
        
            [image: Spring 5.0 By Example]
        
    
        

            
            
                
Spring 5.0 By Example





 

 

 



Grasp the fundamentals of Spring 5.0 to build modern, robust, and scalable Java applications



 

 

 

 

 

 

 

 

Claudio Eduardo de Oliveira



 

 

 

 

 

 

 



 

 





BIRMINGHAM - MUMBAI





            

            
        
    
        

            
            
                


            

            
        
    
        

                            
                    Spring 5.0 By Example

                
            
            
                
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Aaron Lazar

Acquisition Editor: Chaitanya Nair

Content Development Editor: Lawrence Veigas

Technical Editor: Adhithya Haridas

Copy Editor: Safis Editing

Project Coordinator: Prajakta Naik

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Jisha Chirayil

Production Coordinator: Aparna Bhagat

First published: February 2018

Production reference: 1230218

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78862-439-8

www.packtpub.com





            

            
        
    
        

            
            
                























I dedicate this book to my loving wife for her continued support, patience, and encouragement throughout the long process of writing this book.





            

            
        
    
        

            
            
                


mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.



            

            
        
    
        

                            
                    Why subscribe?

                
            
            
                

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals



	
Improve your learning with Skill Plans built especially for you



	
Get a free eBook or video every month



	
Mapt is fully searchable



	
Copy and paste, print, and bookmark content







            

            
        
    
        

                            
                    PacktPub.com

                
            
            
                
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.





            

            
        
    
        

                            
                    Contributors

                
            
            
                


            

            
        
    
        

                            
                    About the author

                
            
            
                
Claudio Eduardo de Oliveira is a software architect and software developer working for Sensedia. He works with APIs, microservices, and cloud-centric applications. He has more than ten years of experience in software development with Java and JVM languages. He is a speaker at some important events in Brazil about Spring and other Java Frameworks.

I want to thank the people who have worked with me during my career; people who have taught me during my journey, who have helped me acquire knowledge.

Also, I would like to thank my parents, who educated and supported me during my studies. I will always be grateful for that.



            

            
        
    
        

                            
                    About the reviewer

                
            
            
                
Paulo Zanco is a solution architect working for Daitan Labs. He is also a system architect with over 25 years of experience at national and international large/middle-sized companies. He has led many complex projects consisting of medium and large teams. He has extensive experience of designing and developing object-oriented and services systems. He is also certified by Sun and Oracle, in J2EE and SOA technologies. He holds a Master's degree in Management Information Systems from Pontifícia Universidade Católica de Campinas.

 

 

 

 

 



            

            
        
    
        

                            
                    Packt is searching for authors like you

                
            
            
                
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.





            

            
        
    
        
            
                Table of Contents

            

            
                
                    	
            Title Page
    
    


	
            Copyright and Credits
    
    	
            Spring 5.0 By Example
    
    






	
            Dedication
    
    


	
            Packt Upsell
    
    	
            Why subscribe?
    
    


	
            PacktPub.com
    
    






	
            Contributors
    
    	
            About the author
    
    


	
            About the reviewer
    
    


	
            Packt is searching for authors like you
    
    






	
            Preface
    
    	
            Who this book is for
    
    


	
            What this book covers
    
    


	
            To get the most out of this book
    
    	
            Download the example code files
    
    


	
            Download the color images
    
    


	
            Conventions used
    
    






	
            Get in touch
    
    	
            Reviews
    
    










	
            Journey to the Spring World
    
    	
            Spring modularity
    
    	
            Spring Core Framework
    
    	
            Core container
    
    


	
            Spring Messaging
    
    	
            Spring AMQP
    
    


	
            Spring for Apache Kafka
    
    


	
            Spring JMS
    
    






	
            Spring Web MVC
    
    


	
            Spring WebFlux
    
    


	
            Spring Data
    
    


	
            Spring Security
    
    






	
            Spring Cloud
    
    	
            Spring Cloud Netflix
    
    


	
            Spring Cloud Config
    
    


	
            Spring Cloud Consul
    
    


	
            Spring Cloud Security
    
    


	
            Spring Cloud Bus
    
    


	
            Spring Cloud Stream
    
    


	
            Spring Integration
    
    






	
            Spring Boot
    
    


	
            Microservices and Spring Boot
    
    






	
            Setting up our development environment
    
    	
            Installing OpenJDK
    
    


	
            Installing Maven
    
    


	
            Installing IDE
    
    	
            IntelliJ IDEA
    
    


	
            Spring Tools Suite
    
    


	
            Installing Docker
    
    






	
            Introducing Docker concepts
    
    	
            Docker&#xA0;images
    
    


	
            Containers
    
    


	
            Docker networks
    
    


	
            Docker volumes
    
    


	
            Docker commands
    
    	
            Docker run
    
    


	
            Docker container
    
    


	
            Docker network
    
    


	
            Docker volume
    
    














	
            Summary
    
    






	
            Starting in the Spring World &#x2013; the CMS Application
    
    	
            Creating the CMS application structure
    
    	
            The CMS project
    
    	
            Project metadata section
    
    


	
            The dependencies section
    
    


	
            Generating the project
    
    










	
            Running the application
    
    	
            Looking under the hood
    
    


	
            Running the application
    
    	
            IntelliJ IDEA
    
    


	
            Command line
    
    	
            Command line via the Maven goal
    
    


	
            Command line via the JAR file
    
    














	
            Creating the REST resources
    
    	
            Models
    
    	
            Adding Lombok dependency
    
    


	
            Creating the models
    
    	
            Tag
    
    


	
            Category
    
    


	
            User
    
    


	
            News
    
    










	
            Hello REST resources
    
    	
            Creating the CategoryResource class
    
    


	
            UserResource
    
    


	
            NewsResource
    
    










	
            Adding&#xA0;service layer
    
    	
            Changes in the model
    
    	
            Adding a new review
    
    


	
            Keeping the news safely
    
    






	
            Before starting the service layer
    
    	
            CategoryService
    
    


	
            UserService
    
    


	
            NewsService
    
    






	
            Configuring Swagger for our APIs
    
    	
            Adding dependencies to pom.xml
    
    


	
            Configuring Swagger
    
    


	
            First documented API
    
    










	
            Integrate with AngularJS
    
    	
            AngularJS concepts
    
    	
            Controllers
    
    


	
            Services
    
    


	
            Creating the application entry point
    
    


	
            Creating the Category Controller
    
    


	
            Creating the Category Service
    
    










	
            Summary
    
    






	
            Persistence with Spring Data and Reactive Fashion
    
    	
            Learning the basics of Docker
    
    	
            Preparing&#xA0; MongoDB
    
    


	
            Preparing a PostgreSQL database
    
    






	
            Spring Data project
    
    	
            Spring Data JPA
    
    	
            Configuring pom.xml for Spring Data JPA
    
    


	
            Configuring the Postgres connections
    
    


	
            Mapping the models
    
    


	
            Adding the JPA repositories in the CMS application
    
    


	
            Configuring transactions
    
    


	
            Installing and configuring pgAdmin3
    
    


	
            Checking the data on the database structure
    
    










	
            Creating the final data access layer
    
    	
            Spring Data MongoDB
    
    	
            Removing the PostgreSQL and Spring Data JPA dependencies
    
    


	
            Mapping the domain model
    
    


	
            Configuring the database connection
    
    


	
            Adding the repository layer
    
    


	
            Checking the persistence
    
    










	
            Creating the Docker image for CMS
    
    	
            Configuring the docker-maven-plugin
    
    	
            Adding the plugin on pom.xml
    
    


	
            Pushing the image to Docker Hub
    
    


	
            Configuring the Docker Spring profile
    
    


	
            Running the Dockerized CMS
    
    










	
            Putting in Reactive fashion
    
    	
            Reactive Spring
    
    	
            Project Reactor
    
    	
            Components
    
    


	
            Hot and cold
    
    


	
            Reactive types
    
    


	
            Let's play with the Reactor
    
    










	
            Spring WebFlux
    
    	
            Event-loop model
    
    






	
            Spring Data for Reactive Extensions
    
    	
            Spring Data Reactive
    
    


	
            Reactive repositories in practice
    
    


	
            Creating the first Reactive repository
    
    






	
            Fixing the service layer
    
    	
            Changing the CategoryService
    
    






	
            Changing the REST layer
    
    	
            Adding the Spring WebFlux dependency
    
    


	
            Changing the CategoryResource
    
    










	
            Summary
    
    






	
            Kotlin Basics and Spring Data Redis
    
    	
            Learning Kotlin basics
    
    	
            Main characteristics of Kotlin
    
    	
            Syntax
    
    






	
            Semantics
    
    	
            Declaring functions in Kotlin
    
    	
            Simple function with parameters and return type
    
    


	
            Simple function without return
    
    


	
            Single expressions functions
    
    


	
            Overriding a function
    
    






	
            Data classes
    
    


	
            Objects
    
    


	
            Companion objects
    
    






	
            Kotlin idioms
    
    	
            String interpolation
    
    


	
            Smart Casts
    
    


	
            Range expressions
    
    	
            Simple case
    
    


	
            The until case
    
    


	
            The downTo case
    
    


	
            Step case
    
    






	
            Null safety
    
    	
            Safe calls
    
    


	
            Elvis operator
    
    














	
            Wrapping it up
    
    


	
            Creating the project
    
    	
            Project use case
    
    


	
            Creating the project with Spring Initializr
    
    	
            Adding Jackson for Kotlin
    
    






	
            Looking for the Maven plugins for Kotlin
    
    


	
            Creating a Docker network for our application
    
    


	
            Pulling the Redis image from the Docker Hub
    
    






	
            Running the Redis instance
    
    	
            Configuring the redis-cli&#xA0; tool
    
    






	
            Understanding Redis
    
    	
            Data types
    
    	
            Strings
    
    	
            Main commands
    
    






	
            Lists
    
    	
            Main commands
    
    






	
            Sets
    
    	
            Main commands
    
    














	
            Spring Data Reactive Redis
    
    	
            Configuring the&#xA0;ReactiveRedisConnectionFactory
    
    


	
            Providing a ReactiveRedisTemplate
    
    


	
            Creating Tracked Hashtag repository
    
    	
            Creating the service layer
    
    






	
            Exposing the REST resources
    
    






	
            Creating a Twitter application
    
    	
            Configuring pom.xml
    
    


	
            Creating the image
    
    


	
            Running the container
    
    






	
            Testing APIs
    
    


	
            Summary
    
    






	
            Reactive Web Clients
    
    	
            Creating the Twitter Gathering project
    
    	
            Project structure
    
    






	
            Starting the RabbitMQ server with Docker
    
    	
            Pulling the RabbitMQ image from Docker Hub
    
    


	
            Starting the RabbitMQ server
    
    






	
            Spring Messaging AMQP
    
    	
            Adding Spring AMQP in our pom.xml
    
    


	
            Integrating Spring Application and RabbitMQ
    
    


	
            Understanding RabbitMQ exchanges, queues, and bindings
    
    	
            Exchanges
    
    	
            Direct exchanges
    
    


	
            Fanout exchanges
    
    


	
            Topic exchanges
    
    


	
            Header exchanges
    
    






	
            Queues
    
    


	
            Bindings
    
    






	
            Configuring exchanges, queues, and bindings on Spring AMQP
    
    	
            Declaring exchanges, queues, and bindings in yaml
    
    


	
            Declaring Spring beans for RabbitMQ
    
    






	
            Consuming messages with Spring Messaging
    
    


	
            Producing messages with Spring Messaging
    
    






	
            Enabling Twitter in our application
    
    	
            Producing Twitter credentials
    
    	
            Configuring Twitter credentials in application.yaml
    
    


	
            Modelling objects to represent Twitter settings
    
    	
            Twittertoken
    
    


	
            TwitterAppSettings
    
    






	
            Declaring Twitter credentials for the Spring container
    
    










	
            Spring reactive web clients
    
    	
            Producing WebClient in a Spring Way
    
    


	
            Creating the models to gather Tweets
    
    


	
            Authentication with Twitter APIs
    
    


	
            Some words about server-sent events (SSE)
    
    


	
            Creating the gather service
    
    


	
            Listening to the Rabbit Queue and consuming the Twitter API
    
    






	
            Changing the Tracked Hashtag Service
    
    	
            Adding the Spring Starter RabbitMQ dependency
    
    


	
            Configuring the RabbitMQ connections
    
    


	
            Creating exchanges, queues, and bindings for the Twitter Hashtag Service
    
    


	
            Sending the messages to the broker
    
    






	
            Testing the microservice's integrations
    
    	
            Running Tracked Hashtag Service
    
    


	
            Running the Twitter Gathering
    
    


	
            Testing stuff
    
    






	
            Spring Actuator
    
    	
            Adding Spring Boot Actuator in our pom.xml
    
    


	
            Actuator Endpoints
    
    


	
            Application custom information
    
    


	
            Testing endpoints
    
    






	
            Summary
    
    






	
            Playing with Server-Sent Events
    
    	
            Creating the Tweet Dispatcher project
    
    	
            Using Spring Initializr once again
    
    


	
            Additional dependencies
    
    






	
            Server-Sent Events
    
    	
            A few words about the HTTP protocol
    
    


	
            HTTP and persistent connections
    
    	
            WebSockets
    
    


	
            Server-Sent Events
    
    










	
            Reactor RabbitMQ
    
    	
            Understanding the Reactor RabbitMQ
    
    


	
            Configuring RabbitMQ Reactor beans
    
    


	
            Consuming the RabbitMQ queues reactively
    
    






	
            Filtering streams
    
    


	
            Dockerizing the whole solution
    
    	
            Tweet Gathering
    
    


	
            Tweet Dispatcher
    
    






	
            Running the containerized solution
    
    	
            Running the Tracked Hashtag Service container
    
    


	
            Running the Tweet Gathering container
    
    


	
            Running the Tweet Dispatcher container
    
    






	
            The docker-compose tool
    
    	
            Installing docker-compose
    
    


	
            Creating a docker-compose file
    
    


	
            Running the solution
    
    


	
            Testing the network
    
    






	
            Summary
    
    






	
            Airline Ticket System
    
    	
            The Airline Ticket System
    
    	
            Airline functionalities
    
    


	
            Solution diagram
    
    






	
            Spring Cloud Config Server
    
    	
            Creating the Config Server project
    
    


	
            Enabling Spring Cloud Config Server
    
    	
            Using GitHub as a repository
    
    


	
            Configuring the Spring Boot application
    
    


	
            Configuring the Git&#xA0;repository as a properties source
    
    


	
            Running the Config Server
    
    


	
            Testing our Config Server
    
    










	
            Spring Cloud service discovery
    
    	
            Creating Spring Cloud Eureka
    
    


	
            Creating the Eureka server main class
    
    


	
            Configuring the Spring Cloud Eureka server
    
    


	
            Running the Spring Cloud Eureka server
    
    






	
            Spring Cloud Zipkin server and Sleuth
    
    	
            Infrastructure for the Zipkin&#xA0;server
    
    


	
            Creating the Spring Cloud Zipkin server
    
    


	
            Configuring boostrap.yaml and application.yaml
    
    


	
            Running the Zipkin server
    
    






	
            Spring Cloud Gateway
    
    	
            Creating the Spring Cloud Gateway project
    
    


	
            Creating the Spring Cloud Gateway main class
    
    


	
            Configuring the Spring Cloud Gateway project
    
    


	
            Running the Spring Cloud Gateway
    
    


	
            Checking the Eureka server
    
    


	
            Creating our first route with Spring Cloud Gateway
    
    






	
            Putting the infrastructure on Docker
    
    


	
            Summary
    
    






	
            Circuit Breakers and Security
    
    	
            Understanding the service discovery power
    
    	
            Creating the planes microservice
    
    


	
            Coding the planes microservice
    
    


	
            The reactive repository
    
    


	
            Creating the Plane service
    
    


	
            The REST layer
    
    


	
            Running the plane microservice
    
    






	
            Flights microservice
    
    	
            Cloning the Flight microservice project
    
    


	
            Netflix Ribbon
    
    


	
            Understanding the discovery client
    
    


	
            Service discovery and load balancing in practice
    
    






	
            When the services fail, hello Hystrix
    
    	
            Hystrix in a nutshell
    
    


	
            Spring Cloud Hystrix
    
    






	
            Spring Boot Admin
    
    	
            Running Spring Boot Admin
    
    






	
            Spring Cloud Zuul
    
    	
            Understanding the EDGE service project
    
    


	
            Creating the EDGE server
    
    






	
            Summary
    
    






	
            Putting It All Together
    
    	
            The airline Bookings microservice
    
    


	
            The airline Payments microservice
    
    


	
            Learning about the Turbine server
    
    	
            Creating the Turbine server microservice
    
    






	
            Hystrix Dashboard
    
    


	
            Creating the Mail microservice
    
    	
            Creating the SendGrid account
    
    


	
            Creating the Mail microservice project
    
    	
            Adding RabbitMQ dependencies
    
    


	
            Configuring some RabbitMQ stuff
    
    


	
            Modeling a Mail message
    
    


	
            The MailSender class
    
    


	
            Creating the RabbitMQ queue listener
    
    


	
            Running the Mail microservice
    
    










	
            Creating the Authentication microservice
    
    	
            Creating the Auth microservice
    
    


	
            Configuring the security
    
    


	
            Testing the Auth microservice
    
    	
            Client credentials flow
    
    


	
            Implicit grant flow
    
    






	
            Protecting the microservices with OAuth 2.0
    
    	
            Adding the security dependency
    
    


	
            Configuring the application.yaml file
    
    


	
            Creating the JwtTokenStore Bean
    
    










	
            Monitoring the microservices
    
    	
            Collecting metrics with Zipkin
    
    


	
            Collection commands statistics with Hystrix
    
    






	
            Dockerizing the microservices
    
    


	
            Running the system
    
    


	
            Summary
    
    






	
            Other Books You May Enjoy
    
    	
            Leave a review - let other readers know what you think
    
    








                
            

            
        
    
        

                            
                    Preface

                
            
            
                
With growing demands, organizations are looking for systems that are robust and scalable. Hence the Spring Framework has become the most popular framework for Java development. It not only simplifies software development but also improves developer productivity. This book covers effective ways to develop robust applications in Java using Spring.



            

            
        
    
        

                            
                    Who this book is for

                
            
            
                
Developers who are starting out with Spring will learn about the new Spring 5.0 framework concepts followed by their implementation in Java and Kotlin. The book will also help experienced Spring developers gain insights into the new features added in Spring 5.0.



            

            
        
    
        

                            
                    What this book covers

                
            
            
                
Chapter 1, Journey to the Spring World, will guide you through the main concepts of Spring Framework. Here we learn to setup the environment by installing OpenJDK, Maven, IntelliJ IDEA, and Docker. By the end, we will create our first Spring application.

Chapter 2, Starting in the Spring World – the CMS Application, will begin by getting our hands dirty with Spring Initializr to create configurations for our CMS application. We will then learn how to create REST resources, add the service layer and finally integrate with AngularJS.

Chapter 3, Persistence with Spring Data and Reactive Fashion, will build upon our CMS application created in the previous chapter. Here we will learn how to persist data on a real database by learning about Spring Data Reactive MongoDB and PostgresSQL. We will finally learn about Project Reactor which will help you to create a non-blocking application in the JVM ecosystem.

Chapter 4, Kotlin Basics and Spring Data Redis, will give you a basic introduction to Kotlin while presenting the benefits of the language. We will then learn how to use Redis which will be used as a message broker using the publish-subscribe feature.

Chapter 5, Reactive Web Clients, will teach you how to use the Spring Reactive Web Client and make HTTP calls in a reactive fashion. We will also be introduced to RabbitMQ and Spring Actuator.

Chapter 6, Playing with Server-Sent Events, will help you develop an application which will filter tweets by text content. We will accomplish this by consuming the tweeter steam using Server-Sent Events which is a standard way to send data streams from a server to clients

Chapter 7, Airline Ticket System, will teach you to use Spring Messaging, WebFlux, and Spring Data components to build a airline ticket system. You will also learn about circuit breakers and OAuth in this chapter. By the end, we will create a system with many microservices to ensure scalability.

Chapter 8, Circuit Breakers and Security, will help you discover how to apply service discovery features for our business microservices while also understanding how the Circuit Breaker pattern can help us to bring resilience to our applications. 

Chapter 9, Putting It All Together, will bring the entire book into perspective while also teaching you about the Turbine server. We will also look into the Hystrix Dashboard to monitor our different microservices to ensure maintainability and optimum performance of our applications.



            

            
        
    
        

                            
                    To get the most out of this book

                
            
            
                
The readers are expected to have a basic knowledge of Java. Notion about Distributed Systems is an added advantage.

To execute code files in this book, you would need to have the following software/dependencies:


	IntelliJ IDEA Community Edition

	Docker CE

	pgAdmin

	Docker Compose



You will be assisted with installation processes,etc through this book.



            

            
        
    
        

                            
                    Download the example code files

                
            
            
                
You can download the example code files for this book from your account at www.packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:


	Log in or register at www.packtpub.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.



Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:


	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux



The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Spring-5.0-By-Example. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!



            

            
        
    
        

                            
                    Download the color images

                
            
            
                
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://www.packtpub.com/sites/default/files/downloads/Spring50ByExample_ColorImages.pdf.



            

            
        
    
        

                            
                    Conventions used

                
            
            
                
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "It includes the infrastructure connections which are configured in the default profile in application.yaml."

A block of code is set as follows:

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:



management:
  endpoints:
    web:
      expose: "*"

Any command-line input or output is written as follows:

docker-compose up -d

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "The next screen will be shown and we can configure the Environment Variable:"

Warnings or important notes appear like this.

Tips and tricks appear like this.



            

            
        
    
        

                            
                    Get in touch

                
            
            
                
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.



            

            
        
    
        

                            
                    Reviews

                
            
            
                
Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.







            

            
        
    
        

                            
                    Journey to the Spring World

                
            
            
                
Spring is an open source modular framework for the JVM platform. A framework is a collection of libraries whose primary goal is to address common software development problems. The framework should solve these problems in a generic form. 

Rod Johnson created the Spring Framework in 2002 together with his book publication, which was called Expert One-on-One J2EE Design and Development. The idea behind the creation of the framework was to tackle the complexities of Java Enterprise Edition.

At that time, this kind of solution-focused a lot on the details of the infrastructure, and a developer using the solution would spend a lot of time writing code to solve infrastructural problems. Since its creation, one of Rod Johnson's primary concerns has been to increase developer productivity.

The framework was first seen as a lightweight container for Java Runtime Environment, and it became popular in the community, especially because of the dependency injection feature. The framework made dependency injection incredibly easy. Developers hadn't seen such a feature before, and as a consequence, people the world over adopted the project. Year by year, its popularity within the software development world has been increasing.

In the earliest versions, the framework had to work with the XML file to configure the container. At the time, this was so much better than J2EE applications, where it was necessary to create many Ant files to create the boilerplate classes and interfaces.

The framework was always seen as an advanced technology for the Java platform, but in 2014, the Spring team launched the Spring Boot platform. This platform was incredibly successful in the Java Enterprise ecosystem, and it changed the way in which developers built Java Enterprise applications.

Today, Spring is the de facto framework for Java development, and companies around the world use it in their systems. The community is vibrant and contributes to development in different ways, such as opening issues, adding the code, and discussing the framework in the most important Java conferences around the world. Let's look at and play with the famous framework for Java developers.

We will cover the following topics in this chapter:


	Main modules of the Spring Framework

	Spring annotations for each module

	Setting up the development environment

	Docker and Docker commands





            

            
        
    
        

                            
                    Spring modularity

                
            
            
                
Since its foundation, the framework has had a particular focus on modularity. It is an important framework characteristic because it makes the framework an excellent option for different architectural styles and different parts of applications.

It means the framework is not an opinionated, full-stack framework that dictates the rules to make everything work. We can use the framework as we need and integrate it with a wide range of specification and third-party libraries.

For example, for portal web applications, the Spring MVC supports features such as template engines and REST endpoints and integrates them with the popular JavaScript framework, AngularJS.

Also, if the application needs support for a distributed system, the framework can supply an amazing module called Spring Cloud, which has some essential features for distributed environments, such as service registration and discovery, a circuit breaker, intelligent routing, and client-side load balancing.

Spring makes the development applications for Java Runtime easy with different languages, such as Java, Kotlin, and Groovy (with which you can choose the flavor and make the development task fun).

It is divided into various modules. The main modules are as follows:


	Spring Core

	Spring Data

	Spring Security

	Spring Cloud

	Spring Web-MVC



In this book, we will cover the most common solutions involved in Java Enterprise applications, including the awesome Spring Cloud project. Also, we can find some interesting projects such as Spring Batch and Spring Integration, but these projects are for specific needs.



            

            
        
    
        

                            
                    Spring Core Framework

                
            
            
                
This module is the base of the framework and contains the essential support for dependency injection, web features supported by Spring MVC (model-view-controller) and the pretty new WebFlux frameworks, and aspect-oriented programming. Also, this module supports the foundation for JDBC, JMS, JPA and a declarative way to manage transactions. We will explore it and understand the main projects of this module. So let's do it!



            

            
        
    
        

                            
                    Core container

                
            
            
                
The core container is the basis of the whole Spring ecosystem and comprehends four components—core, beans, context, and expression language.

Core and beans are responsible for providing the fundamentals of the framework and dependency injection. These modules are responsible for managing the IoC container, and the principal functions are the instantiation, configuration, and destruction of the object residents in the Spring container.

Spring contexts are also called Spring IoC containers, which are responsible for instantiating, configuring, and assembling beans by reading configuration metadata from XML, Java annotations, and/or Java code in the configuration files.

There are two critical interfaces inside these modules—BeanFactory and ApplicationContext. The BeanFactory takes care of the bean lifecycle, instantiating, configuring, managing, and destroying, and the ApplicationContext helps developers to work with files resources in a generic way, enable to publish events to registered listeners. Also, the ApplicationContext supports internationalization and has the ability to work with messages in different Locales.  

These modules help the context component to provide a way to access the objects inside the container. The context component has the ApplicationContext interface with the essential class for the container.

Some common annotations are @Service, @Component, @Bean, and @Configuration.



            

            
        
    
        

                            
                    Spring Messaging

                
            
            
                
Spring Framework supports a wide range of messaging systems. The Java platform is recognized as providing excellent support for messaging applications, and Spring Framework follows this approach and offers a variety of projects to help developers to write powerful applications with more productivity and fewer lines of infrastructure code. The basic idea of these projects is to provide some template classes that have the convenience methods to interact with the messaging systems.

Also, the project supplies some listener annotations to provide support for listening to messages from the brokers. The framework maintains the standard for different projects. In general, the prefix of the annotations is the name of the messaging system, for example, @KafkaListener.

The framework supplies many abstractions to create messaging applications in a generic way. This is interesting stuff because the application requirements change during the application lifecycle and the message broker solution may change as well. Then, with small changes, the application built with the Spring message module can work in different brokers. This is the goal.



            

            
        
    
        

                            
                    Spring AMQP

                
            
            
                
This subproject supports the AMQP protocol in Spring Framework. It provides a template to interact with the message broker. A template is like a super high-level API that supports the send and receive operations. 

There are two projects in this set: spring-amqp, which can be used for ActiveMQ for instance, and spring-rabbit, which adds support for the RabbitMQ broker. This project enables broker administration through the APIs to declare queues, bindings, and exchanges.

These projects encourage the extensive use of dependency injection provided by the core container, because they make the configuration more declarative and easy to understand.

Nowadays, the RabbitMQ broker is the popular choice for the messaging applications, and Spring provides full support for client interactions up to the level of administration tasks.

Some common annotations are @Exchange and @QeueueBinding.



            

            
        
    
        

                            
                    Spring for Apache Kafka

                
            
            
                
Spring for Apache Kafka supports the broker-based Apache Kafka applications. It provides a high-level API to interact with Apache Kafka. Internally, the projects use the Kafka Java APIs.

This module supports the annotation programming model. The basic idea is that with a couple of annotations and some POJO models, we can bootstrap the application and start listening to and producing messages.

KafkaTemplate is a central class of this project. It enables us to send messages to Apache Kafka with a high-level API. Asynchronous programming is supported as well.

This module offers support for transactions via annotations. This feature is enabled via standard transactional annotations used in Spring-based applications, such as @Transactional.

We also learned about Spring AMQP. This project adds the Spring concept of creating applications based on this broker. The dependency injection features are supported as well.

Some common annotations are @EnableKafka and @KafkaListener.



            

            
        
    
        

                            
                    Spring JMS

                
            
            
                
The idea of this project provides a JMS integration with ideas of Spring Framework projects and supplies a high-level API to interact with brokers. The worst part of a JMS specification is that it has a lot of boilerplate code to manage and close connections.

The JmsTemplate is a central class for this module, and it enables us to send messages to the broker. The JMS specification has a lot of intrinsic behaviors to handle the creation and releases resources, for instance, the JmsTemplate class do this tasks automatically for developers.

The module also supports transactional requirements. The JmsTransactionManager is the class that handles the transactional behavior of the Spring JMS module.

Spring removes the boilerplate code with a couple of annotations. The framework increases the readability of the code and makes the code more intuitive as well.

Some common annotations are @JmsListener and @EnableJms.



            

            
        
    
        

                            
                    Spring Web MVC

                
            
            
                
This module is the first one built by the Spring Team to support the web applications in Spring Framework. This module uses the Servlet API as its foundation, and then these web applications must follow the Servlet Specification and be deployed into servlet containers. In version 5.0, the Spring Team created a Reactive web framework, which will be covered later in this book.

The Spring Web MVC module was developed using the front controller pattern. When the framework was created, this pattern was a common choice for many frameworks, such as Struts and JSF, among others. Under the hood, there is the main servlet in Spring called DispatcherServlet. This servlet will redirect through an algorithm to do the desired work.

It enables developers to create amazing web applications on the Java platform. This portion of the framework provides full support to develop this kind of application. There are some interesting features for this purpose, such as support for internationalization and support for handling cookies. Also, multipart requests are an exciting feature for when the application needs to handle upload files and support routing requests. 

These characteristics are common for most web applications, and the framework has excellent support for these features. This support makes the framework a good choice for this kind of application. In Chapter 2, Starting in the Spring World - The CMS Application, we will create an application using this module and the main features will be explored in depth.

The module has full support for annotation programming since to declare HTTP endpoints until to wrap the request attribute in an HTTP request. It makes the application extremely readable without the boilerplate code to get the request parameter, for example.

Web application-wise, it enables developers to work with robust template engines such as Thymeleaf and Freemarker. It is entirely integrated with routing features and bean validation.

Also, the framework allows developers to build REST APIs with this module. Given all of this support, the module has become a favorite in the Spring ecosystem. Developers have started to create APIs with this stack, and some important companies have started to use it, especially given that the framework provides an easy way to navigate through the annotations. Because of this, the Spring Team added the new annotation @RestController in version 4.0.

We will work a lot with this module. Chapter by chapter, we will learn interesting things about this part of the framework.

Some common annotations are @RequestMapping, @Controller, @Model, @RestController, and @RequestBody.



            

            
        
    
        

                            
                    Spring WebFlux

                
            
            
                
A new module introduced in Spring 5.0, Spring WebFlux, can be used to implement web applications built with Reactive Streams. These systems have nonblocking characteristics and are deployed in servers built on top of Netty, such as Undertown and servlet containers that support + 3.1.

Netty is an open source framework that helps developers to create network applications—that is, servers and clients using the asynchronous, event-driven pattern. Netty provides some interesting advantages, such as lower latency, high throughput, and less resource consumption. You can find more information at https://netty.io.

This module supports annotations based on Spring MVC modules, such as @GetMapping, @PostMapping, and others. This is an important feature that enables us to migrate to this new version. Of course, some adjustments are necessary, such as adding Reactor classes (Mono or Flux).

This module meets the modern web requirements to handle a lot of concurrent channels where the thread-per-request model is not an option.

We will learn about this module in Chapter 3, Adding Persistence with Spring Data and Putting it into Reactive Fashion and implement a fully Reactive application based on Reactive Streams.

Some common annotations are @RequestMapping, @RestController, and  @RequestBody.



            

            
        
    
        

                            
                    Spring Data

                
            
            
                
Spring Data is an interesting module that provides the easiest way to manage application data with Spring-based programming. The project is an umbrella project, with subprojects to support different databases technologies, even relational and nonrelational databases. The Spring Team supports some databases technologies, such as Apache Cassandra, Apache Solr, Redis, and JPA Specification, and the community maintains the other exciting projects, such as ElasticSearch, Aerospike, DynamoDb, and Couchbase. The full list of projects can be found at http://projects.spring.io/spring-data.

The goal is to remove the boilerplate code from the persistence code. In general, the data access layer is quite similar, even in different projects, differing only in the project model, and Spring Data provides a powerful way to map the domain model and repository abstraction.

There are some central interfaces; they're a kind of marker to instruct the framework to choose the correct implementation. Under the hood, Spring will create a proxy and delegate the correct implementation. The amazing thing here is that developers don't have to write any persistence code and then take care of this code; they simply choose the required technology and Spring takes care of the rest.

The central interfaces are CrudRepository and PagingAndSortingRepository, and their names are self-explanatory. CrudRepository implements the CRUD behaviors, such as create, retrieval, update, and delete. PagingAndSortingRepository is an extension of CrudRepository and adds some features such as paging and sorting. Usually, we will find derivations of these interfaces such as MongoRepository, which interacts with MongoDB database technology.

Some common annotations are @Query, @Id, and @EnableJpaRepositories.



            

            
        
    
        

                            
                    Spring Security

                
            
            
                
Security for Java applications was always a pain for developers, especially in Java Enterprise Edition. There was a lot of boilerplate code to look up objects in the application servers, and the security layer was often heavily customized for the application.

In that chaotic scenario, the Spring Team decided to create a Spring Security project to help developers handle the security layer on the Java application.

In the beginning, the project had extensive support for Java Enterprise Edition and integration with EJB 3 security annotations. Nowadays, the project supports many different ways to handle authorization and authentication for Java applications.

Spring Security provides a comprehensive model to add authorization and authentication for Java applications. The framework can be configured with a couple of annotations, which makes the task of adding a security layer extremely easy. The other important characteristics concern how the framework can be extended. There are some interfaces that enable developers to customize the default framework behaviors, and it makes the framework customized for different application requirements.

It is an umbrella project, and it is subdivided into these modules:


	spring-security-core

	spring-security-remoting

	spring-security-web

	spring-security-config

	spring-security-ldap

	spring-security-acl

	spring-security-cas

	spring-security-openid

	spring-security-test



These are the main modules, and there are many other projects to support a wide range of types of authentication. The module covers the following authentication and authorization types:


	LDAP

	HTTP Basic

	OAuth

	OAuth2

	OpenID

	CAAS

	JAAS



The module also offers a domain-specific language (DSL) to provide an easy configuration. Let's see a simple example:

http
  .formLogin()
    .loginPage("/login")
     .failureUrl("/login?error")
      .and()
    .authorizeRequests()
      .antMatchers("/signup","/about").permitAll()
      .antMatchers("/admin/**").hasRole("ADMIN")
      .anyRequest().authenticated();

The example was extracted from the spring.io blog. For more details, go to https://spring.io/blog/2013/07/11/spring-security-java-config-preview-readability/.

As we can see, the DSL makes the configuration task extremely easy and very understandable.

Spring Security's main features are as follows:


	Session management

	Protection against attacks (CSRF, session fixation, and others)

	Servlet API integration

	Authentication and authorization



We will learn more about Spring Security in Chapter 8, Circuit Breakers and Security. We will also put it into practice.

@EnableWebSecurity is a common annotation.



            

            
        
    
        

                            
                    Spring Cloud

                
            
            
                
Spring Cloud is another umbrella project. The primary goal of this project is to help developers create distributed systems. Distributed systems have some common problems to solve and, of course, a set of patterns to help us, such as service discovery, circuit breakers, configuration management, intelligent route systems, and distributed sessions. Spring Cloud tools have all these implementations and well-documented projects.

