcoded when using the down migration.

You can fix this by selecting all users with a raw query in the post seed file. We can pass the retrieved user IDs statically. Replace the up property with the following:

 up: (queryInterface, Sequelize) => {
 // Get all existing users
 return queryInterface.sequelize.query(
 'SELECT id from Users;',
).then((users) => {
 const usersRows = users[0];

 return queryInterface.bulkInsert('Posts', [{
 text: 'Lorem ipsum 1',
 userId: usersRows[0].id,
 createdAt: new Date(),
 updatedAt: new Date(),
 },
 {
 text: 'Lorem ipsum 2',
 userId: usersRows[1].id,
 createdAt: new Date(),
 updatedAt: new Date(),
 }],
 {});
 });
 },

This way, we get all of the users first, and then select the ID manually. This solution is not great, but it fixes the problem with the static userId field in the seeds. You can undo and redo the seeds as often as you want. There is no need to truncate the table to get the correct autoIncrement index.

We have not gotten any further now, since the posts are still inserted before the users. From my point of view, the easiest way to fix this is to rename the seeder files. Simply adjust the timestamp of the fake user seed file to be before the post seed file's timestamp, or the other way around. Again, execute all seeds, as follows:

sequelize db:seed:all --seeders-path src/server/seeders --config src/server/config/index.js

If you take a look inside your database, you should see a filled Posts table, including the userId. The Users table should look like the following screenshot:

You can now rerun the GraphQL query, and you should see a working association between the users and their posts, because the user field is filled.

We have achieved a lot. We can serve data from our database through the GraphQL API by matching its schema.

There are some ways to automate this process, through additional npm packages. There is a package that automates the process of creating a GraphQL schema from your database models for you. As always, you are more flexible when you do not rely on preconfigured packages. You can find the package at https://www.npmjs.com/package/graphql-tools-sequelize.

 Mutating data with Sequelize

Requesting data from our database via the GraphQL API works. Now comes the tough part: adding a new post to the Posts table.

Before we start, we must extract the new database model from the db object at the top of the exported function in our resolvers.js file:

const { Post, User } = db.models;

Currently, we have no authentication to identify the user that is creating the post. We will fake this step until the authentication is implemented in a later chapter.

We have to edit the GraphQL resolvers to add the new post. Replace the old addPost function with the new one, as shown in the following code snippet:

addPost(root, { post }, context) {
 logger.log({
 level: 'info',
 message: 'Post was created',
 });

 return User.findAll().then((users) => {
 const usersRow = users[0];

 return Post.create({
 ...post,
 }).then((newPost) => {
 return Promise.all([
 newPost.setUser(usersRow.id),
]).then(() => {
 return newPost;
 });
 });
 });
},

As always, the preceding mutation returns a promise. The promise is resolved when the deepest query has been executed successfully. The execution order is as follows:

	We retrieve all users from the database through the User.findAll method.

	We insert the post into our database with the create function of Sequelize. The only property that we pass is the post object from the original request, which only holds the text of the post. MySQL autogenerates the id of the post.

Sequelize also offers a build function, which initializes the model instance for us. In this case, we would have to run the save method to insert the model manually. The create function does this for us all at once.

	The post has been created, but the userId was not set.

You could also directly add the user ID in the Post.create function. The problem here is that we did not establish the model associations on the JavaScript side. If we return the created post model without explicitly using setUser on the model instance, we cannot use the getUser function until we create a new instance of the post model.

So, to fix this problem, we run the create function, resolve the promise, and then run setUser separately. As a parameter of setUser, we statically take the ID of the first user from the users array.

We resolve the promise of the setUser function by using an array surrounded by Promise.all. This allows us to add further Sequelize methods later on. For example, you could add a category on each post, too.

	The returned value is the newly created post model instance, after we have set the userId correctly.

Everything is set now. To test our API, we are going to use Postman again. We need to change the addPost request. The userInput that we added before is not needed anymore, because the backend statically chooses the first user out of our database. You can send the following request body:

{
 "operationName":null,
 "query": "mutation addPost($post : PostInput!) { addPost(post : $post) {
 id text user { username avatar }}}",
 "variables":{
 "post": {
 "text": "You just added a post."
 }
 }
}

Your GraphQL schema must reflect this change, so remove the userInput from there, too:

addPost (
 post: PostInput!
): Post

Running the addPost GraphQL mutation now adds a post to the Posts table, as you can see in the following screenshot:

We have rebuilt the example from the last chapter, but we are using a database in our backend. To extend our application, we are going to add two new entities.

 Many-to-many relationships

Facebook provides users with various ways to interact. Currently, we only have the opportunity to request and insert posts. As in the case of Facebook, we want to have chats with our friends and colleagues. We will introduce two new entities to cover this.

The first entity is called Chat, and the second is called Message.

Before starting with the implementation, we need to lay out a detailed plan of what those entities will enable us to do.

A user can have multiple chats, and a chat can belong to multiple users. This relationship gives us the opportunity to have group chats with multiple users, as well as private chats, between only two users. A message belongs to one user, but every message also belongs to one chat.

 Model and migrations

When transferring this into real code, we first generate the Chat model. The problem here is that we have a many-to-many relationship between users and chats. In MySQL, this kind of relationship requires a table, to store the relations between all entities separately.

Those tables are called join tables. Instead of using a foreign key on the chat or a user to save the relationship, we have a table called user_chats. The user's ID and the chat's ID are associated with each other inside of this table. If a user participates in multiple chats, they will have multiple rows in this table, with different chat IDs.

 Chat model

Let's start by creating the Chat model and migration. A chat itself does not store any data; we use it for grouping specific users' messages:

sequelize model:generate --models-path src/server/models --migrations-path src/server/migrations --name Chat --attributes firstName:string,lastName:string,email:string

Generate the migration for our association table, as follows:

sequelize migration:create --migrations-path src/server/migrations --name create-user-chats

Adjust the users_chats migration generated by the Sequelize CLI. We specify the user and chat IDs as attributes for our relationship. References inside of a migration automatically create foreign key constraints for us. The migration file should look like the following code snippet:

'use strict';

module.exports = {
 up: (queryInterface, Sequelize) => {
 return queryInterface.createTable('users_chats', {
 id: {
 allowNull: false,
 autoIncrement: true,
 primaryKey: true,
 type: Sequelize.INTEGER
 },
 userId: {
 type: Sequelize.INTEGER,
 references: {
 model: 'Users',
 key: 'id'
 },
 onDelete: 'cascade',
 onUpdate: 'cascade',
 },
 chatId: {
 type: Sequelize.INTEGER,
 references: {
 model: 'Chats',
 key: 'id'
 },
 onDelete: 'cascade',
 onUpdate: 'cascade',
 },
 createdAt: {
 allowNull: false,
 type: Sequelize.DATE
 },
 updatedAt: {
 allowNull: false,
 type: Sequelize.DATE
 }
 });
 },
 down: (queryInterface, Sequelize) => {
 return queryInterface.dropTable('users_chats');
 }
};

A separate model file for the association table is not needed, because we can rely on this table in the models where the association is required. The id column could be left out, because the row should be identifiable.

Associate the user to the Chat model via the new relation table in the User model, as follows:

User.belongsToMany(models.Chat, { through: 'users_chats' });

Do the same for the Chat model, as follows:

Chat.belongsToMany(models.User, { through: 'users_chats' });

The through property tells Sequelize that the two models are related via the users_chats table. Normally, when you are not using Sequelize and are trying to select all users and chats merged in raw SQL, you need to maintain this association manually, and join the three tables on your own. Sequelize's querying and association capabilities are so complex, this is all done for you.

Rerun the migrations to let the changes take effect:

sequelize db:migrate --migrations-path src/server/migrations --config src/server/config/index.js

The following screenshot shows how your database should look now:

You should see two foreign key constraints in the relation view of the users_chats table. The naming is done automatically:

This setup was the tough part. Next up is the message entity, which is a simple one-to-one relationship. One message belongs to one user and one chat.

 Message model

A message is much like a post, except that it is only readable inside of a chat, and is not public to everyone.

Generate the model and migration file with the CLI, as follows:

sequelize model:generate --models-path src/server/models --migrations-path src/server/migrations --name Message --attributes text:string,userId:integer,chatId:integer

Add the missing references in the created migration file, as follows:

userId: {
 type: Sequelize.INTEGER,
 references: {
 model: 'Users',
 key: 'id'
 },
 onDelete: 'SET NULL',
 onUpdate: 'cascade',
},
chatId: {
 type: Sequelize.INTEGER,
 references: {
 model: 'Chats',
 key: 'id'
 },
 onDelete: 'cascade',
 onUpdate: 'cascade',
},

Now, we can run the migrations again, in order to create the Messages table using the sequelize db:migrate Terminal command.

{
 "operationName":null,
 "query": "mutation addPost($post : PostInput!) { addPost(post : $post) {
 id text user { username avatar }}}",
 "variables":{
 "post": {
 "text": "You just added a post."
 }
 }
}

The references also apply to our model file, where we need to use Sequelize's belongsTo function to get all of those convenient model methods for our resolvers. Replace the associate function of the Message model with the following code:

Message.associate = function(models) {
 Message.belongsTo(models.User);
 Message.belongsTo(models.Chat);
};

In the preceding code, we define that every message is related to exactly one user and chat.

On the other side, we must also associate the Chat model with the messages. Add the following code to the associate function of the Chat model:

Chat.hasMany(models.Message);

The next step is to adjust our GraphQL API to provide chats and messages.

 Chats and messages in GraphQL

We have introduced some new entities with messages and chats. Let's include those in our Apollo schema. In the following code, you can see an excerpt of the changed entities, fields, and parameters of our GraphQL schema:

type User {
 id: Int
 avatar: String
 username: String
}

type Post {
 id: Int
 text: String
 user: User
}

type Message {
 id: Int
 text: String
 chat: Chat
 user: User
}

type Chat {
 id: Int
 messages: [Message]
 users: [User]
}

type RootQuery {
 posts: [Post]
 chats: [Chat]
}

Take a look at the following short changelog of our GraphQL schema:

	The User type received an id field, thanks to our database.

	The Message type is entirely new. It has a text field like a typical message, and user and chat fields, which are requested from the referenced tables in the database model.

	The Chat type is also new. A chat has a list of messages that are returned as an array. These can be queried through the chat ID saved in the message table. Furthermore, a chat can have an unspecified number of users. The relationships between users and chats are saved in our separate join table, as stated previously. The interesting thing here is that our schema does not know anything about this table; it is just for our internal use, to save the data appropriately in our MySQL server.

	I have also added a new RootQuery, called chats. This query returns all of a user's chats.

These factors should be implemented in our resolvers, too. Our resolvers should look as follows:

Message: {
 user(message, args, context) {
 return message.getUser();
 },
 chat(message, args, context) {
 return message.getChat();
 },
},
Chat: {
 messages(chat, args, context) {
 return chat.getMessages({ order: [['id', 'ASC']] });
 },
 users(chat, args, context) {
 return chat.getUsers();
 },
},
RootQuery: {
 posts(root, args, context) {
 return Post.findAll({order: [['createdAt', 'DESC']]});
 },
 chats(root, args, context) {
 return User.findAll().then((users) => {
 if (!users.length) {
 return [];
 }

 const usersRow = users[0];

 return Chat.findAll({
 include: [{
 model: User,
 required: true,
 through: { where: { userId: usersRow.id } },
 },
 {
 model: Message,
 }],
 });
 });
 },
},

Let's go through the changes, one by one, as follows:

	I added the new RootQuery, called chats, to return all fields, as in our schema:

	Until we get a working authentication, we will statically use the first user when querying for all chats.

	We are using the findAll method of Sequelize and joining the users of any returned chat. For this, we use the include property of Sequelize on the user model within the findAll method. It runs a MySQL JOIN, and not a second SELECT query.

	Setting the include statement to required runs an INNER JOIN and not a LEFT OUTER JOIN, by default. Any chat that does not match the condition in the through property is excluded. In our example, the condition is that the user ID has to match.

	Lastly, we join all available messages for each chat in the same way, without any condition.

	We added the Chat property to the resolvers object. There, we ran the getMessages and getUsers functions, to retrieve all of the joined data. All messages are sorted by the ID in ascending order (to show the latest message at the bottom of a chat window, for example).

	We added the Message property to our resolvers.

It is important that we are using the new models here. We should not forget to extract them from the db.models object inside of the resolver function. It must look as follows:

const { Post, User, Chat, Message } = db.models;

After saving all of the files, you can start the backend (or, it should restart automatically).

You can send this GraphQL request to test the changes:

{
 "operationName":null,
 "query": "{ chats { id users { id } messages { id text user { id username
 } } } }",
 "variables":{}
}

The response should give us an empty chats array, as follows:

{
 "data": {
 "chats": []
 }
}

The empty array was returned because we do not have any chats or messages in our database. You will see how to fill it with data in the next section.

 Seeding many-to-many data

Testing our implementation requires data in our database. We have three new tables, so we will create three new seeders, in order to get some test data to work with.

Let's start with the chats, as follows:

sequelize seed:generate --name fake-chats --seeders-path src/server/seeders

Now, replace the new seeder file with the following code. Running the following code creates a chat in our database. We do not need more than two timestamps, because the chat ID is generated automatically:

'use strict';

module.exports = {
 up: (queryInterface, Sequelize) => {
 return queryInterface.bulkInsert('Chats', [{
 createdAt: new Date(),
 updatedAt: new Date(),
 }],
 {});
 },
 down: (queryInterface, Sequelize) => {

 return queryInterface.bulkDelete('Chats', null, {});
 }
};

Next, we insert the relation between two users and the new chat. We do this by creating two entries in the users_chats table where we reference them. Now, generate the boilerplate seed file, as follows:

sequelize seed:generate --name fake-chats-users-relations --seeders-path src/server/seeders

Our seed should look much like the previous ones, as follows:

'use strict';

module.exports = {
 up: (queryInterface, Sequelize) => {
 const usersAndChats = Promise.all([
 queryInterface.sequelize.query(
 'SELECT id from Users;',
),
 queryInterface.sequelize.query(
 'SELECT id from Chats;',
),
]);

 return usersAndChats.then((rows) => {
 const users = rows[0][0];
 const chats = rows[1][0];

 return queryInterface.bulkInsert('users_chats', [{
 userId: users[0].id,
 chatId: chats[0].id,
 createdAt: new Date(),
 updatedAt: new Date(),
 },
 {
 userId: users[1].id,
 chatId: chats[0].id,
 createdAt: new Date(),
 updatedAt: new Date(),
 }],
 {});
 });
 },
 down: (queryInterface, Sequelize) => {
 return queryInterface.bulkDelete('users_chats', null, {});
 }
};

First, we resolve all users and chats by using Promise.all. This ensures that, when the promise is resolved, all of the chats and users are available at the same time. To test the chat functionality, we choose the first chat and the first two users returned from the database. We take their IDs and save them in our users_chats table. Those two users should be able to talk to each other through this one chat later on.

The last table without any data is the Messages table. Generate the seed file, as follows:

sequelize seed:generate --name fake-messages --seeders-path src/server/seeders

Again, replace the generated boilerplate code, as follows:

'use strict';

module.exports = {
 up: (queryInterface, Sequelize) => {
 const usersAndChats = Promise.all([
 queryInterface.sequelize.query(
 'SELECT id from Users;',
),
 queryInterface.sequelize.query(
 'SELECT id from Chats;',
),
]);

 return usersAndChats.then((rows) => {
 const users = rows[0][0];
 const chats = rows[1][0];

 return queryInterface.bulkInsert('Messages', [{
 userId: users[0].id,
 chatId: chats[0].id,
 text: 'This is a test message.',
 createdAt: new Date(),
 updatedAt: new Date(),
 },
 {
 userId: users[1].id,
 chatId: chats[0].id,
 text: 'This is a second test message.',
 createdAt: new Date(),
 updatedAt: new Date(),
 },
 {
 userId: users[1].id,
 chatId: chats[0].id,
 text: 'This is a third test message.',
 createdAt: new Date(),
 updatedAt: new Date(),
 }],
 {});
 });
 },
 down: (queryInterface, Sequelize) => {
 return queryInterface.bulkDelete('Messages', null, {});
 }
};

Now, all of the seed files should be ready. It makes sense to empty all of the tables before running the seeds, so that you can work with clean data. I personally like to delete all tables in the database from time to time and rerun all of the migrations and seeds, in order to test them from zero. Whether or not you are doing this, you should at least be able to run the new seed.

Try to run the GraphQL chats query again, as follows:

{
 "data": {
 "chats": [{
 "id": 1,
 "users": [
 {
 "id": 1
 },
 {
 "id": 2
 }
],
 "messages": [
 {
 "id": 1,
 "text": "This is a test message.",
 "user": {
 "id": 1,
 "username": "Test User"
 }
 },
 {
 "id": 2,
 "text": "This is a second test message.",
 "user": {
 "id": 2,
 "username": "Test User 2"
 }
 },
 {
 "id": 3,
 "text": "This is a third test message.",
 "user": {
 "id": 2,
 "username": "Test User 2"
 }
 }
]}
]
 }
}

Great! Now, we can request all of the chats that a user participates in, and get all referenced users and their messages.

Now, we also want to do that for only one chat. Follow these instructions to get it done:

	Add a RootQuery chat that takes a chatId as a parameter:

chat(root, { chatId }, context) {
 return Chat.findById(chatId, {
 include: [{
 model: User,
 required: true,
 },
 {
 model: Message,
 }],
 });
},

With this implementation, we have the problem that all users can send a query to our Apollo server, and in return, get the complete chat history, even if they are not referenced in the chat. We will not be able to fix this until we have implemented authentication.

	Add the new query to the GraphQL schema, under RootQuery:

chat(chatId: Int): Chat

	Send the GraphQL request to test the implementation, as follows:

{
 "operationName":null,
 "query": "query($chatId: Int!){ chat(chatId: $chatId) {
 id users { id } messages { id text user { id username } } } }",
 "variables":{ "chatId": 1 }
}

We are sending this query, including the chatId as a parameter. To pass a parameter, you must define it in the query with its GraphQL data type. Then, you can set it in the specific GraphQL query that you are executing, which is the chat query, in our case. Lastly, you must insert the parameter's value in the variables field of the GraphQL request.

You may remember the response from the last time. The new response will look much like a result from the chats query, but instead of an array of chats, we will just have one chat object.

We are missing a major feature: sending new messages or creating a new chat. We will create the corresponding schema, and the resolvers for it, in the next section.

 Creating a new chat

New users want to chat with their friends. Creating a new chat is essential, of course.

The best way to do this is to accept a list of user IDs that also allows the creation of group chats. Do this as follows:

	Add the addChat function to the RootMutation in the resolvers.js file, as follows:

addChat(root, { chat }, context) {
 logger.log({
 level: 'info',
 message: 'Message was created',
 });
 return Chat.create().then((newChat) => {
 return Promise.all([
 newChat.setUsers(chat.users),
]).then(() => {
 return newChat;
 });
 });
},

Sequelize added the setUsers function to the chat model instance. It was added because of the associations using the belongsToMany method in the chat model. There, we can directly provide an array of user IDs that should be associated with the new chat, through the users_chats table.

	Change the schema so that you can run the GraphQL mutation. We have to add the new input type and mutation, as follows:

input ChatInput {
 users: [Int]
}

type RootMutation {
 addPost (
 post: PostInput!
): Post
 addChat (
 chat: ChatInput!
): Chat
}

	Test the new GraphQL addChat mutation as your request body:

{
 "operationName":null,
 "query": "mutation addChat($chat: ChatInput!) { addChat(chat:
 $chat) { id users { id } }}",
 "variables":{
 "chat": {
 "users": [1, 2]
 }
 }
}

You can verify that everything worked by checking the users returned inside of the chat object.

 Creating a new message

We can use the addPost mutation as our basis, and extend it. The result accepts a chatId and uses the first user from our database. Later, the authentication will be the source of the user ID:

	Add the addMessage function to the RootMutation in the resolvers.js file, as follows:

addMessage(root, { message }, context) {
 logger.log({
 level: 'info',
 message: 'Message was created',
 });

 return User.findAll().then((users) => {
 const usersRow = users[0];

 return Message.create({
 ...message,
 }).then((newMessage) => {
 return Promise.all([
 newMessage.setUser(usersRow.id),
 newMessage.setChat(message.chatId),
]).then(() => {
 return newMessage;
 });
 });
 });
},

	Then, add the new mutation to your GraphQL schema. We also have a new input type for our messages:

input MessageInput {
 text: String!
 chatId: Int!
}

type RootMutation {
 addPost (
 post: PostInput!
): Post
 addChat (
 chat: ChatInput!
): Chat
 addMessage (
 message: MessageInput!
): Message
}

	You can send the request in the same way as the addPost request:

{
 "operationName":null,
 "query": "mutation addMessage($message : MessageInput!) {
 addMessage(message : $message) { id text }}",
 "variables":{
 "message": {
 "text": "You just added a message.",
 "chatId": 1
 }
 }
}

Now, everything is set. The client can now request all posts, chats, and messages. Furthermore, users can create new posts, create new chat rooms, and send chat messages.

 Summary

Our goal in this chapter was to create a working backend with a database as storage, which we have achieved pretty well. We can add further entities and migrate and seed them with Sequelize. Migrating our database changes won't be a problem for us when it comes to going into production.

In this chapter, we also covered what Sequelize automates for us when using its models, and how great it works in coordination with our Apollo Server.

In the next chapter, we will focus on how to use the Apollo React Client library with our backend, as well as the database behind it.

 Integrating React into the Back end with Apollo

Sequelize makes it easy to access and query our database. Posts, chats, and messages can be saved to our database in a snap. React helps us to view and update our data by building a user interface.

In this chapter, we will introduce Apollo's React client to our front end, in order to connect it with the back end. We will query, create, and update post data, using our front end.

This chapter will cover the following points:

	Installing and configuring Apollo Client

	Sending requests with GQL and Apollo's Query component

	Mutating data with Apollo

	Debugging with Apollo Client Developer Tools

 Setting up Apollo Client

We have tested our GraphQL API multiple times during development. We can now start to implement the data layer of our front end code. In later chapters, we will focus on other tasks, such as authentication and client-side routing. For now, we will aim to use our GraphQL API with our React app.

To start, we must install the React Apollo Client library. Apollo Client is a GraphQL client that offers excellent integration with React, and the ability to easily fetch data from our GraphQL API. Furthermore, it handles actions such as caching and subscriptions, to implement real-time communication with your GraphQL back end. Although Apollo Client is named after the Apollo brand, it is not tied to Apollo Server. You can use Apollo Client with any GraphQL API or schema out there, as long as they follow the protocol standards. You will soon see how perfectly the client merges with our React setup.

As always, there are many alternatives out there. You can use any GraphQL client that you wish with the current API that we have built. This openness is the great thing about GraphQL: it uses an open standard for communication. Various libraries implement the GraphQL standard, and you are free to use any of them.

The most well-known alternatives are Relay (which is made by Facebook), Lokka, and graphql-request (which is made by the people behind Prisma). All of these are great libraries that you are free to use. Personally, I mostly rely on Apollo, but Relay is highly recommended, as well. You can find a long list of packages related to the GraphQL ecosystem at https://github.com/chentsulin/awesome-graphql.

In addition to special client libraries, you could also just use the fetch method or XMLHttpRequest requests. The disadvantage is that you need to implement caching, write request objects, and integrate the request method into your application on your own. I do not recommend doing this, because it takes a lot of time, and you want to put that time into your business, not into implementing existing functionalities.

 Installing Apollo Client

We use npm to install our client dependencies, as follows:

npm install --save apollo-client apollo-cache-inmemory apollo-link-http apollo-link-error apollo-link react-apollo

We need to install many packages just to get a simple GraphQL client, but fortunately each package is pretty small. Before we get started, let's introduce them one by one, as follows:

	apollo-client is the wrapping package for all of the packages that we installed. Apollo Client relies on all of the other packages.

	apollo-cache-inmemory is the package that manages all state and cache dynamics. This package no longer relies on Redux, unlike previous versions.

	apollo-link-http implements the methods to send your GraphQL request through HTTP. As mentioned in the previous chapters, you can also choose to use GraphQL with other transport layers.

	apollo-link-error handles all errors that occur during a request to Apollo. They can be network, schema, or other errors.

	apollo-link is an interface that the other link packages rely on. It allows them to adjust requests or responses according to your requirements.

	react-apollo manages the communication between the browser DOM and the virtual DOM of React. Any changes made to the what's called the shadow DOM of React are transferred to the real DOM. However, changes made to the real DOM are not transmitted to the React state.

You will see how these packages work together in this section. The great thing about this approach is that you can customize almost all parts of Apollo Client, according to your requirements.

An alternative approach is to use the apollo-boost package. By installing apollo-boost, you install all of the preceding packages at once. If you use this package, however, you can't customize your Apollo stack. It is more work to do it manually, but the benefits are worth it.

To get started with the manual setup of the Apollo Client, create a new folder and file for the client, as follows:

mkdir src/client/apollo
touch src/client/apollo/index.js

We will set up Apollo Client in this index.js file. Our first setup will represent the most basic configuration to get a working GraphQL client.

The following code was taken from the official Apollo documentation. Generally, I recommend reading through the Apollo documentation, as it is very well written: https://www.apollographql.com/docs/react/essentials/get-started.html

Just insert the following code:

import { ApolloClient } from 'apollo-client';
import { InMemoryCache } from 'apollo-cache-inmemory';
import { HttpLink } from 'apollo-link-http';
import { onError } from 'apollo-link-error';
import { ApolloLink } from 'apollo-link';

const client = new ApolloClient({
 link: ApolloLink.from([
 onError(({ graphQLErrors, networkError }) => {
 if (graphQLErrors) {
 graphQLErrors.map(({ message, locations, path }) =>
 console.log(`[GraphQL error]: Message: ${message}, Location:
 ${locations}, Path: ${path}`));
 if (networkError) {
 console.log(`[Network error]: ${networkError}`);
 }
 }
 }),
 new HttpLink({
 uri: 'http://localhost:8000/graphql',
 }),
]),
 cache: new InMemoryCache(),
});

export default client;

The preceding code uses all of the new packages, apart from react-apollo. Let's break down the code:

	First, at the top of the file, we imported nearly all of the packages that we installed.

	We instantiated ApolloClient. For this to work, we passed some parameters, which are the link and cache properties.

	The link property is filled by the ApolloLink.from command. This function walks through an array of links and initializes each of them, one by one:

	The first link is the error link. It accepts a function that tells Apollo what should be done if an error occurs.

	The second link is the HTTP link for Apollo. You have to offer a URI, under which our Apollo or GraphQL server is reachable. Apollo Client sends all requests to this URI. Notably, the order of execution is the same as the array that we just created.

	The cache property takes an implementation for caching. One implementation can be the default package, InMemoryCache, or a different cache.

There are many more properties that our links can understand (especially the HTTP link). They feature a lot of different customization options, which we will look at later. You can also find them in the official documentation, at https://www.apollographql.com/docs/react/.

In the preceding code we export the initialized Client using the export default client line. We are then able to use it in our React app.

The basic setup to send GraphQL request using the Apollo Client is finished. In the next section, we will send our first GraphQL request through Apollo Client.

 Testing the Apollo Client

Before inserting the GraphQL client directly into our React application tree, we should test it. This is also the next step in Apollo's official documentation. We will write some temporary code to send our first GraphQL query. After testing our GraphQL client, we will remove the code again. The easiest way to do this is to use the graphl-tag package:

	First, install this package with npm, as follows:

npm install --save graphql-tag

	Import the package at the top of the Apollo Client setup, as follows:

import gql from 'graphql-tag';

	Then, add the following code before the client is exported:

client.query({
 query: gql`
 {
 posts {
 id
 text
 user {
 avatar
 username
 }
 }
 }`
}).then(result => console.log(result));

The preceding code is almost the same as the example from the Apollo documentation, but I have replaced their query with one that matches our back end.

Here, we used the graphql-tag package to parse a template literal. A template literal is just a multi-line string surrounded by two grace accents. The gql command parses this literal to an abstract syntax tree (AST). Abstract syntax trees are the first step of GraphQL, they are used to validate deeply nested objects the schema and the query.

If you want to know more about ASTs, the people at Contentful wrote a great article about what ASTs mean to GraphQL, at https://www.contentful.com/blog/2018/07/04/graphql-abstract-syntax-tree-new-schema/.

The client sends our query after the parsing has completed. A great feature of graphql-tag is that it caches parsed queries and saves them for the next use.

To test the preceding code, we should start the server and the front end. One option is to build the front end now, and then start the server. In this case, the URL to browse the front end would be http://localhost:8000. A better option would be to spawn the server with npm run server, and then open a second terminal. Then, you can start the webpack development server by executing npm run client. A new browser tab should open automatically.

However, we have forgotten something: the client is set up in our new file, but it is not yet used anywhere. Import it in the index.js root file of our client React app, below the import of the App class:

import client from './apollo';

The browser should be reloaded, and the query sent. You should be able to see a new log inside the console of the developer tools of your browser.

The output should look like the following screenshot:

The data object looks much like the response that we received when sending requests through Postman, except that, now, it has some new properties: loading, networkStatus, and stale. Each of these stands for a specific status, as follows:

	loading, as you might expect, indicates whether the query is still running or has already finished.

	networkStatus goes beyond this and gives you the exact status of what happened. For example, the number seven indicates that there are no running queries that produce errors. The number eight means that there has been an error. You can look up the other numbers in the official GitHub repository, at https://github.com/apollographql/apollo-client/blob/master/packages/apollo-client/src/core/networkStatus.ts.

	stale is set whenever data is missing and is only partially available to the user.

Now that we have verified that the query has run successfully, we can connect Apollo Client to the React DOM. Please remove the temporary code that we wrote in this section before continuing. This includes everything except the import statement in the App.js file.

 Binding the Apollo Client to React

We have tested Apollo Client, and have confirmed that it works. However, React does not yet have access to it. Since Apollo Client is going to be used everywhere in our application, we can set it up in our root index.js file, as follows:

import React from 'react';
import ReactDOM from 'react-dom';
import { ApolloProvider } from 'react-apollo';
import App from './App';
import client from './apollo';

ReactDOM.render(
 <ApolloProvider client={client}>
 <App />
 </ApolloProvider>, document.getElementById('root')
);

As we mentioned in Chapter 1, Preparing Your Development Environment, you should only edit this file when the whole application needs access to the new component. In the preceding code, you can see that we import the last package that we installed at the beginning, with react-apollo. The ApolloProvider that we extracted from it is the first layer of our React application. It surrounds the App class, passing the Apollo Client that we wrote to the next level. To do this, we pass the client to the provider as a property. Every underlying React component can now access the Apollo Client.

We should be now able to send GraphQL requests from our React app.

 Using the Apollo Client in React

The Apollo Client gives us everything that we need to send requests from our React components. We have already tested that the client works. Before moving on, we should clean up our file structure, in order to make it easier for us later in the development process. Our front end is, at the moment, still displaying posts that come from static demo data. The first step is to move over to the Apollo Client and fetch the data from our GraphQL API.

Follow the instructions below to connect your first React component with the Apollo Client:

	Clone the App.js file to another file, called Feed.js.

	Remove all parts where React Helmet is used, and rename the class Feed, instead of App.

	From the App.js file, remove all of the parts that we have left in the Feed class.

	Furthermore, we must render the Feed class inside of the App class. It should like the following code:

import React, { Component } from 'react';
import { Helmet } from 'react-helmet';
import Feed from './Feed';
import '../../assets/css/style.css';

export default class App extends Component {
 render() {
 return (
 <div className="container">
 <Helmet>
 <title>Graphbook - Feed</title>
 <meta name="description" content="Newsfeed of all your
 friends on Graphbook" />
 </Helmet>
 <Feed />
 </div>
)
 }
}

The corresponding Feed class should only include the parts where the news feed is rendered.

We imported the Feed class and inserted it inside of the render method of our App class, so that it is rendered. The next chapter focuses on reusable React components, and how to write well-structured React code. Now, let's take a look at why we split our App class into two separate files.

 Querying in React with the Apollo Client

There are two main approaches offered by Apollo that can be used to request data. The first one is a higher-order component (HoC), provided by the react-apollo package. The second one is the Query component of Apollo, which is a special React component. Both approaches have their advantages and disadvantages.

 Apollo HoC query

A higher-order component is a function that takes a component as input and returns a new component. This method is used in many cases wherein we have multiple components all relying on the same functionalities, such as querying for data. In these cases, you extract the logic to query for data in a separate function, which extends the original components and enables them to fetch their data. The necessary properties are passed to the component by a higher-order function.

If you are not familiar with higher-order components, you should read up on them. The official React documentation provides you with the essential information at https://reactjs.org/docs/higher-order-components.html.

To see a real example of this, we use the posts feed. Follow these instructions to get a working Apollo Query HoC:

	Remove the demo posts from the top of the Feed.js file.

	Remove the posts field from the state initializer.

	Import graphl-tag and parse our query with it, as follows:

import gql from 'graphql-tag';
import { graphql } from 'react-apollo';

const GET_POSTS = gql`{
 posts {
 id
 text
 user {
 avatar
 username
 }
 }
}`;

	Replace everything in the render function, before the final return statement, with the following code:

const { posts, loading, error } = this.props;
const { postContent } = this.state;

if(loading) {
 return "Loading...";
}
if(error) {
 return error.message;
}

Note that the render function is now very clean, as it was before. It only includes and renders the markup and the loop over the posts.

	Remove the export statement from the Feed class. We will export the new component returned from the HoC at the end of the file. The export must look as follows:

export default graphql(GET_POSTS, {
 props: ({ data: { loading, error, posts } }) => ({
 loading,
 posts,
 error
 })
})(Feed)

Notably, we also imported the graphql HoC function from the react-apollo package. This function accepts the actual GraphQL query that we want to send as the first parameter. The second parameter allows us to map the result of the HoC to specific properties of the child component, which is our Feed class. The posts, loading, and error parameters are passed as properties to the Feed component, via the HoC. This separates the rendering logic from the data fetching. The last parameter is the Feed class (the component that is processed by the HoC). We pass it to a new function call, which is the result of the graphql function. We do not pass it as the third parameter of the graphql function.

This approach is my favorite solution to query data from a GraphQL API through Apollo. However, I would recommend that you use a different solution, which we will look at in the following section.

 The Apollo Query component

We will now take a look at the second approach, which is also the approach of the official Apollo documentation. Before getting started, undo the HoC implementation to send requests from the previous section. The new way of fetching data through the Apollo Client is via render props, or render functions. These were introduced to the Apollo Client in March 2018, and they replaced the good old HoC process.

Take a look at the official React documentation about render props, because this is not a particularly easy topic: https://reactjs.org/docs/render-props.html

Now, follow these instructions to get the Query component running:

	Remove the demo posts from the top of the Feed.js file.

	Remove the posts from the state and stop extracting them from the component state in the render method, too.

	Import the Query component from the react-apollo package and graphl-tag, as follows:

import gql from 'graphql-tag';
import { Query } from 'react-apollo';

const GET_POSTS = gql`{
 posts {
 id
 text
 user {
 avatar
 username
 }
 }
}`;

	The Query component can now be rendered. The only parameter, for now, is the parsed query that we want to send. Replace the complete render method with the following code:

render() {
 const { postContent } = this.state;

 return (
 <div className="container">
 <div className="postForm">
 <form onSubmit={this.handleSubmit}>
 <textarea value={postContent} onChange=
 {this.handlePostContentChange} placeholder="Write your
 custom post!"/>
 <input type="submit" value="Submit" />
 </form>
 </div>
 <div className="feed">
 <Query query={GET_POSTS}>
 {({ loading, error, data }) => {
 if (loading) return "Loading...";
 if (error) return error.message;

 const { posts } = data;
 return posts.map((post, i) =>
 <div key={post.id} className="post">
 <div className="header">

 <h2>{post.user.username}</h2>
 </div>
 <p className="content">
 {post.text}
 </p>
 </div>
)
 }}
 </Query>
 </div>
 </div>
)
}

In the preceding code, you can see why I prefer not to use this approach. The Query component requires a function as its child. This function receives three properties—loading, error, and data—much like with the HoC approach. Inside of this function, you can handle whatever you want to render. If the posts request is successful, we render the posts feed as before.

You may think that you could render a component directly, as a child instead of as a function, as with the higher-order component, but this is not possible. Apollo requires us to specify a function, not a React component, as a child.

In my opinion, this is a dirty way of rendering and requesting data. It moves away from the standard component workflow of React. The React community, however, prefers render props, which is why it was implemented in Apollo Client. To improve this, you can write separate components for each Query or Mutation component that you use. Then, you can hand over all of the properties given by our Apollo components to our custom ones. This way, the render function is more readable when using the Query component. You will see this solution soon.

We will continue to use the Query and Mutation components, as this is the default way of writing GraphQL requests in the latest versions of Apollo Client.

There are some great comparisons between the solutions on Medium: https://medium.com/@dai_shi/the-nice-query-component-in-react-apollo-2-1-688e50e03893

No matter which approach you take, the rendered output should look like that in Chapter 1, Preparing Your Development Environment. The form to create a new post is not working at the moment because of our changes; let's fix this in the next section.

 Mutations with the Apollo Client

We have replaced the way that we get the data in our client. The next step is to switch the way that we create new posts, too. Before Apollo Client, we had to add the new fake posts to the array of demo posts manually, within the memory of the browser. Now, everything in our text area is sent with the addPost mutation to our GraphQL API, through Apollo Client.

As with GraphQL queries, there is a Mutation component that we are going to use. We are also going to compare it to the HoC method. To keep up the comparisons between them, we will start with the HoC method. Both approaches are valid ways to do this; there is nothing that is vastly different between them behind the scenes.

Let's start with the higher-order component approach.

 The Apollo Mutation HoC

The complete HoC workflow requires you to have the HoC Query method set up, too. Otherwise, you won't be able to see why this approach has some advantages over the other one.

So, if you have undone the Query HoC, you should insert the code again, in order to test the mutation HoC. You can also skip to the next section, where you will learn how to use the Mutation component.

Follow these instructions to set up the mutation HoC:

	Import the compose method from the react-apollo package, as follows:

import { graphql, compose } from 'react-apollo';

	Add the addPost mutation and parse it with graphql-tag:

const ADD_POST = gql`
 mutation addPost($post : PostInput!) {
 addPost(post : $post) {
 id
 text
 user {
 username
 avatar
 }
 }
 }
`;

	We will adjust the way that the Feed class is exported. In the first HoC example, we had the graphql method, which sent the GraphQL query and inserted that response data into the underlying Feed component. Now, we will use the compose function of react-apollo, which takes a set of GraphQL queries, or mutations. These are run or passed as functions to the component. Add the following code to the bottom, and remove the old export statement:

const ADD_POST_MUTATION = graphql(ADD_POST, {
 name: 'addPost'
});

const GET_POSTS_QUERY = graphql(GET_POSTS, {
 props: ({ data: { loading, error, posts } }) => ({
 loading,
 posts,
 error
 })
});

export default compose(GET_POSTS_QUERY, ADD_POST_MUTATION)(Feed);

Instead of using the graphql method directly on the Feed component, we first save the mutation and query in two separate variables. The mutation takes a parameter, name, which says that the mutation can be run under the name addPost, inside of the Feed component. The query looks similar to the query that we used in the previous section. The compose method takes both variables and connects them with the Feed component. All of the queries are directly executed, if not specified differently. All mutations are passed as functions to the component to be run programmatically.

	Our form works as expected. Every piece of text that you enter in the text area is saved to the state of the component. When submitting the form, we want to send the addPost mutation with the Apollo Client. The addPost function is available under the properties of the Feed component, as we specified it in the preceding code. When giving a variables object as a parameter, we can fill in our input fields in the mutation, as is expected by our GraphQL schema:

handleSubmit = (event) => {
 const self = this;
 event.preventDefault();
 const newPost = {
 text: this.state.postContent
 };
 this.props.addPost({ variables: { post: newPost }}).then(() => {
 self.setState((prevState) => ({
 postContent: ''
 }));
 });
}

The code looks very clean when using the HoC approach. We first parse all of the queries. Then, we define our class, including the render method, which we haven't touched at all. Finally, we define the two GraphQL requests that we are going to send, and export the constructed component. The code is very readable.

If you try to add a new post through the front end, you won't be able to see it immediately. The form will be empty, and everything will look as though it should have worked, but the new post will not be shown. This happens because the current state (or cache) of our component has not yet received the new post. The easiest way to test that everything has worked is to refresh the browser.

Of course, this is not the way that it should work. After the mutation has been sent, the new post should be directly visible in the feed. We will fix this after we have had a look at the second approach, which uses the Mutation component.

 The Apollo Mutation component

The Mutation component is very similar to the Query component. Be sure to undo the HoC solution changes before continuing. Follow these steps to get the Mutation component running:

	Import the Mutation component from the react-apollo package, as follows:

import { Query, Mutation } from 'react-apollo';

	Export the Feed component again, as we did in the previous Query component example. Remove the ADD_POST_MUTATION and GET_POSTS_QUERY variables when doing so:

export default class Feed extends Component

	Next, add the Mutation component inside of the render function. We will surround the form with this component, as this is the only part of our content where we need to send a mutation:

render() {
 const self = this;
 const { postContent } = this.state;

 return (
 <Query query={GET_POSTS}>
 {({ loading, error, data }) => {
 if (loading) return <p>Loading...</p>;
 if (error) return error.message;

 const { posts } = data;

 return (
 <div className="container">
 <div className="postForm">
 <Mutation mutation={ADD_POST}>
 {addPost => (
 <form onSubmit={e => {
 e.preventDefault();
 addPost({ variables: { post: { text:
 postContent
 } } }).then(() => {
 self.setState((prevState) => ({
 postContent: ''
 }));
 });
 }}>
 <textarea value={postContent} onChange=
 {self.handlePostContentChange} placeholder="Write
 your custom post!"/>
 <input type="submit" value="Submit" />
 </form>
)}
 </Mutation>
 </div>
 <div className="feed">
 {posts.map((post, i) =>
 <div key={post.id} className="post">
 <div className="header">

 <h2>{post.user.username}</h2>
 </div>
 <p className="content">
 {post.text}
 </p>
 </div>
)}
 </div>
 </div>
)
 }}
 </Query>
)
}

The surrounded form now directly implements the onSubmit function. We could also extract this to a separate class method, but it is working this way. The Mutation component accepts the mutation property, which receives the GraphQL request that we want to send. The form can access the addPost function, which is exposed inside of the render prop function.

The render function is now more complex than it was before. In my opinion, the HoC solution looks much cleaner, despite the advantages that this solution might have. In the next chapter, we will look at how to make this more readable and reusable. No matter which approach you choose, the result will be the same.

You can now try out the Mutation component by submitting a new post. Our feed does not show the post until we refresh the browser again. In the next section, we will look at how to fix this issue.

 Updating the UI with the Apollo Client

After running the addPost mutation, the request goes through to the server and saves the new post in our database without any problems. However, we still cannot see the changes take effect in the front end immediately.

In this introduction to direct cache access and refetching, we will focus on the new standard Query and Mutation components. If you, like me, prefer HoCs, there are many tutorials that cover how to update the UI when using HoCs.

There are two different ways to update the UI after a mutation:

	Refetching the dataset: This is easy to implement, but it refetches all of the data, which is inefficient.

	Updating the cache according to the inserted data: This is harder to understand and implement, but it attaches the new data to the cache of the Apollo Client, so no refetching is needed.

We use these solutions in different scenarios. Let's take a look at some examples. Refetching makes sense if further logic is implemented on the server, which is hidden from the client when requesting a list of items, and which is not applied when inserting only one item. In these cases, the client cannot simulate the state of the typical response of a server.

Updating the cache, however, makes sense when adding or updating items in a list, like our post feed. The client can insert the new post at the top of the feed.

We will start by simply refetching requests, and then we'll go over the cache update implementation. The following sections (and chapters) will assume that you are not using the HoC method.

 Refetching queries

As mentioned previously, this is the easiest method to update your user interface. The only step is to set an array of queries to be refetched. The Mutation component should look as follows:

<Mutation
 refetchQueries={[{query: GET_POSTS}]}

Each object that you enter in the refetchQueries array needs a query property. Each component relying on one of those requests is rerendered when the response for its associated query arrives. It also includes components that are not inside of the Feed class. All components using the post's GET_POSTS query are rerendered.

You can also provide more fields to each query, such as variables to send parameters with the re-fetch request. Submitting the form resends the query, and you can see the new post directly in the feed. Refetching also reloads the posts that are already showing, which is unnecessary.

Now, let's take a look at how we can do this more efficiently.

 Updating the Apollo cache

We want to explicitly add only the new post to the cache of the Apollo Client. Using the cache helps us to save data, by not refetching the complete feed or rerendering the complete list. To update the cache, you should remove the refetchQueries property. You can then introduce a new property, called update, as shown in the following code:

<Mutation
 update = {(store, { data: { addPost } }) => {
 const data = store.readQuery({ query: GET_POSTS });
 data.posts.unshift(addPost);
 store.writeQuery({ query: GET_POSTS, data });
 }}

The new property runs when the GraphQL addPost mutation has finished. The first parameter that it receives is the store of the Apollo Client, in which the whole cache is saved. The second parameter is the returned response of our GraphQL API.

Updating the cache works as follows:

	Use the store.readQuery function by passing a query as a parameter. It reads the data, which has been saved for this specific query inside of the cache. The data variable holds all of the posts that we have in our feed.

	Now that we have all of the posts in an array, we can add the missing post. Make sure that you know whether you need to prepend or append an item. In our example, we want to insert a post at the top of our list, so we need to prepend it. You can use the unshift JavaScript function to do this. We just set our addPost as the first item of the data.posts array.

	We need to save the changes back to the cache. The store.writeQuery.The function accepts the query which we used to send the request. This query is used to update the saved data in our cache. .second parameter is the data that should be saved.

	When the cache has been updated, our user interface reactively renders the changes.

In reality, you can do whatever you want in the update function, but we only use it to update the Apollo Client store.

We wait for the response to arrive, and then push the new item to the list afterward. In the next section, we will be a bit more optimistic about the response of our server, and will add the item before the request's response successfully arrives.

 Optimistic UI

Apollo provides the great feature of being able to update the UI in an optimistic manner. An optimistic manner means that Apollo adds the new data or post to the storage before the request has finished. The advantage is that the user can see the new result, instead of waiting for the response of the server. This solution makes the application feel faster and more responsive.

This section expects the update function of the Mutation component to already be implemented. Otherwise, this UI feature will not work. We need to add the optimisticResponse property to our mutation, as follows:

optimisticResponse= {{
 __typename: "mutation",
 addPost: {
 __typename: "Post",
 text: postContent,
 id: -1,
 user: {
 __typename: "User",
 username: "Loading...",
 avatar: "/public/loading.gif"
 }
 }
}}

The optimisticResponse can be anything from a function to a simple object. The return value, however, needs to be a GraphQL response object. What you see here is an addPost object that looks like our GraphQL API could return it, if our request is successful. You need to fill in the __typename fields, according to the GraphQL schema that you are using. That is why the type names Post and User are inside of this fake object.

The id of the optimistic response is set to minus one. React expects that every component in a loop gets a unique key. We usually use the id of a post as the key. Minus one is never used by any other post, because MySQL starts counting at one. Another advantage is that we can use this id to set a special class to the post item in our list.

Furthermore, the username and the user's avatar are set to loading. That is because we don't have built-in authentication. React and Apollo do not have a user associated with the current session, so we cannot enter the user's data into the optimisticResponse. We fix this once the authentication is ready. This is an excellent example of how to handle a situation in which you do not have all of the data until you receive a response from the server.

To set a particular class on the list item, we conditionally set the correct className in our map loop. Insert the following code into the render method:

{posts.map((post, i) =>
 <div key={post.id} className={'post ' + (post.id < 0 ? 'optimistic':
 '')}>
 <div className="header">

 <h2>{post.user.username}</h2>
 </div>
 <p className="content">
 {post.text}
 </p>
 </div>
)}

An example CSS style for this might look as follows:

.optimistic {
 -webkit-animation: scale-up 0.4s cubic-bezier(0.390, 0.575, 0.565, 1.000)
 both;
 animation: scale-up 0.4s cubic-bezier(0.390, 0.575, 0.565, 1.000) both;
}

@-webkit-keyframes scale-up {
 0% {
 -webkit-transform: scale(0.5);
 transform: scale(0.5);
 }
 100% {
 -webkit-transform: scale(1);
 transform: scale(1);
 }
}

@keyframes scale-up {
 0% {
 -webkit-transform: scale(0.5);
 transform: scale(0.5);
 }
 100% {
 -webkit-transform: scale(1);
 transform: scale(1);
 }
}

CSS animations make your applications more modern and flexible. If you experience issues when viewing these in your browser, you may need to check whether your browser supports them.

You can see the result in the following screenshot:

The loading spinner and the username are removed once the response arrives from our API, and the update function is executed again with the real data. You do not need to take care of removing the loading post yourself; it is done by Apollo automatically. Any spinner component from an npm package or GIF file can be used where I have inserted the loading animation. The file that I am using needs to be saved under the public folder, with the name loading.gif, so that it can be used through the CSS that we added in the preceding code.

Everything is now set up for sending new posts. The user interface responds immediately, and shows you the new post.

However, what about new posts from your friends and colleagues? Currently, you need to reload the page to see them, which is not very intuitive. At the moment, we only add the posts that we send on our own, but do not receive any information about new posts from other people. I will show you the quickest way to handle this in the following section.

 Polling with the Query component

Polling is nothing more than rerunning a request after a specified interval. This procedure is the simplest way to implement real-time updates for our news feed. However, multiple issues are associated with polling, as follows:

	It is inefficient to send requests without knowing whether there is any new data. The browser might send dozens of requests without ever receiving a new post.

	If we directly send the initial request again, we will get all of the posts, including those that we are already showing to the user.

	When sending requests, the server needs to query the database and calculate everything. Unnecessary requests cost money and time.

There are some use cases in which polling makes sense. One example is a real-time graph, in which every axis tick is displayed to the user, whether there is data or not. You do not need to use an interrupt-based solution, since you want to show everything. Despite the issues that come with polling, let's quickly run through how it works. All you need to do is fill in the pollInterval property, as follows:

<Query query={GET_POSTS} pollInterval={5000}>

The Query component looks like the preceding code. The request is resent every 5 seconds (5,000 milliseconds).

As you might expect, there are other ways to implement real-time updates to your user interface. One approach is to use server-sent events. A server-sent event is as the name suggests: an event that is sent by the server to the client. The client needs to establish a connection to the server, but then the server can send messages to the client, in one direction. Another method is to use WebSockets, which allow for bidirectional communication between the server and the client. The most common method, however, is to use Apollo Subscriptions. They are based on Websockets, and work perfectly with GraphQL. I will show you how Apollo Subscriptions work in Chapter 10, Real Time subscriptions.

Let's continue and integrate the rest of our GraphQL API.

 Implementing chats and messages

In the previous chapter, we programmed a pretty dynamic way of creating chats and messages with your friends and colleagues, either one-on-one or in a group. There are some things that we have not discussed yet, such as authentication, real-time subscriptions, and friend relationships. First, however, we are going to work on our new skills, using React with Apollo Client to send GraphQL requests. It is a complicated task, so let's get started.

 Fetching and displaying chats

Our news feed is working as we expected. Now, we also want to cover chats. As with our feed, we need to query for every chat that the current user (or, in our case, the first user) is associated with.

The initial step is to get the rendering working with some demo chats. Instead of writing the data on our own, as we did in the first chapter, we can now execute the chats query. Then, we can copy the result into the new file as static demo data, before writing the real Query component.

Let's get started, as follows:

	Send the GraphQL query. The best options involve Apollo Client Developer Tools, if you already know how they work. Otherwise, you can rely on Postman, as you did previously:

query {
 chats {
 id
 users {
 avatar
 username
 }
 }
}

The request looks a bit different from the one we tested with Postman. The chat panel that we are going to build only needs specific data. We do not need to render any messages inside of this panel, so we don't need to request them. A complete chat panel only requires the chat itself, the id, the usernames, and the avatars. Later, we will retrieve all of the messages, too, when viewing a single chat.

 Next, create a new file called Chats.js, next to the Feed.js file.

Copy the complete response over to an array inside of the Chats.js file, as follows. Add it to the top of the file:

const chats = [{
 "id": 1,
 "users": [{
 "id": 1,
 "avatar": "/uploads/avatar1.png",
 "username": "Test User"
 },
 {
 "id": 2,
 "avatar": "/uploads/avatar2.png",
 "username": "Test User 2"
 }]
 }
];

	Import React ahead of the chats variable. Otherwise, we will not be able to render any React components:

import React, { Component } from 'react';

	Set up the React Component. I have provided the basic markup here. Just copy it beneath the chats variable. I am going to explain the logic of the new component shortly:

export default class Chats extends Component {
 usernamesToString(users) {
 const userList = users.slice(1);
 var usernamesString = '';

 for(var i = 0; i < userList.length; i++) {
 usernamesString += userList[i].username;
 if(i - 1 === userList.length) {
 usernamesString += ', ';
 }
 }
 return usernamesString;
 }
 shorten(text) {
 if (text.length > 12) {
 return text.substring(0, text.length - 9) + '...';
 }

 return text;
 }
 render() {
 return (
 <div className="chats">
 {chats.map((chat, i) =>
 <div key={chat.id} className="chat">
 <div className="header">
 2 ?
 '/public/group.png' : chat.users[1].avatar)} />
 <div>
 <h2>{this.shorten(this.usernamesToString(chat.users
))}</h2>
 </div>
 </div>
 </div>
)}
 </div>
)
 }
}

The component is pretty basic, at the moment. In the render method, we map over all of the chats, and return a new list item for each chat. Each list item has an image, which is taken from the second user of the array, since we defined that the first user in the list is the current user, as long as we have not implemented authentication. We use a group icon if there are more than two users. When we have implemented authentication, and we know the logged-in user, we can take the specific avatar of the user that we are chatting with.

The title displayed inside of the h2 tag at the top of the chat is the name (or names) of the user(s). For this, I have implemented the usernamesToString method, which loops over all of the usernames and concatenates them into a long string. The result is passed into the shorten function, which removes all of the characters of the string that exceed the size of the maximum-twelve characters.

	Our new component needs some styling. Copy the new CSS to our style.css file.

To save the file size in our CSS file, replace the two post header styles to also cover the style of the chats, as follows:

.post .header > *, .chats .chat .header > * {
 display: inline-block;
 vertical-align: middle;
}

.post .header img, .chats .chat .header img {
 width: 50px;
 margin: 5px;
}

We must append the following CSS to the bottom of the style.css file:

.chats {
 background-color: #eee;
 width: 200px;
 height: 100%;
 position: fixed;
 top: 0;
 right: 0;
 border-left: 1px solid #c3c3c3;
}

.chats .chat {
 cursor: pointer;
}

.chats .chat .header > div {
 width: calc(100% - 65px);
 font-size: 16px;
 margin-left: 5px;
}

.chats .chat .header h2, .chats .chat .header span {
 color: #333;
 font-size: 16px;
 margin: 0;
}

.chats .chat .header span {
 color: #333;
 font-size: 12px;
}

	To get the code working, we must also import the Chats class in our App.js file:

import Chats from './Chats';

	Render the Chats class inside of the render method, beneath the Feed class inside of the App.js file.

The current code generates the following screenshot:

source: https://www.vecteezy.com/

On the right-hand side, you can see the chats panel that we have just implemented. Every chat is listed there as a separate row.

The result isn't bad, but it would be much more helpful to at least have the last message of every chat beneath the username, so that you could directly see the last content of your conversations.

Just follow these instructions to get the last message into the chats panel:

	The easiest way to do this would be to add the messages to our query again, but querying all of the messages for every chat that we wanted to display in the panel would not make much sense. Instead, we will add a new property to the chat entity, called lastMessage. That way, we will only get the newest message. We will add the new field to the GraphQL schema of our chat type, in the back end code, as follows:

lastMessage: Message

Of course, we must also implement a function that retrieves the lastMessage field.

	Our new resolvers.js function orders all of the chat messages by id, and takes the first one. By definition, this should be the latest message in our chat. We need to resolve the promise on our own and return the first element of the array, since we expect to return only one message object. If you return the promise directly, you will receive null in the response from the server, because an array is not a valid response for a single message entity:

lastMessage(chat, args, context) {
 return chat.getMessages({limit: 1, order: [['id', 'DESC']]}).then((message) => {
 return message[0];
 });
},

	You can add the new property to our static data, inside of Chats.js. Rerunning the query (as we did in step 1) would also be possible:

"lastMessage": {
 "text": "This is a third test message."
}

	We can render the new message with a simple span tag beneath the h2 of the username. Copy it directly into the render method, inside of our Chats class:

{this.shorten(chat.lastMessage.text)}

The result of the preceding changes renders every chat row with the last message inside of the chat. This looks like the following screenshot:

source: https://www.vecteezy.com/

If you are not that happy with the design, feel free to change it as you wish. As I am not a designer, I won't put too much effort into it.