The main projects are as follows:


	Spring Cloud Netflix

	Spring Cloud Config

	Spring Cloud Consul

	Spring Cloud Security

	Spring Cloud Bus

	Spring Cloud Stream





            

            
        
    
        

                            
                    Spring Cloud Netflix

                
            
            
                
Spring Cloud Netflix is perhaps the most popular Spring module nowadays. This fantastic project allows us to integrate the Spring ecosystem with the Netflix OSS via Spring Boot AutoConfiguration features. The supported Netflix OSS libraries are Eureka for service discovery, Ribbon to enable client-side load balancing, circuit breaker via Hystrix to protect our application from external outages and make the system resilient, the Zuul component provides an intelligent routing and can act as an edge service. Finally, the Feign component can help developers to create HTTP clients for REST APIs with a couple of annotations.

Let's look at each of these:


	Spring Cloud Netflix Eureka: The focus of this project is to provide service discovery for applications while conforming to Netflix standards. Service discovery is an important feature and enables us to remove hardcoded configurations to supply a hostname and ports; it is more important in cloud environments because the machine is ephemeral, and thus it is hard to maintain names and IPs. The functionality is quite simple, the Eureka server provides a service registry, and Eureka clients will contact its registers themselves.



Some common annotations are @EnableEurekaServer and @EnableEurekaClient.


	Spring Cloud Feign: The Netflix team created the Feign project. It's a great project that makes the configuration of HTTP clients for REST applications significantly easier than before. These implementations are based on annotations. The project supplies a couple of annotations for HTTP paths, HTTP headers, and much more, and of course, Spring Cloud Feign integrates it with the Spring Cloud ecosystem through the annotations and autoconfiguration. Also, Spring Cloud Feign can be combined with the Eureka server.



Some common annotations are @EnableFeignClients and @FeignClient.


	Spring Cloud Ribbon: Ribbon is a client-side load balancer. The configuration should mainly provide a list of servers for the specific client. It must be named. In Ribbon terms, it is called the named client. The project also provides a range of load-balancing rules, such as Round Robin and Availability Filtering, among others. Of course, the framework allows developers to create custom rules. Ribbon has an API that works, integrated with the Eureka server, to enable service discovery, which is included in the framework. Also, essential features such as fault tolerance are supported because the API can recognize the running servers at runtime.



Some common annotations are @RibbonClient and @LoadBalanced.


	Spring Cloud Hystrix: An acclaimed Netflix project, this project provides a circuit breaker pattern implementation. The concept is similar to an electrical circuit breaker. The framework will watch the method marked with @HystrixCommand and watch for failing calls. If the failed calls number more than a figure permitted in configuration, the circuit breaker will open. While the circuit is open, the fallback method will be called until the circuit is closed and operates normally. It will provide resilience and fault-tolerant characteristics for our systems. The Spring ecosystem is fully integrated with Hystrix, but it works only on the @Component and @Service beans.



Some common annotations are @EnableCircuitBreaker and @HystrixCommand.



            

            
        
    
        

                            
                    Spring Cloud Config

                
            
            
                
This exciting project provides an easy way to manage system configurations for distributed systems, and this is a critical issue in cloud environments because the file system is ephemeral. It also helps us to maintain different stages of the deployment pipeline. Spring profiles are fully integrated with this module.

We will need an application that will provide the configuration for other applications. We can understand its workings by thinking of the concepts of the server and the client, the server will provide some configurations through HTTP and the client will look up the configuration on the server. Also, it is possible to encrypt and decrypt property values.

There are some storage implementations to provide these property files, and the default implementation is Git. It enables us to store our property files in Git, or we can use the file system as well. The important thing here is that the source does not matter.

Git is a distributed version control. The tool is commonly used for development purposes, especially in the open-source community. The main advantage, when you compare it to some market players, such as SVN, is the distributed architecture.

There is an interesting integration between Spring Cloud Bus and this module. If they are integrated, it is possible to broadcast the configuration changes on the cluster. This is an important feature if the application configuration changes with frequency. There are two annotations that tell Spring to apply changes at runtime: @RefreshScope and @ConfigurationProperties.

In Chapter 7, Airline Ticket System, we will implement an exciting service to provide external configurations for our microservices using this module. Server concepts will be explained in more detail. The client details will be presented as well.

  @EnableConfigServer is a common annotation.



            

            
        
    
        

                            
                    Spring Cloud Consul

                
            
            
                
Spring Cloud Consul provides integrations with Hashicorp's Consul. This tool addresses problems in the same way as service discovery, a distributed configuration, and control bus. This module allows us to configure Spring applications and Consul with a few annotations in a Spring-based programming model. Autoconfiguration is supported as well. The amazing thing here is that this module can be integrated with some Netflix OSS libraries, such as Zuul and Ribbon, via Spring Cloud Zuul and Spring Cloud Ribbon respectively (for example).

@EnableDiscoveryClient is a common annotation. 



            

            
        
    
        

                            
                    Spring Cloud Security

                
            
            
                
This module is like an extension from Spring Security. However, distributed systems have different requirements for security. Normally, they have central identity management, or the authentication lies with the clients in the case of REST APIs. Normally, in distributed systems, we have microservices, and these services might have more than one instance in the runtime environment whose characteristics make the authentication module slightly different from monolithic applications. The module can be used together with Spring Boot applications and makes the OAuth2 implementation very easy with a couple of annotations and a few configurations. Also, some common patterns are supported, such as single sign-on, token relay, and token exchange.

For the microservice applications based on the Spring Cloud Netflix, it is particularly interesting because it enables downstream authentication to work with a Zuul proxy and offers support from Feign clients. An interceptor is used to fetch tokens.

Some commons annotations are @EnableOAuth2Sso and @EnableResourceServer.



            

            
        
    
        

                            
                    Spring Cloud Bus

                
            
            
                
The main goal of this project is to provide an easy way to broadcast changes spread throughout the cluster. The applications can connect the distributed system nodes through the message broker.

It provides an easy way for developers to create a publish and subscribe mechanism using the ApplicationContext provided by Spring Container. It enables the possibility to create applications using the event-driven architecture style with the Spring Ecosystem.

To create custom events, we need to create a child class from RemoteApplicationEvent and mark the class to be scanned via @RemoteApplicationEventScan.

The projects support three message brokers as the transport layer:


	AMQP

	Apache Kafka

	Redis



@RemoteApplicationEventScan is a common annotation. 



            

            
        
    
        

                            
                    Spring Cloud Stream

                
            
            
                
The idea behind this module is to provide an easy way to build message-driven microservices. The module has an opinionated way of configuration. It means we need to follow some rules to create these configurations. In general, the application is configured by the yaml|properties file.

The module supports annotations as well. This means that a couple of annotations are enough to create consumers, producers, and bindings; it decouples the application and makes it easy to understand. It supplies some abstractions around the message brokers and channels, and it makes the developer's life more comfortable and productive as well.

Spring Cloud Stream has Binder implementations for RabbitMQ and Kafka.

Some common annotations are @EnableBinding, @Input, and @Output.



            

            
        
    
        

                            
                    Spring Integration

                
            
            
                
This module supports a lot of Enterprise Application patterns and brings the Spring programming model to this topic. The Spring programming model enables extensive dependence injection support and is annotations programming-centric. The annotations instruct us as to how the framework needs to be configured and defines framework behaviors.

The POJO model is suggested because it is simple and widely known in the Java development world.

This project has some intersections with the other modules. Some other projects use these module concepts to do their work. There is a project called Spring Cloud Stream, for instance.

The Enterprise Integration patterns are based on a wide range of communication channels, protocols, and patterns. This project supports some of these.

The modules support a variety of features and channels, such as the following:


	Aggregators

	Filters

	Transformers

	JMS

	RabbitMQ

	TCP/UDP

	Web services

	Twitter

	Email

	And much more



There are three main concepts of Enterprise application integration:


	Messages

	Message channel

	Message endpoint



Finally, the Spring Integration module offers a comprehensive way to create application integration and enables developers to do it using amazing support.

Some common annotations are @EnableIntegration, @IntegrationComponentScan , and @EnablePublisher.



            

            
        
    
        

                            
                    Spring Boot

                
            
            
                
Spring Boot was released in 2014. The idea behind this project was to present a way to deploy the web application outside of any container, such as Apache Tomcat, Jetty, and so on. The benefit of this kind of deployment is the independence from any external service. It allows us to run the web applications with one JAR file. Nowadays, this is an excellent approach because this forms the most natural way to adopt DevOps culture.

Spring Boot provides embedded servlet containers, such as Apache Tomcat, Jetty, and Undertow. It makes the development process more productive and comfortable when testing our web applications. Also, customizations during configuration are allowed via a configuration file, or by providing some beans.

There are some advantages when adopting the Spring Boot framework. The framework does not require any XML for configuration. This is a fantastic thing because we will find all the dependencies in the Java files. This helps the IDEs to assist developers, and it improves the traceability of the code. Another important advantage is that the project tries to keep the configuration as automatic as possible. Some annotations make the magic happen. The interesting thing here is that Spring will inject the implementation of any code that is generated at runtime.

The Spring Boot framework also provides interesting features to help developers and operations, such as health checks, metrics, security, and configuration. This is indispensable for modern applications where the modules are decomposed in a microservices architecture.

There are some other interesting features that can help the developers DevOps-wise. We can use the application-{profile}.properties or application.yaml files to configure different runtime profiles, such as development, testing, and production. It is a really useful Spring Boot feature.

Also, the project has full support for the tests, since the web layer up to the repository layer.

The framework provides a high-level API to work with unit and integration tests. Also, the framework supplies many annotations and helpers classes for developers.

The Spring Boot project is a production-ready framework with default optimized configurations for the web servers, metrics, and monitoring features to help the development team deliver high-quality software.

We can develop applications by coding in the Groovy and Java languages. Both are JVM languages. In version 5.0, the Spring Team announced the full support for Kotlin, the new language for JVM. It enables us to develop consistent and readable codes. We will look at this feature in depth in Chapter 7, Airline Ticket System.



            

            
        
    
        

                            
                    Microservices and Spring Boot

                
            
            
                
The microservices architectural style, in general, is distributed, must be loosely coupled, and be well-defined. These characteristics must be followed when you want a microservices architecture.

Much of Spring Boot is aimed at developer productivity by making common concepts, such as RESTful HTTP and embedded web application runtimes, easy to wire up and use. In many respects, it also aims to serve as a micro-framework, by enabling developers to pick and choose the parts of the framework they need, without being overwhelmed by bulky or otherwise unnecessary runtime dependencies. This also enables Boot applications to be packaged into small units of deployment, and the framework is able to use build systems to generate those deployables as runnable Java archives.

The main characteristics of microservices are:


	Small-grained components

	Domain responsibility (orders, shopping carts)

	Programming-language agnostic

	Database agnostic



Spring Boot enables us to run an application on embedded web servers such as Tomcat, Jetty, and Undertow. This makes it extremely easy to deploy our components because it is possible to expose our HTTP APIs in one JAR.

The Spring Team even thinks in terms of developer productivity, and they offer a couple of projects called starters. These projects are groups of dependencies with some compatibilities. These awesome projects additionally work with the convention over configuration. Basically, they are common configurations that developers need to make on every single project. We can change these settings in our application.properties or application.yaml files.

Another critical point for microservices architecture is monitoring. Let's say that we're working on an e-commerce solution. We have two components, shopping cart and payments. The shopping cart probably needs to have several instances and payments need to have fewer instances. How can we check these several instances? How can we check the health of these services? We need to fire an alarm when these instances go down. This is a common implementation for all services. The Spring Framework supplies a module called Spring Boot Actuator that provides some built-in health checks for our application, databases, and much more.



            

            
        
    
        

                            
                    Setting up our development environment

                
            
            
                
Before we start, we need to set up our development environment. Our development environment consists of the following four tools:


	JDK

	Build tool

	IDE 

	Docker



We will install JDK version 8.0. This version is fully supported in Spring Framework 5. We will present the steps to install Maven 3.3.9, the most famous build tool for Java development, and in the last part, we will show you some detailed instructions on how to install IntelliJ IDEA Community Edition. We will use Ubuntu 16.04, but you can use your favorite OS. The installation steps are easy.



            

            
        
    
        

                            
                    Installing OpenJDK

                
            
            
                
OpenJDK is a stable, free, and open source Java development kit. This package will be required for everything related to code compilation and runtime environments. 

Also, it is possible to use an Oracle JDK, but you should pay attention to the License and Agreements. 

To install OpenJDK, we will open a terminal and run the following command:

sudo apt-get install openjdk-8-jdk -y

We can find more information on how to install Java 8 JDK in the installation section (http://openjdk.java.net/install/) of the OpenJDK page.

Check the installation using the following command:

java -version

You should see the OpenJDK version and its relevant details displayed as follows:



Now that we have installed the Java development kit, we are ready for the next step. In the real world, we must have a build tool to help developers to compile, package, and test the Java applications.

Let's install Maven in the next section.



            

            
        
    
        

                            
                    Installing Maven

                
            
            
                
Maven is a popular build tool for Java development. Some important open source projects were built using this tool. There are features that facilitate the build process, standardize the project structure, and provide some guidelines for best practices development.

We will install Maven, but the installation step should be executed after the OpenJDK installation.

Open a terminal and execute the following:

sudo apt-get install maven -y

Check the installation using this command:

mvn -version

You should see the following output, although the version may be different for you:



Well done. Now we have Maven installed. Maven has a vibrant community that produces many plugins to help developers with important tasks. There are plugins to execute a unit test and plugins to prepare the project for the release event that can be integrated with SCM software.

We will use the spring boot maven plugin and docker maven plugin. The first converts our application to a JAR file and the second enables us to integrate with Docker Engine to create images, run containers, and much more. In the next few chapters, we will learn how to configure and interact with these plugins.



            

            
        
    
        

                            
                    Installing IDE

                
            
            
                
The IDE is an important tool to help developers. In this book, we will use the IntelliJ IDEA as an official tool for developing our projects. There are no restrictions for other IDEs because the project will be developed using Maven as a build tool. 

The IDE is a personal choice for developers, and in general, it involves passion; what some people love, other developers hate. Please feel free to use your favorite.



            

            
        
    
        

                            
                    IntelliJ IDEA

                
            
            
                
IntelliJ IDEA is a JetBrains product. We will use the Community Edition, which is open source and a fantastic tool with which to code Java and Kotlin. The tool offers a fantastic autocomplete feature, and also fully supports Java 8 features.

Go to https://www.jetbrains.com/idea/download/#section=linux and download the Community Edition. We can extract the tar.gz and execute it.



            

            
        
    
        

                            
                    Spring Tools Suite

                
            
            
                
The Spring Tools Suite is based on Eclipse IDE, provided by the Eclipse Foundation, of course. The goal is to provide support for the Spring ecosystem and make the developer's life easier. Interesting features such as Beans Explorer are supported in this tool.

Download the tool at the following link:

http://download.springsource.com/release/STS/3.6.4.RELEASE/dist/e4.4/groovy-grails-tool-suite-3.6.4.RELEASE-e4.4.2-linux-gtk-x86_64.tar.gz



            

            
        
    
        

                            
                    Installing Docker

                
            
            
                
Docker is an open source project that helps people to run and manage containers. For developers, Docker helps in different stages of the development lifecycle.

During the development phase, Docker enables developers to spin up different infrastructure services such as databases and service discoveries like Consul without installation in the current system operational. It helps the developers because developers do not need to install these kinds of systems in the operating system layer. Usually, this task can cause conflicts with the libraries during the installation process and consumes a lot of time.

Sometimes, developers need to install the exact version. In this case, it is necessary to reinstall the whole application on the expected version. It is not a good thing because the developer machine during this time becomes slow. The reason is quite simple, there are many applications that are used during software development.

Docker helps developers at this stage. It is quite simple to run a container with MongoDB. There is no installation and it enables developers to start the database with one line. Docker supports the image tag. This feature helps to work with different versions of the software; this is awesome for developers who need to change the software version every time.

Another advantage is that when the developers need to deliver the artifacts for test or production purposes, Docker enables these tasks via Docker images.

Docker helps people to adopt the DevOps culture and delivers amazing features to improve the performance of the whole process.

Let's install Docker.

The easiest way to install Docker is to download the script found at https://get.docker.com:

curl -fsSL get.docker.com -o get-docker.sh

After the download is completed, we will execute the script as follows:

sh get-docker.sh

Wait for the script execution and then check the Docker installation using the following command:

docker -v

The output needs to look like the following:



Sometimes, the version of Docker can be increased, and the version should be at least 17.10.0-ce.

Finally, we will add the current user to the Docker group, and this enables us to use the Docker command line without the sudo keyword. Type the following command:

sudo usermod -aG docker $USER

We need to log out to effect these changes. Confirm whether the command works as expected by typing the following. Make sure that the sudo keyword is not present:

docker ps

The output should be as follows:





            

            
        
    
        

                            
                    Introducing Docker concepts

                
            
            
                
Now, we will introduce some Docker concepts. This book is not about Docker, but some basic instructions on how to use Docker are necessary to interact with our containers during the next few chapters. Docker is a de facto tool that is used to manage containers.



            

            
        
    
        

                            
                    Docker images

                
            
            
                
The Docker image is like a template for a Docker container. It contains a set of folders and files that are necessary to start the Docker container. We will never have an image in execution mode. The image provides a template for Docker Engine to start up the container. We can create an analogy with object orientation to understand the process better. The image is like a class that provides an infrastructure to instantiate some objects, and instances are like a container.

Also, we have a Docker registry to store our images. These registries can be public or private. Some cloud vendors provide these private registries. The most famous is Docker Hub. It can be free, but if you choose this option, the image should be public. Of course, Docker Hub supports private images, but in this case, you have to pay for the service.



            

            
        
    
        

                            
                    Containers

                
            
            
                
Docker containers are a lightweight virtualization. The term lightweight means that Docker uses the SO functionalities to cage the system process and manager memory, processors, and folders. This is different from virtualization with VMs because, in this mode, the technology needs to simulate the whole SO, drivers, and storage. This task consumes a lot of computational power and can sometimes be inefficient.



            

            
        
    
        

                            
                    Docker networks

                
            
            
                
A Docker network is a layer that provides runtime isolation for containers. It is a kind of sandbox in which to run containers that are isolated from other containers. When the Docker is installed, by default it creates three networks that should not be removed. These three networks are as follows:


	bridge

	none

	host



Also, Docker provides the user with an easy way to create your network. For this purpose, Docker offers two drivers—bridge and overlay.

Bridge can be used for the local environment, and it means this kind of network is allowed on a single host. It will be useful for our applications because it promotes isolation between containers regarding security. This is a good practice. The name of the container attached to this kind of network can be used as a DNS for the container. Internally, Docker will associate the container name with the container IP.

The overlay network provides the ability to connect containers to different machines. This kind of network is used by Docker Swarm to manage the container in a clustered environment. In the newest version, the Docker Compose tool natively supports Docker Swarm.



            

            
        
    
        

                            
                    Docker volumes

                
            
            
                
Docker volumes are the suggested way to persist data outside of a container. These volumes are fully managed by Docker Engine, and these volumes can be writable and readable depending on the configuration when they are used with a Docker command line. The data of these volumes is persisted on a directory path on a host machine.

There is a command-line tool to interact with volumes. The base of this tool is the docker volume command; the --help argument on the end shows the help instructions.



            

            
        
    
        

                            
                    Docker commands

                
            
            
                
Now we will take a look at Docker commands. These commands are used mainly in the development life cycle, commands such as spin up container, stop containers, remove, and inspect.



            

            
        
    
        

                            
                    Docker run

                
            
            
                
docker run is the most common Docker command. This command should be used to start the containers. The basic structure of a command is as follows:

docker run [OPTIONS] IMAGE[:TAG|@DIGEST] [COMMAND] [ARG...]

The options arguments enable some configurations for the container, for instance, the      --name argument permits you to configure a name for a container. It is important for DNS when the container is running in a bridge network.

The network settings can be configured on the run command as well, and the parameter is  -- net. This enables us to configure the network to which the container will be attached. 

Another important option is detached. It indicates whether the container will run in the background. The -d parameter instructs Docker to run a container in the background.



            

            
        
    
        

                            
                    Docker container

                
            
            
                
The docker container command permits you to manage the containers. There are many commands, as shown in the following list:


	docker container attach

	docker container commit

	docker container cp

	docker container create

	docker container diff

	docker container exec

	docker container export

	docker container inspect

	docker container kill

	docker container logs

	docker container ls

	docker container pause

	docker container port

	docker container prune

	docker container rename

	docker container restart

	docker container rm

	docker container run

	docker container start

	docker container stats

	docker container stop

	docker container top

	docker container unpause

	docker container update

	docker container wait



There are some important commands here. The docker container exec permits you to run commands on a running container. This is an important task to debug or look inside the container files. The docker container prune removes the stopped containers. It is helpful in the development cycle. There are some known commands, such as docker container rm, docker container start, docker container stop, and docker container restart. These commands are self-explanatory and have similar behaviors.



            

            
        
    
        

                            
                    Docker network

                
            
            
                
The docker network commands enable you to manage the Docker network stuff via the command line. There are six basic commands, and the commands are self-explanatory:


	docker network create

	docker network connect

	docker network ls

	docker network rm

	docker network disconnect

	docker network inspect



docker network create, docker network ls, and docker network rm are the main commands. It is possible to compare them with the Linux commands, where the rm command is used to remove things and the ls command is usually used to list things such as folders. The create command should be used to create networks.

The docker network connect and docker network disconnect commands allow you to connect the running container to the desired network. They may be useful in some scenarios.

Finally, the docker network inspect command provides detailed information on the requested network.



            

            
        
    
        

                            
                    Docker volume

                
            
            
                
The docker volume command permits you to manage the Docker volumes via the command-line interface. There are five commands:


	docker volume create

	docker volume inspect

	docker volume ls

	docker volume prune

	docker volume rm



The docker volume create, docker volume rm and docker volume ls commands are effectively used to manage the docker volume by Docker Engine. The behaviors are quite similar to those of the networks, but for volumes. The create command will create a new volume with some options allowed. The ls command lists all volumes and the rm command will remove the requested volume.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we looked at the main concepts of Spring Framework. We understood the main modules of the framework and how these modules can help developers to build applications in different kinds of architecture, such as messaging applications, REST APIs, and web portals.

We also spent some time preparing our development environment by installing essential tools, such as Java JDK, Maven, and IDE. This was a critical step to take before we continue to the next chapters. 

We used Docker to help us to set up a development environment, such as containers for databases and delivery for our application in Docker images. We installed Docker and looked at the main commands for managing containers, networks, and volumes.

In the next chapter, we will create our first Spring application and put it into practice!





            

            
        
    
        

                            
                    Starting in the Spring World – the CMS Application

                
            
            
                
Now, we'll create our first application; at this point, we have learned the Spring concepts, and we are ready to put them into practice. At the beginning of this chapter, we'll introduce the Spring dependencies to create a web application, also we know that Spring Initializr is a fantastic project that enables developers to create Spring skeleton projects, with as many dependencies as they want. In this chapter, we will learn how to put up our first Spring application on IDE and command line, expose our first endpoint, understand how this works under the hood, and get to know the main annotations of Spring REST support. We will figure out how to create a service layer for the CMS (Content Management System) application and understand how Dependency Injection works in a Spring container. We will meet the Spring stereotypes and implement our first Spring bean. At the end of this chapter, we will explain how to create a view layer and integrate that with AngularJS. 

In this chapter, the following topics will be covered:


	Creating the project structure

	Running the first Spring application

	Introducing the REST support

	Understanding the Dependency Injection in Spring 





            

            
        
    
        

                            
                    Creating the CMS application structure

                
            
            
                
Now we will create our first application with the Spring Framework; we will create a basic structure for the CMS application with Spring Initializr. This page helps to bootstrap our application, it's a kind of guide which allows us to configure the dependencies on Maven or Gradle. We can also choose the language and version of Spring Boot.

The page looks like this:



In the Project Metadata section, we can put the coordinates for Maven projects; there is a group field which refers to the groupId tag, and we have artifacts which refer to the artifactId. This is all for the Maven coordinates.

The dependencies section enables the configuration of the Spring dependencies, the field has the autocomplete feature and helps developers to put in the correct dependency.



            

            
        
    
        

                            
                    The CMS project

                
            
            
                
Before we start to code and learn amazing things, let's understand a little bit about the CMS project, the main purpose of this project is to help companies manage the CMS content for different topics. There are three main entities in this project:


	The News class is the most important, it will store the content of the news.

	It has a category which makes the search easier, and we can also group news by category, and of course, we can group by the user who has created the news. The news should be approved by other users to make sure it follows the company rules.

	The news has some tags as well, as we can see the application is pretty standard, the business rules are easy as well; this is intentional because we keep the focus on the new things we will learn.



Now we know how Spring Initializr (https://start.spring.io) works and the business rules we need to follow, we are ready to create the project. Let's do it right now.



            

            
        
    
        

                            
                    Project metadata section

                
            
            
                
Insert spring-five in the Group field and cms in the Artifact field. If you want to customize it, no problem, this is a kind of informative project configuration:





            

            
        
    
        

                            
                    The dependencies section

                
            
            
                
Type the MVC word in the Search for Dependencies field. The Web module will appear as an option, the Web module contains the full-stack web development with Embedded Tomcat and Spring MVC, select it. Also, we need to put Thymeleaf dependencies in this module. It is a template engine and will be useful for the view features at the end of this chapter. Type Thymeleaf, it includes the Thymeleaf templating engine, and includes integration with Spring. The module will appear, and then select it as well. Now we can see Web and Thymeleaf in the Selected Dependencies pane:





            

            
        
    
        

                            
                    Generating the project

                
            
            
                
After we have finished the project definition and chosen the project dependencies, we are ready to download the project. It can be done using the Generate Project button, click on it. The project will be downloaded. At this stage, the project is ready to start our work:



The zip file will be generated with the name cms.zip (the Artifact field input information) and the location of the downloaded file depends on the browser configuration.

>Before opening the project, we must uncompress the artifact generated by Spring Initializr to the desired location. The command should be:  unzip -d <target_destination> /<path_to_file>/cms.zip. Follow the example: unzip -d /home/john /home/john/Downloads/cms.zip.

Now, we can open the project in our IDE. Let's open it and take a look at the basic structure of the project.



            

            
        
    
        

                            
                    Running the application

                
            
            
                
Before we run the application, let's have a walk through our project structure. 

Open the project on IntelliJ IDEA using the Import Project or Open options (both are similar), the following page will be displayed:



Then we can open or import the pom.xml file.

The following project structure should be displayed:



Open the pom.xml, we have three dependencies, spring-boot-starter-thymeleaf, spring-boot-starter-web, spring-boot-starter-test, and an interesting plugin, spring-boot-maven-plugin.

These starter dependencies are a shortcut for developers because they provide full dependencies for the module. For instance, on the spring-boot-starter-web, there is web-mvc, jackson-databind, hibernate-validator-web, and some others; these dependencies must be on the classpath to run the web applications, and starters make this task considerably easier.

Let's analyze our pom.xml, the file should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>

  <groupId>spring-five</groupId>
  <artifactId>cms</artifactId>
  <version>0.0.1-SNAPSHOT</version>
  <packaging>jar</packaging>

  <name>cms</name>
  <description>Demo project for Spring Boot</description>

  <parent>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-parent</artifactId>
    <version>1.5.8.RELEASE</version>
    <relativePath/> <!-- lookup parent from repository -->
  </parent>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
    <java.version>1.8</java.version>
  </properties>

  <dependencies>

    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-thymeleaf</artifactId>
    </dependency>

    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-web</artifactId>
    </dependency>

    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-test</artifactId>
      <scope>test</scope>
    </dependency>

    <dependency>
      <groupId>org.projectlombok</groupId>
      <artifactId>lombok</artifactId>
      <version>1.16.16</version>
      <scope>provided</scope>
    </dependency>

    <dependency>
      <groupId>io.springfox</groupId>
      <artifactId>springfox-swagger2</artifactId>
      <version>2.7.0</version>
    </dependency>

    <dependency>
      <groupId>io.springfox</groupId>
      <artifactId>springfox-swagger-ui</artifactId>
      <version>2.7.0</version>
    </dependency>

  </dependencies>

  <build>
    <plugins>
      <plugin>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-maven-plugin</artifactId>
      </plugin>
    </plugins>
  </build>

</project>


Also, we have a spring-boot-maven-plugin, this awesome plugin provides Spring Boot support for Maven. It enables you to package the application in a Fat-JAR, and the plugin supports the run, start, and stop goals, as well interacting with our applications.

Fat-JAR: a JAR which contains all project class files and resources packed together with all its dependencies.

For now, that is enough on Maven configurations; let's take a look at the Java files.

The Spring Initializr created one class for us, in general, the name of this class is artifact name plus Application, in our case CmsApplication, this class should look like this:

package springfive.cms;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class CmsApplication {

  public static void main(String[] args) {
    SpringApplication.run(CmsApplication.class, args);
  }
  
}



            

            
        
    
        

                            
                    Looking under the hood

                
            
            
                
We have some interesting things here, let's understand them. The @SpringBootApplication is the essential annotation for the Spring Boot application; it's a kind of alias for @Configuration, @EnableAutoConfiguration, and @Component annotations. Let's dig in:


	The first annotation, @Configuration indicates that the class can produce a beans definitions for the Spring container. This is an interesting annotation to work with external dependencies such as DataSources; this is the most common use case for this annotation.

	The second annotation, @EnableAutoConfiguration means that with the Spring ApplicationContext container, it will try to help us configure the default beans for the specific context. For instance, when we create the web MVC application with Spring Boot, we will probably need a web server container to run it. In a default configuration, the Spring container, together with @EnableAutoConfiguration, will configure a bean Tomcat-embedded container for us. This annotation is very helpful for developers.

	The @Component is a stereotype, the container understands which class is considered for auto-detection and needs to instantiate it.



The SpringApplication class is responsible for bootstrapping the Spring application from the main method, it will create an ApplicationContext instance, take care of configurations provided by the configuration files, and finally, it will load the singleton beans that are defined by annotations.

Stereotype Annotations denote a conceptual division in an architecture layer. They help the developers understand the purpose of the class and the layer which the beans represent, for example, @Repository means the data access layer.



            

            
        
    
        

                            
                    Running the application

                
            
            
                
We will run the application in IntelliJ IDEA and command line. It is an important task to learn because we are working in different development environments; sometimes the configurations of the application are a little bit complicated, and we are not able to run it with IDEs, or sometimes the companies have different IDEs as standard, so we will learn about two different ways.



            

            
        
    
        

                            
                    IntelliJ IDEA

                
            
            
                
In general, the IntelliJ IDEA recognizes the main class annotated with @SpringBootApplication and creates a run configuration for us, but it depends on the version of the tool, let's do it.



            

            
        
    
        

                            
                    Command line

                
            
            
                
The command line is a more generic tool to run the project. Also, this task is easy, thanks to the Spring Boot Maven plugin. There are two ways to run, and we will cover both.



            

            
        
    
        

                            
                    Command line via the Maven goal

                
            
            
                
The first one is a goal of the Spring Boot Maven plugin, and it is straightforward; open the terminal then go to the root project folder, pay attention as this is the same folder where we have the pom.xml, and execute the following command:

mvn clean install spring-boot:run

The Maven will now compile the project and run the main class, the class CmsApplication, and we should see this output:





            

            
        
    
        

                            
                    Command line via the JAR file

                
            
            
                
To run it through the Java file, we need to compile and package it, and then we can run the project with the Java command line. To compile and package it, we can use the pretty standard Maven command like this:

mvn clean install

After the project is compiled and packaged as a Fat-JAR, we can execute the JAR file, go to the target folder and check the files from this folder, probably the result will look like this:



We have two main files in our target folder, the cms-0.0.1-SNAPSHOT.jar and the cms-0.0.1-SNAPSHOT.jar.original, the file with the .original extension is not executable. It is the original artifact resulting from the compilation, and the other is our executable file. It is what we are looking for, let's execute it, type the following command:

java -jar cms-0.0.1-SNAPSHOT.jar

The result should be as displayed. The application is up and running:



That is it for this part, in the next section, we will create the first REST (Representational State Transfer) resources and understand how the REST endpoints work.



            

            
        
    
        

                            
                    Creating the REST resources

                
            
            
                
Now, we have an application up and running in this section, and we will add some REST endpoints and model some initial classes for the CMS application, the REST endpoints will be useful for the AngularJS integration.

One of the required characteristics for the APIs is the documentation, and a popular tool to help us with these tasks is Swagger. The Spring Framework supports Swagger, and we can do it with a couple of annotations. The project's Spring Fox is the correct tool to do this, and we will take a look at the tool in this chapter.

Let's do this.



            

            
        
    
        

                            
                    Models

                
            
            
                
Before we start to create our class, we will add the Lombok dependency in our project. It is a fantastic library which provides some interesting things such as GET/SET at compilation time, the Val keyword to make variables final, @Data to make a class with some default methods like getters/setters, equals, and hashCode.



            

            
        
    
        

                            
                    Adding Lombok dependency

                
            
            
                
Put the following dependency in a pom.xml file:

<dependency>
  <groupId>org.projectlombok</groupId>
  <artifactId>lombok</artifactId>
  <version>1.16.16</version>
  <scope>provided</scope>
</dependency>

The provided scope instructs Maven not to include this dependency in the JAR file because we need it at compile time. We do not need it at runtime. Wait for Maven to download the dependency, that is all for now.

Also, we can use the Reimport All Maven Projects provided by IntelliJ IDEA, located in the Maven Projects tab, as shown here:





            

            
        
    
        

                            
                    Creating the models

                
            
            
                
Now, we will create our models, which are Java classes annotated with @Data.



            

            
        
    
        

                            
                    Tag

                
            
            
                
This class represents a tag in our system. There isn't necessarily any repository for it because it will be persisted together with our News entity:

package springfive.cms.domain.models;

import lombok.Data;

@Data
public class Tag {

  String value;

}



            

            
        
    
        

                            
                    Category

                
            
            
                
A category model for our CMS application can be used to group the news. Also, the other important thing is that this makes our news categorized to make the search task easy. Take a look at the following code:

package springfive.cms.domain.models;

import lombok.Data;

@Data
public class Category {

  String id;

  String name;

}



            

            
        
    
        

                            
                    User

                
            
            
                
It represents a user in our domain model. We have two different profiles, the author who acts as a news writer, and another one is a reviewer who must review the news registered at the portal. Take a look at the following example:

package springfive.cms.domain.models;

import lombok.Data;

@Data
public class User {

  String id;

  String identity;

  String name;

  Role role;

}



            

            
        
    
        

                            
                    News

                
            
            
                
This class represents news in our domain, for now, it does not have any behaviors. Only properties and getters/setters are exposed; in the future, we will add some behaviors:

package springfive.cms.domain.models;

import java.util.Set;
import lombok.Data;

@Data
public class News {

  String id;

  String title;

  String content;

  User author;

  Set<User> mandatoryReviewers;
  
  Set<Review> reviewers;

  Set<Category> categories;

  Set<Tag> tags;

}

The Review class can be found at GitHub: (https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/models).

As we can see, they are simple Java classes which represent our CMS application domain. It is the heart of our application, and all the domain logic will reside in these classes. It is an important characteristic.



            

            
        
    
        

                            
                    Hello REST resources

                
            
            
                
We have created the models, and we can start to think about our REST resources. We will create three main resources:


	CategoryResource which will be responsible for the Category class.

	The second one is UserResource. It will manage the interactions between the User class and the REST APIs.

	The last one, and more important as well, will be the NewsResource which will be responsible for managing news entities, such as reviews.





            

            
        
    
        

                            
                    Creating the CategoryResource class

                
            
            
                
We will create our first REST resource, let's get started with the CategoryResource class which is responsible for managing our Category class. The implementation of this entity will be simple, and we will create CRUD endpoints such as create, retrieve, update, and delete. We have two important things we must keep in mind when we create the APIs. The first one is the correct HTTP verb such as POST, GET, PUT and DELETE. It is essential for the REST APIs to have the correct HTTP verb as it provides us with intrinsic knowledge about the API. It is a pattern for anything that interacts with our APIs. Another thing is the status codes, and it is the same as the first one we must follow, this is the pattern the developers will easily recognize. The Richardson Maturity Model can help us create amazing REST APIs, and this model introduces some levels to measure the REST APIs, it's a kind of thermometer.

Firstly, we will create the skeleton for our APIs. Think about what features you need in your application. In the next section, we will explain how to add a service layer in our REST APIs. For now, let's build a CategoryResource class, our implementation could look like this:

package springfive.cms.domain.resources;

import java.util.Arrays;
import java.util.List;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseStatus;
import org.springframework.web.bind.annotation.RestController;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.vo.CategoryRequest;

@RestController
@RequestMapping("/api/category")
public class CategoryResource {

  @GetMapping(value = "/{id}")
  public ResponseEntity<Category> findOne(@PathVariable("id") String id){
    return ResponseEntity.ok(new Category());
  }

  @GetMapping
  public ResponseEntity<List<Category>> findAll(){
    return ResponseEntity.ok(Arrays.asList(new Category(),new Category()));
  }

  @PostMapping
  public ResponseEntity<Category> newCategory(CategoryRequest category){
    return new ResponseEntity<>(new Category(), HttpStatus.CREATED);
  }

  @DeleteMapping("/{id}")
  @ResponseStatus(HttpStatus.NO_CONTENT)
  public void removeCategory(@PathVariable("id") String id){
  }

  @PutMapping("/{id}")
  public ResponseEntity<Category> updateCategory(@PathVariable("id") String id,CategoryRequest category){
    return new ResponseEntity<>(new Category(), HttpStatus.OK);
  }

}

The CategoryRequest can be found at GitHub (https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02/src/main/java/springfive/cms/domain/vo).

We have some important concepts here. The first one is @RestController. It instructs the Spring Framework that the CategoryResource class will expose REST endpoints over the Web-MVC module. This annotation will configure some things in a framework, such as HttpMessageConverters to handle HTTP requests and responses such as XML or JSON. Of course, we need the correct libraries on the classpath, to handle JSON and XML. Also, add some headers to the request such as Accept and Content-Type. This annotation was introduced in version 4.0. It is a kind of syntactic sugar annotation because it's annotated with @Controller and @ResponseBody.

The second is the @RequestMapping annotation, and this important annotation is responsible for the HTTP request and response in our class. The usage is quite simple in this code when we use it on the class level, it will propagate for all methods, and the methods use it as a relative. The @RequestMapping annotation has different use cases. It allows us to configure the HTTP verb, params, and headers.

Finally, we have @GetMapping, @PostMapping, @DeleteMapping, and @PutMapping, these annotations are a kind of shortcut to configure the @RequestMapping with the correct HTTP verbs; an advantage is that these annotations make the code more readable.

Except for the removeCategory, all the methods return the ResponseEntity class which enables us to handle the correct HTTP status codes in the next section.



            

            
        
    
        

                            
                    UserResource

                
            
            
                
The UserResource class is the same as CategoryResource, except that it uses the User class. We can find the whole code on the GitHub (https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter02).



            

            
        
    
        

                            
                    NewsResource

                
            
            
                
The NewsResource class is essential, this endpoint enables users to review news previously registered, and it also provides an endpoint to return the updated news. This is an important feature because we are interested only in the relevant news. Irrelevant news cannot be shown on the portal. The resource class should look like this:

package springfive.cms.domain.resources;

import java.util.Arrays;
import java.util.List;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseStatus;
import org.springframework.web.bind.annotation.RestController;
import springfive.cms.domain.models.News;
import springfive.cms.domain.models.Review;
import springfive.cms.domain.vo.NewsRequest;

@RestController
@RequestMapping("/api/news")
public class NewsResource {

  @GetMapping(value = "/{id}")
  public ResponseEntity<News> findOne(@PathVariable("id") String id){
    return ResponseEntity.ok(new News());
  }

  @GetMapping
  public ResponseEntity<List<News>> findAll(){
    return ResponseEntity.ok(Arrays.asList(new News(),new News()));
  }

  @PostMapping
  public ResponseEntity<News> newNews(NewsRequest news){
    return new ResponseEntity<>(new News(), HttpStatus.CREATED);
  }

  @DeleteMapping("/{id}")
  @ResponseStatus(HttpStatus.NO_CONTENT)
  public void removeNews(@PathVariable("id") String id){
  }

  @PutMapping("/{id}")
  public ResponseEntity<News> updateNews(@PathVariable("id") String id,NewsRequest news){
    return new ResponseEntity<>(new News(), HttpStatus.OK);
  }

  @GetMapping(value = "/{id}/review/{userId}")
  public ResponseEntity<Review> review(@PathVariable("id") String id,@PathVariable("userId") String userId){
    return ResponseEntity.ok(new Review());
  }

  @GetMapping(value = "/revised")
  public ResponseEntity<List<News>> revisedNews(){
    return ResponseEntity.ok(Arrays.asList(new News(),new News()));
  }

}

The NewsRequest class can be found at GitHub.

Pay attention to the HTTP verbs and the HTTP status code, as we need to follow the correct semantics.



            

            
        
    
        

                            
                    Adding service layer

                
            
            
                
Now, we have the skeleton for the REST layer ready, and in this section, we will start to create a service layer for our application. We will show how the Dependency Injection works under the hood, learn the stereotype annotations on Spring Framework and also start to think about our persistence storage, which will be presented in the next section.



            

            
        
    
        

                            
                    Changes in the model

                
            
            
                
We need to make some changes to our model, specifically in the News class. In our business rules, we need to keep our information safe, then we need to review all the news. We will add some methods to add a new review done by a user, and also we will add a method to check if the news was reviewed by all mandatory reviewers.



            

            
        
    
        

                            
                    Adding a new review

                
            
            
                
For this feature, we need to create a method in our News class, the method will return a Review and should look like this:

public Review review(String userId,String status){
  final Review review = new Review(userId, status);
  this.reviewers.add(review);
  return review;
}

We do not need to check if the user, who performs the review action, is a mandatory reviewer at all.



            

            
        
    
        

                            
                    Keeping the news safely

                
            
            
                
Also, we need to check if the news is fully revised by all mandatory reviewers. It is quite simple, we are using Java 8, and it provides the amazing Stream interface, which makes the collections interactions easier than before. Let's do this:

public Boolean revised() {
  return this.mandatoryReviewers.stream().allMatch(reviewer -> this.reviewers.stream()
      .anyMatch(review -> reviewer.id.equals(review.userId) && "approved".equals(review.status)));
}

Thanks, Java 8, we appreciate it.



            

            
        
    
        

                            
                    Before starting the service layer

                
            
            
                
Our application needs to have a persistence storage where our records can be loaded, even if the application goes down. We will create the fake implementation for our repositories.   In Chapter 3, Persistence with Spring Data and Reactive Fashion, we will introduce the Spring Data projects which help developers create amazing repositories with a fantastic DSL. For now, we will create some Spring beans to store our elements in memory, let's do that.



            

            
        
    
        

                            
                    CategoryService

                
            
            
                
Let's start with our simplest service, the CategoryService class, the behaviors expected of this class are CRUD operations. Then, we need a representation of our persistence storage or repository implementation, for now, we are using the ephemeral storage and ArrayList with our categories. In the next chapter, we will add the real persistence for our CMS application.

Let's create our first Spring service. The implementation is in the following snippet:

package springfive.cms.domain.service;

import java.util.List;
import org.springframework.stereotype.Service;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.repository.CategoryRepository;

@Service
public class CategoryService {

  private final CategoryRepository categoryRepository;

  public CategoryService(CategoryRepository categoryRepository) {
    this.categoryRepository = categoryRepository;
  }

  public Category update(Category category){
    return this.categoryRepository.save(category);
  }

  public Category create(Category category){
    return this.categoryRepository.save(category);
  }

  public void delete(String id){
    final Category category = this.categoryRepository.findOne(id);
    this.categoryRepository.delete(category);
  }

  public List<Category> findAll(){
    return this.categoryRepository.findAll();
  }

  public Category findOne(String id){
    return this.categoryRepository.findOne(id);
  }

}

There is some new stuff here. This class will be detected and instantiated by the Spring container because it has a @Service annotation. As we can see, there is nothing special in that class. It does not necessarily extend any class or implement an interface. We received the CategoryRepository on a constructor, this class will be provided by the Spring container because we instruct the container to produce this, but in Spring 5 it is not necessary to use @Autowired anymore in the constructor. It works because we had the only one constructor in that class and Spring will detect it. Also, we have a couple of methods which represent the CRUD behaviors, and it is simple to understand.



            

            
        
    
        

                            
                    UserService

                
            
            
                
The UserService class is quite similar to the CategoryService, but the rules are about the User entity, for this entity we do not have anything special. We have the @Service annotation, and we received the UserRepository constructor as well. It is quite simple and easy to understand. We will show the UserService implementation, and it must be like this:

package springfive.cms.domain.service;

import java.util.List;
import java.util.UUID;
import org.springframework.stereotype.Service;
import springfive.cms.domain.models.User;
import springfive.cms.domain.repository.UserRepository;
import springfive.cms.domain.vo.UserRequest;

@Service
public class UserService {

  private final UserRepository userRepository;

  public UserService(UserRepository userRepository) {
    this.userRepository = userRepository;
  }

  public User update(String id,UserRequest userRequest){
    final User user = this.userRepository.findOne(id);
    user.setIdentity(userRequest.getIdentity());
    user.setName(userRequest.getName());
    user.setRole(userRequest.getRole());
    return this.userRepository.save(user);
  }

  public User create(UserRequest userRequest){
    User user = new User();
    user.setId(UUID.randomUUID().toString());
    user.setIdentity(userRequest.getIdentity());
    user.setName(userRequest.getName());
    user.setRole(userRequest.getRole());
    return this.userRepository.save(user);
  }

  public void delete(String id){
    final User user = this.userRepository.findOne(id);
    this.userRepository.delete(user);
  }

  public List<User> findAll(){
    return this.userRepository.findAll();
  }

  public User findOne(String id){
    return this.userRepository.findOne(id);
  }

}

Pay attention to the class declaration with @Service annotation. This is a very common implementation in the Spring ecosystem. Also, we can find @Component, @Repository annotations. @Service and @Component are common for the service layer, and there is no difference in behaviors. The @Repository changes the behaviors a little bit because the frameworks will translate some exceptions on the data access layer.



            

            
        
    
        

                            
                    NewsService

                
            
            
                
This is an interesting service which will be responsible for managing the state of our news. It will interact like a glue to call the domain models, in this case, the News entity. The service is pretty similar to the others. We received the NewsRepository class, a dependency and kept the repository to maintain the states, let's do that.

The @Service annotation is present again. This is pretty much standard for Spring applications. Also, we can change to the @Component annotation, but it does not make any difference to our application.



            

            
        
    
        

                            
                    Configuring Swagger for our APIs

                
            
            
                
Swagger is the de facto tool for document web APIs, and the tool allows developers to model APIs, create an interactive way to play with the APIs, and also provides an easy way to generate the client implementation in a wide range of languages.

The API documentation is an excellent way to engage developers to use our APIs.



            

            
        
    
        

                            
                    Adding dependencies to pom.xml

                
            
            
                
Before we start the configuration, we need to add the required dependencies. These dependencies included Spring Fox in our project and offered many annotations to configure Swagger properly. Let's add these dependencies.

The new dependencies are in the pom.xml file:

<dependency>
  <groupId>io.springfox</groupId>
  <artifactId>springfox-swagger2</artifactId>
  <version>2.7.0</version>
</dependency>

<dependency>
  <groupId>io.springfox</groupId>
  <artifactId>springfox-swagger-ui</artifactId>
  <version>2.7.0</version>
</dependency>

The first dependency is the core of Swagger with annotations and related kinds of stuff. Spring Fox Swagger UI dependency provides a rich interface in HTML which permits developers to interact with the APIs.



            

            
        
    
        

                            
                    Configuring Swagger

                
            
            
                
The dependencies are added, now we can configure the infrastructure for Swagger. The configuration is pretty simple. We will create a class with @Configuration to produce the Swagger configuration for the Spring container. Let's do it.

Take a look at the following Swagger configuration:

package springfive.cms.infra.swagger;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.bind.annotation.RestController;
import springfox.documentation.builders.ParameterBuilder;
import springfox.documentation.builders.PathSelectors;
import springfox.documentation.builders.RequestHandlerSelectors;
import springfox.documentation.spi.DocumentationType;
import springfox.documentation.spring.web.plugins.Docket;
import springfox.documentation.swagger2.annotations.EnableSwagger2;

@Configuration
@EnableSwagger2
public class SwaggerConfiguration {

  @Bean
  public Docket documentation() {
    return new Docket(DocumentationType.SWAGGER_2)
        .select()
        .apis(RequestHandlerSelectors.withClassAnnotation(RestController.class))
        .paths(PathSelectors.any())
        .build(); 
  }

}

The @Configuration instructs the Spring to generate a bean definition for Swagger. The annotation, @EnableSwagger2 adds support for Swagger. @EnableSwagger2 should be accompanied by @Configuration, it is mandatory.

The Docket class is a builder to create an API definition, and it provides sensible defaults and convenience methods for configuration of the Spring Swagger MVC Framework.

The invocation of method .apis(RequestHandlerSelectors.withClassAnnotation(RestController.class)) instructs the framework to handle classes annotated with @RestController.

There are many methods to customize the API documentation, for example, there is a method to add authentication headers.

That is the Swagger configuration, in the next section, we will create a first documented API.



            

            
        
    
        

                            
                    First documented API

                
            
            
                
We will start with the CategoryResource class, because it is simple to understand, and we need to keep the focus on the technology stuff. We will add a couple of annotations, and the magic will happen, let's do magic.

The CategoryResource class should look like this:

package springfive.cms.domain.resources;

import io.swagger.annotations.Api;
import io.swagger.annotations.ApiOperation;
import io.swagger.annotations.ApiResponse;
import io.swagger.annotations.ApiResponses;
import java.util.List;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseStatus;
import org.springframework.web.bind.annotation.RestController;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.service.CategoryService;
import springfive.cms.domain.vo.CategoryRequest;

@RestController
@RequestMapping("/api/category")
@Api(tags = "category", description = "Category API")
public class CategoryResource {

  private final CategoryService categoryService;

  public CategoryResource(CategoryService categoryService) {
    this.categoryService = categoryService;
  }

  @GetMapping(value = "/{id}")
  @ApiOperation(value = "Find category",notes = "Find the Category by ID")
  @ApiResponses(value = {
      @ApiResponse(code = 200,message = "Category found"),
      @ApiResponse(code = 404,message = "Category not found"),
  })
  public ResponseEntity<Category> findOne(@PathVariable("id") String id){
    return ResponseEntity.ok(new Category());
  }

  @GetMapping
  @ApiOperation(value = "List categories",notes = "List all categories")
  @ApiResponses(value = {
      @ApiResponse(code = 200,message = "Categories found"),
      @ApiResponse(code = 404,message = "Category not found")
  })
  public ResponseEntity<List<Category>> findAll(){
    return ResponseEntity.ok(this.categoryService.findAll());
  }

  @PostMapping
  @ApiOperation(value = "Create category",notes = "It permits to create a new category")
  @ApiResponses(value = {
      @ApiResponse(code = 201,message = "Category created successfully"),
      @ApiResponse(code = 400,message = "Invalid request")
  })
  public ResponseEntity<Category> newCategory(@RequestBody CategoryRequest category){
    return new ResponseEntity<>(this.categoryService.create(category), HttpStatus.CREATED);
  }

  @DeleteMapping("/{id}")
  @ResponseStatus(HttpStatus.NO_CONTENT)
  @ApiOperation(value = "Remove category",notes = "It permits to remove a category")
  @ApiResponses(value = {
      @ApiResponse(code = 200,message = "Category removed successfully"),
      @ApiResponse(code = 404,message = "Category not found")
  })
  public void removeCategory(@PathVariable("id") String id){
  }

  @PutMapping("/{id}")
  @ResponseStatus(HttpStatus.NO_CONTENT)
  @ApiOperation(value = "Update category",notes = "It permits to update a category")
  @ApiResponses(value = {
      @ApiResponse(code = 200,message = "Category update successfully"),
      @ApiResponse(code = 404,message = "Category not found"),
      @ApiResponse(code = 400,message = "Invalid request")
  })
  public ResponseEntity<Category> updateCategory(@PathVariable("id") String id,CategoryRequest category){
    return new ResponseEntity<>(new Category(), HttpStatus.OK);
  }

}

There are a lot of new annotations to understand. The @Api is the root annotation which configures this class as a Swagger resource. There are many configurations, but we will use the tags and description, as they are enough.

The @ApiOperation describes an operation in our API, in general against the requested path. The value attribute is regarding as the summary field on Swagger, it is a brief of the operation, and notes is a description of an operation (more detailed content).

The last one is the @ApiResponse which enables developers to describe the responses of an operation. Usually, they want to configure the status codes and message to describe the result of an operation.

Before you run the application, we should compile the source code.  It can be done using the Maven command line using the mvn clean install, or via IDE using the Run Application.

Now, we have configured the Swagger integration, we can check the API documentation on the web browser. To do it, we need to navigate to http://localhost:8080/swagger-ui.html and this page should be displayed:



We can see APIs endpoints configured in our CMS application. Now, we will take a look at category which we have configured previously, click on the Show/Hide link. The output should be:



As we can see, there are five operations in our Category API, the operation has a path and a summary to help understand the purpose. We can click on the requested operation and see detailed information about the operation. Let's do it, click on List categories to see detailed documentation. The page looks like this:



Outstanding job. Now we have an amazing API with excellent documentation. Well done.

Let's continue creating our CMS application.



            

            
        
    
        

                            
                    Integrate with AngularJS

                
            
            
                
The AngularJS Framework has been becoming a trend for a few years, the community is super active, the project was created by Google.

The main idea of the framework is to help developers handle the complexities of the frontend layer, especially in the HTML part. The HTML markup language is static. It is a great tool to create static documents, but today it is not a requirement for modern web applications. These applications need to be dynamic. The UX teams around the world, work hard to create amazing applications, with different effects, these guys try to keep the applications more comfortable for the users.

AngularJS adds the possibility of extending the HTML with some additional attributes and tags. In this section, we will add some interesting behaviors on the frontend application. Let's do it.



            

            
        
    
        

                            
                    AngularJS concepts

                
            
            
                
In our CMS application, we will work with some Angular components. We will use Controllers which will interact with our HTML and handle the behavior of some pages, such as those that show error messages. The Services is responsible for handling the infrastructure code such as interacting with our CMS API. This book is not intended to be an AngularJS guide. However, we will take a look at some interesting concepts to develop our application.

The AngularJS common tags are:


	ng-app

	ng-controller

	ng-click

	ng-hide

	ng-show



These tags are included in the AngularJS Framework. There are many more tags created and maintained by the community. There is, for example, a library to work with HTML forms, we will use it to add dynamic behaviors in our CMS Portal.



            

            
        
    
        

                            
                    Controllers

                
            
            
                
Controllers are part of the framework to handle the business logic of the application. They should be used to control the flow of data in an application. The controller is attached to the DOM via the ng-controller directive.

To add some actions to our view, we need to create functions on controllers, the way to do this is by creating functions and adding them to the $scope object.

The controllers cannot be used to carry out DOM manipulations, format data and filter data, it is considered best practice in the AngularJS world.

Usually, the controllers inject the service objects to delegate handling the business logic. We will understand services in the next section.



            

            
        
    
        

                            
                    Services

                
            
            
                
Services are the objects to handle business logic in our application. In some cases, they can be used to handle state. The services objects are a singleton which means we have only one instance in our entire application.

In our application, the services are responsible for interacting with our CMS APIs built on Spring Boot. Let's do that.



            

            
        
    
        

                            
                    Creating the application entry point

                
            
            
                
The Spring Boot Framework allows us to serve static files. These files should be in the classpath in one of these folders, /static, /public, /resources, or /META-INF/resources.

We will use the /static folder, in this folder, we will put our AngularJS application. There are some standards to modularize the AngularJS application folder structure which depends on the application size and requirements. We will use the most simple style to keep the attention on Spring integration. Look at the project structure:



There are some assets to start and run an AngularJS application. We will use the Content Delivery Network (CDN) to load the AngularJS Framework, the Angular UI-Router which helps to handle routing on our web application, and the Bootstrap Framework which helps to develop our pages.

Content Delivery Network is distributed proxy servers around the world. It makes the content more high availability and improves performance because it will be hosted nearer the end user. The detailed explanation can be found at CloudFare Page (https://www.cloudflare.com/learning/cdn/what-is-a-cdn/).

Then we can start to configure our AngularJS application. Let's start with our entry point, index.html:

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title>Spring Boot Security</title>
  <link rel="stylesheet"  href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css">
</head>
<body ng-app="cms">

<!-- Header -->
<nav class="navbar navbar-default navbar-fixed-top">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar"
              aria-expanded="false" aria-controls="navbar">
        <span class="sr-only">Toggle navigation</span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <a class="navbar-brand" href="#">CMS</a>
    </div>
    <div id="navbar" class="collapse navbar-collapse">
      <ul class="nav navbar-nav">
        <li class="active"><a href="#">Home</a></li>
        <li><a href="#users">Users</a></li>
        <li><a href="#categories">Categories</a></li>
        <li><a href="#news">News</a></li>
      </ul>
    </div>
  </div>
</nav>

<!-- Body -->
<div class="container">
  <div ui-view></div>
</div>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/angular.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/angular-ui-router/1.0.3/angular-ui-router.js"></script>

<script type="text/javascript" src="app/app.js"></script>

<script type="text/javascript" src="app/controllers.js"></script>
<script type="text/javascript" src="app/services.js"></script>

<script type="text/javascript" src="app/components/categories/category-controller.js"></script>
<script type="text/javascript" src="app/components/categories/category-service.js"></script>

<script type="text/javascript" src="app/components/news/news-controller.js"></script>
<script type="text/javascript" src="app/components/news/news-service.js"></script>

<script type="text/javascript" src="app/components/users/user-controller.js"></script>
<script type="text/javascript" src="app/components/users/user-service.js"></script>

</body>
</html>

There are some important things here. Let's understand them.

The ng-app tag is a directive which is used to bootstrap the AngularJS application. This tag is the root element of the application and is usually placed on the <body> or <html> tags.

The ui-view tag instructs the Angular UI-Router about which portion of the HTML document will be handled by the application states, in other words, the designated part has the dynamic behaviors and change depends on the routing system. Look at the following code snippet:

<!-- Body -->
<div class="container">
  <div ui-view></div>
</div>

This part of the code can be found at index.hml file.

Following the ui-view, we have our JavaScript files, the first one is the AngularJS Framework, in this version the file is minified. Look at our JavaScript files, the files were created in the /static/app/components folder. Take a look at the image here:



The second one is the UI-Router which helps us to manage our routes. Finally, we have our JavaScript files which configure the AngularJS application, our controllers, and the services to interact with our CMS APIs.

Also, we have some Bootstrap classes to align fields and make design easier. 



            

            
        
    
        

                            
                    Creating the Category Controller

                
            
            
                
Now, we need to create our controllers. We will start with the simplest to make the example more easy to understand. The CategoryController has the responsibility of controlling the data of the Category entity. There are two controllers, one enables us to create a category, and another lists all categories stored in the database.

The category-controller.js should be like this:

(function (angular) {
  'use strict';

  // Controllers
  angular.module('cms.modules.category.controllers', []).

  controller('CategoryCreateController',
      ['$scope', 'CategoryService','$state',
        function ($scope, CategoryService,$state) {

          $scope.resetForm = function () {
            $scope.category = null;
          };

          $scope.create = function (category) {
            CategoryService.create(category).then(
                function (data) {
                  console.log("Success on create Category!!!")
                  $state.go('categories')
                }, function (err) {
                  console.log("Error on create Category!!!")
                });
          };
        }]).

  controller('CategoryListController',
      ['$scope', 'CategoryService',
        function ($scope, CategoryService) {
          CategoryService.find().then(function (data) {
            $scope.categories = data.data;
          }, function (err) {
            console.log(err);
          });
        }]);
})(angular);

We have created an AngularJS module. It helps us to keep the functions organized. It acts as a kind of namespace for us. The .controller function is a constructor to create our controller's instances. We received some parameters, the AngularJS framework will inject these objects for us.



            

            
        
    
        

                            
                    Creating the Category Service

                
            
            
                
The CategoryService objects is a singleton object because it is an AngularJS service. The service will interact with our CMS APIs powered by the Spring Boot application.

We will use the $http service. It makes the HTTP communications easier.

Let's write the CategoryService:

(function (angular) {
  'use strict';

  /* Services */
</span>  angular.module('cms.modules.category.services', []).
  service('CategoryService', ['$http',
    function ($http) {

      var serviceAddress = 'http://localhost:8080';
      var urlCollections = serviceAddress + '/api/category';
      var urlBase = serviceAddress + '/api/category/';

      this.find = function () {
        return $http.get(urlCollections);
      };

      this.findOne = function (id) {
        return $http.get(urlBase + id);
      };

      this.create = function (data) {
        return $http.post(urlBase, data);
      };

      this.update = function (data) {
        return $http.put(urlBase + '/id/' + data._id, data);
      };

      this.remove = function (data) {
        return $http.delete(urlBase + '/id/' + data._id, data);
      };
    }
  ]);
})(angular);

Well done, now we have implemented the CategoryService. 

The .service function is a constructor to create a service instance, the angular acts under the hood. There is an injection on a constructor, for the service we need an $http service to make HTTP calls against our APIs. There are a couple of HTTP methods here. Pay attention to the correct method to keep the HTTP semantics.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we created our first Spring application. We saw Spring Initializr, the amazing tool that helps developers create the application skeleton.

We looked at how Spring works under the hood and how the framework got configured with a couple of annotations. Now, we have a basic knowledge of the Spring Bootstrap functions, and we can understand the Dependency Injection and component scan features present in the framework.

This knowledge is the basis for the next chapters, and now we are ready to start to work with more advanced features, such as persistence. Here we go. See you in the next chapter.





            

            
        
    
        

                            
                    Persistence with Spring Data and Reactive Fashion

                
            
            
                
In the previous chapter, we created our Content Management System (CMS) application. We also introduced REST (Representational State Transfer) support in Spring, which enabled us to develop a simple web application. Also, we learned how dependency injection works in the Spring Framework, which is probably the most famous feature of the framework.

In this chapter, we will add more features to our application. Systems in the real world need to persist their data on a real database; this is an essential characteristic for a production-ready application. Also, based on our model, we need to choose the correct data structure to achieve performance and avoid the impedance mismatch.

In the first part of this chapter, we will use the traditional SQL database as a store for our application. We will deep dive on the Spring Data JPA (Java Persistence API) to achieve the persistence for our CMS application. We will understand how to enable transactions with this amazing Spring module.

After that, we will change to a more modern type of database called NoSQL technologies. In this field, we will use the famous database document model called MongoDB and then we will create the final solution for our CMS application.

MongoDB offers a fantastic solution for our application because it has support for a document storage model and enables us to store our objects in the form of JSON, which makes our data more readable. Also, MongoDB is schema-less, which is a fantastic feature because one collection can store different documents. It means records can have different fields, content, and sizes. The other important characteristic from MongoDB is the query model. It offers a document-based query that is easy to understand, and, based on JSON notations, our queries will be more readable than any other database can be.

Finally, we will add the most important feature present in Spring 5.0: support for Reactive Streams. Our application will be transformed into a modern web application which has some important requirements.

Here's an overview of what you will learn in this chapter:


	Implementing the Spring Data JPA

	Creating repositories with Spring Data Reactive MongoDB

	Learning the Reactive Spring

	Understand the Project Reactor





            

            
        
    
        

                            
                    Learning the basics of Docker

                
            
            
                
We learned about Docker concepts in Chapter 1, Journey to the Spring World. Now, it is time to test our knowledge and put it into practice. In the first part of this chapter, we will start MongoDB and Postgres instances to serve as a database for our application. We will configure connection settings in the application.

In the last part of this chapter, we will introduce the Maven plugin which provides an easy way to create Docker images via pom.xml with a couple of configurations on file. Finally, we will run our application in a Docker container. 



            

            
        
    
        

                            
                    Preparing  MongoDB

                
            
            
                
Let's create our MongoDB container. We will use the official image provided by the Docker Hub.

First, we need to pull the image:

docker pull mongo:3.4.10

Then, we will see the Docker Engine downloading the image contents.

To create an isolation from our containers, we will create a separated network for our application and database. The network should use the bridge driver to allow the container communications.

Let's create a docker network:

docker network create cms-application

The command output should be an ID of a created network. Your ID will probably be different compared to mine:



To check if the network was created successfully, the docker network ls command can help us.

We will start our MongoDB. The network should be cms-application, but we will map the database port to a host port. For debugging purposes, we will connect a client to a running database, but please don't do this in a non-development environment.

Exposing a port over host is not a best practice. Hence, we use a Docker container, which is one of the main advantages is process isolation. In this case, we will have no control over the network. Otherwise, we may cause some port conflicts.

To start, type the following command:

docker run -d --name mongodb --net cms-application -p 27017:27017 mongo:3.4.10

Also, we can stop the Docker MongoDB container using docker stop mongodb and start our container again by using the following command: docker start mongodb.

The output will be a hash which represents the ID of the container.

The parameter instructions are:


	-d: This instructs Docker to run the container in a background mode

	--name: The container name; it will be a kind of hostname in our network

	--net: The network where the container will be attached

	-p: The host port and container port, which will be mapped to a container on a host interface



Now, we have a pretty standard MongoDB instance running on our machines, and we can start to add a persistence in our CMS application. We will do that soon.



            

            
        
    
        

                            
                    Preparing a PostgreSQL database

                
            
            
                
Like MongoDB, we will prepare a PostgreSQL instance for our CMS application. We will change our persistence layer to demonstrate how Spring Data abstracts it for developers. Then, we need to prepare a Docker Postgres instance for that.

We will use the version 9.6.6 of Postgres and use the alpine tag because it is smaller than other Postgres images. Let's pull our image. The command should be like this:

docker pull postgres:9.6.6-alpine

Then, wait until the download ends.

In the previous section, we created our Docker network called cms-application. Now, we will start our Postgres instance on that network as we did for MongoDB. The command to start the Postgres should be the following:

docker run -d --name postgres --net cms-application -p 5432:5432 -e POSTGRES_PASSWORD=cms@springfive
postgres:9.6.6-alpine

The list of parameters is the same as we passed for MongoDB. We want to run it in background mode and attach it to our custom network. As we can see, there is one more new parameter in the docker run command. Let's understand it:


	-e: This enables us to pass environment variables for a container. In this case, we want to change the password value.



Good job. We have done our infrastructure requirements. Let's understand the persistence details right now.



            

            
        
    
        

                            
                    Spring Data project

                
            
            
                
The Spring Data project is an umbrella project that offers a familiar way to create our data access layer on a wide range of database technologies. It means there are high-level abstractions to interact with different kinds of data structures, such as the document model, column family, key-value, and graphs. Also, the JPA specification is fully supported by the Spring Data JPA project.

These modules offer powerful object-mapping abstractions for our domain model.

There is support for different types of data structures and databases. There is a set of sub-modules to keep the framework modularity. Also, there are two categories of these sub-modules: the first one is a subset of projects supported by the Spring Framework Team and the second one is a subset of sub-modules provided by the community.

Projects supported by the Spring Team include:


	Spring Data Commons

	Spring Data JPA

	Spring Data MongoDB

	Spring Data Redis

	Spring Data for Apache Cassandra



Projects supported by the community include:


	Spring Data Aerospike

	Spring Data ElasticSearch

	Spring Data DynamoDB

	Spring Data Neo4J



The base of the repositories interfaces chain is the Repository interface. It is a marker interface, and the general purpose is to store the type information. The type will be used for other interfaces that extend it.

There is also a CrudRepository interface. It is the most important, and the name is self-explanatory; it provides a couple of methods to perform CRUD operations, and it provides some utility methods, such as count(), exists(), and deleteAll(). Those are the most important base interfaces for the repository implementations.



            

            
        
    
        

                            
                    Spring Data JPA

                
            
            
                
The Spring Data JPA provides an easy way to implement a data access layer using the JPA specification from Java EE. Usually, these implementations had a lot of boilerplate and repetitive code and it was hard to maintain the changes in the database code. The Spring Data JPA is trying to resolve these issues and provides a comprehensible way to do that without boilerplate and repetitive code.

The JPA specification provides an abstraction layer to interact with different database vendors that have been implemented. Spring adds one more layer to the abstraction in a high-level mode. It means the Spring Data JPA will create a repositories implementation and encapsulate the whole JPA implementation details. We can build our persistence layer with a little knowledge of the JPA spec.

The JPA Specification was created by the JCP (Java Community Process) to help developers to persist, access, and manage data between Java classes and relational databases. There are some vendors that implement this specification. The most famous implementation is Hibernate (http://hibernate.org/orm/), and by default, Spring Data JPA uses Hibernate as the JPA implementation.

Say goodbye to the DAO (Data Access Object) pattern and implementations. The Spring Data JPA aims to solve this problem with a well-tested framework and with some production-ready features.

Now, we have an idea of what the Spring Data JPA is. Let's put it into practice.



            

            
        
    
        

                            
                    Configuring pom.xml for Spring Data JPA

                
            
            
                
Now, we need to put the correct dependencies to work with Spring Data JPA. There are a couple of dependencies to configure in our pom.xml file.

The first one is the Spring Data JPA Starter, which provides a lot of auto-configuration classes which permits us to bootstrap the application quickly. The last one is the PostgreSQL JDBC driver, and it is necessary because it contains the JDBC implementation classes to connect with the PostgreSQL database. 

The new dependencies are:

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

<dependency>
  <groupId>org.postgresql</groupId>
  <artifactId>postgresql</artifactId>
  <version>42.1.4</version>
</dependency>

Simple and pretty easy.



            

            
        
    
        

                            
                    Configuring the Postgres connections

                
            
            
                
To connect our application with our recently created database, we need to configure a couple of lines in the application.yaml file. Once again, thanks to Spring Data Starter, our connection will be configured automatically.

We can produce the connection objects using the @Bean annotations as well, but there are many objects to configure. We will go forward with the configuration file. It is more simple and straightforward to understand as well.

To configure the database connections, we need to provide the Spring Framework a couple of attributes, such as the database URL, database username, password, and also a driver class name to instruct the JPA framework about the full path of the JDBC class.

The application.yaml file should be like this:

spring:
  datasource:
    url: jdbc:postgresql://localhost:5432/postgres
    username: postgres
    password: cms@springfive
    driver-class-name: org.postgresql.Driver
  jpa:
    show-sql: true
    generate-ddl: true

In the datasource section, we have configured the database credentials connections and database host as well.

The JPA section in application.yaml can be used to configure the JPA framework. In this part, we configured to log SQL instructions in the console. This is helpful to debug and perform troubleshooting. Also, we have configured the JPA framework to create our tables in a database when the application gets the startup process.

Awesome, the JPA infrastructure is configured. Well done! Now, we can map our models in the JPA style. Let's do that in the following section.



            

            
        
    
        

                            
                    Mapping the models

                
            
            
                
We have configured the database connections successfully. Now, we are ready to map our models using the JPA annotations. Let's start with our Category model. It is a pretty simple class, which is good because we are interested in Spring Data JPA stuff.

Our first version of the Category model should be like this:

package springfive.cms.domain.models;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Table;
import lombok.Data;
import org.hibernate.annotations.GenericGenerator;

@Data
@Entity
@Table(name = "category")
public class Category {

  @Id
  @GeneratedValue(generator = "system-uuid")
  @GenericGenerator(name = "system-uuid", strategy = "uuid2")
  String id;

  String name;

}

We need to change some model classes to adapt to the JPA specification. We can find the model classes on GitHub at: https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-postgres/src/main/java/springfive/cms/domain/models.

There is some new stuff here. The @Entity annotation instructs the JPA framework that the annotated class is an entity, in our case, the Category class, and then the framework will correlate it with a database table. The @Table annotation is used to name the table in the database. These annotations are inserted on the class level, which means on top of the class declaration.