Since everything is displayed correctly from our test data, we can introduce the Query component, in order to fetch all of the data from our GraphQL API. We can remove the chats array. Then, we will import all of the dependencies and parse the GraphQL query, as in the following code:

import gql from 'graphql-tag';
import { Query } from 'react-apollo';

const GET_CHATS = gql`{
 chats {
 id
 users {
 id
 avatar
 username
 }
 lastMessage {
 text
 }
 }
}`;

Our new render method does not change much. We just include the Apollo Query component, as follows:

<div className="chats">
 <Query query={GET_CHATS}>
 {({ loading, error, data }) => {
 if (loading) return <p>Loading...</p>;
 if (error) return error.message;

 const { chats } = data;

 return chats.map((chat, i) =>
 <div key={"chat" + chat.id} className="chat">
 <div className="header">
 2 ? '/public/group.png' :
 chat.users[1].avatar)} />
 <div>
 <h2>{this.shorten(this.usernamesToString(chat.users))}
 </h2>
 {chat.lastMessage &&
 this.shorten(chat.lastMessage.text)}
 </div>
 </div>
 </div>
)
 }}
 </Query>
</div>

Be sure to render the div with the chats class name first, and after that, the chat loop function. The reason for this is that we want to show the user the gray panel, with a loading indicator. If you do it the other way round, the gray panel will be displayed when the response is successfully received. You should have run the addChat mutation from the previous chapter through Postman. Otherwise, there will be no chats to query for, and the panel will be empty. You have to execute this mutation also for any following chapter because we are not going to implement a special button for this functionality.

One obvious question that you might have is as follows: How can we create new chats with other users? We will focus on this issue when we have implemented the authentication properly, and can visit users' profiles. Next, we want to display the chat messages after opening a specific chat.

 Fetching and displaying messages

We will start with the Query component from the beginning. First, however, we have to store the chats that were opened by a click from the user. Every chat is displayed in a separate, small chat window, like in Facebook. Add a new state variable to save the ids of all of the opened chats to the Chats class:

state = {
 openChats: []
}

To let our component insert something into the array of open chats, we will add the new openChat method to our Chats class:

openChat = (id) => {
 var openChats = this.state.openChats.slice();

 if(openChats.indexOf(id) === -1) {
 if(openChats.length > 2) {
 openChats = openChats.slice(1);
 }
 openChats.push(id);
 }

 this.setState({ openChats });
}

When a chat is clicked on, we will first check that it is not already open, by searching the id using the indexOf function inside of the openChats array.

Every time a new chat is opened, we will check whether there are three or more chats. If that is the case, we will remove the first opened chat from the array, and exchange it with the new one by appending it to the array with the push function. We will only save the chat ids, not the whole JSON object.

The last step is to bind the onClick event to our component. In the map function, we can replace the wrapping div tag with the following line:

<div key={"chat" + chat.id} className="chat" onClick={() => self.openChat(chat.id)}>

Here, we use onClick to call the openChat method, with the chat id as the only parameter. At this point, the new function is already working, but the updated state isn't used. Let's take care of that:

	Add a surrounding wrapper div tag to the whole render method:

<div className="wrapper">

	We insert the new markup for the open chats next to the chats panel. You cannot insert it inside the panel directly, due to the CSS that we are going to use:

<div className="openChats">
 {openChats.map((chatId, i) =>
 <Query key={"chatWindow" + chatId} query={GET_CHAT}
 variables={{ chatId }}>
 {({ loading, error, data }) => {
 if (loading) return <p>Loading...</p>;
 if (error) return error.message;

 const { chat } = data;

 return (
 <div className="chatWindow">
 <div className="header">
 {chat.users[1].username}
 <button className="close">X</button>
 </div>
 <div className="messages">
 {chat.messages.map((message, j) =>
 <div key={'message' + message.id} className=
 {'message ' + (message.user.id > 1 ? 'left' :
 'right')}>
 {message.text}
 </div>
)}
 </div>
 </div>
)
 }}
 </Query>
)}
</div>

Here, we are walking over the openChats variable by using the map function again. Every id in this array is given to the Query component as a variable for the GraphQL request. The rest can be understood easily.

Once the request arrives, we render a div tag with the chatWindow class name, in which all messages are displayed. Again, we are using the user id to fake the class name of the messages. We will replace it when we get authentication running.

	As you can see in the preceding code, we are not only passing the chat id as a parameter to the variables property of the Query component, but we also use another query stored in the GET_CHAT variable. We must parse this query first, with graphql-tag. Add the following code to the top of the file:

const GET_CHAT = gql`
 query chat($chatId: Int!) {
 chat(chatId: $chatId) {
 id
 users {
 id
 avatar
 username
 }
 messages {
 id
 text
 user {
 id
 }
 }
 }
 }
`;

	Because we rely on the openChats state variable, we must extract it in our render method. Add the following code before the return state, in the render method:

const self = this;
const { openChats } = this.state;

	The close button function relies on the closeChat method, which we will implement in our Chats class:

closeChat = (id) => {
 var openChats = this.state.openChats.slice();

 const index = openChats.indexOf(id);
 openChats.splice(index,1),

 this.setState({ openChats });
}

	The last thing missing is some styling. The CSS is pretty big. Every message from the other users should be displayed on the left, and our own messages on the right, in order to differentiate them. Insert the following CSS into the style.css file:

.chatWindow {
 width: 250px;
 float: right;
 background-color: #eee;
 height: 300px;
 margin-right: 10px;
 border-left: 1px solid #c3c3c3;
 border-right: 1px solid #c3c3c3;
}

.chatWindow .header {
 width: calc(100% - 10px);
 background-color: #c3c3c3;
 padding: 5px;
 height: 20px;
}

.chatWindow .header .close {
 float: right;
 border: none;
 background: none;
 color: #fff;
 cursor: pointer;
}

.chatWindow .header .close:focus {
 outline: none;
}

.chatWindow .messages {
 overflow-y: scroll;
 height: calc(100% - 50px);
}

.chatWindow .messages .message {
 width: 80%;
 border: 1px solid #4079f3;
 margin: 2px;
 border-radius: 5px;
 padding: 2px;
}

.chatWindow .messages .message.left {
 background-color: #78a3ff;
 color: #fff;
 float: left;
}

.chatWindow .messages .message.right {
 float: right;
 background-color: #E8F4FB;
 color: #000;
}

.openChats {
 position: fixed;
 right: 200px;
 width: calc(100% - 200px);
 bottom: 0;
}

.wrapper {
 height: 100%;
 right: 0;
 top: 0;
}

Take a look at the following screenshot:

We have forgotten something important. We can see all of the messages from our chat, but we are not able to add new messages, which is essential. Let's take a look at how to implement a chat message form in the next section.

 Sending messages through Mutations

The addMessage mutation already exists in our back end, so we can add it to our Chats component. First, parse the mutation at the top, next to the other requests:

const ADD_MESSAGE = gql`
 mutation addMessage($message : MessageInput!) {
 addMessage(message : $message) {
 id
 text
 user {
 id
 }
 }
 }
`;

For each open chat, we will have one input where the user can type his message. There are multiple solutions to save all of the inputs' text inside the React component's state. For now, we will keep it simple, but we will take a look at a better way to do this in the Chapter 5, Reusable React Components.

Open a new object inside of the state initializer in our Chats class:

textInputs: {}

This object is indexed with the chat id. The current input value is saved under each key. If we open or close a chat, we need to either add the index to the object with an empty string, or remove the property again. You should not use this in a production-ready application, as it is an example implementation. We will rework this in the next chapter.

Import the Mutation component from the react-apollo package, as follows:

import { Query, Mutation } from 'react-apollo';

Replace the existing openChat and closeChat methods with the following code:

openChat = (id) => {
 var openChats = this.state.openChats.slice();
 var textInputs = Object.assign({}, this.state.textInputs);

 if(openChats.indexOf(id) === -1) {
 if(openChats.length > 2) {
 openChats = openChats.slice(1);
 }
 openChats.push(id);
 textInputs[id] = '';
 }
 this.setState({ openChats, textInputs });
}

closeChat = (id) => {
 var openChats = this.state.openChats.slice();
 var textInputs = Object.assign({}, this.state.textInputs);

 const index = openChats.indexOf(id);
 openChats.splice(index,1);
 delete textInputs[id];
 this.setState({ openChats, textInputs });
}

The new functions in the preceding code include some logic to clear or create the input's state variable, once the chat is closed or opened.

Now, we must also handle the change event of the input by implementing a special function, as follows:

onChangeChatInput = (event, id) => {
 event.preventDefault();
 var textInputs = Object.assign({}, this.state.textInputs);
 textInputs[id] = event.target.value;
 this.setState({ textInputs });
}

We must prepare the markup needed to render a fully functional input. Put the input below the messages list, inside of the chat window. The Mutation component is rendered before the input, so that we can pass the mutation function to the input. The input inside receives the onChange property, in order to execute the onChangeChatInput function while typing:

<Mutation
 update = {(store, { data: { addMessage } }) => {
 const data = store.readQuery({ query: GET_CHAT, variables: {
 chatId: chat.id } });
 data.chat.messages.push(addMessage);
 store.writeQuery({ query: GET_CHAT, variables: { chatId: chat.id },
 data });
 }}
 mutation={ADD_MESSAGE}>
 {addMessage => (
 <div className="input">
 <input type="text" value={textInputs[chat.id]} onChange={(event
) => self.onChangeChatInput(event, chat.id)} onKeyPress={(event
) => {self.handleKeyPress(event, chat.id, addMessage)}}/>
 </div>
)}
</Mutation>

We have already covered pretty much everything here in previous examples. To quickly sum it up, we are using the update method to insert the server response inside of our cache, instead of refetching all of the messages. The input saves all changes directly inside of the component state. Furthermore, we use the onKeyPress event to handle Enter key hits, so that we can send the chat message. To make it just a bit cleaner, we pass the addMessage mutation to the handleKeyPress function, so that the mutation is run if we hit the Enter key.

The implementation of the handleKeyPress method is pretty straightforward. Just copy it into our component, as follows:

handleKeyPress = (event, id, addMessage) => {
 const self = this;
 var textInputs = Object.assign({}, this.state.textInputs);

 if (event.key === 'Enter' && textInputs[id].length) {
 addMessage({ variables: { message: { text: textInputs[id], chatId: id }
 } }).then(() => {
 textInputs[id] = '';
 self.setState({ textInputs });
 });
 }
}

Every time you hit Enter inside of the input, if you have entered valid text, the message will be sent to the GraphQL API. The new message is pushed to our local cache, and the input is cleared.

Let's quickly add some CSS to our style.css file, to make the input field look good:

.chatWindow .input input {
 width: calc(100% - 4px);
 border: none;
 padding: 2px;
}
.chatWindow .input input:focus {
 outline: none;
}

The following screenshot shows the chat window, with a new message inserted through the chat window input:

There are many features that we have not implemented, and that we won't cover in this book. For example, it would make sense to have the username next to the chat message if it is a group chat, to show the avatar next to the message, or to update the lastMessage in the chats panel once a new message is sent. The workload required to achieve a fully-fledged social network, such as Facebook, is impossible to cover in this book, but you are going to learn all of the required techniques, tools, and tactics, so that you can approach this on your own. The next important feature that we are going to cover is pagination.

 Pagination in React and GraphQL

By pagination, most of the time, we mean the batch querying of data. Currently, we query for all posts, chats, and messages in our database. If you think about how much data Facebook stores inside one chat with your friends, you will realize that it is unrealistic to fetch all of the messages and data ever shared at once. A better solution is to use pagination. With pagination, we always have a page size, or a limit, of how many items we want to fetch per request. We also have a page, or offset number, from which we can start to select data rows.

In this section, we're going to look at how to use pagination with the posts feed, as it is the most straightforward example. In the Chapter 5, Reusable React Components, we will focus on writing efficient and reusable React code. Sequelize offers the pagination feature by default. We can first insert some more demo posts, so that we can paginate in batches of 10.

We need to adjust the back end a bit before implementing it on our front end:

	Add a new RootQuery to our GraphQl schema, as follows:

postsFeed(page: Int, limit: Int): PostFeed

	The PostFeed type only holds the posts field. Later on, in the development of the application, you can return more information, such as the overall count of items, the page count, and so on:

type PostFeed {
 posts: [Post]
}

	Next, we must implement the PostFeed entity in our resolvers.js file. Copy the new resolver function over to the resolvers file, as follows:

postsFeed(root, { page, limit }, context) {
 var skip = 0;

 if(page && limit) {
 skip = page * limit;
 }

 var query = {
 order: [['createdAt', 'DESC']],
 offset: skip,
 };

 if(limit) {
 query.limit = limit;
 }

 return {
 posts: Post.findAll(query)
 };
},

We build a simple query object that Sequelize understands, which allows us to paginate our posts. The page number is multiplied by the limit, in order to skip the calculated number of rows. The offset parameter skips the number of rows, and the parameter limit stops selecting rows after a specified number (which, in our case, is 10).

Our front end needs some adjustments to support pagination. Install a new React package with npm, which provides us with an infinite scroll implementation:

npm install react-infinite-scroller --save

Infinite scrolling is an excellent method to let a user load more content by scrolling to the bottom of the browser window.

You are free to program this on your own, but we are not going to cover that here. Go back to the Feed.js file, replace the GET_POSTS query, and import the react-infinite-scroller package, with the following code:

import InfiniteScroll from 'react-infinite-scroller';

const GET_POSTS = gql`
 query postsFeed($page: Int, $limit: Int) {
 postsFeed(page: $page, limit: $limit) {
 posts {
 id
 text
 user {
 avatar
 username
 }
 }
 }
 }
`;

Since the postsFeed query expects parameters other than the standard query from before, we need to edit our Query component in the render method. The changed lines are as follows:

<Query query={GET_POSTS} variables={{page: 0, limit: 10}}>
 {({ loading, error, data, fetchMore }) => {
 if (loading) return <p>Loading...</p>;
 if (error) return error.message;

 const { postsFeed } = data;
 const { posts } = postsFeed;

In the preceding code, we extract the fetchMore function from the Query component, which is used to run the pagination request to load more post items. According to the new data structure defined in our GraphQL schema, we extract the posts array from the postsFeed object. Replace the markup of the div tag of our current feed to make use of our new infinite scroll package:

<div className="feed">
 <InfiniteScroll
 loadMore={() => self.loadMore(fetchMore)}
 hasMore={hasMore}
 loader={<div className="loader" key={"loader"}>Loading ...</div>}
 >
 {posts.map((post, i) =>
 <div key={post.id} className={"post " + (post.id < 0 ?
 "optimistic": "")}>
 <div className="header">

 <h2>{post.user.username}</h2>
 </div>
 <p className="content">
 {post.text}
 </p>
 </div>
)}
 </InfiniteScroll>
</div>

The only thing that the infinite scroll package does is run the loadMore function, as long as hasMore is set to true and the user scrolls to the bottom of the browser window. When hasMore is set to false, the event listeners are unbound, and no more requests are sent. This behavior is great when no further content is available, so that we can stop sending more requests.

It is important that we initialize the hasMore and page index state variable in our class first. Insert the following code:

state = {
 postContent: '',
 hasMore: true,
 page: 0,
}

Of course, we must also extract the hasMore variable in the render method of our class:

const { postContent, hasMore } = this.state;

We need to implement the loadMore function before running the infinite scroller. It relies on the page variable that we just configured. The loadMore function should look like the following code:

loadMore = (fetchMore) => {
 const self = this;
 const { page } = this.state;

 fetchMore({
 variables: {
 page: page+1,
 },
 updateQuery(previousResult, { fetchMoreResult }) {
 if(!fetchMoreResult.postsFeed.posts.length) {
 self.setState({ hasMore: false });
 return previousResult;
 }

 self.setState({ page: page + 1 });

 const newData = {
 postsFeed: {
 __typename: 'PostFeed',
 posts: [
 ...previousResult.postsFeed.posts,
 ...fetchMoreResult.postsFeed.posts
]
 }
 };
 return newData;
 }
 });
}

Let's quickly go through the preceding code, as follows:

	The fetchMore function receives an object as a parameter.

	We specify the variables field, which is sent with our request, in order to query the correct page index of our paginated posts.

	The updateQuery function is defined to implement the logic to add the new data that needs to be included in our news feed. We can check whether any new data is included in the response by looking at the returned array length. If there are not any posts, we can set the hasMore state variable to false, which unbinds all scrolling events. Otherwise, we can continue and build a new postsFeed object inside of the newData variable. The posts array is filled by the previous posts query result and the newly fetched posts. At the end, the newData variable is returned and saved in the client's cache.

	When the updateQuery function is finished, the user interface rerenders accordingly.

At this point, your feed is able to load new posts whenever the user visits the bottom of the window. We no longer load all posts at once, but instead, we only get the 10 most recent from our database. Every time you build an application with large lists and many rows, you have to add some kind of pagination, with either infinite scrolling or simple page buttons.

We have now created a new problem. We can submit a new post with the GraphQL mutation if the React Apollo cache is empty, but the update function of the Mutation component will throw an error. Our new query is stored not only under its name, but also under the variables used to send it. To read the data of a specific paginated posts request from our client's cache, we must also pass variables, such as the page index. Furthermore, we have a second layer, postsFeed, as the parent of the posts array. Change the update function to get it working again, as follows:

update = {(store, { data: { addPost } }) => {
 const variables = { page: 0, limit: 10 };
 const data = store.readQuery({ query: GET_POSTS, variables });
 data.postsFeed.posts.unshift(addPost);
 store.writeQuery({ query: GET_POSTS, variables, data });
}}

This approach is the same as the addMessage mutation, where we needed to pass the chat id as a variable.

Complex code like this requires some useful tools to debug it. Continue reading to learn more about Apollo Client Developer Tools.

 Debugging with the Apollo Client Developer Tools

Whenever you write or extend your own application, you have to test, debug, and log different things during development. In the Chapter 1, Preparing Your Development Environment, we looked at the React Dev Tools for Chrome, while in the Chapter 2, Setting up GraphQL with Express.js, we explored Postman for testing APIs. Now, let's take a look at another tool.

Apollo Client Developer Tools is another Chrome extension, allowing you to send Apollo requests. While Postman is great in many ways, it does not integrate with our application, and does not implement any GraphQL-specific features. Apollo Client Developer Tools rely on the Apollo Client that we set up very early on in this chapter.

Every request, either a query or mutation, is sent through the Apollo Client of our application. The Developer Tools also provide features such as autocomplete, for writing requests. They can show us the schema as it is implemented in our GraphQL API. Let's take a look at an example:

We will go over all four of the main windows offered by the extension.

The GraphiQL window is shown in the preceding screenshot. The three panels in the preceding screenshot are described as follows:

	You can enter the request that you want to send in the left-hand text area. It can be a mutation or query, including the markup for inputs, for example. It is the same as the query property in Postman. You can also enter the variables at the bottom.

	When sending the request, the response is shown in the middle panel.

	In the panel on the right, you can find the schema against which you will run the requests. You can search through the complete GraphQL schema, or manually step into the tree by clicking on the root types. This feature is useful when you forget what a specific field or mutation is called, or which parameters it accepts.

In the top bar, you will find the Prettify button, which tidies your query so that it is more readable. The Load from cache checkbox tries to retrieve any requested data directly from the cache, when possible. By clicking on the play button, you run the query. These are all tools to test our GraphQL requests properly.

Next, there is the Queries window, which is a helpful display. All of the queries that were ever run through the client are listed here, including the query string and variables. If you want to, you can rerun the query by clicking on the button at the top:

The Mutations window is actually the same as the Queries window, but for mutations. The list is empty, as long as you have not sent any mutations.

The last window is Cache. Here, you are able to see all of the data stored inside the Apollo cache:

In the left-hand panel, you can search through your data. The right-hand panel shows you the selected object in JSON.

You can also see that I have tested the API a lot, as there are multiple Post objects in the left-hand panel. In the ROOT_QUERY, there are only three. For testing purposes, I submitted multiple posts via a mutation, but I deleted them, to make sure that the screenshots were clear. Apollo did not delete the old posts that were deleted in the database, so they are still inside of the cache. You should delete this data when a user logs out of your application, so that unauthorized users cannot access it.

That is everything that you need to know about Apollo Client Developer Tools.

 Summary

In this chapter, you learned how to connect our GraphQL API to React. To do this, we used Apollo Client to manage the cache and the state of our components, and to update the React and the actual DOM of the browser. We looked at how to send queries and mutations against our server in two different ways. We also covered how to implement pagination with React and Apollo, and how to use Apollo Client Developer Tools.

The next chapter will cover how to write reusable React components. Up to this point, we have written the code, but we haven't thought about readability or good practices very much. We will address these issues in the next chapter.

 Reusable React Components

We have done a lot to reach this point in the book, including saving, requesting, inserting, and updating data through the use of Apollo Client, in connection with our GraphQL API. Much of the code that we have written will also have to be reviewed many times. This is especially important because we are building an application so quickly. Everything is working for now, but we have not done a great job here; there are some best practices and tactics that need to be observed in order to write good React applications.

This chapter will cover everything you need to know in order to write efficient and reusable React components. It will cover the following topics:

	React patterns

	Structured React components

	Rendering nested components

	The React Context API

	The Apollo Consumer component

 Introducing React patterns

With any programming language, framework, or library that you use, there are always common tactics that you should follow. They present an understandable, efficient way to write applications.

In Chapter 4, Integrating React into the Back end with Apollo, we tackled some patterns, such as rendering arrays, the spread operator, destructuring objects, and higher-order components. Nevertheless, there are some further patterns that you should know about.

We will go over the most commonly used patterns that React offers, as follows:

	Controlled components

	Stateless functions

	Conditional rendering

	Rendering children

Many (but not all) of the examples here only represent illustrations of what each method looks like. Some of them will not be taken over to our real application code, so, if you are not interested in learning the essential aspects of patterns, or if you already know most of them, you can skip the examples.

Beyond the short explanation that I will provide, there is more extensive documentation on this topic. The official React documentation is always a good starting point, but you can find all React patterns, including those that we have already used, at https://reactpatterns.com/.

 Controlled components

When we wrote our post form to submit new posts or the message inputs inside chat in the previous chapters, we used controlled input by incident. To provide a better understanding, I am going to quickly explain the difference between controlled and uncontrolled components, and when to use each of them.

Let's start with uncontrolled input.

By definition, a component is uncontrolled whenever the value is not set by a property through React, but only saved and taken from the real browser DOM. The value of an input is then retrieved from a reference to the DOM Node, and is not managed and taken from React's component state.

The following code shows the post form where the user will be able to submit new posts. I have excluded the rendering logic for the complete feed, as it is not a part of the pattern that I want to show you:

import React, { Component } from 'react';
import gql from 'graphql-tag';
import { Mutation } from 'react-apollo';

const ADD_POST = gql`
 mutation addPost($post : PostInput!) {
 addPost(post : $post) {
 id
 text
 user {
 username
 avatar
 }
 }
}`;

export default class Feed extends Component {
 constructor(props) {
 super(props);
 this.textArea = React.createRef();
 }
 render() {
 const self = this;
 return (
 <div className="container">
 <div className="postForm">
 <Mutation mutation={ADD_POST}>
 {addPost => (
 <form onSubmit={e => {
 e.preventDefault();
 addPost({ variables: { post: { text:
 self.textArea.current.value } } });
 }}>
 <textarea ref={this.textArea} placeholder="Write your
 custom post!"/>
 <input type="submit" value="Submit" />
 </form>
)}
 </Mutation>
 </div>
 </div>
)
 }
}

In this example, you can see that we no longer have a state initializer, since the textarea value is stored within the real DOM Node, and not the application state.

Now, we need a component constructor. As we stated in Chapter 1, Preparing Your Development Environment, you always need to run the super method inside of a constructor first.

Next, we run the createRef function provided by React. It prepares the variable to accept the DOM Node as a property. In earlier versions of React, you were required to use a callback to handle this on your own. From version 16.3 of React, the createRef function automates this process for you.

In the render method, the ref property fills in the reference that we just created with the DOM element.

Accessing the value of the DOM Node works by using the normal JavaScript DOM API. You can see this behavior when sending the submit event of our form. The value is extracted from the self.textArea.current.value field.

Everything that an uncontrolled component needs is already shown here; there is no more to it. You can compare this approach to our current implementation of the post form. In our implementation, we set up the state, listen for change events, and save and read the value directly from the component state, not from the DOM element.

When using uncontrolled components and working directly with DOM elements, the problem is that you leave the normal React workflow. You are no longer able to handle conditions and, therefore, trigger other events inside of React.

Nevertheless, the DOM reference can make it easier to use third-party plugins that were not written for the React ecosystem. There are thousands of great jQuery plugins, for example. I always recommend using the default approach of a controlled component. For 99% of cases, this works without leaving the React workflow.

If you need a deeper understanding of which approach is a better solution for your specific case, take a look at https://goshakkk.name/controlled-vs-uncontrolled-inputs-react/.

 Stateless functions

One fundamental and efficient solution for writing well-structured and reusable React components is the use of stateless functions.

As you might expect, stateless functions are functions, not React components. They are not able to store any states; only properties can be used to pass and render data. Property updates are directly rerendered inside of the stateless functions, and cannot be handled by the componentWillReceiveProps method, as in React components.

We have written a lot of code where stateless functions can be used very easily; while doing so, we have also structured and improved the readability of our React application.

Beginning with the file structure, we will create a new folder for our new components (or stateless functions), as follows:

mkdir src/client/components

Many parts of our application need to be reworked. Create a new file for our first stateless function, as follows:

touch src/client/components/loading.js

Currently, we display a dull and boring Loading... message when our GraphQL requests are running. Let's change this by inserting the following code into the loading.js file:

import React from 'react';

export default ({color, size}) => {
 var style = {
 backgroundColor: '#6ca6fd',
 width: 40,
 height: 40,
 };

 if(typeof color !== typeof undefined) {
 style.color = color;
 }
 if(typeof size !== typeof undefined) {
 style.width = size;
 style.height = size;
 }

 return <div className="bouncer" style={style}></div>
}

In the preceding code, we are using a simple function in ES6 arrow notation. It is an easy and more concise syntax for defining functions. In the code, you can see that we are extracting the color and size fields from the properties that our function receives.

We are building a default style object that represents the basic styling for a loading spinner. You can pass the color and size separately, in order to adjust those settings.

Lastly, we are returning a simple div tag with the CSS style and the bouncer class.

What's missing here is the CSS styling. The code should look as follows; just add it to our style.css file:

.bouncer {
 margin: 20px auto;
 border-radius: 100%;
 -webkit-animation: bounce 1.0s infinite ease-in-out;
 animation: bounce 1.0s infinite ease-in-out;
}

@-webkit-keyframes bounce {
 0% {
 -webkit-transform: scale(0)
 }
 100% {
 -webkit-transform: scale(1.0);
 opacity: 0;
 }
}

@keyframes bounce {
 0% {
 -webkit-transform: scale(0);
 transform: scale(0);
 }
 100% {
 -webkit-transform: scale(1.0);
 transform: scale(1.0);
 opacity: 0;
 }
}

Like in the previous examples, we use CSS animations to display our loading spinner correctly, and to let it animate as pulsating.

We have now finished the stateless function. You should place it into the existing code, wherever a loading state exists.

First, import the new loading spinner to the top of your files, as follows:

import Loading from './components/loading';

You can then render the stateless function like any normal component, as follows:

if (loading) return <Loading />;

Start the server with npm run server and the front end with npm run client. You should now see a pulsating blue bubble where you inserted it. I have tested this inside of my posts feed, and it looks pretty good.

The advantage of stateless functions is that they are minimal and efficient functions, rendering smaller parts of our application. The approach perfectly integrates with React, and we can improve the code that we have written.

 Conditional rendering

One important ability of React is rendering components or data conditionally. We will use this intensively in the next main features that we are going to implement.

Generally, you can accomplish conditional rendering by using the curly brace syntax. An example of an if statement is as follows:

render() {
 const { shouldRender } = this.state;

 return (
 <div className="conditional">
 {(shouldRender === true) && (
 <p>Successful conditional rendering!</p>
)}
 </div>
)
}

This code is the simplest example of conditional rendering. We have the shouldRender variable from the component state, and we use this as our condition. When the condition is true, the second part—which is our Successful conditional rendering! text—will also render. That is because we are using the && characters. The text does not render if the condition is false.

You can replace the preceding condition with everything that you have in mind. It can be a complex condition, such as a function returning a Boolean value, or, just like in the preceding code, it can be a state variable.

You will see further examples in later steps and chapters in this book.

 Rendering child components

In all of the code that we have written so far, we have directly written the markup like it is rendered to real HTML.

A great feature that React offers is the ability to pass children to other components. The parent component decides what is done with its children.

Something that we are still missing now is a good error message for our users. So, we will use this pattern to solve the issue.

Create an error.js file next to the loading.js file in the components folder, as follows:

import React, { Component } from 'react';

export default class Error extends Component {
 render() {
 const { children } = this.props;

 return (
 <div className="error message">
 {children}
 </div>
);
 }
}

When passing children to another component, a new property, called children, is added to the properties of the component. You specify children by writing normal React markup.

If you wanted to, you could perform actions, such as looping through each child. In our example, we render the children as usual, by using the curly braces and putting the children variable inside.

To start using the new Error component, you can simply import it. The markup for the new component is as follows:

if (error) return <Error><p>{error.message}</p></Error>;

Add some CSS, and everything should be finished, as shown in the following code snippet:

.message {
 margin: 20px auto;
 padding: 5px;
 max-width: 400px;
}

.error.message {
 border-radius: 5px;
 background-color: #FFF7F5;
 border: 1px solid #FF9566;
 width: 100%;
}

A working result might look as follows:

You can apply the stateless function pattern and the children pattern to many other use cases. Which one you use will depend on your specific scenario. In this case, you could also use a stateless function, rather than a React component.

 Structuring our React application

We have already improved some things by using React patterns. You should do some homework and introduce those patterns wherever possible.

When writing applications, one key objective is to keep them modular and readable, but also as understandable as possible. It is always hard to tell when splitting code up is useful, and when it overcomplicates things. This is something that you will learn more and more about by writing as many applications and as much code as possible.

Let's begin to structure our application further.

 The React file structure

We have already saved our Loading and Error components in the components folder. Still, there are many parts of our components that we did not save in separate files, to improve the readability of this book.

I will explain the most important solution for unreadable React code in one example. You can implement this on your own later, for all other parts of our application, as you should not read duplicate code.

Currently, we render the posts in our feed by mapping through all posts from the GraphQL response. There, we directly render the corresponding markup for all post items. Therefore, it is one big render function that does everything at once.

To make this a bit more intuitive, we should create a new Post component. Separating the components hugely improves the readability of our posts feed. Then, we can replace the return value from the loop with a new component, instead of real markup.

Instead of creating a post.js file in our components folder, we should first create another post folder, as follows:

mkdir src/client/components/post

The Post component consists of multiple tiny, nested components. A post is also a standalone GraphQL entity, making it logical to have a separate folder. We will store all related components in this folder.

Let's create those components. We will start with the post header, where the top part of a post item is defined. Create a new header.js file in the components/post folder, as follows:

import React from 'react';

export default ({post}) =>
 <div className="header">

 <div>
 <h2>{post.user.username}</h2>
 </div>
 </div>

The header component is just a stateless function. As you can see, we are using a React pattern from the earlier pages of this chapter. We are only rendering the data that we already have, and we are not storing any state here, so we are free to use a stateless function.

Up next is the post content, which represents the body of a post item. Add the following code inside of a new file, called content.js:

import React from 'react';

export default ({post}) =>
 <p className="content">
 {post.text}
 </p>

The code is pretty much the same as that of the post header. At later points, you will be free to introduce real React components or extended markup to those two files. It is entirely open to your implementation.

The main file is a new index.js file in the new post folder. It should look as follows:

import React, { Component } from 'react';
import PostHeader from './header';
import PostContent from './content';

export default class Post extends Component {
 render() {
 const { post } = this.props;

 return (
 <div className={"post " + (post.id < 0 ? "optimistic": "")}>
 <PostHeader post={post}/>
 <PostContent post={post}/>
 </div>
)
 }
}

The preceding code represents a very basic component, but instead of directly using markup to render a complete post item (like before), we are using two further components for this, with PostHeader and PostContent. Both of the components receive the post as a property.

You can now use the new Post component in the feed list with ease. Just replace the old code inside the loop, as follows:

<Post key={post.id} post={post} />

The improvement is that all three of the components give you a clear overview at first glance. Inside of the loop, we return a post item. A post item consists of a header and body content.

Still, there is room for enhancement, because the posts feed list is cluttered.

 Efficient Apollo React components

We have successfully replaced the post items in our feed with a React component, instead of raw markup.

A major part, which I dislike very much, is the Apollo Query component and Mutation component, and how we are using these at the moment directly inside the render method of our components. I will show you a quick workaround to make these components more readable.

Furthermore, the current solution does not allow us to reuse the query or mutation anywhere else. We would need to add duplicate code, just to send the same request again. A better way to structure the code would be to have separate files for the data layer and view layer of our client-side code.

As an example, we will fix those issues for Feed.js in the next section.

 The Apollo Query component

We will start by implementing the Query component. You should be able to easily follow the instructions here, as all of the patterns and React basics should be clear by now:

	Create a new queries folder inside of the components folder, as follows:

mkdir src/client/components/queries

	The query that we want to remove from our view layer is the postsFeed query. You can define the naming conventions for this, but I would recommend using the RootQuery name as the filename, as long as it works. So, we should create a postsFeed.js file in the queries folder, and insert the following code:

export default class PostsFeedQuery extends Component {
 getVariables() {
 const { variables } = this.props;
 var query_variables = {
 page: 0,
 limit: 10
 };

 if (typeof variables !== typeof undefined) {
 if (typeof variables.page !== typeof undefined) {
 query_variables.page = variables.page;
 }
 if (typeof variables.limit !== typeof undefined) {
 query_variables.limit = variables.limit;
 }
 }

 return query_variables;
 }
 render() {
 const { children } = this.props;
 const variables = this.getVariables();

 return(
 <Query query={GET_POSTS} variables={variables}>
 {({ loading, error, data, fetchMore }) => {
 if (loading) return <Loading />;
 if (error) return <Error><p>{error.message}</p></Error>;

 const { postsFeed } = data;
 const { posts } = postsFeed;

 return React.Children.map(children, function(child) {
 return React.cloneElement(child, { posts, fetchMore });
 })
 }}
 </Query>
)
 }
}

Do not forget to import all of the dependencies, such as the Apollo React client, the Loading and Error components, and parsing the postsFeed GraphQL query to the GET_POSTS variable with graphql-tag. If you do not remember how to do this, look inside of the implementation that we have in our Feed class at the moment.

For customization reasons, the component should be able to accept other variables, in case we want to adjust the number of parameters of our query. The getVariables function overwrites the default query_variables field with any parameter given to the component.

What's new in the preceding code is that we are using the children pass-through pattern of React. This pattern allows us to wrap the PostsFeedQuery component around many different custom components, and it allows us to use the query response inside of these children. That way, we keep a readable render method for our user-facing components and the data layer of our React application in a separate file.

We are using the React.Children.map function to loop through all of the provided children. By running the React.cloneElement method, we copy each element to a new rendered component. This enables us to pass further properties from the result of the GraphQL request initiated by the Query component. Each child receives the posts and the fetchMore function as a property.

	Preparing our next component, we split the infinite scroll area into a second file. Place a feedlist.js into the components/posts folder, as follows:

import React, { Component } from 'react';
import InfiniteScroll from 'react-infinite-scroller';
import Post from './';

export default class FeedList extends Component {
 state = {
 page: 0,
 hasMore: true
 }
 loadMore = (fetchMore) => {
 const self = this;
 const { page } = this.state;
 fetchMore({
 variables: {
 page: page+1,
 },
 updateQuery(previousResult, { fetchMoreResult }) {
 if(!fetchMoreResult.postsFeed.posts.length) {
 self.setState({ hasMore: false });
 return previousResult;
 }
 self.setState({ page: page + 1 });
 const newData = {
 postsFeed: {
 __typename: 'PostFeed',
 posts: [
 ...previousResult.postsFeed.posts,
 ...fetchMoreResult.postsFeed.posts
]
 }
 };
 return newData;
 }
 });
 }
 render() {
 const self = this;
 const { posts, fetchMore } = this.props;
 const { hasMore } = this.state;
 return (
 <div className="feed">
 <InfiniteScroll
 loadMore={() => self.loadMore(fetchMore)}
 hasMore={hasMore}
 loader={<div className="loader" key={"loader"}>Loading
 ...</div>}
 >
 {posts.map((post, i) =>
 <Post key={post.id} post={post} />
)}
 </InfiniteScroll>
 </div>
);
 }
}

We only handle the infinite scroller of our feed here, which is also the only part where the result of the PostsFeedQuery is needed. The preceding code is much tidier than before (at least, inside of the render method).

We extract the posts and the fetchMore function passed from the PostsFeedQuery component. Like before, we render the posts as they are passed from the parent component inside of the infinite scroller. While scrolling, the infinite scroller executes the loadMore function, which runs the fetchMore function that is also received by the PostsFeedQuery component, in order to get the next posts in our pagination. The data-fetching and the rendering logic are separated from each other.

	To use the PostsFeedQuery component, we can restructure our Feed.js a bit. Remove the Query tag from the markup, as well as the page and hasMore state variables.

	Import the new components in the Feed.js, as follows:

import FeedList from './components/post/feedlist';
import PostsFeedQuery from './components/queries/postsFeed';

	Replace the div tag with the feed class name and our two new components, as follows:

<PostsFeedQuery>
 <FeedList />
</PostsFeedQuery>

This code allows the Query component to pass all of the required properties to the FeedList class.

The improvement that we implemented is that the post form is now rendered directly before the response of the query has arrived. Only the scroll component is rendered when the GraphQL request is finished. Although it is more of a coincidence, it is important to note that the form was previously not rendered until the response arrived.

If we wanted to, we could add multiple other components inside of the PostsFeedQuery tag. All children receive the response properties, as specified in our custom Query component. You can make changes to the Query class and add further fields at any time, and all of the corresponding files will receive the update.

Do the same for the chats to improve your skills in writing reusable React code. How deeply you separate the components into multiple, smaller parts will always be a design decision.

Next, we will look at the Mutation component, in order to submit new posts.

 The Apollo Mutation component

A big part of our main Feed.js file still consists of rendering the real form markup and using the Apollo Mutation component to pass and execute the mutation within the form. We will now separate those parts:

	Create a new folder for all your mutations, as follows:

mkdir src/client/components/mutations

	Next, we want to outsource the mutation into a special file. To do so, create the addPost.js file, named after the GraphQL mutation itself. Insert the following code:

export default class AddPostMutation extends Component {
 state = {
 postContent: ''
 }
 changePostContent = (value) => {
 this.setState({postContent: value})
 }
 render() {
 const self = this;
 const { children, variables } = this.props;
 const { postContent } = this.state;

 return (
 <Mutation
 update = {(store, { data: { addPost } }) => {
 var query = {
 query: GET_POSTS,
 };
 if(typeof variables !== typeof undefined) {
 query.variables = variables;
 }
 const data = store.readQuery(query);
 data.postsFeed.posts.unshift(addPost);
 store.writeQuery({ ...query, data });
 }}
 optimisticResponse= {{
 __typename: "mutation",
 addPost: {
 __typename: "Post",
 text: postContent,
 id: -1,
 user: {
 __typename: "User",
 username: "Loading...",
 avatar: "/public/loading.gif"
 }
 }
 }}
 mutation={ADD_POST}>
 {addPost =>
 React.Children.map(children, function(child){
 return React.cloneElement(child, { addPost,
 postContent, changePostContent:
 self.changePostContent
 });
 })
 }
 </Mutation>
)
 }
}

Please import all of the dependencies at the top, and parse both the GraphQL requests ADD_POST and the GET_POSTS query. The postsFeed query is required, because we read all posts from the cache by specifying the query in our update function which we introduced in the previous chapter.

The solution is the same as it was for the Query component in the previous section. However, two things have changed, which will be explained next.

Our AddPostMutation class holds the real state of the form. To accomplish this, we hand over the changePostContent method to all child components. They execute this method by giving the text area value and setting the new state in the parent component, which is our custom Mutation component.

We do this because the optimisticResponse requires us to pass the current value, in order to simulate a positive response from our server. If we kept the state within our form, the Mutation component would not have access to it, and could not render the text in the optimistic response.

Instead of giving the result of the mutation to our underlying child components, we hand over the mutation method. The form runs this function upon submission.

It is important to mention that the component can take a variables property, which is then used to read the cached data. It must receive the same variables as the Query component to successfully read the data from the client's cache.

	Going on, we should build a post form component that only handles the creation of new posts. Just call it form.js, and place it inside of the post's components folder. The code must look like the following snippet:

import React, { Component } from 'react';

export default class PostForm extends Component {
 handlePostContentChange = (event) => {
 this.props.changePostContent(event.target.value);
 }
 render() {
 const self = this;
 const { addPost, postContent } = this.props;

 return (
 <div className="postForm">
 <form onSubmit={e => {
 e.preventDefault();
 addPost({ variables: { post: { text: postContent } }
 }).then(() => {
 self.props.changePostContent('');
 });
 }}>
 <textarea value={postContent} onChange=
 {self.handlePostContentChange} placeholder="Write your
 custom post!"/>
 <input type="submit" value="Submit" />
 </form>
 </div>
)
 }
}

As you can see, again, we just copied the post form over to our new file. The handlePostContentChange does not directly call setState, but executes the changePostContent received from the custom Mutation component that we just wrote. The same goes for the addPost method that we execute in the onSubmit event handler of the form.

	Lastly, we finalize the Feed.js main file. It should look as follows:

import React, { Component } from 'react';
import PostsQuery from './components/queries/postsFeed';
import AddPostMutation from './components/mutations/addPost';
import FeedList from './components/post/feedlist';
import PostForm from './components/post/form';

export default class Feed extends Component {
 render() {
 const query_variables = { page: 0, limit: 10};

 return (
 <div className="container">
 <AddPostMutation variables={query_variables}>
 <PostForm />
 </AddPostMutation>
 <PostsQuery variables={query_variables}>
 <FeedList/>
 </PostsQuery>
 </div>
)
 }
}

We have introduced the variables property to our custom query and Mutation components. We hardcode the query_variables and pass it to both components. The variables are used to read and update the data in the client's cache.

This is a vast improvement, in comparison to our old implementation. It was impossible to understand what was going to be rendered when we had the Query and Mutation component, and all of the markup, in just one big file. Now, you can immediately see that a mutation is given to a form, a query is run, and the result is handed over to a list, which renders the post items.

Every part is saved in a separate file, so you can edit each of them without affecting the other components. You can test all changes by starting the back end with npm run server and the front end with npm run client.

The application is more stable and readable, and the new features are more comfortable to implement. However, there are still some areas for improvement. For example, we have the postsFeed GraphQL query defined in multiple files, and we parse it at multiple locations. A good alternative would be to store the queries together in one big file, or to store each of them in a separate file. Both solutions would allow us to edit the query at only one location, instead of editing multiple locations when just one query has changed. You can implement this on your own, as it is not very complicated.

Always keep an eye open for possible improvements to your application.

I recommend that you also make the equivalent changes to the chat entity, making the code more understandable. The following is a list of things that you should do:

	Split the mutations and queries from the Chat.js into separate files.

	Create a component for the chat panel.

	Create a component for the chat items in the chat panel.

	Create a component for the window bar at the bottom of the browser window.

	Create a component for the chat windows. A chat window consists of three very basic components:

	A top bar component, handling the title, the closing function, and later bar actions.

	A message feed, much like the one that we have for our posts. There are features that we have to implement first, such as reverse ordering and pagination.

	An input component, making it possible to save the state to a Mutation component and send new messages. You can also handle other input formats, such as smileys, here. There are great packages that allow for the easy customization of input.

	Cut down the main Chats.js file to a minimum, loading only the wrapping subcomponents panel and the chat windows bar.

When you have finished all of these tasks, you can compare your results with the code provided in this book. While doing so, you may notice some parts where you can improve your code. There is nothing wrong with recommending ways to improve the code, so feel free to notify me if I could improve my code, too.

 Extending Graphbook

Our social network is still a bit rough. Aside from the fact that we are still missing authentication, all of the features are pretty basic; writing and reading the posts and messages is nothing exceptional.

If you compare it to Facebook, there are many things that we need to do. Of course, we cannot rebuild Facebook in its totality, but the usual features should be there. From my point of view, we should cover the following features:

	Adding a drop-down menu to the posts, in order to allow for deleting or updating the content.

	Creating a global user object with the React Context API.

	Using Apollo Consumer as an alternative to the React Context API.

	Implementing a top bar as the first component rendered above all of the views. We can search for users in our database from a search bar, and we can show the logged-in user from the global user object.

We will begin by looking at the first feature.

 The React context menu

You should be able to write the React context menu pretty much on your own. All of the required React patterns have been explained, and implementing the mutations should be clear by now.

Before we begin, we will lay out the plan that we want to follow:

	Rendering a simple icon with FontAwesome

	Building React helper components

	Handling the onClick event and setting the correct component state

	Using the conditional rendering pattern to show the drop-down menu, if the component state is set correctly

	Adding buttons to the menu and binding mutations to them

Continue reading to find out how to get the job done.

The following is a preview screenshot, showing how the final implemented feature should look:

source: https://www.vecteezy.com/

We will now start with the first task of setting up FontAwesome for our project.

 FontAwesome in React

As you may have noticed, we have not installed FontAwesome yet. Let's fix this with npm:

npm i --save @fortawesome/fontawesome-svg-core @fortawesome/free-solid-svg-icons @fortawesome/free-brands-svg-icons @fortawesome/react-fontawesome

Graphbook relies on the preceding four packages to import the FontAwesome icons into our front end code.

FontAwesome provides multiple configurations for use with React. The best, most production-ready approach is to import only the icons that we are explicitly going to use. For your next project or prototype, it might make sense to get started with the simplest approach. You can find all of the information on the official GitHub page, at https://github.com/FortAwesome/react-fontawesome#get-started.

Creating a separate file for FontAwesome will help us to have a clean import. Save the following code under the fontawesome.js file, inside of the components folder:

import { library } from '@fortawesome/fontawesome-svg-core';
import { faAngleDown } from '@fortawesome/free-solid-svg-icons';

library.add(faAngleDown);

First, we import the library object from the FontAwesome core package. For our specific use case, we only need one arrow image, called angle-down. Using the library.add function, we register this icon for later use.

There are many versions of FontAwesome. In this book, we are using FontAwesome 5, with the free icons only. More premium icons can be bought on the official FontAwesome web page. You can find an overview of all of the icons, and a detailed description of each, in the icon gallery at https://fontawesome.com/icons?d=gallery.

The only place where we need this file is within our root App.js file. It ensures that all of our custom React components can display the imported icons. Add the following import statement to the top:

import './components/fontawesome';

No variable is required to save the exported methods, since there won't be any. We want to execute this file in our application only once.

When you reach the point when your application needs a complete set of icons, you can get all of the icons grouped directly from the @fortawesome/free-brands-svg-icons package, which we also installed.

Nevertheless, you could also import a close icon from FontAwesome and replace the simple x that we used for our chat window. This is not a part of this chapter, but you should be able to handle it on your own.

Next, we are going to create a Dropdown helper component.

 React helper components

Production-ready applications need to be polished as much as possible. Implementing reusable React components is one of the most important things to do.

You should notice that drop-down menus are a common topic when building client-side applications. They are global parts of the front end and appear everywhere throughout our components.

It would be best to separate the actual menu markup that we want to display from the code, which handles the event-binding and showing the menu.

I always call this kind of code in React helper components. They are not implementing any business logic, but give us the opportunity to reuse drop-down menus or other features wherever we want.

Logically, the first step is to create a new folder to store all of the helper components, as follows:

mkdir src/client/components/helpers

Create a new file, called dropdown.js, as the helper component:

import React, { Component } from 'react';

export default class Dropdown extends Component {
 state = {
 show: false
 }
 handleClick = () => {
 const { show } = this.state;
 this.setState({show: !show});}
 render() {
 const { trigger, children } = this.props;
 const { show } = this.state;

 return(
 <div className="dropdown">
 <div>
 <div className="trigger" onClick={this.handleClick}>
 {trigger}
 </div>
 { show &&
 <div className="content">
 {children}
 </div>
 }
 </div>
 </div>
)
 }
}

We do not require much code to write a drop-down component. It is also pretty efficient, since this works with nearly every scenario that you can think of.

We use basic event-handling in the preceding code. When the trigger div tag is clicked, we update the show state variable. Inside of the div trigger, we also render a property called trigger. A trigger can be anything from a regular text or HTML tag to a React component. It can be passed through the parent components, in order to customize the look of the drop-down component.

In addition to the trigger property, we are using two well-known React patterns:

	Conditional rendering, when the show variable is true

	Rendering children given by the parent component

This solution allows us to fill in the menu items that we want to render directly as children of the Dropdown component, which, as mentioned previously, is displayed after clicking on the trigger. In this case, the show state variable is true.

However, one thing is still not completely correct here. If you test the drop-down component by providing a simple text or icon as a trigger and another text as the content, you should see that the Dropdown only closes when clicking on the trigger again; it does not close when clicking anywhere else in our browser, outside of the drop-down menu.

This is one scenario where the React approach encounters problems. There is no DOM Node event, like onClickOutside, so we cannot directly listen to the outside click events of any DOM Node, such as our drop-down menu. The conventional approach is to bind an event listener to the complete document. Clicking anywhere in our browser closes the drop-down menu.

There are many cases when it might make sense to leave the React approach and use the DOM directly, through the standard JavaScript interface.

Read this article on Medium to get a better understanding: https://medium.com/@garrettmac/reactjs-how-to-safely-manipulate-the-dom-when-reactjs-cant-the-right-way-8a20928e8a6

Replace the handleClick method and add the componentWillUnmount React method, as follows:

componentWillUnmount() {
 document.removeEventListener('click', this.handleClick, true);
}
handleClick = () => {
 const { show } = this.state;

 this.setState({show: !show}, () => {
 if(!show) {
 document.addEventListener('click', this.handleClick);
 } else {
 document.removeEventListener('click', this.handleClick);
 }
 });
}

When clicking on the trigger button, we add the click event listener to the whole document with the addEventListener function of JavaScript. This way, the handleClick function is re-executed when clicking anywhere.

When clicking on the drop-down trigger, or anywhere in the DOM, the event listener is removed again, by using the removeEventListener function.

Do not forget to remove all of the manually created event listeners whenever a component is unmounted and removed from the DOM. Forgetting this can lead to many errors, since the handleClick method will no longer be available from the event listener that it tries to call.

As mentioned previously, this is the part where React fails at least a little bit, although it is not the fault of React. The DOM and JavaScript do not have the right abilities.

We can finally use our helper component and display the context menus for posts, but first, we need to prepare all of the menu items and components that we want to render.

 The GraphQL updatePost mutation

A mutation is always located at two points in our code. One part is written inside of our GraphQL API in the back end, and the other one is written in our front end code.

We should start with the implementation on the back end side, as follows:

	There is a new mutation that we need to insert into our schema, as follows:

updatePost (
 post: PostInput!
 postId: Int!
): Post

	Once it is inside of our schema, the implementation to execute the mutation will follow. Copy the following code over to the resolvers.js file, in the RootMutation field:

updatePost(root, { post, postId }, context) {
 return Post.update({
 ...post,
 },
 {
 where: {
 id: postId
 }
 }).then((rows) => {
 if(rows[0] === 1) {
 logger.log({
 level: 'info',
 message: 'Post ' + postId + ' was updated',
 });

 return Post.findById(postId);
 }
 });
},

The only special thing here is that we need to specify which posts we want to update. This is done by having the where property inside of the function call. The first parameter of the update function receives the post that should be updated. Because we currently do not have authentication implemented yet, we cannot verify the user updating the post, but for our example, this is no problem.

When updating a post, we are required to fetch the post from our database again, in order to return the row. This is a limitation of Sequelize when working with MySQL server. If you are running Postgres, for example, you can remove this part and directly return the post, without a special, separate query.

We can now focus on the front end again.

Recall how we implemented the previous mutations; we always created reusable React components for them. We should do the same for the update mutation.

Create a new file, called updatePost.js, inside of the mutations folder:

	As always, you have to import all of the dependencies. They should be the same as in the other mutations. This includes the GET_POSTS query, because we are going to read and update the cached data stored behind this query.

	Add the new updatePost mutation to the new file, as follows:

const UPDATE_POST = gql`
 mutation updatePost($post : PostInput!, $postId : Int!) {
 updatePost(post : $post, postId : $postId) {
 id
 text
 }
 }
`;

	Create an UpdatePostMutation class, as follows:

export default class UpdatePostMutation extends Component {
 state = {
 postContent: this.props.post.text
 }
 changePostContent = (value) => {
 this.setState({postContent: value})
 }
}

As you can see, the postContent is not just an empty string, but is taken from the properties, because updating a post requires that the post already exists and so does the text of it.

	A React component always needs a render method. This one is going to be a bit bigger:

render() {
 const self = this;
 const { children } = this.props;
 const { postContent } = this.state;

 const postId = this.props.post.id;
 const variables = { page: 0, limit: 10};

 return (
 <Mutation
 update = {(store, { data: { updatePost } }) => {
 var query = {
 query: GET_POSTS,
 };
 if(typeof variables !== typeof undefined) {
 query.variables = variables;
 }
 const data = store.readQuery(query);
 for(var i = 0; i < data.postsFeed.posts.length; i++) {
 if(data.postsFeed.posts[i].id === postId) {
 data.postsFeed.posts[i].text = updatePost.text;
 break;
 }
 }
 store.writeQuery({ ...query, data });
 }}
 optimisticResponse= {{
 __typename: "mutation",
 updatePost: {
 __typename: "Post",
 text: postContent,
 }
 }}
 mutation={UPDATE_POST}>
 {updatePost =>
 React.Children.map(children, function(child){
 return React.cloneElement(child, { updatePost,
 postContent, postId, changePostContent:
 self.changePostContent });
 })
 }
 </Mutation>
)
}

There are some differences from the other mutations that we have implemented before. The changes are as follows:

	We read the children and post id from the component's properties. Furthermore, we extract the postContent state variable.

	We have hardcoded the variables. This is not a good approach, however. It would be better to receive this from the parent component, too, but for this example, it is fine.

	The update method now searches through the cache and reads and updates the post's text when a post with a matching id is found.

	All underlying children accept the updatePost method and the postId.

This chapter is all about reusable React components. To make use of our mutation, we need to have a form allowing us to edit a post. We will handle this within the Post component itself, because we want to edit the post in place, and do not want to open a modal or a specific Edit page. Go to your post's index.js file and exchange it with the new one, as follows:

import React, { Component } from 'react';
import PostHeader from './header';
import PostContent from './content';
import PostForm from './form';
import UpdatePostMutation from '../mutations/updatePost';

export default class Post extends Component {
 state = {
 editing: false
 }
 changeState = () => {
 const { editing } = this.state;
 this.setState({ editing: !editing });
 }
 render() {
 const { post } = this.props;
 const { editing } = this.state;
 return (
 <div className={"post " + (post.id < 0 ? "optimistic": "")}>
 <PostHeader post={post} changeState={this.changeState}/>
 {!editing && <PostContent post={post}/>}
 {editing &&
 <UpdatePostMutation post={post}>
 <PostForm changeState={this.changeState}/>
 </UpdatePostMutation>
 }
 </div>
)
 }
}

We should quickly go over the changes, one by one, as follows:

	We are importing the update mutation that we just wrote at the top.

	We added an editing state variable. Based on this variable, we decide whether we show the normal PostContent component or our PostForm.

	We are using conditional rendering based on the editing variable, in order to switch between the standard and update form.

	The changeState function lets us switch between both states.

	Our PostHeader and the PostForm receive the new function, allowing them to control its parent state.

	Our PostForm is wrapped inside of our mutation. The form then receives the mutation's updatePost function.

We already have a post form that we can reuse with some adjustments, as you can see in the following code snippet. To use our standard post submission form as an update form, we must make some small adjustments. Open and edit the form.js file, as follows:

import React, { Component } from 'react';

export default class PostForm extends Component {
 handlePostContentChange = (event) => {
 this.props.changePostContent(event.target.value);
 }
 render() {
 const self = this;
 const { addPost, updatePost, postContent, postId } = this.props;

 return (
 <div className="postForm">
 <form onSubmit={e => {
 e.preventDefault();

 if(typeof updatePost !== typeof undefined) {
 updatePost({ variables: { post: { text: postContent },
 postId } }).then(() => {
 self.props.changeState();
 });
 } else {
 addPost({ variables: { post: { text: postContent } }
 }).then(() => {
 self.props.changePostContent('');
 });
 }
 }}>
 <textarea value={postContent} onChange=
 {self.handlePostContentChange} placeholder="Write your custom
 post!"/>
 <input type="submit" value="Submit" />
 </form>
 </div>
)
 }
}

We are reading the updatePost mutation from the component properties. If it is defined, we can assume that the parent component is our UpdatePostMutation component, so we can run the updatePost mutation with the postContent and postId variables. If not, we will just run the addPost mutation, like before.