The @Id annotation instructs the JPA as to which annotated field is the primary key of the database table. It is not a good practice to generate IDs sequentially for entities, especially if you are creating the APIs. It helps hackers to understand the logic about the IDs and makes the attacks easier. So, we will generate UUIDs (Universally Unique IDentifiers) instead of simple sequentially IDs. The @GenericGenerator annotation instructs Hibernate, which is a JPA specification implementation vendor, to generate random UUIDs.



            

            
        
    
        

                            
                    Adding the JPA repositories in the CMS application

                
            
            
                
Once the whole infrastructure and JPA mappings are done, we can add our repositories to our projects. In the Spring Data project, there are some abstractions, such as Repository, CrudRepository, and JpaRepository. We will use the JpaRepository because it supports the paging and sorting features.

Our repository will be pretty simple. There are a couple of standard methods, such as save(), update(), and delete(), and we will take a look at some DSL query methods which allow developers to create custom queries based on attribute names. We created an AbstractRepository to help us to store the objects in memory. It is not necessary anymore. We can remove it.

Let's create our first JPA repository:

package springfive.cms.domain.repository;

import java.util.List;
import org.springframework.data.jpa.repository.JpaRepository;
import springfive.cms.domain.models.Category;

public interface CategoryRepository extends JpaRepository<Category, String> {

  List<Category> findByName(String name);

  List<Category> findByNameIgnoreCaseStartingWith(String name);

}

As we can see, the JpaRepository interface is typed with the desired entity and the type of ID of the entity as well. There is no secret to this part. This amazing thing happens to support the custom queries based on attribute names. In the Category model, there is an attribute called name. We can create custom methods in our CategoryRepository using the Category model attributes using the By instruction. As we can see, above findByName(String name), Spring Data Framework will create the correct query to look up categories by name. It is fantastic.

There are many keywords supported by the custom query methods:




	Logical Keyword
	Logical Expressions



	AND
	And



	OR
	Or



	AFTER
	After, IsAfter



	BEFORE
	Before, IsBefore



	CONTAINING
	Containing, IsContaining, Contains



	BETWEEN
	Between, IsBetween



	ENDING_WITH
	EndingWith, IsEndingWith, EndsWith



	EXISTS
	Exists



	FALSE
	False, IsFalse



	GREATER_THAN
	GreaterThan, IsGreaterThan



	GREATHER_THAN_EQUALS
	GreaterThanEqual, IsGreaterThanEqual



	IN
	In, IsIn



	IS
	Is, Equals, (or no keyword)



	IS_EMPTY
	IsEmpty, Empty



	IS_NOT_EMPTY
	IsNotEmpty, NotEmpty



	IS_NOT_NULL
	NotNull, IsNotNull



	IS_NULL
	Null, IsNull



	LESS_THAN
	LessThan, IsLessThan



	LESS_THAN_EQUAL
	LessThanEqual, IsLessThanEqual



	LIKE
	Like, IsLike



	NEAR
	Near, IsNear



	NOT
	Not, IsNot



	NOT_IN
	NotIn, IsNotIn



	NOT_LIKE
	NotLike, IsNotLike



	REGEX
	Regex, MatchesRegex, Matches



	STARTING_WITH
	StartingWith, IsStartingWith, StartsWith



	TRUE
	True, IsTrue



	WITHIN
	Within, IsWithin





There are many ways to create a query based on attributes names. We can combine the keywords using keywords as well, such as findByNameAndId, for instance. The Spring Data JPA provides a consistent way to create queries.



            

            
        
    
        

                            
                    Configuring transactions

                
            
            
                
When we use the JPA specification, most of the applications need to have support for transactions as well. Spring has excellent support for transactions even in other modules. This support is integrated with Spring Data JPA, and we can take advantage of it. Configuring transactions in Spring is a piece of cake; we need to insert the @Transactional annotation whenever needed. There are some different use cases to use it. We will use the @Transactional in our services layer and then we will put the annotation in our service classes. Let's see our CategoryService class:

package springfive.cms.domain.service;

import java.util.List;
import java.util.Optional;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import springfive.cms.domain.exceptions.CategoryNotFoundException;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.repository.CategoryRepository;
import springfive.cms.domain.vo.CategoryRequest;

@Service
@Transactional(readOnly = true)
public class CategoryService {

  private final CategoryRepository categoryRepository;

  public CategoryService(CategoryRepository categoryRepository) {
    this.categoryRepository = categoryRepository;
  }

  @Transactional
  public Category update(Category category) {
    return this.categoryRepository.save(category);
  }

  @Transactional
  public Category create(CategoryRequest request) {
    Category category = new Category();
    category.setName(request.getName());
    return this.categoryRepository.save(category);
  }

  @Transactional
  public void delete(String id) {
    final Optional<Category> category = this.categoryRepository.findById(id);
    category.ifPresent(this.categoryRepository::delete);
  }

  public List<Category> findAll() {
    return this.categoryRepository.findAll();
  }

  public List<Category> findByName(String name) {
    return this.categoryRepository.findByName(name);
  }

  public List<Category> findByNameStartingWith(String name) {
    return this.categoryRepository.findByNameIgnoreCaseStartingWith(name);
  }

  public Category findOne(String id) {
    final Optional<Category> category = this.categoryRepository.findById(id);
    if (category.isPresent()) {
      return category.get();
    } else {
      throw new CategoryNotFoundException(id);
    }
  }

}

There are many @Transactional annotations in the CategoryService class. The first annotation at class level instructs the framework to configure the readOnly for all methods present in those classes, except the methods configured with @Transactional. In this case, the class-level annotation will be overridden with readOnly=false. This is the default configuration when the value is omitted.



            

            
        
    
        

                            
                    Installing and configuring pgAdmin3

                
            
            
                
To connect on our PostgreSQL instance, we will use pgAdmin 3, which is the free tool provided by the Postgres team.

To install pgAdmin 3, we can use the following command:

sudo apt-get install pgadmin3 -y

This will install pgAdmin 3 on our machine.

After installation, open pgAdmin 3 and then click on Add a connection to a server. The button looks like this:



Then, fill in the information, as shown in the following screenshot:



The password should be: cms@springfive.

Awesome, our pgAdmin 3 tool is configured.



            

            
        
    
        

                            
                    Checking the data on the database structure

                
            
            
                
The whole application structure is ready. Now, we can check the database to get our persisted data. There are many open source Postgres clients. We will use pgAdmin 3, as previously configured.

The first time you open the application, you will be asked about the credentials and host. We must put the same information as we configured on the application.yaml file. Then, we are able to make instructions in the database.

Before checking the database, we can use Swagger to create some categories in our CMS system. We can use the instructions provided in Chapter 2, Starting in the Spring World – The CMS Application, to create some data.

After that, we can execute the following SQL instruction in the database:

select * from category;

And the result should be the categories created on Swagger calls. In my case, I have created two categories, sports, and movies. The result will be like the ones shown in the following screenshot:



Awesome work, guys. The application is fully operational.

Now, we will create our final solution for the repositories. We have learned the basics of the Spring Data project and in the next section, we will change the persistence layer to a modern database.



            

            
        
    
        

                            
                    Creating the final data access layer

                
            
            
                
We have played with the Spring Data JPA project, and we have seen how easy it can be. We learned how to configure the database connections to persist the real data on the Postgres database. Now, we will create the final solution for the data access layer for our application. The final solution will use MongoDB as a database and will use the Spring Data MongoDB project, which provides support for MongoDB repositories.

We will see some similarities with the Spring Data JPA projects. It is amazing because we can prove the power of Spring Data abstractions in practice. With a couple of changes, we can move to another database model.

Let's understand the new project and put it into practice in the following sections.



            

            
        
    
        

                            
                    Spring Data MongoDB

                
            
            
                
The Spring Data MongoDB provides integration with our domain objects and the MongoDB document. With a couple of annotations, our entity class is ready to be persisted in the database. The mapping is based on a POJO (Plain Old Java Object) pattern, which is known by all Java developers.

There are two levels of abstraction supplied by the module. The first one is a high-level abstraction. It increases the developer productivity. This level provides a couple of annotations to instruct the framework to convert the domain objects in MongoDB documents and vice versa. The developer does not need to write any code about the persistence; it will be managed by the Spring Data MongoDB framework. There are more exciting things at this level, such as the rich mapping configurations provided by the Spring Conversion Service. The Spring Data projects provide a rich DSL to enable developers to create queries based on the attribute names.

The second level of abstraction is the low-level abstraction. At this level, behaviors are not automatically managed by the framework. The developers need to understand a little bit more about the Spring and MongoDB document model. The framework provides a couple of interfaces to enable developers to take control of the read and write instructions. This can be useful for scenarios where the high-level abstraction does not fit well. In this case, the control should be more granular in the entities mapping.

Again, Spring provides the power of choice for developers. The high-level abstraction improves the developer performance and the low-level permits developers to take more control.

Now, we will add mapping annotation to our model. Let's do it.



            

            
        
    
        

                            
                    Removing the PostgreSQL and Spring Data JPA dependencies

                
            
            
                
We will convert our project to use the brand new Spring Data Reactive MongoDB repositories. After that, we will not use the Spring Data JPA and PostgreSQL drivers anymore. Let's remove these dependencies from our pom.xml:

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

<dependency>
  <groupId>org.postgresql</groupId>
  <artifactId>postgresql</artifactId>
  <version>42.1.4</version>
</dependency>

And then, we can add the following dependency:

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-data-mongodb-reactive</artifactId>
</dependency>

The final version of pom.xml can be found on GitHub at https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/pom.xml.



            

            
        
    
        

                            
                    Mapping the domain model

                
            
            
                
We will add mapping annotations on our domain model. The Spring Data MongoDB will use these annotations to persist our objects in the MongoDB collections. We will start with the Category entity, which should be like this:

package springfive.cms.domain.models;

import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;

@Data
@Document(collection = "category")
public class Category {

  @Id
  String id;

  String name;

}

We added two new annotations in the Category class. The @Document from Spring Data MongoDB enables us to configure the collection name. Collections in MongoDB are similar to tables in SQL databases.

The @Id annotation is from the Spring Data Commons project. It is interesting because, as we can see, it is not specific for MongoDB mappings. The field annotation with this will be converted in the _id field on MongoDB collection. 

With these few annotations, the Category class is configured to be persisted on MongoDB. In the following section, we will create our repository classes.

We need to do the same task for our other entities. The User and News need to be configured in the same way as we did for the Category class. The full source code can be found on GitHub at: https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/models.



            

            
        
    
        

                            
                    Configuring the database connection

                
            
            
                
Before we create our repositories, we will configure the MongoDB connection. The repository layer abstracts the driver implementation, but is necessary to configure the driver correctly.

On the resources directory, we will change the application.yaml file, previously configured for the Spring Data JPA. The Spring Framework supports the configuration through the YAML file. This kind of file is more readable for humans and has a kind of hierarchy. These features are the reason to choose this extension.

The application.yaml file should be like the following example:

spring:
  data:
    mongodb:
      database: cms
      host: localhost
      port: 27017

The application.yaml file for MongoDB can be found on GitHub (https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter03/cms-mongo-non-reactive/src/main/resources/application.yaml).

The file is quite simple for now. There is a database tag for configuring the database name. The host and port tags are about the address that the MongoDB instance is running.

We also can configure the connections programmatically with a couple of objects, but it requires us to code a lot of boilerplate code. Spring Boot offers it out of the box for us. Let's enjoy it.

Excellent, the connection was configured successfully. The infrastructure requirements are solved. Let's go on to implement our repositories.

Spring Boot Framework supports profiles in application.propertiesorapplication.yaml. This means that if the application was configured in a properties file style, we could use application-<profile>.properties. Then, these properties will be applied to the required profile. In YAML style, we can use only one file with multiples profiles.



            

            
        
    
        

                            
                    Adding the repository layer

                
            
            
                
Once the entities have been mapped, and the connections are done, it's time to create our repositories. The Spring Data Framework provides some interfaces that can be used in different use cases. We will use the specialization for the MongoDB database, which is MongoRepository. It extends the PagingAndSortingRepository and QueryByExampleExecutor. The first is about pagination and sorting features, and the other is about queries by example.

In some cases, the database query result set can be very large. This can cause some application performance issues because we will fetch a lot of database records. We can limit the number of records fetched from the database and configure limits for that. This technique is called Pagination. We can find the full documentation at Spring Data Commons Documentation (https://docs.spring.io/spring-data/commons/docs/current/reference/html/).

This interface offers a lot of built-in methods for convenience. There are a couple of methods to insert one or more instances, methods for listing all instances of requested entities, methods to remove one or more instances, and many more features, such as ordering and paging.

It enables developers to create repositories without code or even without a deep knowledge of MongoDB. However, some knowledge of MongoDB is necessary to troubleshoot various errors.

We will start by creating the CategoryRepository. Change the type of CategoryRepository to an interface instead of a class. The code in this interface is not necessary. The Spring container will inject the correct implementation when the application starts.

Let's create our first concrete repository, which means the repository will persist the data on the MongoDB we previously configured. The CategoryRepository needs to be like this:

package springfive.cms.domain.repository;

import org.springframework.data.mongodb.repository.MongoRepository;
import springfive.cms.domain.models.Category;

public interface CategoryRepository extends MongoRepository<Category,String> {}

The type is an interface. Repositories do not have any stereotypes anymore. The Spring container can identify the implementation because it extends the MongoRepository interface.

The MongoRepository interface should be parameterized. The first argument is the type of model that it represents. In our case, it represents a repository for the Category class. The second parameter is about the type of ID of the model. We will use the string type for that.

Now, we need to do the same for the other entities, User, and News. The code is quite similar to the preceding code. You can find the full source code on GitHub at: https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongo-non-reactive/src/main/java/springfive/cms/domain/repository.

In the next section, we will check the database to assert that the rows are persisted correctly. 



            

            
        
    
        

                            
                    Checking the persistence

                
            
            
                
Now, we can test the persistence and all layers of the application. We will provide the API documentation for that. Let's open the Swagger documentation and create some records in our CMS application.

Creating sample categories on Swagger:



Fill in the category JSON, as shown in the preceding screenshot, and then click on Try it out!. It will invoke the Category API and persist the category on the database. Now, we can check it.

To connect to the MongoDB instance and check the collection, we will use the mongo-express tool. It is a web-based tool written in NodeJS to interact with our database instance.

The tool can be installed, but we will run the tool on a Docker container. The Docker tool will help us in this part. Let's start the container:

docker run -d --link mongodb:mongo--net cms-application -p 8081:8081 mongo-express

It instructs Docker to spin up a container with the mongo-express tool and connect to the desired instance. The --link argument instructs Docker to create a kind of hostname for our MongoDB instance. Remember the name of our instance is mongodb; we did it on the run command previously.

Good job. Go to http://localhost:8081 and we will see this page:



There are a couple of databases. We are interested in the CMS database. Click on the View button next to cms. Then, the tool will present the collections of the selected database; in our case, the CMS database. The view should be like this:



The category is presented as a collection. We can View, Export, and export as JSON, but for now, we are interested in checking if our CMS application persisted the data properly. So, click on the View button. We will use the MongoDB collection data like this:



As we can see, the data was stored in MongoDB as expected. There are two categories in the database—sports and travel. There is a _class field that helps Spring Data to convert domain classes.

Awesome job, the CMS application is up and running, and also persisting the data in MongoDB. Now, our application is almost production ready, and the data is persisted outside in the amazing document datastore.

In the following section, we will create our Docker image, and then we will run the CMS application with Docker commands. It will be interesting.



            

            
        
    
        

                            
                    Creating the Docker image for CMS

                
            
            
                
We are doing an awesome job. We created an application with the Spring Boot Framework. The application has been using the Spring REST, Spring Data, and Spring DI.

Now we will go a step forward and create our Docker image. It will be useful to help us to deliver our application for production. There are some advantages, and we can run the application on-premise or on any cloud providers because Docker abstracts the operating system layer. We do not need Java to be installed on the application host, and it also allows us to use different Java versions on the hosts. There are so many advantages involved in adopting Docker for delivery. 

We are using Maven as a build tool. Maven has an excellent plugin to helps us to create Docker images. In the following section, we will learn how Maven can help us.



            

            
        
    
        

                            
                    Configuring the docker-maven-plugin

                
            
            
                
There is an excellent Maven plugin provided by fabric8 (https://github.com/fabric8io/docker-maven-plugin). It is licensed under the Apache-2.0 license, which means we can use it without any worries.

We will configure our project to use it, and after image creation, we will push this image on Docker Hub. It is a public Docker registry. 

The steps are:


	Configure the plugin

	Push the Docker image

	Configure the Docker Spring profile



Then, it is show time. Let's go.



            

            
        
    
        

                            
                    Adding the plugin on pom.xml

                
            
            
                
Let's configure the Maven plugin. It is necessary to add a plugin to the plugin section on our pom.xml and add some configurations. The plugin should be configured as follows:

<plugin>
   <groupId>io.fabric8</groupId>
   <artifactId>docker-maven-plugin</artifactId>
   <version>0.21.0</version>
   <configuration>
      <images>
         
      </images>
   </configuration>
</plugin>

There are a couple of new configurations here. Let's start with the <name> tag—it configures the repository and Docker image name to push to Docker Hub. For this book, we will use springfivebyexample as a Docker ID. We can see there is a slash as a separator for the repository and image name. The image name for us will be the final project name. Then, we need to configure it.

The Docker ID is free to use, which can be used to access some Docker services, such as Docker Store, Docker Cloud, and Docker Hub. We can find more information at Docker Page (https://docs.docker.com/docker-id/).

This configuration should be the same as shown in the following code snippet:

<build>
  <finalName>cms</finalName>
  ....
</build>

Another important tag is <entrypoint>. This is an exec system call instruction when we use the docker run command. In our case, we expected the application to run when the container bootstraps. We will execute java -jar passing the container as an active profile for Spring.

We need to pass the full path of the Java artifact. This path will be configured on the <assembly> tag with the <basedir> parameter. It can be any folder name. Also, there is a configuration to the Java artifact path. Usually, this is the target folder which is the result of the compilation. It can be configured in the <source> tag.

Finally, we have the <port> configuration. The port of the application will be exposed using this tag.

Now, we will create a Docker image by using the following instruction:

mvn clean install docker:build

It should be executed in the root folder of the project. The goal of the docker:build command is to build a Docker image for our project. After the build ends, we can check if the Docker image has been created successfully.

Then, type the following command:

docker images

The springfivebyexample/cms image should be present, as shown in the following screenshot:



Good. The image is ready. Let's push to the Docker Hub.



            

            
        
    
        

                            
                    Pushing the image to Docker Hub

                
            
            
                
The Docker Hub is a public repository to store Docker images. It is free, and we will use it for this book. Now, we will push our image to the Docker Hub registry.

The command for that is pretty simple. Type:

docker push springfivebyexample/cms:latest

I have used the springfivebyexample user that I have created. You can test the docker push command creating by your own user on Docker Hub and changing the user on the docker push command. You can create your Docker ID at Docker Hub (https://cloud.docker.com/).

Then, the image will be sent to the registry. That is it.

We can find the image at Docker Hub (https://store.docker.com/community/images/springfivebyexample/cms). If you have used your own user, the link will probably change.



            

            
        
    
        

                            
                    Configuring the Docker Spring profile

                
            
            
                
Before we run our application in a Docker container, we need to create a YAML file to configure a container profile. The new YAML file should be named as application-container.yaml because we will use the container profile to run it. Remember, we configured the entrypoint on pom.xml in the previous section.

Let's create our new file. The file should be the same content as described in the following snippet:

spring:
  data:
    mongodb:
      database: cms
      host: mongodb
      port: 27017

The host must be changed for MongoDB. We have been running the MongoDB container with this name in the Preparing a MongoDB section. It is an important configuration, and we need to pay attention at this point. We cannot use localhost anymore because the application is running in the Docker container now. The localhost in that context means it is in the same container, and we do not have MongoDB in the CMS application container. We need to have one application per container and avoid multiple responsibilities for one container.

Done. In the following section, we will run our first application in the Docker container. It will be amazing. Let's do it.



            

            
        
    
        

                            
                    Running the Dockerized CMS

                
            
            
                
In the previous section, we have created our file to configure the container profile properly. Now, it is time to run our container. The command is quite simple, but we need to pay attention to the arguments. 

The instruction we run should be the same as the following code:

docker run -d --name cms --link mongodb:mongodb --net cms-application -p 8080:8080 springfivebyexample/cms:latest

We have been setting the link for the MongoDB container. Remember, we made this configuration in the YAML file, in the host property. During the bootstrapping phase, the application will look for MongoDB instance named mongodb. We solved this by using the link command. It will work perfectly.

We can check if our application is healthy by using the docker ps command. The output should be like this:



In the first line, we have our application container. It is up and running.

Awesome work. Our application is fully containerized and ready to deploy anywhere we want.



            

            
        
    
        

                            
                    Putting in Reactive fashion

                
            
            
                
We have been creating an amazing application with Spring Boot. The application was built on the traditional web stack present on Spring Framework. It means the application uses the web servers based on Servlet APIs. 

The servlet specification was built with the blocking semantics or one-request-per-thread model. Sometimes, we need to change the application architecture because of non-functional requirements. For example, if the application was bought by a huge company, and that company wanted to create a plan to launch the application for the entire world, the volume of requests would probably increase a lot. So, we need to change the architecture to adapt the application structure for cloud environments.

Usually, in a cloud environment, the machines are smaller than traditional data centers. Instead of a big machine, it is popular to use many small machines and try to scale applications horizontally. In this scenario, the servlet spec can be switched to an architecture created upon Reactive Streams. This kind of architecture fits better than servlet for the cloud environments.

Spring Framework has been creating the Spring WebFlux to helps developers to create Reactive Web Applications. Let's change our application architecture to reactive and learn the pretty new Spring WebFlux component.



            

            
        
    
        

                            
                    Reactive Spring

                
            
            
                
The Reactive Stream Spec is the specification that provides a standard for asynchronous programming for stream processing. It is becoming popular in the programming world nowadays, and Spring introduces it on the framework. 

This style of programming is more efficient regarding resources usage and fits amazingly with the new generation of machines with multiple cores.

Spring reactive uses the Project Reactor as the implementation for the Reactive Streams. The Project Reactor is powered by Pivotal and has the very good implementation of the Reactive Streams Spec.

Now, we will deep dive in the reactive module for Spring Boot and create an amazing reactive API and try the new style of the Spring Framework. 



            

            
        
    
        

                            
                    Project Reactor

                
            
            
                
The Project Reactor was created by the Spring and Pivotal teams. This project is an implementation of Reactive Streams for JVM.  It is a fully non-blocking foundation and helps developers to create a non-blocking application in the JVM ecosystem.

There is a restriction to using Reactor in our application. The project runs on Java 8 and above. It is important because we will use many lambda expressions in our examples and projects.

The Spring Framework internally uses the Project Reactor as an implementation of Reactive Streams.



            

            
        
    
        

                            
                    Components

                
            
            
                
Let's look at the different components of the Project Reactor:


	Publishers: The publishers are responsible for pushing data elements to the stream. It notifies the subscribers that a new piece of data is coming to the stream.

The publisher interface is defined in the following code snippet:



/************************************************************************
 * Licensed under Public Domain (CC0)                                    *
 *                                                                       *
 * To the extent possible under law, the person who associated CC0 with  *
 * this code has waived all copyright and related or neighboring         *
 * rights to this code.                                                  *
 *                                                                       *
 * You should have received a copy of the CC0 legalcode along with this  *
 * work. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.*
 ************************************************************************/

package org.reactivestreams;

/**
 * A {@link Publisher} is a provider of a potentially unbounded number of sequenced elements, publishing them according to
 * the demand received from its {@link Subscriber}(s).
 * <p>
 * A {@link Publisher} can serve multiple {@link Subscriber}s subscribed {@link #subscribe(Subscriber)} dynamically
 * at various points in time.
 *
 * @param <T> the type of element signaled.
 */
public interface Publisher<T> {

    public void subscribe(Subscriber<? super T> s);

}


	Subscribers: The subscribers are responsible for making the data flow in the stream. When the publisher starts to send the piece of data on the data flow, the piece of data will be collected by the onNext(T instance) method, which is the parametrized interface. 
The subscriber interface is defined in the following code snippet:



/************************************************************************
 * Licensed under Public Domain (CC0)                                    *
 *                                                                       *
 * To the extent possible under law, the person who associated CC0 with  *
 * this code has waived all copyright and related or neighboring         *
 * rights to this code.                                                  *
 *                                                                       *
 * You should have received a copy of the CC0 legalcode along with this  *
 * work. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.*
 ************************************************************************/

package org.reactivestreams;

/**
 * Will receive call to {@link #onSubscribe(Subscription)} once after passing an instance of {@link Subscriber} to {@link Publisher#subscribe(Subscriber)}.
 * <p>
 * No further notifications will be received until {@link Subscription#request(long)} is called.
 * <p>
 * After signaling demand:
 * <ul>
 * <li>One or more invocations of {@link #onNext(Object)} up to the maximum number defined by {@link Subscription#request(long)}</li>
 * <li>Single invocation of {@link #onError(Throwable)} or {@link Subscriber#onComplete()} which signals a terminal state after which no further events will be sent.
 * </ul>
 * <p>
 * Demand can be signaled via {@link Subscription#request(long)} whenever the {@link Subscriber} instance is capable of handling more.
 *
 * @param <T> the type of element signaled.
 */
public interface Subscriber<T> {
    
    public void onSubscribe(Subscription s);

    public void onNext(T t);

    public void onComplete();
}



            

            
        
    
        

                            
                    Hot and cold

                
            
            
                
There are two categories of reactive sequences—hot and cold. These functions affect the usage of the implementation directly. Hence, we need to understand them:


	Cold: The cold publishers start to generate data only if it receives a new subscription. If there are no subscriptions, the data never comes to the flow.

	Hot: The hot publishers do not need any subscribers to generate the data flow. When the new subscriber is registered, the subscriber will only get the new data elements emitted.





            

            
        
    
        

                            
                    Reactive types

                
            
            
                
There are two reactive types which represent the reactive sequences. The Mono objects represent a single value or empty 0|1. The Flux objects represent a sequence of 0|N items.

We will find many references in our code. The Spring Data reactive repository uses these abstractions in their methods. The findOne() method returns the Mono<T> object and the findAll() returns a Flux<T>. The same behavior we will be found in our REST resources.



            

            
        
    
        

                            
                    Let's play with the Reactor

                
            
            
                
To understand it better, let's play with the Reactor. We will implement and understand the difference between hot and cold publishers in practice. 

Cold publishers do not produce any data until a new subscription arrives. In the following code, we will create a cold publisher and the System.out:println will never be executed because it does not have any subscribers. Let's test the behavior:

@Test
public void coldBehavior(){
  Category sports = new Category();
  sports.setName("sports");
  Category music = new Category();
  sports.setName("music");
  Flux.just(sports,music)
      .doOnNext(System.out::println);
}

As we can see, the method subscribe() is not present in this snippet. When we execute the code, we will not see any data on the standard print output.

We can execute the method on the IDE. We will able to see the output of this test. The output should be like this:



The process has finished, the test passed, and we will not be able to see the print. That is the cold publisher's behavior.

Now, we will subscribe the publisher and the data will be sent on the data flow. Let's try this.

We will insert the subscribe instruction after doOnNext(). Let's change our code:

 @Test
  public void coldBehaviorWithSubscribe(){
    Category sports = new Category();
    sports.setId(UUID.randomUUID().toString());
    sports.setName("sports");
    Category music = new Category();
    music.setId(UUID.randomUUID().toString());
    music.setName("music");
    Flux.just(sports,music)
        .doOnNext(System.out::println)
        .subscribe();
  }

The output should be like this:



In the preceding screenshot, we can see that the publisher pushes the data on the stream after the stream got subscribed. That is the cold publisher behavior after the subscription.

Hot publishers do not depend on any subscribers. The hot publisher will publish data, even if there is no subscriber to receive the data. Let's see an example:

@Test
public void testHotPublisher(){
  UnicastProcessor<String> hotSource = UnicastProcessor.create();
  Flux<Category> hotPublisher = hotSource.publish()
      .autoConnect().map((String t) -> Category.builder().name(t).build());
  hotPublisher.subscribe(category -> System.out.println("Subscriber 1: "+ category.getName()));
  hotSource.onNext("sports");
  hotSource.onNext("cars");
  hotPublisher.subscribe(category -> System.out.println("Subscriber 2: "+category.getName()));
  hotSource.onNext("games");
  hotSource.onNext("electronics");
  hotSource.onComplete();
}

Let's understand what happens here. The UnicastProcessor is a processor that allows only one Subscriber.The processor replays notifications when the subscriber requests. It will emit some data on a stream. The first subscription will capture all the categories, as we will see, because it was registered before the event emissions. The second subscription will capture only the last events because it was registered before the last two emissions. 

The output of the preceding code should be:



Awesome. This is the hot publisher's behavior.



            

            
        
    
        

                            
                    Spring WebFlux

                
            
            
                
The traditional Java enterprise web applications are based on the servlet specification. The servlet specification before 3.1 is synchronous, which means it was created with blocking semantics. This model was good at the time because computers were big with a powerful CPU and hundreds of gigabytes of memory. Usually, the applications at the time were configured with a big thread pool with hundreds of threads because the computer was designed for this. The primary deployment model at that time was the replica. There are some machines with the same configuration and application deployments.

The developers have been creating applications like this for many years.

Nowadays, most of the applications are deployed in cloud vendors. There are no big machines anymore because the price is much higher. Instead of big machines, there are a number of small machines. It is much cheaper and these machines have a reasonable CPU power and memory. 

In this new scenario, the application with the huge thread pools is not effective anymore, because the machine is small and it does not have the power to handle all these threads.

The Spring Team added the support for the Reactive Streams in the framework. This model of programming changes the application deployment and the way to build applications.

Instead of a thread-per-request model, the applications are created with the event-loop model. This model requires a small number of threads and is more efficient regarding resource usage.



            

            
        
    
        

                            
                    Event-loop model

                
            
            
                
Popularized by the NodeJS language, this model is based on event-driven programming. There are two central concepts: the events which will be enqueued on a queue, and the handlers which keep track of and process these events.

There are some advantages of adopting this model. The first one is the ordering. The events are enqueued and dispatched in the same order in which the events are coming. In some uses cases, this is an important requirement.

The other one is the synchronization. The event-loop must be executed on only one thread. This makes the states easy to handle and avoids the shared state problems.

There is an important piece of advice here. The handlers must not be synchronous. Otherwise, the application will be blocked until the handlers end their workload.



            

            
        
    
        

                            
                    Spring Data for Reactive Extensions

                
            
            
                
The Spring Data projects have some extensions to work with a reactive foundation. The project provides a couple of implementations based on asynchronous programming. It means the whole stack is asynchronous since database drivers are as well.

The Spring reactive repository supports Cassandra, MongoDB, and Redis as database stores. The repository implementations offer the same behaviors as the non-reactive implementation. There is a DSL (Domain-Specific Language) to create domain-specific query methods.

The module uses the Project Reactor as a reactive foundation implementation, but is possible to change the implementation to RxJava as well. Both libraries are production-ready and are adopted by the community. One point to be aware of is that if we change to RxJava, we need to ensure our method returns to Observable and Single.



            

            
        
    
        

                            
                    Spring Data Reactive

                
            
            
                
The Spring Data Project has support for the reactive data access. Until now, Spring has support for MongoDB, Apache Cassandra, and Redis, all of which have reactive drivers.

In our CMS application, we will use the MongoDB reactive drivers to give the reactive characteristics for our repositories. We will use the new reactive interface provided by the Spring Data reactive. Also, we need to change the code a little bit. In this chapter, we will do that step by step. Let's start.



            

            
        
    
        

                            
                    Reactive repositories in practice

                
            
            
                
Before we start, we can check out the full source code at GitHub, or we can perform the following steps.

Now, we are ready to build our new reactive repositories. The first thing that we need to do is add the Maven dependencies to our project. This can be done using pom.xml.

Let's configure our new dependency:

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-data-mongodb-reactive</artifactId>
</dependency>

Our project is ready to use reactive MongoDB repositories.



            

            
        
    
        

                            
                    Creating the first Reactive repository

                
            
            
                
We have a couple of repositories in our CMS project. Now, we need to convert these repositories to reactive ones. The first thing we will do is remove the extension from CrudRepository, which is not necessary anymore. Now, we want the reactive version of that. 

We will update the ReactiveMongoRepository interface. The parameters of the interface are the same as the ones we inserted before. The interface should be like this:

package springfive.cms.domain.repository;

import org.springframework.data.mongodb.repository.ReactiveMongoRepository;
import springfive.cms.domain.models.Category;

public interface CategoryRepository extends ReactiveMongoRepository<Category,String> {
}

This is quite similar to the one we created before. We need to extend the new ReactiveMongoRepository interface, which contains methods for the CRUD operations and much more. The interface returns Mono<Category> or Flux<Category>.  The methods do not return the entities anymore. It is a common way of programming when the Reactive Stream is adopted.

We need to change the other repositories as well. You can find the full source code on GitHub at: https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter03/cms-mongodb/src/main/java/springfive/cms/domain/repository.

Now, we need to change the service layer. Let's do that.



            

            
        
    
        

                            
                    Fixing the service layer

                
            
            
                
We need to change the service layer to adopt the new reactive programming style. We changed the repository layer, so now we need to fix the compilation problem result because of this change. The application needs to be reactive. Any point of the application can be blocked because we are using the event-loop model. If we do not do this, the application will be getting blocked.



            

            
        
    
        

                            
                    Changing the CategoryService

                
            
            
                
Now, we will fix the CategoryService class. We will change the return type of a couple of methods. Before, we could return the model class, but now we need to change to return Mono or Flux, similar to what we did in the repository layer.

The new CategoryService should be like the implementation shown in the following code snippet:

package springfive.cms.domain.service;

import org.springframework.stereotype.Service;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.repository.CategoryRepository;
import springfive.cms.domain.vo.CategoryRequest;

@Service
public class CategoryService {

  private final CategoryRepository categoryRepository;

  public CategoryService(CategoryRepository categoryRepository) {
    this.categoryRepository = categoryRepository;
  }

  public Mono<Category> update(String id,CategoryRequest category){
    return this.categoryRepository.findById(id).flatMap(categoryDatabase -> {
      categoryDatabase.setName(category.getName());
      return this.categoryRepository.save(categoryDatabase);
    });
  }

  public Mono<Category> create(CategoryRequest request){
    Category category = new Category();
    category.setName(request.getName());
    return this.categoryRepository.save(category);
  }

  public void delete(String id){
    this.categoryRepository.deleteById(id);
  }

  public Flux<Category> findAll(){
    return this.categoryRepository.findAll();
  }

  public Mono<Category> findOne(String id){
    return this.categoryRepository.findById(id);
  }

}

As we can see, the return types changed in the methods.

The important thing here is that we need to follow the reactive principles. When the method returns only one instance, we need to use Mono<Category>. When the method returns one or more instances, we should use Flux<Category>. This is essential to follow because developers and Spring containers can then interpret the code correctly.

The update() method has an interesting call: flatMap(). The project reactor allows us to use a kind of DSL to compose calls. It is very interesting and very useful as well. It helps developers to create code that is easier to understand than before. The flatMap() method is usually used to convert the data emitted by Mono or Flux. In this context, we need to set the new name of the category on the category retrieved from the database. 



            

            
        
    
        

                            
                    Changing the REST layer

                
            
            
                
We will make some fixes on the REST layer as well. We changed the service layer, and it caused some compilation problems in our resources classes.

We need to add the new dependency, spring-web-reactive. This supports the @Controller or @RestController annotations for the reactive non-blocking engine. The Spring MVC does not support the reactive extensions, and this module enables developers to use reactive paradigms, as they did before.

spring-web-reactive will change many contracts on the Spring MVC foundations, such as HandlerMapping, and HandlerAdapter, to enable reactive foundations on these components. 

The following image can help us to better understand the Spring HTTP layers:



As we can see, @Controller and @RequestMapping can be used for different approaches in the Spring MVC traditional applications, or by using the Spring web reactive module.

Before we start to change our REST layer, we need to remove the Spring Fox dependencies and annotations in our project. At present, the Spring Fox has no support for reactive applications yet.

The dependencies to remove are:

<dependency>
  <groupId>io.springfox</groupId>
  <artifactId>springfox-swagger2</artifactId>
  <version>2.7.0</version>
</dependency>

<dependency>
  <groupId>io.springfox</groupId>
  <artifactId>springfox-swagger-ui</artifactId>


  <version>2.7.0</version>
</dependency>

After that, we need to remove the annotations from the Swagger packages, such as @Api and @ApiOperation.

Now, let's adjust our REST layer.



            

            
        
    
        

                            
                    Adding the Spring WebFlux dependency

                
            
            
                
Before we start to change our REST layer, we need to add the new dependency to our pom.xml.

First, we will remove the Spring MVC traditional dependencies. To do this, we need to remove the following dependency:

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-web</artifactId>
</dependency>

We do not need this dependency anymore. Our application will be reactive now. Then, we need to add the new dependencies described in the following code snippet:

<dependency>
  <groupId>io.netty</groupId>
  <artifactId>netty-transport-native-epoll</artifactId>
</dependency>

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

spring-boot-starter-webflux is a kind of syntax sugar for dependencies. It has the spring-boot-starter-reactor-netty dependency, which is the Reactor Netty, as embedded in the reactive HTTP server.

Awesome, our project is ready to convert the REST layer. Let's transform our application into a fully reactive application.



            

            
        
    
        

                            
                    Changing the CategoryResource

                
            
            
                
We will change the CategoryResource class. The idea is pretty simple. We will convert our ResponseEntity, which is parametrized with the models class to ResponseEntity using Mono or Flux.

The new version of the CategoryResource should be like this:

package springfive.cms.domain.resources;

import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseStatus;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import springfive.cms.domain.models.Category;
import springfive.cms.domain.service.CategoryService;
import springfive.cms.domain.vo.CategoryRequest;

@RestController
@RequestMapping("/api/category")
public class CategoryResource {

  private final CategoryService categoryService;

  public CategoryResource(CategoryService categoryService) {
    this.categoryService = categoryService;
  }

  @GetMapping(value = "/{id}")
  public ResponseEntity<Mono<Category>> findOne(@PathVariable("id") String id){
    return ResponseEntity.ok(this.categoryService.findOne(id));
  }

  @GetMapping
  public ResponseEntity<Flux<Category>> findAll(){
    return ResponseEntity.ok(this.categoryService.findAll());
  }

  @PostMapping
  public ResponseEntity<Mono<Category>> newCategory(@RequestBody CategoryRequest category){
    return new ResponseEntity<>(this.categoryService.create(category), HttpStatus.CREATED);
  }

  @DeleteMapping("/{id}")
  @ResponseStatus(HttpStatus.NO_CONTENT)
  public void removeCategory(@PathVariable("id") String id){
    this.categoryService.delete(id);
  }

  @PutMapping("/{id}")
  public ResponseEntity<Mono<Category>> updateCategory(@PathVariable("id") String id,CategoryRequest category){
    return new ResponseEntity<>(this.categoryService.update(id,category), HttpStatus.OK);
  }

}

The code is quite similar to what we did before. We have used the  @RequestBody annotation in the method argument; otherwise, the JSON converter will not work.

The other important characteristic here is the return method. It returns Mono or Flux, which are parameterized types for ResponseEntity.

We can test the reactive implementation by using the command line. It will persist the Category object on MongoDB. Type the following command on the Terminal:

curl -H "Content-Type: application/json" -X POST -d '{"name":"reactive"}' http://localhost:8080/api/category

And then, we can use the following command to check the database. Using the browser, go to http://localhost:8080/api/category. The following result should be presented:



Awesome, our reactive implementation is working as expected. Well done!!!



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we have learned a lot of Spring concepts. We have introduced you to Spring Data projects, which help developers to create data access layers as we have never seen before. We saw how easy it is to create repositories with this project.

Also, we presented some relatively new projects, such as Spring WebFlux, which permits developers to create modern web applications, applying the Reactive Streams foundations and reactive programming style in projects. 

We have finished our CMS application. The application has the characteristics of a production-ready application, such as database connections, and services which have been well-designed with single responsibilities. Also, we introduced the docker-maven-plugin, which provides a reasonable way to create images using the pom.xml configurations.

In the next chapter, we will create a new application using the Reactive Manifesto based on message-driven applications. See you there. 

 

 





            

            
        
    
        

                            
                    Kotlin Basics and Spring Data Redis

                
            
            
                
Spring Boot allows developers to create different styles of application. In Chapter 2, Starting in the Spring World – the CMS Application, and Chapter 3, Persistence with Spring Data and Reactive Fashion, we have created a portal application, and now we will create an application based on message-driven architecture. It demonstrates how the Spring Framework fits well in a wide range of application architectures.

In this chapter, we will start to create an application which keeps the tracked hashtags on the Redis database. The application will get hashtags and put them in a couple of queues to our other projects, and consume and handle them appropriately.

As we have been doing in our previous projects, we will continue to use the Reactive Foundation to provide scalable characteristics in the application.

At the end of this chapter, we will have:


	Learned Kotlin basics

	Created the project structure

	Created the Reactive Redis repositories

	Applied some techniques in reactive programming, using the Reactive Redis Client



Let's start right now.



            

            
        
    
        

                            
                    Learning Kotlin basics

                
            
            
                
The Kotlin language was released officially in February 2016. JetBrains created it and has been developing the language ever since. The company is the owner of the IntelliJ IDEA IDE. 

In February 2012, JetBrains made the language open source under the Apache v2 license; the license allows developers to create applications.

The language is one option for JVM (Java Virtual Machine) languages such as Clojure and Scala, which means that the language can compile bytecode for JVM. As we will see, Kotlin has many similarities with Scala. Kotlin has the Scala language as a reference, but the JetBrains teams believe that Scala has problems with the compilation time.

Kotlin was becoming an adopted language in the Android world and because of this, in the Google I/O, 2017, the Google Team announced official support for the Android ecosystem. Since then, the language has been growing year by year and increasing in popularity.



            

            
        
    
        

                            
                    Main characteristics of Kotlin

                
            
            
                
The Kotlin language was designed to maintain the interoperability with Java code. It means we can start to code with Java idioms in the Kotlin file.

The language is statically-typed, and it is an excellent attribute because it can help us find some problems at compilation time. Also, statically-typed languages are much faster than dynamic languages. The IDEs can help developers much better than dynamic languages, as well.



            

            
        
    
        

                            
                    Syntax

                
            
            
                
The syntax is different from Java syntax. At first glance, it can be a problem but after some hours of playing with Kotlin, it is not a problem at all.

There are two interesting reserved words to understand the usage and concepts:


	var: This is a variable declaration. It indicates the variable is mutable and can be reassigned, as developers need.

	val: This is a variable declaration which indicates the variable is immutable and cannot be reassigned anymore. This definition is like a final declaration in the Java language.



The variable declarations have a name, and after the desired data type, the colon is necessary in the middle as a separator. If the variable is initialized, the type is not necessary because the compiler can infer the correct data type. Let's try it out to understand it better.

Here is a variable with the data type specified:

var bookName: String

In this case, we need to keep the data type because the variable is not initialized, then the compiler cannot infer the type. The variable, bookName, can be reassigned because of the modifier var.

Here is a variable without the data type:

val book = "Spring 5.0 by Example"

It is not a necessity to declare the data type because we have initialized the variable with the value, Spring 5.0 by Example. The compiler can infer the type is a kind of syntactic sugar. The variable cannot be reassigned because of the modifier val. If we try to reassign the instruction, we will get a compilation error.

The semicolons are optional in Kotlin, the compiler can detect the statement terminator. This is another point where Kotlin diverges from the Java programming language:

val book = "Spring 5.0 by Example"
var bookName: String
println("Hello, world!")

The semicolons were not provided, and the instructions were compiled.

Immutable programming in the Kotlin language is recommended. It performs better on the multi-core environments. Also, it makes the developer's life easier to debug and troubleshoot scenarios.



            

            
        
    
        

                            
                    Semantics

                
            
            
                
In Kotlin, there are classes and functions. However, there is no method anymore. The fun keyword should be used to declare a function.

Kotlin gets some concepts of the Scala language and brings some special classes such as Data classes and Object classes (which we will learn soon). Before that, we will understand how to declare a function in Kotlin. Let's do that!



            

            
        
    
        

                            
                    Declaring functions in Kotlin

                
            
            
                
There are many variations in function declarations. We will create some declarations to understand the slight difference from Java methods.



            

            
        
    
        

                            
                    Simple function with parameters and return type

                
            
            
                
This simple function has two parameters and a String as a return type. Take a look at a parameter declaration and observe the order, name and data type.

fun greetings(name:String,greeting:String):String{
  return greeting + name
}

As we can see, the type of argument which comes after the variable name is the same as on the variable declarations. The return type comes after the arguments list is separated with semicolons. The same function can be declared in the following way in Java:

public String greetings(String name,String greeting){
  return greeting + name;
}

There are some differences here. Firstly, there are semicolons in the Java code, and we can see the order of the methods and functions declarations.



            

            
        
    
        

                            
                    Simple function without return

                
            
            
                
Let's understand how we can construct functions without a return value, the following function will not return any value:

fun printGreetings(name:String,greeting:String):Unit{
  println(greeting + name)
}

There is one difference, in this case, the Unit was introduced; this type of object corresponds to void in Java language. Then, in the preceding code, we have a function without a return. The Unit object can be removed if you want the compiler to understand the function has no return value.



            

            
        
    
        

                            
                    Single expressions functions

                
            
            
                
When the function has a single expression we can remove the curly braces, the same as in Scala, and the function body should be specified after the = symbol. Let's refactor our first function, as follows:

fun greetings(name:String,greeting:String) = greeting + name

We can remove the return keyword, as well. Our function is pretty concise now. We removed return and the type of return as well. As we can see, the code is more readable now. If you want, the return type can be declared too.



            

            
        
    
        

                            
                    Overriding a function

                
            
            
                
To override a function on Kotlin, it is necessary to put an override keyword on the function declaration, and the base function needs to have the open keyword as well.

Let's look at an example:

open class Greetings {
  open fun greeting() {}
}
 
class SuperGreeting() : Greetings() {
  override fun greeting() {
  // my super greeting
  }
}

This way is more explicit than Java, it increases the legibility of the code as well.



            

            
        
    
        

                            
                    Data classes

                
            
            
                
Data classes are the right solution when we want to hold and transfer data between system layers. Like in Scala, these classes offer some built-in functionalities such as getters/setters, equals and hashCode, toString method and the copy function.

Let's create an example for that:

data class Book(val author:String,val name:String,val description:String,val new:Boolean = false)

We have some interesting things in the code. The first thing we notice is that all of the attributes are immutable. It means there are no setters for all of them. The second is that in the class declaration, we can see a list of attributes. In this case, Kotlin will create a constructor with all attributes present in this class and because they are val it means final attributes.

In this case, there is no default constructor anymore.

Another interesting feature in Kotlin is that it enables developers to have default values on constructors, in our case the new attribute, if omitted, will assume the false value. We can get the same behavior in the parameters list in functions as well.

Finally, there is a fantastic way to copy objects. The copy method allows developers to copy objects with named parameters. This means we can change only attributes as we need. Let's take a look at an example:

fun main(args : Array<String>) {
  val springFiveOld = Book("Claudio E. de Oliveira","Spring 5.0 by Example","Amazing example of Spring Boot Apps",false)
  val springFiveNew = springFiveOld.copy(new = true)
  println(springFiveOld)
  println(springFiveNew)
}

In the first object, we have created a book instance with false for the new attribute, then we copied a new object with true for the new attribute, and the other attributes are not changed. Goodbye to the complex clone logic and nice to meet the new way to copy objects.

The output of this code should look like the following:



As we can see, only the new attribute is changed and the toString function was generated in good shape as well.

There are some restrictions on Data classes. They cannot be abstract, open, sealed, or inner.



            

            
        
    
        

                            
                    Objects

                
            
            
                
The singleton pattern is commonly used in applications, and Kotlin provides an easy way to do that without much boilerplate code.

We can instruct Kotlin to create a singleton object using the object keyword. Once again,  Kotlin used Scala as a reference because there are the same functionalities in the Scala language.

Let's try it:

object BookNameFormatter{
  fun format(book: Book):String = "The book name is" + book.name
}

We have created a formatter to return a message with the book name. Then, we try to use this function:

val springFiveOld = Book("Claudio E. de Oliveira","Spring 5.0 by Example","Amazing example of Spring Boot Apps",false)
BookNameFormatter.format(springFiveOld)

The function format can be called in a static context. There is no instance to call the function because it is a singleton object.



            

            
        
    
        

                            
                    Companion objects

                
            
            
                
A companion object is an object which is common for all instances of that class. It means there are many instances of a book, for example, but there is a single instance of their companion object. Usually, the developers use companion objects as a factory method. Let's create our first companion object:

data class Book(val author:String,val name:String,val description:String,val new:Boolean = false{
 
  companion object {
    fun create(name:String,description: String,author: String):Book{
      return Book(author,name,description)
    }
  }

}

If the name of the companion object was omitted, the function could be called in a singleton way, without an instance, like this:

val myBookWithFactory = Book.create("Claudio E. de Oliveira","Spring 5.0 by Example","Amazing example of Spring Boot Apps")

It is like an object behavior. We can call it in a static context.



            

            
        
    
        

                            
                    Kotlin idioms

                
            
            
                
Koltin idioms are a kind of syntax sugar for Java programmers. It is a collection of pieces of code which help developers to create a concise code in Kotlin languages. Let's take a look at common Kotlin idioms.



            

            
        
    
        

                            
                    String interpolation

                
            
            
                
Kotlin supports string interpolation, it is a little bit complex to do it in the Java language but it is not a problem for Kotlin. We do not require a lot of code to do this task as Kotlin supports it natively. It makes the code easier to read and understand. Let's create an example:

val bookName = "Spring 5.0"
val phrase = "The name of the book is $bookName"

As we can see,  it is a piece of cake to interpolate strings in Kotlin. Goodbye String.format() with a lot of arguments. We can use $bookName to replace the bookName variable value. Also, we can access the functions present in objects, but for that, we need to put curly braces. Check the following code:

val springFiveOld = Book("Claudio E. de Oliveira","Spring 5.0 by Example","Amazing example of Spring Boot Apps",false)
val phrase = "The name of the book is ${springFiveOld.name}"

Thanks, Kotlin we appreciate this feature.



            

            
        
    
        

                            
                    Smart Casts

                
            
            
                
Kotlin supports the feature called Smart Casts which enables developers to use the cast operators automatically. After checking the variable type, in Java, the cast operator must be explicit. Let's check it out:

fun returnValue(instance: Any): String {
  if (instance is String) {
    return instance
  }
  throw IllegalArgumentException("Instance is not String")
} 

As we can see, the cast operator is not present anymore. After checking the type, Kotlin can infer the expected type. Let's check the Java version for the same piece of code:

public String returnValue(Object instance) {
  if (instance instanceof String) {
    String value = (String) instance;
      return value;
    }
    throw IllegalArgumentException("Instance is not String");
}

It makes the cast safer because we do not need to check and apply the cast operator.



            

            
        
    
        

                            
                    Range expressions

                
            
            
                
Range expressions permit developers to work with ranges in for loops and if comparison. There are a lot of ways to work with ranges in Kotlin. We will take a look at most of the common ones here.



            

            
        
    
        

                            
                    Simple case

                
            
            
                
Let's look at one simple case:

for ( i in 1..5){
  println(i)
}

It will iterate from 1 to 5 inclusive because we have used them in the in keyword.



            

            
        
    
        

                            
                    The until case

                
            
            
                
We also can use the until keyword in for loops, in this case, the end element will be excluded from the interaction. Let's see an example:

for (i in 1 until 5) {
  println(i)
}

In this case, the 5 value will not be printed on the console, because the end element is not included in the interaction.



            

            
        
    
        

                            
                    The downTo case

                
            
            
                
The downTo keyword enables developers to interact with the numbers in reverse order. The instruction is self-explanatory, as well. Let's see it in practice:

for (i in 5 downTo 1) {
  println(i)
}

It is pretty easy as well. The interaction will occur in the reverse order, in this case, the value 1 will be included. As we can see, the code is pretty easy to understand.



            

            
        
    
        

                            
                    Step case

                
            
            
                
Sometimes we need to interact over values but with the arbitrary steps, not one by one, for example. Then we can use the step instruction. Let's practice:

for (i in 1..6 step 2) {
  print(i)
}

Here, we will see the following output: 135, because the interaction will start on the 1 value and will be increased by two points.

Awesome. The Kotlin ranges can add more readability to our source code and help to increase the quality of code as well.



            

            
        
    
        

                            
                    Null safety

                
            
            
                
Kotlin has amazing stuff to work with null references. The null reference is a nightmare for Java developers. The Java 8 has an Optional object, which helps developers work with nullable objects, but is not concise like in Kotlin.

Now, we will explore how Kotlin can help developers to avoid the NullPointerException. Let's understand.

The Kotlin type system makes a distinction between references which can hold null and those which cannot hold null. Due to this, the code is more concise and readable because it is a kind of advice for developers.

When the reference does not allow null, the declaration should be:

var myNonNullString:String = "my non null string"

The preceding variable cannot be assigned to a null reference, if we do this, we will get a compilation error. Look how easy the code is to understand.

Sometimes, we need to allow for a variable to have null references, in these cases, we can use the ? as an operator, such as follows:

var allowNull:String? = "permits null references"

Easy. Pay attention to a variable declaration on the ? operator, it makes the variable accept null references. 

There are two different ways to avoid the NullPointerReference in Kotlin. The first one can be called safe calls, and the other can be called the Elvis Operator. Let's take a look at those.



            

            
        
    
        

                            
                    Safe calls

                
            
            
                
The safe call can be written using the .?. It can be called when the reference holds a non-null value when the value holds a null reference then the null value will be returned:

val hash:TrackedHashTag? = TrackedHashTag(hashTag="java",queue="java")
val queueString = hash?.queue

When the hash? holds null, the null value will be assigned to a queueString attribute. If the hash? has a valid reference, the queue attribute will be assigned to a queueString attribute.



            

            
        
    
        

                            
                    Elvis operator

                
            
            
                
It can be used when developers expect to return a default value when the reference is null:

val hash:TrackedHashTag? = TrackedHashTag(hashTag="java",queue="java")
val queueString = hash?.queue ?: "unrecognized-queue"

When the value holds null, the default value will be returned.

Time to use Kotlin in the real world. Let's begin.



            

            
        
    
        

                            
                    Wrapping it up

                
            
            
                
Now, we can use the basics of the Kotlin language. We saw some examples and practiced a little bit.

We looked at the main concepts of Kotlin. We have learned how data classes can help developers to transfer data between application layers. Also, we learned about singleton and companion objects. Now we can try to create a real project with the pretty new support from Spring Framework.

In the next sections, we will create a project using the Kotlin language, for now, we can forget about the Java language.



            

            
        
    
        

                            
                    Creating the project

                
            
            
                
Now, we have a good idea about how we can use programming in Kotlin language. In this section, we will create the basic structure for our new project in which the main feature is consuming the Twitter stream. Let's do that.



            

            
        
    
        

                            
                    Project use case

                
            
            
                
Before we start to code, we need to track the application requirements. The application is message-driven, we will use a broker to provide the messaging infrastructure. We choose the RabbitMQ broker because it provides reliability, high availability, and clustering options. Also, the RabbitMQ is a popular choice for the modern message-driven applications.


The software is powered by the Pivotal company, the same company which maintains Spring Framework. There is a huge community which supports the project. 

We will have three projects. These three projects will collect the Twitter stream and send it to a recipient to show Tweets in a formatted way to the end user.

The first one, which will be created in this chapter, will be responsible for keeping the tracked hashtags on the Redis cache.

When the new hashtags are registered, it will send a message to the second project which will start to consume the Twitter stream and redirect it to the desired queue. This queue will be consumed by the other project which will format the Tweet, and finally, show them to the end user.

We will have three microservices. Let's create these things.



            

            
        
    
        

                            
                    Creating the project with Spring Initializr

                
            
            
                
We have learned how to use the Spring Initializr page. We will go to the page and then select the following modules:


	
Reactive Web



	
Reactive Redis





The page content should look like this:



We can choose the group and artifact. There is no problem with using the different name. Then, we can click on Generate Project and wait until the download ends.



            

            
        
    
        

                            
                    Adding Jackson for Kotlin

                
            
            
                
We need to add Jackson for Kotlin dependencies for Maven projects. In fact, we need a Kotlin standard library on our pom.xml. Also, we need to put jackson-module-kotlin, it allows us to work with JSON on Kotlin, there are some differences from Java in these parts.

This part is pretty simple, and we will add these following dependencies in the dependencies sections in pom.xml. The dependencies are as follows:


<dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-kotlin</artifactId>
 <version>${jackson.version}</version>
</dependency>

Now, we have the dependencies configured, and we can set the plugins to compile the Kotlin source code. In the next section, we will do that.



            

            
        
    
        

                            
                    Looking for the Maven plugins for Kotlin

                
            
            
                
The project was created with Kotlin configured successfully. Now, we will take a look at the Maven plugin in our pom.xml. The configuration is necessary to instruct Maven on how to compile the Kotlin source code and add in the artifacts.

We will add the following plugins in the plugins section:

<plugin>
  <artifactId>kotlin-maven-plugin</artifactId>
  <groupId>org.jetbrains.kotlin</groupId>
  <version>${kotlin.version}</version>
  <configuration>
    <jvmTarget>1.8</jvmTarget>
  </configuration>
  <executions>
    <execution>
      <id>compile</id>
      <phase>process-sources</phase>
      <goals>
        <goal>compile</goal>
      </goals>
    </execution>
    <execution>
      <id>test-compile</id>
      <phase>process-test-sources</phase>
      <goals>
        <goal>test-compile</goal>
      </goals>
    </execution>
  </executions>
</plugin>

There is one more thing to do. Take a look how Maven configures the path for our Kotlin code. It is easy peasy. Look at the following:

    <build>
 
    <sourceDirectory>${project.basedir}/src/main/kotlin<
    /sourceDirectory<testSourceDirectory>${project.basedir}/src/
    test/kotlin</testSourceDirectory>
 
    .....
 
    </build>

We added our Kotlin folders in the source paths.

Awesome, the project structure is ready, and we can start coding!

 



            

            
        
    
        

                            
                    Creating a Docker network for our application

                
            
            
                
To create isolation for our application, we will create a custom Docker network. This network was created using the bridge driver. Let's do that using the following command:

docker network create twitter

Good, now we can check the network list by typing the following command:

docker network list

The Twitter network should be on the list, like the following:



The last one is our Twitter network. Let's pull the Redis image from the Docker Hub. Take a look at the next section.



            

            
        
    
        

                            
                    Pulling the Redis image from the Docker Hub

                
            
            
                
The first thing we need to do is download the Redis image from the Docker Hub. To do that, it is necessary to execute the following command:

docker pull redis:4.0.6-alpine

We have used the alpine version from Redis because it is smaller than the others and has a reasonable security. While the image is downloaded, we can see the downloading status progress.

We can check the result using the following command:

docker images

The result should look like the following:



Take a look at the images downloaded. The Redis must be on the list. 

Awesome, now we will start the Redis instance.



            

            
        
    
        

                            
                    Running the Redis instance

                
            
            
                
The image was downloaded, then we will start the Redis instance for our application. The command can be:

docker run -d --name redis --net twitter -p 6379:6379 redis:4.0.6-alpine

We have interesting attributes here. We named our Redis instance with redis, it will be useful for running our application in containers in the next chapters. Also, we exposed the Redis container ports to the host machine, the command argument used for that is -p. Finally, we attached the container to our Twitter network.

Good, the Redis instance is ready to use. Let's check out the Spring Data Reactive Redis stuff.



            

            
        
    
        

                            
                    Configuring the redis-cli  tool

                
            
            
                
There is an excellent tool to connect with the Redis instance which is called redis-cli. There are some Docker images for that, but we will install it on our Linux machine.

To install it, we can execute the following command:

sudo apt-get install redis-tools -y

Excellent, now we can connect and interact with our Redis container. The tool can perform the read and write instructions, then we need to be careful to avoid instructions unintentionally.

Let's connect. The default configuration is enough for us because we have exported the port 6379 on the run instruction. Type the following command in the Terminal:

redis-cli

Then we will connect with our running instance. The command line should display the Redis host and port, like the following screenshot:



Excellent, the client is configured and tested.

Now, we will execute some Redis commands on our container.



            

            
        
    
        

                            
                    Understanding Redis

                
            
            
                
Redis is an open source in-memory data structure. Redis fits well for a database cache and is not common, but it can be used as a message broker using the publish-subscribe feature, it can be useful to decouple applications.

There are some interesting features supported by Redis such as transactions, atomic operations, and support for time-to-live keys. Time-to-live is useful for giving a time for the key, the eviction strategy is always hard to implement, and Redis has a built-in solution for us.



            

            
        
    
        

                            
                    Data types

                
            
            
                
There are a lot of supported data types by Redis. The most common ones are strings, hashes, lists, and sorted sets. We will understand each of these a little bit because it is important to help us to choose the correct data type for our use case.



            

            
        
    
        

                            
                    Strings

                
            
            
                
Strings are the more basic data type of Redis. The string value can be at max 512 MB in length. We can store it as a JSON in the value of the key, or maybe as an image as well because the Redis is binary safe.



            

            
        
    
        

                            
                    Main commands

                
            
            
                
Let's look at some important commands we would need:


	SET: It sets the key and holds the value. It is a simple and basic command of Redis. Here's an example:



       SET "user:id:10" "joe"

The return of the command should be OK. It indicates the instruction has been executed with success.


	GET: This command gets the value of the requested key. Remember GET can only be used with a string data type:



         GET "user:id:10"

As we can see, the return of that command should be joe.


	INCR: The INCR command increments the key by one. It can be useful to handle sequential numbers atomically in distributed systems. The number increment will be returned as a command output:



        SET "users" "0"
        INCR "users"
        GET "users"

As we can see, the INCR command returned 1 as a command output and then we can check this using the GET and obtain the value.


	DECR: The DECR command is opposite of INCR, it will decrement the value atomically as well:



        GET "users"
        DECR "users"
        GET "users"

The value of the users key was decremented by one and then transformed to 0. 


	INCRBY: It will increment the value of the key by the argument. The new incremented value will be returned:



         GET "users"
         INCRBY "users" 2
         GET "users"

The new value was returned as a command output.



            

            
        
    
        

                            
                    Lists

                
            
            
                
Lists are simple lists of strings. They are ordered by the insertion order. Redis also offers instructions to add new elements at the head or tail of the list.

Lists can be useful for storing groups of things, groups of categories, for example, grouped by the categories key.



            

            
        
    
        

                            
                    Main commands

                
            
            
                
LPUSH: Insert the new element at the head of the key. The command also supports multiple arguments, in this case, the values will be stored in the reverse order as we passed on the arguments.

Here are some command examples:

    LPUSH "categories" "sports"
    LPUSH "categories" "movies"
    LRANGE "categories" 0 -1

Take a look at the LRANGE output, as we can see the value of the movie is the first one on the list because the LPUSH inserted the new element on the head.

RPUSH: Insert the new element at the tail of the key. The command supports multiple arguments as well, in this case, the values will respect the respective order.

Here are some command examples:

    RPUSH "categories" "kitchen"
    RPUSH "categories" "room"
    LRANGE "categories" 0 -1

As we can see, in the LRANGE output, the new values are inserted at the tail of the values. It is the behavior of the RPUSH command.

LSET: It sets the element on the requested index.

Here are some command examples:

    LSET "categories" 0 "series""
    LRANGE "categories" 0 -1

The new value of the zero index is series. The LSET command does that for us.

LRANGE: It returns the specified elements of the key. The command arguments are the key, the start index, and finally the stop element. The -1 on the stop argument will return the whole list:

      LRANGE "categories" 0 2
      LRANGE "categories" 0 -1

As we can see, the first command will return three elements because the zero index will be grouped.



            

            
        
    
        

                            
                    Sets

                
            
            
                
A set is a collection of strings. They have a property which does not allow repeated values. It means that if we add the pre-existing value on the sets, it will result in the same element, in this case, the advantage is not necessary to verify if the element exists on the set. Another important characteristic is that the sets are unordered. This behavior is different from the Redis lists. It can be useful in different use cases such as count the unique visitor, track the unique IPs, and much more.



            

            
        
    
        

                            
                    Main commands

                
            
            
                
The following are the main commands listed with their usages:


	SADD: It adds the element in a requested key. Also, the return of this command is the number of the element added to the set:



        SADD "unique-visitors" "joe"
        SADD "unique-visitors" "mary"

As we can see, the command returned one because we added one user each time.


	SMEMBERS: It returns all the members of a requested key:



       SMEMBERS "unique-visitors"

The command will return joe and mary because those are the values stored in the unique-visitors key.


	SCARD: It returns the numbers of elements of a requested key:



        SCARD "unique-visitors"

The command will return the number of elements stored in the requested keys, in this case, the output will be 2.



            

            
        
    
        

                            
                    Spring Data Reactive Redis

                
            
            
                
Spring Data Redis provides an easy way to interact with the Redis Server from Spring Boot Apps. The project is part of the Spring Data family and provides high-level and low-level abstractions for the developers.

The Jedis and Lettuce connectors are supported as a driver for this project.

The project offers a lot of features and facilities to interact with Redis. The Repository interfaces are supported as well. There is a CrudRepository for Redis like in other implementations, Spring Data JPA, for example. 

The central class for this project is the RedisTemplate which provides a high-level API  to perform Redis operations and serialization support. We will use this class to interact with set data structures on Redis.

The Reactive implementation is supported by this project, these are important characteristics for us because we are looking for Reactive implementations.



            

            
        
    
        

                            
                    Configuring the ReactiveRedisConnectionFactory

                
            
            
                
To configure the ReactiveRedisConnectionFactory, we can use the application.yaml file, because it is easier to maintain and centralize our configuration.

The principle is the same as other Spring Data Projects, we should provide the host and port configurations in the application.yaml file, as follows:

spring:
  redis:
    host: localhost
    port: 6379


In the preceding configuration file, we point the Redis configuration to the localhost, as we can see. The configuration is pretty simple and easy to understand as well.

Done. The connection factory is configured. The next step is to provide a RedisTemplate to interact with our Redis instance. Take a look at the next section.



            

            
        
    
        

                            
                    Providing a ReactiveRedisTemplate

                
            
            
                
The main class from Spring Data Redis is the ReactiveRedisTemplate, then we need to configure and provide an instance for the Spring container.

We need to provide an instance and configure the correct serializer for the desired ReactiveRedisTemplate. Serializers is the way Spring Data Redis uses to serialize and deserialize objects from raw bytes stored in Redis in the Key and Value fields.

We will use only the StringRedisSerializer because our Key and Value are simple strings and the Spring Data Redis has this serializer ready for us.

Let's produce our ReactiveRedisTemplate. The implementation should look like the following:

package springfive.twittertracked.infra.redis
 
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import org.springframework.data.redis.connection.ReactiveRedisConnectionFactory
import org.springframework.data.redis.core.ReactiveRedisTemplate
import org.springframework.data.redis.serializer.RedisSerializationContext
 
@Configuration
open class RedisConfiguration {
 
  @Bean
  open fun reactiveRedisTemplate(connectionFactory:ReactiveRedisConnectionFactory):  
                                 ReactiveRedisTemplate<String, String> {
      return ReactiveRedisTemplate(connectionFactory, RedisSerializationContext.string())
  }

}

Awesome. That is our first code using Kotlin in the Spring Framework. The keyword open is the opposite of Java's final keyword. It means this function can be inherited from this class. By default, all classes in Kotlin are final. Spring Framework requires non-final functions on @Bean on the @Configuration class and then we need to insert open.

We received ReactiveRedisConnectionFactory as a parameter. Spring knows which we produced in the application.yaml file using the configurations for Redis. Then the container can inject the factory.

Finally, we declare ReactiveRedisTemplate<String, String> as a return value for our function.

Interesting work, we are ready to work with our Redis template. Now, we will implement our first repository for Redis. See you in the next section.



            

            
        
    
        

                            
                    Creating Tracked Hashtag repository

                
            
            
                
We have created the ReactiveRedisTemplate, then we can use this object in our repository implementation. We will create a simple repository to interact with Redis, remember the repository should be reactive, it is an important characteristic of our application. Then we need to return Mono or Flux to make the repository Reactive. Let's look at our repository implementation:

package springfive.twittertracked.domain.repository
 
import org.springframework.data.redis.core.ReactiveRedisTemplate
import org.springframework.stereotype.Service
import reactor.core.publisher.Flux
import reactor.core.publisher.Mono
import springfive.twitterconsumer.domain.TrackedHashTag
 
@Service
class TrackedHashTagRepository(private val redisTemplate: ReactiveRedisTemplate<String, String>){
 
  fun save(trackedHashTag: TrackedHashTag): Mono<TrackedHashTag>? {
    return this.redisTemplate
             .opsForSet().add("hash-tags", "${trackedHashTag.hashTag}:${trackedHashTag.queue}")
             .flatMap { Mono.just(trackedHashTag) }
  }
 
  fun findAll(): Flux<TrackedHashTag> {
    return this.redisTemplate.opsForSet().members("hash-tags").flatMap { el ->
      val data = el.split(":")
      Flux.just(TrackedHashTag(hashTag = data[0],queue = data[1]))
    }
  }
}

We received the ReactiveRedisTemplate<String, String> as an injection on our class, the Spring Framework can detect the constructor and inject the correct implementation.

For now, we need these two functions. The first one is responsible for inserting our entity, TrackedHashTag on the set structure from Redis. We add the value of the hash-tags key on Redis. This function returns a Mono with the TrackedHashTag value. Pay attention to the save function. We have created a pattern for our value, the pattern follows the hashtag, queue where the hashtag is the value to gather Tweets and the queue we will use in the next sections to send to a RabbitMQ queue.

The second function returns all values from the hash-tags key, it means all tracked hashtags from our system. Moreover, we need to do some logic to create our model, TrackedHashTag, as well.

The repository is finished, now we can create our service layer to encapsulate the repository. Let's do that in the next section.



            

            
        
    
        

                            
                    Creating the service layer

                
            
            
                
Our repository is ready to use, now we can create our service layer. This layer is responsible for orchestrating our repository calls. In our case, it is pretty simple but in some complex scenarios, it can help us to encapsulate the repository calls.

Our service will be called  TrackedHashTagService, which will be responsible for interacting with our repository created previously. The implementation should look like the following:

package springfive.twittertracked.domain.service
 
import org.springframework.stereotype.Service
import springfive.twitterconsumer.domain.TrackedHashTag
import springfive.twitterconsumer.domain.repository.TrackedHashTagRepository
 
@Service
class TrackedHashTagService(private val repository: TrackedHashTagRepository) {
 
  fun save(hashTag:TrackedHashTag) = this.repository.save(hashTag)
 
  fun all() = this.repository.findAll()
 
}

Well done. Here, there is basic stuff. We have the construct which injects our repository to interact with Redis. The interesting point here is the function declarations. There is not a body and return type because the Kotlin compiler can infer the return type, it helps the developer to avoid writing boilerplate code. 



            

            
        
    
        

                            
                    Exposing the REST resources

                
            
            
                
Now, we have created the repository and service layer, and we are ready to expose our service through HTTP endpoints:

package springfive.twittertracked.domain.resource
 
import org.springframework.web.bind.annotation.*
import springfive.twitterconsumer.domain.TrackedHashTag
import springfive.twitterconsumer.domain.service.TrackedHashTagService
 

@RestController
@RequestMapping("/api/tracked-hash-tag")
class TrackedHashTagResource(private val service:TrackedHashTagService) {
 
  @GetMapping
  fun all() = this.service.all()
 
  @PostMapping
  fun save(@RequestBody hashTag:TrackedHashTag) = this.service.save(hashTag)

}

The code is pretty concise and simple. Take a look at how concise this piece of code is. The preceding code is an example of how Kotlin helps developers to create readable codes. Thanks, Kotlin.