The critical thing to note is that, upon finishing the request, we are running the changeState function, which switches our Post component back to the normal text mode, and also hides the form.

Where did it all begin? We wanted to have a context menu that allowed us to update the post.

Go to your post header file. The header is a great place to insert the drop-down component, as follows:

import React from 'react';
import Dropdown from '../helpers/dropdown';
import { FontAwesomeIcon } from '@fortawesome/react-fontawesome';

export default ({post, changeState}) =>
 <div className="header">

 <div>
 <h2>{post.user.username}</h2>
 </div>
 <Dropdown trigger={<FontAwesomeIcon icon="angle-down" />}>
 <button onClick={changeState}>Edit</button>
 </Dropdown>
 </div>

FontAwesome is useful now. The drop-down trigger is displayed in the same row as the username.

Our drop-down component receives a trigger component, which is just a FontAwesome icon. Furthermore, the only child that our drop-down component has, for now, is a simple button. When it is clicked, it changes the parent Post component's editing state and makes the update post form visible, instead of the normal post content.

Nothing works without the magic of CSS. All of the CSS takes up a lot of space, so you should look it up in the official Git repository of this book. If you have added the new CSS, you should be able to see a small icon on the right-hand border of each post. Clicking on it makes a small drop-down menu visible, including the 'Edit' button, as shown at the beginning of this section. The user is now able to make in-place edits of posts with the post update form.

Something that we have not spoken about is user rights. At the moment, the user can edit everybody's posts, even if the user is not the author of the post. That is a problem that we will look into in the next chapter, when we have implemented authentication.

 The Apollo deletePost mutation

A basic drop-down menu, with one item, is there. We should add a second menu item to complete the drop-down menu.

This task is something that you can do as homework, in your own time. All of the techniques to get a delete mutation running have been explained.

For historical reasons, I want to cover the full CRUD workflow. After this chapter, you will be able to handle pretty advanced CRUD operations with Apollo, GraphQL, and React.

Just follow my instructions to get the delete action working:

	Edit the GraphQL schema. The deletePost mutation needs to go inside of the RootMutation object. The new Response type serves as a return value, as deleted posts cannot be returned because they do not exist. Note that we only need the postId parameter, and do not send the complete post:

type Response {
 success: Boolean
}

deletePost (
 postId: Int!
): Response

	Add the missing GraphQL resolver function. The code is pretty much the same as from the update resolver, except that only a number is returned by the destroy method of Sequelize, not an array. It represents the number of deleted rows. We return an object with the success field. This field indicates whether our front end should throw an error:

deletePost(root, { postId }, context) {
 return Post.destroy({
 where: {
 id: postId
 }
 }).then(function(rows){
 if(rows === 1){
 logger.log({
 level: 'info',
 message: 'Post ' + postId + 'was deleted',
 });
 return {
 success: true
 };
 }
 return {
 success: false
 };
 }, function(err){
 logger.log({
 level: 'error',
 message: err.message,
 });
 });
},

In short, our GraphQL API is now able to accept the deletePost mutation. We do not verify which user sends this mutation so for our example posts be deleted by anyone.

The next step is to create the DeletePostMutation component. Always ensure that you name your components uniquely, and in a self-explanatory manner. Let's start by implementing the deletePost mutation for the client, as follows:

	Create the deletePost.js file within the mutations folder.

	Just like with the update mutation, require all dependencies.

	Add the new deletePost mutation, as follows:

const DELETE_POST = gql`
 mutation deletePost($postId : Int!) {
 deletePost(postId : $postId) {
 success
 }
 }
`;

	Lastly, insert the new component's code:

export default class DeletePostMutation extends Component {
 render() {
 const { children } = this.props;
 const postId = this.props.post.id;
 const variables = { page: 0, limit: 10};

 return (
 <Mutation
 update = {(store, { data: { deletePost: { success } } }) => {
 if(success) {
 var query = {
 query: GET_POSTS,
 };
 if(typeof variables !== typeof undefined) {
 query.variables = variables;
 }
 const data = store.readQuery(query);
 for(var i = 0; i < data.postsFeed.posts.length; i++) {
 if(data.postsFeed.posts[i].id === postId) {
 break;
 }
 }
 data.postsFeed.posts.splice(i, 1);
 store.writeQuery({ ...query, data });
 }
 }}
 mutation={DELETE_POST}>
 {deletePost =>
 React.Children.map(children, function(child){
 return React.cloneElement(child, { deletePost, postId
 });
 })
 }
 </Mutation>
)
 }
}

We are saving a lot of code. There is no state that we are saving inside of the component, and no optimisticReponse. I have removed the optimistic update for the UI, since it is not intuitive if the requests fail. This would make your post disappear and reappear again.

The update routine searches for the post from the cache and removes it by splicing the array and saving the edited array again. We should add the new item to the drop-down menu now.

Again, our drop-down menu needs a new item. Follow these instructions to add it:

	Open the header.js file and import the following mutation:

import DeletePostMutation from '../mutations/deletePost';

	Instead of directly adding the new button to our header, we will create another stateless function, as follows:

const DeleteButton = ({deletePost, postId}) =>
 <button onClick={() => {
 deletePost({ variables: { postId } })
 }}>
 Delete
 </button>

Comparing the preceding code to our post form, the button needs to trigger the delete mutation. The form component did this via its props, so we are doing it here, too. There is no real difference, but now you can see how to handle such issues with stateless functions.

	Insert both the mutation and the delete button into the header function, below the 'Edit' button, as follows:

<DeletePostMutation post={post}>
 <DeleteButton />
</DeletePostMutation>

You have now seen two approaches to sending mutations, as follows:

	Our form initiates the update mutation. The form is made visible from a drop-down component, which is a child component of the header of our leading Post component.

	The delete mutation is sent directly upon clicking the button within the drop-down menu.

I expect that you are now prepared for advanced scenarios, where communication between multiple components on different layers is required. Consequently, when starting the server and client you should be presented with the preview image that I gave you when starting this section.

To get some more practice, we will repeat this for another use case in the next section.

 The React application bar

In contrast with Facebook, we do not have an outstanding application bar. It is fixed to always stay at the top of the browser window, above all parts of the Graphbook. You will be able to search for other users, see notifications, and see the logged-in user inside of the application bar, after going through this section.

The first thing that we will implement is the simple search for users and the information about the logged-in user. We will begin with the search component, because it is really complex.

The following screenshot shows a preview of what we are going to build:

source: https://www.vecteezy.com/

It looks pretty basic, but what we are doing here is binding the onChange event of an input and re-fetching the query every time the value changes. Logically, this rerenders the search list in accordance with the responses from our GraphQL API.

Starting with the API, we need to introduce a new entity.

Just like with our postsFeed query, we will set up pagination from the beginning, because later, we might want to offer more advanced functionalities, such as loading more items while scrolling through the search list.

Edit the GraphQL schema and fill in the new RootQuery and type, as follows:

type UsersSearch {
 users: [User]
}

usersSearch(page: Int, limit: Int, text: String!): UsersSearch

The UsersSearch type expects one special parameter, which is the search text. Without the text parameter, the request would not make much sense. You should remember the page and limit parameters from the postsFeed pagination.

Furthermore, the resolver function looks pretty much the same as the postsFeed resolver function. You can add the following code straight into the resolvers.js file, as follows:

usersSearch(root, { page, limit, text }, context) {
 if(text.length < 3) {
 return {
 users: []
 };
 }
 var skip = 0;
 if(page && limit) {
 skip = page * limit;
 }
 var query = {
 order: [['createdAt', 'DESC']],
 offset: skip,
 };
 if(limit) {
 query.limit = limit;
 }
 query.where = {
 username: {
 [Op.like]: '%' + text + '%'
 }
 };
 return {
 users: User.findAll(query)
 };
},

You should note that the first condition asks whether the provided text is larger than three characters. We do this to avoid sending too many unnecessary queries to our database. Searching for every user where the username consists of just one or two characters would result in providing us with nearly every user. Of course, this could have been done on the front end, too, but various clients could use our API, so we need to make sure that the back end makes this small improvement as well.

We send the query object to our database through Sequelize. The code works pretty much like the postsFeed resolver function from before, except that we are using a Sequelize operator. We want to find every user where the username includes the entered text, without specifying whether it is at the start, middle, or end of the name. Consequently, we will use the Op.like operator, which Sequelize parses into a pure SQL LIKE query, giving us the results we want. The % is used in MySQL to represent an unspecified number of characters. To enable this operator, we must import the sequelize package and extract the Op object from it, as follows:

import Sequelize from 'sequelize';
const Op = Sequelize.Op;

Going further, we can implement the client-side code as follows:

	Create a file called searchQuery.js within the queries folder. We are creating a separate query component file for reusability reasons.

	Import all of the dependencies, and parse the new GraphQL query with the graphql-tag package. Note that we have three parameters. The text field is a required property for the variables that we send with our GraphQL request:

import React, { Component } from 'react';
import { Query } from 'react-apollo';
import Loading from '../loading';
import Error from '../error';
import gql from 'graphql-tag';

const GET_USERS = gql`
 query usersSearch($page: Int, $limit: Int, $text: String!) {
 usersSearch(page: $page, limit: $limit, text: $text) {
 users {
 id
 avatar
 username
 }
 }
 }
`;

	Paste in the UsersSearchQuery class, as shown in the following code. In comparison to the PostsFeedQuery class, I have added the text property to the variables and handed over the refetch method to all subsequent children:

export default class UsersSearchQuery extends Component {
 getVariables() {
 const { variables } = this.props;
 var query_variables = {
 page: 0,
 limit: 5,
 text: ''
 };
 if (typeof variables !== typeof undefined) {
 if (typeof variables.page !== typeof undefined) {
 query_variables.page = variables.page;
 }
 if (typeof variables.limit !== typeof undefined) {
 query_variables.limit = variables.limit;
 }
 if (typeof variables.text !== typeof undefined) {
 query_variables.text = variables.text;
 }
 }
 return query_variables;
 }
 render() {
 const { children } = this.props;
 const variables = this.getVariables();
 const skip = (variables.text.length < 3);
 return(
 <Query query={GET_USERS} variables={variables} skip={skip}>
 {({ loading, error, data, fetchMore, refetch }) => {
 if (loading || error || typeof data === typeof undefined)
 return null;

 const { usersSearch } = data;
 const { users } = usersSearch;
 return React.Children.map(children, function(child){
 return React.cloneElement(child, { users, fetchMore,
 variables, refetch });
 });
 }}
 </Query>
)
 }
}

As mentioned previously, we only want to send the query when the entered text is equal to or longer than three characters. Here, we use the skip property of the Apollo query component. If the skip parameter is set to true, the execution of the GraphQL request is skipped.

	Continuing with our plan, we will create the application bar in a separate file. Create a new folder, called bar, below the components folder and the index.js file. Fill it in with the following code:

import React, { Component } from 'react';
import SearchBar from './search';

export default class Bar extends Component {
 render() {
 return (
 <div className="topbar">
 <div className="inner">
 <SearchBar/>
 </div>
 </div>
);
 }
}

This file works as a wrapper for all of the components we want to render in the application bar; it does not implement any custom logic. We have already imported the SearchBar component which we must create.

	The SearchBar class lives inside of a separate file. Just create a search.js file in the bar folder, as follows:

import React, { Component } from 'react';
import UsersSearchQuery from '../queries/searchQuery';
import SearchList from './searchList';

export default class SearchBar extends Component {
 state = {
 text: ''
 }
 changeText = (event) => {
 this.setState({text: event.target.value});
 }
 render() {
 const { text } = this.state;
 return (
 <div className="search">
 <input type="text" onChange={this.changeText} value={text}
 />
 <UsersSearchQuery variables={{text}}>
 <SearchList />
 </UsersSearchQuery>
 </div>
);
 }
}

We are storing the current input value inside of a state variable, called text. Every time the text is changed, the UsersSearchQuery component is rerendered with the new text property. Inside of the query component, the value is merged into the variables and sent with a GraphQL request. The result is then handed over to the SearchList component, which is a child of the UsersSearchQuery class.

	Next, we will implement the SearchList. This behaves like the posts feed, but only renders something if a response is given with at least one user. The list is displayed as a drop-down menu and is hidden whenever the browser window is clicked on. Create a file called searchList.js inside of the bar folder, with the following code:

import React, { Component } from 'react';
export default class SearchList extends Component {
 closeList = () => {
 this.setState({showList: false});
 }
 state = {
 showList: this.checkLength(this.props.users),
 }
 componentWillReceiveProps(props) {
 this.showList(props.users);
 }
 checkLength(users) {
 if(users.length > 0) {
 document.addEventListener('click', this.closeList);
 return true;
 } else {
 return false;
 }
 }
 showList(users) {
 if(this.checkLength(users)) {
 this.setState({showList: true});
 } else {
 this.closeList();
 }
 }
 componentWillUnmount() {
 document.removeEventListener('click', this.closeList);
 }
 render() {
 const { users } = this.props;
 const { showList } = this.state;
 return (
 showList &&
 <div className="result">
 {users.map((user, i) =>
 <div key={user.id} className="user">

 {user.username}
 </div>
)}
 </div>
)
 }
}

We are using the componentWillReceiveProps function here, which is executed whenever the parent component sets new properties on the current one. In this case, we check whether the properties include at least one user, and then set the state accordingly, in order to make the drop-down menu visible. The drop-down menu is hidden when clicked on, or when an empty result is given. The users come directly from the UsersSearchQuery component.

There are just two things to do now, as follows:

	You should copy the CSS from the official GitHub repository of this chapter in order to get the correct styling; or, you can do it on your own

	You need to import the bar wrapper component inside of the App class and render it between React Helmet and the news feed

The first feature of our application bar is now complete.

Let's continue and take a look at React's Context API, the Apollo Consumer feature, and how to store data globally in our React front end.

 The React Context API versus Apollo Consumer

There are two ways to handle global variables in the stack that we are using at the moment. These are the new React Context API and the Apollo Consumer functionality.

From version 16.3 of React, there is a new Context API that allows you to define global providers offering data through deeply nested components. These components do not require your application to hand over the data through many components, from the top to the bottom of the React tree. Instead, it uses so-called consumers and providers. These are useful when you set up the user object at a global point of your application, and you can access it from anywhere. In earlier versions of React, you needed to pass the property down from component to component to get it to the correct component at the bottom of the React component tree.

An alternative approach to the React Context API is the Apollo Consumer. It is a specific implementation for Apollo. The React Context API is a general way of doing things, for Apollo or anything else that you can imagine.

The great thing about the Apollo Consumer is that it enables you to access the Apollo cache and use it as data storage. Using the Apollo Consumer saves you from handling all of the data, but you are also not required to implement the provider itself; you can consume the data wherever you want.

Both of the approaches will result in the following output:

source: https://www.vecteezy.com/

The best option is to show you the two alternatives right away, so that you can identify your preferred method.

 The React Context API

We will start with the React method for storing and accessing global data in your front end.

The following is a short explanation of this method:

	Context: This is a React approach for sharing data between components, without having to pass it through the complete tree.

	Provider: This is a global component, mostly used at just one point in your code. It enables you to access the specific context data.

	Consumer: This is a component that can be used at many different points in your application, reading the data behind the context that you are referring to.

To get started, create a folder called context below the components folder. In that folder, create a user.js file, where we can set up the Context API.

We will go over every step, one by one, as follows:

	As always, we need to import all of the dependencies. Furthermore, we will set up a new empty context. The createContext function will return one provider and consumer to use throughout the application, as follows:

import React, { Component, createContext } from 'react';
const { Provider, Consumer } = createContext();

	Now, we want to use the provider. The best option here is to create a special UserProvider component. Later, when we have authentication, we can adjust it to do the GraphQL query, and then share the resultant data in our front end. For now, we will stick with fake data. Insert the following code:

export class UserProvider extends Component {
 render() {
 const { children } = this.props;
 const user = {
 username: "Test User",
 avatar: "/uploads/avatar1.png"
 };
 return (
 <Provider value={user}>
 {children}
 </Provider>
);
 }
}

	In the preceding code, we render the Provider component from Apollo and wrap all of the children in it. There is a Consumer component that reads from the Provider. We will set up a special UserConsumer component that takes care of passing the data to the underlying components by cloning them with React's cloneElement function:

export class UserConsumer extends Component {
 render() {
 const { children } = this.props;
 return (
 <Consumer>
 {user => React.Children.map(children, function(child){
 return React.cloneElement(child, { user });
 })}
 </Consumer>
)
 }
}

We will export both classes directly under their names.

We need to introduce the provider at an early point in our code base. The best approach is to import the UserProvider in the App.js file, as follows:

import { UserProvider } from './components/context/user';

Use the provider as follows, and wrap it around all essential components:

<UserProvider>
 <Bar />
 <Feed />
 <Chats />
</UserProvider>

Everywhere in the Bar, Feed, and Chats components, we can now read from the provider.

As stated previously, we want to show the logged-in user, with their name, inside the application.

The component using the data is the UserBar. We need to create a user.js file inside of the bar folder. We could also have written the UserBar class as a stateless function, but we might need to extend this component in a later chapter. Insert the following code:

import React, { Component } from 'react';
export default class UserBar extends Component {
 render() {
 const { user } = this.props;
 if(!user) return null;
 return (
 <div className="user">

 {user.username}
 </div>
);
 }
}

For the moment, we render a simple user container inside of the application bar, from the data of the user object.

To get the user data into the UserBar component, we need to use the UserConsumer component, of course.

Open the index.js file for the top bar and add the following code to the render method, next to the SearchBar component:

<UserConsumer>
 <UserBar />
</UserConsumer>

Obviously, you need to import both of the components at the top of the file, as follows:

import UserBar from './user';
import { UserConsumer } from '../context/user';

You have now successfully configured and used the React Context API to save and read data globally.

The solution that we have is a general approach that will work for all scenarios that you can think of, including Apollo. Nevertheless, we should cover the solution offered by Apollo itself.

 Apollo Consumer

Nearly all of the code that we have written can stay as it was in the previous section. We just need to remove the UserProvider from the App class, because it is not needed anymore for the Apollo Consumer.

Open up the user.js in the context folder and replace the contents with the following code:

import React, { Component } from 'react';
import { ApolloConsumer } from 'react-apollo';

export class UserConsumer extends Component {
 render() {
 const { children } = this.props;
 return (
 <ApolloConsumer>
 {client => {
 // Use client.readQuery to get the current logged in user.
 const user = {
 username: "Test User",
 avatar: "/uploads/avatar1.png"
 };
 return React.Children.map(children, function(child){
 return React.cloneElement(child, { user });
 });
 }}
 </ApolloConsumer>
)
 }
}

As you can see, we import the ApolloConsumer from the react-apollo package. This package enables us to get access to the Apollo Client that we set up in Chapter 4, Integrating React into the Back end with Apollo.

The problem we have here is that we do not have a CurrentUser query, which would respond with the logged-in user from the GraphQL; so, we are not able to run the readQuery function. You would typically run the query against the internal cache of Apollo, and be able to get the user object easily. Once we have implemented authentication, we will fix this problem.

For now, we will return the same fake object as we did with the React Context API. The Apollo Client replaces the Provider that we used with the React Context API.

I hope that you can understand the difference between these two solutions. In the next chapter, you will see the ApolloConsumer in full action, when the user query is established and can be read through the client of its cache.

 Documenting React applications

We have put a lot of work and code into our React application. To be honest, we can improve upon our code base by documenting it. We did not comment on our code, we did not add React component property type definitions, and we have no automated documentation tool. Of course, we did not write any comments because you learned all of the techniques and libraries from the book, so no comments were needed. However, be sure to always comment your code outside of this book.

In the JavaScript ecosystem, many different approaches and tools exist to document your application. For this book, we will use a tool called React Styleguidist. It was made especially for React. You cannot document other frameworks or code with it.

Generally speaking, this is an area that you can put months of work into without coming to a real end. If you are searching for a general approach for any framework or back end and front end, I can recommend JSDoc, but there are many more.

Let's get started with the configuration for React Styleguidist.

 Setting up React Styleguidist

React Styleguidist and our application rely on webpack. Just follow these instructions to get a working copy of it:

	Install React Styleguidist using npm, as follows:

npm install --save-dev react-styleguidist

	Usually, the folder structure is expected to be src/components, but we have a client folder between the src and components folder. So, we must configure React Styleguidist to let it understand our folder structure. Create a styleguide.config.js in the root folder of the project to configure it, as follows:

const path = require('path')
module.exports = {
 components: 'src/client/components/**/*.js',
 require: [
 path.join(__dirname, 'assets/css/style.css')
]
 webpackConfig: require('./webpack.client.config')
}

We export an object containing all of the information needed for React Styleguidist. In addition to specifying the components path, we also require our main CSS style file. You will see why this can be useful later in this chapter. We must define the webpackConfig option, because our config file has a custom name that is not found automatically.

Styleguidist provides two ways to view the documentation. One is to build the documentation statically, in production mode, with this command:

npx styleguidist build

This command creates a styleguide folder inside of the HTML files for our documentation. It is an excellent method when releasing new versions of your application, so that you can save and back up those files with each version.

The second method, for development cases, lets Styleguidist run and create the documentation on the fly, using webpack:

npx styleguidist server

You can view the results under http://localhost:6060. The documentation should look like the following screenshot:

In the left-hand panel, all of the components are listed in the order of our folder structure. You will always have an excellent overview of the existing components this way.

In the main panel, each component is explained in detail. You may have noticed that the components are missing further information. We will change that next.

 React PropTypes

An essential feature of React is passing the properties to the child components. These can be anything from basic strings to numbers, but also complete components. We have already seen all of the scenarios in our application.

Developers that are new to your code base need to read through all of the components and identify which properties they can accept.

React offers a way to describe properties from within each component. Documenting the properties of your components makes it easier for other developers to understand your React components.

We will take a look at how to do this with an example in our Post component.

There are two React features that we did have covered yet, as follows:

	If your components have optional parameters, it can make sense to have default properties in the first place. To do this, you can specify defaultProps as a static property, in the same way as with the state initializers.

	The important part is the propTypes field, which you can fill for all of your components with the custom properties that they accept.

A new package is required to define the property types, as follows:

npm install --save prop-types

This package includes everything that we need to set up our property definitions.

Now, open your Post component's index.js file. We need to import the new package at the top of the Post component's index.js file:

import PropTypes from 'prop-types';

Next, we will add the new field to our component, above the state initializers:

static propTypes = {
 /** Object containing the complete post. */
 post: PropTypes.object.isRequired,
}

The preceding code should help everyone to understand your component a bit better. Every developer should know that a post object is required for this component to work.

The PropTypes package offers various types that we can use. You can access each type with PropTypes.X. If it is a required property, you can append the word isRequired in the same way as in the preceding code.

Not only does React now throw an error inside of our console when the property does not exist, but React Styleguidist is also able to show which properties are needed, as you can see in the following screenshot:

However, what is a post object? What kind of fields does it include?

The best way to document a post object is to define which properties a post should include, at least for this specific component. Replace the property definition, as follows:

static propTypes = {
 /** Object containing the complete post. */
 post: PropTypes.shape({
 id: PropTypes.number.isRequired,
 text: PropTypes.string.isRequired,
 user: PropTypes.shape({
 avatar: PropTypes.string.isRequired,
 username: PropTypes.string.isRequired,
 }).isRequired
 }).isRequired,
}

Here, we use the shape function. It allows you to hand over a list of fields that the object contains. Each of those is given a type from the PropTypes package.

The output from React Styleguidist now looks like the following screenshot:

All of the fields that we specified are listed separately. At the time of writing this book, React Styleguidist does not offer a recursive view of all properties. As you can see, the user object inside of the post object is not listed with its properties, but it is only listed as a second shape. If you need this feature, you can, of course, implement it yourself, and send a pull request on the official GitHub repo, or switch to another tool.

React offers way more prop types and functions that you can use to document all of the components and their properties. To learn a bit more about this, visit the official documentation at https://reactjs.org/docs/typechecking-with-proptypes.html.

One last great feature of React Styleguidist is that you can enter examples for every component. You can also use markdown to add some more descriptions.

For our Post component, we need to create an index.md file, next to the index.js file in the post folder. React Styleguidist proposes creating either a Readme.md or Post.md file, but those did not work for me. The index.md file should look as follows:

Post example:

```js
  const post = {
    id: 3,
    text: "This is a test post!",
    user: {
      avatar: "/uploads/avatar1.png",
      username: "Test User"
    }
  };

  <Post key={post.id} post={post} />
```

React Styleguidist automatically rerenders the documentation and generates the following output:

source: https://www.vecteezy.com/

Now, you can see why it was useful to use the CSS style. Not only can React Styleguidist document the code, but it can also execute it within the documentation. Like in the preceding code, providing the correct properties inside of the post object enables us to see how the component should look, including the correct styling.

This example shows how reusable our Post component is, since it is usable without having to run the Apollo query. The drop-down component is not working, though, because the whole application setup is incorrect, including the required Apollo Client.

The basics should be clear by now. Continue to read up on this topic, because there are more things to learn.

 Summary

Through this chapter, you have gained a lot of experience in writing a React application. You have applied multiple React patterns to different use cases, such as children passing through a pattern and conditional rendering. Furthermore, you now know how to document your code correctly.

You also learned how to use the React Context API, in comparison with the Apollo Consumer feature, to retrieve the currently logged-in user in our application.

In the next chapter, you will learn how to implement authentication in your back end and use it in the front end.

 Authentication with Apollo and React

We have come a long way over the past few chapters. We have now finally reached the point at which we are going to implement authentication for our React and GraphQL web applications. In this chapter, you are going to learn some essential concepts for building an application with authentication using GraphQL.

This chapter covers the following topics:

	What is a JWT?

	Cookies versus localStorage

	Implementing authentication in Node.js and Apollo

	Signing up and logging in users

	Authenticating GraphQL queries and mutations

	Accessing the user from the request context

 JSON Web Tokens

JSON Web Tokens (JWTs) are still a pretty new standard for carrying out authentication; not everyone knows about them, and even fewer people use them. This section does not provide a theoretical excursion through the mathematical or cryptographic basics of JWTs.

In traditional web applications written in PHP, for example, you commonly have a session cookie. This cookie identifies the user session on the server. The session must be stored on the server to retrieve the initial user. The problem here is that the overhead of saving and querying all sessions for all users can be high. When using JWTs, however, there is no need for the server to preserve any kind of session id.

Generally speaking, a JWT consists of everything you need to identify a user. The most common approach is to store the creation time of the token, the username, the user id, and maybe the role, such as an admin or a normal user. You should not include any personal or critical data for security reasons.

The reason a JWT exists is not to encrypt or secure data in any way. Instead, to authorize yourself at a resource like a server, you send a signed JWT that your server can verify. It can only verify the JWT if it was created by a service stated as authentic by your server. In most cases, your server will have used its public key to sign the token. Any person or service that can read the communication between you and the server can access the token and can extract the payload without further ado. They are not able to edit the content though, because the token is signed with a signature.

The token needs to be transported and stored securely in the browser of the client. If the token gets into the wrong hands, that person is able to access the affected application with your identity, initiate actions in your name, or read personal data. It is also hard to invalidate a JWT. With a session cookie, you can delete the session on the server, and the user will no longer be authenticated through the cookie. With a JWT, however, we do not have any information on the server. It can only validate the signature of the token and find the user in your database. One common approach is to have a blacklist of all the disallowed tokens. Alternatively, you can keep the lifetime of a JWT low by specifying the expiration date. This solution, however, requires the user to frequently repeat the login process, which makes the experience less comfortable.

JWTs do not require any server-side storage. The great thing about server-side sessions is that you can store specific application states for your user and, for example, remember the last actions a user made. Without a server-side store, you either need to implement these features in localStorage or implement a session store, which is not required for using JWT authentication at all.

JSON Web Tokens are an important topic in developer communities. There is some excellent documentation available related to what JWTs are, how they can be used, and their technological background. Visit the following web page to learn more and to see a demonstration of the generation of a JWT: https://jwt.io/.

In our example, we are going to use JWTs, since they are a modern and decentralized method of authentication. Still, you can choose to opt out of this at any point and instead use regular sessions, which can be quickly realized in Express.js and GraphQL.

 localStorage versus cookie

Let's take a look at another critical question. It is crucial to understand at least the basics of how authentication works and how it is secured. You are responsible for any faulty implementation that allows data breaches, so always keep this in mind. Where do we store the token we receive from the server?

In whichever direction you send a token, you should always be sure that your communication is secure. For web applications like ours, be sure that HTTPS is enabled and used for all requests. After the user has successfully authenticated the use, it receives the JWT, according to the JWT authentication workflow. A JWT is not tied to any particular storage medium, so you are free to choose whichever you prefer. If we do not store the token when it is received, it will be only available in the memory. While the user is browsing our site, this is fine, but the moment they refresh the page, they will need to log in again because we haven't stored the token anywhere.

There are two standard options: to store the JWT inside the localStorage or to store it inside a cookie. Let's start by discussing the first option. localStorage is the option often suggested in tutorials. It is fine, assuming you are writing a single-page web application in which the content changes dynamically, depending on the actions of the user and client-side routing. We do not follow any links and load new sites to see new content; instead, the old one is just replaced with the new page that you want to show.

Storing the token in localStorage has the following disadvantages:

	localStorage is not transmitted on every request. When the page is loaded initially, you are not able to send the token within your request, and so resources needing authentication cannot be given back to you. When your application has finished loading, you have to make a second request to your server, including the token to access the secured content. This behavior has the consequence that it is not possible to build server-rendered applications.

	The client needs to implement the mechanics to attach the token on every request to the server.

	From the nature of localStorage, there is no built-in expiry date on the client. If at some point the token reaches its expiration date, it still exists on the client inside localStorage.

	The localStorage is accessed through pure JavaScript and is therefore open to XSS attacks. If someone manages to integrate custom JavaScript in your code or site through unsanitized inputs, they are able to read the token from localStorage.

There are, however, many advantages of using localStorage:

	As localStorage is not sent automatically with every request, it is secure against any Cross-Site-Request-Forgery (CSRF) attacks attempting to run actions from external sites by making random requests

	The localStorage is easy to read in JavaScript since it is stored as a key value pair

	It supports a bigger data size, which is great for storing an application state or data

The main problem with storing such critical tokens inside web storage is that you cannot guarantee that there is no unwanted access. Unless you can be sure that every single input is sanitized and you are not relying on any third-party tools that gets bundled into your JavaScript code, there is always a potential risk. Just one package you did not build yourself could share your users' web storage with its creator, without you or the user ever noticing. Furthermore, when you are using a public Content Delivery Network (CDN) the attack base and consequently the risk for your application is multiplied.

Now, let's take a look at cookies. These are great, despite their bad press due to the cookie compliance law initiated by the EU. Putting aside the more negative things that cookies can enable companies to do, such as tracking users, there are many good things about them. One significant difference compared to localStorage is that cookies are sent with every request, including the initial request for the site your application is hosted on.

Cookies come with the following advantages:

	Server-side rendering is no problem at all since cookies are sent with every request

	No further logic needs to be implemented in the front end to send the JWT.

	Cookies can be declared as httpOnly, which means JavaScript can't access them. It secures our token from XSS attacks

	Cookies have a built-in expiration date, which can be set to invalidate the cookie in the client browser

	Cookies can be configured to be readable only from specific domains or paths.

	All browsers support cookies

These advantages sound good so far, but let's consider the downsides:

	Cookies are generally open to CSRF attacks, which are situations in which an external website makes requests to your API. They expect that you are authenticated and hope that they can execute actions on your behalf. We can't stop the cookie from being sent with each request to your domain. A common prevention tactic is to implement an CSRF token. This special token is also transmitted by your server and saved as a cookie. The external website cannot access the cookie with JavaScript since it is stored under a different domain. Your server does not read a token from the cookies that are transmitted with each request, but only from an HTTP header. This behavior guarantees that the token was sent by the JavaScript that was hosted on your application, because only this can have access to the token. Setting up the XSRF token for verification, however, introduces a lot of work.

	Accessing and parsing cookies is not intuitive, because they are just stored as a big comma-separated string.

	They can only store a small amount of data.

We can see that both approaches have their advantages and disadvantages.

The most common method is to use localStorage, as this is the easiest method. In this book, we start by using localStorage, but later switch over to cookies when using server-side rendering to give you experience in both. You may not need server-side rendering at all. If this is the case, you can skip this part and the cookie implementation too.

 Authentication with GraphQL

The basics of authentication should now be clear to you. Our task is now to implement a secure way for users to authenticate. If we have a look at our current database, we are missing the required fields. Let's prepare and add a password and an email field. As we learned in Chapter 3, Connecting to the Database, we create a migration to edit our user table. You can look up the commands in the third chapter if you have forgotten them:

sequelize migration:create --migrations-path src/server/migrations --name add-email-password-to-post

The preceding command generates the new file for us. You can replace the content of it and try writing the migration on your own, or check for the right commands in the following code snippet:

'use strict';

module.exports = {
 up: (queryInterface, Sequelize) => {
 return Promise.all([
 queryInterface.addColumn('Users',
 'email',
 {
 type: Sequelize.STRING,
 unique : true,
 }
),
 queryInterface.addColumn('Users',
 'password',
 {
 type: Sequelize.STRING,
 }
),
]);
 },

 down: (queryInterface, Sequelize) => {
 return Promise.all([
 queryInterface.removeColumn('Users', 'email'),
 queryInterface.removeColumn('Users', 'password'),
]);
 }
};

All fields are simple strings. You can execute the migration, as stated in the Chapter 3, Connecting to The Database. The email address needs to be unique. Our old seed file for the users needs to be updated now to represent the new fields that we have just added. Copy the following fields:

password: '$2a$10$bE3ovf9/Tiy/d68bwNUQ0.zCjwtNFq9ukg9h4rhKiHCb6x5ncKife',
email: 'test1@example.com',

Do this for all three users and change the email address for each of them. Otherwise, it will not work. The password is in hashed format and represents the plain password 123456789. As we have added new fields in a separate migration, we have to add these to the model.

Open and add the new lines as fields to the user.js file in the model folder:

email: DataTypes.STRING,
password: DataTypes.STRING,

The first thing to do now is get the login running. At the moment, we are just faking being logged in as the first user in our database.

 Apollo login mutation

We are now going to edit our GraphQL schema and implement the matching resolver function. Let's start with the schema and a new mutation to the RootMutation object of our schema.js file:

login (
 email: String!
 password: String!
): Auth

The preceding schema gives us a login mutation that accepts an email address and a password. Both are required to identify and authenticate the user. We then need to respond with something to the client. For now, the Auth type returns a token, which is a JWT in our case. You might want to add a different option according to your requirements:

type Auth {
 token: String
}

The schema is now ready. Head over to the resolvers file and add the login function inside the mutation object. Before doing this, we have to install and import two new packages:

npm install --save jsonwebtoken bcrypt

The jsonwebtoken package handles everything required to sign, verify, and decode JWTs.

The important part is that all passwords for our users are not saved as plain text but are first encrypted using hashing, including a random salt. This generated hash cannot be decoded or decrypted to a plain password, but the package can verify if the password that was sent with the login attempt matches with the password hash saved on the user. Import these packages at the top of the resolvers file:

import bcrypt from 'bcrypt';
import JWT from 'jsonwebtoken';

The login function receives email and password as parameters. It should look like the following code:

login(root, { email, password }, context) {
 return User.findAll({
 where: {
 email
 },
 raw: true
 }).then(async (users) => {
 if(users.length = 1) {
 const user = users[0];
 const passwordValid = await bcrypt.compare(password,
 user.password);
 if (!passwordValid) {
 throw new Error('Password does not match');
 }
 const token = JWT.sign({ email, id: user.id }, JWT_SECRET, {
 expiresIn: '1d'
 });

 return {
 token
 };
 } else {
 throw new Error("User not found");
 }
 });
},

The preceding code goes through the following steps:

	We query all users where the email address matches.

	If a user is found, we can go on. It is not possible to have multiple users with the same address, as the MySQL unique constraint forbids this.

	Next, we use the user password and compare it with the submitted password, using the bcrypt package, as explained previously.

	If the password was correct, we generate a JWT token to the jwt variable using the jwt.sign function. It takes three arguments: the payload, which is the user id and their email address; the key with which we sign the JWT; and the amount of time in which the JWT is going to expire.

	In the end, we return an object containing our JWT.

Something that you might need to rethink is how much detail you give in an error message. For example, we might not want to distinguish between an incorrect password and a non-existent user. It gives possible attackers or data collectors the opportunity to know which email address is in use.

The login function is not working yet, because we are missing JWT_SECRET, which is used to sign the JWT. In production, we use the environment variables to pass the JWT secret key into our back end code so that we use this approach in development too.

For Linux or Mac, you can use the following command directly in the Terminal:

export JWT_SECRET=awv4BcIzsRysXkhoSAb8t8lNENgXSqBruVlLwd45kGdYjeJHLap9LUJ1t9DTdw36DvLcWs3qEkPyCY6vOyNljlh2Er952h2gDzYwG82rs1qfTzdVIg89KTaQ4SWI1YGY

The export function sets the JWT_SECRET environment variable for you. Replace the JWT provided with a random one. You can use any password generator by setting the character count to 128 and excluding any special characters. Setting the environment variable allows us to read the secret in our application. You have to replace it when going to production.

Insert the following code at the top of the file:

const { JWT_SECRET } = process.env;

This code reads the environment variable from the global Node.js process object. Be sure to replace the JWT once you publish your application, and be sure to always store the secret securely. After letting the server reload, we can send the first login request. We are going to take a look how to do this in React later, but the following code shows an example using Postman:

{
 "operationName":null,
 "query": "mutation login($email : String!, $password : String!) {
 login(email: $email, password : $password) { token }}",
 "variables":{
 "email": "test1@example.com",
 "password": "123456789"
 }
}

This request should return a token:

{
 "data": {
 "login": {
 "token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJlbWFpbCI6InRlc3QxQGV4YW1wbGUuY29tIiwiaWQiOjEsImlhdCI6MTUzNzIwNjI0MywiZXhwIjoxNTM3MjkyNjQzfQ.HV4dPIBzvU1yn6REMv42N0DS0ZdgebFDX-Uj0MPHvlY"
 }
 }
}

As you can see, we have generated a signed JWT and returned it within the mutation's response. We can go on and send the token with every request inside the HTTP authorization header. We can then get the authentication running for all the other GraphQL queries or mutations that we have implemented so far.

Let's continue and learn how to set up React to work with our authentication on the back end.

 The React login form

We need to handle the different authentication states of our application:

	The first scenario is that the user is not logged in and cannot see any posts or chats. In this case, we need to show a login form to allow the user to authenticate themselves.

	The second scenario is that an email and password are sent through the login form. The response needs to be interpreted, and if the result is correct, we need to save the JWT inside the localStorage of the browser for now.

	When changing the localStorage, we also need to rerender our React application to show the logged-in state.

	Furthermore, the user should be able to log out again.

	We must also handle if the JWT expires and the user is unable to access any functionalities.

The result for our form looks as follows:

To get started with the login form, observe the following steps:

	Set up the login Mutation component. It is likely that we only need this component at one place in our code, but it is a good idea to save Apollo requests in separate files.

	Build the login form component, which uses the login mutation to send the form data.

	Create the CurrentUser query to retrieve the logged-in user object.

	Conditionally render the login form if the user is not authenticated or the real application like the news feed if the user is logged in.

Begin by creating a new login.js file inside the mutations folder for the client components:

import React, { Component } from 'react';
import { Mutation } from 'react-apollo';
import gql from 'graphql-tag';

const LOGIN = gql`
 mutation login($email : String!, $password : String!) {
 login(email : $email, password : $password) {
 token
 }
 }`;

export default class LoginMutation extends Component {
 render() {
 const { children } = this.props;
 return (
 <Mutation
 update = {(store, { data: { login } }) => {
 if(login.token) {
 localStorage.setItem('jwt', login.token);
 }
 }}
 mutation={LOGIN}>
 {(login, { loading, error}) =>
 React.Children.map(children, function(child){
 return React.cloneElement(child, { login, loading, error });
 })
 }
 </Mutation>
)
 }
}

Like in the previous mutations, we parse the query string and hand the resulting login function over to all the children of the component. We now give the loading and error states to those children, in case we want to show an error or loading message. The update function is a bit different than before. We don't write the return value in the Apollo cache, but we do need to store the JWT inside the localStorage. The syntax is pretty simple. You can directly use localStorage.get and localStorage.set to interact with the web storage.

Now, we implement the underlying children, which makes up the login form. To do this, we create a loginregister.js file directly in the components folder. As you may expect, we handle the login and registration of users in one component. Import the dependencies:

import React, { Component } from 'react';
import Error from './error';
import LoginMutation from './mutations/login';

The LoginForm class will store the form state, display an error message if something goes wrong, and send the login mutation including the form data:

class LoginForm extends Component {
 state = {
 email: '',
 password: '',
 }
 login = (event) => {
 event.preventDefault();
 this.props.login({ variables: { email: this.state.email, password:
 this.state.password }});
 }
 render() {
 const { error } = this.props;
 return (
 <div className="login">
 <form onSubmit={this.login}>
 <label>Email</label>
 <input type="text" onChange={(event) => this.setState({email:
 event.target.value})} />
 <label>Password</label>
 <input type="password" onChange={(event) =>
 this.setState({password: event.target.value})} />
 <input type="submit" value="Login" />
 </form>
 {error && (
 <Error><p>There was an error logging in!</p></Error>
)}
 </div>
)
 }
}

We render the login form inside the wrapping component, which is called LoginRegisterForm. It is important to surround the form with the login mutation so that we can send the Apollo request:

export default class LoginRegisterForm extends Component {
 render() {
 return (
 <div className="authModal">
 <LoginMutation><LoginForm/></LoginMutation>
 </div>
)
 }
}

All the basics for authenticating the user are now ready, but they have not been imported yet or displayed anywhere. Open the App.js file. There, we directly display the feed, chats, and the top bar. The user should not be allowed to see everything if he is not logged in. Continue reading to change this.

Import the new form that we have just created:

import LoginRegisterForm from './components/loginregister';

We then have to store whether the user is logged in or not. We save it in the component state, as follows:

state = {
 loggedIn: false
}

When loading our page, this variable needs to be set to true if we have a token in our localStorage. We handle this inside the componentWillMount function provided by React:

componentWillMount() {
 const token = localStorage.getItem('jwt');
 if(token) {
 this.setState({loggedIn: true});
 }
}

Then, in the render method, we can use conditional rendering to show the login form when the loggedIn state variable is set to false, which means that there is no JWT inside our localStorage:

{this.state.loggedIn ?
 <div>
 <Bar />
 <Feed />
 <Chats />
 </div>
 : <LoginRegisterForm/>
}

If you try the login page, you will see that nothing happens, even though no error message is shown. That happens because we save the JWT, but we do not tell React to rerender our App class. We only check for the JWT when the page loads initially. To test your implementation, you can reload the window, and you should be logged in.

We have to pass a function down the React tree to the components, who are then able to trigger a logged-in state so that React can rerender and show the logged in area. We call this function changeLoginState and implement it inside the App.js file as follows:

changeLoginState = (loggedIn) => {
 this.setState({ loggedIn });
}

The function can change the current application state as specified through the loggedIn parameter. We then integrate this method into the LoginMutation component. To do this, we edit the render method of the App class to pass the right property:

<LoginRegisterForm changeLoginState={this.changeLoginState}/>

Then, inside the LoginRegisterForm class, we replace the render method with the following code:

render() {
 const { changeLoginState } = this.props;
 return (
 <div className="authModal">
 <LoginMutation changeLoginState={changeLoginState}><LoginForm/></LoginMutation>
 </div>
)
}

Edit the LoginMutation component and extract the new function from the properties:

const { children, changeLoginState } = this.props;

We can then execute the changeLoginState function within the update method:

if(login.token) {
 localStorage.setItem('jwt', login.token);
 changeLoginState(true);
}

When logging in, our application presents us with the common posts feed as before. The authentication flow is now working, but there is one more open task. In the next step, we allow new users to register at Graphbook.

 Apollo sign up mutation

You should now be familiar with creating new mutations. First, edit the schema to accept the new mutation:

signup (
 username: String!
 email: String!
 password: String!
): Auth

We only need the username, email, and password properties that were mentioned in the preceding code to accept new users. If your application requires a gender or something else, you can add it here. When trying to sign up, we need to ensure that neither the email address nor the username is already taken. You can copy over the code to implement the resolver for signing up new users:

signup(root, { email, password, username }, context) {
 return User.findAll({
 where: {
 [Op.or]: [{email}, {username}]
 },
 raw: true,
 }).then(async (users) => {
 if(users.length) {
 throw new Error('User already exists');
 } else {
 return bcrypt.hash(password, 10).then((hash) => {
 return User.create({
 email,
 password: hash,
 username,
 activated: 1,
 }).then((newUser) => {
 const token = JWT.sign({ email, id: newUser.id }, JWT_SECRET,
 {
 expiresIn: '1d'
 });
 return {
 token
 };
 });
 });
 }
 });
},

Let's go through the code step by step:

	As mentioned previously, we first check if a user with the same email or username exists. If this is the case, we throw an error. We use the Op.or Sequelize operator to implement the MySQL OR condition.

	If the user does not exist, we can hash the password using bcrypt. You cannot save the plain password for security reasons. When running the bcrypt.hash function, a random salt is used to make sure nobody ever gets access to the original password. This command takes quite some computing time, so the bcrypt.hash function is asynchronous, and the promise must be resolved before continuing.

	The encrypted password, including the other data the user has sent, is then inserted in our database as a new user.

	After creating the user, we generate a JWT and return it to the client. The JWT allows us to log in the user directly after signing up. If you do not want this behavior, you can of course just return a message to indicate that the user has signed up successfully.

You can now test the signup mutation again with Postman if you want while starting the back end using npm run server. We have now finished the back end implementation, so we start working on the front end.

 React sign up form

The registration form is nothing special. We follow the same steps as we took with the login form. You can clone the LoginMutation component, replace the request at the top with the signup mutation, and hand over the signup method to the underlying children. At the top, import all the dependencies and then parse the new query:

import React, { Component } from 'react';
import { Mutation } from 'react-apollo';
import gql from 'graphql-tag';

const SIGNUP = gql`
 mutation signup($email : String!, $password : String!, $username :
 String!) {
 signup(email : $email, password : $password, username : $username) {
 token
 }
}`;

As you can see, the username field is new here, which we send with every signup request. The component itself has not changed, so we have to extract the JWT from the signup field when logging the user in after a successful request.

We use the changeLoginState method to do so. We also changed the name of the mutation function we pass from login to signup, of course:

export default class SignupMutation extends Component {
 render() {
 const { children, changeLoginState } = this.props;
 return (
 <Mutation
 update = {(store, { data: { signup } }) => {
 if(signup.token) {
 localStorage.setItem('jwt', signup.token);
 changeLoginState(true);
 }
 }}
 mutation={SIGNUP}>
 {(signup, { loading, error}) =>
 React.Children.map(children, function(child){
 return React.cloneElement(child, { signup, loading, error
 });
 })
 }
 </Mutation>
)
 }
}

It is a good thing for the developer to see, that the login and signup mutations are quite similar. The biggest change is that we conditionally render the login form or the registration form. In the loginregister.js file, you first import the new mutation. Then, you replace the complete LoginRegisterForm class with the following new one:

export default class LoginRegisterForm extends Component {
 state = {
 showLogin: true
 }
 render() {
 const { changeLoginState } = this.props;
 const { showLogin } = this.state;
 return (
 <div className="authModal">
 {showLogin && (
 <div>
 <LoginMutation changeLoginState=
 {changeLoginState}><LoginForm/></LoginMutation>
 this.setState({ showLogin: false })}>Want
 to sign up? Click here
 </div>
)}
 {!showLogin && (
 <div>
 <RegisterMutation changeLoginState=
 {changeLoginState}><RegisterForm/></RegisterMutation>
 this.setState({ showLogin: true })}>Want to
 login? Click here
 </div>
)}
 </div>
)
 }
}

You should notice that we are storing a showLogin variable in the component state, which decides if the login or register form is shown. The matching mutation wraps each form, and they handle everything from there. The last thing to do is insert the new register form in the login.js file:

class RegisterForm extends Component {
 state = {
 email: '',
 password: '',
 username: '',
 }
 login = (event) => {
 event.preventDefault();
 this.props.signup({ variables: { email: this.state.email, password:
 this.state.password, username: this.state.username }});
 }
 render() {
 const { error } = this.props;
 return (
 <div className="login">
 <form onSubmit={this.login}>
 <label>Email</label>
 <input type="text" onChange={(event) => this.setState({email:
 event.target.value})} />
 <label>Username</label>
 <input type="text" onChange={(event) =>
 this.setState({username: event.target.value})} />
 <label>Password</label>
 <input type="password" onChange={(event) =>
 this.setState({password: event.target.value})} />
 <input type="submit" value="Sign up" />
 </form>
 {error && (
 <Error><p>There was an error logging in!</p></Error>
)}
 </div>
)
 }
}

In the preceding code, I have added the username field, which has to be given to the mutation. Everything is now set to invite new users to join our social network and log in as often as they want.

In the next section, we will see how to use authentication with our existing GraphQL requests.

 Authenticating GraphQL requests

The problem is that we are not using the authentication everywhere at the moment. We verify that the user is who they say they are, but we do not recheck this when the requests for chats or messages come in. To accomplish this, we have to send the JWT token, which we generated specifically for this case, with every Apollo request. On the back end, we have to specify which request requires authentication, read the JWT from the HTTP authorization header, and verify it.

Open the index.js file from the apollo folder for the client-side code. Our ApolloClient is currently configured as explained in Chapter 4, Integrating React into the Back end with Apollo. Before sending any request, we have to read the JWT from the localStorage and add it as an HTTP authorization header. Inside the link property, we have specified the links for our ApolloClient processes. Before the configuration of the HTTP link, we insert a third preprocessing hook as follows:

const AuthLink = (operation, next) => {
 const token = localStorage.getItem('jwt');
 if(token) {
 operation.setContext(context => ({
 ...context,
 headers: {
 ...context.headers,
 Authorization: `Bearer ${token}`,
 },
 }));
 }
 return next(operation);
};

Here, we have called the new link AuthLink, because it allows us to authenticate the client on the server. You can copy the AuthLink approach to other situations in which you need to customize the header of your Apollo requests. Here, we just read the JWT from the localStorage and, if it is found, we construct the header using the spread operator and adding our token to the Authorization field as a Bearer token. It is everything that needs to be done on the client-side.

To clarify things, take a look at the following link property to see how to use this new preprocessor. There is no initialization required; it is merely a function that is called every time a request is made. Copy the link configuration to our Apollo Client setup:

link: ApolloLink.from([
 onError(({ graphQLErrors, networkError }) => {
 if (graphQLErrors) {
 graphQLErrors.map(({ message, locations, path }) =>
 console.log(`[GraphQL error]: Message: ${message}, Location:
 ${locations}, Path: ${path}`));
 if (networkError) {
 console.log(`[Network error]: ${networkError}`);
 }
 }
 }),
 AuthLink,
 new HttpLink({
 uri: 'http://localhost:8000/graphql',
 credentials: 'same-origin',
 }),
]),

For our back end, we need a pretty complex solution. Create a new file called auth.js inside the graphql services folder. We want to be able to mark specific GraphQL requests in our schema with a so-called directive. If we add this directive to our GraphQL schema, we execute a function whenever the marked GraphQL action is requested. In this function, we can verify whether the user is logged in or not. Have a look at the following function and save it right to the auth.js file:

import { SchemaDirectiveVisitor, AuthenticationError } from 'apollo-server-express';

class AuthDirective extends SchemaDirectiveVisitor {
 visitFieldDefinition(field) {
 const { resolve = defaultFieldResolver } = field;
 field.resolve = async function(...args) {
 const ctx = args[2];
 if (ctx.user) {
 return await resolve.apply(this, args);
 } else {
 throw new AuthenticationError("You need to be logged in.");
 }
 };
 }
}

export default AuthDirective;

Starting from the top, we import the SchemaDirectiveVisitor class from the apollo-server-express package. This class allows us to handle all requests that have the AuthDirective attached. We extend the SchemaDirectiveVisitor class and override the visitFieldDefinition method. Within the method, we resolve the current context of the request with the field.resolve function. If the context has a user attached, we can be sure that the authorization header has been checked before and the identified user has been added to the request context. If not, we throw an error. The AuthError we are throwing gives us the opportunity to implement certain behaviors when an UNAUTHENTICATED error is sent to the client.

We have to load the new AuthDirective class in the graphql index.js file, which sets up the whole Apollo Server:

import auth from './auth';

While using the makeExecutableSchema function to combine the schema and the resolvers, we can add a further property to handle all schema directives, as follows:

const executableSchema = makeExecutableSchema({
 typeDefs: Schema,
 resolvers: Resolvers.call(utils),
 schemaDirectives: {
 auth: auth
 },
});

Here, we combine the schema, the resolvers, and the directives into one big object. It is important to note that the auth index inside the schemaDirectives object is the mark that we have to set at every GraphQL request in our schema that requires authentication. To verify what we have just done, go to the GraphQL schema and edit postsFeed RootQuery by adding @auth at the end of the line like this:

postsFeed(page: Int, limit: Int): PostFeed @auth

Because we are using a new directive, we also must define it in our GraphQL schema so that our server knows about it. Copy the following code directly to the top of the schema:

directive @auth on QUERY | FIELD_DEFINITION | FIELD

This tiny snippet tells the Apollo Server that the @auth directive is usable with queries, fields, and field definitions so that we can use it everywhere.

If you reload the page and manually set the loggedIn state variable to true via the React Developer Tools, you will see the following error message:

As we have implemented the error component earlier, we are now correctly receiving an unauthenticated error for the postsFeed query if the user is not logged in. How can we use the JWT to identify the user and add it into the request context?

Schema directives are a complex topic as there are many important things to bear in mind to do with Apollo and GraphQL. I recommend that you read up on directives in detail in the official Apollo documentation: https://www.apollographql.com/docs/graphql-tools/schema-directives.html.

In Chapter 2, Setting Up GraphQL with Express.js, we set up the Apollo Server by providing the executable schema and the context, which has been the request object until now. We have to check if the JWT is inside the request. If this is the case, we need to verify it and query the user to see if the token is valid. Let's start by verifying the authorization header. Before doing so, import the new dependencies in the Graphql index.js file:

import JWT from 'jsonwebtoken';
const { JWT_SECRET } = process.env;

The context field of the ApolloServer initialization has to look as follows:

const server = new ApolloServer({
 schema: executableSchema,
 context: async ({ req }) => {
 const authorization = req.headers.authorization;
 if(typeof authorization !== typeof undefined) {
 var search = "Bearer";
 var regEx = new RegExp(search, "ig");
 const token = authorization.replace(regEx, '').trim();
 return jwt.verify(token, JWT_SECRET, function(err, result) {
 return req;
 });
 } else {
 return req;
 }
 },
});

We have extended the context property of the ApolloServer class to a full-featured function. We read the auth token from the headers of the requests. If the auth token exists, we need to strip out the bearer string, because it is not part of the original token that was created by our back end. The bearer token is the best method of JWT authentication.

There are other authentication methods like basic authentication, but the bearer method is the best to follow. You can find a detailed explanation under RFC6750 by the IETF at this link: https://tools.ietf.org/html/rfc6750.

Afterwards, we use the jwt.verify function to check if the token matches the signature generated by the secret from the environment variables. The next step is to retrieve the user after successful verification. Replace the content of the verify callback with the following code:

if(err) {
 return req;
} else {
 return utils.db.models.User.findById(result.id).then((user) => {
 return Object.assign({}, req, { user });
 });
}

If the err object in the previous code has been filled, we can only return the ordinary request object, which triggers an error when it reaches the AuthDirective class, since there is no user attached. If there are no errors, we can use the utils object we are already passing to the Apollo Server setup to access the database. If you need a reminder, take a look at Chapter 2, Setting Up GraphQL with Express.js. After querying the user, we add them to the request object and return the merged user and request object as the context. This leads to a successful response from our authorizing directive.

You can now test this behavior. Start the front end with npm run client and the back end using npm run server. Don't forget that all Postman requests now have to include a valid JWT if the auth directive is used in the GraphQL query. You can run the login mutation and copy it over to the authorization header to run any query. We are now able to mark any query or mutation with the authorization flag and, as a result, require the user to be logged in.

 Accessing the user context from resolver functions

At the moment, all the API functions of our GraphQL server allow us to simulate the user by selecting the first available one from the database. As we have just introduced a full-fledged authentication, we can now access the user from the request context. This section quickly explains how to do this for the chat and message entities. We also implement a new query called currentUser, where we retrieve the logged-in user in our client.

 Chats and messages

First of all, you have to add the @auth directive to the chats inside GraphQL's RootQuery to ensure that users need to be logged in to access any chats or messages.

Take a look at the resolver function for the chats. Currently, we use the findAll method to get all users, take the first one, and query for all chats of that user. Replace the code with the new resolver function:

chats(root, args, context) {
 return Chat.findAll({
 include: [{
 model: User,
 required: true,
 through: { where: { userId: context.user.id } },
 },
 {
 model: Message,
 }],
 });
},

We skip the retrieval of the user and directly insert the user ID from the context, as you can see in the preceding code. That's all we have to do: all chats and messages belonging to the logged-in user are queried directly from the chats table.

 CurrentUser GraphQL query

The JWT gives us the opportunity to query for the currently logged-in user. Then, we can display the correct authenticated user in the top bar. To request the logged-in user, we require a new query called currentUser on our back end. In the schema, you simply have to add the following line to the RootQuery queries:

currentUser: User @auth

Like the postsFeed and chats queries, we also need the @auth directive to extract the user from the request context.

Similarly, in the resolver functions, you only need to insert the following three lines:

currentUser(root, args, context) {
 return context.user;
},

We return the user from the context right away, because it is already a user model instance with all the appropriate data returned by Sequelize. On the client side, we create this query in a separate component and file. Bear in mind that you don't need to pass the result on to all the children because this is done automatically by ApolloConsumer later on. You can follow the previous query component examples. Just use the following query, and you are good to continue:

const GET_CURRENT_USER = gql`
 query currentUser {
 currentUser {
 id
 username
 avatar
 }
 }
`;

If you had problems setting up the query component on your own, you could have a look at the official repository of this book.

You can now import the new query component inside the App.js file. Replace the old div tag within the logged-in state with the following code:

<CurrentUserQuery>
 <Bar />
 <Feed />
 <Chats />
</CurrentUserQuery>

Now, every time the loggedIn state variable is true, the CurrentUserQuery component is mounted and the query is executed. To get access to the response, we use the ApolloConsumer in the bar component that we implemented in the previous chapter. I have surrounded the feed and the chats with the currentUser query to be sure that the user already exists in the local cache of the Apollo Client before the other components are rendered, including the bar component.

We have to adjust the user.js context file. First, we parse the currentUser query. The query is only needed to extract the user from the cache. It is not used to trigger a separate request. Insert the following code at the top of the user.js file:

import gql from 'graphql-tag';
const GET_CURRENT_USER = gql`
 query currentUser {
 currentUser {
 id
 username
 avatar
 }
 }
`;

Instead of having a hardcoded fake user inside ApolloConsumer, we use the client.readQuery function to extract the data stored in the ApolloClient cache to give it to the underlying child component:

{client => {
 const {currentUser} = client.readQuery({ query: GET_CURRENT_USER});
 return React.Children.map(children, function(child){
 return React.cloneElement(child, { user: currentUser });
 });
}}

We pass the extracted currentUser result from the client.readQuery method directly to all the wrapped children of the current component.

The chats that are created from now on and the user in the top bar are no longer faked but instead are filled with the user who is currently logged in.

The mutations to create new posts or messages still use a static user id. We can switch over to the real logged-in user in the same way as we did previously in this section by using the user id from the context.user object. You should now be able to do this on your own.

 Logging out using React

To complete the circle, we still have to implement the functionality to log out. There are two cases when the user can be logged out:

	The user wants to log out and hits the logout button

	The JWT has expired after one day as specified; the user is no longer authenticated, and we have to set the state to logged out

We will begin by adding a new logout button to the top bar of our application's front end. To do this, we need to create a new logout.js component inside the bar folder. It should appear as follows:

import React, { Component } from 'react';
import { withApollo } from 'react-apollo';

class Logout extends Component {
 logout = () => {
 localStorage.removeItem('jwt');
 this.props.changeLoginState(false);
 this.props.client.resetStore();
 }
 render() {
 return (
 <button className="logout" onClick={this.logout}>Logout</button>
);
 }
}

export default withApollo(Logout);

As you can see from the preceding code, the logout button triggers the component's logout method when it is clicked. Inside the logout method, we remove the JWT from localStorage and execute the changeLoginState function that we receive from the parent component. Be aware that we do not send a request to our server to log out, but instead we remove the token from the client. That is because there is no black or white list that we are using to disallow or allow a certain JWT to authenticate on our server. The easiest way to log out a user is to remove the token on the client side so that neither the server nor the client has it.

We also reset the client cache. When a user logs out, we must remove all data. Otherwise, other users of the same browser will be able to extract all the data, which we have to prevent. To get access to the underlying Apollo Client, we import the withApollo HoC and export the Logout component wrapped inside it. When logging out, we execute the client.resetStore function and all data is deleted. To use our new Logout component, open the index.js file from the bar folder and import it at the top. We can render it within the div top bar, below the other inner div tag:

<Logout changeLoginState={this.props.changeLoginState}/>

We pass the changeLoginState function to the Logout component. In the App.js main file, you have to ensure that you hand over this function not only to the LoginRegisterForm but also to the bar component, as follows:

<Bar changeLoginState={this.changeLoginState}/>

If you copy the complete CSS from the official GitHub repository, you should see a new button at the top-right corner of the screen when you are logged in. Hitting it logs you out and requires you to sign in again since the JWT has been deleted.

The other situation in which we implement a logout functionality is when the JWT we are using expires. In this case, we log the user out automatically and require them to log in again. Go to the App class and add the following lines:

constructor(props) {
 super(props);
 this.unsubscribe = props.client.onResetStore(
 () => this.changeLoginState(false)
);
}
componentWillUnmount() {
 this.unsubscribe();
}

We need a constructor because we are using the client.onResetStore event, which is caught through the client.onResetStore function.

To get the preceding code working, we have to access the Apollo Client in our App component. The easiest way is to use the withApollo HoC. Just import it from the react-apollo package in the App.js file:

import { withApollo } from 'react-apollo';

Then, export the App class—not directly, but through the HoC. The following code must go directly beneath the App class:

export default withApollo(App);

Now, the component can access the client through its properties. The resetStore event is thrown whenever the client restore is reset, as the name suggests. You are going to see why we need this shortly. When listening to events in React, we have to stop listening when the component is unmounted. We handle this inside the componentWillUnmount function in the preceding code. Now, we have to reset the client store to initiate the logout state. When the event is caught, we execute the changeLoginState function automatically. Consequently, we could remove the section in which we passed the changeLoginState to the logout button initially because it is no longer needed, but this not what we want to do here.

Instead, go to the index.js file in the apollo folder. There, we already catch and loop over all errors returned from our GraphQL API. What we do now is loop over all errors but check each of them for an UNAUTHENTICATED error. Then, we execute the client.resetStore function. Insert the following code into the Apollo Client setup:

onError(({ graphQLErrors, networkError }) => {
 if (graphQLErrors) {
 graphQLErrors.map(({ message, locations, path, extensions }) => {
 if(extensions.code === 'UNAUTHENTICATED') {
 localStorage.removeItem('jwt');
 client.resetStore()
 }
 console.log(`[GraphQL error]: Message: ${message}, Location:
 ${locations}, Path: ${path}`);
 });
 if (networkError) {
 console.log(`[Network error]: ${networkError}`);
 }
 }
}),

As you can see, we access the extensions property of the error. The extensions.code field holds the specific error type that's returned. If we are not logged in, we remove the JWT and then reset the store. By doing this, we trigger the event in our App class, which sends the user back to the login form.

A further extension would be to offer a refresh token API function. The feature could be run every time we successfully use the API. The problem with this is that the user would stay logged in forever, as long as they are using the application. Usually, this is no problem, but if someone else is accessing the same computer, they will be authenticated as the original user. There are different ways to implement these kinds of functionalities to make the user experience more comfortable, but I am not a big fan of these for security reasons.

 Summary

Until now, one of the main issues we had with our application is that we didn't have any authentication. We can now tell who is logged in every time a user accesses our application. This allows us to secure the GraphQL API and insert new posts or messages in the name of the correct user. In this chapter, we discussed the fundamental aspects of JSON Web Tokens, localStorage, and cookies. We also looked at how the verification of hashed passwords or signed tokens works. This chapter then covered how to implement JWTs inside React and how to trigger the correct events to log in and log out.

In the next chapter, we are going to implement image uploads with a reusable component that allows the user to upload new avatar images.

 Handling Image Uploads

All social networks have one thing in common: each of them allows their users to upload custom and personal pictures, videos, or any other kind of document. This feature can take place inside chats, posts, groups, or profiles. To offer the same functionality, we are going to implement an image upload feature in Graphbook.

This chapter will cover the following topics:

	Setting up Amazon Web Services

	Configuring an AWS S3 bucket

	Accepting file uploads on the server

	Uploading images with React through Apollo

	Cropping images

 Setting up Amazon Web Services

First, I have to mention that Amazon (or, to be specific, Amazon Web Services (AWS)) is not the only provider of hosting, storage, or computing systems. There are many such providers, including the following:

	Heroku

	Digital Ocean

	Google Cloud

	Microsoft Azure

Many specialize in specific services, or try to provide a general solution for all use cases.

AWS, however, offers everything that you need to run a full-fledged web application. Their services span from databases, to object storage, to security services, and so much more. Furthermore, AWS is the go-to solution that you will find in most other books and tutorials, and many big companies use it in production.

This book only uses AWS for serving static files, such as images, and for providing the production database for our application in the last chapter of this book.

Before continuing with this chapter, you will be required to have an account for Amazon Web Services. You can create one on the official web page at https://aws.amazon.com/. For this, you will need a valid credit card; you can also run nearly all of the services on the free tier while working through this book without facing any problems.

Once you have successfully registered for AWS, you will see the following dashboard. This screen is called the Amazon Web Services Console:

The next section will cover the options for storing files with AWS.

 Creating an AWS S3 bucket

For this chapter, we will require a storage service to save all uploaded images. AWS provides different storage types, for various use cases. In our scenario of a social network, we will have dozens of people accessing many images at once. AWS Simple Storage Service (AWS S3) is the best option for our scenario.

You can visit the S3 screen by clicking on the Services drop-down menu at the top of the page, and then looking under the Storage category in the drop-down menu. There, you will find the link to S3. Having clicked on it, the screen will look as follows:

In S3, you create a bucket inside of a specific AWS region, where you can store files.

The preceding screen provides many features for interacting with your S3 bucket. You can browse all of the files, upload your files via the management interface, and configure more settings.

We will now create a new bucket for our project by clicking on Create Bucket in the upper-left corner, as shown in the preceding screenshot. You will be presented with a formula, as shown in the following screenshot. To create the bucket, you must fill it out:

The bucket has to have a unique name across all buckets in S3. Then, we need to pick a region. For me, EU (Frankfurt) is the best choice, as it is the nearest origin point. Choose the best option for you, since the performance of a bucket corresponds to the distance between the region of the bucket and its accessor.

Once you have picked a region, continue by clicking on Next. You will be confronted with a lot of new options:

For our use case, we will not select any of these options, but they can be helpful in more advanced scenarios. AWS offers many features, such as a complete access log and versioning, which you can configure in this menu.

Many bigger companies have users across the globe, which requires a highly available application. When you reach this point, you can create many more S3 buckets in other regions, and you can set up the replication of one bucket to others living in various regions around the world. The correct bucket can then be distributed with AWS CloudFront and a router specific for each user. This approach gives every user the best possible experience.

Move on with the creation of the bucket by clicking on Next.

This step defines the permissions for other AWS users, or the public. Under Manage public permissions, you have to select Grant public read access to this bucket to enable public access to all files saved in your S3 bucket. Take a look at the following screenshot to ensure that everything is correct:

Finish the setup process by clicking on Next, and then Create bucket. You should be redirected to your empty bucket.

 Generating AWS access keys

Before implementing the upload feature, we must create an AWS API key to authorize our back end at AWS, in order to upload new files to the S3 bucket.

Click on your username in the top bar of AWS. There, you find a tab called My Security Credentials, which navigates to a screen offering various options to secure access to your AWS account.

You will probably be confronted with a dialog box like the following:

You can click on Continue to Security Credentials to continue. It is generally recommended to use AWS Identity and Access Management (IAM). It allows you to efficiently manage secure access to AWS resources with separate IAM users. Throughout this book, we are going to use the root user in the same way that we are now, but I recommend looking at AWS IAM when writing your next application.

You should now see the credentials page, with a big list of different methods for storing credentials. This should look like the following screenshot:

In the list, expand the tab titled Access keys shown in the preceding screenshot. In this tab, you will find all access tokens for your AWS account.

To generate a new access token, click on Create New Access Key. The output should look as follows:

The best practice is to download the key file as prompted, and save it somewhere securely, just in case you lose the key at any time. You cannot retrieve access keys again after closing the window; so, if you lose them, you will have to delete the old key and generate a new one.

This approach is acceptable for explaining the basics of AWS. With such a huge platform, there are further steps that you have to take to secure your application even more. For example, it is recommended to renew API keys every 90 days. You can read more about all of the best practices at https://docs.aws.amazon.com/de_de/general/latest/gr/aws-access-keys-best-practices.html.

As you can see in the preceding screenshot, AWS gives us two tokens. Both are required to gain access to our S3 bucket.

Now, we can start to program the uploading mechanism.

 Uploading images to Amazon S3

Implementing file uploads and storing files is always a huge task, especially for image uploads in which the user may want to edit his files again.

For our front end, the user should be able to drag and drop his image into a dropzone, crop the image, and then submit it when he is finished. The back end needs to accept file uploads in general, which is not easy at all. The files must be processed and then stored efficiently, so that all users can access them quickly.

As this is a vast topic, the chapter only covers the basic upload of images from React, using a multipart HTTP post request to our GraphQL API, and then transferring the image to our S3 bucket. When it comes to compressing, converting, and cropping, you should check out further tutorials or books on this topic, including techniques for implementing them in the front end and back end, since there is a lot to think about. For example, in many applications, it makes sense to store images in various resolutions, which will be shown to the users in different situations, in order to save bandwidth.

Let's start by implementing the upload process on the back end.

 GraphQL image upload mutation

When uploading images to S3, it is required to use an API key, which we have already generated. Because of this, we cannot directly upload the files from the client to S3 with the API key. Anyone accessing our application could read out the API key from the JavaScript code and access our bucket without us knowing.

Uploading images directly from the client into the bucket is generally possible, however. To do this, you would need to send the name and type of the file to the server, which would then generate a URL and signature. The client can then use the signature to upload the image. This technique results in many round-trips for the client, and does not allow us to post-process the image, such as by converting or compressing, if needed.

The better solution is to upload the images to our server, have the GraphQL API accept the file, and then make another request to S3—including the API key—to store the file in our bucket.

We have to prepare our back end to communicate with AWS and accept file uploads. The preparation steps are as follows:

	Interact with AWS to install the official npm package. It provides everything that's needed to use any AWS feature, not just S3:

npm install --save aws-sdk

	The next thing to do is edit the GraphQL schema and add a scalar Upload to the top of it. The scalar is used to resolve details such as the MIME type and encoding when uploading files:

scalar Upload

	Add the File type to the schema. This type returns the filename and the resulting URL under which the image can be accessed in the browser:

type File {
 filename: String!
 url: String!
}

	Create the new uploadAvatar mutation. It is required that the user is logged in to upload avatar images, so append the @auth directive to the mutation. The mutation takes the previously mentioned Upload scalar as input:

uploadAvatar (
 file: Upload!
): File @auth

	Next, we will implement the mutation's resolver function in the resolvers.js file. For this, we will import and set up our dependencies at the top of the resolvers.js file, as follows:

import aws from 'aws-sdk';
const s3 = new aws.S3({
 signatureVersion: 'v4',
 region: 'eu-central-1',
});

We will initialize the s3 object that we will use to upload images in the next step. It is required to pass a region, like the instance in which we created the bucket. We set the signatureVersion to version 'v4', as this is recommended.

You can find details about the signature process of AWS requests at https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html.

	Inside the mutation property, insert the uploadAvatar function, as follows:

async uploadAvatar(root, { file }, context) {
 const { stream, filename, mimetype, encoding } = await file;
 const bucket = 'apollobook';
 const params = {
 Bucket: bucket,
 Key: context.user.id + '/' + filename,
 ACL: 'public-read',
 Body: stream
 };

 const response = await s3.upload(params).promise();

 return User.update({
 avatar: response.Location
 },
 {
 where: {
 id: context.user.id
 }
 }).then(() => {
 return {
 filename: filename,
 url: response.Location
 }
 });
},

In the preceding code, we start by specifying the function as async, so that we can use the await method to resolve the file and its details. The result of the resolved await file method consists of the properties stream, filename, mimetype, and encoding.

Then, we collect the following parameters in the params variable, in order to upload our avatar image:

	The Bucket field holds the name of the bucket where we save the image. I took the name 'apollobook', but you will need to enter the name that you entered during the creation of the bucket. You could have specified this directly inside of the s3 object, but this approach is a bit more flexible, since you can have multiple buckets for different file types, without the need for multiple s3 objects.

	The Key property is the path and name under which the file is saved. Notice that we store the file under a new folder, which is just the user id taken from the context variable. In your future application, you can introduce some kind of hash for every file. That would be good, since the filename should not include characters that are not allowed. Furthermore, the files cannot be guessed programmatically when using a hash.

	The ACL field sets the permission for who can access the file. Since uploaded images on a social network are publicly viewable by anyone on the internet, we set the property to 'public-read'.

	The Body field receives the stream variable, which we initially got by resolving the file. The stream is nothing more than the image itself as a stream, which we can directly upload into the bucket.

The params variable is given to the s3.upload function, which saves the file to our bucket. We directly chain the promise function onto the upload method. In the preceding code, we use the await statement to resolve the promise returned by the upload function. Therefore, we specified the function as async. The response object of the AWS S3 upload includes the public URL under which the image is accessible for everyone.

The last step is to set the new avatar picture on the user in our database. We execute the User.update model function from Sequelize by setting the new URL from response.Location, which S3 gave us after we resolved the promise.

An example link to an S3 image is as follows:

https://apollobook.s3.eu-central-1.amazonaws.com/1/test.png

As you can see, the URL is prefixed with the name of the bucket and then the region. The suffix is, of course, the folder, which is the user id and the filename. The preceding URL will differ from the one that your back end generates, because your bucket name and region will vary.

After updating the user, we can return the AWS response to update the UI accordingly, without refreshing the browser window.

In the previous section, we generated the access tokens, in order to authorize our back end at AWS. By default, the AWS SDK expects both tokens to be available in our environment variables. Like we did before with the JWT_SECRET, we will set the tokens as follows:

export AWS_ACCESS_KEY_ID=YOUR_AWS_KEY_ID
export AWS_SECRET_ACCESS_KEY=YOUR_AWS_SECRET_KEY

Insert your AWS tokens into the preceding code. The AWS SDK will detect both environment variables automatically. We do not need to read and configure them anywhere in our code.

We will now continue and implement all of the image upload features in the front end.

 React image cropping and uploading

In social networks such as Facebook, there are multiple locations where you can select and upload files. You can send images in chats, attach them to posts, create galleries in your profile, and much more. For now, we will only look at how to change our user's avatar image. This is a great example for easily showing all of the techniques.

The result that we are targeting looks like the following screenshot:

The user can select a file, crop it directly in the modal, and save it to AWS with the preceding dialog.

I am not a big fan of using too many npm packages, as this often makes your application unnecessarily big. As of writing this book, we cannot write custom React components for everything, such as displaying dialog or cropping, no matter how easy it might be.

To get the image upload working, we will install two new packages. To do this, you can follow these instructions:

	Install the packages with npm:

npm install --save react-modal @synapsestudios/react-drop-n-crop

The react-modal package offers various dialog options that you can use in many different situations. The react-drop-n-crop package is a wrapper package around Cropper.js and react-dropzone. Personally, I dislike wrapper packages, since they are often poorly maintained or leave features unimplemented. Against all prejudice, this package does a really excellent job of allowing users to drop images with react-dropzone, and then cropping them with the well-known Cropper.js library.

	When using the react-drop-n-crop package, we can rely on its included CSS package. In your main App.js, import it straight from the package itself, as follows:

import '@synapsestudios/react-drop-n-crop/lib/react-drop-n-crop.min.css';

webpack takes care of bundling all assets, like we are already doing with our custom CSS.

	The next package that we will install is an extension for the Apollo Client, which will enable us to upload files, as follows:

npm install --save apollo-upload-client

	To get the apollo-upload-client package running, we have to edit the index.js from the apollo folder where we initialize the Apollo Client and all of its links. Import the createUploadLink function at the top of the index.js file, as follows:

import { createUploadLink } from 'apollo-upload-client';

	You must replace the old HttpLink at the bottom of the link array with the new upload link. Instead of having a new HttpLink, we will now pass the createUploadLink, but with the same parameters. When executing it, a regular link is returned. The link should look like the following code:

createUploadLink({
 uri: 'http://localhost:8000/graphql',
 credentials: 'same-origin',
}),

It is important to note that when we make use of the new upload link and send a file with a GraphQL request, we do not send the standard application/json Content-Type request, but instead send a multi-part FormData request. This allows us to upload files with GraphQL. Standard JSON HTTP bodies, like we use with our GraphQL requests, cannot hold any file objects.

Alternatively, it is possible to send a base64 instead of a file object when transferring images. This procedure would save you from the work that we are doing right now, as sending and receiving strings is no problem with GraphQL. You have to convert the base64 string to a file if you want to save it in AWS S3. This approach only works for images, however, and web applications should be able to accept any file type.

	Now that the packages are prepared, we can start to implement our uploadAvatar mutation component for the client. Create a new file, called uploadAvatar.js, in the mutations folder.

	At the top of the file, import all dependencies and parse all GraphQL requests with graphql-tag in the conventional way, as follows:

import React, { Component } from 'react';
import { Mutation } from 'react-apollo';
import gql from 'graphql-tag';

const GET_CURRENT_USER = gql`
 query currentUser {
 currentUser {
 id
 username
 avatar
 }
 }
`;

const UPLOAD_AVATAR = gql`
 mutation uploadAvatar($file: Upload!) {
 uploadAvatar(file : $file) {
 filename
 url
 }
 }
`;

As you can see, we have the uploadAvatar mutation, which takes the file as a parameter of the Upload type. Furthermore, we have the currentUser GraphQL query, which we are going to use in the next step to update the avatar image without re-fetching all queries, but only by updating the cache.

	Next, you can copy the UploadAvatarMutation class. It passes the uploadAvatar mutation function to the underlying children, and sets the newly uploaded avatar image inside of the cache for the currentUser query. It shows the new user avatar directly in the top bar when the request is successful:

export default class UploadAvatarMutation extends Component {
 render() {
 const { children } = this.props;
 return (
 <Mutation
 update = {(store, { data: { uploadAvatar } }) => {
 var query = {
 query: GET_CURRENT_USER,
 };
 const data = store.readQuery(query);
 data.currentUser.avatar = uploadAvatar.url;
 store.writeQuery({ ...query, data });
 }}
 mutation={UPLOAD_AVATAR}>
 {uploadAvatar =>
 React.Children.map(children, function(child){
 return React.cloneElement(child, { uploadAvatar });
 })
 }
 </Mutation>
)
 }
}

The preceding code is nothing utterly new, as we used the same approach for the other mutations that we implemented.

The preparation is now complete. We have installed all of the required packages, configured them, and implemented the new mutation component. We can begin to program the user-facing dialog to change the avatar image.

For the purposes of this book, we are not relying on separate pages or anything like that. Instead, we are giving the user the opportunity to change his avatar when he clicks on his image in the top bar. To do so, we are going to listen for the click event on the avatar, opening up a dialog that includes a file dropzone and a button to submit the new image.

Execute the following steps to get this logic running:

	It is always good to make your components as reusable as possible, so create an avatarModal.js file inside of the components folder.

	As always, you will have to import the two new react-modal and react-drop-n-crop packages first, as follows:

import React, { Component } from 'react';
import Modal from 'react-modal';
import DropNCrop from '@synapsestudios/react-drop-n-crop';

Modal.setAppElement('#root');

const modalStyle = {
 content: {
 width: '400px',
 height: '450px',
 top: '50%',
 left: '50%',
 right: 'auto',
 bottom: 'auto',
 marginRight: '-50%',
 transform: 'translate(-50%, -50%)'
 }
};

As you can see in the preceding code snippet, we tell the modal package at which point in the browser's DOM we want to render the dialog, using the setAppElement method. For our use case, it is okay to take the root DOMNode, as this is the starting point of our application. The modal is instantiated in this DOMNode.

The modal component accepts a special style parameter for the different parts of the dropzone. We can style all parts of the modal by specifying the modalStyle object with the correct properties.

	The react-drop-n-crop package enables the user to select or drop the file. Beyond this feature, it gives the user the opportunity to crop the image. The result is not a file or blob object, but a data URI, formatted as base64. Generally, this is not a problem, but our GraphQL API expects that we sent a real file, not just a string, as we explained previously. Consequently, we have to convert the data URI to a blob that we can send with our GraphQL request. Add the following function to take care of the conversion:

function dataURItoBlob(dataURI) {
 var byteString = atob(dataURI.split(',')[1]);
 var mimeString = dataURI.split(',')[0].split(':')[1].split(';')
 [0];
 var ia = new Uint8Array(byteString.length);

 for (var i = 0; i < byteString.length; i++) {
 ia[i] = byteString.charCodeAt(i);
 }

 const file = new Blob([ia], {type:mimeString});
 return file;
}

Let's not get too deep into the logic behind the preceding function. The only thing that you need to know it is that it converts all readable ASCII characters into 8-bit binary data, and at the end, it returns a blob object to the calling function. It converts data URIs to blobs.

	The new component that we are implementing at the moment is called AvatarUpload. It receives the isOpen property, which sets the modal to visible or invisible. By default, the modal is invisible. Furthermore, when the modal is shown, the dropzone is rendered inside. The Modal component takes an onRequestClose method, which executes the showModal function when the user tries to close the modal (by clicking outside of it, for example). We receive the showModal function from the parent component, which we are going to cover in the next step.

The DropNCrop component does not need any properties except for the onChange event and the state variable as a default value. The value of the DropNCrop component is filled with the AvatarUpload component's state. The state only holds a default set of fields that the DropNCrop component understands.

It tells the package to start with an empty dropzone. Switching between file selection and cropping is handled by the package on its own:

export default class AvatarUpload extends Component {
 state = {
 result: null,
 filename: null,
 filetype: null,
 src: null,
 error: null,
 }
 onChange = value => {
 this.setState(value);
 }
 uploadAvatar = () => {
 const self = this;
 var file = dataURItoBlob(this.state.result);
 file.name = this.state.filename;
 this.props.uploadAvatar({variables: { file }}).then(() => {
 self.props.showModal();
 });
 }
 changeImage = () => {
 this.setState({ src: null });
 }
 render() {
 return (
 <Modal
 isOpen={this.props.isOpen}
 onRequestClose={this.props.showModal}
 contentLabel="Change avatar"
 style={modalStyle}
 >
 <DropNCrop onChange={this.onChange} value={this.state} />
 {this.state.src !== null && (
 <button className="cancelUpload" onClick=
 {this.changeImage}>Change image</button>
)}
 <button className="uploadAvatar" onClick=
 {this.uploadAvatar}>Save</button>
 </Modal>
)
 }
}

The AvatarUpload class receives an isOpen property from its parent component. We directly pass it to the DropNCrop component. Whenever the parent component changes the passed property's value, the modal is either shown or not, based on the value.

When a file is selected or cropped, the component state is updated with the new image. The response of the cropper package is saved in the result state variable.

We are using the conditional rendering pattern to show a Change image button when the src state variable is filled, which happens when a file is selected. The changeImage function sets the src of the DropNCrop component back to null, which lets it switch back to the file selection mode.

When the user has finished editing his picture, he can hit the Save button. The uploadAvatar method will be executed. It converts the base64 string returned from the cropper component to a blob object, using the dataURItoBlob function. We send the result with the GraphQL request inside of the mutation's variables parameter. When the request has finished, the modal is hidden again by running the showModal functions from the properties.

	Now, switch over to the user.js file in the bar folder, where all of the other application bar-related files are stored. Import the mutation and the new AvatarUpload component that we wrote before, as follows:

import UploadAvatarMutation from '../mutations/uploadAvatar';
import AvatarUpload from '../avatarModal';

	The UserBar component is the parent of AvatarUploadModal. Open the user.js file from the bar folder. That is why we handle the isOpen state variable of the dialog in the UserBar class. We introduce an isOpen state variable and catch the onClick event on the avatar of the user. Copy the following code to the UserBar class:

state = {
 isOpen: false,
}
showModal = () => {
 this.setState({ isOpen: !this.state.isOpen });
}

	Replace the return value of the render method with the following code:

return (
 <div className="user">

 <UploadAvatarMutation>
 <AvatarUpload isOpen={this.state.isOpen} showModal={this.showModal}/>
 </UploadAvatarMutation>
 {user.username}
 </div>
);

The UploadAvatarMutation surrounds the modal component to pass the mutation function over.

Furthermore, the modal component directly receives the isOpen property, as we explained earlier. The showModal method is executed when the avatar image is clicked. This function updates the property of the AvatarUpload class, and either shows or hides the modal.

Start the server and client with the matching npm run commands. Reload your browser and try out the new feature. When an image is selected, the cropping tool is displayed. You can drag and resize the image area that should be uploaded. You can see an example of this in the following screenshot:

Hitting Save uploads the image under the user folder in the S3 bucket. Thanks to the Mutation component that we wrote, the avatar image in the top bar is updated with the new URL to the S3 bucket location of the image.

The great thing that we have accomplished is that we send the images to our server. Our server transfers all of the images to S3. AWS responds with the public URL, which is then placed directly into the avatar field in the browser. The way that we query the avatar image from the back end, using our GraphQL API, does not change. We return the URL to the S3 file, and everything works.

 Summary

In this chapter, we started by creating an AWS account and an S3 bucket for uploading static images from our back end. Modern social networks consist of many images, videos, and other types of files. We introduced the Apollo Client, which allows us to upload any type of file. In this chapter, we managed to upload an image to our server, and we covered how to crop images and save them through a server in AWS S3. Your application should now be able to serve your users with images at any time.

The next chapter will cover the basics of client-side routing, with the use of React Router.

 Routing in React

Currently, we have one screen and one path that our users can visit. When users visit Graphbook, they can log in and see their news feed and chats. Another requirement for a social network is that users have their own profile pages. We will implement this feature in this chapter.

We will introduce client-side routing for our React application.

This chapter will cover the following topics:

	Installing React Router

	Implementing routes

	Securing routes

	Manual navigation

 Setting up React Router

Routing is essential to most web applications. You cannot cover all of the features of your application in just one page. It would be overloaded, and your user would find it difficult to understand. Sharing links to pictures, profiles, or posts is also very important for a social network such as Graphbook. One advantageous feature, for example, is being able to send links to specific profiles. This requires each profile to have its own URL and page. Otherwise, it will not be possible to share a direct link to a single item of your application. It is also crucial to split content into different pages, due to search engine optimization (SEO).

At the moment, we render our complete application to HTML in the browser, based on the authentication status. Only the server implements a simple routing functionality. Carrying out client-side routing can save a lot of work and time for the user, if the router merely swaps out the correct parts in React, instead of reloading the page completely when following a link. It is vital that the application makes use of the HTML5 history implementation, so that it handles the history of the browser. Importantly, this should also work for navigation in different directions. We should be able to go forward and backward with the arrow navigation buttons in the browser, without the need to rerender the application. No unnecessary page reloads should happen with this solution.

Common routing libraries that you may know about, such as Angular, Ember, or Ruby on Rails, use static routing. That is also the case for Express.js, which we covered in Chapter 2, Setting up GraphQL with Express.js, of this book. Static routing means that you configure your routing flow and the components to render upfront. Your application then processes the routing table in a separate step, renders the required components, and presents the results to the user.

With version 4 of React Router, which we are going to use, dynamic routing was introduced. The unique thing about it is that the routing takes place while the rendering of your application is running. It doesn't require the application to first process a configuration, in order to show the correct components. This approach fits with React's workflow well. The routing happens directly in your application, not in a preprocessed configuration.

 Installing React Router

In the past, there were a lot of of React Router, with various implementations and features. As we mentioned previously, we are going to install and configure version 4 for this book. If you search for other tutorials on this topic, make sure that you follow the instructions for this version. Otherwise, you might miss some of the changes that React Router has gone through.

To install React Router, simply run npm again, as follows:

npm install --save react-router-dom

From the package name, you might assume that this is not the main package for React. The reason for this is that React Router is a multi-package library. That comes in handy when using the same tool for multiple platforms. The core package is called react-router.

There are two further packages. The first one is the react-router-dom package, which we installed in the preceding code, and the second one is the react-router-native package. If, at some point, you plan to build a React Native app, you can use the same routing, instead of using the browser's DOM for a real mobile app.

The first step that we will take introduces a simple router to get our current application working, including different paths for all of the screens. The routes that we are going to add are as follows:

	Our posts feed, chats, and the top bar, including the search box, should be accessible under the /app route of our application. The path is self-explanatory, but you could also use the / root as the main path.

	The login and signup forms should have a separate path, which will be accessible under the root / path.

	As we do not have any further screens, we also have to handle a situation in which none of the preceding routes match. In that case, we could display a so-called 404 page, but instead, we are going to redirect to the root path directly.

There is one thing that we have to prepare before continuing. For development, we are using the webpack development server, as this is what we configured in the Chapter 1, Preparing Your Development Environment. To get the routing working out of the box, we will add two parameters to the webpack.client.config.js file. The devServer field should look as follows:

devServer: {
 port: 3000,
 open: true,
 historyApiFallback: true,
},

The historyApiFallback field tells the devServer to serve the index.html file, not only for the root path, http://localhost:3000/, but also when it would typically receive a 404 error (such as for paths like http://localhost:3000/app). That happens when the path does not match a file or folder that is normal when implementing routing.

The output field at the top of the config file must have a publicPath property, as follows:

output: {
 path: path.join(__dirname, buildDirectory),
 filename: 'bundle.js',
 publicPath: '/',
},

The publicPath property tells webpack to prefix the bundle URL to an absolute path, instead of a relative path. When this property is not included, the browser cannot download the bundle when visiting the sub-directories of our application, as we are implementing client-side routing. Let's begin with the first path, and bind the central part of our application, including the news feed, to the /app path.

 Implementing your first route

Before implementing the routing, we will clean up the App.js file. Create a Main.js file next to the App.js file in the client folder. Insert the following code:

import React, { Component } from 'react';
import Feed from './Feed';
import Chats from './Chats';
import Bar from './components/bar';
import CurrentUserQuery from './components/queries/currentUser';

export default class Main extends Component {
 render() {
 return (
 <CurrentUserQuery>
 <Bar changeLoginState={this.props.changeLoginState}/>
 <Feed />
 <Chats />
 </CurrentUserQuery>
);
 }
}

As you might have noticed, the preceding code is pretty much the same as the logged in condition inside the App.js file. The only change is that the changeLoginState function is taken from the properties, and is not directly a method of the component itself. That is because we split this part out of the App.js and put it into a separate file. This improves reusability for other components that we are going to implement.

Now, open and replace the render method of the App component to reflect those changes, as follows:

render() {
 return (
 <div>
 <Helmet>
 <title>Graphbook - Feed</title>
 <meta name="description" content="Newsfeed of all your friends
 on Graphbook" />
 </Helmet>
 <Router loggedIn={this.state.loggedIn} changeLoginState=
 {this.changeLoginState}/>
 </div>
)
}

If you compare the preceding method with the old one, you can see that we have inserted a Router component, instead of directly rendering either the posts feed or the login form. The original components of the App.js file are now in the previously created Main.js file. Here, we pass the loggedIn state variable and the changeLoginState function to the Router component. Remove the dependencies at the top, such as the Chats and Feed components, because we won't use them anymore thanks to the new Main component. Add the following line to the dependencies of our App.js file:

import Router from './router';

To get this code working, we have to implement our custom Router component first. Generally, it is easy to get the routing running with React Router, and you are not required to separate the routing functionality into a separate file, but, that makes it more readable. To do this, create a new router.js file in the client folder, next to the App.js file, with the following content:

import React, { Component } from 'react';
import LoginRegisterForm from './components/loginregister';
import Main from './Main';
import { BrowserRouter as Router, Route, Redirect, Switch } from 'react-router-dom';

export default class Routing extends Component {
 render() {
 return (
 <Router>
 <Switch>
 <Route path="/app" component={() => <Main changeLoginState=
 {this.props.changeLoginState}/>}/>
 </Switch>
 </Router>
)
 }
}

At the top, we import all of the dependencies. They include the new Main component and the react-router package. The following is a quick explanation of all of the components that we are importing from the React Router package:

	BrowserRouter (or Router, for short, as we called it here) is the component that keeps the URL in the address bar in sync with the UI; it handles all of the routing logic.

	The Switch component forces the first matching Route or Redirect to be rendered. We need it to stop rerendering the UI if the user is already in the location to which a redirect is trying to navigate. I generally recommend that you use the Switch component, as it catches unforeseeable routing errors.

	Route is the component that tries to match the given path to the URL of the browser. If this is the case, the component property is rendered. You can see in the preceding code snippet that we are not setting the Main component directly as a parameter; instead, we return it from a stateless function. That is required because the component property of a Route only accepts functions, and not a component object. This solution allows us to pass the changeLoginState function to the Main component.

	Redirect navigates the browser to a given location. The component receives a property called to, filled by a path starting with a /. We are going to use this component in the next section.

The problem with the preceding code is that we are only listening for one route, which is /app. If you are not logged in, there will be many errors that are not covered. The best thing to do would be to redirect the user to the root path, where they can log in.

 Secured routes

Secured routes represent a to specific paths that are only the is authenticated, or has the correct authorization.

The recommended solution to implement secure routes in React Router version 4 is to write a small, stateless function that conditionally renders either a Redirect component or the component specified on the route that requires an authenticated user. We extract the component property of the route into the Component variable, which is a renderable React object. Insert the following code into the router.js file:

const PrivateRoute = ({ component: Component, ...rest }) => (
 <Route {...rest} render={(props) => (
 rest.loggedIn === true
 ? <Component {...props} />
 : <Redirect to={{
 pathname: '/',
 }} />
)} />
)

We call the stateless function PrivateRoute. It returns a standard Route component, which receives all of the properties initially given to the PrivateRoute function. To pass all properties, we use a destructuring assignment with the ...rest syntax. Using the syntax inside of curly braces on a React component passes all fields of the rest object as properties to the component. The Route component is only rendered if the given path is matched.

Furthermore, the rendered component is dependent on the user's loggedIn state variable, which we have to pass. If the user is logged in, we render the Component without any problems. Otherwise, we redirect the user to the root path of our application using the Redirect component.

Use the new PrivateRoute component in the render method of the Router and replace the old Route, as follows:

<PrivateRoute path="/app" component={() => <Main changeLoginState=
 {this.props.changeLoginState}/>} loggedIn={this.props.loggedIn}/>

Notice that we pass the loggedIn property by taking the value from the properties of the Router itself. It initially receives the loggedIn property from the App component that we edited previously. The great thing is that the loggedIn variable can be updated from the parent App component at any time. That means that the Redirect component is rendered and the user is automatically navigated to the login form (if the user logs out, for example). We do not have to write separate logic to implement this functionality.

However, we have now created a new problem. We redirect from /app to / if the user is not logged in, but we do not have any routes set up for the initial '/' path. It makes sense for this path to either show the login form or to redirect the user to /app if the user is logged in. The pattern for the new component is the same as the preceding code for the PrivateRoute component, but in the opposite direction. Add the new LoginRoute component to the router.js file, as follows:

const LoginRoute = ({ component: Component, ...rest }) => (
 <Route {...rest} render={(props) => (
 rest.loggedIn === false
 ? <Component {...props} />
 : <Redirect to={{
 pathname: '/app',
 }} />
)} />
)

The preceding condition is inverted to render the original component. If the user is not logged in, the login form is rendered. Otherwise, they will be redirected to the posts feed.

Add the new path to the router, as follows:

<LoginRoute exact path="/" component={() => <LoginRegisterForm changeLoginState={this.props.changeLoginState}/>} loggedIn={this.props.loggedIn}/>

The code looks the same as that of the PrivateRoute component, except that we now have a new property, called exact. If we pass this property to a route, the browser's location has to match one hundred percent. The following table shows a quick example, taken from the official React Router documentation:

	Router path
	Browser path
	exact
	matches

	/one
	/one/two
	true
	no

	/one
	/one/two
	false
	yes

For the root path, we set exact to true, because otherwise the path matches with any browser's location where a / is included, as you can see in the preceding table.

There are many more configuration options that React Router offers, such as enforcing trailing slashes, case sensitivity, and much more. You can find all of the options and examples in the official documentation at https://reacttraining.com/react-router/web/api/.

 Catch-all routes in React Router

Currently, we have two paths set up, which are /app and /. If a user visits a non-existent path, such as /test, they will see an empty screen. The solution is to implement a route that matches any path. For simplicity, we redirect the user to the root of our application, but you could easily replace the redirection with a typical 404 page.

Add the following code to the router.js file:

class NotFound extends Component {
 render() {
 return (
 <Redirect to="/"/>);
 }
}

The NotFound component is minimal. It just redirects the user to the root path. Add the next Route component to the Switch in the Router. Ensure that it is the last one on the list:

<Route component={NotFound} />

As you can see, we are rendering a simple Route in the preceding code. What makes the route special is that we are not passing a path property with it. By default, the path is completely ignored and the component is rendered every time, except if there is a match with a previous component. That is why we added the route to the bottom of the Router. When no route matches, we redirect the user to the login screen in the root path, or, if the user is already logged in, we redirect them to a different screen using the routing logic of the root path. Our LoginRoute component handles this last case.

You can test all changes when starting the front end with npm run client and the back end with npm run server. We have now moved the current state of our application from a standard, single-route application to an application that differentiates the login form and the news feed based on the location of the browser.

 Advanced routing with React Router

The primary goal of this chapter is to build a profile page for your users. We need a separate page to show all of the content that a single user has entered or created. The content would not fit next to the posts feed. When looking at Facebook, we can see that every user has their own address, under which we can find the profile page of a specific user. We are going to create our profile page in the same way, and use the username as the custom path.

We have to implement the following features:

	We add a new parameterized route for the user profile. The path starts with /user/ and follows a username.

	We change the user profile page to send all GraphQL queries, including the username route parameter, inside of the variables field of the GraphQL request.

	We edit the postsFeed query to filter all posts by the username parameter provided.

	We implement a new GraphQL query on the back end to request a user by their username, in order to show information about the user.

	When all of the queries are finished, we render a new user profile header component and the posts feed.

	Finally, we enable navigation between each page without reloading the complete page, but only the changed parts.

Let's start by implementing routing for the profile page in the next section.

 Parameters in routes

We have prepared most of the work required to add a new user route. Open up the router.js file again. Add the new route, as follows:

<PrivateRoute path="/user/:username" component={props => <User {...props} changeLoginState={this.props.changeLoginState}/>} loggedIn={this.props.loggedIn}/>

The code contains two new elements, as follows:

	The path that we entered is /user/:username. As you can see, the username is prefixed with a colon, telling React Router to pass the value of it to the underlying component being rendered.

	The component that we rendered previously was a stateless function that returned either the LoginRegisterForm or the Main component. Neither of these received any parameters or properties from React Router. Now, however, it is required that all properties of React Router are transferred to the child component. That includes the username parameter that we just introduced. We use the same destructuring assignment with the props object to pass all properties to the User component.

Those are all of the changes that we need to accept parameterized paths in React Router. We read out the value inside of the new user page component. Before implementing it, we import the dependency at the top of router.js to get the preceding route working:

import User from './User';

Create the preceding User.js file next to the Main.js file. Like the Main component, we are collecting all of the components that we render on this page. You should stay with this layout, as you can directly see which main parts each page consists of. The User.js file should look as follows:

import React, { Component } from 'react';
import UserProfile from './components/user';
import Chats from './Chats';
import Bar from './components/bar';
import CurrentUserQuery from './components/queries/currentUser';

export default class User extends Component {
 render() {
 return (
 <CurrentUserQuery>
 <Bar changeLoginState={this.props.changeLoginState}/>
 <UserProfile username={this.props.match.params.username}/>
 <Chats />
 </CurrentUserQuery>
);
 }
}

Like before, we use the CurrentUserQuery component as a wrapper for the Bar component and the Chats component. If a user visits the profile of a friend, they see the common application bar at the top. They can access their chats on the right-hand side, like in Facebook. It is one of the many situations in which React and the reusability of components come in handy.

We removed the Feed component and replaced it with a new UserProfile component. Importantly, the UserProfile receives the username property. Its value is taken from the properties of the User component. These properties were passed over by React Router. If you have a parameter, such as a username, in the routing path, the value is stored in the match.params.username property of the child component. The match object generally contains all matching information of React Router.

From this point on, you can implement any custom logic that you want with this value. We will now continue with implementing the profile page.

Follow these steps to build the user's profile page:

	Create a new folder, called user, inside the components folder.

	Create a new file, called index.js, inside the user folder.

	Import the dependencies at the top of the file, as follows:

import React, { Component } from 'react';
import PostsQuery from '../queries/postsFeed';
import FeedList from '../post/feedlist';
import UserHeader from './header';
import UserQuery from '../queries/userQuery';

The first three lines should look familiar. The last two imported files, however, do not exist at the moment, but we are going to change that shortly. The first new file is UserHeader, which takes care of rendering the avatar image, the name, and information about the user. Logically, we request the data that we will display in this header through a new Apollo query, called UserQuery.

	Insert the code for the UserProfile component that we are building at the moment beneath the dependencies, as follows:

export default class UserProfile extends Component {
 render() {
 const query_variables = { page: 0, limit: 10, username:
 this.props.username };
 return (
 <div className="user">
 <div className="inner">
 <UserQuery variables={{username: this.props.username}}>
 <UserHeader/>
 </UserQuery>
 </div>
 <div className="container">
 <PostsQuery variables={query_variables}>
 <FeedList/>
 </PostsQuery>
 </div>
 </div>
)
 }
}

The UserProfile class is not complex. We are running two Apollo queries simultaneously. Both have the variables property set. The PostQuery receives the regular pagination fields, page and limit, but also the username, which initially came from React Router. This property is also handed over to the UserQuery, inside of a variables object.

	We should now edit and create the Apollo queries, before programming the profile header component. Open the postsFeed.js file from the queries folder.

To use the username as input to the GraphQL query we first have to change the query string from the GET_POSTS variable. Change the first two lines to match the following code:

query postsFeed($page: Int, $limit: Int, $username: String) {
 postsFeed(page: $page, limit: $limit, username: $username) {

Add a new line to the getVariables method, above the return statement:

if(typeof variables.username !== typeof undefined) {
 query_variables.username = variables.username;
}

If the custom query component receives a username property, it is included in the GraphQL request. It is used to filter posts by the specific user that we are viewing.

	Create a new userQuery.js file in the queries folder to create the missing query class.

	Import all of the dependencies and parse the new query schema with graphl-tag, as follows:

import React, { Component } from 'react';
import { Query } from 'react-apollo';
import Loading from '../loading';
import Error from '../error';
import gql from 'graphql-tag';

const GET_USER = gql`
 query user($username: String!) {
 user(username: $username) {
 id
 email
 username
 avatar
 }
 }
`;

The preceding query is nearly the same as the currentUser query. We are going to implement the corresponding user query later, in our GraphQL API.

	The component itself is as simple as the ones that we created before. Insert the following code:

export default class UserQuery extends Component {
 getVariables() {
 const { variables } = this.props;
 var query_variables = {};
 if(typeof variables.username !== typeof undefined) {
 query_variables.username = variables.username;
 }
 return query_variables;
 }
 render() {
 const { children } = this.props;
 const variables = this.getVariables();
 return(
 <Query query={GET_USER} variables={variables}>
 {({ loading, error, data }) => {
 if (loading) return <Loading />;
 if (error) return <Error><p>{error.message}</p></Error>;
 const { user } = data;
 return React.Children.map(children, function(child){
 return React.cloneElement(child, { user });
 })
 }}
 </Query>
)
 }
}

We set the query property and the parameters that are collected by the getVariables method to the GraphQL Query component. The rest is the same as any other query component that we have written. All child components receive a new property, called user, which holds all the information about the user, such as their name, their email, and their avatar image. You can extend that later on, but always remember to not publish data that should be private.

	The last step is to implement the UserProfileHeader component. This component renders the user property, with all its values. It is just simple HTML markup. Copy the following code into the header.js file, in the user folder:

import React, { Component } from 'react';

export default class UserProfileHeader extends Component {
 render() {
 const { avatar, email, username } = this.props.user;
 return (
 <div className="profileHeader">
 <div className="avatar">

 </div>
 <div className="information">
 <p>
 {username}
 </p>
 <p>
 {email}
 </p>
 <p>You can provide further information here and build
 your really personal header component for your users.</p>
 </div>
 </div>
)
 }
}

If you need help getting the CSS styling right, take a look at the official repository for this book. The preceding code only renders the user's data; you could also implement features such as a chat button, which would give the user the option to start messaging with other people. Currently, we have not implemented this feature anywhere, but it is not necessary to explain the principles of React and GraphQL.

We have finished the new front end components, but the UserProfile component is still not working. The queries that we are using here either do not accept the username parameter or have not yet been implemented.

The next section will cover which parts of the back end have to be adjusted.

 Querying the user profile

With the new profile page, we have to update our back end accordingly. Let's take a look at what needs to be done, as follows:

	We have to add the username parameter to the schema of the postsFeed query and adjust the resolver function.

	We have to create the schema and the resolver function for the new UserQuery component.

We will begin with the postsFeed query.

Edit the postsFeed query in the RootQuery type of the schema.js file to match the following code:

postsFeed(page: Int, limit: Int, username: String): PostFeed @auth

Here, I have added the username as an optional parameter.

Now, head over to the resolvers.js file, and take a look at the corresponding resolver function. Replace the signature of the function to extract the username from the variables, as follows:

postsFeed(root, { page, limit, username }, context) {

To make use of the new parameter, add the following lines of code above the return statement:

if(typeof username !== typeof undefined) {
 query.include = [{model: User}];
 query.where = { '$User.username$': username };
}

We have already covered the basic Sequelize API and how to query associated models by using the include parameter in Chapter 3, Connecting to the Database. An important point is how we filter posts associated with a user by their username:

	In the preceding code, we fill the include field of the query object with the Sequelize model that we want to join. This allows us to filter the associated Chats model in the next step.

	Then, we create a normal where object, in which we write the filter condition. If you want to filter the posts by an associated table of users, you can wrap the model and field names that you want to filter by with dollar signs. In our case, we wrap User.username with dollar signs, which tells Sequelize to query the User model's table and filter by the value of the username column.

No adjustments are required for the pagination part. The GraphQL query is now ready. The great thing about the small changes that we have made is that we have just one API function that accepts several parameters, either to display posts on a single user profile, or to display a list of posts like a news feed.

Let's move on and implement the new user query. Add the following line to the RootQuery in your GraphQL schema:

user(username: String!): User @auth

This query only accepts a username, but this time it is a required parameter in the new query. Otherwise, the query would make no sense, since we only use it when visiting a user's profile through their username. In the resolvers.js file, we will now implement the resolver function using Sequelize:

user(root, { username }, context) {
 return User.findOne({
 where: {
 username: username
 }
 });
},

In the preceding code, we use the findOne method of the User model by Sequelize, and search for exactly one user with the username that we provided in the parameter.

We also want to display the email of the user on the user's profile page. Add the email as a valid field on the User type in your GraphQL schema with the following line of code:

email: String

Now that the back end code and the user page are ready, we have to allow the user to navigate to this new page. The next section will cover user navigation using React Router.

 Programmatic navigation in React Router

We created a new site with the user profile, but now we have to offer the user a link to get there. The transition between the news feed and the login and registration forms is automated by React Router, but not the transition from the news feed to a profile page. The user decides whether they want to view the profile of the user. React Router has multiple ways to handle navigation. We are going to extend the news feed to handle clicks on the username or the avatar image, in order to navigate to the user's profile page. Open the header.js file in the post components folder. Import the Link component provided by React Router, as follows:

import { Link } from 'react-router-dom';

The Link component is a tiny wrapper around a regular HTML a tag. Apparently, in standard PHP applications or websites, there is no complex logic behind hyperlinks; you click on them, and a new page is loaded from scratch. With React Router or most single-page application JS frameworks, you can add more logic behind hyperlinks. Importantly, instead of completely reloading the pages when navigating between different routes, this now gets handled by React Router. There won't be complete page reloads when navigating; instead, only the required parts are exchanged, and the GraphQL queries are run. This method saves the user expensive bandwidth, because it means that we can avoid downloading all of the HTML, CSS, and image files again.

To test this, wrap the username and the avatar image in the Link component, as follows:

<Link to={'/user/'+post.user.username}>

 <div>
 <h2>{post.user.username}</h2>
 </div>
</Link>

In the rendered HTML, the img and div tags are surrounded by a common a tag, but are handled inside React Router. The Link component receives a to property, which is the destination of the navigation. You have to copy one new CSS rule, because the Link component has changed the markup:

.post .header a > * {
 display: inline-block;
 vertical-align: middle;
}

If you test the changes now, clicking on the username or avatar image, you should notice that the content of the page dynamically changes, but does not entirely reload. A further task would be to copy this approach to the user search list in the application bar and the chats. Currently, the users are displayed, but there is no option to visit their profile pages by clicking on them.

Now, let's take a look at another way to navigate with React Router. If the user has reached a profile page, we want them to navigate back by clicking on a button in the application bar. First of all, we will create a new home.js file in the bar folder, and we will enter the following code:

import React, { Component } from 'react';
import { withRouter } from 'react-router';

class Home extends Component {
 goHome = () => {
 this.props.history.push('/app');
 }
 render() {
 return (
 <button className="goHome" onClick={this.goHome}>Home</button>
);
 }
}

export default withRouter(Home);

We are using multiple React Router techniques here. We export the Home component through a HoC, which we covered in Chapter 4, Integrating React into the Back end with Apollo. The withRouter HoC gives the Home component access to the history object of React Router. That is great, because it means that we do not need to pass this object from the top of our React tree down to the Home component.

Furthermore, we use the history object to navigate the user to the news feed. In the render method, we return a button, which, when clicked, runs the history.push function. This function adds the new path to the history of the browser and navigates the user to the '/app' main page. The good thing is that it works in the same way as the Link component, and does not reload the entire website.

There are a few things to do in order to get the button working, as follows:

	Import the component into the index.js file of the bar folder, as follows:

import Home from './home';

	Then, replace the Logout button with the following lines of code:

<div className="buttons">
 <Home/>
 <Logout changeLoginState={this.props.changeLoginState}/>
</div>

	I have wrapped the two buttons in a separate div tag, so that it is easier to align them correctly. You can replace the old CSS for the logout button and add the following:

.topbar .buttons {
 position: absolute;
 right: 5px;
 top: 5px;
 height: calc(100% - 10px);
}

.topbar .buttons > * {
 height: 100%;
 margin-right: 5px;
 border: none;
 border-radius: 5px;
}

Now that we have everything together, the user can visit the profile page and navigate back again. Our final result looks as follows:

source: https://www.vecteezy.com/

We have a big profile header for the user and their posts at the bottom of the window. At the top, you can see the top bar with the currently logged in user.

 Remembering the redirect location

When a visitor comes to your page, they have probably followed a link that was posted elsewhere. This link is likely to be a direct address for a user, a post, or anything else that you offer direct access to. For those that are not logged in, we configured the application to redirect that person to the login or signup forms. This behavior makes sense. However, once that person has either logged in or signed up with a new account, they are then navigated to the news feed. A better way of doing this would be to remember the initial destination that the person wanted to visit. To do this, we will make a few changes to the router. Open the router.js file. With all of the routing components provided by React Router, we always get access to the properties inside of them. We will make use of this and save the last location that we were redirected from.

In the PrivateRoute component, swap out the Redirect with the following code:

<Redirect to={{
 pathname: '/',
 state: { from: props.location }
}} />

Here, I have added the state field. The value that it receives comes from the parent Route component, which holds the last matched path in the props.location field generated by React Router. The path can be a user's profile page or the news feed, since both rely on the PrivateRoute component where authentication is required. When the preceding redirect is triggered, you receive the from field inside of the router's state.

We want to use this variable when the user is logging in. Replace the Redirect component in the LoginRoute component with the following lines:

<Redirect to={{
 pathname: (typeof props.location.state !== typeof undefined) ?
 props.location.state.from.pathname : '/app',
}} />

Here, I have introduced a small condition for the pathname. If the location.state property is defined, we can rely on the from field. Previously, we stored the redirect path in the PrivateRoute component. If the location.state property does not exist, the user was not visiting a direct hyperlink, but just wanted to log in normally. They will be navigated to the news feed with the /app path.