            

            
        
    
        

                            
                    Creating a Twitter application

                
            
            
                
For this project, we will need to configure an application on the Twitter platform. It is necessary, because we will use Twitter's API to search Tweets, for example, and the Twitter account is the requirement for that. We will not explain how to create a Twitter account. There are plenty of articles about that on the internet.

After the Twitter account is created, we need to go to https://apps.twitter.com/ and create a new app. The page is quite similar to the following screenshot:



We will click on the Create New App button to start the creation process. When we click on that button, the following page will be displayed. We need to fill the required fields and accept the Twitter agreements:



We can choose the application name, fill in the description, and website. These details are up to you.

Then, we need to accept the agreements and click on Create your Twitter application:



Awesome job. Our Twitter application is almost ready to use.

Now, we just need to configure the application for usage.

We need to check if our Keys and Access Tokens are correctly configured. Let's click on the Keys and Access Tokens tab and check the values, shown as follows:



As we can see, there are some important configurations in the preceding screenshot. The Consumer Key and Consumer Secret are mandatory to authenticate with Twitter APIs. Another important point here is the Access Level; be sure it is configured as read-only, as in the preceding screenshot, we will not do write actions on Twitter.

Let's Dockerize it.

Awesome. We have the system which keeps the tracked hashtags on the Redis instance. The application is fully Reactive and has no blocking threads. 

Now, we will configure the Maven plugin to generate the Docker images. The configuration is quite similar to what we did in Chapter 3, Persistence with Spring Data and Reactive Fashion. However, now we will create a first container which we will run with the Kotlin language. Let's do that.



            

            
        
    
        

                            
                    Configuring pom.xml

                
            
            
                
Now, we will configure our pom.xml to be able to generate our Docker image. The first thing we need to change is our final name artifact because Docker images do not allow the - character, then we need to configure properly.

The configuration is pretty simple, put the <finalName> tag on the <build> node. Let's do that:

<build>

  <finalName>tracked_hashtag</finalName>
 
  ....

</build>

Good. We have configured the final name properly to generate the Docker image correctly. Now, we will configure the Maven Docker plugin to generate the Docker image by the Maven goal.

In the plugins section inside the build node, we should put in the following plugin configuration:

<plugin>
  <groupId>io.fabric8</groupId>
  <artifactId>docker-maven-plugin</artifactId>
  <version>0.21.0</version>
  <configuration>
    <images>
      
    </images>
  </configuration>
</plugin>

The configuration is pretty simple. We did this before. In the configuration section, we configured from the image, in our case the openjdk:latest, Docker entry point and exposed ports as well.

Let's create our Docker image in the next section.



            

            
        
    
        

                            
                    Creating the image

                
            
            
                
Our project was previously configured with the Maven Docker plugin. We can generate the Docker image with the Maven Docker plugin using the docker:build goal. Then, it is time to generate our Docker image.

To generate the Docker image, type the following command:

mvn clean install docker:build

Now, we must wait for the Maven build and check if the Docker image was generated with success.

Check the Docker images and we should see the new image generated. To do this, we can use the docker images command:

docker images

Right, we should see the springfivebyexample/tracked_hashtag:latest on the image list, like the following screenshot:



Awesome, our Docker image is ready to run with our first Spring Boot Application in the Kotlin language. Let's run it right now.



            

            
        
    
        

                            
                    Running the container

                
            
            
                
Let's run our container. Before that, we need to keep in mind some things. The container should be run on the Twitter network to be able to connect to our Redis instance which is running on the Twitter network as well. Remember the localhost address for Redis does not work anymore when running in the containers infrastructure.

To run our container, we can execute the following command:

docker run -d --name hashtag-tracker --net twitter -p 9090:9090 springfivebyexample/tracked_hashtag

Congratulations, our application is running in the Docker container and connected to our Redis instance. Let's create and test our APIs to check the desired behaviors.



            

            
        
    
        

                            
                    Testing APIs

                
            
            
                
Our container is running. Now, we can try to call the APIs to check the behaviors. In this part, we will use the curl command line. The curl allows us to call APIs by the command line on Linux. Also, we will use jq to make the JSON readable on the command line, if you do not have these, look at the Tip Box to install these tools.

Let's call our create API, remember to create we can use the POST method in the base path of API. Then type the following command:

curl -H "Content-Type: application/json" -X POST -d '{"hashTag":"java","queue":"java"}' \
 http://localhost:9090/api/tracked-hash-tag

There are interesting things here. The -H argument instructs curl to put it in the request headers and -d indicates the request body. Moreover, finally, we have the server address.

We have created the new tracked-hash-tag. Let's check our GET API to obtain this data:

curl 'http://localhost:9090/api/tracked-hash-tag' | jq '.'

Awesome, we called the curl tool and printed the JSON value with the jq tool. The command output should look like the following screenshot:



To install curl on Ubuntu, we can use sudo apt-get install curl -y. Moreover, to install jq, we can use sudo apt-get install jq -y.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we have been introduced to the Kotlin language, which is the most prominent language for the JVM, because it has a super-fast compiler, if we compare it to Scala, for example. It also brings the simplicity of code and helps developers to create more concise and readable code.

We have also created our first application in the Spring Framework using Kotlin as the basic concepts of the language, and we saw how Kotlin helps the developers in a practical way.

We have introduced Redis as a cache and Spring Data Reactive Redis, which supports  Redis in a Reactive paradigm.

In the last part of the chapter, we learned how to create a Twitter application which required us to create our next application, and start to consume the Twitter API in reactive programming with a Reactive Rest Client.

Let's jump to the next chapter and learn more about Spring Reactive.

 

 

 



            

            
        
    
        

                            
                    Reactive Web Clients

                
            
            
                
Until now, we have created the whole project infrastructure to consume the Twitter stream. We have created an application which stores the tracked hashtags.

In this chapter, we will learn how to use the Spring Reactive Web Client and make HTTP calls using the reactive paradigm, which is one of the most anticipated features of Spring 5.0. We will call the Twitter REST APIs asynchronously and use the Project Reactor to provide an elegant way to work with streams.

We will be introduced to Spring Messaging for the RabbitMQ. We will interact with the RabbitMQ broker using the Spring Messaging API and see how Spring helps developers use the high-level abstractions for that.

At the end of this chapter, we will wrap up the application and create a docker image.

In this chapter, we will learn about:


	Reactive web clients

	Spring Messaging for RabbitMQ

	RabbitMQ Docker usage

	Spring Actuator





            

            
        
    
        

                            
                    Creating the Twitter Gathering project

                
            
            
                
We learned how to create Spring Boot projects with the amazing Spring Initializr. In this chapter, we will create a project in a different way, to show you an alternative way of creating a Spring Boot project.

Create the tweet-gathering folder, in any directory. We can use the following command:

mkdir tweet-gathering

Then, we can access the folder created previously and copy the pom.xml file located at GitHub: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/pom.xml. 

Open the pom.xml on IDE.

There are some interesting dependencies here.  The jackson-module-kotlin helps to work with JSON in Kotlin language. Another interesting dependency is kotlin-stdlib, which provides the Kotlin standard libraries in our classpath.

In the plugin sections, the most important plugin is the kotlin-maven-plugin, which permits and configures the build for our Kotlin code.

In the next section, we will create a folder structure to start the code.

Let's do it.



            

            
        
    
        

                            
                    Project structure

                
            
            
                
The project structure follows the maven suggested pattern. We will code the project in the Kotlin language, then we will create a kotlin folder to store our code.

We made that configuration on the pom.xml created before, so it will work fine. Let's take a look at the correct folder structure for the project:



As we can see, the base package is the springfive.twittergathering package. Then, we will start to create sub-packages in this package as soon.

Let's create our infrastructure for the microservice.

The full source code can be found at GitHub:  https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05/tweet-gathering.



            

            
        
    
        

                            
                    Starting the RabbitMQ server with Docker

                
            
            
                
We can use Docker to spin up the RabbitMQ server. We do not want to install the server on our developer machines as it can create library conflicts and a lot of files. Let's understand how to start RabbitMQ in a Docker container.

Let's do that in the next couple of sections.



            

            
        
    
        

                            
                    Pulling the RabbitMQ image from Docker Hub

                
            
            
                
We need to pull the RabbitMQ image from Docker Hub. We will use the image from the official repository as it is more safe and reliable.

To get the image, we need to use the following command:

docker pull rabbitmq:3.7.0-management-alpine

Wait for the download to end and then we can move forward to the next section. In the next section, we will learn how to set up the RabbitMQ server.



            

            
        
    
        

                            
                    Starting the RabbitMQ server

                
            
            
                
To start the RabbitMQ server, we will run the Docker command. There are some considerations which we need to pay attention to; we will run this container on the Twitter Docker network created previously, but we will expose some ports on the host, as it makes it easier to interact with the broker.

Also, we will use the management image because it provides a page which enables us to manage and see the RabbitMQ information on something similar to a control panel.

Let's run:

docker run -d --name rabbitmq --net twitter -p 5672:5672 -p 15672:15672 rabbitmq:3.7.0-management-alpine

Wait for a few seconds so that RabbitMQ establishes the connections and then we can connect to the management page. To do that, go to http://localhost:15672 and log on to the system. The default user is guest, and the password is guest as well. The control panel looks like this:



There is a lot of interesting information on the panel, but for now, we are going to explore the channels and some interesting parts.

Awesome. Our RabbitMQ server is up and running. We will use the infrastructure soon.



            

            
        
    
        

                            
                    Spring Messaging AMQP

                
            
            
                
This project supports the AMQP-based messaging solutions. There is a high-level API to interact with desired brokers. These interactions can send and receive messages from a broker. 

Like in the other Spring projects, these facilities are provided by the template classes, which expose the core features provided by the broker and implemented by the Spring Module.

This project has two parts: spring-amqp is the base abstraction, and spring-rabbit is the RabbitMQ implementation for RabbitMQ. We will use spring-rabbit because we are using the RabbitMQ broker.



            

            
        
    
        

                            
                    Adding Spring AMQP in our pom.xml

                
            
            
                
Let's add the spring-amqp jars to our project. spring-amqp has a starter dependency which configures some common things for us, such as ConnectionFactory and RabbitTemplate, so we will use that. To add this dependency, we will configure our pom.xml follows:

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

The next step is to configure the connections; we will use the application.yaml file because we are using the starter. In the next section, we will do the configuration.



            

            
        
    
        

                            
                    Integrating Spring Application and RabbitMQ

                
            
            
                
We have configured the spring-amqp dependencies in our project. Now, it is time to configure the RabbitMQ connections properly. We will use the RabbitMQTemplate to send messages to the broker; this has some converters which help us convert our domain models into JSON and vice versa.

Let's configure our RabbitMQ connections. The configurations should be in the application.yaml file and should look like this:

spring:
  rabbitmq:
    host: localhost
    username: guest
    password: guest
    port: 5672

As we can see, some Spring configurations are quite similar to others, the same style, and the node in yaml is the name of the technology followed by a couple of attributes.

We are using the default credentials for the RabbitMQ. The host and port are related to the RabbitMQ Broker address. The configuration is quite simple but does a lot of things for us such as ConnectionFactory.



            

            
        
    
        

                            
                    Understanding RabbitMQ exchanges, queues, and bindings

                
            
            
                
We are doing some interesting things with RabbitMQ. We configured connections successfully. There are some other things that we have not done yet, such as configuring the exchanges, queue, and bindings, but before we do that, let's understand a little bit more about these terms.



            

            
        
    
        

                            
                    Exchanges

                
            
            
                
Exchanges are RabbitMQ entities where the messages are sent. We can make an analogy with a river where the water is flowing; the river is the course of the messages. There are four different kinds of exchanges which we will understand in the following sections.



            

            
        
    
        

                            
                    Direct exchanges

                
            
            
                
The direct exchanges allow for route messages based on the routing key. The name is self-explanatory, it permits to send the messages directly to the specified customer, who is the one listening to the exchange. Remember, it uses the routing key as the argument to route the message to the customers.



            

            
        
    
        

                            
                    Fanout exchanges

                
            
            
                
The fanout exchanges route the messages for all the queues bound independently of the routing key. All the bound queues will receive the message sent to fanout exchanges. They can be used to have the topic behavior or distributed listings.



            

            
        
    
        

                            
                    Topic exchanges

                
            
            
                
The topic exchanges are similar to direct exchanges, but topic exchanges enable us to use pattern matching as compared to the direct exchanges, which permit only the exact routing key. We will use this exchange in our project.



            

            
        
    
        

                            
                    Header exchanges

                
            
            
                
Header exchanges are self-explanatory, the behavior is like the topic exchange, but instead of using the routing key, it uses the header attributes to match the correct queue.



            

            
        
    
        

                            
                    Queues

                
            
            
                
Queues are the buffer where the exchanges will write the messages respecting the routing key. Queues are the place where consumers get the messages which are published to exchanges. Messages are routed to queues depending on the exchange type.



            

            
        
    
        

                            
                    Bindings

                
            
            
                
Binding can be thought of as a link between exchanges and queues. We can say that it is a kind of traffic cop which instructs the messages where they should be redirected based on the configuration, in this case, links.



            

            
        
    
        

                            
                    Configuring exchanges, queues, and bindings on Spring AMQP

                
            
            
                
The Spring AMQP project has abstractions for all the RabbitMQ entities listed previously, and we need to configure it to interact with the broker. As we did in other projects, we need a @Configuration class, which will declare the beans for the Spring container.



            

            
        
    
        

                            
                    Declaring exchanges, queues, and bindings in yaml

                
            
            
                
We need to configure the entity names to instruct the framework to connect with the broker entities. We will use the application.yaml file to store these names, since it is easier to maintain and is the correct way to store application infrastructure data.

The section with the entity names should look like this snippet:

queue:
  twitter: twitter-stream
exchange:
  twitter: twitter-exchange
routing_key:
  track: track.*

The properties are self-explanatory, the exchange node has the name of the exchange, the queue node has the queue name, and finally, the routing_key node has the routing argument.

Awesome. The properties are configured, and now we will create our @Configuration class. Let's do that in the next section. We are almost ready to interact with the RabbitMQ broker.



            

            
        
    
        

                            
                    Declaring Spring beans for RabbitMQ

                
            
            
                
Now, let's create our configuration class. The class is pretty simple and as we will see with the Spring abstraction, they are easy to understand too, especially because the class names allude to the RabbitMQ entities.

Let's create our class:

package springfive.twittergathering.infra.rabbitmq

import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.module.kotlin.KotlinModule
import org.springframework.amqp.core.Binding
import org.springframework.amqp.core.BindingBuilder
import org.springframework.amqp.core.Queue
import org.springframework.amqp.core.TopicExchange
import org.springframework.amqp.support.converter.Jackson2JsonMessageConverter
import org.springframework.beans.factory.annotation.Value
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration

@Configuration
open class RabbitMQConfiguration(@Value("\${queue.twitter}") private val queue:String,
                                 @Value("\${exchange.twitter}") private val        
exchange:String,
                                 @Value("\${routing_key.track}") private val routingKey:String){

    @Bean
    open fun queue():Queue{
        return Queue(this.queue,false)
    }

    @Bean
    open fun exchange():TopicExchange{
        return TopicExchange(this.exchange)
    }

    @Bean
    open fun binding(queue: Queue, exchange: TopicExchange): Binding {
        return BindingBuilder.bind(queue).to(exchange).with(this.routingKey)
    }

    @Bean
    open fun converter(): Jackson2JsonMessageConverter {
        return Jackson2JsonMessageConverter(ObjectMapper().registerModule(KotlinModule()))
    }

}

There are interesting things to pay attention to here. In the RabbitMQConfiguration constructor, we injected the values configured in the application.yaml file to name the entities. After that, we started to configure the Spring beans for the container to allow it to inject them into the Spring-managed classes. The key point here is that if they do not exist in the RabbitMQ broker, Spring will create them. Thanks, Spring, we appreciate that and love how helpful that is. 

We can see the DSL to declare Binding, it makes the developer's life easier and prevents errors in the code.

On the last part of the class, we declared the Jackson2JsonMessageConverter. These converters are used to convert the domain models in JSON and vice versa. It enables us to receive the domain object on Listener instead of an array of bytes or strings. The same behavior can be used in the Producers, we are able to send the domain object instead of JSON. 

We need to supply the ObjectMapper to Jackson2JsonMessageConverter, and we have used the Kotlin module because of the way Kotlin handles data classes, which do not have no-args constructors.

Excellent job! Our infrastructure is fully configured. Let's code the producers and consumers right now!



            

            
        
    
        

                            
                    Consuming messages with Spring Messaging

                
            
            
                
Spring AMQP provides the @RabbitListener annotation; it will configure the subscriber for the desired queue, it removes a lot of infrastructure code, such as connect to RabbitListenerConnectionFactory, and creates a consumer programmatically. It makes the creation of queue consumers really easy.

The spring-boot-starter-amqp provides some automatic configurations for us. When we use this module, Spring will automatically create a RabbitListenerConnectionFactory for us and configure the Spring converters to convert JSON to domain classes automatically.

Pretty simple. Spring AMQP really provides a super high-level abstraction for developers.

Let's see an example which will be used in our application soon:

@RabbitListener(queues = ["twitter-track-hashtag"])
fun receive(hashTag:TrackedHashTag) {
...
}

The full source code can be found at GitHub: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter05/tweet-gathering/src/main/kotlin/springfive/twittergathering/domain/service/TwitterGatherRunner.kt.

A piece of cake. The code is really easy to understand and it makes it possible to pay attention only to the business rules. The infrastructure is not a good thing to maintain because this does not bring real value to the business, as it is only a piece of technology. Spring tries to abstract the whole infrastructure code to help developers write business code. It is a real asset provided by the Spring Framework.

Thanks, Spring Team.



            

            
        
    
        

                            
                    Producing messages with Spring Messaging

                
            
            
                
The spring-amqp module provides a RabbitTemplate class, which abstracts high-level RabbitMQ driver classes. It improves the developer performance and makes the application void of bugs because the Spring modules are a very well-tested set of codes. We will use the convertAndSend() function which permits to pass exchange, the routing key, and the message object as parameters. Remember this function uses Spring converters to convert our model class into a JSON string.

There are a lot of overloaded functions for convertAndSend(), and depending on the use case, others could be more appropriate. We will use the simple one as we saw before.

Let's see the piece of code which sends the message to the broker:

this.rabbitTemplate.convertAndSend("twitter-exchange","track.${hashTag.queue}",it)

Good. The first parameter is the Exchange name, and the second is the RoutingKey. Finally, we have the message object, which will be converted into a JSON string.

We will see the code in action soon.



            

            
        
    
        

                            
                    Enabling Twitter in our application

                
            
            
                
In this section, we will enable the use of Twitter APIs on our Twitter Gathering application. This application should get Tweets based on the query specified by the user. This query was registered on the previous microservice that we created in the previous chapter.

When the user calls the API to register TrackedHashTag, the microservice will store the TrackedHashTag on the Redis database and send the message through the RabbitMQ. Then, this project will start to gather Tweets based on that. This is the data flow. In the next chapter, we will do a reactive stream and dispatch Tweets through our Reactive API. It will be amazing.

However, for now, we need to configure the Twitter credentials; we will do that using Spring beans – let's implement it.



            

            
        
    
        

                            
                    Producing Twitter credentials

                
            
            
                
We will use the @Configuration class to provide our Twitter configuration objects. The @Configuration class is really good to provide infrastructure beans, if we do not have starter projects for the required module.

Also, we will use the application.yaml file to store the Twitter credentials. This kind of configuration should not be kept in the source code repository because it is sensitive data and should not be shared with others. Then, the Spring Framework enables us to declare properties in the yaml file and configures the environment variables to fill these properties at runtime. It is an excellent way to keep sensitive data out of the source code repository.



            

            
        
    
        

                            
                    Configuring Twitter credentials in application.yaml

                
            
            
                
To start configuring the Twitter API in our application, we must provide the credentials. We will use the yaml file for this. Let's add credentials in our application.yaml:

twitter:
  consumer-key: ${consumer-key}
  consumer-secret: ${consumer-secret}
  access-token: ${access-token}
  access-token-secret: ${access-token-secret}

Easy peasy. The properties have been declared and then we used the $ to instruct the Spring Framework that this value will be received as an environment variable. Remember, we configured the Twitter account in the previous chapter.



            

            
        
    
        

                            
                    Modelling objects to represent Twitter settings

                
            
            
                
We must create abstractions and an amazing data model for our applications. This will create some models which make the developer's life easier to understand and code. Let's create our Twitter settings models.



            

            
        
    
        

                            
                    Twittertoken

                
            
            
                
This class represents the application token previously configured in Twitter. The token can be used for the application authentication only. Our model should look like this:

data class TwitterToken(val accessToken: String,val accessTokenSecret: String)

I love the Kotlin way to declare data classes—totally immutable and without boilerplate.



            

            
        
    
        

                            
                    TwitterAppSettings

                
            
            
                
TwitterAppSettings represents the consumer key and consumer secret. It is a kind of identity for our application, from Twitter's perspective. Our model is pretty simple and must look like this:

data class TwitterAppSettings(val consumerKey: String,val consumerSecret: String)

Good job, our models are ready. It is time to produce the objects for the Spring Container. We will do that in the next section.



            

            
        
    
        

                            
                    Declaring Twitter credentials for the Spring container

                
            
            
                
Let's produce our Twitter configuration objects. As a pattern we have been using, we will use the @Configuration class for that. The class should be as follows:

package springfive.twittergathering.infra.twitter

import org.springframework.beans.factory.annotation.Value
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration


@Configuration
open class TwitterConfiguration(@Value("\${twitter.consumer-key}") private val consumerKey: String,
                                @Value("\${twitter.consumer-secret}") private val consumerSecret: String,
                                @Value("\${twitter.access-token}") private val accessToken: String,
                                @Value("\${twitter.access-token-secret}") private val accessTokenSecret: String) {

    @Bean
    open fun twitterAppSettings(): TwitterAppSettings {
        return TwitterAppSettings(consumerKey, consumerSecret)
    }

    @Bean
    open fun twitterToken(): TwitterToken {
        return TwitterToken(accessToken, accessTokenSecret)
    }

}

Pretty simple and a Spring way to declare beans. We are improving how we use Spring step by step. Well done!

Now, we are done with Twitter configurations. We will consume the Twitter API using the WebClient from the Spring WebFlux, which supports the reactive programming paradigm. Let's understand something before we run the code.



            

            
        
    
        

                            
                    Spring reactive web clients

                
            
            
                
This is a pretty new feature which was added in Spring Framework 5. It enables us to interact with HTTP services, using the reactive paradigm.

It is not a replacement for a RestTemplate provided by Spring, however, it is an addition to working with reactive applications. Do not worry, the RestTemplate is an excellent and tested implementation for interaction with HTTP services in traditional applications.

Also, the WebClient implementation supports the text/event-stream mime type which can enable us to consume server events.



            

            
        
    
        

                            
                    Producing WebClient in a Spring Way

                
            
            
                
Before we start to call the Twitter APIs, we want to create an instance of WebClient in a Spring way. It means we are looking for a way to inject the instance, using the Dependency Injection Pattern.

To achieve this, we can use the @Configuration annotation and create a WebClient instance, using the @Bean annotation to declare the bean for the Spring container. Let's do that:

package springfive.twittergathering.infra.web

import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import org.springframework.web.reactive.function.client.WebClient

@Configuration
open class WebClientProducer {

    @Bean
    open fun webClient(): WebClient? {
        return WebClient.create()
    }

}

There are a couple of known annotations in this class; this is a pretty standard way to declare bean instances in a Spring way. It makes it possible to inject an instance of WebClient in other Spring-managed classes.



            

            
        
    
        

                            
                    Creating the models to gather Tweets

                
            
            
                
If we want to consume the Twitter APIs asynchronously and reactively, then we should create the API client. Before we code the client, we need to create our classes for modeling, according to our requirements.

We do not need all Tweets' attributes. We expect the following attributes:


	id

	text

	createdAt

	user



Then, we will model our class based on the attributes listed.

Let's start with the user attribute. This attribute is a JSON attribute, and we will create a separated class for that. The class should look like this:

@JsonIgnoreProperties(ignoreUnknown = true)
data class TwitterUser(val id:String,val name:String)

We have used the Kotlin data class, it fits our use case well, and we want to use that as a data container. Also, we need to put in @JsonIgnoreProperties(ignoreUnknown = true) because this annotation instructs the Spring converters to ignore the attribute when it is missing in the JSON response. That is the important part of this portion of code.

We have created the TwitterUser class, which represents the user who created the Tweet. Now, we will create the Tweet class which represents the Tweet. Let's create our class:

@JsonIgnoreProperties(ignoreUnknown = true)
data class Tweet(val id:String, val text:String, @JsonProperty("created_at")val createdAt:String, val user:TwitterUser)

There are some common things for us and one that's new. The @JsonProperty permits developers to customize the attribute name on the class which has a different attribute name in JSON; this is common for Java developers because they usually use CamelCase as a way to name attributes, and in JSON notation, people usually use SnakeCase. This annotation can help us to solve this mismatch between the programming language and JSON. 

We can find a more detailed explanation of snake case here: https://en.wikipedia.org/wiki/Snake_case. Also, we can find a full explanation of camel case here: https://en.wikipedia.org/wiki/Camel_case.

Good. Our API objects are ready. With these objects, we are enabled to interact with the APIs. We will create a service to collect the Tweets. We will do that in the next section. 



            

            
        
    
        

                            
                    Authentication with Twitter APIs

                
            
            
                
With our objects ready, we need to create a class to help us handle the Twitter authentication. We will use the Twitter Application Only Auth authentication model. This kind of authentication should be used for backend applications.

The application using this kind of authentication can:


	Pull user timelines

	Access friends and followers of any account

	Access lists and resources

	Search in Tweets

	Retrieve any user information



As we can see, the application is a read-only Twitter API consumer.

We can use the Twitter documentation to understand this kind of authentication in detail. The documentation can be found here: https://developer.twitter.com/en/docs/basics/authentication/guides/authorizing-a-request.

We will follow the Twitter documentation to authorize our request, which is a kind of cooking recipe, so we must follow all the steps. The final class should look like this:

package springfive.twittergathering.infra.twitter

import org.springframework.util.StringUtils
import springfive.twittergathering.infra.twitter.EncodeUtils.computeSignature
import springfive.twittergathering.infra.twitter.EncodeUtils.encode
import java.util.*

object Twitter {

    private val SIGNATURE_METHOD = "HMAC-SHA1"

    private val AUTHORIZATION_VERIFY_CREDENTIALS = "OAuth " +
            "oauth_consumer_key=\"{key}\", " +
            "oauth_signature_method=\"" + SIGNATURE_METHOD + "\", " +
            "oauth_timestamp=\"{ts}\", " +
            "oauth_nonce=\"{nonce}\", " +
            "oauth_version=\"1.0\", " +
            "oauth_signature=\"{signature}\", " +
            "oauth_token=\"{token}\""

    fun buildAuthHeader(appSettings: TwitterAppSettings, twitterToken: TwitterToken, method: String, url: String, query: String):String{
        val ts = "" + Date().time / 1000
        val nounce = UUID.randomUUID().toString().replace("-".toRegex(), "")
        val parameters = "oauth_consumer_key=${appSettings.consumerKey}&oauth_nonce=$nounce&oauth_signature_method=$SIGNATURE_METHOD&oauth_timestamp=$ts&oauth_token=${encode(twitterToken.accessToken)}&oauth_version=1.0&track=${encode(query)}"
        val signature = "$method&" + encode(url) + "&" + encode(parameters)
        var result = AUTHORIZATION_VERIFY_CREDENTIALS
        result = StringUtils.replace(result, "{nonce}", nounce)
        result = StringUtils.replace(result, "{ts}", "" + ts)
        result = StringUtils.replace(result, "{key}", appSettings.consumerKey)
        result = StringUtils.replace(result, "{signature}", encode(computeSignature(signature, "${appSettings.consumerSecret}&${encode(twitterToken.accessTokenSecret)}")))
        result = StringUtils.replace(result, "{token}", encode(twitterToken.accessToken))
        return result
    }

}

data class TwitterToken(val accessToken: String,val accessTokenSecret: String)

data class TwitterAppSettings(val consumerKey: String,val consumerSecret: String)

It is a recipe. The function, buildAuthHeader, will create the authorization header using the rules to authorize the request. We have signed some request headers combined with a request body. Moreover, replace the template values with our Twitter credentials objects.



            

            
        
    
        

                            
                    Some words about server-sent events (SSE)

                
            
            
                
Server-sent events (SSE) is a technology where the server sends events to the client, instead of the client polling the server to check the information availability. The message flow will not get interrupted until the client or server closes the stream.

The most important thing to understand here is the direction of the information flow. The server decides when to send data to a client.

It is very important to handle resource load and bandwidth usage. The client will receive the chunk of data instead to apply load on the server through the polling techniques.

Twitter has a stream API and the Spring Framework WebClient supports SSE. It is time to consume the Twitter stream.



            

            
        
    
        

                            
                    Creating the gather service

                
            
            
                
The TweetGatherService will be responsible for interacting with Twitter APIs and collecting the request tweets according to the requested hashtag. The service will be a Spring bean with some inject attributes. The class should look like this:

package springfive.twittergathering.domain.service

import com.fasterxml.jackson.annotation.JsonIgnoreProperties
import com.fasterxml.jackson.annotation.JsonProperty
import org.springframework.http.MediaType
import org.springframework.stereotype.Service
import org.springframework.web.reactive.function.BodyInserters
import org.springframework.web.reactive.function.client.WebClient
import reactor.core.publisher.Flux
import springfive.twittergathering.infra.twitter.Twitter
import springfive.twittergathering.infra.twitter.TwitterAppSettings
import springfive.twittergathering.infra.twitter.TwitterToken


@Service
class TweetGatherService(private val twitterAppSettings: TwitterAppSettings,
                         private val twitterToken: TwitterToken,
                         private val webClient: WebClient) {

    fun streamFrom(query: String): Flux<Tweet> {
        val url = "https://stream.twitter.com/1.1/statuses/filter.json"
        return this.webClient.mutate().baseUrl(url).build()
                .post()
                .body(BodyInserters.fromFormData("track", query))
                .header("Authorization", Twitter.buildAuthHeader(twitterAppSettings, twitterToken, "POST", url, query))
                .accept(MediaType.TEXT_EVENT_STREAM)
                .retrieve().bodyToFlux(Tweet::class.java)
    }

}

@JsonIgnoreProperties(ignoreUnknown = true)
data class Tweet(val id: String = "", val text: String = "", @JsonProperty("created_at") val createdAt: String = "", val user: TwitterUser = TwitterUser("", ""))

@JsonIgnoreProperties(ignoreUnknown = true)
data class TwitterUser(val id: String, val name: String)

There are some important points here. The first is the function declaration; take a look at Flux<Tweet>, it means the data can never get interrupted because it represents the N values. In our case, we will consume the Twitter stream until the client or server interrupts the data flow. 

After that, we configured the HTTP request body with our desired track to get events. After that, we configured the Accept HTTP header; it is essential to instruct the WebClient what kind of mime type it needs to consume.

Finally, we have used our Twitter.buildAuthHeader function to configure the Twitter authentication.

Awesome, we are ready to start to consume the Twitter API, and we only need to code the trigger to use that function. We will do that in the next section. 



            

            
        
    
        

                            
                    Listening to the Rabbit Queue and consuming the Twitter API

                
            
            
                
We will consume the Twitter API, but when?

We need to start to get Tweets when the request for tracking the hashtags comes to our application. To reach that goal, we will implement the RabbitMQ Listener when the TrackedHashTag gets registered on our microservice. The application will send the message to the broker to start consuming the Twitter stream.

Let's take a look at the code and step by step understand the behaviors; the final code should look like this:

package springfive.twittergathering.domain.service

import org.springframework.amqp.rabbit.annotation.RabbitListener
import org.springframework.amqp.rabbit.core.RabbitTemplate
import org.springframework.stereotype.Service
import reactor.core.publisher.Mono
import reactor.core.scheduler.Schedulers
import springfive.twittergathering.domain.TrackedHashTag
import java.util.concurrent.CompletableFuture
import java.util.concurrent.TimeUnit

@Service
class TwitterGatherRunner(private val twitterGatherService: TweetGatherService,private val rabbitTemplate: RabbitTemplate) {

    @RabbitListener(queues = ["twitter-track-hashtag"])
    fun receive(hashTag:TrackedHashTag) {
        val streamFrom = this.twitterGatherService.streamFrom(hashTag.hashTag).filter({
            return@filter it.id.isNotEmpty() && it.text.isNotEmpty() &&  
             it.createdAt.isNotEmpty()
        })
        val subscribe = streamFrom.subscribe({
            println(it.text)
            Mono.fromFuture(CompletableFuture.runAsync {
                this.rabbitTemplate.convertAndSend("twitter- 
                 exchange","track.${hashTag.queue}",it)
            })
        })
        Schedulers.elastic().schedule({ subscribe.dispose() },10L,TimeUnit.SECONDS)
    }

}

Keep calm. We will cover the whole code. In the @RabbitListener, we configured the name of the queue we want to consume. The Spring AMQP module will configure our listener automatically for us and start to consume the desired queue. As we can see, we received the TrackedHashTag object; remember the converters on the previous sections.

The first instruction will start to consume the Twitter stream. The stream returns a flux and can have a lot of data events there. After the consumer, we want to filter the data on the flow. We want Tweet in which the id, text, and createdAt are not null. 

Then, we subscribe this stream and start to receive the data in the flow. Also, the subscribes function returns the disposable object which will be helpful in the next steps. We have created an anonymous function which will print the Tweet on the console and send the Tweet to the RabbitMQ queue, to be consumed in another microservice.

Finally, we use the schedulers to stop the data flow and consume the data for 10 seconds.

Before you test the Twitter stream, we need to change the Tracked Hashtag Service to send the messages through the RabbitMQ. We will do that in the next sections. The changes are small ones and we will do them quickly.



            

            
        
    
        

                            
                    Changing the Tracked Hashtag Service

                
            
            
                
To run the whole solution, we need to make some changes to the Tracked Hashtag Service project. The changes are simple and basic; configure the RabbitMQ connection and change the service to send the messages to the broker.

Let's do that.



            

            
        
    
        

                            
                    Adding the Spring Starter RabbitMQ dependency

                
            
            
                
As we did before in the Twitter Gathering project, we need to add spring-boot-starter-amqp to provide some auto-configuration for us. To do that, we need to add the following snippet to our pom.xml:

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

Right. Now, it is time to configure the RabbitMQ connections. We will do this in the next section.



            

            
        
    
        

                            
                    Configuring the RabbitMQ connections

                
            
            
                
We will use the application.yaml to configure the RabbitMQ connections. Then, we need to create a couple of properties in it and the Spring AMQP module will use that provided configuration to start the connection factory.

It is pretty simple to configure it. The final yaml file for Tracked Hashtag should look like this:

spring:
  rabbitmq:
    host: localhost
    username: guest
    password: guest
    port: 5672
  redis:
    host: 127.0.0.1
    port: 6379

server:
  port: 9090

queue:
  twitter: twitter-track-hashtag
exchange:
  twitter: twitter-track-exchange
routing_key:
  track: "*"
---
spring:
  profiles: docker
  rabbitmq:
    host: rabbitmq
    username: guest
    password: guest
    port: 5672
  redis:
    host: redis
    port: 6379

server:
  port: 9090

queue:
  twitter: twitter-track-hashtag
exchange:
  twitter: twitter-track-exchange
routing_key:
  track: "*"

There are two profiles in this yaml. Take a look at the different host for the RabbitMQ. In the default profile, we are able to connect the localhost because we exposed the RabbitMQ ports on the host. But on the Docker profile, we are not able to connect the localhost, we need to connect to the rabbitmq host, which is the host for the Twitter network.