Your application should now be able to handle all routing scenarios, and this should allow your users to view your site comfortably.

 Summary

In this chapter, we transitioned from our one-screen application to a multi-page setup. React Router, our main library for routing purposes, now has three paths, under which we display different parts of Graphbook. Furthermore, we now have a catch-all route, in which we can redirect the user to a valid page.

We will continue with this progression by implementing server-side rendering, which needs many adjustments on both the front end and the back end.

 Implementing Server-Side Rendering

With our progress from the last chapter, we are now serving multiple pages under different paths with our React application. All of the routing happens directly on the client. In this chapter, we will look at the advantages and disadvantages of server-side rendering. By the end of the chapter, you will have configured Graphbook to serve all pages as pre-rendered HTML from the server instead of the client.

This chapter covers the following topics:

	An introduction to server-side rendering

	Setting up Express.js to render React on the server

	Enabling JWT authentication in connection with server-side rendering

	Running all GraphQL queries in the React tree

 Introduction to server-side rendering

First, you have to understand the differences between using a server-side rendered and a client-side rendered application. There are numerous things to bear in mind when transforming a pure client rendered application to support server-side rendering. The current user flow begins with requesting a standard index.html. The file includes very few things, such as a small body with one div, a head tag with some very basic meta tags, and a vital script tag that downloads the bundled JavaScript file created by webpack. The server merely serves the index.html and the bundle.js. Then, the client's browser begins processing the React markup that we wrote. When React has finished evaluating the code, we see the HTML of the application that we wanted to see. All CSS files or images are also downloaded from our server, but only when React has inserted the HTML into the browser's DOM. During the rendering by React, the Apollo components are executed, and all queries are sent. These are, of course, handled by our back end and database.

In comparison with server-side rendering, the client-side approach is straightforward. Before the development of Angular, Ember, React, or other JS frameworks (as we have them nowadays), the conventional approach was to have a back end that implemented all of the business logic, and also a high number of templates or functions that returned valid HTML. The back end queried the database, processed the data, and inserted it into the HTML. The HTML was directly served at the request of the client. The browser then downloaded the JavaScript, CSS, and image files, according to the HTML. Most of the time, the JavaScript was only responsible for allowing for dynamic content or layout changes, rather than rendering the entire application. This could include drop-down menus, accordions, or just pulling new data from the back end via Ajax. The main HTML of the application, however, was directly returned from the back end. A significant benefit of this solution is that the client does not process all of the business logic, since it has been done on the server.

However, when speaking of server-side rendering for React applications, we are referring to something different. Our current situation is that we have written a React application that renders on the client. We do not want to re-implement the rendering for the back end in a slightly different way. We also don't want to lose the ability to change data, pages, or the layout dynamically in the browser, since we already have an excellent working application with many interaction possibilities for the user.

An approach that allows us to make use of the pre-rendered HTML, and also the dynamic features provided by React, is called universal rendering. With universal rendering, the first request of the client includes a pre-rendered HTML page. The HTML should be the exact HTML that the client generates when processing it on its own. If this is the case, React can reuse the HTML provided by the server. Since server-side rendering not only involves reusing HTML, but also saving requests made by Apollo, the client also needs a starting cache that React can rely on. The server makes all of the requests before sending the rendered HTML, and inserts a state variable for Apollo and React into the HTML. The result is that on the first request of the client, our front end should not need to rerender or refresh any HTML or data that is returned by the server. For all following actions, such as navigating to other pages or sending messages, the same client-side React code from before is used. Server-side rendering (SSR) is only used on the first page load. Afterwards, these features do not require SSR, because the client-side code continues to work as dynamically as before.

Let's get started with writing some code.

 SSR in Express.js

The first step is to implement basic server-side rendering on the back end. We are going to extend this functionality later to validate the authentication of the user. An authenticated user allows us to execute Apollo or GraphQL requests, and not only to render the pure React markup. First, we need some new packages. Because we are going to use universal rendered React code, we require an advanced webpack configuration; hence, we will install the following packages:

npm install --save-dev webpack-dev-middleware webpack-hot-middleware @babel/cli

Let's quickly go through the packages that we are installing here. We only need these packages for development:

	The first webpack module, called webpack-dev-middleware, allows the back end to serve bundles generated by webpack, without creating files, but from memory. It is convenient for cases in which we need to run JavaScript directly, and do not want to use separate files.

	The second package, called webpack-hot-middleware, only handles client-side updates. If a new version of a bundle was created, the client is notified, and the bundle is exchanged.

	The last package, called @babel/cli, allows us to introduce the great features that Babel provides to our back end. We are going to use React code that has to be transpiled.

In a production environment, it is not recommended to use these packages. Instead, the bundle is built once, before deploying the application. The client downloads the bundle when the application has gone live.

For development with SSR enabled, the back end uses these packages to distribute the bundled React code to the client, after the server-side rendering has finished. The server itself relies on the plain src files, and not on the webpack bundle that the client receives.

We also depend on one further essential package, as follows:

npm install --save node-fetch

To set up the Apollo Client on the back end, we require a replacement of the standard window.fetch method. The Apollo Client uses it to send GraphQL requests, which is why we install node-fetch as a polyfill. We are going to set up the Apollo Client for the back end later in this chapter.

Before starting with the primary work, ensure that your NODE_ENV environment variable is set to development.

Head over to the server's index.js file, where all of the Express magic happens. We didn't cover this file in the previous chapter, because we are going to adjust it now to support server-side including the routing directly.

First, we will set up the development environment for server-side rendering, as it is essential for the next tasks. Follow these steps to get your development environment ready for SSR:

	The first step is to import the two new webpack modules: webpack-dev-middleware and webpack-hot-middleware. These should only be used in a development environment, so we should require them conditionally, by checking the environment variables. In a production environment, we generate the webpack bundles in advance. Put the following code underneath the setup for the Express.js helmet, in order to only use the new packages in development:

if(process.env.NODE_ENV === 'development') {
 const devMiddleware = require('webpack-dev-middleware');
 const hotMiddleware = require('webpack-hot-middleware');
 const webpack = require('webpack');
 const config = require('../../webpack.server.config');
 const compiler = webpack(config);
 app.use(devMiddleware(compiler));
 app.use(hotMiddleware(compiler));
}

	After loading those packages, we will also require webpack, because we will parse a new webpack configuration file. The new configuration file is only used for the server-side rendering.

	After both the webpack and the configuration file have been loaded, we will use the webpack(config) command to parse the configuration and create a new webpack instance.

	We are going to create the webpack configuration file next. We pass the created webpack instance to our two new modules. When a request reaches the server, the two packages take action according to the configuration file.

The new configuration file has only a few small differences, as compared to the original configuration file, but these have a big impact. Create the new webpack.server.config.js file, and enter the following configuration:

const path = require('path');
const webpack = require('webpack');
const buildDirectory = 'dist';
module.exports = {
 mode: 'development',
 entry: [
 'webpack-hot-middleware/client',
 './src/client/index.js'
],
 output: {
 path: path.join(__dirname, buildDirectory),
 filename: 'bundle.js',
 publicPath: '/'
 },
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: {
 loader: 'babel-loader',
 },
 },
 {
 test: /\.css$/,
 use: ['style-loader', 'css-loader'],
 },
 {
 test: /\.(png|woff|woff2|eot|ttf|svg)$/,
 loader: 'url-loader?limit=100000',

 },
],
 },
 plugins: [
 new webpack.HotModuleReplacementPlugin(),
 new webpack.NamedModulesPlugin(),
],
};

We have made three changes in the preceding configuration, in comparison to the original webpack.client.config.js, as follows:

	In the entry property, we now have multiple entry points. The index file for the front end code, like before, is one entry point. The second one is the new webpack-hot-middleware module, which initiates the connection between the client and the server. The connection is used to send the client notifications to update the bundle to a newer version.

	I removed the devServer field, as this configuration does not require webpack to start its own server. Express.js is the web server, which we are already using when loading the configuration.

	The plugins are entirely different from those of the client's webpack configuration. We do not need the CleanWebpackPlugin plugin, as this cleans the dist folder, nor the HtmlWebpackPlugin, which inserts the webpack bundles into the index.html file; this is handled by the server differently. These plugins are only useful for client-side development. Now, we have the HotModuleReplacementPlugin plugin, which enables Hot Module Replace (HMR). It allows for JS and CSS to be exchanged on the fly. NamedModulesPlugin displays the relative paths for modules injected by HMR. Both plugins are only recommended for developmental use.

The webpack preparation is now finished.

Now, we have to focus on how to render React code, and how to serve the generated HTML. However, we cannot use the complete React code that we have written. There are specific adjustments that we have to make to the main files: index.js, App.js, router.js, and apollo/index.js. Many packages that we use, such as React Router or Apollo Client, have default settings or modules that we have to configure differently when executed on the server.

We will begin with the root of our React application, which is the index.js file. We are going to implement an individual SSR index file, as there are server-specific adjustments to do.

Create a new folder, called ssr, inside the server folder. Insert the following code into an index.js file inside the ssr folder:

import React from 'react';
import { ApolloProvider } from 'react-apollo';
import App from './app';

export default class ServerClient extends React.Component {
 render() {
 const { client, location, context } = this.props;
 return(
 <ApolloProvider client={client}>
 <App location={location} context={context}/>
 </ApolloProvider>
);
 }
}

The preceding code is a modified version of our client index.js root file. The changes that the file has gone through are listed as follows:

	Instead of using the ReactDOM.render function to insert the HTML into the DOMNode with the id root, we are now exporting a React component. The returned component is called ServerClient. There is no DOM that we can access to let ReactDOM render anything, so we skip this step when rendering on the server.

	Also, the ApolloProvider component now receives the Apollo Client directly from the ServerClient properties, whereas we previously set up the Apollo Client directly inside this file by importing the index.js file from the apollo folder and passing it to the provider. You will soon see why we are doing this.

	The last change that we made was to extract a location and a context property. We pass these properties to the App component. In the original version, there were no properties passed to the App component. Both properties are required in order to configure React Router to work with SSR. We are going to implement the properties later in the chapter.

Before looking at why we made these changes in more detail, let's create the new App component for the back end. Create an app.js file next to the index.js file in the ssr folder, and insert the following code:

import React, { Component } from 'react';
import { Helmet } from 'react-helmet';
import { withApollo } from 'react-apollo';
import '../../client/components/fontawesome';
import Router from '../../client/router';

class App extends Component {
 state = {
 loggedIn: false
 }
 changeLoginState = (loggedIn) => {
 this.setState({ loggedIn });
 }
 render() {
 return (
 <div>
 <Helmet>
 <title>Graphbook - Feed</title>
 <meta name="description" content="Newsfeed of all your
 friends on Graphbook" />
 </Helmet>
 <Router loggedIn={this.state.loggedIn} changeLoginState=
 {this.changeLoginState} location={this.props.location}
 context={this.props.context}/>
 </div>
)
 }
}

export default withApollo(App)

The following are a few changes that we made:

	The first change, in comparison to the original client-side App class, was to adjust the import statements to load the router and the fontawesome component from the client folder, as they do not exist in the server folder.

	The second change was to remove the constructor, the componentWillMount, and the componentWillUnmount methods. We did this because the authentication that we built uses the localStorage. It is fine for client-side authentication. Neither Node.js nor the server support such storage, in general. That is the reason why we remove the authentication when moving our application to server-side rendering. We are going to replace the localStorage implementation with cookies in a later step. For the moment, the user stays logged out of the server.

	The last change involves passing the two new properties, context and location, to the Router in the preceding code.

React Router provides instant support for SSR. Nevertheless, we need to make some adjustments. The best is that we use the same router for the back end and front end, so that we do not need to define routes twice, which is inefficient and can lead to problems. Open the router.js inside the client folder and follow these steps:

	Delete the import statement for the react-router-dom package.

	Insert the following code to import the package properly:

const ReactRouter = require("react-router-dom");
let Router;
if(typeof window !== typeof undefined) {
 const { BrowserRouter } = ReactRouter;
 Router = BrowserRouter;
}
else {
 const { StaticRouter } = ReactRouter;
 Router = StaticRouter;
}
const { Route, Redirect, Switch } = ReactRouter;

We use the require statement in the preceding code. The reason is that import statements are statically analyzed and do not allow for conditional extracting of the package's modules. Notice that after requiring the React Router package, we check whether the file is executed on the server or the client by looking for the window object. Since there is no window object in Node.js, this is a sufficient check. An alternative approach would be to set up the Switch component, including the routes, in a separate file. This approach would allow us to import the routes directly into the correct router, if we create two separate router files for client-side and server-side rendering.

If we are on the client-side, we use the BrowserRouter, and if not, we use the StaticRouter. The logic is that with the StaticRouter, we are in a stateless environment, where we render all routes with a fixed location. The StaticRouter does not allow for the location to be changed by redirects, since no user interaction can happen when using server-side rendering. The other components, Route, Redirect, and Switch, can be used as before.

No matter which of the routers is extracted, we save them in the Router variable. We then use them in the render method of the Routing class.

	We prepared the properties context and location, which are passed from the top ServerClient component to the Router. If we are on the server, these properties should be filled, because the StaticRouter requires them. You can replace the Router tag in the bottom Routing component, as follows:

<Router context={this.props.context} location={this.props.location}>

The location holds the path that the router should render. The context variable stores all of the information the Router processes, such as redirects. We can inspect this variable after rendering the Router to trigger the redirects manually. This behavior is the big difference between the BrowserRouter and the StaticRouter. The BrowserRouter redirects the user automatically, but the StaticRouter does not.

The crucial components to render our React code successfully have now been prepared. However, there are still some modules that we have to initialize before rendering anything with React. Open the index.js server file again. At the moment, we are serving the dist path statically on the root / path for client-side rendering, which can be found at http://localhost:8000. When moving to SSR, we have to serve the HTML generated by our React application at the / path instead.

Furthermore, any other path, such as /app, should also use SSR to render those paths on the server. Remove the current app.get method at the bottom of the file, right before the app.listen method. Insert the following code as a replacement:

app.get('*', (req, res) => {
 res.status(200);
 res.send(`<!doctype html>`);
 res.end();
});

The asterisk that we are using in the preceding code can overwrite any path that is defined later in the Express routing. Always remember that the services routine that we use in Express can implement new paths, such as /graphql, that we do not want to overwrite. To avoid this, put the code at the bottom of the file, below the services setup. The route catches any requests sent to the back end.

You can try out this route by running the npm run server command. Just visit http://localhost:8000.

Currently, the preceding catch-all route only returns an empty site, with a status of 200. Let's change this. The logical step would be to load and render the ServerClient class from the index.js file of the ssr folder, since it is the starting point of the React SSR code. The ServerClient component, however, requires an initialized Apollo Client, as we explained before. We are going to create a special Apollo Client for SSR next.

Create a ssr/apollo.js file, as it does not exist yet. We will set up the Apollo Client in this file. The content is nearly the same as the original setup for the client:

import { ApolloClient } from 'apollo-client';
import { InMemoryCache } from 'apollo-cache-inmemory';
import { onError } from 'apollo-link-error';
import { ApolloLink } from 'apollo-link';
import { HttpLink } from 'apollo-link-http';
import fetch from 'node-fetch';

export default (req) => {
 const AuthLink = (operation, next) => {
 return next(operation);
 };
 const client = new ApolloClient({
 ssrMode: true,
 link: ApolloLink.from([
 onError(({ graphQLErrors, networkError }) => {
 if (graphQLErrors) {
 graphQLErrors.map(({ message, locations, path, extensions })
 => {
 console.log(`[GraphQL error]: Message: ${message},
 Location: ${locations}, Path: ${path}`);
 });
 if (networkError) {
 console.log(`[Network error]: ${networkError}`);
 }
 }
 }),
 AuthLink,
 new HttpLink({
 uri: 'http://localhost:8000/graphql',
 credentials: 'same-origin',
 fetch
 })
]),
 cache: new InMemoryCache(),
 });
 return client;
};

There are a few changes that we made to get the client working on the server. These changes were pretty big, so we created a separate file for the server-side Apollo Client setup. Take a look at the changes, as follows, to understand the differences between the front end and the SSR setup for the Apollo Client:

	Instead of using the createUploadLink function that we introduced to allow the user to upload images or other files, we are now using the standard HttpLink again. You could have used the UploadClient, but the functionalities that it provides won't be used on the server, as the server won't upload files (of course).

	The AuthLink skips to the next link, as we have not implemented server-side authentication yet.

	The HttpLink receives the fetch property, which is filled by the node-fetch package that we installed at the beginning of the chapter. It is used instead of the window.fetch method, which is not available in Node.js.

	Rather than exporting the client directly, we export a wrapping function that accepts a request object. We pass it as a parameter in the Express route. As you can see in the preceding code, we haven't used the object yet, but that will change soon.

Import the ApolloClient class at the top of the server index.js, as follows:

import ApolloClient from './ssr/apollo';

The imported ApolloClient function accepts the request object of our Express server.

Add the following line to the top of the new Express catch-all route:

const client = ApolloClient(req);

This way, we set up a new client instance that we can hand over to our ServerClient component.

We can continue and implement the rendering of our ServerClient component. To make the future code work, we have to load React and, of course, the ServerClient itself:

import React from 'react';
import Graphbook from './ssr/';

The ServerClient class is imported under the Graphbook name. We import React because we use the standard JSX syntax while rendering our React code.

Now that we have access to the Apollo Client and the ServerClient component, insert the following two lines below the ApolloClient setup in the Express route:

const context= {};
const App = (<Graphbook client={client} location={req.url} context=
 {context}/>);

We pass the initialized client variable to the Graphbook component. We use the regular React syntax to pass all properties. Furthermore, we set the location property to the request object's url, to tell the router which path to render. The context property is passed as an empty object.

However, why do we pass an empty object as context to the Router at the end?

The reason is that after rendering the Graphbook component to HTML, we can access the context object and see whether a redirect, or something else, would have been triggered regularly. As we mentioned before, redirects have to be implemented by the back end code. The StaticRouter component of React Router does not make assumptions about the Node.js web server that you are using. That is why the StaticRouter does not execute them automatically. Tracking and post-processing these events is possible with the context variable.

The resulting React object is saved to a new variable, called App. Now, there should be no errors if you start the server with npm run server and visit http://localhost:8000. Still, we see an empty page. That happens because we only return an empty HTML page; we haven't rendered the React App object to HTML. To render the object to HTML, import the following package at the top of the server index.js file:

import ReactDOM from 'react-dom/server';

The react-dom package not only provides bindings for the browser, but also provides a special module for the server, which is why we use the suffix /server while importing it. The returned module provides a number of server-only functions.

To learn some more advanced features of server-side rendering and the dynamics behind it, you should read up on the official documentation of the server package of react-dom at https://reactjs.org/docs/react-dom-server.html.

We can translate the React App object into HTML by using the ReactDOM.rendertoString function. Insert the following line of code beneath the App object:

const content = ReactDOM.renderToString(App);

This function generates HTML and stores it inside the content variable. It can be returned to the client now. If you return pre-rendered HTML from the server, the client goes through it and checks whether its current state would match the returned HTML. The comparison is made by identifying certain points in the HTML, such as the data-reactroot property.

If, at any point, the markup between the server-rendered HTML and the one that the client would generate does not match, an error is thrown. The application will still work, but the client will not be able to make use of server-side rendering; the client will replace the complete markup returned from the server by rerendering everything again. The server's HTML response is thrown away in this case. This is, of course, very inefficient and not what we are aiming for.

We have to return the rendered HTML to the client. The HTML that we have rendered begins with the root div tag, and not the html tag. We must wrap the content variable inside a template, which includes the surrounding HTML tags. Create a template.js file, inside the ssr folder. Enter the following code to implement the template for our rendered HTML:

import React from 'react';
import ReactDOM from 'react-dom/server';

export default function htmlTemplate(content) {
 return `
 <html lang="en">
 <head>
 <meta charSet="UTF-8"/>
 <meta name="viewport" content="width=device-width, initial-
 scale=1.0"/>
 <meta httpEquiv="X-UA-Compatible" content="ie=edge"/>
 <link rel="shortcut icon" href="data:image/x-icon;," type="image/x-
 icon">
 ${(process.env.NODE_ENV === 'development')? "":"<link
 rel='stylesheet' href='/bundle.css'/>"}
 </head>
 <body>
 ${ReactDOM.renderToStaticMarkup(<div id="root"
 dangerouslySetInnerHTML={{ __html: content }}></div>)}
 <script src="/bundle.js"></script>
 </body>
 </html>
 `;
};

The preceding code is pretty much the same HTML markup as that in the index.html that we usually serve to the client. The difference is that we use React and ReactDOM here.

First, we export a function, which accepts the content variable with the rendered HTML.

Secondly, we render a link tag inside the head tag, which downloads the CSS bundle if we are in a production environment. For our current development scenario, there is no bundled CSS.

The important part is that we use a new ReactDOM function called rendertoStaticMarkup inside the body tag. This function inserts the React root tag into the body of our HTML template. Before, we used the renderToString method, which included special React tags, such as the data-reactroot property. We use the rendertoStaticMarkup function to generate standard HTML, without special React tags. The only parameter that we pass to the function is the div tag with the id root and a new property, dangerouslySetInnerHTML. This attribute is a replacement for the regular innerHTML attribute, but for use in React. It lets React insert the HTML inside the root div tag. As the name suggests, it is dangerous to do this, but only if it is done on the client, as there is no possibility for XSS attacks on the server. We use the ReactDOM.renderToStaticMarkup function to make use of the attribute. The inserted HTML was initially rendered with the renderToString function, so that it would include all critical React HTML attributes and the wrapping div tag with the id root. It can then be reused in the browser by the front end code without any problems.

Require this template.js file in the server index file, at the top of the file:

import template from './ssr/template';

The template function can now be used directly in the res.send method, as follows:

res.send(`<!doctype html>\n${template(content)}`);

We do not only return a doctype anymore; we also respond with the return value of the template function. As you should see, the template function accepts the rendered content variable as a parameter, and composes it to a valid HTML document.

At this point, we have managed to get our first version of a server-side rendered React application working. You can prove this by right-clicking in your browser window and choosing to view the source code. The window shows you the original HTML that is returned by the server. The output equals the HTML from the template function, including the login and signup forms.

Nevertheless, there are two problems that we face, as follows:

	There is no description meta head tag included in the server response. Something must have gone wrong with React Helmet.

	When logged in on the client side and, for example, viewing the news feed under the /app path, the server responds without having rendered the news feed, nor the login form. Normally, React Router would have redirected us to the login form, since we are not logged in on the server side. Since we use the StaticRouter, however, we have to initiate the redirect separately, as we explained before. We are going to implement the authentication in a separate step.

We will start with the first issue. To fix the problem with React Helmet, import it at the top of the server index.js file, as follows:

import { Helmet } from 'react-helmet';

Now, before setting the response status with res.status, you can extract the React Helmet status, as follows:

const head = Helmet.renderStatic();

The renderStatic method is specially made for server-side rendering. We can use it after having rendered the React application with the renderToString function. It gives us all head tags that would have been inserted throughout our code. Pass this head variable to the template function as a second parameter, as follows:

res.send(`<!doctype html>\n${template(content, head)}`);

Go back to the template.js from the ssr folder. Add the head parameter to the exported function's signature. Add the following two new lines of code to the HTML's head tag:

${head.title.toString()}
${head.meta.toString()}

The head variable extracted from React Helmet holds a property for each meta tag. They provide a toString function that returns a valid HTML tag, which you can directly enter into the document's head. The first problem should be fixed: all head tags are now inside the server's HTML response.

Let's focus on the second problem. The server response returns an empty React root tag when visiting a PrivateRoute. As we explained previously, the reason is that the naturally initiated redirect does not get through to us, since we are using the StaticRouter. We are redirected away from the PrivateRoute, because the authentication is not implemented for the server-rendered code. The first thing to fix is to handle the redirect, and at least respond with the login form, instead of an empty React root tag. Later, we need to fix the authentication problem.

You would not notice the problem without viewing the source code of the server's response. The front end downloads the bundle.js and triggers the rendering on its own, as it knows about the authentication status of the user. The user would not notice that. Still, it is more efficient if the server sends the correct HTML directly. The HTML will be wrong if the user is logged in, but in the case of an unauthenticated user, the login form is pre-rendered by the server as it initiates the redirects.

To fix this issue, we can access the context object that has been filled by React Router after it has used the renderToString function. The final Express route should look as follows:

app.get('*', (req, res) => {
 const client = ApolloClient(req);
 const context= {};
 const App = (<Graphbook client={client} location={req.url} context=
 {context}/>);
 const content = ReactDOM.renderToString(App);
 if (context.url) {
 res.redirect(301, context.url);
 } else {
 const head = Helmet.renderStatic();
 res.status(200);
 res.send(`<!doctype html>\n${template(content, head)}`);
 res.end();
 }
});

The condition for rendering the correct route on the server is that we inspect the context.url property. If it is filled, we can initiate a redirect with Express.js. That will navigate the browser to the correct path. If the property is not filled, we can return the HTML generated by React.

This route renders the React code correctly, up to the point at which authentication is required. The SSR route correctly renders all public routes, but none of the secure routes. That means that we only respond with the login form at the moment, since it is the only route that doesn't require authentication.

The next step is to implement authentication in connection with SSR, in order to fix this huge issue.

 Authentication with SSR

You should have noticed that we have removed most of the authentication logic from the server-side React code. The reason is that the localStorage cannot be transmitted to the server on the initial loading of a page, which is the only case where SSR can be used at all. This leads to the problem that we cannot render the correct route, because we cannot verify whether a user is logged in. The authentication has to be transitioned to cookies, which are sent with every request.

It is important to understand that cookies also introduce some security issues. We will continue to use the regular HTTP authorization header for the GraphQL API that we have written. If we use cookies for the GraphQL API, we will expose our application to potential CSRF attacks. The front end code continues to send all GraphQL requests with the HTTP authorization header.

We will only use the cookies to verify the authentication status of a user, and to initiate requests to our GraphQL API for server-side rendering of the React code. The SSR GraphQL requests will include the authorization cookie's value in the HTTP authorization header. Our GraphQL API only reads and verifies this header, and does not accept cookies. As long as you do not mutate data when loading a page and only query for data to render, there will be no security issues.

As the whole topic of CSRF and XSS is big, I recommend that you read up on it, in order to fully understand how to protect yourself and your users. You can find a great article at https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF).

The first thing to do is install a new package with npm, as follows:

npm install --save cookies

The cookies package allows us to easily interact through the Express request object with the cookies sent by the browser. Instead of parsing and reading through the cookie string (which is just a comma-separated list) manually, you can access the cookies with simple get and set methods. To get this package working, you have to initialize it inside Express.

Import the cookies and jwt packages, and also extract the JWT_SECRET from the environment variables at the top of the server index.js file:

import Cookies from 'cookies';
import JWT from 'jsonwebtoken';
const { JWT_SECRET } = process.env;

To use the cookies package, we are going to set up a new middleware route. Insert the following code before initializing the webpack modules and the services routine:

app.use(
 (req, res, next) => {
 const options = { keys: ['Some random keys'] };
 req.cookies = new Cookies(req, res, options);
 next();
 }
);

This new Express middleware initializes the cookies package under the req.cookies property for every request that it processes. The first parameter of the Cookies constructor is the request, the second is the response object, and the last one is an options parameter. It takes an array of keys, with which the cookies are signed. The keys are required if you want to sign your cookies for security reasons. You should take care of this in a production environment. You can specify a secure property, which ensures that the cookies are only transmitted on secure HTTPS connections.

We can now extract the authorization cookie and verify the authentication of the user. To do this, replace the beginning of the SSR route with the following code in the server's index.js file:

app.get('*', async (req, res) => {
 const token = req.cookies.get('authorization', { signed: true });
 var loggedIn;
 try {
 await JWT.verify(token, JWT_SECRET);
 loggedIn = true;
 } catch(e) {
 loggedIn = false;
 }

Here, I have added the async declaration to the callback function, because we use the await statement inside it. The second step is to extract the authorization cookie from the request object with req.cookies.get. Importantly, we specify the signed field in the options parameter, because only then will it successfully return the signed cookies.

The extracted value represents the JWT that we generate when a user logs in. We can verify this with the typical approach that we implemented in Chapter 6, Authentication with Apollo and React. We use the await statement while verifying the JWT. If an error is thrown, the user is not logged in. The state is saved in the loggedIn variable. Pass the loggedIn variable to the Graphbook component, as follows:

const App = (<Graphbook client={client} loggedIn={loggedIn} location={req.url} context={context}/>);

Now, we can access the loggedIn property inside index.js from the ssr folder. Extract the loggedIn sate from the properties, and pass it to the App component in the ssr index.js file, as follows:

<App location={location} context={context} loggedIn={loggedIn}/>

Inside the App component, we do not need to set the loggedIn state directly to false, but we can take the property's value, because it is determined before the App class is rendered. This flow is different from the client procedure, where the loggedIn state is determined inside the App class. Change the App class in the app.js file in order to match the following code:

class App extends Component {
 state = {
 loggedIn: this.props.loggedIn
 }

The result is that we pass down the loggedIn value from our Express.js route, over the Graphbook and App components, to our Router. It already accepts the loggedIn property, in order to render the correct path for the user. At the moment, we still do not set the cookie on the back end when a user successfully logs in.

Open the resolvers.js file of our GraphQL server to fix that. We will change a few lines for the login and signup functions. Both resolver functions need the same changes, as both set the authentication token after login or signup. Insert the following code directly above the return statement:

context.cookies.set(
 'authorization',
 token, { signed: true, expires: expirationDate, httpOnly: true,
 secure: false, sameSite: 'strict' }
);

The preceding function sets the cookies for the user's browser. The context object is only the Express.js request object where we have initialized the cookies package. The properties of the cookies.set function are pretty self-explanatory, as follows:

	The signed field specifies whether the keys entered during the initialization of the cookies object should be used to sign the cookie's value.

	The expires property takes a date object. It represents the time until which the cookie is valid. You can set the property to whatever date you want, but I would recommend a short period, such as one day. Insert the following code above the context.cookies.set statement, in order to initialize the expirationDate variable correctly:

const cookieExpiration = 1;
var expirationDate = new Date();
expirationDate.setDate(
 expirationDate.getDate() + cookieExpiration
);

	The httpOnly field secures the cookie so that it is not accessible by client-side JavaScript.

	The secure property has the same meaning as it did when initializing the Cookie package. It restricts cookies to SSL connections only. This is a must when going to production, but it cannot be used while developing, since most developers develop locally, without an SSL certificate.

	The sameSite field takes either strict or lax as a value. I recommend setting it to strict, since you only want your GraphQL API or server to receive the cookie with every request, but to exclude all cross-site requests, as this could be dangerous.

Now, we should clean up our code. Since we are using cookies, we can remove the localStorage authentication flow in the front end code. Open the App.js of the client folder. Remove the componentWillMount method, as we are reading from the localStorage there.

The cookies are automatically sent with any request, and they do not need a separate binding, like the localStorage. That also means that we need a special logout mutation that removes the cookie from the browser. JavaScript is not able to access or remove the cookie, because we specified it as httpOnly. Only the server can delete it from the client.

Create a new logout.js inside the mutations folder, in order to create the new LogoutMutation class. The content should look as follows:

import React, { Component } from 'react';
import { Mutation } from 'react-apollo';
import gql from 'graphql-tag';

const LOGOUT = gql`
 mutation logout {
 logout {
 success
 }
 }
`;

export default class LogoutMutation extends Component {
 render() {
 const { children } = this.props;
 return (
 <Mutation
 mutation={LOGOUT}>
 {(logout, { loading, error}) =>
 React.Children.map(children, function(child){
 return React.cloneElement(child, { logout, loading, error });
 })
 }
 </Mutation>
)
 }
}

The preceding mutation component only sends a simple logout mutation, without any parameters or further logic. We should use the LogoutMutation component inside the index.js file of the bar folder in order to send the GraphQL request. Import the component at the top of the file, as follows:

import LogoutMutation from '../mutations/logout';

The Logout component renders our current Log out button in the application bar. It removes the token and cache from the client upon clicking it. Use the LogoutMutation class as a wrapper for the Logout component, to pass the mutation function:

<LogoutMutation><Logout changeLoginState=
 {this.props.changeLoginState}/></LogoutMutation>

Inside the bar folder, we have to edit the logout.js file, because we should make use of the logout mutation that this component receives from its parent LogoutMutation component. Replace the logout method with the following code, in order to send the mutation upon clicking the logout button:

logout = () => {
 this.props.logout().then(() => {
 localStorage.removeItem('jwt');
 this.props.client.resetStore();
 });
}

We have wrapped the original two functions inside the call to the parent logout mutation function. It sends the GraphQL request to our server.

To implement the mutation on the back end, add one line to the GraphQL RootMutation type, inside schema.js:

logout: Response @auth

It's required that the user that's trying to log out is authorized, so we use the @auth directive. The corresponding resolver function looks as follows. Add it to the resolvers.js file, in the RootMutation property:

logout(root, params, context) {
 context.cookies.set(
 'authorization',
 '', { signed: true, expires: new Date(), httpOnly: true, secure:
 false, sameSite: 'strict' }
);
 return {
 message: true
 };
},

The resolver function is minimal. It removes the cookie by setting the expiration date to the current time. This removes the cookie on the client when the browser receives the response, because it is expired then. This behavior is an advantage, in comparison to the localStorage.

We have completed everything to make the authorization work with SSR. It is a very complex task, since authorization, server-side rendering, and client-side rendering have effects on the whole application. Every framework out there has its own approach to implementing this feature, so please take a look at them too.

If you look at the source code returned from our server after the rendering, you should see that the login form is returned correctly, like before. Furthermore, the server now recognizes whether the user is logged in. However, the server does not return the rendered news feed, the application bar, or the chats yet. Only a loading message is included in the returned HTML. The client-side code also does not recognize that the user is logged in. We will take a look at these problems in the next section.

 Running Apollo queries with SSR

By nature, GraphQL queries via HttpLink are asynchronous. We have implemented a loading component to show the user a loading message while the data is being fetched.

This is the same thing that is happening while rendering our React code on the server. All of the routing is evaluated, including whether we are logged in. If the correct route is found, all GraphQL requests are sent. The problem is that the first rendering of React returns the loading state, which is sent to the client by our server. The server does not wait until the GraphQL queries are finished and it has received all of the responses to render our React code.

We will fix this problem now. The following is a list of things that we have to do:

	We need to implement authentication for the SSR Apollo Client. We already did this for the routing, but now we need to pass the cookie to the server-side GraphQL request too.

	We need to use a React Apollo specific method to render the React code asynchronously, to wait for all responses of the GraphQL requests.

	Importantly, we need to return the Apollo cache state to the client. Otherwise, the client will re-fetch everything, as its state is empty upon the first load of the page.

Let's get started, as follows:

	The first step is to pass the loggedIn variable from the Express.js SSR route to the ApolloClient function, as a second parameter. Change the ApolloClient call inside the server's index.js file to the following line of code:

const client = ApolloClient(req, loggedIn);

Change the signature of the exported function from the apollo.js file to also include this second parameter.

	Replace the AuthLink function inside the Apollo Client's setup for SSR with the following code:

const AuthLink = (operation, next) => {
 if(loggedIn) {
 operation.setContext(context => ({
 ...context,
 headers: {
 ...context.headers,
 Authorization: req.cookies.get('authorization')
 },
 }));
 }
 return next(operation)
};

This AuthLink adds the cookies to the GraphQL requests by using the request object given by Express. The request object already holds the initialized cookies package, which we use to extract the authorization cookie. This only needs to be done if the user has been verified as logged in previously.

	Import a new function from the react-apollo package inside the server's index.js file. Replace the import of the ReactDOM package with the following line of code:

import { renderToStringWithData } from 'react-apollo';

	Originally, we used the ReactDOM server methods to render the React code to HTML. These functions are synchronous; that is why the GraphQL request did not finish. To wait for all GraphQL requests, replace all of the lines, beginning from the rendertoString function until the end of the SSR route inside the server's index.js file. The result should look as follows:

renderToStringWithData(App).then((content) => {
 if (context.url) {
 res.redirect(301, context.url);
 } else {
 const head = Helmet.renderStatic();
 res.status(200);
 res.send(`<!doctype html>\n${template(content, head)}`);
 res.end();
 }
});

The renderToStringWithData function renders the React code, including the data received by the Apollo requests. Since the method is asynchronous, we wrap the rest of our code inside a callback function.

Now, if you take a look at the HTML returned by your server, you should see the correct markup, including chats, images, and everything else. The problem is that the client does not know that all of the HTML is already there, and can be reused. The client would rerender everything.

	To let the client reuse the HTML that our server sends, we have to include the Apollo Client's state with our response. Inside the preceding callback, access the Apollo Client's state by inserting the following code:

const initialState = client.extract();

The client.extract method returns a big object, holding all cache information that the client has stored after using the renderToStringWithData function.

	The state must be passed to the template function as a third parameter. Change the res.send call to the following:

res.send(`<!doctype html>\n${template(content, head, initialState)}`);

	Inside the template.js file, extend the function declaration and append the state variable as a third parameter, after the head variable.

	Insert the state variable, with the following line of code, inside the HTML body and above the bundle.js file. If you add it below the bundle.js file, it won't work correctly:

${ReactDOM.renderToStaticMarkup(<script dangerouslySetInnerHTML=
{{__html: `window.__APOLLO_STATE__=${JSON.stringify(state).replace
(/</g, '\\u003c')}`}}/>)}

We use the renderToStaticMarkup function to insert another script tag. It sets a large, stringified JSON object as Apollo Client's starting cache value. The JSON object holds all results of the GraphQL requests returned while rendering our server-side React application. We directly store the JSON object as a string, in a new field inside the window object. The window object is helpful, since you can directly access the field globally.

	Apollo has to know about the state variable. It can be used by the Apollo Client, in order to initialize its cache with the specified data, instead of sending all GraphQL requests again. Open the index.js from the client's apollo folder. The last property of the initialization process is the cache. We need to set our __APOLLO_STATE__ as the starting value of the cache. Replace the cache property with the following code:

cache: new InMemoryCache().restore(window.__APOLLO_STATE__)

We create the InMemoryCache instance and run its restore method, where we insert the value from the window object. The Apollo Client should recreate its cache from this variable.

	We have now set up the cache for Apollo. It will no longer run unnecessary requests, for which the results already exist. Now, we can finally reuse the HTML, with one last change. We have to change ReactDOM.render to ReactDOM.hydrate in the client's index.js file. The difference between these functions is that React reuses the HTML if it was correctly rendered by our server. In this case, React only attaches some necessary event listeners. If you use the ReactDOM.render method, it dramatically slows down the initial rendering process, because it compares the initial DOM with the current DOM and may change it accordingly.

The last problem that we have is that the client-side code does not show the logged in state of our application after refreshing a page. The server returns the correct markup with all the data, but the front end redirects us to the login form. The reason for this is that we statically set the loggedIn state variable to false in the App.js file of the client-side code.

The best way to check whether the user is authenticated is to verify whether the __APOLLO_STATE__ field on the window object is filled and has a currentUser object attached. If that is the case, we can assume that the user was able to fetch their own data record, so they must be loggedIn. To change our App.js file accordingly, add the following condition to the loggedIn state variable:

(typeof window.__APOLLO_STATE__ !== typeof undefined && typeof window.__APOLLO_STATE__.ROOT_QUERY !== typeof undefined && typeof window.__APOLLO_STATE__.ROOT_QUERY.currentUser !== typeof undefined)

As you can see in the preceding code, we verify whether the Apollo starting cache variable includes a ROOT_QUERY property with the subfield currentUser. The ROOT_QUERY property is filled if any query can be fetched successfully. The currentUser field is only filled if the authenticated was successfully requested.

If you execute npm run server, you will see that now everything works perfectly. Take a look at the markup that's returned; you will see either the login form or, when logged in, all of the content of the page that you are visiting. You can log in on the client, the news feed is fetched dynamically, you can refresh the page, and all of the posts are directly there, without the need for a single GraphQL request, because the server returned the data side by side with the HTML. This works not only for the /app path, but for any path that you implement.

We are now finished with the SSR setup.

So far, we have only looked at the developmental part of server-side rendering. When we get to the point at which we want to make a production build and publicize our application, there are a few other things that we will have to consider, which we will look at in a later chapter.

 Summary

In this chapter, we changed a lot of the code that we have programmed so far. You learned the advantages and disadvantages of offering server-side rendering. The main principles behind React Router, Apollo, and authentication with cookies while using SSR should be clear by now. There is much work required to get SSR running, and it needs to be managed with every change made to your application. Nevertheless, it has excellent performance and experience benefits for your users.

In the next chapter, we will look at how to offer real-time updates through Apollo Subscriptions, instead of using the old and inefficient polling.

 Real-Time Subscriptions

The GraphQL API we have built is very advanced, as is the front end. In the previous chapter, we introduced server-side rendering to our application. We provided the user with a lot of information through the news feed, chats, and profile pages. The problem we are facing now, however, is that the user currently has to either refresh the browser or we have set a pollInterval to all Query components to keep the display up to date. A better solution is to implement Apollo Subscriptions through WebSockets. This allows us to refresh the UI of the user with the newest user information in real time without manual user interaction or polling.

This chapter covers the following topics:

	Using GraphQL with WebSockets

	Implementing Apollo Subscriptions

	JWT authentication with Subscriptions

 GraphQL and WebSockets

In Chapter 1, Preparing Your Development Environment, I explained all the main features that make GraphQL so useful. We mentioned that HTTP is the standard network protocol when using GraphQL. The problem with regular HTTP connections, however, is that they are one-time requests. They can only respond with the data that exists at the time of the request. If the database receives a change concerning the posts or the chats, the user won't know about this until they execute another request. The user interface shows outdated data in this case.

To solve this issue, you can refetch all requests in a specific interval, but this is a bad solution because there's no time range that makes polling efficient. Every user would make unnecessary HTTP requests, which neither you nor the user wants.

The best solution relies on WebSockets instead of HTTP requests. Like HTTP, WebSockets are also based on TCP. One of the main features of WebSockets is that they allow bidirectional communication between the client and the server. Arguably, you could say that HTTP does the same, since you send a request and get a response, but WebSockets work very differently. One requirement is that the web server supports WebSockets in general. If that's the case, the client can open a WebSocket connection to the server. The initial request to establish a WebSocket connection is a standard HTTP request. The server should then respond with a 101 status code. It tells the browser that it agrees to change the protocols from HTTP to WebSockets. If the connection is successful, the server can send updates through this connection to the client. These updates are also called messages or frames. There are no further requests needed by the client to let the server speak with the browser, unlike HTTP, where you always need a request first so that the server can respond to it.

Using WebSockets or Apollo Subscriptions would fix the issue we encounter when using polling, which is the process where a computer waits for an external device to check whether or not it is ready. We have one connection that stays open all the time. The server can send messages to the client whenever data is added or updated. WebSocket URLs start with ws or wss instead of the ordinary http or https. With WebSockets, you can also save valuable bandwidth for the users, but these are not included for WebSocket messages.

One disadvantage is that WebSockets are not a standard approach for implementing APIs. If you make your API public to third parties at some point, it's likely that a standard HTTP API would fit better. Also, HTTP is much more optimized. HTTP requests can be cached and proxied easily with common web servers, such as Nginx or Apache, but also by the browser itself, which is hard for WebSockets to do. The most significant impact on performance is that WebSocket connections are kept open as long as the user stays on your site. It's not a problem for one or a few hundred users, but scaling this to more people is likely to present you with some problems. However, it's still a very efficient solution to real-time web communication in contrast to polling, for example.

Most GraphQL client libraries are specialized and optimized for the standard HTTP protocol. It's the most common approach, so that's understandable. The people behind Apollo have got you covered; they've built packages to support WebSockets and the implementation of GraphQL subscriptions. You can use those packages not only with Apollo but also with many other libraries. Let's get started with implementing Apollo Subscriptions.

 Apollo Subscriptions

When we started implementing Apollo in our stack, I explained how to set it up manually. As an alternative, there is the apollo-boost package, which does this for you automatically. We have now reached a point where this package cannot be used anymore since subscriptions are an advanced feature that isn't supported. If you rely on the apollo-boost package, take a look at Chapter 4, Integrating React into the Back end with Apollo, to see how to switch to a manual setup.

You can find an excellent overview and more details about Apollo Subscriptions in the official documentation at https://www.apollographql.com/docs/react/advanced/subscriptions.html.

The first step is to install all the required packages to get GraphQL subscriptions working. Install them using npm:

npm install --save graphql-subscriptions subscriptions-transport-ws apollo-link-ws

The following three packages provide necessary modules for a subscription system:

	The graphql-subscriptions package provides the ability to connect our GraphQL back end with a PubSub system. It gives the client the option to subscribe to specific channels, and lets the back end publish new data to the client.

	The subscriptions-transport-ws package gives our Apollo Server or other GraphQL libraries the option to accept WebSocket connections and accept queries, mutations, and subscriptions over WebSockets.

	The apollo-link-ws package is similar to the HttpLink or UploadLink that we're currently using, but, as the name suggests, it relies on WebSockets, not HTTP, to send requests and allows us to use subscriptions.

Let's take a look at how we can implement subscriptions.

First, we are going to create a new subscription type next to the RootQuery and RootMutation types inside the GraphQL schema. You can set up events or entities that a client can subscribe to and receive updates inside the new subscription type. It only works by adding the matching resolver functions as well. Instead of returning real data for this new subscription type, you return a special object that allows the client to subscribe to events for the specific entity. These entities can be things such as notifications, new chat messages, or comments on a post. Each of them has got their own subscription channel.

The client can subscribe to these channels. It receives updates any time the back end sends a new WebSocket message – because data has been updated, for example. The back end calls a publish method that sends the new data through the subscription to all clients. You should be aware that not every user should receive all WebSocket messages since the content may include private data such as chat messages. There should be a filter before the update is sent to target only specific users. We'll see this feature later in the Authentication with Apollo Subscriptions section.

 Subscriptions on the Apollo Server

We have now installed all the essential packages. Let's start with the implementation for the back end. As mentioned previously, we are going to rely on WebSockets, as they allow real-time communication between the front end and the back end. We are first going to set up the new transport protocol for the back end.

Open the index.js file of the server. Import a new Node.js interface at the top of the file:

import { createServer } from 'http';

The http interface is included in Node.js by default. It handles the traditional HTTP protocol, making the use of many HTTP features easy for the developer.

We are going to use the interface to create a standardized Node.js HTTP server object because the Apollo SubscriptionServer module expects such an object. We'll cover the Apollo SubscriptionServer module soon in this section. Add the following line of code beneath the initialization of Express.js inside the app variable:

const server = createServer(app);

The createServer function creates a new HTTP server object, based on the original Express.js instance. We pass the Express instance, which we saved inside the app variable. As you can see in the preceding code, you only pass the app object as a parameter to the createServer function. We're going to use the new server object instead of the app variable to let our back end start listening for incoming requests. Remove the old app.listen function call from the bottom of the file because we'll be replacing it in a second. To get our server listening again, edit the initialization routine of the services. The for loop should now look as follows:

for (let i = 0; i < serviceNames.length; i += 1) {
 const name = serviceNames[i];
 switch (name) {
 case 'graphql':
 services[name].applyMiddleware({ app });
 break;
 case 'subscriptions':
 server.listen(8000, () => {
 console.log('Listening on port 8000!');
 services[name](server);
 });
 break;
 default:
 app.use(`/${name}`, services[name]);
 break;
 }
}

Here, we have changed the old if statement to a switch. Furthermore, we have added a second service beyond graphql, called subscriptions. We are going to create a new subscriptions service next to the graphql services folder.

The subscriptions service requires the server object as a parameter to start listening for WebSocket connections. Before initializing SubscriptionServer, we need to have started listening for incoming requests. That is why we use the server.listen method in the preceding code before initializing the new subscriptions service that creates the Apollo SubscriptionServer. We pass the server object to the service after it started listening. The service has to accept this parameter, of course, so keep this in mind.

To add the new service into the preceding serviceNames object, edit the index.js services file with the following content:

import graphql from './graphql';
import subscriptions from './subscriptions';

export default utils => ({
 graphql: graphql(utils),
 subscriptions: subscriptions(utils),
});

The subscriptions service also receives the utils object, like the graphql service.

Now, create a subscriptions folder next to the graphql folder. To fulfil the import of the preceding subscriptions service, insert the service's index.js file into this folder. There, we can implement the subscriptions service. As a reminder, we pass the utils object and also the server object from before. The subscriptions service must accept two parameters in separate function calls.

If you have created the new subscriptions index.js file, import all the dependencies at the top of the file:

import { makeExecutableSchema } from 'graphql-tools';
import Resolvers from'../graphql/resolvers';
import Schema from'../graphql/schema';
import auth from '../graphql/auth';
import jwt from 'jsonwebtoken';
const { JWT_SECRET } = process.env;
import { SubscriptionServer } from 'subscriptions-transport-ws';
import { execute, subscribe } from 'graphql';

The preceding dependencies are almost the same as those that we are using for the graphql service, but we've added the subscriptions-transport-ws package. Furthermore, we've removed the apollo-server-express package. SubscriptionServer is the equivalent of ApolloServer, but used for WebSocket connections rather than HTTP. It usually makes sense to set up the Apollo Server for HTTP and SubscriptionServer for WebSockets in the same file, as this saves us from processing Schema and Resolvers twice. It's easier to explain the implementation of subscriptions without the ApolloServer code in the same file, though. The last two things that are new in the preceding code are the execute and subscribe functions that we import from the graphql package. You will see why we need these in the following section.

We begin the implementation of the new service by exporting a function with the export default statement and creating the executableSchema (as you saw in Chapter 2, Setting up GraphQL with Express.js):

export default (utils) => (server) => {
 const executableSchema = makeExecutableSchema({
 typeDefs: Schema,
 resolvers: Resolvers.call(utils),
 schemaDirectives: {
 auth: auth
 },
 });
}

As you can see, we use the ES6 arrow notation to return two functions at the same time. The first one accepts the utils object and the second one accepts the server object that we create with the createServer function inside the index.js file of the server. This approach fixes the problem of passing two parameters in separate function calls. The schema is only created when both functions are called.

The second step is to start SubscriptionServer to accept WebSocket connections and, as a result, be able to use the GraphQL subscriptions. Insert the following code under executableSchema:

new SubscriptionServer({
 execute,
 subscribe,
 schema: executableSchema,
},
{
 server,
 path: '/subscriptions',
});

We initialized a new SubscriptionServer instance in the preceding code. The first parameter we pass is a general options object for GraphQL and corresponds to the options of the ApolloServer class. The options are as following:

	The execute property should receive a function that handles all the processing and execution of incoming GraphQL requests. The standard is to pass the execute function that we imported from the graphql package previously.

	The subscribe property also accepts a function. This function has to take care of resolving a subscription to AsyncIterator, which is no more than an asynchronous for loop. It allows the client to listen for execution results and reflect them to the user.

	The last option we pass is the GraphQL schema. We do this in the same way as for ApolloServer.

The second parameter our new instance accepts is the socketOptions object. This holds settings to describe the way in which the WebSockets work:

	The server field receives our server object, which we pass from the index.js file of the server as a result of the createServer function. SubscriptionServer then relies on the existing server.

	The path field represents the endpoint under which the subscriptions are accessible. All subscriptions use the /subscriptions path.

The official documentation for the subscriptions-transport-ws package offers a more advanced explanation of SubscriptionServer. Take a look to get an overview of all its functionalities: https://github.com/apollographql/subscriptions-transport-ws#subscriptionserver.

The client would be able to connect to the WebSocket endpoint at this point. There are currently no subscriptions and the corresponding resolvers are set up in our GraphQL API.

Open the schema.js file to define our first subscription. Add a new type called RootSubscription next to the RootQuery and RootMutation types, including the new subscription, called messageAdded:

type RootSubscription {
 messageAdded: Message
}

Currently, if a user sends a new message to another user, this isn't shown to the recipient right away.

The first option I showed you was to set an interval to request new messages. Our back end is now able to cover this scenario with subscriptions. The event or channel that the client can subscribe to is called messageAdded. We can also add further parameters, such as a chat ID, to filter the WebSocket messages if necessary. When creating a new chat message, it is publicized through this channel.

We have added RootSubscription, but we need to extend the schema root tag too. Otherwise, the new RootSubscription won't be used. Change the schema as follows:

schema {
 query: RootQuery
 mutation: RootMutation
 subscription: RootSubscription
}

We have successfully configured the tree GraphQL main types. Next, we have to implement the corresponding resolver functions. Open the resolvers.js file and perform the following steps:

	Import all dependencies that allow us to set up our GraphQL API with a PubSub system:

import { PubSub, withFilter } from 'graphql-subscriptions';
const pubsub = new PubSub();

The PubSub system offered by the graphql-subscriptions package is a simple implementation based on the standard Node.js EventEmitter. When going to production, it's recommended to use an external store, such as Redis, with this package.

	We've already added the third RootSubscription type to the schema, but not the matching property on the resolvers object. The following code includes the messageAdded subscription. Add it to the resolvers:

RootSubscription: {
 messageAdded: {
 subscribe: () => pubsub.asyncIterator(['messageAdded']),
 }
},

The messageAdded property isn't a function but just a simple object. It contains a subscribe function that returns AsyncIterable. It allows our application to subscribe to the messageAdded channel by returning a promise that's only resolved when a new message is added. The next item that's returned is a promise, which is also only resolved when a message has been added. This method makes AsyncIterators great for implementing subscriptions.

You can learn more about how AsyncIterators work by reading through the proposal at https://github.com/tc39/proposal-async-iteration.

	When subscribing to the messageAdded subscription, there needs to be another method that publicizes the newly created message to all clients. The best location is the addMessage mutation where the new message is created. Replace the addMessage resolver function with the following code:

addMessage(root, { message }, context) {
 logger.log({
 level: 'info',
 message: 'Message was created',
 });
 return Message.create({
 ...message,
 }).then((newMessage) => {
 return Promise.all([
 newMessage.setUser(context.user.id),
 newMessage.setChat(message.chatId),
]).then(() => {
 pubsub.publish('messageAdded', {messageAdded:
 newMessage});
 return newMessage;
 });
);
},

I have edited the addMessage mutation so that the correct user from the context is chosen. All of the new messages that you send are now saved with the correct user id. This allows us to filter WebSocket messages for the correct users later in Authentication with Apollo Subscriptions section.

We use the pubsub.publish function to send a new WebSocket frame to all clients that are connected and that have subscribed to the messageAdded channel. The first parameter of the pubsub.publish function is the subscription, which in this case is messageAdded. The second parameter is the new message that we save to the database. All clients that have subscribed to the messageAdded subscription through AsyncIterator now receive this message.

We've finished preparing the back end. The part that required the most work was to get the Express.js and WebSocket transport working together. The GraphQL implementation only involves the new schema entities, correctly implementing the resolvers functions for the subscription, and then publishing the data to the client via the PubSub system.

We have to implement the subscription feature in the front end to connect to our WebSocket endpoint.

 Subscriptions on the Apollo Client

As with the back end code, we also need to make adjustments to the Apollo Client configuration before using subscriptions. In Chapter 4, Integrating React into the Back end with Apollo, we set up the Apollo Client with the normal HttpLink. Later, we exchanged it with the createUploadLink function, which enables the user to upload files through GraphQL.

We are going to extend our Apollo Client by using WebSocketLink as well. This allows us to use subscriptions through GraphQL. Both links work side by side. We use the standard HTTP protocol to query data, such as the chat list or the news feed; all of these are real-time updates to keep the UI up to date rely on WebSockets.

To configure the Apollo Client correctly, follow these steps:

	Open the index.js file from the apollo folder. Import the following dependencies:

import { WebSocketLink } from 'apollo-link-ws';
import { SubscriptionClient } from 'subscriptions-transport-ws';
import { getMainDefinition } from 'apollo-utilities';
import { ApolloLink, split } from 'apollo-link';

To get the subscriptions working, we need SubscriptionClient, which uses WebSocketLink to subscribe to our GraphQL API using WebSockets.

We import the getMainDefinition function from the apollo-utilities package. It's installed by default when using the Apollo Client. The purpose of this function is to give you the operation type, which can be query, mutation, or subscription.

The split function from the apollo-link package allows us to conditionally control the flow of requests through different Apollo links based on the operation type or other information. It accepts one condition and one (or a pair of) link from which it composes a single valid link that the Apollo Client can use.

	We are going to create both links for the split function. Detect the protocol and port where we send all GraphQL subscriptions and requests. Add the following code beneath the imports:

const protocol = (location.protocol != 'https:') ? 'ws://': 'wss://';
const port = location.port ? ':'+location.port: '';

The protocol variable saves the WebSocket protocol by detecting whether the client uses http or https. The port variable is either an empty string if we use port 80 to server our front end, or any other port, such as 8000, which we currently use. Previously, we had to statically save http://localhost:8000 in this file. With the new variables, we can dynamically build the URL where all requests should be sent.

	The split function expects two links to combine them to one. The first link is the normal httpLink, which we must set up before passing the resulting link to the initialization of the Apollo Client. Remove the createUploadLink function call from the ApolloLink.from function and add it before the ApolloClient class:

const httpLink = createUploadLink({
 uri: location.protocol + '//' + location.hostname + port +
 '/graphql',
 credentials: 'same-origin',
});

We concatenate the protocol of the server, which is either http: or https:, with two slashes. The hostname is, for example, the domain of your application or, if in development, localhost. The result of the concatenation is http://localhost:8000/graphql.

	Add the WebSocket link that's used for the subscriptions next to httpLink. It's the second one we pass to the split function:

const SUBSCRIPTIONS_ENDPOINT = protocol + location.hostname + port
 + '/subscriptions';
const subClient = new SubscriptionClient(SUBSCRIPTIONS_ENDPOINT, {
 reconnect: true,
 connectionParams: () => {
 var token = localStorage.getItem('jwt');
 if(token) {
 return { authToken: token };
 }
 return { };
 }
});
const wsLink = new WebSocketLink(subClient);

We define the URI that's stored inside the SUBSCRIPTIONS_ENDPOINT variable. It's built with the protocol and port variables, which we detected earlier, and the application's hostname. The URI ends with the specified endpoint of the back end with the same port as the GraphQL API. The URI is the first parameter of SubscriptionsClient. The second parameter allows us to pass options, such as the reconnect property. It tells the client to automatically reconnect to the back end's WebSocket endpoint when it has lost the connection. This usually happens if the client has temporarily lost their internet connection or the server has gone down.

Furthermore, we use the connectionParams field to specify the JWT as an authorization token. We define this property as a function so that the JWT is read from localStorage whenever the user logs in. It's sent when the WebSocket is created.

We initialize SubscriptionClient to the subClient variable. We pass it to the WebSocketLink constructor under the wsLink variable with the given settings.

	Combine both links into one. This allows us to insert the composed result into our ApolloClient at the bottom. To do this, we have imported the split function. The syntax to combine the two links should look as follows:

const link = split(
 ({ query }) => {
 const { kind, operation } = getMainDefinition(query);
 return kind === 'OperationDefinition' && operation ===
 'subscription';
 },
 wsLink,
 httpLink,
);

The split function accepts three parameters. The first parameter must be a function with a Boolean return value. If the return value is true, the request is sent over the first link, which is the second required parameter. If the return value is false, the operation is sent over the second link, which we pass via the optional third parameter. In our case, the function that's passed as the first parameter determines the operation type. If the operation is a subscription, the function returns true and sends the operation over the WebSocket link. All other requests are sent via the HTTP Apollo Link. We save the result of the split function in the link variable.

	Insert the preceding link variable directly before the onError link. The createUploadLink function shouldn't be inside the Apollo.from function.

We've now got the basic Apollo Client setup to support subscriptions via WebSockets.

In Chapter 5, Reusable React Components, I gave the reader some homework to split the complete chat feature into multiple subcomponents. This way, the chat feature would follow the same pattern as we used for the post feed. We split it into multiple components so that it's a clean code base. We're going to use this and have a look at how to implement subscriptions for the chats.

If you haven't implemented the chat's functionality in multiple subcomponents, you can get the working code from the official GitHub repository. I personally recommend you use the code from the repository if it's unclear what the following examples refer to.

Using the chats as an example makes sense because they are, by nature, real-time: they require the application to handle new messages and display them to the recipient. We take care of this in the following steps.

We begin with the main file of our chats feature, which is the Chats.js file in the client folder. I've reworked the render method so that all the markup that initially came directly from this file is now entirely rendered by other child components. You can see all the changes in the following code:

render() {
 const { user } = this.props;
 const { openChats } = this.state;

 return (
 <div className="wrapper">
 <ChatsQuery><ChatsList openChat={this.openChat} user={user}/>
 </ChatsQuery>
 <div className="openChats">
 {openChats.map((chatId, i) =>
 <ChatQuery key={"chatWindow" + chatId} variables={{ chatId
 }}>
 <ChatWindow closeChat={this.closeChat} user={user}/>
 </ChatQuery>
)}
 </div>
 </div>
)
}

All the changes are listed here:

	We extract the user from the properties of the Chats component. Consequently, we have to wrap the Chats component with the UserConsumer component to let it pass the user. You have to apply this change to the Main.js file.

	I have split the GraphQL queries we originally sent inside this file into separate query components. One is called ChatsQuery and gives us all the chats that the current user is attached to. The other one is called ChatQuery and is executed when a chat is opened to request all the messages inside that chat.

	All the inner markup that was previously the GraphQL queries is now also in separate files to improve reusability. Each component that's exported from these files is wrapped in the corresponding query components. The ChatsList class renders a list of chats if ChatsQuery is successful. The other one is the ChatWindow component, which receives a chat property by ChatQuery to render all messages. Both receive a user property to show the correct user.

	The openChat and closeChat functions are executed either by ChatsList or the ChatWindow component. All other functions from the Chats class have been moved to one or both components: ChatsList and ChatWindow.

The changes I have made here had nothing to do with the subscriptions directly, but it's much easier to understand what I'm trying to explain when the code is readable. If you need help implementing these changes by yourself, I recommend you check out the official GitHub repository. All the following examples are based on these changes, but they should be understandable without having the full source code.

More important, however, is ChatsQuery, which has a special feature. We want to subscribe to the messageAdded subscription to listen for new messages. That's possible by using a new function of the Apollo Query component.

To continue, first create a separate ChatsQuery component. We send the request for all chats like before. The render method of the ChatsQuery component should look as follows:

render() {
 const { children } = this.props;

 return(
 <Query query={GET_CHATS}>
 {({ loading, error, data, subscribeToMore }) => {
 if (loading) return <Loading/>;
 if (error) return <Error><p>{error.message}</p></Error>;

 const { chats } = data;
 return React.Children.map(children, function(child){
 return React.cloneElement(child, { chats, subscribeToMore });
 })
 }}
 </Query>
)
}

The preceding code looks much like all the render methods of the other query components we've written so far. The GET_CHATS query requests all chats the current user is related to. The one thing that's different is that we extract a subscribeToMore function and pass it as a property to every child.

The subscribeToMore function is provided by default with every result of an Apollo Query component. It lets you run an update function whenever a message is created. It works in the same way as the fetchMore function. It's best to use the subscribeToMore function inside the ChatsList component. It already receives the chats property from the preceding ChatsQuery component to render the chats panel.

Let's have a look how we can use this function to implement subscriptions on the front end.

Because we pass the subscribeToMore function to the ChatsList class, we're going to implement this class now. Just follow these steps:

	We have three necessary dependencies that you should import at the top of the list.js file where the ChatsList class is saved:

import React, { Component } from 'react';
import gql from 'graphql-tag';
import { withApollo } from 'react-apollo';

The withApollo HoC gives you access to the Apollo Client directly in your component's properties. We only have to export the ChatsList class through this HoC. We need access to the client to read and write to the Apollo Client's cache.

	Parse the GraphQL subscription string. The chats query was executed previously, and ChatsList receives the response. The new messageAdded subscription has to look as follows:

const MESSAGES_SUBSCRIPTION = gql`
 subscription onMessageAdded {
 messageAdded {
 id
 text
 chat {
 id
 }
 user {
 id
 __typename
 }
 __typename
 }
 }
`;

The subscription looks exactly like all the other queries or mutations we are using. The only difference is that we request the __typename field, as it isn't included in the response of our GraphQL API when using subscriptions. From my point of view, this seems like a bug in the current version of SubscriptionServer. You should check whether you still need to do this at the time of reading this book.

We specify the operation type, subscription, of the request, as you can see in the preceding code. Otherwise, it attempts to execute the default query operation, which leads to an error because there's no messageAdded query, only a subscription. The subscription events the client receives when a new message is added holds all fields, as stated in the preceding code.

	Create the new ChatsList class like a standard React component. You can copy the shorten function from Chats.js and remove it from there. It should look like this:

class ChatsList extends Component {
 shorten(text) {
 if(!text.length) {
 return "";
 }
 if (text.length > 12) {
 return text.substring(0, text.length - 9) + '...';
 }
 return text;
 }
}

We have to move all the standard functions we were already using for the chats list to this new class.

	The usernamesToString function changes a bit, and I have also added a new getAvatar function. When we first created the chats functionality, there was no authentication system. We are now going to rewrite this and use the information we have at our disposal to display the correct data. Copy these functions into our new class:

usernamesToString = (userList) => {
 const { user } = this.props;
 var usernamesString = '';
 for(var i = 0; i < userList.length; i++) {
 if(userList[i].username !== user.username) {
 usernamesString += userList[i].username;
 }
 if(i - 1 === userList.length) {
 usernamesString += ', ';
 }
 }
 return usernamesString;
}
getAvatar = (userList) => {
 const { user } = this.props;
 if(userList.length > 2) {
 return '/public/group.png';
 } else {
 if(userList[0].id !== user.id) {
 return userList[0].avatar;
 } else {
 return userList[1].avatar;
 }
 }
}

The usernamesToString function can access the user property that the ChatsList component receives from its parent through UserConsumer. It concatenates the usernames of all users except the logged-in user to display the names in the chats panel. The getAvatar function returns the correct image for a chat. It either shows the group image, if there are more than two people involved in a chat, or the avatar image of the second user if exactly two users are involved. This is possible because the getAvatar function can filter by the logged in user

	The render method returns the same markup we had in the Chats component. It's now way more readable as it's in a separate file. The code should look as follows:

render() {
 const { chats } = this.props;
 return (
 <div className="chats">
 {chats.map((chat, i) =>
 <div key={"chat" + chat.id} className="chat" onClick={() =>
 this.props.openChat(chat.id)}>
 <div className="header">

 <div>
 <h2>{this.shorten(this.usernamesToString(chat.users))
 }
 </h2>
 {chat.lastMessage &&
 this.shorten(chat.lastMessage.text)}
 </div>
 </div>
 </div>
)}
 </div>
)
}

	To export your ChatsList class correctly, use the withApollo HoC:

export default withApollo(ChatsList)

	Here's the crucial part. At the moment, the ChatsList component is mounted, so we subscribe to the messageAdded channel. Only then is the messageAdded subscription used to receive new data or, to be exact, new chat messages. To start subscribing to the GraphQL subscription, we have to add a new method to the componentDidMount method:

componentDidMount() {
 this.subscribeToNewMessages();
}

In the preceding code, we execute a new subscribeToNewMessages method inside the componentDidMount function of our React component.

It's common to start async operations, such as fetching or listening for a subscription, in the componentDidMount method of a React component. You can also use the componentWillMount function, but this isn't recommended, as the componentWillMount method is executed twice if you support SSR. Furthermore, the componentWillMount function first returns after an initial render. There's no way to let the rendering wait until the data has been fetched.

With the componentDidMount method, it's clear that the component has rendered at least once without data. The method only executes on the client-side code as the SSR implementation doesn't throw this event because there's no DOM.

We have to add the corresponding subscribeToNewMessages method as well. We're going to explain every bit of this function in a moment. Insert the following code into the ChatsList class:

subscribeToNewMessages = () => {
 const self = this;
 const { user } = this.props;
 this.props.subscribeToMore({
 document: MESSAGES_SUBSCRIPTION,
 updateQuery: (prev, { subscriptionData }) => {
 if (!subscriptionData.data || !prev.chats.length) return prev;

 var index = -1;
 for(var i = 0; i < prev.chats.length; i++) {
 if(prev.chats[i].id ==
 subscriptionData.data.messageAdded.chat.id) {
 index = i;
 break;
 }
 }

 if (index === -1) return prev;

 const newValue = Object.assign({},prev.chats[i], {
 lastMessage: {
 text: subscriptionData.data.messageAdded.text,
 __typename: subscriptionData.data.messageAdded.__typename
 }
 });
 var newList = {chats:[...prev.chats]};
 newList.chats[i] = newValue;
 return newList;
 }
 });
}

The preceding subscribeToNewMessages method looks very complex, but once we understand its purpose, it's straightforward. We primarily rely on the subscribeToMore function here, which was passed from ChatsQuery to ChatsList. The purpose of this function is to start subscribing to our addedMessage channel, and to accept the new data from the subscription and merge it with the current state and cache so that it's reflected directly to the user.

The document parameter accepts the parsed GraphQL subscription.

The second parameter is called updateQuery. It allows us to insert a function that implements the logic to update the Apollo Client cache with the new data. This function needs to accept a new parameter, which is the previous data from where the subscribeToMore function has been passed. In our case, this object contains an array of chats that already exist in the client's cache.

The second parameter holds the new message inside the subscriptionData index. The subscriptionData object has a data property that has a further messageAdded field under which the real message that's been created is saved.

We'll quickly go through the logic of the updateQuery function so that you can understand how we merge data from a subscription to the application state.

If subscriptionData.data is empty or there are no previous chats in the prev object, there's nothing to update. In this case, we return the previous data because a message was sent in a chat that the client doesn't have in their cache. Otherwise, we loop through all the previous chats of the prev object and find the index of the chat for which the subscription has returned a new message by comparing the chat ids. The found chat's index inside the prev.chats array is saved in the index variable. If the chat cannot be found, we can check this with the index variable and return the previous data. If we find the chat, we need to update it with the new message. To do this, we compose the chat from the previous data and set lastMessage to the new message's text. We do this by using the Object.assign function, where the chat and the new message are merged. We save the result in the newValue variable. It's important that we also set the returned __typename property, because otherwise the Apollo Client throws an error.

Now that we have an object that contains the updated chat in the newValue variable, we write it to the client's cache. To write the updated chat to the cache, we return an array of all chats at the end of the updateQuery function. Because the prev variable is read-only, we can't save the updated chat inside it. We have to create a new array to write it to the cache. We set the newValue chat object to the newList array at the index where we found the original chat. At the end, we return the newList variable. We update the cache that's given to us inside the prev object with the new array. Importantly, the new cache has to have the same fields as before. The schema of the return value of the updateQuery function must match the initial ChatsQuery schema.

You can now test the subscription directly in your browser by starting the application with npm run server. If you send a new chat message, it's shown directly in the chat panel on the right-hand side.

We have, however, got one major problem. If you test this with a second user, you'll notice that the lastMessage field is updated for both users. That is correct, but the new message isn't visible inside the chat window for the recipient. We've updated the client store for the ChatsQuery request, but we haven't added the message to the single ChatQuery that's executed when we open a chat window.

We're going to solve this problem by making use of the withApollo HoC. The ChatsList component has no access to the ChatQuery cache directly like with the ChatsQuery above. The withApollo HoC gives the exported component a client property, which allows us to interact directly with the Apollo Client. We can use it to read and write to the whole Apollo Client cache and it isn't limited to only one GraphQL request. Before returning the updated chats array from the updateQuery function, we have to read the state of the ChatQuery and insert the new data if possible. Insert the following code right before the final return statement inside the updateQuery function:

try {
 const data = self.props.client.store.cache.readQuery({ query:
 GET_CHAT, variables: { chatId:
 subscriptionData.data.messageAdded.chat.id } });
 if(user.id !== subscriptionData.data.messageAdded.user.id) {
 data.chat.messages.push(subscriptionData.data.messageAdded);
 self.props.client.store.cache.writeQuery({ query: GET_CHAT,
 variables: { chatId: subscriptionData.data.messageAdded.chat.id },
 data });
 }
} catch(e) {}

In the preceding code, we use the client.store.cache.readQuery method to read the cache. This accepts the GET_CHAT query as one parameter and the chat id of the newly sent message to get a single chat in return. The GET_CHAT query is the same request we sent in the Chats.js file before, and which the ChatQuery component is sending when opening a chat window. We wrap the readQuery function in a try-catch block because it throws an unhandled error if nothing is found for the specified query and variables. This can happen if the user hasn't opened a chat window yet and so no data has been requested with the GET_CHAT query for this specific chat.

You can test these new changes by viewing the chat window and sending a message from another user account. The new message should appear almost directly for you without the need to refresh the browser.

In this section, we learned how to subscribe to events sent from a back end through Apollo Subscriptions. Currently, we use this feature to update the UI on the fly with the new data. Later in Notifications with Apollo subscriptions section, we'll see another scenario where subscriptions can be useful. Nevertheless, there's one thing left to do: we haven't authorized the user for the messageAdded subscription through a JWT, such as our GraphQL API, and still, the user received the new message without verifying its identity. We're going to change this in the next section.

 Authentication with Apollo Subscriptions

In Chapter 6, Authentication with Apollo and React, of this book, we implemented authentication through the localStorage of your browser. The back end generates a signed JWT that the client sends with every request inside the HTTP headers. In Chapter 9, Implementing Server-side Rendering, we extended this logic to support cookies to allow server-side rendering. Now that we've introduced WebSockets, we need to take care of them separately, as we did with the server-side rendering and our GraphQL API.

How is it possible for the user to receive new messages when they aren't authenticated on the back end for the WebSocket transport protocol?

The best way to figure this out is to have a look at your browser's developer tools. Let's assume that we have one browser window where we log in with user A. This user chats with another user, B. Both send messages to each other and receive the new updates directly in their chat window. Another user, C, shouldn't be able to receive any of the WebSocket updates. We should play through this scenario in reality.

If you use Chrome as your default browser, go to the Network tab. There, you can filter all network requests by type. Since the data is transported via a WebSocket, you can filter by the WS option. You should see one connection, which is the subscriptions endpoint of our back end.

Try this scenario with the Developer Tools open. You should see the same WebSocket frames for all browsers. It should look like the following screenshot:

In the left panel, you can see all WebSocket connections. In our case, this is only the subscriptions connection. If you click on the connection, you will find all the frames that are sent over this connection. The first frame in the preceding list is the initial connection frame. The second frame is the subscription request to the messageAdded channel, which is initiated by the client. Both frames are marked green because the client sends them.

The last two are marked in red as the server sent them. The first of the red-marked frames is the server's acknowledgement of the established connection. The last frame was sent by our back end to publish a new message to the client. While the frame might look alright at first glance, it represents a vital problem. The last frame was sent to all clients, not just those who are members of the specific chat in which the message was sent. Average users are not likely to notice it since our updateQuery function only updates the UI if the chat was found in the client store. Still, an experienced user or developer is able to spy on all users of our social network as it's readable in the Network tab.

We need to take a look at the back end code that we have written and compare the initialization of ApolloServer and SubscriptionServer. We have a context function for ApolloServer that extracts the user from the JWT. It can then be used inside the resolver functions to filter the results by the currently logged in user. For SubscriptionServer, there's no such context function at the moment. We have to know the currently logged in user to filter the subscription messages for the correct users. We can use the standard WebSockets events, such as onConnect or onOperation, to implement the authorization of the user.

The onOperation function is executed for every WebSocket frame that is sent. The best approach is to implement the authorization in the onConnect event in the same way as the context function that's taken from ApolloServer so that the WebSocket connection is authenticated only once when it's established and not for every frame that's sent.

In index.js, from the subscriptions folder of the server, add the following code to the first parameter of the SubscriptionServer initialization. It accepts an onConnect parameter as a function, which is executed whenever a client tries to connect to the subscriptions endpoint. Add the code just before the schema parameter:

onConnect: async (params,socket) => {
 const authorization = params.authToken;
 if(typeof authorization !== typeof undefined) {
 var search = "Bearer";
 var regEx = new RegExp(search, "ig");
 const token = authorization.replace(regEx, '').trim();
 return jwt.verify(token, JWT_SECRET, function(err, result) {
 if(err) {
 throw new Error('Missing auth token!');
 } else {
 return utils.db.models.User.findById(result.id).then((user) =>
 {
 return Object.assign({}, socket.upgradeReq, { user });
 });
 }
 });
 } else {
 throw new Error('Missing auth token!');
 }
},

This code is very similar to the context function. We rely on the normal JWT authentication but via the connection parameters of the WebSocket. We implement the WebSocket authentication inside the onConnect event. In the original context function of ApolloServer, we extract the JWT from the HTTP headers of the request, but here we are using the params variable, which is passed in the first parameter.

Before the client finally connects to the WebSocket endpoint, an onConnect event is triggered where you can implement special logic for the initial connection. With the first request, we send the JWT because we have configured the Apollo Client to read the JWT to the authToken parameter of the connectionParams object when SubscriptionClient is initialized. That's why we can access the JWT-not from a request object, directly but from params.authToken in the preceding code. socket is also given to us inside the onConnect function; there, you can access the initial upgrade request inside the socket object. After extracting the JWT from the connection parameters, we can verify it and authenticate the user by that.

At the end of this onConnect function, we return the upgradeReq variable and the user, just like we do with a normal context function for the Apollo Server. Instead of returning the req object to the context if the user isn't logged in, we are now throwing an error. This is because we only implement subscriptions for entities that require you to be logged in, such as chats or posts. It lets the client try to reconnect until it's authenticated. You can change this behavior to match your needs and let the user connect to the WebSocket. Don't forget, however, that every open connection costs you performance and a user who isn't logged in doesn't need an open connection at least for the use case of Graphbook.

We have now identified the user that has connected to our back end with the preceding code, but we're still sending every frame to all users. This is a problem with the resolver functions because they don't use the context yet. Replace the messageAdded subscription with the following code in the resolvers.js file:

messageAdded: {
 subscribe: withFilter(() => pubsub.asyncIterator('messageAdded'),
 (payload, variables, context) => {
 if (payload.messageAdded.UserId !== context.user.id) {
 return Chat.findOne({
 where: {
 id: payload.messageAdded.ChatId
 },
 include: [{
 model: User,
 required: true,
 through: { where: { userId: context.user.id } },
 }],
 }).then((chat) => {
 if(chat !== null) {
 return true;
 }
 return false;
 })
 }
 return false;
 }),
}

Earlier in this chapter, we imported the withFilter function from the graphql-subscriptions package. It allows us to wrap AsyncIterator with a filter. The purpose of this filter is to conditionally send publications through connections to users who should see the new information. If one user shouldn't receive a publication, the return value of the condition for the withFilter function should be false. For all users who should receive a new message, the return value should be true.

withFilter accepts the AsyncIterator in its first parameter. The second parameter is the function that decides whether a user receives a subscription update. We extract the following properties from the function call:

	The payload parameter is the new message that has been sent in the addMessage mutation.

	The variables field holds all GraphQL parameters that could be sent with the messageAdded subscription, not with the mutation. For our scenario, we are not sending any variables with the subscription.

	The context variable holds all the information that we implemented in the onConnect hook. It includes the regular context object with the user as a separate property.

The filter function is executed for every user that has subscribed to the messageAdded channel. First, we check whether the user for which the function is executed is the author of the new message by comparing the user ids. In this case, they don't need to get a subscription notification, because they already have the data.

If this isn't the case, we query the database for the chat where the new message was added. To find out whether a user needs to receive the new message, we select only chats where the logged in user's Id, and the chat Id, is included. If a chat is found in the database, the user should see the new message. Otherwise, they aren't allowed to get the new message, and we return "false".

Remember that the withFilter function is run for each connection. If there are thousands of users, we would have to run the database query very frequently. It's better to keep such filter functions as small and efficient as possible. For example, we could query the chat once to get the attached users and loop through them manually for all the connections. This solution would save us expensive database operations.

This is all you need to know about authentication with subscriptions. We now have a working setup, which includes server-side rendering with cookies and real-time subscriptions with JWT authentication. The server-side rendering doesn't implement subscriptions because it doesn't make sense to offer real-time updates for the initial rendering of our application. Next, you will see another scenario where Apollo Subscriptions can be useful.

 Notifications with Apollo Subscriptions

In this section, I'll quickly guide you through the second use case for subscriptions. Showing notifications to a user are traditional events that a user should see as you know from Facebook. Instead of relying on the subscribeToMore function, we use the Subscription component that's provided by Apollo. This component works like the Query and Mutation components, but for subscriptions.

Follow these steps to get your first Subscription component running:

	Create a subscriptions folder inside the client's components folder. You can save all subscriptions that you implement using Apollo's Subscription component inside this folder.

	Insert a messageAdded.js file into the folder and paste in the following code:

import React, { Component } from 'react';
import { Subscription } from 'react-apollo';
import gql from 'graphql-tag';
const MESSAGES_SUBSCRIPTION = gql`
 subscription onMessageAdded {
 messageAdded {
 id
 text
 chat {
 id
 }
 user {
 id
 __typename
 }
 __typename
 }
 }
`;
export default class MessageAddedSubscription extends Component {
 render() {
 const { children } = this.props;
 return(
 <Subscription subscription={MESSAGES_SUBSCRIPTION}>
 {({ data }) => {
 return React.Children.map(children,
 function(child){
 return React.cloneElement(child, { data });
 })
 }}
 </Subscription>
)
 }
}

The general workflow for the Subscription component is the same as for the Mutation and Query components. First, we parse the subscription with the graphql-tag package. The render method of the MessageAddedSubscription class returns the Subscription component. The only difference is that we don't use a loading or error state. You could get access to both, but as we're using WebSockets, the loading state only becomes true when a new message arrives, which isn't useful. Furthermore, the error property could be used to display alerts to the user, but this isn't required. In the render method, we pass the data field to all underlying children. By default, it's an empty object. It's filled with data when a new message arrives through the subscription.

	Because we want to show notifications to the user when a new message is received, we install a package that takes care of showing pop-up notifications. Install it using npm:

npm install --save react-toastify

	To set up react-toastify, add a ToastContainer component to a global point of the application where all notifications are rendered. This container isn't only used for the notifications for new messages but for all notifications, so choose wisely. I decided to attach ToastContainer to the Chats.js file. Import the dependency at the top of it:

import { ToastContainer } from 'react-toastify';

Inside the render method, the first thing to render should be ToastContainer. Add it like in the following code:

<div className="wrapper">
 <ToastContainer/>

	To handle the subscription data, we need a child component that gets the data as a property. To do this, create a notification.js file inside the chats component folder. The file should look as follows:

import React, { Component } from 'react';
import { toast } from 'react-toastify';

export default class ChatNotification extends Component {
 componentWillReceiveProps(props) {
 if(typeof props.data !== typeof undefined && typeof
 props.data.messageAdded !== typeof undefined && props.data
 && props.data.messageAdded)
 toast(props.data.messageAdded.text, { position:
 toast.POSITION.TOP_LEFT });
 }
 render() {
 return (null);
 }
}

We only import React and the react-toastify package. The render method of the ChatNotification class returns null because we don't render anything directly through this component. Instead, we listen for the componentWillReceiveProps method for new data from the subscription. If the properties passed to this class were a filled with data property, we can use the react-toastify package.

To display a new notification, we execute the toast function from the react-toastify package with the text to show as the first parameter. The second parameter takes optional settings to indicate how the notification should display. I've given the top-left corner as the position for all notifications because the right part of the screen is already pretty full.

	Import ChatNotification and the MessageAddedSubscription component inside the Chats.js file:

import MessageAddedSubscription from './components/subscriptions
/messageAdded';
import ChatNotification from './components/chat/notification';

	Include both components in the render method of the Chats class from the Chats.js file. The final method looks like this:

return (
 <div className="wrapper">
 <ToastContainer/>
 <MessageAddedSubscription><ChatNotification/>
 </MessageAddedSubscription>
 <ChatsQuery><ChatsList openChat={this.openChat} user=
 {user}/></ChatsQuery>
 <div className="openChats">
 {openChats.map((chatId, i) =>
 <ChatQuery key={"chatWindow" + chatId} variables={{
 chatId }}>
 <ChatWindow closeChat={this.closeChat} user=
 {user}/>
 </ChatQuery>
)}
 </div>
 </div>
)

I've wrapped the ChatNotification component inside the MessageAddedSubscription component. The subscription component triggers a new notification every time it receives new data over the WebSocket and updates the properties of the ChatNotification component.

	Add a small CSS rule and import the CSS rules of the react-toastify package. Import the CSS in the App.js file:

import 'react-toastify/dist/ReactToastify.css';

Then, add these few lines to the custom style.css file:

.Toastify__toast-container--top-left {
 top: 4em !important;
}

You can see an example of a notification in the following screenshot:

The entire subscriptions topic is complex, but we managed to implement it for two use cases and thus provided the user with significant improvements to our application.

 Summary

This chapter aimed to offer the user a real-time user interface that allows them to chat comfortably with other users. We also looked at how to make this UI extendable. You learned how to set up subscriptions with any Apollo or GraphQL back end for all entities. We also implemented WebSocket-specific authentication to filter publications so that they only arrive to the correct user.

In the next chapter, you'll learn how to verify and test the correct functionality of your application by implementing automated testing for your code.

 Writing Tests

So far, we've written a lot of code and come across a variety of problems. We haven't implemented automated testing for our software. However, it's a common approach to make sure everything works after making changes to your application. Automated testing drastically improves the quality of your software and reduces errors in production.

This chapter covers the following topics:

	How to use Mocha for testing

	Testing a GraphQL API with Mocha and Chai

	Testing React with Enzyme and JSDOM

 Testing with Mocha

The problem we're facing is that we have to ensure the quality of our software without increasing the amount of manual testing. It isn't possible to recheck every feature of our software when new updates are released. To solve this problem, we're going to use Mocha, which is a JavaScript testing framework. It gives you the opportunity to run a series of asynchronous tests. If all the tests pass successfully, your application is ready for the next release.

Many developers follow the test-driven development (TDD) approach. Often, when you implement tests for the first time, they fail because the business logic that's being tested is missing. After implementing all the tests, we have to write the actual application code to meet the requirements of the tests. In this book, we haven't followed this approach, but it isn't a problem as we can implement tests afterward too. Typically, I tend to write tests in parallel with the application code.

To get started, we have to install all the dependencies to test our application with npm:

npm install --save-dev mocha chai @babel/polyfill request

The mocha package includes almost everything to run tests. Along with Mocha, we also install chai, which is an assertion library. It offers excellent ways to chain tests with many variables and types for use inside a Mocha test. We also install the @babel/polyfill package, which allows our test to support ES2015+ syntax. This package is crucial because we use this syntax everywhere throughout our React code. Finally, we install the request package as a library to send all the queries or mutations within our test. I recommend you set the NODE_ENV environment variable to production to test every functionality, as in a live environment. Be sure that you set the environment variable correctly so that all production features are used.

 Our first Mocha test

First, let's add a new command to the scripts field of our package.json file:

"test": "mocha --exit test/ --require babel-hook --require @babel/polyfill --recursive"

If you now execute npm run test, we'll run the mocha package in the test folder, which we'll create in a second. The preceding --require option loads the specified file or package. We'll also load a babel-hook.js file, which we'll create as well. The --recursive parameter tells Mocha to run through the complete file tree of the test folder, not just the first layer. This behavior is useful because it allows us to structure our tests in multiple files and folders.

Let's begin with the babel-hook.js file by adding it to the root of our project, next to the package.json file. Insert the following code:

require("@babel/register")({
 "plugins": [
 "require-context-hook"
],
 "presets": ["@babel/env","@babel/react"]
});

The purpose of this file is to give us an alternative Babel configuration file to our standard .babelrc file. If you compare both files, you should see that we use the require-context-hook plugin. We already use this plugin when starting the back end with npm run server. It allows us to import our Sequelize models using a regular expression.

If we start our test with npm run test, we require this file at the beginning. Inside the babel-hook.js file, we load @babel/register, which compiles all the files that are imported afterward in our test according to the preceding configuration.

Notice that when running a production build or environment, the production database is also used. All changes are made to this database. Verify that you have configured the database credentials correctly in the server's configuration folder. You have only to set the host, username, password, and database environment variables correctly.

This gives us the option to start our back end server from within our test file and render our application on the server. The preparation for our test is now finished. Create a folder named test inside the root of our project to hold all runnable tests. Mocha will scan all files or folders, and all tests will be executed. To get a basic test running, create app.test.js. This is the main file, which makes sure that our back end is running and in which we can subsequently define further tests. The first version of our test looks as follows:

const assert = require('assert');
const request = require('request');
const expect = require('chai').expect;
const should = require('chai').should();

describe('Graphbook application test', function() {

 it('renders and serves the index page', function(done) {
 request('http://localhost:8000', function(err, res, body) {
 should.not.exist(err);
 should.exist(res);
 expect(res.statusCode).to.be.equal(200);
 assert.ok(body.indexOf('<html') !== -1);
 done(err);
 });
 });

});

Let's take a closer look at what's happening here:

	We import the Node.js assert function. It gives us the ability to verify the value or the type of a variable.

	We import the request package, which we use to send queries against our back end.

	We import two Chai functions, expect and should, from the chai package. Neither of these is included in Mocha, but they both improve the test's functionality significantly.

	The beginning of the test starts with the describe function. Because Mocha executes the app.test.js file, we're in the correct scope and can use all Mocha functions. The describe function is used to structure your test and its output.

	We use the it function, which initiates the first test.

The it function can be understood as a feature of our application that we want to test inside the callback function. As the first parameter, you should enter a sentence, such as 'it does this and that', that's easily readable. The function itself waits for the complete execution of the callback function in the second parameter. The result of the callback will either be that all assertions were successful, or that, for some reason, a test failed or the callback didn't complete in a reasonable amount of time.

The describe function is the header of our test's output. Then, we have a new row for each it function we execute. Each row represents a single test step. The it function passes a done function to the callback. The done function has to be executed once all assertions are finished and there's nothing left to do. If it isn't executed in a certain amount of time, the current test is marked as failed. In the preceding code, the first thing we did was send an HTTP GET request to http://localhost:8000, which is accepted by our back end server. The expected answer will be in the form of server-side rendered HTML created through React.

To prove that the response holds this information, we make some assertions in our preceding test:

	We use the should function from Chai. The great thing is that it's chainable and represents a sentence that directly explains the meaning of what we're doing. The should.not.exist function chain makes sure that the given value is empty. The result is true if the value is undefined or null, for example. The consequence is that when the err variable is filled, the assertion fails and so our test, 'renders and serves the index page', fails too.

	The same goes for the should.exist line. It makes sure that the res variable, which is the response given by the back end, is filled. Otherwise, there's a problem with the back end.

	The expect function can also represent a sentence, like both functions before. We expect res.statusCode to have a value of 200. This assertion can be written as expect(res.statusCode).to.be.equal(200). We can be sure that everything has gone well if the HTTP status is 200.

	If nothing has failed so far, we check whether the returned body, which is the third callback parameter of the request function, is valid. For our test scenario, we only need to check whether it contains an html tag.

	We execute the done function. We pass the err object as a parameter. The result of this function is much like the should.not.exist function. If you pass a filled error object to the done function, the test fails. The tests become more readable when using the Chai syntax.

If you execute npm run test now, you'll receive the following error:

Our first should.not.exist assertion failed and threw an error. This is because we didn't start the back end when we ran the test. Start the back end in a second terminal with the correct environment variables using npm run server and rerun the test. Now, the test is successful:

The output is good, but the process isn't very intuitive. The current workflow is hard to implement when running the tests automatically while deploying your application or pushing new commits to your version-control system. We'll change this behavior next.

 Starting the back end with Mocha

When we want to run a test, the server should start automatically. There are two options to implement this behavior:

	We add the npm run server command to the test script inside our package.json file.

	We import all the necessary files to launch the server within our app.test.js. This allows us to run further assertions or commands against the back end.

The best option is to start the server within our test and not rely on a second command, because we can run further tests on the back end. We to import a further package to allow the server to start within our test:

require('babel-plugin-require-context-hook/register')();

We use and execute this package because we load the Sequelize models using the require.context function. By loading the package, the require.context function is executable for the server-side code. Before we started the server within the test, the plugin hadn't been used, although it was loaded in the babel-hooks.js file.

Now we can load the server directly in the test. Add the following lines at the top of the describe function, just before the test we've just written:

var app;
this.timeout(50000);

before(function(done) {
 app = require('../src/server').default;
 app.on("listening", function() {
 done();
 });
});

The idea is to load the server's index.js file inside of our test, which starts the back end automatically. To do this, we define an empty variable called app. Then, we use this.timeout to set the timeout for all tests inside Mocha to 50000, because starting our server, including Apollo Server, takes some time. Otherwise, the test will probably fail because the start time is too long for the standard Mocha timeout.

We must make sure that the server has been completely started before any of our tests are executed. This logic can be achieved with Mocha's before function. Using this function, you can set up and configure things such as starting a back end in our scenario. To continue and process all the tests, we need to execute the done function to complete the callback of the before function. To be sure that the server has started, we do not just run the done function after loading the index.js file. We bind the listening event of the server using the app.on function. If the server emits the listening event, we can securely run the done function, and all tests can send requests to the server. We could also require the server directly into the app variable at the top. The problem with this order, however, is that the server may start listening before we can bind the listening event. The way we are doing it now makes sure the server hasn't yet started.

The test, however, still isn't working. You'll see an error message that says 'TypeError: app.on is not a function'. Take a closer look at the server's index.js file. At the end of the file, we aren't exporting the server object because we only used it to start the back end. This means that the app variable in our test is empty and we can't run the app.on function. The solution is to export the server object at the end of the server's index.js file:

export default server;

You can now execute the test again. Everything should look fine, and all tests should pass.

There is, however, one last problem. If you compare the behavior from the test before importing the server directly in our test or starting it in a second terminal, you might notice that the test isn't finished, or at least the process isn't stopped. Previously, all steps were executed, we returned to the normal shell, and we could execute the next command. The reason for this is that the server is still running in our app.test.js file. Therefore, we must stop the back end after all tests have been executed. Insert the following code after the before function:

after(function(done) {
 app.close(done);
});

The after function is run when all tests are finished. Our app object offers the close function, which terminates the server. As a callback, we hand over the done function, which is executed once the server has stopped. It means that our test has also finished.

 Verifying the correct routing

We now want to check whether all the features of our application are working as expected. One major feature of our application is that React Router redirects the user in two cases:

	The user visits a route that cannot be matched.

	The user visits a route that can be matched, but they aren't allowed to view the page.

In both cases, the user should be redirected to the login form. In the first case, we can follow the same approach as for our first test. We send a request to a path that isn't inside our router. Add the code to the bottom of the describe function:

describe('404', function() {
 it('redirects the user when not matching path is found', function(done) {
 request({
 url: 'http://localhost:8000/path/to/404',
 }, function(err, res, body) {
 should.not.exist(err);
 should.exist(res);
 expect(res.statusCode).to.be.equal(200);
 assert.ok(res.req.path === '/');
 assert.ok(body.indexOf('<html') !== -1);
 assert.ok(body.indexOf('class="authModal"') !== -1);
 done(err);
 });
 });
});

Let's quickly go through all steps of the preceding test:

	We add a new describe function to structure our test's output.

	We send a request inside another it function to an unmatched path.

	The checks are the same as the ones we used when starting the server.

	We verify that the response's path is the / root. That happens when the redirect is executed. Therefore, we use the res.req.path === '/' condition.

	We check whether the returned body includes an HTML tag with the authModal class. This should happen when the user isn't logged in, and the login or register form is rendered.

If the assertions are successful, we know that the React Router works correctly in the first scenario. The second scenario relates to the private routes that can only be accessed by authenticated users. We can copy the preceding check and replace the request. The assertions we are doing stay the same, but the URL of the request is different. Add the following test under the previous one:

describe('authentication', function() {
 it('redirects the user when not logged in', function(done) {
 request({
 url: 'http://localhost:8000/app',
 }, function(err, res, body) {
 should.not.exist(err);
 should.exist(res);
 expect(res.statusCode).to.be.equal(200);
 assert.ok(res.req.path === '/');
 assert.ok(body.indexOf('<html') !== -1);
 assert.ok(body.indexOf('class="authModal"') !== -1);
 done(err);
 });
 });
});

If an unauthenticated user requests the /app route, they're redirected to the / root path. The assertions verify whether the login form is displayed as before. To differentiate the tests, we add a new describe function so that it has a better structure.

Next, we want to test the GraphQL API that we built, not only the SSR functionality.

 Testing GraphQL with Mocha

We must verify that all the API functions we're offering work correctly. I'm going to show you how to do this with two examples:

	The user needs to sign up or log in. This is a critical feature where we should verify that the API works correctly.

	The user queries or mutates data via the GraphQL API. For our test case, we will request all chats the logged-in user is related to.

Those two examples should explain all the essential techniques to test every part of your API. You can add more functions that you want to test at any point.

 Testing the authentication

We extend the authentication tests of our test with the signup functionality. We're going to send a simple GraphQL request to our back end, including all the required data to sign up a new user. We've already sent requests, so there's nothing new here. In comparison to all the requests before, however, we have to send a POST request, not a GET request. Also, the endpoint for the signup is the /graphql path, where our Apollo Server listens for incoming mutations or queries. Normally, when a user signs up for Graphbook, the authentication token is returned directly, and the user is logged in. We must preserve this token to make future GraphQL requests. We don't use Apollo Client for our test as we don't need to test the GraphQL API.

Create a global variable next to the app variable, where we can store the JWT returned after signup:

var authToken;

Inside the test, we can set the returned JWT. Add the following code to the authentication function:

it('allows the user to sign up', function(done) {
 const json = {
 operationName: null,
 query: "mutation signup($username: String!, $email : String!,
 $password : String!) { signup(username: $username, email: $email,
 password : $password) { token }}",
 variables: {
 "email": "mocha@test.com",
 "username": "mochatest",
 "password": "123456789"
 }
 };

 request.post({
 url: 'http://localhost:8000/graphql',
 json: json,
 }, function(err, res, body) {
 should.not.exist(err);
 should.exist(res);
 expect(res.statusCode).to.be.equal(200);
 body.should.be.an('object');
 body.should.have.property('data');
 authToken = body.data.signup.token;
 done(err);
 });
});

We begin by creating a json variable. This object is sent as a JSON body to our GraphQL API. The content of it should be familiar to you. It's nearly the same format we used when testing the GraphQL API in Postman.

The JSON we send represents a manual way of sending GraphQL requests. There are libraries that you can easily use to save this and directly send the query without wrapping it inside an object, such as graphql-request: https://github.com/prisma/graphql-request.

The json object includes fake signup variables to create a user with the mochatest username. We'll send an HTTP Post with the request.post function. To use the json variable, we pass it into the json field. The request.post function automatically adds the body as a JSON string and the correct Content-Type header for you. When the response arrives, we run the standard checks, such as checking for an error or checking an HTTP status code. We also check the format of the returned body, because the response's body won't return HTML, but will return JSON instead. We make sure that it's an object with the should.be.an('object') function. The should assertion can directly be used and chained to the body variable. If body is an object, we check whether there's a data property inside. That's enough security to read the token from the body.data.signup.token property.

The user is now created in our database. We can use this token for further requests. Be aware that running this test a second time on your local machine is likely to result in a failure because the user already exists. In this case, you can delete it manually from your database. This problem won't occur when running this test while using Continuous Integration. We'll focus on this topic in the last chapter. Next, we'll make an authenticated query to our Apollo Server and test the result of it.

 Testing authenticated requests

We set the authToken variable after the signup request. You could also do this with a login request if a user already exists while testing. Only the query and the assertions we are using are going to change. Also insert the following code into the before authentication function:

it('allows the user to query all chats', function(done) {
 const json = {
 operationName: null,
 query: "query {chats {id users {id avatar username}}}",
 variables: {}
 };

 request.post({
 url: 'http://localhost:8000/graphql',
 headers: {
 'Authorization': authToken
 },
 json: json,
 }, function(err, res, body) {
 should.not.exist(err);
 should.exist(res);
 expect(res.statusCode).to.be.equal(200);
 body.should.be.an('object');
 body.should.have.property('data');
 body.data.should.have.property('chats').with.lengthOf(0);
 done(err);
 });
});

As you can see in the preceding code, the json object doesn't include any variables because we only query the chats of the logged-in user. We changed the query string accordingly. Compared to the login or signup request, the chat query requires the user to be authenticated. The authToken we saved is sent inside the Authorization header. We now verify again whether the request was successful and check for a data property in the body. Notice that, before running the done function, we verify that the data object has a field called chats. We also check the length of the chats field, which proves that it's an array. The length can be statically set to 0 because the user who's sending the query just signed up and doesn't have any chats yet. The output from Mocha looks as follows:

This is all you need to know to test all the features of your API.

 Testing React with Enzyme

So far, we've managed to test our server and all GraphQL API functions. Currently, however, we're still missing the tests for our front end code. While we render the React code when requesting any server route, such as the /app path, we only have access to the final result and not to each component. We should change this to execute the functions of certain components that aren't testable through the back end. First, install some dependencies before using npm:

npm install --save-dev enzyme enzyme-adapter-react-16 ignore-styles jsdom isomorphic-fetch

The various packages are as follows:

	The enzyme and enzyme-adapter-react-16 packages provide React with specific features to render and interact with the React tree. This can either be through a real DOM or shallow rendering. We are going to use a real DOM in this chapter because it allows us to test all features, while shallow rendering is limited to just the first layer of components.

	The ignore-styles package strips out all import statements for CSS files. This is very helpful, since we don't need CSS for our tests.

	The jsdom package creates a DOM object for us, which is then used to render the React code into.

	The isomorphic-fetch package replaces the fetch function that all browsers provide by default. This isn't available in Node.js, so we need a polyfill.

We start by importing the new packages directly under the other require statements:

require('isomorphic-fetch');
import React from 'react';
import { configure, mount } from 'enzyme';
import Adapter from 'enzyme-adapter-react-16';
configure({ adapter: new Adapter() });
import register from 'ignore-styles';
register(['.css', '.sass', '.scss']);

To use Enzyme, we import React. Then, we create an adapter for Enzyme that supports React 16. We insert the adapter into Enzyme's configure statement. Before starting with the front end code, we import the ignore-styles package to ignore all CSS imports. I've also directly excluded SASS and SCSS files. The next step is to initialize our DOM object, where all the React code is rendered:

const { JSDOM } = require('jsdom');
const dom = new JSDOM('<!doctype html><html><body></body></html>', { url: 'http://graphbook.test' });
const { window } = dom;
global.window = window;
global.document = window.document;

We require the jsdom package and initialize it with a small HTML string. We don't take the template file that we're using for the server or client because we just want to render our application to any HTML, so how it looks isn't important. The second parameter is an options object. We specify a url field, which is the host URL, under which we render the React code. Otherwise, we might get an error when accessing localStorage. After initialization, we extract the window object and define two global variables that are required to mount a React component to our fake DOM. These two properties behave like the document and window objects in the browser, but instead of the browser they are global objects inside our Node.js server.

In general, it isn't a good idea to mix up the Node.js global object with the DOM of a browser and render a React application in it. Still, we're merely testing our application and not running it in production in this environment, so while it might not be recommended, it helps our test to be more readable. We'll begin the first front end test with our login form. The visitor to our page can either directly log in or switch to the signup form. Currently, we don't test this switch functionality in any way. This is a complex example, but you should be able to understand the techniques behind it quickly.

To render our complete React code, we're going to initialize an Apollo Client for our test. Import all the dependencies:

import { ApolloClient } from 'apollo-client';
import { InMemoryCache } from 'apollo-cache-inmemory';
import { ApolloLink } from 'apollo-link';
import { createUploadLink } from 'apollo-upload-client';
import App from '../src/server/ssr';

We also import the index.js component of the server-rendered React code. This component will receive our client, which we'll initialize shortly. Add a new describe function for all front end tests:

describe('frontend', function() {
 it('renders and switches to the login or register form',
 function(done) {
 const httpLink = createUploadLink({
 uri: 'http://localhost:8000/graphql',
 credentials: 'same-origin',
 });
 const client = new ApolloClient({
 link: ApolloLink.from([
 httpLink
]),
 cache: new InMemoryCache()
 });
 });
});

The preceding code creates a new Apollo Client. The client doesn't implement any logic, such as authentication or WebSockets, because we don't need this to test the switch from the login form to the signup form. It's merely a required property to render our application completely. If you want to test components that are only rendered when being authenticated, you can, of course, implement it easily. Enzyme requires us to pass a real React component, which will be rendered to the DOM. Add the following code directly beneath the client variable:

class Graphbook extends React.Component {
 render() {
 return(
 <App client={client} context={{}} loggedIn={false} location=
 {"/"}/>
)
 }
}

The preceding code is a small wrapper around the App variable that we imported from the server's ssr folder. The client property is filled with the new Apollo Client. Follow the given instructions to render and test your React front end code. The following code goes directly under the Graphbook class:

	We use the mount function of Enzyme to render the Graphbook class to the DOM:

const wrapper = mount(<Graphbook />);

	The wrapper variable provides many functions to access or interact with the DOM and the components inside it. We use it to prove that the first render displays the login form:

expect(wrapper.html()).to.contain('<a>Want to sign up? Click here');

The html function of the wrapper variable returns the complete HTML string that has been rendered by the React code. We check this string with the contain function of Chai. If the check is successful, we can continue.

	Typically, the user clicks on the Want to sign up? message and React rerenders the signup form. We need to handle this via the wrapper variable. Enzyme comes with that functionality innately:

wrapper.find('LoginRegisterForm').find('a').simulate('click');

The find function gives us access to the LoginRegisterForm component. Inside the markup of the component, we search for an a tag, of which there can only be one. If the find method returns multiple results, we can't trigger things such as a click, because the simulate function is fixed to only one possible target. After running both find functions, we execute Enzyme's simulate function. The only parameter needed is the event that we want to trigger. In our scenario, we trigger a click event on the a tag, which lets React handle all the rest.

	We check whether the form was changed correctly:

expect(wrapper.html()).to.contain('<a>Want to login? Click
 here');
done();

We use the html and contain functions to verify that everything was rendered correctly. The done method of Mocha is used to finish the test.

For a more detailed overview of the API and all the functions that Enzyme provides, have a look at the official documentation: https://airbnb.io/enzyme/docs/api/.

This was the easy part. How does this work when we want to verify whether the client can send queries or mutations with authentication? It's actually not that different. We already registered a new user and got a JWT in return. All we need to do is attach the JWT to our Apollo Client, and the Router needs to receive the correct loggedIn property. The final code for this test looks as follows:

it('renders the current user in the top bar', function(done) {
 const AuthLink = (operation, next) => {
 operation.setContext(context => ({
 ...context,
 headers: {
 ...context.headers,
 Authorization: authToken
 },
 }));
 return next(operation);
 };

 const httpLink = createUploadLink({
 uri: 'http://localhost:8000/graphql',
 credentials: 'same-origin',
 });

 const client = new ApolloClient({
 link: ApolloLink.from([
 AuthLink,
 httpLink
]),
 cache: new InMemoryCache()
 });

 class Graphbook extends React.Component {
 render() {
 return(
 <App client={client} context={{}} loggedIn={true} location=
 {"/app"}/>
)
 }
 }

 const wrapper = mount(<Graphbook />);
 setTimeout(function() {
 expect(wrapper.html()).to.contain('<div class="user">
 mochatest</div>');
 done();
 },2000);
});

Here, we are using the AuthLink that we used in the original front end code. We pass the authToken variable to every request that's made by the Apollo Client. In the Apollo.from method, we add it before httpLink. In the Graphbook class, we set loggedIn to true and the location to /app to render the newsfeed. Because the requests are asynchronous by default and the mount method doesn't wait for the Apollo Client to fetch all queries, we couldn't directly check the DOM for the correct content. Instead, we wrapped the assertions and the done function in a setTimeout function. A timeout of 2,000 milliseconds should be enough for all requests to finish and React to have rendered everything. If this isn't enough time, you can increase the number. When all assertions are successful, we can be sure that the currentUser query has been run and the top bar has been rendered to show the logged-in user. With these two examples, you should now be able to run any test you want with your application's front end code.

 Summary

In this chapter, we learned all the essential techniques to test your application automatically, including testing the server, the GraphQL API, and the user's front end. You can apply the Mocha and Chai patterns you learned to other projects to reach a high software quality at any time. Your personal testing time will be greatly reduced.

In the next chapter, we'll have a look at how to improve performance and error logging so we're always providing a good user experience.

 Optimizing GraphQL with Apollo Engine

In the last chapter, we introduced testing for our development process. We can now be sure that all of the features that are covered by our tests work as expected. There's still, however, the chance that we've overlooked some bugs or cases that could lead to an error. How is our GraphQL API performing, are there any errors, and how can we improve the GraphQL schema? We can answer these questions using Apollo Engine.

This chapter covers the following topics:

	Setting up Apollo Engine

	Schema analysis

	Performance analytics

	Error tracking

 Setting up Apollo Engine

Apollo Engine provides many great features, which we'll explore in this chapter. Before moving on, however, you need to sign up for an Apollo Engine account. Apollo Engine is a commercial product produced by MDG, the Meteor Development Group, the company behind Apollo.

At the time of writing, they offer three different plans, which you can find by going to https://www.apollographql.com/plans/. When signing up, you get a two-week trial of the Team plan, which is one of the paid plans. Afterward, you'll be downgraded to the free plan. You should compare all three plans to understand how they differ—they're all worth checking out.

To sign up, visit https://engine.apollographql.com/login. Currently, you can only sign up using a GitHub account. If you don't have one already, create a GitHub account at https://https://github.com/join.

The good thing is that you don't have to enter any payment information unless you subscribe to a paid plan. The trial phase doesn't ask you to enter credit card information or anything else.

After logging in, you will see a dashboard that looks as follows:

The next step is to add a service with the NEW SERVICE button in the top-right corner. The first thing you need to enter is a unique id for your service across all Apollo Engine services. This id will be auto generated through the organization you select, but can be customized. Secondly, you will be asked to publish your GraphQL schema to Apollo Engine. Publishing your GraphQL schema means that you upload your schema to Apollo Engine so that it can be processed. It won't get publicized to external users. You can do this using the command provided by Apollo Engine. Copy it directly from the website and execute it. For me, this command looked as follows:

npx apollo service:push --endpoint="http://localhost:8000/graphql" --key="YOUR_KEY"

The preceding endpoint must match your GraphQL route. The key comes from Apollo Engine itself, so you don't generate it on your own. Before running the preceding command, you have to start the server, otherwise the GraphQL schema isn't accessible. Once you've uploaded the schema, Apollo Engine will redirect you to the service you just set up.

Notice that the GraphQL introspection feature needs to be enabled. Introspection means that you can ask your GraphQL API which operations it supports.

Introspection is only enabled when you run your Apollo Server in a development environment, or if you explicitly enable introspection in production. I highly discourage this because it involves giving away information about queries and mutations that are accepted by your back end. However, if you want to enable it, you can do this by setting the introspection field when initializing Apollo Server. It can be added inside the index.js file of the graphql folder:

const server = new ApolloServer({
 schema: executableSchema,
 introspection: true,

Ensure that you remove the introspection field when deploying your application.

If you aren't able to run the GraphQL server, you also have the ability to specify a schema file. Once you publish the GraphQL schema, the setup process for your Apollo Engine service should be done. We'll explore the features that we can now use in the following sections of this chapter. Before doing this, however, we have to change one thing on the back end to get Apollo Engine working with our back end. We already used our API Key to upload our GraphQL schema to Apollo Engine. Everything, such as error tracking and performance analysis, relies on this key. We also have to insert it in our GraphQL server. If you entered a valid API key, all requests will be collected in Apollo Engine.

Open index.js in the server's graphql folder and add the following object to the ApolloServer initialization:

engine: {
 apiKey: ENGINE_KEY
}

The ENGINE_KEY variable should be extracted from the environment variables at the top of the file. We also need to extract JWT_SECRET with the following line:

const { JWT_SECRET, ENGINE_KEY } = process.env;

Verify that everything is working by running some GraphQL requests. You can view all past requests by clicking on the Clients tab in Apollo Engine. You should see that a number of requests happened, under the Activity in the last hour panel. If this isn't the case, there must be a problem with the Apollo Server configuration.

There are many advanced options you can configure with Apollo Engine. You can find the appropriate documentation at https://www.apollographql.com/docs/engine/.

The basic setup is finished now. Apollo Engine doesn't support subscriptions at the time of writing; it can only track normal HTTP operations. Let's now take a closer look at the features of Apollo Engine.

 Analyzing schemas with Apollo Engine

The Community plan of Apollo Engine offers schema registry and explorer tools. You can find them by clicking on the Explorer tab in the left-hand panel. If your setup has gone well, the page should look as follows:

Let's take a closer look at this screenshot:

	On the page, you see the last GraphQL schema that you have published. Each schema you publish has a unique version, as long as the schema includes changes.

	Beneath the version number, you can see your entire GraphQL schema. You can inspect all operations and types. All relations between types and operations are directly linked to each other.

	You can directly see the number of clients and various usage statistics next to each operation, type, and field.

	You can search through your GraphQL schema in the top bar and filter the usage statistics in the panel on the right.

You can also switch to the Deprecation tab at the top. This page gives you a list of fields that are deprecated. We won't use this page because we are using the latest field definitions, but it's vital if you're running an application for a longer time.

As well as Apollo Engine, there are numerous tools that can give you an overview of your GraphQL schema. I'm a big fan of GraphQL Voyager, which generates a mindmap-like graph, using which you can identify all operations, including the relations of GraphQL types. It requires you to run an introspection query, whose result is rendered. You can find more information at https://apis.guru/graphql-voyager/.