Our RabbitMQ connection is ready to use. Let's try it in the next section. Let's go.



            

            
        
    
        

                            
                    Creating exchanges, queues, and bindings for the Twitter Hashtag Service

                
            
            
                
Let's declare our RabbitMQ entities for the Tracked Hashtag usage. We will do that using the @Configuration class.

The RabbitMQ connection should look like this:

package springfive.twittertracked.infra.rabbitmq

import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.module.kotlin.KotlinModule
import org.springframework.amqp.core.Binding
import org.springframework.amqp.core.BindingBuilder
import org.springframework.amqp.core.Queue
import org.springframework.amqp.core.TopicExchange
import org.springframework.amqp.support.converter.Jackson2JsonMessageConverter
import org.springframework.beans.factory.annotation.Value
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration

@Configuration
open class RabbitMQConfiguration(@Value("\${queue.twitter}") private val queue:String,
                                 @Value("\${exchange.twitter}") private val exchange:String,
                                 @Value("\${routing_key.track}") private val routingKey:String){

    @Bean
    open fun queue():Queue{
        return Queue(this.queue,false)
    }

    @Bean
    open fun exchange():TopicExchange{
        return TopicExchange(this.exchange)
    }

    @Bean
    open fun binding(queue: Queue, exchange: TopicExchange): Binding {
        return BindingBuilder.bind(queue).to(exchange).with(this.routingKey)
    }

    @Bean
    open fun converter(): Jackson2JsonMessageConverter {
        return Jackson2JsonMessageConverter(ObjectMapper().registerModule(KotlinModule()))
    }

}

Pretty straightforward. We declared one exchange, queue, and binding, as we did before.



            

            
        
    
        

                            
                    Sending the messages to the broker

                
            
            
                
This is the most interesting part now. When we want to save the TrackedHashTag, we must send the pretty new entity to the RabbitMQ. This process will send the message, and then the Twitter Gathering microservice will start to consume the stream in ten seconds.

We need to change the TrackedHashTagService a little bit; the final version should look like this:

package springfive.twittertracked.domain.service

import org.springframework.amqp.rabbit.core.RabbitTemplate
import org.springframework.beans.factory.annotation.Value
import org.springframework.stereotype.Service
import reactor.core.publisher.Mono
import springfive.twittertracked.domain.TrackedHashTag
import springfive.twittertracked.domain.repository.TrackedHashTagRepository
import java.util.concurrent.CompletableFuture

@Service
class TrackedHashTagService(private val repository: TrackedHashTagRepository,
                            private val rabbitTemplate: RabbitTemplate,
                            @Value("\${exchange.twitter}") private val exchange: String,
                            @Value("\${routing_key.track}") private val routingKey: String) {

    fun save(hashTag: TrackedHashTag) {
        this.repository.save(hashTag).subscribe { data ->
            Mono.fromFuture(CompletableFuture.runAsync {
                this.rabbitTemplate.convertAndSend(this.exchange, this.routingKey,  
                hashTag)
            })
        }
    }

    fun all() = this.repository.findAll()

}

Awesome job. When the new entity comes, it will be sent to the broker. We have finished our changes on the Tracked Hashtag Service.

Finally, we are able to test the whole flow. Let's start to play and perceive the real power of our built application.

It's showtime!!!



            

            
        
    
        

                            
                    Testing the microservice's integrations

                
            
            
                
Now, we are ready to test the whole solution. Before you start, we need to check the following infrastructure items:


	Redis

	RabbitMQ



If the items are up and running, we can jump to the next section.

We can use the docker ps command, and the command should list the Redis and RabbitMQ containers in running mode.



            

            
        
    
        

                            
                    Running Tracked Hashtag Service

                
            
            
                
There is no special thing to run this application. It includes the infrastructure connections which are configured in the default profile in application.yaml.

Run the main function present on the TrackedHashTagApplication. We can use the IDE or command line to do that.

Check the console output; the output will be presented on the IDE or command line. We want to find the following line:



It means the first application is fully operational and we are able to run Twitter Gathering. Please keep the application running as it is required.

Let's run Twitter Gathering!!!



            

            
        
    
        

                            
                    Running the Twitter Gathering

                
            
            
                
This application is a little bit more complicated to run. We need to configure some environment variables for that. It is required because we do not want the Twitter application credentials in our repository.

It is pretty simple to do in the IDE. To do that, we can configure the run configuration. Let's do it:


	Click on the Edit Configurations... like in the following image:





Then, we are able to see the Environment variables like this:




	We need to click on ..., as highlighted in the proceeding image.

	The next screen will be shown and we can configure the Environment Variable:






	We need to configure the following environment variables:

	consumer-key

	consumer-secret

	access-token

	access-token-secret







These values should be filled with the Twitter Application Management values.

Then, we can run the application. Run it!!

Now, we should see the following lines in the console, which means the application is running:



Awesome, our two microservices are running. Let's trigger the Twitter stream. We will do that in the next section.

There are other ways to run the application, for example, with the maven Spring Boot goals or Java command line. If you prefer to run in the Java command line, keep in mind the -D argument to pass environment variables.



            

            
        
    
        

                            
                    Testing stuff

                
            
            
                
We are excited to test the full integration. We can use the curl tool to send request data to the Tracked Hashtag Service. We want to track the "bitcoin" from Twitter. 

We can execute the following command line:

curl -H "Content-Type: application/json" -X POST -d '{"hashTag":"bitcoin","queue":"bitcoin"}' \
http://localhost:9090/api/tracked-hash-tag

Check the HTTP status code; it should be HTTP status 200. After that, we can check the console from the Twitter Gathering project, and there should be a lot of Tweets logged.

Take a look at the log, the log must have Tweets like this:



Awesome!

Great work guys, we have the full application integrated with RabbitMQ and the Twitter stream.



            

            
        
    
        

                            
                    Spring Actuator

                
            
            
                
The Spring Boot Actuator is a kind of helper when the application is running in production. The project provides built-in information of a deployed application.

In the microservices world, monitoring instances of applications are the key point to getting success. In these environments, there are usually many applications calling the other applications over the network protocols such as HTTP. The network is an unstable environment and sometimes it will fail; we need to track these incidents to make sure the application is up and fully operational.

The Spring Boot Actuator helps developers in these situations. The project exposes a couple of HTTP APIs with application information, such as the memory usage, CPU usage, application health check, and the infrastructure components of the application, such as a connection with databases and message brokers, as well.

One of the most important points is that the information is exposed over HTTP. It helps integrations with external monitor applications such as Nagios and Zabbix, for instance. There is no specific protocol for exposing this information.

Let's add it to our project and try a couple of endpoints.



            

            
        
    
        

                            
                    Adding Spring Boot Actuator in our pom.xml

                
            
            
                
Spring Boot Actuator is pretty simple to configure in our pom.xml. We extended the parent pom of Spring Boot, so it is not necessary to specify the version of the dependency.

Let's configure our new dependency:

<dependencies>
  <dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-actuator</artifactId>
  </dependency>
</dependencies>

Awesome, really easy. Let's understand a little bit more before we test.



            

            
        
    
        

                            
                    Actuator Endpoints

                
            
            
                
The projects have a lot of built-in endpoints and they will be up when the application started. Remember, we have used the starter project, which is the one that configures it automatically for us.

There are several endpoints for different requirements, and we will take a look at the most used in production microservices.


	/health: The most known actuator endpoint; it shows the application's health, and usually, there is a status attribute

	/configprops: Displays a collapse @ConfigurationProperties

	/env: Exposes properties from the Spring ConfigurableEnvironment

	/dump: Shows the thread dump

	/info: We can put some arbitrary information at this endpoint

	/metrics: Metrics from the running application

	/mappings: @RequestMappings endpoints from the current application



There is another important endpoint to show the application logs over the HTTP interface. The /logfile endpoint can help us visualize logfiles.

The list of endpoints created by the Spring Boot Actuator can be found at: https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html.



            

            
        
    
        

                            
                    Application custom information

                
            
            
                
There is one particular endpoint which we can use to expose custom information from our application. This information will be exposed to /info endpoint. 

To configure that, we can use the application.yaml file and put the desired information respecting the pattern, as follows:

info:
  project: "twitter-gathering"
  kotlin: @kotlin.version@

Thr desired properties must be preceded by the info. *. Then, we can test our first actuator endpoint and check our /info resource.

Let's try to access the http://localhost:8081/info. The information filled on application.yaml should be displayed, as shown here:



As we can see, the properties are exposed from the HTTP endpoint. We can use that to put the application version, for instance.



            

            
        
    
        

                            
                    Testing endpoints

                
            
            
                
In version 2 of  Spring Boot, the Spring Actuator management endpoints are disabled by default, because these endpoints can have sensitive data of a running application. Then, we need to configure to enable these endpoints properly.

There is a special point to pay attention to. If the application is exposed publicly, you should protect these endpoints.

Let's enable our management endpoints:

management:
  endpoints:
    web:
      expose: "*"

In the preceding configuration, we enabled all the management endpoints, and then we can start to test some endpoints.

Let's test some endpoints. First, we will test the metrics endpoints. This endpoint shows the metrics available for the running application. Go to http://localhost:8081/actuator/metrics and check the result:



We are using port 8081 because we configured the property server.port in application.yaml. The port can be changed as you desire.

There are a lot of metrics configured automatically for us. That endpoint exposes only the available metrics. To check the metric value, we need to use another endpoint. Let's check the value of the http.server.request.

The base endpoint to check the value is: http://localhost:8081/actuator/metrics/{metricName}. Then, we need to go to: http://localhost:8081/actuator/metrics/http.server.requests. The result should be:



As you can see, the server received eight calls. Try to hit a few more times to see the metrics changing. 

Awesome job. Our microservice is ready for production. We have the docker image and endpoints for monitoring our services.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we learned and put into practice a lot of Spring Advanced concepts, such as RabbitMQ integration.

We have created a fully reactive WebClient and took advantage of the reactive paradigm; it enables resource computational optimization and increases performance for the application.

Also, we have integrated two microservices through the RabbitMQ broker. This is an excellent solution to integrating applications because it decouples the applications and also permits you to scale the application horizontally really easily. Message-driven is one of the required characteristics to build a reactive application; it can be found at Reactive Manifesto (https://www.reactivemanifesto.org/en).

In the next chapter, we will improve our solution and create a new microservice to stream the filtered Tweets for our clients. We will use RabbitMQ one more time.



            

            
        
    
        

                            
                    Playing with Server-Sent Events

                
            
            
                
In Chapter 4, Kotlin Basics and Spring Data Redis and Chapter 5, Reactive Web Clients, we created two microservices. The first one is responsible for keeping tracked data on Redis and triggering the second microservice which one will consume the Twitter stream. This process happens asynchronously.

In this chapter, we will create another microservice which will consume the data produced by Twitter Gathering and expose it via a REST API. It will be possible to filter Tweets by text content.

We have consumed the Twitter stream using the Server-Sent Events (SSE); we created a reactive REST client to consume that. Now, it is time to create our implementation for SSE. We will consume the RabbitMQ queue and push the data to our connected clients.

We will take a look at the SSE and understand why this solution fits well for our couple of microservices.

At the end of the chapter, we will be confident about using SSE in the Spring ecosystem.

In this chapter, we will learn the following:


	Implementation of SSE endpoints with the Spring Framework

	Consuming RabbitMQ using the Reactor Rabbit client





            

            
        
    
        

                            
                    Creating the Tweet Dispatcher project

                
            
            
                
Now, we will create our last microservice. It will push the Tweets filtered by Twitter Gathering for our connected clients, in this case, consumers.

In this chapter, we will use the Spring Initializr page to help us create our pretty new project. Let's create.



            

            
        
    
        

                            
                    Using Spring Initializr once again

                
            
            
                
As you can see, the Spring Initializr page is a kind of partner for creating Spring projects. Let's use it one more time and create a project:

Go to https://start.spring.io and fill in the data using the following screenshot:



We have selected the Reactive Web dependencies; we will also keep using Kotlin as a programming language. Finally, click on the Generate Project button. Good, it is enough for us.

There are some missing dependencies which are not displayed in the Spring Initializr. We need to set these dependencies manually. We will do that task in the next section. Let's go there.



            

            
        
    
        

                            
                    Additional dependencies

                
            
            
                
We need to use the Jackson Kotlin Module as a dependency to handle JSON properly in our new microservice. Also, we will use the Reactor RabbitMQ dependency, which allows us to interact in the reactive paradigm with the RabbitMQ Broker.

To add these dependencies, we need to add the following snippet to pom.xml:

<dependency>
  <groupId>com.fasterxml.jackson.module</groupId>
  <artifactId>jackson-module-kotlin</artifactId>
  <version>${jackson.version}</version>
</dependency>

<dependency>
  <groupId>io.projectreactor</groupId>
  <artifactId>reactor-test</artifactId>
  <scope>test</scope>
</dependency>

<dependency>
  <groupId>io.projectreactor.rabbitmq</groupId>
  <artifactId>reactor-rabbitmq</artifactId>
  <version>1.0.0.M1</version>
</dependency>

Awesome. Our dependencies are configured. Our project is ready to start.

Before we start, we need to understand, in depth, the concept of SSE. We will learn this in the next section.



            

            
        
    
        

                            
                    Server-Sent Events

                
            
            
                
Server-Sent Events (SSE) is a standard way to send data streams from a server to clients. In this next section, we will learn how to implement it using the Spring Framework.

Also, we will understand the main differences between SSE and WebSockets.



            

            
        
    
        

                            
                    A few words about the HTTP protocol

                
            
            
                
HTTP is an application layer protocol in the OSI model. The application layer is the last layer represented in the OSI model. It means this layer is closer to the user interface. The main purpose of this layer is to send and receive the data input by the user. In general, it happens by the user interface, also known as applications, such as file transfer and sending an email.

There are several protocols on the application layer such as Domain Name Service (DNS), which translates the domain names to IP address, or SMTP, whose main purpose is to deliver an email to a mail manager application.

The application layer interacts directly with software such as email clients, for instance; there are no interactions with the hardware parts. It is the last layer of the OSI model and the closest to the end user as well.

All these layers deal with software, which means there are no concerns about the physical parts represented in the OSI model.

A more detailed explanation of the OSI model can be found at: https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained.

The following is an OSI model representation:



The HTTP protocol uses the TCP protocol as a transportation channel. Then, it will establish a connection and start to flow the data on the channel.

The TCP protocol is a stream protocol and a full duplex channel. This means the server and clients can send data across the connection.



            

            
        
    
        

                            
                    HTTP and persistent connections

                
            
            
                
The HTTP protocol is a request-response model, where the client submits the message (HTTP Request) and the server processes this message and sends the response (HTTP Response) to the client. The connection will be closed after the response is sent.

Look at the following diagram:



It's pretty simple to understand. The client will send the request, and in this case, the connection will be opened. After that, the server will receive the request to process something and it will send the answer to the client. The connection will be closed after the whole process. If the client needs to send a new request, the connection should be opened again and the flow happens in the same order.

There is a perceived drawback here, the clients need to open the new connection per-request. From the server's eyes, the server needs to process a lot of new connections simultaneously. This consumes a lot of CPU and memory.

On HTTP's 1.0 version, the connections are not persistent. To enable it, the keep-alive header should be included on the request. The header should look like this:

Connection: keep-alive

This is the only way to make an HTTP connection persistent on the 1.0 version, as described previously; when it happens, the connection will not be dropped by the server and the client is able to reuse the opened connection.

On HTTP 1.1, the connections are persistent by default; in this case, as opposed to the first version, the connection is kept opened and the client can use it normally.

There is a perceived improvement here and it can bring some advantages. The server needs to manage fewer connections, and it reduces a lot of CPU time. The HTTP Requests and Responses can be pipelined in the same connection.

As we know, there is no such thing as a free lunch. There are some disadvantages to this as well; the server needs to keep the connection opened and the server will reserve the required connection for the client. This may cause server unavailability in some scenarios.

 Persistent connections can be useful to maintain a stream between the server and clients.



            

            
        
    
        

                            
                    WebSockets

                
            
            
                
In the HTTP protocol, the communication supports full-duplex, which means the client and server can send data through the channel. The standard way to support this kind of communication is WebSockets. In this specification, both client and server can send data to each other in the persistent connection. Look at the following diagram:



As we can see, the data can be sent and received by the two actors, client, and server—this is how WebSockets works.

In our case, we do not need to send any data to the server during the connection. Because of this characteristic, we will choose SSE. We will learn about them in the following section.



            

            
        
    
        

                            
                    Server-Sent Events

                
            
            
                
As opposed to the full-duplex communication implemented by WebSockets, the SSE uses a half-duplex communication.

The client sends a request to the server, and when necessary, the server will push the data to the client. Remember the active actor here is the server; the data can be sent only by the server. This is a half-duplex behavior. Look at the following diagram:



A piece of cake. It is the base of the SSE technology. SSE is self-explanatory. We will use it with the Spring Framework. However, before we do that, let's look at a Reactor RabbitMQ project.



            

            
        
    
        

                            
                    Reactor RabbitMQ

                
            
            
                
Our solution is fully reactive, so we need to use Reactor RabbitMQ, which allows us to interact with the RabbitMQ broker using the reactive paradigm.

On this new microservice, we do not need to send messages through the message broker. Our solution will listen to the RabbitMQ queues and push the received Tweets for the connected clients.



            

            
        
    
        

                            
                    Understanding the Reactor RabbitMQ

                
            
            
                
The Reactor RabbitMQ tries to provide a reactive library to interact with the RabbitMQ rboker. It enables developers to create non-blocking applications based on the reactive stream, using RabbitMQ as a message-broker solution.

As we learned before, this kind of solution, in general, does not use a lot of memory. The project was based on the RabbitMQ Java client and has similar functionalities, if we compare it to the blocking solution.

We are not using the spring-amqp-starter, so the magic will not happen. We will need to code the beans declarations for the Spring context and we will do that in the following section.  



            

            
        
    
        

                            
                    Configuring RabbitMQ Reactor beans

                
            
            
                
In this section, we will configure the RabbitMQ infrastructure classes in the Spring context. We will use a @Configuration class to declare it. 

The configuration class should look like the following:

package springfive.twitterdispatcher.infra.rabbitmq

import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.module.kotlin.KotlinModule
import com.rabbitmq.client.ConnectionFactory
import org.springframework.beans.factory.annotation.Value
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import reactor.rabbitmq.ReactorRabbitMq
import reactor.rabbitmq.Receiver
import reactor.rabbitmq.ReceiverOptions

@Configuration
class RabbitMQConfiguration(private @Value("\${spring.rabbitmq.host}")  val host:String,
                            private @Value("\${spring.rabbitmq.port}")  val port:Int,
                            private @Value("\${spring.rabbitmq.username}")  val username:String,
                            private @Value("\${spring.rabbitmq.password}")  val password:String){

  @Bean
  fun mapper(): ObjectMapper = ObjectMapper().registerModule(KotlinModule())

  @Bean
  fun connectionFactory():ConnectionFactory{
    val connectionFactory = ConnectionFactory()
    connectionFactory.username = this.username
    connectionFactory.password = this.password
    connectionFactory.host = this.host
    connectionFactory.port = this.port
    connectionFactory.useNio()
    return connectionFactory
  }

  @Bean
  fun receiver(connectionFactory: ConnectionFactory):Receiver{
      val options = ReceiverOptions()
      options.connectionFactory(connectionFactory)
      return ReactorRabbitMq.createReceiver(options)
  }

}

There are two important things here. The first one is that we configured the Jackson support for Kotlin. It allows us to inject the ObjectMapper into our Spring beans. The next important thing is related to the RabbitMQ connections' configuration.

We have declared a ConnectionFactory bean for the Spring Context. We injected the configurations with @Value annotations and received the values on the constructor. We can set the value directly in the attributes, in the Kotlin language; look at the ConnectionFactory attributes assignments.

After the ConnectionFactory configuration, we are able to declare a receiver, which is a Reactive abstraction to consume the queues, using reactive programming. We receive the ConnectionFactory previously created and set it as the ReceiverOptions.

That is all for the Reactor RabbitMQ configuration.



            

            
        
    
        

                            
                    Consuming the RabbitMQ queues reactively

                
            
            
                
Now, we will consume the RabbitMQ queues. The implementation is quite similar to what we have seen in the blocking implementation, and the names of the functions are similar as well.

We have consumed some RabbitMQ messages in the previous chapters, but this solution is quite different. Now, we will use the Reactive RabbitMQ implementation. The main idea here is to consume the stream of events; these events represent the messages that have arrived in the broker. These messages arrive and the Reactor RabbitMQ converts these messages to Flux, to enable us to consume in the reactive paradigm.

In the reactive paradigm, the representation of a stream of events (we can think of messages in the queue), is the Flux.

Then our function, which is listening to the RabbitMQ, should return Flux, an infinite representation of events. The Receiver implementation returns the Flux of messages, which is enough for us and fits well with our needs.

Our implementation should look like the following:

package springfive.twitterdispatcher.domain.service

import com.fasterxml.jackson.annotation.JsonIgnoreProperties
import com.fasterxml.jackson.annotation.JsonProperty
import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.module.kotlin.readValue
import org.springframework.beans.factory.annotation.Value
import org.springframework.stereotype.Service
import reactor.core.publisher.Flux
import reactor.core.publisher.Mono
import reactor.rabbitmq.Receiver

@Service
class TwitterDispatcher(private @Value("\${queue.twitter}") val queue: String,
       private val receiver: Receiver,
       private val mapper: ObjectMapper) {

    fun dispatch(): Flux<Tweet> {
        return this.receiver.consumeAutoAck(this.queue).flatMap { message ->
            Mono.just(mapper.readValue<Tweet>(String(message.body)))
        }
    }

}

@JsonIgnoreProperties(ignoreUnknown = true)
data class Tweet(val id: String = "", 
   val text: String = "", @JsonProperty("created_at") 
   val createdAt: String = "", val user: TwitterUser = TwitterUser("", ""))

@JsonIgnoreProperties(ignoreUnknown = true)
data class TwitterUser(val id: String, val name: String)

Let's understand a little bit more. We received the Receiver as an injection in our constructor. When someone invokes the dispatch() function, the Receiver will start to consume the queue, which was injected in the constructor as well.

The Receiver produces Flux<Delivery>. Now, we need to convert the instance of Flux<Delivery>, which represents a message abstraction,  to our domain model Tweet. The flatMap() function can do it for us, but first, we will convert the message.body to string and then we have used Jackson to read JSON and convert to our Tweet domain model.

Take a look at how simple the code is to read; the API is fluent and really readable.

The consumer will not terminate until the connected client disconnects. We will be able to see this behavior soon.



            

            
        
    
        

                            
                    Filtering streams

                
            
            
                
We are receiving the messages from RabbitMQ. Now, we need to return the messages to the connected customer.

For that, we will use SSE with Spring WebFlux. The solution is a good fit for us because we will produce a Flux<Tweet> and start to push the Tweets for our clients. The clients will send a query to filter the desired Tweets.

The application will be fully reactive. Let's take a look at our code:

package springfive.twitterdispatcher.domain.controller

import org.springframework.http.MediaType
import org.springframework.web.bind.annotation.GetMapping
import org.springframework.web.bind.annotation.RequestMapping
import org.springframework.web.bind.annotation.RequestParam
import org.springframework.web.bind.annotation.RestController
import reactor.core.publisher.Flux
import springfive.twitterdispatcher.domain.service.Tweet
import springfive.twitterdispatcher.domain.service.TwitterDispatcher

@RestController
@RequestMapping("/tweets")
class TweetResource(private val dispatcher: TwitterDispatcher) {

  @GetMapping(produces = [MediaType.TEXT_EVENT_STREAM_VALUE])
  fun tweets(@RequestParam("q")query:String):Flux<Tweet>{
    return dispatcher.dispatch()
       .filter({ tweet: Tweet? -> tweet!!.text.contains(query,ignoreCase = true) })
    }
}

Pretty easy and simple to understand. We have declared the tweets() function; this function is mapped to a GET HTTP Request and produces a MediaType.TEXT_EVENT_STREAM_VALUE. When the client connects to the endpoint, the server will start to send Tweets accordingly with the desired argument.

When the client disconnects, the Reactor RabbitMQ will close the requested RabbitMQ connection.



            

            
        
    
        

                            
                    Dockerizing the whole solution

                
            
            
                
Now, it is time to wrap the whole solution and create a Docker image for all projects. It is useful to run the projects anywhere we want.

We will configure all the projects step by step and then run the solution in Docker containers. As a challenge, we can use docker-compose to orchestrate the whole solution in a single yaml file.

For the Tracked Hashtag Service, we have created the docker image. Then, we will start to configure the Tweet Gathering, and the last one is Tweet Dispatcher. Let's do that right now.

You can find more docker-compose project details at: https://docs.docker.com/compose/. Also, in the new versions, docker-compose supports Docker Swarm to orchestrate the stack between cluster nodes. It can be really useful to deploy Docker containers in production.



            

            
        
    
        

                            
                    Tweet Gathering

                
            
            
                
Let's configure our pom.xml for the Tweet Gathering project.

The build node should look like the following:

<plugin>
  <groupId>io.fabric8</groupId>
  <artifactId>docker-maven-plugin</artifactId>
  <version>0.21.0</version>
  <configuration>
    <images>
      
    </images>
  </configuration>
</plugin>

Take a look at the port configuration; it should be the same as what we have configured in the application.yaml. The configuration is done, so let's create our Docker image:

mvn clean install docker:build

The command output should look like the following screenshot:



There is an image recently created and tagged as a latest; the image is ready to run. Let's do the same thing for our Tweet Dispatcher project.



            

            
        
    
        

                            
                    Tweet Dispatcher

                
            
            
                
Our new plugin entry should look like this:

<plugin>
  <groupId>io.fabric8</groupId>
  <artifactId>docker-maven-plugin</artifactId>
  <version>0.21.0</version>
  <configuration>
    <images>
      
    </images>
  </configuration>
</plugin>

Take a look at the port configuration, one more time. It will be used by Docker to expose the correct port. Now, we can run the image creation command:

mvn clean install docker:build

Then, we can see the command's output, as shown in the following screenshot:



Awesome, all images are ready. Let's run it.

We need to create Docker images for all the projects. The process is the same; configure the maven Docker plugin and then use mvn clean install docker:build on the project. The full source code can be found at GitHub. The Tracked Hashtag Service can be found here (https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter04), the Tweet Gathering can be found here (https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter05) and finally, the Tweet Dispatcher can be found here (https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter06).



            

            
        
    
        

                            
                    Running the containerized solution

                
            
            
                
We are ready to run the solution in Docker containers. We have been running the solution with the IDE or command line, but now we will spin up some container and test the solution and Spring profiles as well.

Before that, let's do a quick recap of the solution:




	The first operation, the Tracked Hashtag Service, will persist the hashtag in the Redis database.

	After that, the Tracked Hashtag Service will send the newly tracked hashtag to a queue in the RabbitMQ Broker.

	Tweet Gathering is listening to the queue to track Tweets and trigger the event and starts by listening to the Twitter stream.

	Tweet Gathering starts to get Tweets from the Twitter stream.

	Tweet Gathering publishes Tweets to a queue in the RabbitMQ broker.

	Tweet Dispatcher consumes the message.

	Tweet Dispatcher sends the message to the Client using SSE.



Now that we have understood the solution, let's starts the containers.



            

            
        
    
        

                            
                    Running the Tracked Hashtag Service container

                
            
            
                
The image has been created in the previous section, so now we are able to spin up the container. The command to start the container should look like this:

docker run -d --name tracked --net twitter -p 9090:9090 springfivebyexample/tracked_hashtag

Let's explain the instruction. -d tells the Docker engine to run the container in background mode or detached.  The other important parameter is --net, which attaches the container to the desired network.

We can use the following command to tail the container logs at runtime:

docker logs tracked -f

This command is like the tail -f command on Linux, which looks at the last part of the log stream. We can remove the flag -f to see the last lines of the log.

The output of docker logs should look like this:



Look at the profile selected, in the logs:

INFO 7 --- [           main] s.t.TrackedHashTagApplication$Companion  : The following profiles are active: docker

Remember, we have parameterized it in the pom.xml file from the Tracked Hash Tag Service. Let's look at the following snippet:

<entryPoint>java -Dspring.profiles.active=docker -jar /application/${project.build.finalName}.jar</entryPoint>

Awesome job. Our first service is running properly. Let's run Tweet Gathering; there is some interesting configuration here.  

We have created the Twitter network in chapter 4, Kotlin Basics and Spring Data Redis, and we need to use this network to enable the containers to see each other by container name in our custom network.



            

            
        
    
        

                            
                    Running the Tweet Gathering container

                
            
            
                
To run the Tweet Gathering application is slightly different. This container needs environment variables which are used to interact with the Twitter API. We can use the -e argument on the docker run command. Let's do that:

docker run -d --name gathering --net twitter -e CONSUMER_KEY=gupfxwn43NBTdxCD3Tsf1JgMu \
-e CONSUMER_SECRET=pH4uM5LlYxKzfJ7huYRwFbaFXn7ooK01LmqCP69QV9a9kZrHw5 \
-e ACCESS_TOKEN=940015005860290560-m0WwSyxGvp5ufff9KW2zm5LGXLaFLov \
-e ACCESS_TOKEN_SECRET=KSofGB8aIwDmewceKXLbN8d5chvZkZyB31VZa09pNBhLo \
-p 8081:8081 springfivebyexample/tweet_gathering

Take a look at the environment variables we have configured in the application.yaml file. The Docker run command will inject these variables into the system and then we can use them in our Java application.

Let's inspect our container logs. We can do that using the following command:



Awesome, our application is up and running. As you can see, the application is connected to the RabbitMQ Broker.

RabbitMQ and Redis should be running to enable you to run Tweet Gathering. We can check it using the docker ps command; it will list the running containers, RabbitMQ and Redis need to be on this list.

Now, we can run the Dispatcher application to complete the whole solution. Let's do that.



            

            
        
    
        

                            
                    Running the Tweet Dispatcher container

                
            
            
                
There is no secret to running the Tweet Dispatcher container. We can use the following command to run it:

docker run -d --name dispatcher --net twitter -p 9099:9099 springfivebyexample/tweet_dispatcher

It will spin up the container, it is a good idea to name the container during the run. It can help us manage the container with command-line tools, such as docker container ls or docker ps, because it shows the container name in the last column. Then, let's check if our container is running, so type the following command:

docker container ls

Or, you can run the following command:

docker ps

We should be able to see the Gathering container running, like in the following output:



There are five containers, three applications, and two infrastructure services, RabbitMQ and Redis. 

At any time, we can stop the desired container using the following command:

docker stop gathering

The docker stop will only stop the container; the information will be kept in the container volume. We can use the container name or container ID as well, we named it before. It is easy for us. If we use the docker ps command, the image recently stopped will never appear on the list. To show all the containers, we can use docker ps -a or docker container ls -a.

Now, we will start the container again; the command is self-explanatory:

docker start gathering

The container is running again. We have practiced more with Docker.  

Awesome job, guys. The whole application is containerized. Well done.

We can use the Linux instruction and execute some batch instructions. For instance, we can use docker stop $(docker ps -q) — it will stop all containers running. The docker ps -q command will bring only the container's IDs.



            

            
        
    
        

                            
                    The docker-compose tool

                
            
            
                
In the microservices architectural style, the whole solution is decoupled in small and well-defined services. Usually, when we adopt these styles, we have more than one artifact to deploy.

Let's analyze our solution; we have three components to deploy. We have used the Docker containers and we have run these containers using the docker run command. One by one, we have used docker run three times. It is quite complex and very hard to do in the development routine.

docker-compose can help us in this scenario. It is a tool which helps to orchestrate Docker containers in complex scenarios like ours.

Let's imagine our application is growing fast and we need to build four more microservices to achieve the desired business case, it will implicate on four more docker run commands and will probably be painful to maintain, especially during the development life cycle. Sometimes, we need to promote the artifacts to test the environment and we probably need to modify our command line to achieve this.

docker-compose enables us to deploy multiple containers with a single yaml file. This yaml file has a defined structure which allows us to define and configure several containers in the same file. Moreover, we can run the solution configured in this yaml file with a single command, it makes development life easy.

The tool can work on the local machine or we can integrate it with the Docker Swarm tool which can manage clusters of Docker hosts.

Docker Swarm is a native tool to manage docker clusters. It makes it easy to deploy a container on the Docker cluster. In the new version, docker-compose is fully integrated with Docker Swarm. We can define it from Docker Swarm properties in docker-compose.yaml. The Docker Swarm documentation can be found at: https://docs.docker.com/engine/swarm/.

The docker-compose yaml has a defined structure to follow; the documentation can be found here: https://docs.docker.com/compose/compose-file/#compose-and-docker-compatibility-matrix. We will create a simple file to understand the docker-compose behaviors. Let's create our simple yaml— the yaml should look like this:

version: '3'
services:
  rabbitmq:
    image: rabbitmq:3.7.0-management-alpine
    ports:
      - "5672:5672"
      - "15672:15672"
  redis:
    image: "redis:alpine"
    ports:
      - "6379:6379"

The yaml in the preceding code will create the structure detailed in the following diagram:



It simplifies the development time. Now, we will learn how to install docker-compose.



            

            
        
    
        

                            
                    Installing docker-compose

                
            
            
                
The docker-compose installation is pretty simple and well-documented. We are using Linux, so we will use the Linux instructions.

Open the terminal and use the following command:

sudo curl -L https://github.com/docker/compose/releases/download/1.18.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose

Wait for the download and then we can execute the following instructions to give executable permissions for the program. Let's do this by executing the following command:

sudo chmod +x /usr/local/bin/docker-compose

As you may know, you may be asked for the administrator password. Our docker-compose is now installed. Let's check it:

docker-compose --version

The prompt will display the installed version, like the following screenshot:



docker-compose is up and running, so let's jump to the next section and start to create our yaml file and deploy the whole stack with one single command.

For different operating systems, the instructions can be found here: https://docs.docker.com/compose/install/#install-compose. Then, you can navigate around the instructions and click on the desired operating system.



            

            
        
    
        

                            
                    Creating a docker-compose file

                
            
            
                
Now, we have docker-compose installed and we can try to work with the tool. We want to run the whole stack with a single command. We will create the yaml file to represent the stack. Our yaml file should have the Redis container, the RabbitMQ container, the Tracked Hashtag application, the Gathering application, and finally, the Dispatcher application.

We can create a docker-compose.yaml file wherever we want, there is no restriction for that.

Our docker-compose.yaml file should look like the following:

version: '3'
services:
  rabbitmq:
    image: rabbitmq:3.7.0-management-alpine
    hostname: rabbitmq
    ports:
      - "5672:5672"
      - "15672:15672"
    networks:
      - solution 
  redis:
    image: "redis:4.0.6-alpine"
    hostname: redis
    ports:
      - "6379:6379"
    networks:
      - solution 
  tracked:
    image: springfivebyexample/tracked_hashtag
    ports:
      - "9090:9090"
    networks:
      - solution 
  gathering:
    image: springfivebyexample/tweet_gathering
    ports:
      - "8081:8081"
    networks:
      - solution
    environment:
      - CONSUMER_KEY=gupfxwn43NBTdxCD3Tsf1JgMu
      - CONSUMER_SECRET=pH4uM5LlYxKzfJ7huYRwFbaFXn7ooK01LmqCP69QV9a9kZrHw5
      - ACCESS_TOKEN=940015005860290560-m0WwSyxGvp5ufff9KW2zm5LGXLaFLov
      - ACCESS_TOKEN_SECRET=KSofGB8aIwDmewceKXLbN8d5chvZkZyB31VZa09pNBhLo
  dispatcher:
    image: springfivebyexample/tweet_dispatcher
    ports:
      - "9099:9099"
    networks:
      - solution
networks:
  solution:
    driver: bridge

As you can see, we have defined the whole stack in the yaml. Something to note is that we can find some similarities with the docker run command, in fact, it will use the Docker engine to run. The environment node in yaml has the same behavior as -e in the Docker run command.

We have defined the application ports, docker images, and have also connected the containers to the same network. This is really important because when we use the docker-compose file name on the network, it can find that the container name has a kind of DNS behavior.