Having an overview of our schema is beneficial. In production, every new release of our application is likely to also bring changes to the GraphQL schema. With Apollo Engine, you can track those changes easily. This feature is called schema-change validation and is only included in the paid Team plan of Apollo Engine. It's worth the extra money because it allows you to track schema changes and also to compare how those fields are used. It allows us to draw conclusions about which clients and versions are being used at the moment.

I have created an example for you in the following screenshot:

Here, I published an initial version of our current GraphQL schema. Afterward, I added a demonstration type with one field, called example. On the right-hand side, you can see the schema difference between the initial and second releases of the GraphQL schema.

Viewing your schema inside Apollo Engine, including the history of all previous schemas, is very useful. In the next section, we'll cover how Apollo Engine enables you to get detailed metrics about the performance of your GraphQL API.

 Performance metrics with Apollo Engine

When your application is live and heavily used, you can't check the status of every feature yourself; it would lead to an impossible amount of work. Apollo Engine can tell you how your GraphQL API is performing by collecting statistics with each request that's received. You always have an overview of the general usage of your application, the number of requests it receives, the request latency, the time taken to process each operation, the type, and also each field that is returned. Apollo Server can provide these precise analytics, since each field is represented in a resolver function. The time elapsed to resolve each field is then collected and stored inside Apollo Engine.

At the top of the Metrics page, you have four tabs. The first tab will look as follows:

If your GraphQL API is running for more than a day, you'll receive an overview that looks like the one here. The left-hand graph shows you the request rate over the last day. The graph in the middle shows the service time, which sums up the processing time of all requests. The right-hand graph gives you the amount of errors, along with the queries that caused them.

Under the overview, you'll find details about the current day, including the requests per minute, the request latency over time, and the request latency distribution:

	Requests Per Minute (rpm) is useful when your API is used very often. It indicates which requests are sent more often than others.

	The latency over time is useful when the requests to your API take too long to process. You can use this information to look for a correlation between the number of requests and increasing latency.

	The request-latency distribution shows you the processing time and the amount of requests. You can compare the number of slow requests with the number of fast requests in this chart.

In the right-hand panel of Apollo Engine, under Metrics, you'll see all your GraphQL operations. If you select one of these, you can get even more detailed statistics.

Now, switch to the Traces tab at the top. The first chart on this page looks as follows:

The latency distribution chart shows all the different latencies for the currently-selected operation, including the number of sent requests with that latency. In the preceding example, I used the postsFeed query.

Each request latency has its own execution timetable. You can see it by clicking on any column in the preceding chart. The table should look like the following screenshot:

The execution timetable is a big foldable tree. It starts at the top with the root query, postsFeed, in this case. You can also see the overall time it took to process the operation. Each resolver function has got its own latency, which might include, for example, the time taken for each post and user to be queried from the database. All the times from within the tree are summed up and result in a total time of about 90 milliseconds.

It's obvious that you should always check all operations and their latencies to identify performance breakdowns. Your users should always have responsive access to your API. This can easily be monitored with Apollo Engine.

Next, we'll see how Apollo Engine implements error tracking.

 Error tracking with Apollo Engine

We've already looked at how to inspect single operations using Apollo Engine. Under the Clients tab, you will find a separate view that covers all client types and their requests:

In this tab, you can directly see the percentage of errors that happened during each operation. In the currentUser query, there were 37.14% errors out of the total currentUser requests.

If you take a closer look at the left-hand side of the image, you will see that it says Unidentified clients. Since version 2.2.3 of Apollo Server, client awareness is supported. It allows you to identify the client and track how consumers use your API. Apollo automatically extracts an extensions field inside each GraphQL operation, which can hold a name and version. Both fields—Name and Version—are then directly transferred to Apollo Engine. We can filter by these fields in Apollo Engine. We will have a look at how to implement this in our back end next.

In this example, we'll use HTTP header fields to track the client type. There will be two header fields: apollo-client-name and apollo-client-version. We'll use these to set custom values to filter requests later in the Clients page. Open the index.js file from the graphql folder. Add the following function to the engine property of the ApolloServer initialization:

engine: {
 apiKey: ENGINE_KEY,
 generateClientInfo: ({
 request
 }) => {
 const headers = request.http.headers;
 const clientName = headers.get('apollo-client-name');
 const clientVersion = headers.get('apollo-client-version');

 if(clientName && clientVersion) {
 return {
 clientName,
 clientVersion
 };
 } else {
 return {
 clientName: "Unknown Client",
 clientVersion: "Unversioned",
 };
 }
 },
},

The generateClientInfo function is executed with every request. We extract the two fields from the header. If they exist, we return an object with the clientName and clientVersion properties that have the values from the headers. Otherwise, we return a static Unkown Client text.

To get both of our clients – the front end and back end – set up, we have to add these fields. Perform the following steps:

	Open the index.js file of the client's apollo folder file.

	Add a new InfoLink to the file to set the two new header fields:

const InfoLink = (operation, next) => {
 operation.setContext(context => ({
 ...context,
 headers: {
 ...context.headers,
 'apollo-client-name': 'Apollo Frontend Client',
 'apollo-client-version': '1'
 },
 }));

 return next(operation);
};

Like AuthLink, this link will add the two new header fields next to the authorization header. It sets the version header to '1' and the name of the client to 'Apollo Frontend Client'. We will see both in Apollo Engine soon.

	Add InfoLink in front of AuthLink in the ApolloLink.from function.

	On the back end, we need to edit the apollo.js file in the ssr folder:

const InfoLink = (operation, next) => {
 operation.setContext(context => ({
 ...context,
 headers: {
 ...context.headers,
 'apollo-client-name': 'Apollo Backend Client',
 'apollo-client-version': '1'
 },
 }));

return next(operation);
};

	The link is almost the same as the one for the front end, except that we set another apollo-client-name header. Add it just before AuthLink in the ApolloLink.from function.

The client name differs between the front end and back end code so you can compare both clients inside Apollo Engine. If you execute some requests from the back end and front end, you can see the result of these changes directly in Apollo Engine. Here, you can see an example of how that result should look:

At the top of the screenshot, we see the number of requests the back end has made. In the middle, all the clients that we have no further information on are listed, while at the bottom, we can see all requests that have been made by the client-side code. Unknown clients might be external applications that are accessing your API.

When releasing a new version of your application, you can increase the version number of the client. The version number represents another comparable field.

We now know which clients have accessed our API from the information provided by Apollo Engine. Let's take a look at what Apollo Engine can tell us about errors.

When you visit the Error tab, you will be presented with a screen that looks like the following screenshot:

The first chart shows the number of errors over a timeline. Under the graph, you can see each error with a timestamp and the stack trace. You can follow the link to see the trace in detail, with the location of the error. If you paid for the Team plan, you can also set alerts when the number of errors increases or the latency time goes up. You can find these alerts under the Integrations tab.

Next, we'll see how to improve the performance of our GraphQL API.

 Caching with Apollo Server and the Client

Hopefully, when deploying your first application, you'll soon get a growing user base. You're required to improve the performance and efficiency of your application. One way this can be done is through standard improvements, such as code refactoring. Another crucial thing to do is caching. Not just files such as our CSS and JavaScript files should be cached, but also the requests that we send.

Apollo provides Automatic Persisted Queries (APQ), which is a technique that significantly reduces bandwidth usage and carries out caching through unique IDs per request. The workflow of this technique is as follows:

	The client sends a hash instead of the full query string.

	Apollo Server tries to find this hash inside its cache.

	If the server finds the corresponding query string to the hash, it'll execute it and respond with its result.

	If the server doesn't find the hash inside its cache, it'll ask the client to send the hash along with the actual query string. The back end will then save this hash with the query string for all future requests and respond to the client's request.

There are two server-side changes that we have to do. One is in the initialization of Apollo Server. Extend the graphql index.js by adding the following two parameters to the ApolloServer options:

cacheControl: {
 defaultMaxAge: 5,
 stripFormattedExtensions: false,
 calculateCacheControlHeaders: true,
},

The cacheControl object sets cacheControl properties for all our requests. The standard time inserted in this case is 5 seconds. Using cache control, you can also store public GraphQL requests inside a CDN to improve performance.

Setting up a CDN for your application is a vast topic that wouldn't be possible to cover in just one chapter. It requires a significant amount of work. If you want to use Apollo together with a CDN, read up on this in the official documentation: https://www.apollographql.com/docs/apollo-server/v2/whats-new.html#CDN-integration.

The second change is to enable cache control in the GraphQL schema. Just copy the following code into the schema.js file:

enum CacheControlScope {
 PUBLIC
 PRIVATE
}

directive @cacheControl (
 maxAge: Int
 scope: CacheControlScope
) on FIELD_DEFINITION | OBJECT | INTERFACE

We have to add the preceding lines of code because there seems to be a problem with the makeExecutableSchema function, which removes the @cacheControl directive. By adding it in our schema, we add our custom directive, which we can use.

If you now execute any query, the response will include an extensions object that looks like the following example:

In this case, the maxAge field has been applied to each layer of our GraphQL request. As you can see, the users in the third layer and the avatar images all have different maximum ages when compared to the posts. You can define the maxAge per type and field specifically.

If you open your schema.js file, you can change your User type to reflect the preceding screenshot, as follows:

type User @cacheControl(maxAge: 120) {
 id: Int
 avatar: String @cacheControl(maxAge: 240)
 username: String
 email: String
}

The @cacheControl directive takes care of all of this internally in Apollo Server.

To persist our queries, we have to change some aspects of our SSR code. Before we do this, however, we need to install a package using npm:

npm install --save apollo-link-persisted-queries

This package provides a special Apollo Client link to use persisted queries. Import it at the top of both the apollo.js file in the ssr folder and the index.js in the apollo folder of the client:

import { createPersistedQueryLink } from 'apollo-link-persisted-queries';

We'll now create a new link with the createPersistedQueryLink function and then connect it with our existing HttpLink, which is initialized by the createUploadLink function. The following snippet shows how this can be implemented for the client-side code:

const httpLink = createPersistedQueryLink().concat(createUploadLink({
 uri: location.protocol + '//' + location.hostname + port +
 '/graphql',
 credentials: 'same-origin',
}));

We execute the createPersistedQueryLink function and then use the concat function for our UploadLink. The result is then normally inserted into the split function, which is used to decide between the WebSocket link and UploadLink.

The SSR-related code looks pretty similar, but the function is directly executed within the Apollo.from function instead. In the apollo.js file from the apollo folder, replace the initialization of HttpLink with the following code:

createPersistedQueryLink().concat(new HttpLink({
 uri: 'http://localhost:8000/graphql',
 credentials: 'same-origin',
 fetch
}));

As you know, we don't have UploadLink on the server side, so we're using the normal HttpLink instead. A GraphQL request will now include a hash instead of the regular query string on the first try. You can see an example in the following screenshot:

The variables are of course included, because they can change dynamically, but the query will always be the same. The server will try to find the hash or let the client resend the complete query string. This solution will save you and your users a significant amount of bandwidth and, as a result, speed up API requests.

 Summary

In this chapter, we learned how to sign up to and set up Apollo Engine. You should now understand all the features that Apollo Engine provides and how to make use of collected data. We also looked at how to set up cacheControl and Automatic Persisted Queries to improve the performance of your application.

In the next chapter, we'll finally deploy a production release of Graphbook, with the help of CircleCI and Heroku.

 Continuous Deployment with CircleCI and Heroku

In the last two chapters, we prepared our application through tests with Mocha and added detailed reporting of our GraphQL API by introducing Apollo Engine. We have built an application that is ready for the production environment.

We will now generate a production build that's ready for deployment. We've arrived at the point where we can set up our Heroku app and implement the ability to build and deploy Docker images through a continuous deployment workflow.

This chapter covers the following topics:

	Production-ready bundling

	What is Docker?

	What is continuous integration/deployment?

	Configuring Docker

	Setting up continuous deployment with CircleCI

	Deploying our application to Heroku

 Preparing the final production build

We have come a long way to get here. Now is the time where we should take a look at how we currently run our application, and how we should prepare it for a production environment.

Currently, we use our application in a development environment while working on it. It is not highly optimized for performance or low bandwidth usage. We include developer functionalities with the code so that we can debug it properly. We also only generate one bundle, which is distributed at all times. No matter which page the user visits, the code for our entire application is sent to the user or browser.

For use in a real production environment, we should solve these issues. When setting the NODE_ENV variable to production, we remove most of the unnecessary development mechanics. Still, it would be great to send as little code to the user as possible to save bandwidth. We will take a look at this problem in the next section.

 Code-splitting with React Loadable and webpack

The best option to increase the efficiency of our application is to introduce code-splitting to our React code. It allows us to send the user only the parts of our code that are needed to view or render the current page. Everything else is excluded, and will be dynamically fetched from the server while the user navigates through our application. The aim of this section is to generate a bundle that's specific to every page or component that we use.

We will begin by installing a few packages that we need to implement this technique. Install them using npm, as follows:

npm install --save-dev @babel/plugin-syntax-dynamic-import babel-plugin-dynamic-import-node webpack-node-externals @babel/plugin-transform-runtime
npm install --save react-loadable

Let's go through them one by one, in order to understand the purpose of each package:

	The @babel/plugin-syntax-dynamic-import package allows you to transpile dynamic import syntax using Babel.

	The babel-plugin-dynamic-import-node package implements the same functionality as the previous package, but is specifically targeted at Node.js.

	The webpack-node-externals package gives you the option to exclude specific modules while bundling your application with webpack. It reduces the final bundle size.

	The @babel/plugin-transform-runtime package is a small plugin that enables us to reuse Babel's helper methods, which usually get inserted into every processed file. It reduces the final bundle size by that.

	The react-loadable package is the only package that we do not install in our devDependencies. The reason is that our front end (and also the back end) will rely on it to dynamically import our React components.

You will soon learn why we need all of these packages.

The first package that we are going to use is the react-loadable package, as it is the central point around which we will adjust our front end and back end.

To allow for the dynamic import of React components, it makes sense to take a look at our current React Router code. Open the router.js file in the client folder. At the top of the file, you'll see that we directly import all components of our application. However, React Router only renders one of them at a time, as specified by our routes. We will improve this procedure by introducing React Loadable here, in order to load the one component that is required.

Aside from React and React Router, you can replace all import statements at the top of the file with the following code:

import loadable from 'react-loadable';
import Loading from './components/loading';
const User = loadable({
 loader: () => import('./User'),
 loading: Loading,
});
const Main = loadable({
 loader: () => import('./Main'),
 loading: Loading,
});
const LoginRegisterForm = loadable({
 loader: () => import('./components/loginregister'),
 loading: Loading,
});

We import the react-loadable package in the preceding code. Using the loadable HoC, we can dynamically load a component before rendering it. This allows us to asynchronously import the components, whereas our earlier approach was to directly load all of the components synchronously, without the need for all of them.

We implement this solution for all of the main pages, which are the User, the Main (the news feed), and the LoginRegisterForm components. The loadable HoC receives the import statement as an executable function that returns a promise. Until the promise is resolved, the loading property is rendering, which is the Loading component that we already use when a request ongoing. Instead of using the standard import ... from ... syntax, we directly pass the filename to load as a parameter. The result of each loadable HoC is saved in a variable that matches the component names in the following Routing class.

Now that we have set up react-loadable properly, we can adjust the webpack configuration that generates the production build for the front end code. Open the webpack.client.build.config.js file. Our production build currently creates one big bundle.js file that includes all of our front end code at once. We will change this and split the bundle into multiple small chunks. These will be loaded by React Loadable at the time of rendering a specific component.

Edit the output property of the webpack configuration to include the chunkFilename field, as follows:

output: {
 path: path.join(__dirname, outputDirectory),
 filename: "bundle.js",
 publicPath: '/',
 chunkFilename: '[name].[chunkhash].js'
},

The chunkFilename field defines how the name of a non-entry chunk file is built. Those files implement specific features, and are not root files from which our application can be started. The preceding code specifies that all chunks are named after the module name of the chunk, following a hash of the chunk content.

To make use of React Loadable, we rely on the ReactLoadablePlugin that it provides. Import the following plugin at the top of the file:

const { ReactLoadablePlugin } = require('react-loadable/webpack');

Since we are using SSR with our application, we can remove the part where we insert our bundle and other files in the HTML template by using the HtmlWebpackPlugin. We are going to replace it with the preceding ReactLoadablePlugin. Insert the following code, instead of the HtmlWebpackPlugin:

new ReactLoadablePlugin({
 filename: './dist/react-loadable.json',
}),

The ReactLoadablePlugin stores all of the information about the bundles that we are going to generate in a JSON file. This file is based on the dynamically imported components that we use in our front end code. This includes information on what modules are found in each bundle. You will learn what we will use this JSON file for later on.

For an application that is not server-rendered, this setup would be almost everything that you have to do. Because we use SSR, we have to adjust our back end to fulfill all of the requirements when using code-splitting for our entire application.

 Code-splitting with SSR

When rendering our application on the server, we have to tell the client which bundles to download on the initial page load. Open the server's index.js file to implement this logic. Import the react-loadable dependencies at the top of the file, as follows:

import Loadable, { Capture } from 'react-loadable';
import { getBundles } from 'react-loadable/webpack';

We import the Loadable module itself, but also the Capture module. The last one is rendered along with your server-rendered application to collect all modules or components that were rendered for the current route that the user is visiting. It allows us to include those bundles along with the initial HTML that our server returns. To let our back end know which bundles exist, we load the previously generated JSON file with the following code. Insert it directly underneath the import statements:

if(process.env.NODE_ENV !== 'development') {
 var stats = require('../../dist/react-loadable.json');
}

The preceding code loads the react-loadable.json file if we are in a production environment. In this case, we can expect that it will be saved in the dist folder of our application. When using react-loadable for server-side rendering, we have to ensure that all dynamically loadable components are loaded before any of them are rendered. There is a preloadAll method that the Loadable module provides, which can load all of the modules before starting the server for us. Replace the server.listen method call in the services for loop with the following code:

Loadable.preloadAll().then(() => {
 server.listen(process.env.PORT? process.env.PORT:8000, () => {
 console.log('Listening on port '+(process.env.PORT?
 process.env.PORT:8000)+'!');
 services[name](server);
 });
});

As you should have noticed, we execute the Loadable.preloadAll method, which, when resolved, starts the server. Furthermore, we have replaced our standard port 8000 with an environment variable called PORT. If the PORT is set, we spawn the back end under this port; otherwise, the standard port 8000 is used. This behavior will be useful in the upcoming sections. When the server has started, we can expect that all components are loaded and ready for rendering.

To reuse the server-side rendered code and declare which modules are being used, we have to edit our .babelrc file. Add the following lines of code to the plugins section of the .babelrc file:

"@babel/plugin-syntax-dynamic-import",
"react-loadable/babel"

To allow for dynamic imports, we use Babel with the @babel/plugin-syntax-dynamic-import plugin. It transpiles our dynamic imports throughout our React code. Furthermore, we use the react-loadable/babel plugin to indicate which modules are being used to render the current page, so that we can use the same bundles for the client.

The preparation for the server-side rendering is complete. Now, we have to collect all of the components that are rendered so that we can acquire the correct bundles for the user upon the initial page load. In our app.get catch-all Express route, where all SSR requests are processed, we have to add the Capture component of React Loadable to our App component. Replace the current App variable with the following code lines:

const modules = [];
const App = (<Capture report={moduleName => modules.push(moduleName)}><Graphbook client={client} loggedIn={loggedIn} location={req.url} context={context}/></Capture>);

We have wrapped the Graphbook component that we imported earlier with the Capture component. Furthermore, we have created a new variable, called modules. All modules that are used throughout the rendering of our application will be stored there. We pass a small function to the report property of the Capture component, which executes the regular push method to insert the module names to the modules array.

Consequently, we have to include those modules with the HTML that we send to the user. The problem is that we have to identify the bundles that include those modules. Consequently, we imported the getBundles function from the react-loadable/webpack package earlier. The final renderToStringWithData function call should look as follows:

renderToStringWithData(App).then((content) => {
 if (context.url) {
 res.redirect(301, context.url);
 } else {
 var bundles;
 if(process.env.NODE_ENV !== 'development') {
 bundles = getBundles(stats, Array.from(new Set(modules)));
 } else {
 bundles = [];
 }
 const initialState = client.extract();
 const head = Helmet.renderStatic();
 res.status(200);
 res.send(`<!doctype html>\n${template(content, head, initialState,
 bundles)}`);
 res.end();
 }
});

The first six lines of the else case, where we pass the rendered content variable to our template function, implement the logic to give us the bundle names. We have created a new bundles variable. If we are in a development environment, the bundles variable is initialized as an empty array.

If we are in a production environment, we use the getBundles function. The first parameter is the JSON file that was created by our webpack configuration, using the ReactLoadablePlugin. The second parameter of the getBundles function is the modules that have been transformed into a one-dimensional array. The result of the getBundles function is an array of bundles that we have to include with our HTML.

To do so, we pass the final bundles array to our template function. We have to adjust our template.js file from the server's ssr folder to accept and render the bundles variable. First, change the template function's signature to match the following line of code:

export default function htmlTemplate(content, head, state, bundles) {

We just added the bundles as the fourth parameter. Next, we have to include all of the bundles in the HTML. As it is a simple array of objects, we can use the JavaScript map function to process all bundles. Insert the following line of code above the script tag, with the bundle.js file as the src attribute:

${bundles.map(bundle => `<script src="${bundle.publicPath}"></script>`).join('\n')}

The preceding line loops over all array elements. We return a script tag with the public path of the JavaScript bundle for each array element so that the browser can download it. The join method is used to add a line break after each script tag.

The setup looks like it should be finished. However, why do we make a production build of the client-side code, and not the server-side code?

That is a good question. We will change that next. The reason that we should do so is that by bundling our server-side code, we will get rid of unnecessary loading times (when the import statements are processed, for example). Bundling our back end code will improve the performance. To bundle our back end, we are going to set up a new webpack configuration file. Create a webpack.server.build.config.js file next to the other webpack files with the following content:

const path = require('path');
var nodeExternals = require('webpack-node-externals');
const buildDirectory = 'dist/server';

module.exports = {
 mode: 'production',
 entry: [
 './src/server/index.js'
],
 output: {
 path: path.join(__dirname, buildDirectory),
 filename: 'bundle.js',
 publicPath: '/server'
 },
 module: {
 rules: [{
 test: /\.js$/,
 use: {
 loader: 'babel-loader',
 options: {
 plugins: ["@babel/plugin-transform-runtime"]
 }
 },
 }],
 },
 node: {
 __dirname: false,
 __filename: false,
 },
 target: 'node',
 externals: [nodeExternals()],
 plugins: [],
};

The preceding configuration file is very simple and not complex. Let's go through all of the settings that we use to configure webpack, as follows:

	We load our new webpack-node-externals package at the top.

	The build directory, where we save the bundle, is located in the dist folder, inside of a special server folder.

	The mode field is set to 'production'.

	The entry point for webpack is the server's root index.js file.

	The output property holds the standard fields to bundle our code and save it inside of the folder specified through the buildDirectory variable.

	We use the previously installed @babel/plugin-transform-runtime plugin in the module property to reduce the file size for our bundle.

	Inside of the node property, you can set Node.js-specific configuration options. The __dirname field tells webpack that the global __dirname is used with its default settings, and is not customized by webpack. The same goes for the __filename property.

	The target field accepts multiple environments in which the generated bundle should work. For our case, we set it to 'node', as we want to run our back end in Node.js.

	The externals property gives us the possibility to exclude specific dependencies from our bundle. By using the webpack-node-externals package, we prevent all node_modules from being included in our bundle.

To make use of our new build configuration file, we have to add two new commands to the scripts field of our package.json file. As we are trying to generate a final production build that we can publicize, we have to build our client-side code in parallel. Add the following two lines to the scripts field of the package.json file:

"build": "npm run client:build && npm run server:build",
"server:build": "webpack --config webpack.server.build.config.js"

The build command uses the && syntax to chain two npm run commands. It executes the build process for our client-side code first, and afterwards, it bundles the entire server-side code. The result is that we have a filled dist folder with a client and a server folder. Both can import components dynamically. To start our server with the new production code, we are going to add one further command to the scripts field. The old npm run server command would start the server-side code in the unbundled version, which is not what we want. Insert the following line into the package.json file:

"server:production": "node dist/server/bundle.js"

The preceding command simply executes the bundle.js file from the dist/server folder, using the plain node command to launch our back end.

Now, you should be able to generate your final build by running npm run build. Before starting the production server as a test, however, make sure that you have set all of the environment variables for your database correctly, or your JWT_SECRET, for example. Then, you can execute the npm run server:production command to launch the back end.

Because we have changed the way that our back end and front end load components, we have to adapt these changes to our development and testing commands. When trying to rerun them, the main problem is that the dynamic imports and React Loadable functionality are not supported.

Replace our npm run server command with the following line, in the package.json file:

"server": "nodemon --exec babel-node --plugins require-context-hook,dynamic-import-node --watch src/server src/server/index.js",

The preceding command has one more plugin, which is the dynamic-import-node package. For our test, the only thing that we have to change is the babel-hook.js file to let Babel transpile everything correctly. Add the following plugins to the babel-hook.js file:

"react-loadable/babel", "dynamic-import-node"

Our test runs in the production environment, because only then can we verify that all features that are enabled in the live environment work correctly. Because we have just introduced React Loadable, which generates a JSON file when building the client-side code, we have to run a full build when we are testing our application. Edit the test command of the package.json file to reflect this change, as follows:

"test": "npm run build && mocha --exit test/ --require babel-hook --require @babel/polyfill --recursive",

Now, you should be able to test your application again.

This entire setup allows us to render your complete application, but instead of one big bundle, we only load the chunks that are required to render the current page that's shown to the user. When a user navigates to a new page, only the chunks that are required are fetched from the server.

For the development environment, we stick with a simple setup, and we only include the bundle.js file. If necessary, the code that's included with the bundle will load all of the other files.

In the next section, we will cover how to use Docker to bundle your entire application.

 Setting up Docker

Publishing an application is a critical step that requires a lot of work and care. Many things can go wrong when releasing a new version.

We have already made sure that we can test our application before it goes live. After deployment, we will have Apollo Engine, which will inform us about anything that goes well and anything that goes wrong.

The real act of transforming our local files into a production-ready package, which is then uploaded to a server, is the most onerous task. Regular applications generally rely on a server that is preconfigured with all the packages that the application needs to run. For example, when looking at a standard PHP setup, most people rent a preconfigured server. This means that the PHP runtime, with all of the extensions, like the MySQL PHP library, are installed via the built-in package manager of the operating system. This procedure applies not only to PHP, but also to nearly any other programming language. This might be okay for general websites or applications that are not too complex, but for professional software development or deployment, this process can lead to issues, such as the following:

	The configuration needs to be done by someone that knows the requirements of the application, and the server itself.

	A second server needs the same configuration, in order to allow our application to run. While doing that configuration, we must ensure that all servers are standardized and consistent with one another.

	All of the servers have to be reconfigured when the runtime environment gets an update, either because the application requires it, or due to other reasons, such as security updates. In this case, everything must be tested again.

	Multiple applications running inside of the same server environment may require different package versions, or may interfere with each other.

	The deployment process must be executed by someone with the required knowledge.

	Starting an application directly on a server exposes it to all services running on your server. Other processes could take over your complete application, since they run within the same environment.

	Also, the application is not limited to using a specified maximum of the server's resources.

Many people have tried to figure out how to avoid these consequences by introducing a new containerization and deployment workflow.

 What is Docker?

One major trending price of software is called Docker. It was released in 2013, and its aim is at isolating the application within a container by offering its own runtime environment, without having access to the server itself.

The aim of a container is to isolate the application from the operating system of the server.

Standard virtual machines can also accomplish this by running a guest operating system for the application. Inside of the virtual machine, all packages and runtimes can be installed to prepare it for your application. This solution comes with significant overhead, of course, because we are running a second operating system that's just for our application. It is not scalable when many services or multiple applications are involved.

On the other hand, Docker containers work entirely differently. The application itself, and all of its dependencies, receive a segment of the operating system's resources. All processes are isolated by the host system inside of those resources.

Any server supporting the container runtime environment (which is Docker) can run your dockerized application. The great thing is that the actual operating system is abstracted away. Your operating system will be very slim, as nothing more than the kernel and Docker is required.

With Docker, the developer can specify how the container image is composed. They can directly test and deploy those images on their infrastructure.

To see the process and advantages that Docker provides, we are going to build a container image that includes our application and all of the dependencies it needs to run.

 Installing Docker

Like any virtualization software, Docker has to be installed via the regular package manager of your operating system.

I will assume that you are using a Debian-based system. If this is not the case, please get the correct instructions for your system at https://docs.docker.com/install/overview/.

Continue with the following instructions to get Docker up and running:

	Update your system's package manager, as follows:

sudo apt-get update

	Install all of the dependencies for Docker, as follows:

sudo apt-get install apt-transport-https ca-certificates curl gnupg2 software-properties-common

	Verify and add the GNU Privacy Guard (GPG) key for the Docker repository, as follows:

curl -fsSL https://download.docker.com/linux/debian/gpg | sudo apt-key add -

If you are using Ubuntu, add the separate GPG key from the official Docker documentation, or just replace the word debian with ubuntu in the preceding URL.

	Now that the GPG key has been imported, we can add the repository to the package manager, as follows:

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/debian $(lsb_release -cs) stable"

Again, if you use Ubuntu, please add the repository made for Ubuntu by replacing the word debian with ubuntu.

	After adding the new repository, you must update the package manager's index again, as follows:

sudo apt-get update

	Lastly, we can install the Docker package to our system, as follows:

sudo apt-get install docker-ce

The docker-ce package stands for Docker Community Edition. There are two further versions, which include more features, but which are also meant for bigger teams. You can look at what makes them different from the Community Edition in the installation overview of the Docker documentation.

That's everything that is required to get a working copy of Docker on your system.

Next, you will learn how to use Docker by building your first Docker container image.

 Dockerizing your application

Many companies have adopted Docker and replaced their old infrastructure setup, thereby largely reducing system administration. Still, there is some work to do before deploying your application straight to production.

One primary task is to dockerize your application. The term dockerize means that you take care of wrapping your application inside of a valid Docker container.

There are many service providers that connect Docker with continuous integration or continuous deployment, because they work well together. In the last section of this chapter, you will learn what continuous deployment is, and how it can be implemented. We are going to rely on such a service provider. It will provide us with an automatic workflow for our continuous deployment process. As this book should teach you how to dockerize your application without relying on too many third parties, we are going to implement it in the official Docker way.

 Writing your first Dockerfile

The conventional approach to generating a Docker image of your application is to create a Dockerfile in the root of your project. But what does the Dockerfile stand for?

A Dockerfile is a series of commands that are run through the Docker CLI. The typical workflow in such a file looks as follows:

	A Dockerfile starts from a base image, which is imported using the FROM command. This base image may include a runtime environment, like Node.js, or other things that your project can make use of. The container images are downloaded from the Docker Hub, which is a central container registry that you can find at https://hub.docker.com/. There is the option to download the images from custom registries, too.

	Then, Docker offers many commands to interact with the image and your application code. Those commands can be looked up at https://docs.docker.com/engine/reference/builder/.

	After the configuration of the image has finished and all of the build steps are complete, you will need to provide a command that will be executed when your application's Docker container starts.

	The result of all of the build steps will be a new docker image. The image is saved on the machine where it was generated.

	Optionally, you can now publish your new image to a registry, where other applications or users can pull your image. You can also upload them as private images or private registries.

We will start by generating a really simple Docker image. First, create the Dockerfile inside of the root of your project. The filename is written without any file extensions.

The first task is to find a matching base image that we can use for our project. The criteria by which we choose a base image are the dependencies and runtime environment. As we have mainly used Node.js without relying on any other server-side package that needs to be covered from our Docker container, we only need to find a base image that provides Node.js. For the moment, we will ignore the database, and we'll focus on it again in a later step.

Docker Hub is the official container image registry, providing many minimalistic images. Just insert the following line inside of our new Dockerfile, in the root of our project:

FROM node:10

As we mentioned before, we use the FROM command to download our base image. As the name of the preceding image states, it includes Node.js in version 10. There are numerous other versions that you can use. Beyond the different versions, you can also find different flavors (for example, a Node.js based on an Alpine Linux image). Take a look at the image's readme to get an overview of the available options, at https://hub.docker.com/_/node/.

I recommend that you read through the reference documentation of the Dockerfile. Many advanced commands and scenarios are explained there, which will help you to customize your Docker workflow. Just go to https://docs.docker.com/engine/reference/builder/.

After Docker has run the FROM command, you will be working directly within this base image, and all further commands will then run inside of this environment. You can access all of the features that the underlying operating system provides. Of course, the features are limited by the image that you have chosen. A Dockerfile is only valid if it starts with the FROM command.

The next step for our Dockerfile is to create a new folder, in which the application will be stored and run. Add the following line to the Dockerfile:

WORKDIR /usr/src/app

The WORKDIR command changes the directory to the specified path. The path that you enter lives inside of the filesystem of the image, which does not affect your computer's filesystem. From then on, the Docker commands RUN, CMD, ENTRYPOINT, COPY, and ADD will be executed in the new working directory. Furthermore, the WORKDIR command will create the new folder, if it does not exist yet.

Next, we need to get our application's code inside of the new folder. Until now, we have only made sure that the base image was loaded. The image that we are generating at the moment does not include our application yet. Docker provides a command to move our code into the final image.

As the third line of our Dockerfile, add the following code:

COPY . .

The COPY command accepts two parameters. The first one is the source, which can be a file or folder. The second parameter is the destination path inside of the image's filesystem. You can use a subset of regular expressions to filter the files or folders that you copy.

After Docker has executed the preceding command, all contents living in the current directory will be copied over to the /usr/src/app path. The current directory, in this case, is the root of our project folder. All of the files are now automatically inside of the final Docker image. You can interact with the files through all Docker commands, but also with the commands the shell provides.

One important task is that we install all of the npm packages that our application relies on. When running the COPY command, like in the preceding code, all of the files and folders are transferred, including the node_modules folder. This could lead to problems when trying to run the application, however. Many npm packages are compiled when they are being installed, or they differentiate between operating systems. We must make sure that the packages that we use are clean, and work in the environment that we want them to work in. We must do two things to accomplish this, as follows:

	Create a .dockerignore file in the root of the project folder, next to the Dockerfile, and enter the following content:

node_modules
package-lock.json

The .dockerignore file is comparable to the .gitignore file, which excludes special files or folders from being tracked by Git. Docker reads the .dockerignore file before all files are sent to the Docker daemon. If it is able to read a valid .dockerignore, all specified files or folders are excluded. The preceding two lines exclude the whole node_modules folder and the package-lock.json file. The last one is critical, because the exact versions of all npm packages are saved in this file.

	Install the npm packages inside of the Docker image that we are creating at the moment. Add the following line of code to the Dockerfile:

RUN npm install

The RUN command executes npm install inside of the current working directory. The related package.json file and node_modules folder are stored in the file system of the Docker image. Those files are directly committed, and are included in the final image. Docker's RUN command sends the command that we pass as the first parameter into the Bash and executes it. To avoid the problems of spaces in the shell commands, or other syntax problems, you can pass the command as an array of strings, which will be transformed by Docker into valid Bash syntax. Through RUN, you can interact with other system-level tools (like apt-get or curl, for example).

Now that all of the files and dependencies are in the correct filesystem, we can start Graphbook from our new Docker image. Before doing so, there are two things that we need to do: we have to allow for external access to the container via the IP, and define what the container should do when it has started.

Graphbook uses port 8000 by default, under which it listens for incoming requests, be it a GraphQL or a normal web request. When running a Docker container, it receives its own network, with IP and ports. We must make port 8000 available to the public, not only inside of the container itself. Insert the following line at the end of the Dockerfile to make the port accessible from outside of the container:

EXPOSE 8000

It is essential that you understand that the EXPOSE command does not map the inner port 8000 from the container to the matching port of our working machine. By writing the EXPOSE command, you give the developer using the image the option to publish port 8000 to any port of the real machine running the container. The mapping is done while starting the container, not when building the image. Later in this chapter, we will look at how to map port 8000 to a port of your local machine.

Finally, we have to tell Docker what our container should do once it has booted. In our case, we want to start our back end (including SSR, of course). Since this should be a simple example, we will start the development server.

Add the last line of the Dockerfile, as follows:

CMD ["npm", "run", "server"]

The CMD command defines the way that our container is booted, and which command to run. We are using the exec option of Docker to pass an array of strings. A Dockerfile can only have one CMD command. The exec format does not run a Bash or shell command when using CMD.

The container executes the server script of our package.json file, which has been copied into the Docker image.

At this point, everything is finished and prepared to generate a basic Docker image. Next, we will continue with getting a container up and running.

 Building and running Docker containers

The Dockerfile and .dockerignore files are ready. Docker provides us with the tools to generate a real image, which we can run or share with others. Having a Dockerfile on its own does not make an application dockerized.

Make sure that the database credentials specified in the /server/config/index.js file for the back end are valid for development, because they are statically saved there. Furthermore, the MySQL host must allow for remote connections from inside the container.

Execute the following command to build the Docker image on your local machine:

docker build -t sgrebe/graphbook .

This command requires you to have the Docker CLI and daemon installed.

The first option that we use is -t, following a string (in our case, sgrebe/graphbook). The finished build will be saved under the username sgrebe and the application name graphbook. This text is also called a tag. The only required parameter of the docker build command is the build context, or the set of files that Docker will use for the container. We specified the current directory as the build context by adding the dot at the end of the command. Furthermore, the build action expects the Dockerfile to be located within this folder. If you want the file to be taken from somewhere else, you can specify it with the --file option.

If the docker build command fails, it may be that some environment variables are missing. They usually include the IP and port of the Docker daemon. To look them up, execute the docker-machine env command, and set the environment variables as returned by the command.

When the command has finished generating the image, it should be available locally. To prove this, you can use the Docker CLI by running the following command:

docker images

The output from Docker should look as follows:

You should see two containers; the first one is the sgrebe/graphbook container image, or whatever you used as a tag name. The second one should be the node image, which we used as the base for our custom Docker image. The size of the custom image should be much higher, because we installed all npm packages.

Now, we should be able to start our Docker container with this new image. The following command will launch your Docker container:

docker run -p 8000:8000 -d --env-file .env sgrebe/graphbook

The docker run command also has only one required parameter, which is the image to start the container with. In our case, this is sgrebe/graphbook, or whatever you specified as a tag name. Still, we define some optional parameters that we need to get our application working. You can find an explanation of each of them, as follows:

	We set the -p option to 8000:8000. The parameter is used to map ports from the actual host operating system to a specific port inside of the Docker container. The first port is the port of the host machine, and the second one is the port of the container. This option gives us access to the exposed port 8000, where the application is running under the http://localhost:8000 of our local machine.

	The --env-file parameter is required to pass environment variables to the container. Those can be used to hand over the NODE_ENV or JWT_SECRET variables, for example, which we require throughout our application. We will create this file in a second.

	You can also pass the environment variables one by one using the -e option. It is much easier to provide a file, however.

	The -d option sets the container to detached mode. This means that your container will not run in the foreground after executing it inside the shell. Instead, after running the command, you will have access to the shell again, and will see no output from the container. If you remove the option again, you will see all of the logs that our application triggers.

The docker run command provides many more options. It allows for various advanced setups. The link to the official documentation is https://docs.docker.com/engine/reference/run/#general-form.

Let's create the .env file in the root directory of our project. Insert the following content, replacing all placeholders with the correct value for every environment variable:

ENGINE_KEY=YOUR_APLLO_ENGINE_API_KEY
NODE_ENV=development
JWT_SECRET=YOUR_JWT_SECRET
AWS_ACCESS_KEY_ID=YOUR_AWS_KEY_ID
AWS_SECRET_ACCESS_KEY=YOUR_AWS_SECRET_ACCESS_KEY

The .env file is a simple key-value list, where you can specify one variable per line, which our application can access from its environment variables.

It is vital that you do not commit this file to the public at any stage. Please add this file directly to the .gitignore file.

If you have filled out this file, you will be able to start the Docker container with the previous command that I showed you. Now that the container is running in the detached mode, you will have the problem that you cannot be sure whether Graphbook has started to listen. Consequently, Docker also provides a command to test this, as follows:

docker ps

The docker ps command gives you a list of all running containers. You should find the Graphbook container in there, too. The output should appear as follows:

Like all commands that Docker provides, the docker ps command gives us many options to customize and filter the output. Read up on all of the features that it offers in the official documentation at https://docs.docker.com/engine/reference/commandline/ps/.

Our container is running, and it uses the database that we have specified. You should be able to use Graphbook as you know it by visiting http://localhost:8000.

If you take a look at the preceding image, you will see that all running containers receive their own ids. This id can be used in various situations to interact with the container.

In development, it makes sense to have access to the command-line printouts that our application generates. When running the container in the detached mode, you have to use the Docker CLI to see the printouts, using the following command. Replace the id at the end of the command with the id of your container:

docker logs 08499322a998

The docker logs command will show you all of the printouts that have been made by our application or container recently. Replace the preceding id with the one given to you by the docker ps command. If you want to see the logs in real time, while using Graphbook, you can add the --follow option.

As we are running the container in the detached mode, you will not be able to stop it by just using Ctrl + C, like before. Instead, you have to use the Docker CLI again.

To stop the container again, run the following command:

docker rm 08499322a998

The docker rm command stops and removes the container from the system. Any changes made to the filesystem inside of the container will be lost. If you start the image again, a new container will be created, with a clean filesystem. Alternatively, you can also use the stop command instead, which only shuts down the container.

When working and developing with Docker frequently, you will probably generate many images to test and verify the deployment of your application. These take up a lot of space on your local machine. To remove the images, you can execute the following command:

docker rmi fe30bceb0268

The id can be taken from the docker images command, the output of which you can see in the first image in this section. You can only remove an image if it is not used in a running container.

We have come far. We have successfully dockerized our application. However, it is still running in development mode, so there is a lot to do.

 Multi-stage Docker production builds

Our current Docker image, which we are creating from the Dockerfile, is already useful. We want our application to be transpiled and running in production mode, because many things are not optimized for the public when running in development mode.

Obviously, we have to run our build scripts for the back end and front end while generating the Docker image.

Up until now, we have installed all npm packages and copied all files and folders for our project to the container image. This is fine for development, because this image is not published or deployed to a production environment. When going live with your application, you will want your image to be as slim and efficient as possible. To achieve this, we will use a so-called multi-stage build.

Before Docker implemented the functionality to allow for multi-stage builds, you had to rely on tricks, like using shell commands to only keep the files that were really required in the container image. The problem that we have is that we copy all of the files that are used to build the actual distribution code from the project folder. Those files are not needed in the production Docker container, however.

Let's see how this looks in reality. You can back up or remove the first Dockerfile that we wrote, as we will start with a blank one now. The new file still needs to be called Dockerfile. All of the following lines of code go directly into this empty Dockerfile. Follow these instructions to get the multi-stage production build running:

	Our new file starts with the FROM command again. We are going to have multiple FROM statements, because we are preparing a multi-stage build. The first one should look as follows:

FROM node:10 AS build

We are introducing the first build stage here. Like before, we are using the node image in version 10. Furthermore, we append the AS build suffix, which tells Docker that this stage, or everything that we do in it, will be accessible under the name build later on. A new stage is started with every new FROM command.

	Next, we initialize the working directory, like we did in our first Dockerfile, as follows:

WORKDIR /usr/src/app

	It is essential to only copy the files that we really need. It hugely improves the performance if you reduce the amount of data/files that need to be processed:

COPY .babelrc ./
COPY package*.json ./
COPY webpack.server.build.config.js ./
COPY webpack.client.build.config.js ./
COPY src src
COPY assets assets

We copy the .babelrc, package.json, package-lock.json, and webpack files that are required for our application. These include all of the information we need to generate a production build for the front end and back end. Furthermore, we also copy the src and assets folders, because they include the code and CSS that will be transpiled and bundled.

	Like in our first Dockerfile, we must install all npm packages; otherwise, our application won't work. We do this with the following line of code:

RUN npm install

	After we have copied all of the files and installed all of the packages, we can start the production build. Before doing so, it would make sense to run our automated test. Add the test script to the Dockerfile, as follows:

ENV NODE_ENV production
ENV JWT_SECRET YOUR_SECRET
ENV username YOUR_USERNAME
ENV password YOUR_PASSWORD
ENV database YOUR_DATABASE
ENV host YOUR_HOST
RUN npm install -g mysql2 sequelize sequelize-cli
RUN sequelize db:migrate --migrations-path src/server/migrations --config src/server/config/index.js --env production
RUN npm run test

We use the ENV command from Docker to fill the environment variables while building the image. This is needed to run our test, because this way, we can add the required variables, such as NODE_ENV and JWT_SECRET.

Before running a test, we have to migrate all database changes to the test database. We do this by installing Sequelize and using the db:migrate feature. You will see this command again later.

We are running our Mocha test, as we did before. The good thing here is that every time our application gets dockerized, the test will run automatically. If the test fails, the error will bubble up, and the complete build will fail. We will never launch the application if a test fails.

	After all packages have been installed successfully, we can start the build process. We added the build script in the first section of this chapter. Add the following line to execute the script that will generate the production bundles in the Docker image:

RUN npm run build

The following command will generate a dist folder for us, where the runnable code (including CSS) will be stored. After the dist folder with all of the bundles has been created, we will no longer need most of the files that we initially copied over to the current build stage.

	To get a clean Docker image that only contains the dist folder and the files that we need to run the application, we will introduce a new build stage that will generate the final image. The new stage is started with a second FROM statement, as follows:

FROM node:10

We are building the final image in this build step; therefore, it does not need its own name.

	Again, we need to specify the working directory for the second stage, as the path is not copied from the first build stage:

WORKDIR /usr/src/app

	Because we have given our first build stage a name, we can access the filesystem of this stage through that name. To copy the files from the first stage, we can add a parameter to the COPY statement. Add the following commands to the Dockerfile:

COPY --from=build /usr/src/app/package.json package.json
COPY --from=build /usr/src/app/dist dist

As you should see in the preceding code, we are copying the package.json file and the dist folder. However, instead of copying the files from our original project folder, we are getting those files directly from the first build stage. For this, we use the --from option, following the name of the stage that we want to access; so, we enter the name build. The package.json file is needed because it includes all of the dependencies, and also the scripts field, which holds the information on how to run the application in production. The dist folder is, of course, our bundled application.

	Notice that we only copy the package.json file and the dist folder. Our npm dependencies are not included in the application build inside of the dist folder. As a result, we need to install the npm packages in the second build stage, too:

RUN npm install --only=production

The production image should only hold npm packages that are really required; npm offers the only parameter, which lets you install only the production packages, as an example. It will exclude all of the devDependecies of your package.json file. This is really great for keeping your image size low.

	The last two things to do here are to expose the container port to the public and to execute the CMD command, which will let the image run a command of our package.json file when the container has booted:

EXPOSE 8000
CMD ["npm", "run", "server:production"]

You should have seen both of these commands in our first Dockerfile. The only difference is that we execute the server:production command from our package.json file. This will start our bundled application from the dist folder of the final image.

Now, you can execute the docker build command again, and try to start the container. There is only one problem: the database credentials are read from the environment variables when running in production. As the production setup for a database cannot be on our local machine, it needs to live somewhere on a real server. We could also accomplish this through Docker, but this would involve a very advanced Docker configuration. We would need to save the MySQL data in separate storage, because Docker does not persist data of any kind, by default.

I personally like to rely on a cloud host, which handles all of the database setup for me. It is not only great for the overall setup, but it also improves the scalability of our application. The next section will cover the Amazon Relational Database Service, and how to configure it for use with our application. You can, of course, use any database infrastructure that you like.

 Amazon Relational Database Service

AWS offers the Amazon Relation Database Service (RDS), which is an easy tool for setting up a relational database in just a few clicks. Shortly, I will explain how to create your first database with RDS, and afterwards, we will look at how to insert environment variables correctly, in order to get a database connection going with our application.

The first step is to log in to the AWS Console, like we did in Chapter 7, Handling Image Uploads. You can find the service by clicking on the Services tab in the top bar and searching for RDS.

After navigating to RDS, you will see the dashboard for the Relational Database Service, as shown in the following screenshot:

The first step is to initialize a new database by hitting the Create database button. You will be presented with a new screen, where you should select an engine for our new database. I recommend that you select MySQL here. You should also be able to select Amazon Aurora or MariaDB, as they are also MySQL compatible; for this book, I have chosen MySQL. Continue by clicking Next.

Then, you will need to specify the use case for your database. Both of the production options are very good for live applications, but generate real costs. Please be aware that this should only be used when going public with your application, and when you are able to pay the fees for the service.

If you want to try Amazon RDS, you can choose the third option, which should be the Dev MySQL database. In this case, it is not a production-ready database, but you will notice the advantages of a database inside of the cloud, anyway. For your first test, I recommend that you go on with this selection. Continue by clicking Next.

You will be asked for the database specification details. The first part of the screen will look as follows:

Make sure that you choose the same settings that are shown in the preceding screenshot. If you only want to use the free tier of Amazon, select the checkbox in the blue alert box. This option will set the DB instance class to micro, and the allocated storage amount to 20 GiB, fixed.

Below the instance specifications, you have to enter the credential settings for your database. The credentials consist of a database identifier, a username, and a password. The database identifier must be unique to your AWS account. You will need to insert those credentials into the environment variables later on. You can continue by hitting Next again.

You will now be asked for advanced settings. The only thing that you need to specify is the database name, in the Database options box. It is important that you select Public accessibility, with Yes checked. This does not share your database to the public, but makes it accessible from other IPs and other EC2 instances, if you select them in your AWS Security Group. Finish the setup process for your first AWS RDS database by clicking on Create database at the bottom of the screen.

You should now be redirected to the dashboard of the new database instance.

Inside of the Connect box, you can find the security groups that have been applied to the instance. Click on the group with the type CIDR/IP - Inbound.

You will see a list of security groups and a small view with some tabs at the top, as follows:

In the preceding screenshot, you can see how the security groups for your new database should look. At the bottom of the window, inside of the small view, select the Inbound tab. There, you will be able to insert the IP that is allowed to access the database. If you insert the 0.0.0.0 IP, it will allow any remote IP to access the database. This is not a recommended database setup for production use, but it makes it easier to test it with multiple environments in developmental use.

The credentials that you have specified for the database must be included in the .env file for running our Docker container, as follows:

username=YOUR_USERNAME
password=YOUR_PASSWORD
database=YOUR_DATABASE
host=YOUR_HOST

The host URL can be taken from the Amazon RDS instance dashboard. It should look something like INSTANCE_NAME.xxxxxxxxxx.eu-central-1.rds.amazonaws.com.

Now, you should be able to run the build for your Docker image again, without any problems. The database has been set up and is available.

If the test runs through, it will create a new user, as we have specified this in the Mocha test file. The user will be inserted into the database that has been set in the Dockerfile, via the ENV command. You have to ensure that this database is cleaned after each test is run; otherwise, the second test will fail, because we are trying to create a new user that already exists after running the test for the first time. By using the ENV commands, we can set a special test database that will be used while generating the Docker image.

Next, we will look at how we can automate the process of generating the Docker image through continuous integration.

 Configuring Continuous Integration

Many people (especially developers) will have heard of continuous integration (CI) or continuous deployment (CD). However, most of them cannot explain their meanings and the differences between the two terms. So, what is continuous integration and deployment, in reality?

When it comes to going live with your application, it might seem easy to upload some files to a server and then start the application through a simple command in the shell, via SSH.

This approach might be a solution for many developers, or for small applications that are not updated often. For most scenarios, it is not a good approach, however. The word continuous represents the fact that all changes or updates are continuously reflected by our application to the user. This would be a lot of work, and it would be tough to do if we stayed with a simple file upload and took a manual approach. Automating this workflow makes it convenient to update your application at any time.

Continuous integration is the development practice where all developers commit their code to the central project repository at least once a day to bring their changes to the mainline stream of code. The integrated code will be verified by automated test cases. This will avoid problems when trying to go live at a specific time.

Continuous deployment goes further; it's based on the main principles of continuous integration. Every time the application is successfully built and tested, the changes are directly released to the customer. This is what we are going to implement.

Our automation process will be based on CircleCI. It is a third-party service offering a continuous integration and delivery platform, with a massive amount of features.

To sign up for CircleCI, visit https://circleci.com/signup/.

You will need to have a Bitbucket or GitHub account in order to sign up. This will also be the source from which the repositories of your application will be taken, for which we can begin using CI or CD.

To get your project running with CircleCI, you will need to click on the Add Projects button in the left-hand panel, or you will be redirected there because you have no projects setup yet. After signing up, you should see all of your repositories inside of CircleCI.

Select the project that you want to process with CircleCI by hitting Set up Project on the right-hand side of the project. You will then be confronted with the following screenshot:

Select the Operating System as Linux and the Language as Node. The final step will be to hit the Start building button at the bottom of the window.

The problem is that you have not configured your repository or application accordingly. You are required to create a folder called .circleci, and a file inside of it, called config.yml, which tells CircleCI what to do when a new commit is pushed to the repository.

We will create a straightforward first CircleCI configuration so that we can test that everything is working. The final configuration will be done at a later step, when we have configured Heroku.

So, create a .circleci folder in the root of our project and a config.yml file inside of this new folder. The .yml file extension stands for YAML, which is a file format for saving various configurations or data. What is important here is that all .yml files need a correct indentation. Otherwise, they will not be valid files, and cannot be understood by CircleCI.

Insert the following code into the config.yml file:

version: 2
jobs:
 build:
 docker:
 - image: circleci/node:10
 steps:
 - checkout
 - setup_remote_docker:
 docker_layer_caching: true
 - run:
 command: echo "This is working"

Let's quickly go through all of the steps in the file, as follows:

	The file starts with a version specification. We are using version 2, as this is the current version of CircleCI.

	Then, we will have a list of jobs that get executed in parallel. As we only have one thing that we want to do, we can only see the build job that we are running. Later, we will add the whole docker build and publish the functionality here.

	Each job receives an executor type, which needs to be machine, docker, or macos. We are using the docker type, because we can rely on many prebuilt images of CircleCI. The image is specified in a separate image property. There, I have specified node in version 10, because we need Node.js for our CI workflow.

	Each job then receives a number of steps that are executed with every commit that is pushed to the Git repository.

	The first step is the checkout command, which clones the current version of our repository, so that we can use it in any further steps.

	The second setup_remote_docker command will create a remote environment, in which we can run docker commands, like docker build. We will use this later, when we are building our application automatically. The docker_layer_caching property enables the caching of each Docker command that we run. This will make our build time much faster, because we are saving each layer or command that we run through Docker. Only the Docker commands are executed, which follow a change in the Dockerfile.

	Lastly, to test that everything has worked, we use the run step. It lets us execute a command directly in the Docker node:10 image that we have started with CircleCI. Each command that you want to execute must be prefixed with command.

The result of this config file should be that we have pulled the current master branch of our application and printed the text This is working at the end. To test the CircleCI setup, commit and push this file to your GitHub or Bitbucket repository.

CircleCI should automatically notify you that it has started a new continuous integration job for our repository. You can find the job by hitting the Jobs button in the left-hand panel of CircleCI. The newest job should be at the top of the list. Click on the job to see the details. They should look as follows:

In the preceding screenshot, each step is represented in a separate row, at the bottom of the window. You can expand each row to see the logs that printed while executing the specific command shown in the current row. The preceding screenshot shows that the job has been successful.

Now that we have configured CircleCI to process our repository on each push, we must take a look at how to host and deploy our application directly, after finishing the build.

 Deploying applications to Heroku

CircleCI executes our build steps each time we push a new commit. Now, we want to build our Docker image and deploy it automatically to a machine that will serve our application to the public.

Our database and files are hosted on Amazon Web Services already, so we could also use AWS to serve our application. The problem is that setting up AWS correctly is a significant task, and it takes a large amount of time. We could use AWS ECS or EC2 to run our Docker image. Still, to correctly set up the network, security, and container registry is too complex to be explained in just one chapter. I recommend that you take a course or pick up a separate book, to understand and learn advanced setups with AWS, and the configuration that is needed to get a production-ready hosting.

We will use Heroku to host and deploy our application, as it is much more user-friendly and easier to set up. To get started, you must sign up for a free Heroku account. You can do this at https://signup.heroku.com/.

After logging in, you will be redirected to the apps list for Heroku, as shown in the following screenshot:

As you can see, I have already created an app called graphbook. You should do so, too, by hitting the New button in the top-right corner, and then clicking on Create new app.

You will be asked for the name of your application. The name of the application must be unique across Heroku, as it will be used as the subdomain under which your application will be accessible. That is all we have to do to set up our Heroku app correctly.

You will be redirected to the app dashboard, as follows:

You can find the different Heroku features at the top of the window, in different tabs, as follows:

	The current one, which we can see in the preceding screenshot, is the Overview, which shows us the latest activity and the current Dynos that we are using on the left-hand side. You can see that I am already running the Docker image successfully, with the npm run server:production command. Dyno is a kind of flexible computing time, which represents the basis on which Heroku's system and pricing work.

	The Resources tab shows you information about the Dynos that we are using, as well as add-ons that Heroku provides. They provide a dozen add-ons, which includes a MySQL database, a CMS system, and many others.

	The Deploy tab shows you information about the deployment process. Here, you can find information on how deploying through Git, GitHub, or the Docker Registry works. Furthermore, you can also set up a CI/CD pipeline, like we did manually through CircleCI.

	The Metrics tab provides analytics on CPU usage and other things. This could be helpful for seeing the workload in production.

	The Activity tab shows you the latest things that have happened with the Heroku app.

	The Access tab gives you the option to share your Heroku app with other colleagues so that they can work together with you as a team.

	The Settings tab shows you basic information and configuration options that can be used to customize your application. You can find the current Heroku URL, under which your application is served. You can also add custom domains, under which it will be served. More advanced options, like adding environment variables, can also be found here.

Now that our Heroku app has been set up, we can prepare our CD workflow. Before going over to our CircleCI configuration file, we should verify that the new Heroku app can run our application as planned. We are going to test this manually, via the Terminal. Later, CircleCI will automate this process for us.

We should add all of the environment variables that we are using throughout our application first. Our application has to know the credentials for the database, the AWS API keys, and much more. Go to the Settings tab and hit Reveal Config Vars, under Config Vars. You can add each variable by clicking the Add button, as shown in the following screenshot:

All of the environment variables can be taken from the preceding screenshot. Otherwise, our application will not run as expected.

Continue by installing the Heroku CLI on your local machine to test the workflow manually. The instructions can be found at https://devcenter.heroku.com/articles/heroku-cli.

If you have Snap installed on your system, you can run the following command:

sudo snap install --classic heroku

If this is not the case, manually install the Heroku CLI by using the following command:

curl https://cli-assets.heroku.com/install.sh | sh

Make sure that the installation has worked by verifying the version number, using the heroku command, as follows:

heroku --version

From now on, you can follow these instructions to test that your workflow works as expected:

	The Heroku CLI offers a login method. Otherwise, you cannot access your Heroku app and deploy images to it. Execute the following command:

heroku login

The login function will open a browser window for you, where you can log in like before. You will be logged in directly inside of your Terminal through the Heroku web page.

	Heroku offers a private Docker image registry, like Docker Hub, which was specially made for use with Heroku. We will publish our image to this registry, because we can rely on the automatic deployment feature. You can deploy images from this repository to your Heroku app automatically. To authorize yourself at the registry, you can use the following command:

heroku container:login

You should be directly logged in, without further ado.

	Now that we are authorized in all services, we can build our Docker image again. We are using a different tag now, because we will publish the image to the Heroku registry, which is not possible with the old tag name. We are using the image name web, as it is the default name provided by Heroku.

Replace the name graphbook with the name of your app. Run the following command to build the Docker image:

docker build -t registry.heroku.com/graphbook/web .

	In the previous tests in this chapter, we did not publish the generated images to any registry. Replace the graphbook name with your app's name. We will use the docker push command to upload our image to Heroku, as follows:

docker push registry.heroku.com/graphbook/web:latest

This is nothing complicated; we upload the latest version of our Docker image to the registry.

	Still, nothing has gone live yet. There is only one command that we must run to make our application go live, as follows:

heroku container:release web --app graphbook

The container:release command deploys our new web image to our Heroku app. The --app parameter needs to be filled in with the name of the Heroku app that we want to deploy to.

After running the preceding commands, your application should launch. We have tested the complete routine manually, so we should translate this to a CircleCI config, which will do this for us automatically.

We will start with a blank CircleCI config again; so, empty the old config.yml file, and then follow these steps:

	The beginning of our configuration should be the same as before. Insert it into our config.yml file, as follows:

version: 2
jobs:
 build:
 docker:
 - image: circleci/node:10
 steps:
 - checkout
 - setup_remote_docker:
 docker_layer_caching: true

I have just removed the echo command from our config.yml. Next, we must add all of the single steps to build, migrate, and deploy our application. The important thing here is that the indentation is correct.

	Before building and deploying our application, we have to ensure that everything works as planned. We can use the tests we built in the previous chapter using Mocha. Add a second image to the docker section of the preceding code like so:

- image: tkuchiki/delayed-mysql
 environment:
 MYSQL_ALLOW_EMPTY_PASSWORD: yes
 MYSQL_ROOT_PASSWORD: ''
 MYSQL_DATABASE: graphbook_test

We add this second image because it launches an empty MySQL database for us. Our test will use this database to run all tests. The great thing about it is that our tests can run multiple times without failing. Normally, when running our tests locally, we had to remove all test data that was created, otherwise a second test would have failed. Since CircleCI spawns a new database with every job, there won't be such problems.

The image we use allows us to wait for the MySQL server to start and furthermore to specify the credentials using the MYSQL_ROOT_PASSWORD field for example. Our test can use the aforementioned defined credentials to connect to the database.

	Instead of building and deploying the Docker image straight away, we first have to run our automated test. We have to install all dependencies from our package.json file directly within the CircleCI job's container. Add the following lines to the configuration file:

- run:
 name: "Install dependencies"
 command: npm install

The name property is the text that is displayed inside of CircleCI, next to each row of our job's details.

	Our test relies on the fact that the back end and front end code is working. This includes the fact that our database is also correctly structured with the newest migrations applied. We can apply the migrations using Sequelize which we are going to install with the following lines of code::

- run:
 name: "Install Sequelize"
 command: sudo npm install -g mysql2 sequelize sequelize-cli

We migrate all of the database changes, like new fields or tables. To do this, we will install the Sequelize CLI, which will run all of the migrations for us, We install the mysql2, sequelize, and sequelize-cli packages, which are the only required ones. Do not forget to prefix the command with sudo. Otherwise, you will get an Access denied error alert.

	Everything that we need to run our test is now prepared. All of the packages are installed, so, we just have to migrate the database and run the tests. To make sure that the database has been started though, we have to add one further command, which lets the CircleCI job wait until the database is started. Insert the following lines:

- run:
 name: Wait for DB
 command: dockerize -wait tcp://127.0.0.1:3306 -timeout 120s

The dockerize command is a small tool featuring some functionalities that make your work easier in an environment with Docker images. The -wait option tells dockerize to poll the MySQL database port 3306 of the CircleCI container. Until a successful response is received, all later commands from our configuration file are not executed.

	The next task of our CircleCI workflow is, of course, to apply all migrations to the test database. Add the following lines:

- run:
 name: "Run migrations for test DB"
 command: sequelize db:migrate --migrations-path
 src/server/migrations --config src/server/config/index.js --env
 production
 environment:
 NODE_ENV: production
 password: ''
 database: graphbook_test
 username: root
 host: localhost

What's important here is that you add the --env option with production to apply the changes to the database we have in the environment variables. To overwrite the default environment variables in our CircleCI project settings, we can specify the environment property under which we can define environment variables that only take action in the command we execute. They are not taken over to later commands. It is a great way to overwrite default variables with the credentials that work for the test database within CircleCI. The command we execute is the same one we already used for our application.

	Now that the database has been updated, we can execute the test. Insert the following lines to run our npm run test script with the correct environment variables, as before:

- run:
 name: "Run tests"
 command: npm run test
 environment:
 NODE_ENV: production
 password: ''
 database: graphbook_test
 username: root
 host: localhost
 JWT_SECRET: 1234

Beyond the database credentials, we also have to specify the JWT_SECRET for the automated test. Our back end assumes that it is set to verify the signup process for the users.

	Because we release our container image to our Heroku app, we also need the Heroku CLI installed inside of the deployment job that was started by CircleCI. Add the following lines to our config.yml file to install the Heroku CLI:

- run:
 name: "Install Heroku CLI"
 command: curl https://cli-assets.heroku.com/install.sh | sh

The preceding command will install the Heroku CLI, like we did before on our local machine.

	We must log in to the Heroku Image Registry to push our Docker image after the image has been built. Add the following lines of code to our configuration file:

- run:
 name: "Login to Docker"
 command: docker login -u $HEROKU_LOGIN -p $HEROKU_API_KEY
 registry.heroku.com

The docker login command takes a -u or --user parameter with the username for our Heroku account. You have to specify a second option, using the -p parameter, which is the password for our Heroku account. However, instead of the password, we will provide a Heroku API key here. You can find your API key at https://dashboard.heroku.com/account. You can click on reveal or regenerate to get a new API key.

The HEROKU_LOGIN and HEROKU_API_KEY variables must be set inside of CircleCI's environment variables. Go to the project settings by hitting the settings icon in the top-right of your CircleCI job, and add the environment variables, as follows:

The first two variables are required to upload the final image to the Heroku registry. The last four variables store the database credentials for our production database. We already specified them on Heroku, but we will also need them while migrating all of the database changes in a later step.

The database credentials will automatically be used for migrating database changes to the production database. If you want to use a different database for testing and production, you will need to define them separately here, and apply them in the Dockerfile. The best approach is to have a separate testing database that is cleaned after running the automated tests. You can add another CircleCI task to create a new database whenever a new build job is started. Please remember to edit the ENV statements and add a special test database for the testing procedure when going live with this workflow.

	Now, we can start building our Docker image, like we did previously in our manual test. Add the following step to the config.yml file:

- run:
 name: "Build Docker Image"
 command: docker build -t registry.heroku.com/graphbook/web .

	After building the image with the preceding command, we can push the image to the Heroku registry. Add the following lines to the configuration file:

- run:
 name: "Push Docker Image to Heroku registry"
 command: docker push registry.heroku.com/graphbook/web:latest

	Next, we will migrate the changes to the database structures with the command that we covered in Chapter 3, Connecting to The Database:

- run:
 name: "Run migrations for production DB"
 command: sequelize db:migrate --migrations-path
 src/server/migrations --config src/server/config/index.js --env
 production

What's important here is that you add the --env option with production to apply the changes to the production database. The environment variables from the CircleCI project settings are used to apply those migrations.

	Finally, we can deploy our new application, as follows:

 - run:
 name: "Deploy image to Heroku App"
 command: heroku container:release web --app graphbook

This is the same command that we used before, when we manually tested the workflow. The preceding command uses the Heroku CLI, which we installed in an earlier step.

You can commit and push this new config file into your Git repository, and CircleCI should automatically process it and create a new job for you.

The resulting job should look like as follows:

As you can see in the preceding screenshot, all of the steps of our config.yml file are listed with their names and were successfully executed. Your application should be running now. The image was pushed to the Heroku image registry, which directly deployed the latest version of our image to the Heroku app.

If you want to know whether everything is working as expected, you can run the logs function of Heroku CLI on your local machine, as follows:

heroku logs --app graphbook

This command will show you the latest logs in the command line of our application's container.

The automated deployment of our application is finished now, and we will be able to release new versions of our application continuously.

 Summary

In this chapter, you learned how to dockerize your application using a normal Dockerfile and a multi-stage build.

Furthermore, I have shown you how to set up an exemplary continuous deployment workflow using CircleCI and Heroku. You can replace the deployment process with a more complex setup by using AWS, but continue using our Docker image.

Having read this chapter, you have learned everything from developing a complete application to deploying it to a production environment. Your application should now be running on Heroku.

 Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

React Cookbook

Carlos Santana Roldan

ISBN: 9781783980727

	Gain the ability to wield complex topics such as Webpack and server-side rendering

	Implement an API using Node.js, Firebase, and GraphQL

	Learn to maximize the performance of React applications

	Create a mobile application using React Native

	Deploy a React application on Digital Ocean

	Get to know the best practices when organizing and testing a large React application

Learn React with TypeScript 3

Carl Rippon

ISBN: 9781789610253

	Gain a first-hand experience of TypeScript and its productivity features

	Transpile your TypeScript code into JavaScript for it to run in a browser

	Learn relevant advanced types in TypeScript for creating strongly typed and reusable components.

	Create stateful function-based components that handle lifecycle events using hooks

	Get to know what GraphQL is and how to work with it by executing basic queries to get familiar with the syntax

	Become confident in getting good unit testing coverage on your components using Jest

 Leave a review - let other readers know what you think

Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

 OEBPS/Images/image00329.jpeg
v id avatar username createdAt updatedAt
Copy @Delete 1 /uploadslavataripng TestUser 2018-08-13 17:04:15 2018-08-13 17:04:15

Copy @Delete 2 luploads/avatar2png TestUser2 2018-08-13 17:04:15 2018-08-13 17:04:15

OEBPS/Images/image00330.jpeg
il v id text createdAt updatedAt userld
[& Edit 3iCopy @Delete 1 Lorem ipsum 1 2018-08-14 11:08:28 2016-08-14 11:08:28 1

&7 Edit 3¢ Copy @Delete 2 Lorem ipsum 2 2018-08-14 11:08:28 2018-08-14 11:08:28 2

[S Edt 3iCopy @Delete 3 Youjustaddedapost 2018-08-14 11:08:46 2018-08-14 11:08:46 1

OEBPS/Images/image00327.jpeg
«T— v oid text createdAt updatedAt
[S Edit 3iCopy @Delete 1 Loremipsum 1 2018-08-13 15:28:40 2018-08-13 15:28:40

[Edit 3:Copy @Delete 2 Loremipsum 2 2018-08-13 15:28:40 2018-08-13 15:28:40

OEBPS/Images/image00328.jpeg
Actions Constraint properties

Drop
OO e

| Constraint name

ONDELETE | CASCADE

ONDELETE | RESTRICT

ON UPDATE

ON UPDATE

CASCADE

RESTRICT

Column &

userld

+Add column

+Add column

Foreign key constraint (INNODB)

Database.

graphbook_dev

graphbook_dev

Table

Users

Column

OEBPS/Images/image00331.jpeg
Table Action
Chats J [Browse
Posts J [T Browse
SequelizeMeta oy (5] Browse
Users J [H]Browse

users_chats g [5] Browse

5 tables Sum

4 Structure
T Structure
4 Structure
T Structure

4 Structure

% Search
% Search
% Search
4 Search

% Search

& Insert @ Empty @ Drop
Insert {0 Empty @ Drop
¢ Insert @@ Empty @ Drop
¢ Insert @ Empty @ Drop
Fé Insert @ Empty @ Drop

o

Rows

© Type
InnaDB

InnoDB

InnoDB

InnoDB

© InnoDB

10 InnoDB

Collation

utf8_general_ci
utf8_general ci
utf8_unicode_ci
utf8_general_ci
utf8_general_ci

utf8_general_

Size Overhead

16 k8

21

k8

s

a8k

104 38

OEBPS/Images/image00332.jpeg
Actions Constraint properties

@ Drop

[users_chats_ibf_1

Drop |
LI pe————

| onDELETE | RESTRICT

| onpELETE | RESTRICT

ON UPDATE

ON UPDATE

Column &

RESTRICT v userld
+Add column

RESTRICT v chatld

+Add column

Foreign key constraint (INNODB)

Database Table Column
graphbook dev v| | Users * i
graphbook dev v| | Chats v

OEBPS/Images/image00333.gif
v {data: {.}, Loading: false, networkStatus: 7, stal
vt
v posts: Array(2)
vo

61
text: "Lorem psum 17
svatar: "/uploads/avatarl.png”
username: "Test User™

typename: "User”

Symbol(ia): "SPostil.user”

»_proto_: Object

_typename: "Post™

=

Juploads/avatar2.png”
username: "Test User 27
__typename: "User”
“$Post:2.user”
Object

typename: "Post”

(id)

_: Array(0)
Symbo1(1d): "ROOT_QUERY"
»_proto__s: Object

loading: false
netuorkStatus: 7
stale: false

» _proto_: Object

: false} O

OEBPS/Images/image00336.jpeg
Test User 2
' This 1o a vated

OEBPS/Images/image00337.gif
This is a second
test message.
This is a third
test message.

OEBPS/Images/image00334.jpeg
This is a test post!

OEBPS/Images/image00335.jpeg
. Test User 2

uirite your custom post!

, Test User

This is a test post!

! Test User

Lorem ipsum 1

. Test User 2

Lorem ipsum 2

OEBPS/Images/image00318.jpeg
¥ <App>
| ¥<div classhame="container™>
¥ <div classhane="postFora">
v cform onsubmit=Fn()>
<textarea value="" onchange=fn() placeholder="Hrite your custom post!®></textares>
<Input type="submit" value="Subnit"></input>
</form>
<aiv>
¥ <div classhane="feed">
¥ <diy key="2" classiane="post">
¥ <div classhane="header">
<ing src="/uploads /avatar1.png"></ ing>
<h2>Test User</n2>

<aivs
<p classNane="content"sLoren Ipsunc/p>
<aivs
¥ <diy key="1" classtane="post">

¥ <diy classhane="header">
<ing src="/uploads /avatar2.png"></ing>
<ha>Test user 2/n2>
</aiv>
<p classiane="content">Loren Ipsunc/p>
<aiv>
<aiv>
<aivs
<app>

OEBPS/Images/image00319.jpeg
Props.
Empty object

state
postcontent:
posts: Array[2]

OEBPS/Images/image00316.jpeg
Test User

Lorem ipsum

Test User 2

Lorem ipsum

OEBPS/Images/image00317.jpeg
! Test User

Lorem ipsum

. Test User 2

Lorem ipsum

OEBPS/Images/image00322.jpeg
@ Postman

File Edit View Help

=

Book v

&, Invite

Addpost
Collections

» Add Post

=3
POST ~

Book
2 requests

POST Posts

form-data

PosT Add Post ¢

2
3

e
5
al
8
5
10
1
1
B3

query”

hitpi/flocalhost:8000/graphal

s(1) Bodye

B xwww-form-urlencoded @ raw

‘operationiiane”:null,
“mutation addPost($post : PostInput!, Suser:

avatar 113",

‘variables”:{

‘You just added a post.

/uploads/avatar3.png”,
Fake User”

binary

JSON (applicationfjsor)

No Environment v

°o %

Examples(0) v

perem s | v

Cookies Code

UserTnput!) { addPost(post : $post, user: Suser) { id text user { username

Build Browse

Q B & @

OEBPS/Images/image00320.jpeg
bundle.js

node_modules

react-dom

cjs

react-dom.production.min.js

src
-
addStyles.js usis
App.js
- i |
B
P—

react production.min js sylecss

OEBPS/Images/image00321.jpeg
@ Postman - o X
File Edit View Help

Q | No Environment v ©
NewTab & [®
Collections
=3

] = Build Browse

OEBPS/Images/image00325.jpeg
Name Type Collation Attributes Null Default Comments Extra

£ i) No Nore AUTO_INCREMENT
text text utfe_general ci Yes NULL
createdAt datetime No None

updatedAt datetime No Nore

OEBPS/Images/image00326.jpeg
name
Copy @ Delete 20180812190328-create-postjs

OEBPS/Images/image00323.jpeg
phpMyAdmln
on%e

Letzte Favnnlen

8N
) information_schema

mysql
performance_schema

phpmyadmin

sys

3306

(3 Datenbanken =[] sm‘ & Status |

| Benutzerkonten =} Exportieren

[& Importieren ¥ Einstellungen | ¥ Mehr

Allgemeine Einstellungen Datenbank-Server

& Passwort andem

Zeichensatz/Kollation der MySQL-Verbindung @ | utfdmbd_unicode_ci v]

- Server: Localhost via UNIX socket
- Server-Typ: MySQL.

= Server-Version: 5.7 23-0ubuntu0.18.04.1 - (Ubuntu)
- Protokol-Version: 10

- Benutzer devuser@localhost

& Design | pmahomme v
- Schrifigroe: | 82% v

& Weitere Einstellungen

ArizeigeEstlGnGe + SenverZeichensatz: UTF- Unicode (utf8)
& Sprache - Langusge @ | Detsch - German v

Webserver

- Apachel2.429 (Ubuntu)

- Datenbank-Client Version: libmysgl - mysaind 5.0.12-
dev - 20150407 - Sid:
381ea24128471a7519001be390c9Bae0acafe38T §

= PHP-Enweiterung: mysali @ curl @ mbstring @
= PHP-Version: 72.7-0ubuntu0.18.04.2

phpMyAdmin

+ Versionsinformationen: 4.6 6deb
+ Dokumentation

+ Offiziele Homepage

« Mitmachen

« Unterstitzung erhalten

« Liste der Anderungen

« Lizenz

OEBPS/Images/image00324.jpeg
Databases

(3 Create database @

[Patabase name | | colation v (Create)

Database « Collation Action

information_schema ut#s_seneral ci =

Check privileges

mysal Istint_suecish_ci =:| Check privileges

performance_schema utfs_seneral_ci as Check privileges

[phpmyad Latint_suesish_ci. a:| Check privileges

sys utfs_geners1_ci_ 3 Check privileges

Total: 5 latint_suedish_ci

t_ O Checkall With selected: [Drop

OEBPS/Images/image00351.jpeg
GraphQL error: You need to be logged in.

OEBPS/Images/image00352.jpeg
aws

L seba ebe v Frankfurt v

es v Resource Groups v

AWS services Helpful tips

Q @ Manage your costs

Moritor your AWS costs, usage. and
reservations using AWS Budgets. Start now

Create an organization

Use AWS Organizations for policy-based
management of multiple AWS accounts. Start

> Recently visited services

> All services

Build a solution

Get started with simple wizards and automated workflows.

now
@ Launch a virtual machine Build a web app) Pulaimny e ssruers
With EC2 With Etastic Beanstalk With Lightsail
~23 minutes ~6 minutes ~1-2 minutes
Explore AWS
@ Connect an 0T device £<7; Start a development project ﬁ Register a domain Machine Learning with Amazon SageMaker
WIS oTi SRS MMIEodESta: €3 v Route 53 The fastest way to build, train, and deploy machine learning
~5 minutes ~5 minutes ~3 minutes,
models. Leam more. (2
See more

Amazon Relational Database Service (RDS)

RDS manages and scales your database for you. RDS
Learn to build seeall @ supports Aurora, MySQL, PostgreSQL, MariaDB, Oracle,
ver. Leam more.

Leam to deploy your solutions through step-by-step guides, labs, and videos and SQL Ser

AWS Fargate Runs Containers for You

Websites DevOps Backup and recovery
AWS Fargate works with Amazon ECS to run and scale
your containers for you. Pay only for the compute resources

; f you need, scale quickly, and run any size application

vi s, 3 labs 5
3 videos, 3 tutorials, 3 labs Sihlocs, Bkl Siabe 3 iisce;3 oS e Learn more. (2

AWS Marketplace
Find, buy, and deploy popular sof

Big data Databases Mobile

vare products that run on

OEBPS/Images/image00349.jpeg
Post example:

! Test User

This is a test post!

VIEW CODE

const post = {
id: 3,

text: "This is a tes
user: {

avatar: "/upload

¥
b

<Post key={post.id} post={post} />

1.png”,

OEBPS/Images/image00350.jpeg
Email

Password

Logi

OEBPS/Images/image00354.jpeg
Create bucket 5

Set permissions. (4) Review

@ Name and region Configure options

Name and region

Bucket name

Region

EU (Frankiurt) v

Copy settings from an existing bucket

Next

OEBPS/Images/image00355.jpeg
Versior
M Keep all versions of an object in the same bucket. Learm more (7

Server access logging
M Log requests for access to your bucket. Learn more (7'

Tags.
You can use tags to track project costs. L earm more (7'

R TS

Object-level logging
M Record object-level API activity using AWS CloudTrail for an additional cost. See
CloudTrail pricing (Z' o leam more (7

Default encryption
W Automatically encrypt objects when they are stored in S3. Leam more (7'

Management

CloudWatch request metrics
M Monitor requests in your bucket for an additional cost. See CloudWaich pricing (7' or

OEBPS/Images/image00353.jpeg
aws Services v Resource Groups v % [\ SebastianGrebe + Global v Support v

Stream Video to AWS for Analytics—Easily capture, process, and store video streams for analytics and machine learing.

‘ Amazon S3 X Discover the new console Q Quick tips

Q Search for buckets

+ Create bucket O suckess 0

0 Regions [

You do not have any buckets. Here is how to get started with Amazon
S3.

2o

Create a new bucket Upload your data Set up your permissions

By defaul, the permissions on an object

Buckets are globally unique containers After you create a bucket, you can
are private, but you can set up access

for everything that you store in Amazon upload your objects (for example, your shesia iy
3. photo or video files)
others.
Leam more Leam more Leam more

starte

OEBPS/Images/image00358.jpeg
Your Security Credentials

Use this page to manage the credentials for your AWS account To manage credentials for AWS Identity and Access Management (IAM) users, use the IAM Console

To leam more about the types of AWS credentials and how they're sed, see AWS Security Credentials in AWS General Reference.

4 Password
- Multi-factor authentication (MFA)

~ Access keys (access key ID and secret access key)

You use access keys to sign programmatic requests to AWS services. To leam how to sign requests using your access keys, see the signing documentation

that you rotate your access keys every 90 days.

Note: You can have a maximum of two access keys (active of inactive) at a time.

Created Deleted Access Key ID.

Oct 15th 2018
Oct 15th 2018

Oct 15th 2018 Oct 15th 2018
Oct 15th 2018 Oct 15th 2018

Create New Access Key

Last Used

N/A
2018-12-11 22:22 UTC+0100
NiA
NiA

For your protection, store your access keys securely and do not share them. In addition, AWS recommends

Last Used Last Used e, s
Region Service
NA NA Active Make Inactive | Delete
eu-central-1 ecr Active Make Inactive | Delete
N/A NIA Deleted
NA NIA Deleted

A Important Change - Managing Your AWS Secret Access Keys

As described in a previous announcement, you cannot retrieve the existing secret access keys for your AWS root account, though you can still create a new root access key at any time. As a best practice, we recommend creating an 1AM user that

has access keys rather than relying on root access keys.

= CloudFront key pairs
- X.509 certificate

- Account identifiers

OEBPS/Images/image00359.jpeg
Create Access Key.

Your access key (access key ID and secret access key) has been created successfully.

Download your key file now, which contains your new access key ID and secret access key. If you do not
download the key file now, you will not be able to retrieve your secret access key again.

To help protect your security, store your secret access key securely and do not share it
v Hide Access Key

Access Key ID: - AKIATY3YUAHSGEUPBEDA
Secret Access Key: /AQaMAXpTHIMC31101QIEGrgs204062MTW2DSAAF

Download Key Fie || Close

OEBPS/Images/image00356.jpeg
Create bucket

@ Configure options: @ Set permissions

Manage users

User ID Objects Object permissions

Read

= Read [wiite
& wii

‘sebigrebe(Owner)

Access for other AWS account + Add account

Account Objects Object permissions

Manage public permissions

OEBPS/Images/image00357.jpeg
You are accessing the security credentials page for your AWS account. The account credentials provide uniimited access to
your AWS resources,

To help secure your account, follow an AWS best practice by creating and using AWS Identity and Access Management
(IAM) users with limited permissions

Continue to Security Credentials || Get Started with IAM Users

Don't show me this message again

OEBPS/Images/image00340.jpeg
1 <Query> [RuninGrashoL

- Varibles
- Query string

posts
ia
text
user {
avatar

OEBPS/Images/image00341.jpeg
Cache

Search.

Post:10
Post:11
Post:12
Post:13
Post:14
Post:15
Post:16
Post:17
Post:18
Post:19

Post
Post:20
Post:21
Post:22
Post:23
Post:24
Post:25
Post:26
Post:27
Post:28
Post:29

Post
Post:30
Post:4
Post:5

+ ROOT_QUERY

post:

o

[Post]

- post:3
id
text

« post:1
id
text

- post:2
id
text

3

 User
avatar

1

Loren
: User
avatar:

2

Loren
User
avatar:

This is a test post!”

uploads/avatar1.png"”
Test User®

ipsum 17

/uploads avatar1.png”
Test User

ipsum 2

uploads/avatar2.png”
Test User 2"

OEBPS/Images/image00338.gif
Test User 2

5 a test

This is a second
test message.

This is a third
test message.

[Chat window
message!

i
@

OEBPS/Images/image00339.jpeg
> [Py

] Load from cache

-ig

is a test posti”,

‘avatar”: */uploads/avatarl.png”,
username”; "Test User

1,

Loren ipsum 17,

" /uploads/avatarl. png”,
“Test User™

“Loren ipsum 27,

" uploads/avatar2. png”,
“Test User 2°

Documentation Explorer
Q search Schema.

A GraphQL schems provides 3 oot type for each kind of
operation

RooT TYPES

query: Query

mutation: Mutation

OEBPS/Images/image00342.jpeg
GraphQL error: connect ETIMEDOUT

OEBPS/Images/image00343.jpeg
! Test User

This is a test post!

Edit

Delete

OEBPS/Images/image00344.jpeg

OEBPS/Images/image00347.jpeg
Post

sre\client\components\postiindex.js [

PROPS & METHODS

Propname Type Default Description

post object Required Object containing the complete post.

OEBPS/Images/image00348.jpeg
Post

sre\client\components\post\index.js [

PROPS & METHODS

Propname Type Default Description
post shape Required Object containing the complete post.

id: number — Required
text: string — Required
user: shape — Required

Add examples to this component

OEBPS/Images/image00345.jpeg

OEBPS/Images/image00346.jpeg
Graphbook Style
Guide

Filter by name

Error

Fontawesome
Dropdown

Loading
AddPostMutation
DeletePostMutation
UpdatePostMutation
Content

FeedList

PostForm

Header

Post
PostsFeedQuery

Error

src/client/components/error.js 0

Add examples to this component

Fontawesome

src/client/components/fontawesome.js I

Add examples to this component

Dropdown

src/client/components/helpers/dropdown.js O

Add examples to this component

Loading

src/client/components/loading.js I

Add examples to this component

AddPostMutation

src/client/components/mutations/addPost.js I

Add examples to this component

OEBPS/Images/image00371.jpeg
Metrics © Lastday 4 Al operations

Performance Errors

Last day overview

Request Rate

0.075rom

24 hour median
Range:0rpm -0.0017pm
20,80% since yesterday

Highest Request Rate

b794 curentUser 0.024rpm
sab postsFesd 0,016 rpm
2377 {chats{_typename id lastMessagel_typenamet... 0.015

pm
347 user 0,013 rpm
9bsa IntrospectionQuery 0,003 pm

95 Service Time

96.4ms

26 hour median
Range:4.4ms-124.6ms
0,885 since yesterday [_

Slowest ps Service Time

b794 cur 362ms

29ab postsFesd 1063 ms

2377 [chatsl_typename 6 lastMessage_typenamete... 969

ms
347d user 6ams
sba IntrospectionQuery 264ms

Error Percentage

15.74%

26 hour median
Range: 40% - 100%
0745 since yesterday

Highest Error Percentage

b794 currentUser 37.14%

baoe query IntrospectionQuery {_schema {quenyType ... 100

a2e8 query IntrospectionQu

7470 {5«

9bsa IntrospectionQu

OEBPS/Images/image00372.jpeg
Sample trace 0]

< Trace 5bfdba0f.5bfdb40f.76e61dfo1e8 ... >
Sampled at Nov 27th 2018, 10:15pm

PERFORMANCE

93.7ms 83rd 0
Service time Percentile Errors
CACHING

No cache policy was defined for this operation.
Learn more about caching wiith Engine here,

©INsPECTOR

Request latency distribution

II l 15

413ms s43ms 60.6ms 80.5ms 973ms 107.ms

8 Servie Requests

= s =0 s =0 =
. - . .

OEBPS/Images/image00373.gif
Execution

Resolvers
© postsFeed
+ postsFeed:PostFeed
+ posts: [Post]
> posts.0
> posts.1
> posts.2
> posts.3
> posts.4
> posts.s
> posts. 6
> posts.7
> posts.s
© posts.9
d:Int
text:string
© user:User
avatar:string

username:String

- <ams

33ms
22.0ms
219ms
27.ams
345ms
3a1ms
336ms
38ms
363ms
+ <ims
+ <ims

s3.0ms.

aLims

a22ms

- <ims

- <ams

OEBPS/Images/image00376.jpeg
Error count over time

® Erors

Reauest Rate (rpm] ®
1

9:000m Nov2sth

300am

13 operations failed while executing path

currentUser

You need to be logged in.

< 101nstances of this eror
Time
20181127939 pm +01:00
201811-279:40 pm +01:00
2018-11:275:40 pm +01:00
20181127942 pm +01:00
2018-11-279:44 pm +01:00
20181-279:45 pm +01:00
2018-11-279:46 pm <01:00
2018-11-279:48 pm +01:00
201811-279:49 pm +01:00
201811-279:49 pm +01:00

Operation
b794 currentUser
b794 currentUser
5794 currentUser
5794 currentUser
5794 currentUser
5794 currentUser
5794 currentUser
5794 currentUser
b794 currentUser
5794 currentUser

&00am

%00am

Load More Errors
(3 remiring)

12:000m

300pm 9:00pm

Trace
.0.30F
.0.30F
L0.312
.0.310
.0.310
.0.310
1c.42a
.0.310
L0.312
.0.310

OEBPS/Images/image00377.jpeg
v cachecontrol: {version: 1, hints:
vhints: [{path:

tpath: [
gpatn:

: {path:
{patn
{patn:
+ {path:
gpatn:
{patn:
{patn
{path:
fpatn:
gpatn:
{patn:
{patn
gpatn:
: {path:
gpatn:
{patn:
: {path:
gpatn:
{patn:
: {path:
ettt

[postsres
[postsresc
["postsresc
[postsresc
["postsresc
[postsres
[postsresc
["postsresc
[postsresc
["postsresc

“posts”.
“posts

“posts’
“posts

“posts

[{path:

0], maxage:

1, maxage: 5}
osts”], maxage

“posts”, 7,

["postsreed", "posts”, 9,

‘postsFeed”], maxage: 5}, {path:
51, {path: [“postsFeed”, “posts”], maxage: 5},

B
1, maage
1, maage
1, mage
1, maage
maxage
raage
raxage
maxage
raxage
raxage:
“avatar
“avatar

120}
129}
129}
128)
12}
12}
129}
128}
120}
120)
T
1.

: 2s0)
220}

S "avatar®], 210}
“avatar"], : 210}
“avatar"], 210}
“avatar], 210}
“avatar], : 210}
“avatar"], 210}

“avatar
“avatar

1.
1.

210}
: 2s0}

["postsFeed",

‘posts”], maxage: 5},-13

OEBPS/Images/image00374.jpeg
Activity in the last day

Unidentified clients

Allversions

7 operations

13.73% errors

102

Operations
[} Operation Name
b794 currentUser
a%ab postsFeed
2377 {chats|_typename id lastMessage{__type...
3470 user
9b6a IntrospectionQuery
286 login
bade queryIntrospectionQuery{_schema {g...

Requests ~

35

2

2

18

Errors

37.14%

100%

OEBPS/Images/image00375.jpeg
Activity in the last hour

Apollo Backend Client

Allversions

4operations
Versions

1

Unknown Client

Allversions

5 operations
Versions

Unversioned

Apollo Frontend Client

Allversions

1 operations

Versions

Requests

=3

Requests

Requests

) 656
S

swErors
=) 83
resh et

wokrors
G A
renty

swErors

OEBPS/Images/image00380.jpeg
CONTAINER ID IMAGE. COMMAND CREATED STATUS PORTS. NAMES
084993220998 sgrebe/graphbook “npm run server® 4 seconds ago Up 3 seconds. 0.0.0.0:8000->8000/tcp dreamy_knuth

OEBPS/Images/image00381.jpeg
Amazon RDS X

Dashboard

Instances

Clusters
Performance Insights
Snapshots
Automated backups

Reserved instances

Subnet groups
Parameter groups

Option groups

Events

Event subscriptions

Recommendations)

Resources Refresh

You are using the following Amazon RDS resources in the EU (Frankfurt) region (used/quota)

DB Instances (1/40) Parameter groups (1)
Allocated storage (20.00 GB/100.00 TB) Default (1)
Click here to increase DB instances limit Custom (0/100)
Reserved instances (0/40) Option groups (1)
Snapshots (30) Default (1)
Manual (0/100) Custom (0/20)
Automated (6) Subnet groups (1/50)
Recent events (4) Supported platforms VPC
Event subscriptions (0/20) Default network vpc-58231f33

Create database

Amazon Relational Database Service (RDS) makes it easy to set up, operate, and scale a relational database in the cloud.

Restore from S3 Create databa:

Note: your DB instances will launch in the EU (Frankfurt) region

Ad

nal information

Getting started with RDS
Overview and features
Documentation

Articles and tutorials

Data import guide for MySQL
Data import guide for Oracle
Data import guide for SQL Server
New RDS feature announcements
Pricing

Forums

Service health View service health dashboard

Current status Details

© Amazon Relational Database Service (Frankfurt) Service is operating normally

Database Preview Environment

Get early access to new DB engine versions, before
they're generally available. The RDS database preview
environment lets you work with upcoming beta,
release candidate, and early production versions of
PostgreSQL engines. Preview environment instances
are fully functional, so you can easily test new features
and functionality with your applications. Info

Preview PostgreSQL in US EAST (Ohio)

OEBPS/Images/image00378.jpeg
v {operationnane: “postsreed", variables: {page: 8, limit: 16}, extensions: {,_}}
v extensions: {,}
wpersistedouery: {version: 1, shadseHash: “G3CeS3BCDSe456387Ca45203206857 5G5S4I FabISTEC3e25Ce0e1 Fagess”)
Shazserash: "a3cessadbSesasap7Cass203206067a8eB6Co4@15F abds78CIe25CedH 1 Fabea6"
version: 1
operstionane: “postsreed”
»varizbles: {page: o, limit: 10}

OEBPS/Images/image00379.jpeg
REPOSITORY TAG IMAGE ID CREATED SIZE
Sgrebe/graphbook latest. fe3anceba2ss 27 minutes ago 1.2268
node. 10 75a304428e1d 3 days ago 89aMB.

OEBPS/Images/image00362.jpeg
Test User 2
test2@example.com

You can provide further information here and build your
really personal header component for your users.

. Test User 2

Lorem ipsum 2

OEBPS/Images/image00360.jpeg
Drag-n-drop a file or click to
add an image

Zccepted file types: .jpeg, .jpg, -PRg

x file size: 3N

Save

OEBPS/Images/image00361.jpeg

OEBPS/Images/image00365.jpeg
Graphbook application test
1) renders and serves the index page

0 passing (15)
1 failing

1) Graphbook application test

expected [Error: connect ECOMIREFUSED 127.0.0.1:5008] to ot exist
at Object. should.not.exist. (node_modules\chai \Lib\chai\interface\should. j5:207:38)

at Request._callback (:/Arbeit/Buch/chapter 11 - final/test/app.test.js:24:18)

at self.callback (E:\node_moduiles\request\request. 3s:185:22)

at Request.onRequestError (E:\node_modules\request\request. :677:8)

at Socket. socketErrorListener (_htEp_client. js:387:9)

at enitErrorlT (internal/streans/destroy.js:64:8)

at _conbinedTickCallback (internal/process/next_tick. js:136:11)

at process. _tickCallback (internal/process/next_tick.js:159:9)

OEBPS/Images/image00366.jpeg
Graphbook application test
¥ renders and serves the inc

1 passing (

OEBPS/Images/image00363.jpeg
R @] | Eements
® 0 mva
fiter

Name
Dslmmum\ms

1713 requests | 08/69.

Console

Audits Sources Network Security Application Memory Performance AdblockPius React Apolio :

View: 55 =i © Growpbyframe | O Presenelog @ Disablecacne | @ Offine Oniine v

@ Hide data URLs Al | XHR JS CSS img Media Font Doc [[[5 Manifest Otner

D e s
© Al ¥ Enter regex for exsmple: (web)?socket

oute Length [Time
1typecomecton | [3|z
0ty paos Ve) exiensons i, apestoname - onsssgeAcec Uy Susscriation onesesgeAdaes (1 messagehcds (0 n terin rat . 297 221631273
Ctoe somecton.scc] 25 21831391

s (sta: 00

vpayload: {data: {,-}}
vasts: 4,)
vnessagesdded: {10: 2, text;

leu message”, chat: {id: 1, _typensme: "Chat"}, user: {id: 2, _typename: "User"), }

vehat: {1d: 1, _typename: "Chat"}
i0: 1
__typenane: “chat”

Wi

text: "New message”

vuser: {id: 2, _typename: "User"}
i0: 2
_typenane: “User”
Typenane: “Message"

type: "data”

OEBPS/Images/image00364.jpeg
New message

OEBPS/Images/image00369.jpeg
Explorer ©tasthour

Registry Deprecations

Version f470de

Comitted on November 27 at 6:34pm

Version History.

Root types

RootMutation

Field

addPost: Post

ost

updatePost:

deletePost: Response

addChat: Chat

addMessage: Message

login: Auth

logout: Response

Arguments

(post: Postinput!)

stinput!, postic:

(post:

(postictint))

(chat: Chatinput)

(message: Messagelnput!)

(emai: String!, password: .

Usedby
Inthe last hour

1.clients, 1 operations

Description

Q Searchschema...

1.6

quests/min

17

types

38

fields

OEBPS/Images/image00370.jpeg
Schema History

Schema versions

27 November 2018

® 0da332 @
11558 pm by Sebastian Grebe <sebigrebe@googlemail.com>

® 0da332 @

6:38pm by Sebastian Grebe <sebigrebe@googlemail.com>

today

types 41 0 0
fields 40 0 0

initial publish

Schema diff
+ Demonstration
Field
+ example: String!

Description

Denonstration.exanple was added

OEBPS/Images/image00367.jpeg
Graphbook application test

¥ renders and serves the index page
00

¥ redirects the user when not matching path is found
authentication

¥ redirects the user when not logged in

¥ allous the user to sign up

¥ allous the user to query all chats

5 passing (3s)

OEBPS/Images/image00368.jpeg
@ Apollo Engine

) CURRENT ORG
Sebiss v

Service List

& Orgsettings

Docs

Contact support

Status Report

Logout

Service List

NEW SERVICE

OEBPS/Images/image00382.jpeg
Instance specifications
Estimate your monthly costs for the DB Instance using the AWS Simple Monthly Calculator [

DB engine
MySQL Community Edition

License model ~Info

general-public-license v

DB engine version Info

MySQL 5.6.41 v ‘

Free tier
The Amazon RDS Free Tier provides a single db.t2.micro instance as well as up to 20 GiB of storage,
allowing new AWS customers to gain hands-on experience with Amazon RDS. Learn more about the
RDS Free Tier and the instance restrictions here.

Only enable options eligible for RDS Free Usage Tier Info

DBinstance class Info

db.t2.micro — 1 vCPU, 1 GiB RAM v

Multi-AZ deployment ~ Info

Create replica in different zone
Creates a replica in a different Availability Zone (A2) to provide data redundancy, eliminate /0 fr
spikes during system backups,

and minimize latency

No

Storage type Info

General Purpose (SSD) v

Allocated storage

20 Gig

(Minimum: 20 G, Maximur: 20 GiB) Higher allocated storage may improve IOPS performance.

OEBPS/Images/image00383.jpeg
Create Security Group

|
Created fom the RDS Management Console: 2018/12/04 2225:32

‘Security Group: sg-0f25078d222af7bc0 _B_N=]

e |

MYSQUAurora Tep 3306 0.0.0.00

OEBPS/Images/image00384.jpeg
Projects » Add Projects » Sebi55/Hands-on-Full-Stack-Web-Development-with-GraphQL-and-React

Set Up Project

CircleCl helps you ship better code, faster. To kick things off, you'll need to add a config..yml file to your project, and start building. After that, we'll start a new build for you each time someone pushes a new commit.

Select from the following options to generate a sample yml for your projeet.

Operating System

‘ A Linux ‘ ‘ & macos ‘

Language

‘ £ Clojure ‘ ‘ £ Elixir ‘ ‘ 6o ‘ ‘ £ Gradle (Java) ‘ ‘ £ Maven (Java) ‘ ‘ £ Node ‘ ‘ & PHP ‘ ‘ £ Python ‘ ‘ £ Ruby ‘ ‘ £ Scala ‘ ‘ £ Other
Next Steps

Youire almost there! We'e going to walk you through setting up a configuration file, committing i, and turning on our listener so that CircleCl can test your commits.

Want to skip ahead? Jump right into our documentation, set up a yml file, and kick off your build with the button below.

1 Create a folder named .cirelecs and add a file config.ynl (so that the filepath be in .eircleci/config.ynl).

2 Populate the config.ymi with the contents of the sample .yml (shown below). Copy To Clipboard

3 Update the sample yml to reflect your project's configuration.

a Push this change up to GitHub.

5 Startbulding! This willlaunch your project on CirclaCl and ke our webhaoks lsten fo updates to your work.

OEBPS/Images/image00387.jpeg
@) rersonal > @ graphbook

Overview Resources Deploy ~ Metrics Activity ~ Access Settings
Installed add-ons (XTI Configure Add-ons @

There are no add-ons for this app

You can add add-ons to this app and they will show here. Lear more.

Dyno formation (TN Configure Dynos @

This app is using free dynos

web npm run serversproduction on
Collaborator activity @ Manage Access ®
& sepigrebe@googiemail.com 5deploys

Latest activity
sebigrebe@googlemail.com:
@ @ s

sebigrebe@googlemail.com:
Today at 1:18 AM - V16

@® 3

sebigrebe@googlemail
Today at 12:37 AM - V15

@® 3

sebigrebe@googlemail.com:
Today at 12:03 AM - V14

® 3

sebigrebe@googlemail.com:
Yesterday at 11:44 PM -v13

@® 3

sebigrebe@googlemail.com:
Yesterday at 11:41 PM -v12

o2

sebigrebe@googlemail
Yesterday at 11:41 PM - v11

a3

sebigrebe@googlem:
Yesterday at 11:41 PM -v10

o a

sebigrebe@googlemail.com:
Yesterday at 11:40 PM - vo

o a

Open app More ¢

Al Activity @

Deployed web (1a56e108be1b)

Deployed web (3esba20e0743)

: Deployed (ueb (ec3a74d6cade)

Deployed web (4e95c643¢565)

Deployed web (b722857867e4)

Set PORT config var

: Set host config var

: Set| database config var

Set passuord config var

OEBPS/Images/image00388.jpeg
Config Vars

Config vars change the way your app behaves.
In addition to creating your own, some add-
ons come with their own.

Config Vars

AWS_ACCESS_KEY_ID - —— Va
AWS_SECRET_ACCESS_KEY R] v
database graphbook 7
ENGINE_KEY e e S———0 68 el ang 7
host. raphbook €y bt e e et Vi
IWT_SECRET e e —————— 2
NODE_ENV production Va
passond [7
PORT 0 ’
usernane graphbook P
KEY VALUE Add

OEBPS/Images/image00385.jpeg
Jobs » Sebi55 » HandsOn » master » 37 (build) 2.0 | C Renmworkiow v] [#]

Finished: Previous: Parallelism: Queued: Resources: @ Workflow: Context: @ Triggered by:
32minago (0005) 36 Txoutof1x 0000 waiting + 00:01inqueue 2CPU/4096MB workflow N/A Sebastian Grebe (pushed c14df52)
comms (1)
SebastianGrebe 0~ ¢14df52 circle
Test Summary Queue (00:01) ‘ Artifacts ‘ Configuration Timing ‘ Parameters

Set Up Test Summary

‘Show containers: All(1) Successful (1) Failed (0)

o °
(0005) Add Containers +

TEST
| $ Spin up Environment 0001
| $ Checkout code 00:00
| $ Setup a remote Docker engine 00:02
| > 00:00

OEBPS/Images/image00386.jpeg
container - Europe -

OEBPS/Images/image00391.jpeg

OEBPS/Images/image00392.jpeg
React with
TypeScript 3

OEBPS/Images/image00389.jpeg
Updates v Support v

bmlll Settings » Sebi55 » HandsOn View HandsOn »
sous
PROJECT SETTINGS - :
& Environment Variables
WoRKFLOWS G
m Org Settings

INSIGHTS Environment Variables for Sebi55/HandsOn
BUILD SETTINGS

Build Environment

= Add environment variables to the job. You can add sensitive data (.g. API keys) here, rather
RGN st Paraleliom il thaie v the epGaHY:
Environment Variables e — S
[/cvanced settings HEROKU_APL_KEY xoxced06 x
o - HEROKU_LOGIN xoux.com x
B cocncency Commands database soxbook x
Tekbanrands host xoux.com x
password xox234% x
NoTIFICATIONS
username. soxbook x

Chat Notifications
Webhook Notifications

Status Badges

PERMISSIONS

OEBPS/Images/image00390.jpeg
Jobs » Sebi55 » HandsOn » master » 39 (build) 2.0 ‘ C Rerun workflow v

Test Summary ‘ Queue (00:01) ‘ Artifacts ‘ Configuration ‘ Timing Parameters

Set Up Test Summary

‘Show containers: All (1) Successful (1) Failed (0)

TEST
| $ Spin up Environment 0001
| S Checkout code 00:00
| $ Setup aremote Docker engine 00:02
| $ Install Heroku CLI 0001
| $ Login to Docker 00:00
| $ Build Docker Image 0315
| $ Push Docker Image to Heroku registry 0027
| $ Install Sequelize 00:06

Run migrations for production DB 0001

igr for prodt

I S Deploy image to Heroku App. 0001

OEBPS/Text/nav.xhtml

 Guide

 		Table of Contents

 		Cover

 Table of contents

 		Title Page

 		Copyright and Credits

 		Hands-On Full-Stack Web Development with GraphQL and React

 		www.PacktPub.com

 		Why subscribe?

 		Packt.com

 		Contributors

 		About the author

 		About the reviewer

 		Packt is searching for authors like you

 		Preface

 		Who this book is for

 		What this book covers

 		To get the most out of this book

 		Download the example code files

 		Conventions used

 		Get in touch

 		Reviews

 		Preparing Your Development Environment

 		Application architecture

 		The basic setup

 		Installing and configuring Node.js

 		Setting up React

 		Preparing and configuring webpack

 		Render your first React component

 		Rendering arrays from React state

 		CSS with webpack

 		Event handling and state updates with React

 		Controlling document heads with React Helmet

 		Production build with webpack

 		Useful development tools

 		Analyzing bundle size

 		Summary

 		Setting up GraphQL with Express.js

 		Node.js and Express.js

 		Setting up Express.js

 		Running Express.js in development

 		Routing in Express.js

 		Serving our production build

 		Using Express.js middleware

 		Installing important middleware

 		Express Helmet

 		Compression with Express.js

 		CORS in Express.js

 		Combining Express.js with Apollo

 		Writing your first GraphQL schema

 		Implementing GraphQL resolvers

 		Sending GraphQL queries

 		Using multiples types in GraphQL schemas

 		Writing your first GraphQL mutation

 		Back end debugging and logging

 		Logging in Node.js

 		Debugging with Postman

 		Summary

 		Connecting to The Database

 		Using databases in GraphQL

 		Installing MySQL for development

 		Creating a database in MySQL

 		Integrating Sequelize into our stack

 		Connecting to a database with Sequelize

 		Using a configuration file with Sequelize

 		Writing database models

 		Your first database model

 		Your first database migration

 		Importing models with Sequelize

 		Seeding data with Sequelize

 		Using Sequelize with Apollo

 		Global database instance

 		Running the first database query

 		One-to-one relationships in Sequelize

 		Updating the table structure with migrations

 		Model associations in Sequelize

 		Seeding foreign key data

 		Mutating data with Sequelize

 		Many-to-many relationships

 		Model and migrations

 		Chat model

 		Message model

 		Chats and messages in GraphQL

 		Seeding many-to-many data

 		Creating a new chat

 		Creating a new message

 		Summary

 		Integrating React into the Back end with Apollo

 		Setting up Apollo Client

 		Installing Apollo Client

 		Testing the Apollo Client

 		Binding the Apollo Client to React

 		Using the Apollo Client in React

 		Querying in React with the Apollo Client

 		Apollo HoC query

 		The Apollo Query component

 		Mutations with the Apollo Client

 		The Apollo Mutation HoC

 		The Apollo Mutation component

 		Updating the UI with the Apollo Client

 		Refetching queries

 		Updating the Apollo cache

 		Optimistic UI

 		Polling with the Query component

 		Implementing chats and messages

 		Fetching and displaying chats

 		Fetching and displaying messages

 		Sending messages through Mutations

 		Pagination in React and GraphQL

 		Debugging with the Apollo Client Developer Tools

 		Summary

 		Reusable React Components

 		Introducing React patterns

 		Controlled components

 		Stateless functions

 		Conditional rendering

 		Rendering child components

 		Structuring our React application

 		The React file structure

 		Efficient Apollo React components

 		The Apollo Query component

 		The Apollo Mutation component

 		Extending Graphbook

 		The React context menu

 		FontAwesome in React

 		React helper components

 		The GraphQL updatePost mutation

 		The Apollo deletePost mutation

 		The React application bar

 		The React Context API versus Apollo Consumer

 		The React Context API

 		Apollo Consumer

 		Documenting React applications

 		Setting up React Styleguidist

 		React PropTypes

 		Summary

 		Authentication with Apollo and React

 		JSON Web Tokens

 		localStorage versus cookie

 		Authentication with GraphQL

 		Apollo login mutation

 		The React login form

 		Apollo sign up mutation

 		React sign up form

 		Authenticating GraphQL requests

 		Accessing the user context from resolver functions

 		Chats and messages

 		CurrentUser GraphQL query

 		Logging out using React

 		Summary

 		Handling Image Uploads

 		Setting up Amazon Web Services

 		Creating an AWS S3 bucket

 		Generating AWS access keys

 		Uploading images to Amazon S3

 		GraphQL image upload mutation

 		React image cropping and uploading

 		Summary

 		Routing in React

 		Setting up React Router

 		Installing React Router

 		Implementing your first route

 		Secured routes

 		Catch-all routes in React Router

 		Advanced routing with React Router

 		Parameters in routes

 		Querying the user profile

 		Programmatic navigation in React Router

 		Remembering the redirect location

 		Summary

 		Implementing Server-Side Rendering

 		Introduction to server-side rendering

 		SSR in Express.js

 		Authentication with SSR

 		Running Apollo queries with SSR

 		Summary

 		Real-Time Subscriptions

 		GraphQL and WebSockets

 		Apollo Subscriptions

 		Subscriptions on the Apollo Server

 		Subscriptions on the Apollo Client

 		Authentication with Apollo Subscriptions

 		Notifications with Apollo Subscriptions

 		Summary

 		Writing Tests

 		Testing with Mocha

 		Our first Mocha test

 		Starting the back end with Mocha

 		Verifying the correct routing

 		Testing GraphQL with Mocha

 		Testing the authentication

 		Testing authenticated requests

 		Testing React with Enzyme

 		Summary

 		Optimizing GraphQL with Apollo Engine

 		Setting up Apollo Engine

 		Analyzing schemas with Apollo Engine

 		Performance metrics with Apollo Engine

 		Error tracking with Apollo Engine

 		Caching with Apollo Server and the Client

 		Summary

 		Continuous Deployment with CircleCI and Heroku

 		Preparing the final production build

 		Code-splitting with React Loadable and webpack

 		Code-splitting with SSR

 		Setting up Docker

 		What is Docker?

 		Installing Docker

 		Dockerizing your application

 		Writing your first Dockerfile

 		Building and running Docker containers

 		Multi-stage Docker production builds

 		Amazon Relational Database Service

 		Configuring Continuous Integration

 		Deploying applications to Heroku

 		Summary

 		Other Books You May Enjoy

 		Leave a review - let other readers know what you think

OEBPS/Images/cover00393.jpeg
Full-Stack Web
Development with
GraphQL and React

Build scalable full-stack applications while learning to solve complex
problems with GraphQL

7 «m" :

ackb -

www.packt.com

Sebastian Grebe

OEBPS/Images/image00311.jpeg

OEBPS/Images/image00312.jpeg

OEBPS/Images/image00310.jpeg

OEBPS/Images/image00314.jpeg
Request https://www.example.com

Express returns a static HTML file

Requests all resources incl. a bundled.js file

EXPress

Returns an React application with this bundle

Apollo Client runs all GraphQL requests

EXPress

React renders the proovided data

@ GraphQL returns the collected data

OEBPS/Images/image00315.gif
This utility will walk you through creating a package.json file.
It only covers the most comon items, and tries to guess sensible defaults.
See “npm help json® for definitive documentation on these Fields

and exactly what they do.

Use “npm install <pkg>” afterwards to install a package and
save it as a dependency in the package.json ile.

Press “C at any tine to quit.
package name: (graphbook)
version: (1.6.6) 8.6.1

on: |

Ticense: (ISC)
About to write to C:\Users\sebig\Desktop\testit\graphbook\package. json:
<

“name": "graphbook

~version": 0.0.1%,

OEBPS/Images/image00313.jpeg
Mapt