For instance, inside the defined network solution, the container can find the Redis container instance by the name redis. 



            

            
        
    
        

                            
                    Running the solution

                
            
            
                
docker-compose simplifies the process to run the whole stack. Our yaml file was configured and defined properly.

Let's start the solution. Run the following command:

docker-compose up -d

The command is pretty simple, the -d parameter instructs Docker to run the command in the background. As we did on the Docker run command.

The output of this command should be the following:



Take a look, docker-compose has created a network for our stack. In our case, the network driver is a bridge, after the network creation, the containers are started.



            

            
        
    
        

                            
                    Testing the network

                
            
            
                
Let's test it, find the Gathering container – the container name in docker-compose is prefixed by the folder name, where docker-compose was started.

For instance, I have started my docker-compose stack in the compose folder. My container name will be compose_gathering_1 because of the folder name.

Then, we will connect the Gathering container. It can be achieved using the following command:

docker exec -it compose_gathering_1  /bin/bash

The docker exec command allows us to execute something inside the container. In our case, we will execute the /bin/bash program.

The command structure is like this:

docker exec -it <container name or container id> <program or instruction>

Awesome, pay attention to the command line. It should be changed because now we are in the container command line:



We are not connected as a root on our host, but now we are a root on the container. This container is on the same network as the Redis container instance, which is called redis.

Let's test with the ping command; we should be able to find the redis container by the name redis, let's do it. Type the following:

ping redis

The command output should be the following:



Awesome, our container can find the Redis container by the name. The yaml file is fully working.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we completed our second solution. We were introduced to the RabbitMQ Reactor library, which enables us to connect to RabbitMQ, using the reactive paradigm.

We have prepared the whole solution in Docker containers and connected it to the same network to enable the applications to talk to each other.

We also learned the important pattern for pushing data from server to client through the HTTP persistent connection, and we learned the difference between WebSockets and Server-Sent Events, as well.

Finally, we learned how docker-compose helps us to create the stack and run the whole solution with a couple of commands.

In the following chapters, we will build a fully microservice solution, using some important patterns such as Service Discovery, API Gateway, Circuit Breakers, and much more.



            

            
        
    
        

                            
                    Airline Ticket System

                
            
            
                
Our last projects—Twitter Consumers, Twitter Gathering, and Twitter Dispatcher—were excellent. We learned several exciting features, and they were implemented using the new features present in Spring 5.0. All of them are implemented in Reactive Streams and use Kotlin as the programming language. They are the hottest features in Spring 5.0; it was an impressive progression.

However, there are notably missing parts on these projects; we have microservice needs in mind. There are no infrastructure services such as service discovery, distributed configurations, API Gateway, distributed tracing, and monitoring. These kinds of services are mandatory in distributed systems such as microservice architectures.

There are several reasons for that. Firstly, we can think of the configuration management. Let's imagine the following scenario – in the development cycle, we have three environments: DEV, TST, and PROD. This is a pretty simple standard found in companies. Also, we have an application decoupled in 4 microservices, then with the minimum infrastructure, we have 12 instances of services; remember, this is a good scenario because in a real situation, we will probably have several instances of microservice applications.

In the earlier scenario, we will maintain at least three configuration files per microservice, remember there are three environments for which we need to keep the configurations. Then, we will have 12 versions of settings. It is a hard task to maintain the configurations, to keep the files synchronized and updated. These files probably contain sensitive information, such as database passwords and message brokers' configurations, and it is not recommended that you put these files on the host machines.

In this case, the distributed configuration can solve our problems easily. We will learn about configuration servers in this chapter, and other infrastructure services as well.

Let's summarize what we will learn in this chapter:


	How to create a Config Server 

	Implementing a service discovery with Eureka

	Monitoring applications with Spring Cloud Zipkin

	Exposing the applications with the Spring Cloud Gateway





            

            
        
    
        

                            
                    The Airline Ticket System

                
            
            
                
In these last few chapters, we will work on the Airline Ticket System. The solution is quite complex and involves a lot of HTTP integrations and message-based solutions. We will explore what we have learned from the book journey.

We will use Spring Messaging, Spring WebFlux, and Spring Data components to create the solution. The application will split up into several microservices to guarantee the scalability, elasticity, and fault tolerance for the system. 

Also, we will have some infrastructure services to help us deliver an efficient system. Some new patterns will be introduced, such as circuit breakers and OAuth. In the infrastructure layer, we will use the Netflix OSS components integrated with the Spring Framework ecosystem.

The main purpose of our application is to sell airline tickets, but to achieve this task, we need to build an entire ecosystem. We will build a microservice which will manage the seats and planes' characteristics. There will also be a microservice to manage available company flights; the basic idea is to manage flight dates and routes. Of course, we will have a microservice to manage passengers, fares, bookings, and payments. Finally, we will have an e-commerce API with which end users will buy airline tickets.



            

            
        
    
        

                            
                    Airline functionalities

                
            
            
                
We will create some microservices to compose the solution and then we will decompose the solution into small pieces, that is, microservices. For that, we will use the Bounded Context pattern which is an essential part of the Domain-Driven Design (DDD).

Let's look at the following diagram to have an idea about what we will build:



It is a summary of what we will do in these few chapters; we have defined the basic functionalities for each microservice.

Now, we will take a look at components; let's go to the next section.



            

            
        
    
        

                            
                    Solution diagram

                
            
            
                
The following diagram illustrates the whole solution, which we will implement in the following chapters:



As we can see, there are different kinds of components. Some components will be exposed through the Gateway for end users, in our case, our customers. There is a category which the company users will use to register flights, for instance, where these microservices will be exposed on Gateway as well.

The infrastructure category will not be exposed over the internet, except the Gateway service. These services help the solution infrastructure and should be not exposed because there is sensitive data in there.

There a lot of things to do; let's get on with the show.

DDD enables us to deal easily with microservices. Some DDD patterns fit well for the microservices architectural style. There are many interesting books in the Packt catalog.



            

            
        
    
        

                            
                    Spring Cloud Config Server

                
            
            
                
When we adopt the microservices architectural style, there are some challenges to solve. One of the first problems to solve is how to manage the microservices configurations in the cluster, and how to make them easy and distributed, as well?

Spring Cloud Config provides a Spring way, based on annotations and Spring beans. It is an easy way to solve this problem in a production-ready module. There are three main components in this module, the Configuration Repository, that is, version control system, the Config Server, which will provide the configurations, and finally, the Configuration Client, which will consume the configuration from the Config Server.

This module supplies the configuration files over an HTTP interface. It is the main feature provided by this project and it acts as a central repository for configuration in our architecture.

We want to remove the application.yaml file from our classpath; we do not need this file in classpath anymore, and so we will use the Config Server to serve this file for our application.

Now, our microservices will not have the configuration file, that is, application.yaml.  During the application bootstrap, the application will look at the Config Server to get the correct configuration, and after that, the application will finish the bootstrap to get them up and into running status.

The following diagram explains the Config Server and Config Client:



As we can see, the basic idea here is to try to distribute the configuration through the Config Server. There are some advantages to using this approach. The first one keeps the configuration in the central repository. It makes the configuration easy to maintain. The second one is that the configurations are served with a standard protocol, such as HTTP. Most of the developers know the protocol and make the interaction easy to understand. Finally, and most importantly, when the properties change, it can reflect immediately in other microservices.

Time to implement it. Let's go there.

The Config Server is usually maintained on private networks, if we are deploying in cloud environments, although the Spring Cloud Config supports encrypt and decrypt based on symmetric or asymmetric keys. Keep in the mind that the microservices configurations should not be published on public networks.



            

            
        
    
        

                            
                    Creating the Config Server project

                
            
            
                
Let's create our project with Spring Initializr. Go to Spring Initializr (https://start.spring.io/) and follow the image instructions:



Click on Generate Project and then we can open the project on the IDE.



            

            
        
    
        

                            
                    Enabling Spring Cloud Config Server

                
            
            
                
We will use the Git repository as a property source, and then we need to create a repository to keep these files. However, before that, let's navigate to the pom.xml file and see some interesting stuff. We can find the following dependency:

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-config-server</artifactId>
</dependency>

It is a Config Server dependency. It enables us to use the Config Server in our application. Remember, we need to put this into the pom.xml file to achieve the required Config Server.



            

            
        
    
        

                            
                    Using GitHub as a repository

                
            
            
                
The Spring Cloud Config Server enables us to use different datastore technologies to work as a properties repository. There are some options such as Git repository, filesystem, or SVN and others, provided by the community.

We will choose the Git repository, and use GitHub as a host. 

We will use the Git repository that has the source code of the book. The repository is located at: https://GitHub.com/PacktPublishing/Spring-5.0-By-Example/tree/master/config-files.
The Spring Cloud Config Server also supports private repositories. For that purpose, we need to supply the private/public keys.



            

            
        
    
        

                            
                    Configuring the Spring Boot application

                
            
            
                
It's a piece of cake to enable and run the Config Server and provide our configuration HTTP protocol. To achieve it, we need to put the following annotation in our Spring Boot starter class. The implementation is as follows:

package springfive.airline.configserver;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.config.server.EnableConfigServer;

@EnableConfigServer
@SpringBootApplication
public class ConfigServerApplication {

  public static void main(String[] args) {
    SpringApplication.run(ConfigServerApplication.class, args);
  }

}

Awesome. @EnableConfigServer does the magic for us. It will stand up the Config Server and make the application ready to connect.



            

            
        
    
        

                            
                    Configuring the Git repository as a properties source

                
            
            
                
Our Config Server needs to be configured. For that purpose, we will use the application.yaml file. This file should be simple and with minimal configurations as well. The configuration file should look like this:

server:
  port: 5000

spring:
  cloud:
    config:
      name: configserver
      server:
        git:
          uri: https://github.com/PacktPublishing/Spring-5.0-By-Example
          search-paths: config-files*

We have configured the application port, which is a common task. We named our Config Server, and the most important part is the server.git.uri configuration property which instructs the Spring Framework to get the configurations files.

Another configuration is search-paths; it allows us to search the configuration in git repository folders, instead of a root address in the repository.



            

            
        
    
        

                            
                    Running the Config Server

                
            
            
                
Awesome job; our configuration server is ready to use. Then let's run it. We can use the JAR file, or through IDE as well, it is up to you to choose the desired way.

We can use the Java command line or IDE to run it. I prefer to use IDE because it enables us to debug and make some code changes.

Run it.

The output should look like this:



Tomcat started successfully; our Config Server is up and running. We can find some different endpoints in our Config Server. These endpoints are exposed to serve the configuration file.

The Spring Cloud Config Server supports profiles as well, providing different configurations for different environments is important.

The pattern supported by the Config Server is as follows:

<application-name>-<profile>.<properties|yaml>

It is really important to keep this in mind. Also, it makes it mandatory to declare the application.name property in our microservices, to identify the application.

We can find the endpoints provided by the Spring Cloud Config Server on the application bootstrap. Take a look at the log:



Remember the Config Server supports environments; because of this, there is a kind of regex on endpoints. Look at the "/{name}-{profiles}.yml" endpoint.



            

            
        
    
        

                            
                    Testing our Config Server

                
            
            
                
We are able to test our Config Server over the REST API.

Let's create a simple yaml file to create the test; the file should be called dummy.yaml:

info:
  message: "Testing my Config Server"
  status: "It worked"

Push it to GitHub – if you are using the GitHub book, this step is unnecessary. Then, we can call the Config Server API using the following command:

curl http://localhost:5000/dummy/default | jq

The command looks for the dummy configuration in the profile default; the URL is self-explanatory. The following output should be displayed:



Our Config Server is fully operational. Now, we will configure our service discovery using Netflix Eureka.



            

            
        
    
        

                            
                    Spring Cloud service discovery

                
            
            
                
The service discovery is one of the key points of the microservices architecture. The basis of the microservices architecture is to decouple the monolithic application into smaller pieces of software which have well-defined boundaries.

This impacts our system design in the monolithic application. In general, the application logic stays in a single place with regards to the code. It means the procedure or methods calls are invoked in the same context when the application is running.

When we adopt the microservices architectural style, these invocations are typically external, in other words, they will invoke the service through HTTP calls, for example, in another application context or web server.

Then, the services need to call other services through HTTP, for instance, but how do the services call the others if the instances of these services change with a considerable frequency? Remember, we are creating distributed and scalable systems, where the instances of services can be increased according to the system usage.

The services need to know where the other services are running to be able to call them. Let's imagine that we are considering putting the services IPs in the configuration; it will be hard to manage and impossible to track the machine changes during that time.

The service discovery pattern addresses this challenge. In general, the solution involves a Service Registry, which knows the locations of all the running services. The client then needs to have a kind of Service Registry Client to be able to query this Service Registry to obtain the valid address for the desired service; the Service Registry will then return a healthy address, and finally, the client can invoke the desired service.

Let's look at the following diagram:





The full documentation of this pattern can be found at http://microservices.io/patterns/client-side-discovery.html and https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/. There are so many implementations for that pattern.

The Spring Cloud service discovery supports some service discovery implementations, such as Hashicorp Consul provided by the Spring Cloud Consul, and Apache Zookeeper provided by the Spring Cloud Zookeeper.

We are using the Netflix OSS stack where we will use the Eureka server, which was provided by the Spring Netflix OSS. It enables us to use the Eureka server as a managed Spring bean.

The Spring Eureka Client provides a client aware of the Service Registry, and it can be done with a couple of annotations and some configurations – we will do that soon.

We will start to create and configure the Eureka server in the following sections. Let's do that.

The full documentation for the Spring Cloud Consul can be found at: https://cloud.spring.io/spring-cloud-consul, and the Spring Cloud Zookeeper can be found at: https://cloud.spring.io/spring-cloud-zookeeper.



            

            
        
    
        

                            
                    Creating Spring Cloud Eureka

                
            
            
                
To enable service discovery in our infrastructure, we need to create an instance of a service which will act as a service discovery. The Spring Cloud Eureka server enables us to achieve this task. Let's create our project. Go to Spring Initializr and fill in the information, as shown in the following screenshot:



Take a look at the required dependencies. The Eureka server is the dependency which allows us to spin up a service discovery server.

Let's open the project on IDE and start to configure it. We will do this in the following section.



            

            
        
    
        

                            
                    Creating the Eureka server main class

                
            
            
                
Before we start the configuration, we will create the main class. This class will start the Spring Boot application. The Eureka server is embedded in the application. It is a pretty standard Spring Boot application with a single annotation.

The main application class should look like this:

package springfive.airline.eureka;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

@EnableEurekaServer
@SpringBootApplication
public class EurekaApplication {

  public static void main(String[] args) {
    SpringApplication.run(EurekaApplication.class, args);
  }

}

The @EnableEurekaServer annotation will start the embedded Eureka server in our application and make it ready to use. It will enable the service registry in our application as well.



            

            
        
    
        

                            
                    Configuring the Spring Cloud Eureka server

                
            
            
                
Our Eureka server needs to be configured using the Spring Cloud Server configured in the previous sections. Then, we need to keep the application.yaml off our project, to use the Config Server properly. Instead of the application.yaml, we need to put the bootstrap.yaml and put the Config Server address on it.

Then, we need to:


	Create discovery.yaml on GitHub

	Create bootstrap.yaml file in the classpath project 



Let's start with the discovery.yaml file. The file should look like this:

server:
  port: 8761

eureka:
  instance:
    hostname: localhost
    health-check-url-path: /actuator/health
    status-page-url-path: /actuator/info 
  client:
    registerWithEureka: false
    fetchRegistry: false
logging:
  level:
    com.netflix.discovery: 'ON'
    org.springframework.cloud: 'DEBUG'

There are some interesting things to explore. We are using the localhost as hostname because we are running on the developer machine. There are a couple of configurations about the URLs health check and status page – pay attention to the configurations that are related to the server. They are placed below the eureka.instance YAML node. The configurations are health-check-url-path and status-page-url-path. We can use the default values as well, but the new Spring Boot Actuator changes the URL for those two features, so we need to configure them properly.  

The eureka.client YAML node is about the client configuration; in our case, we set registerWithEureka to false. We do not want the Eureka server to act as a client as well. The same is true for the fetchRegistry configuration, it is a client configuration and it will cache the Eureka registry's information.

The logging node is about logging configuration.

Awesome – our gateway.yaml is ready.

Let's create our bootstrap.yaml file in the Eureka server project classpath. The file should look like this:

spring:
  application:
    name: discovery
  cloud:
    config:
      uri: http://localhost:5000
      label: master

Easy peasy – we have configured spring.cloud.config. It instructs Spring of the Config Server address. Also, we have configured the label, which is the branch when we are using the version control system (VCS) as a repository.

Well done. The configuration is ready. Time to run it. Let's do it in the following section.



            

            
        
    
        

                            
                    Running the Spring Cloud Eureka server

                
            
            
                
The Eureka server is ready to use. We will start the Spring Boot application and put our Eureka server online. We can use the Java command line or IDE to run it. I prefer to use IDE because it enables us to debug and make some code changes.

The Config Server needs to be running because the discovery will find the configuration file to bootstrap the server properly.

Run it!

We should see the following lines in the application bootstrap logs:



Awesome. Look at the following line of the log:

2018-01-07 14:42:42.636  INFO 11191 --- [      Thread-32] e.s.EurekaServerInitializerConfiguration : Started Eureka Server

It means our Eureka server is ready to use. To check the solution, we can go to the Eureka server home page. Go to http://localhost:8761/ and the following page will be displayed:



As we can see, there is no instance of service available yet. We can find some relevant information such as the server Uptime, the current Data center, and the Current time. There is some information in the General Info section, information regarding the server where the Eureka server is running.

Good job. Our service discovery service is running. We will use this infrastructure soon.



            

            
        
    
        

                            
                    Spring Cloud Zipkin server and Sleuth

                
            
            
                
Our solution involves some microservices; it makes our solution easy to deploy and easy to write code. Each solution has a particular repository and codebase. 

In the monolith solution, the whole problem is solved in the same artifact to be deployed. Usually, in Java, these artifacts are .jar, .war, or .ear, if the application was written in the Java EE 5/6 specifications.

The logging strategies for these kinds of applications is quite easy to work with (hence problems can be solved easily) because everything happens in the same context; the requests are received from the same application server or web server, which have the business components. Now, if we go to the logs, we will probably find the log entries we want. It makes the trace application easier to find errors and debug.

In the microservices solution, the application behaviors are split in the distributed systems; it increases the trace tasks substantially because the request probably arrives in the API Gateway and comes into microservices. They log the information in different sources. In this scenario, we need a kind of log aggregator and a way to identify the whole transaction between services.

For this purpose, the Spring Cloud Sleuth and Spring Cloud Zipkin can help us and make the trace features more comfortable for developers.

In this section, we will look at and understand how it works under the hood.



            

            
        
    
        

                            
                    Infrastructure for the Zipkin server

                
            
            
                
Before we start to work, we need to configure a service which the Zipkin server needs. By default, the Zipkin server uses in-memory databases, but it is not recommended for production; usually, developers use this feature to demonstrate Zipkin features.

We will use MySQL as a data store. The Zipkin server also supports different sources, such as Cassandra and Elasticsearch.

Spring Cloud Sleuth supports synchronous and asynchronous operations. The synchronous operations are over the HTTP protocol and asynchronous can be done by RabbitMQ or Apache Kafka.

To use the HTTP, that is, REST API, we should use @EnableZipkinServer, it will delegate the persistence for REST tier through the SpanStore interface.

We will choose the asynchronous solution, since it fits well for our project, and we do not want the trace collector to cause some performance issues. The asynchronous solution uses the Spring Cloud Stream binder to store the Spans. We choose the RabbitMQ message broker to do that. It can be achieved using the @EnableZipkinStreamServer annotations which configure Spring Sleuth to use streams for store Spans.

Let's create our docker-compose-min.yaml to bootstrap our RabbitMQ and MySQL containers. The file should look like this:

version: '3'
services:

  rabbitmq:
    hostname: rabbitmq
    image: rabbitmq:3.7.0-management-alpine
    ports:
      - "5672:5672"
      - "15672:15672"
    networks:
      - airline

  mysql:
    hostname: mysql
    image: mysql:5.7.21
    ports:
      - "3306:3306"
    environment:
      - MYSQL_ROOT_PASSWORD=root
      - MYSQL_DATABASE=zipkin
    networks:
      - airline

  mongo:
    hostname: mongo
    image: mongo
    ports:
      - "27017:27017"
    networks:
      - airline  

  redis:
    hostname: redis
    image: redis:3.2-alpine
    ports:
      - "6379:6379"
    networks:
      - airline

networks:
  airline:
    driver: bridge

The docker-compose-min.yaml file can be found at GitHub, there is a MongoDB and Redis – they will be used in the next chapter.

There is nothing special here. We have declared two containers—RabbitMQ and MySQL— and exposed the ports on the host machine. Also, we have created the airline network; we will use this network to attach our infrastructure microservices.

Now, we can create our Zipkin server, which we will do in the next section.



            

            
        
    
        

                            
                    Creating the Spring Cloud Zipkin server

                
            
            
                
We will create our Zipkin panel structure in Spring Initializr, and then we need to follow the instructions:



Awesome – take a look at the Selected Dependencies section, all of them are required. Pay attention to the Spring Boot version. We choose 1.5.9, because there is no support for Zipkin server in Spring Boot 2. It is not a problem because we do not need specific features from Spring Boot 2.

Click on the Generate Project button and wait for the download to finish. Afterwards, open the project in IDE.

In order to enable service discovery and store Spans on a database, we need to put the following dependencies in our pom.xml:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jdbc</artifactId>
</dependency>

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>6.0.6</version>
</dependency>

The first dependency is for the service discovery client and the others are to JDBC connections to MySQL. It makes our project dependencies fully configured. 

Let's create our main class to start our Zipkin server. The class is pretty standard but with some new annotations:

package springfive.airline;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.sleuth.zipkin.stream.EnableZipkinStreamServer;

@SpringBootApplication
@EnableZipkinStreamServer
@EnableEurekaClient
public class ZipkinServerApplication {

 public static void main(String[] args) {
  SpringApplication.run(ZipkinServerApplication.class, args);
 }

}

The @EnableEurekaClient annotation enables the application to connect to the Eureka server. The new annotation, @EnableZipkinStreamServer, instructs the framework to connect with the configured broker to receive the Spans. Remember, it can be done using the Spring Cloud Stream Binder.



            

            
        
    
        

                            
                    Configuring boostrap.yaml and application.yaml

                
            
            
                
In the section, we created our main class. Before we run it, we should create our two configuration files. The bootstrap.yaml inside the src/main/resources directory and the application.yaml on our GitHub repository. They will be downloaded via Config Server and provided by the Zipkin server project.

Let's start with bootstrap.yaml:

spring:
  application:
    name: zipkin
  cloud:
    config:
      uri: http://localhost:5000
      label: master

Nothing special, we have configured our Config Server address.

Let's jump to our application.yaml:

server:
  port: 9999

spring:
  rabbitmq:
    port: 5672
    host: localhost
  datasource:
    schema: classpath:/mysql.sql
    url: jdbc:mysql://${MYSQL_HOST:localhost}/zipkin?autoReconnect=true
    driver-class-name: com.mysql.cj.jdbc.Driver
    username: root
    password: root
    initialize: true
    continue-on-error: true
  sleuth:
    enabled: false

zipkin:
  storage:
    type: mysql

logging:
  level:
    ROOT: INFO

eureka:
  client:
    serviceUrl:
      defaultZone: http://localhost:8761/eureka/

There are some interesting things here. In the spring.rabbitmq node, we have configured our RabbitMQ broker connection. It will be used to receive Spans. In the spring.datasource, we have configured the MySQL connection. The Zipkin server will use it to store data. Also, we have configured how to execute the DDL script to create the zipkin database.

The spring.sleuth node was configured to not produce any Span because it is a server, not a client application, and we will not perform a trace on the Zipkin server.

The zipkin node had been used to configure the Zipkin server storage type, MySQL, in our case.

Let's run it!!!



            

            
        
    
        

                            
                    Running the Zipkin server

                
            
            
                
We have configured the Zipkin server properly, so now we will be able to run it properly.

We can run the main class ZipkinServerApplication. We can use the IDE or Java command line, after running the following output:



Good job – the Zipkin server is running now. We can take a look at the index page to see what it looks like. 

Go to Zipkin page; the page should look like the following screenshot:



Also, we can check the RabbitMQ panel to find the queue created by the Zipkin server. Go to the RabbitMQ Queues (http://localhost:15672/#/queues) section, the page should look like this:



Looking at the queues, the project has created the sleuth.sleuth queue, well done.

The Zipkin server is ready. For now, we will not have any Span, because there is no application sending data to Zipkin. We will do that in the next chapter.



            

            
        
    
        

                            
                    Spring Cloud Gateway

                
            
            
                
The API Gateway pattern helps us to expose our microservices through a single known entrypoint. Usually, it acts as an entrypoint to external access and redirects the call to internal microservices.

There are many benefits when we adopt the API Gateway in our application. The first one can be recognized easily, it makes the API consumption easy for the clients, which means the clients do not need to know the different microservices endpoints.

Other benefits are a consequence of the first one. When we have a unique entrypoint, we can address some cross-application concerns such as filtering, authentication, throttling, and rate limit, as well.

It is an essential part when we adopt the microservices architecture. 

The Spring Cloud Gateway enables us to have these features in a Spring-managed bean, in a Spring way using Dependency Injection and other features provided by the Spring Framework. 

The project was built on the Spring Framework 5, which uses the Project Reactor as a basis. There are some interesting features provided, such as Hystrix Circuit Breaker integration and with the Spring Cloud Discovery client, as well. 

Look at the diagram to understand the benefits of the API Gateway:



The full documentation of the API Gateway Pattern can be found at: http://microservices.io/patterns/apigateway.html.



            

            
        
    
        

                            
                    Creating the Spring Cloud Gateway project

                
            
            
                
We will use the Spring Initializr to create our Spring Cloud Gateway project; we will need to add some dependencies manually. Let's go to the Spring Initializr page and create our project:



There is a brand new dependency Gateway, it enables us to work with Spring Cloud Gateway. Then click on Generate Project and wait for the download to complete.

After that, we need to add a missing dependency. The missing dependency is required by the Gateway to interact with the Eureka server; the name of the dependency is spring-cloud-starter-netflix-eureka-client. Then, let's add the dependency on our pom.xml, we will need to add the following snippet:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

Excellent, our project is configured correctly to work with the Eureka server. In the following section, we will configure the project to work with the Config Server as well.



            

            
        
    
        

                            
                    Creating the Spring Cloud Gateway main class

                
            
            
                
There is no secret to this part. The Spring Cloud Gateway works in the same way as the common Spring Boot applications. There is a main class which will start the embedded server and starts the whole application.

Our main class should look like this:

package springfive.airline.gateway;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;

@EnableEurekaClient
@SpringBootApplication
public class GatewayApplication {

 public static void main(String[] args) {
  SpringApplication.run(GatewayApplication.class, args);
 }

}

As we can see, it is a pretty standard Spring Boot application, configured with @EnableEurekaClient to work with the Eureka server as a service discovery implementation.



            

            
        
    
        

                            
                    Configuring the Spring Cloud Gateway project

                
            
            
                
The primary project structure is ready. We will create the project configurations in this section. To achieve this, we need to carry out the following steps:


	Add a gateway.yaml file to GitHub

	Create the bootstrap.yaml in the Gateway project



We are using the Spring Cloud Config Server, so it is necessary to create the new file in GitHub because the Config Server will try to find the file on the repository. In our case, we are using GitHub as a repository.

The second task is necessary because the bootstrap.yaml file is processed before the application is fully ready to run. Then, during this phase, the application needs to look up the configuration file and to achieve this, the application needs to know the repository, in our case, the Config Server. Remember the address of the Config Server always needs to be placed on the bootstrap.yaml.

Let's create our gateway.yaml file – the file should look like this:

server:
  port: 8888
eureka:
  client:
    serviceUrl:
      defaultZone: http://localhost:8761/eureka/
logging:
  level: debug

The eureka.client node in the YAML file is responsible for configuring the Eureka Client configurations. We need to configure our Eureka server address instance. It should be pointed to the correct address.

There are more options for the Eureka Configuration Client properties. The full documentation can be found in https://github.com/Netflix/eureka/wiki/Configuring-Eureka; the Netflix team maintains Eureka.

Then, we need to create our bootstrap.yaml file on the Gateway project. This file will instruct the Spring Framework to look up the configuration file on the Config Server and then download the required file to finish the application bootstrap. Our file should look like this:

spring:
  application:
      name: gateway
  cloud:
    config:
      uri: http://localhost:5000
      label: master

Pretty simple. The application.name is required to instruct the framework to look up the correct file. Usually, there are many configuration files for different applications and environments as well. 

On the cloud.config node, we need to put in the Spring Cloud Config Server address, which we configured in the previous sections.

The project final structure should look like this:



Look at the screenshot. There is no application.yaml in the classpath. This gives us several advantages; there is no configuration file in classpath projects, which helps us a great deal in managing the microservices configurations.

In the next section, we will run it and explain the whole application bootstrap process. Let's do it.



            

            
        
    
        

                            
                    Running the Spring Cloud Gateway

                
            
            
                
The project is well-configured, so now it is time to run it. We can use the Java command line or IDE. There is no difference either way. 

The Config Server and Eureka server need to stay up; it is mandatory that the Gateway project works correctly. Then, we can run the project.

Run the project and look at the logs. We can see some interesting stuff, such as the project connecting to the Config Server and download the configuration and after this, it connects to the Eureka server and self-registers. The following diagram explains the application bootstrap flow:



Let's look at what the different flows are and understand them:


	The Gateway application requests the configuration file

	The Config Server serves the config file

	The Gateway application registers to the Eureka server



Awesome, our Gateway application is connected to our infrastructure services.



            

            
        
    
        

                            
                    Checking the Eureka server

                
            
            
                
Our Gateway is running. Now, we can check the Eureka server page to confirm this information.

Go to http://localhost:8761/, and check the Instances currently registered with Eureka section. We should see the Gateway application, as shown in the following screenshot:



Excellent. It worked well. The Gateway application is successfully registered, and it can be looked up via the service discovery. Our Gateway will connect to the Eureka server to get the service available and distribute the requested calls to the correct services.

Well done. Now, we can create our routes in the Gateway. We will do this in the next chapter when we create our airline microservices.



            

            
        
    
        

                            
                    Creating our first route with Spring Cloud Gateway

                
            
            
                
Our Gateway is running. Before we start the real routes for our Airline application, let's try to use some fake routes to test the Spring Cloud Gateway behaviors. We will use the https://httpbin.org/ site, which helps us to test some routes.

Let's create a class with the @Configuration annotation to provide the routes for the Spring Container. Let's create a package called springfive.airline.gateway.infra.route, then create the following class:

package springfive.airline.gateway.infra.route;


import java.util.function.Function;
import org.springframework.cloud.gateway.route.RouteLocator;
import org.springframework.cloud.gateway.route.builder.PredicateSpec;
import org.springframework.cloud.gateway.route.builder.RouteLocatorBuilder;
import org.springframework.cloud.gateway.route.builder.RouteLocatorBuilder.Builder;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class SampleRoute {

  private Function<PredicateSpec, Builder> addCustomHeader = predicateSpec -> predicateSpec
      .path("/headers")
      .addRequestHeader("Book", "Spring 5.0 By Example")
      .uri("http://httpbin.org:80");

  @Bean
  public RouteLocator sample(RouteLocatorBuilder builder) {
    return builder.routes()
        .route("custom-request-header", addCustomHeader)
        .route("add-query-param", r -> r.path("/get").addRequestParameter("book", "spring5.0")
            .uri("http://httpbin.org:80"))
        .route("response-headers", (r) -> r.path("/response-headers")
            .addResponseHeader("book","spring5.0")
            .uri("http://httpbin.org:80"))
        .route("combine-and-change", (r) -> r.path("/anything").and().header("access-key","AAA")
            .addResponseHeader("access-key","BBB")
            .uri("http://httpbin.org:80"))
        .build();
  }

}

There are some different types to configure routes; the first one we extracted is the function to a private attribute called addCustomHeader, which will be used in the custom-request-header route. We will use curl to test some routes created previously.

The first one we will test is the custom-request-header, the route was configured to route to: http://httpbin.org:80 and the path will be /headers. This service will return the Request Headers sent to the server. Take a look at addCustomHeader, we have configured it to add a custom header to the Request. It will be Book as the key and Spring 5.0 By Example, as the value. Let's call the gateway URL, using curl:

curl http://localhost:8888/headers

The output should look like this:



Let's analyze the output. The first thing to look at is we have called the localhost address. The Host key in the Request shows httpbin.org, it means the Spring Cloud Gateway has changed the address. Awesome, but we expected it. The second one is where we have added the Book key, and bingo, there it is in the Request Headers. The Gateway worked as expected, and with a few lines of code, we did some interesting stuff.

Let's do one more test. We will test the combine-and-change, this route is configured to answer the /anything with the Request Header access-key: AAA, so the command line should be:

curl -v -H "access-key: AAA" http://localhost:8888/anything

As we can see, the -v argument makes the call in verbose mode, it is useful for debugging purposes and the -H indicates the Request Headers. Let's look at the output:



Awesome. If you look at the access-key value, the Gateway changed to a requested value BBB. Good job guys. There are some endpoints to test, feel free to test as you want.

You can find the httpbin documentation at: https://httpbin.org/. There are some interesting other methods to test HTTP. 



            

            
        
    
        

                            
                    Putting the infrastructure on Docker

                
            
            
                
Our infrastructure is ready and it enables us to develop the application. We can create a Docker compose file to spin up the infrastructure services; during the development life cycle, components such as Eureka, Config Server, Trace Server, and API Gateway do not suffer changes because they interact as an infrastructure.

Then, it enables us to create component images and use them in the docker-compose.yaml file. Let's list our components:


	Config Server

	Eureka

	Zipkin

	RabbitMQ

	Redis



We know how to create Docker images using the Fabric8 Maven plugin, we have done this several times in the previous chapters – let's do it.

Let's configure one as an example, keep in mind we need do the same configuration for all projects, Eureka, Gateway, Config Server, and Gateway. The following snippet configures the docker-maven-plugin to generate a Docker image:

<plugin>
  <groupId>io.fabric8</groupId>
  <artifactId>docker-maven-plugin</artifactId>
  <version>0.21.0</version>
  <configuration>
    <images>
      
    </images>
  </configuration>
</plugin>

It is a pretty simple configuration. A simple Maven plugin with a couple of configurations. Then, after the plugin configuration, we are able to generate the Docker image. The command to generate Docker images is:

mvn clean install docker:build

It will generate a Docker image for us.

The projects configured can be found on GitHub; there are so many configurations to do as in the previous chapters. We need to configure the docker-maven-plugin and generate the Docker images.

Fully configured projects can be found in the chapter seven folder. The GitHub repository is: https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter07.

After the images have been created, we are able to create a Docker compose file defining the whole thing. The docker-compose-infra-full.yaml file should look like this:

version: '3'
services:

  config:
    hostname: config
    image: springfivebyexample/config
    ports:
      - "5000:5000"
    networks:
      - airline
      
  rabbitmq:
    hostname: rabbitmq
    image: rabbitmq:3.7.0-management-alpine
    ports:
      - "5672:5672"
      - "15672:15672"
    networks:
      - airline
      
  mysql:
    hostname: mysql
    image: mysql:5.7.21
    ports:
      - "3306:3306"
    environment:
      - MYSQL_ROOT_PASSWORD=root
      - MYSQL_DATABASE=zipkin
    networks:
      - airline
      
  redis:
    hostname: redis
    image: redis:3.2-alpine
    ports:
      - "6379:6379"
    networks:
      - airline

  zipkin:
    hostname: zipkin
    image: springfivebyexample/zipkin
    ports:
      - "9999:9999"
    networks:
      - airline
      
networks:
  airline:
    driver: bridge

There are some interesting things to pay attention to here. It is very important that all container instances are attached to the same Docker network called airline. Pay attention to the ports exposed by the containers, it is important to enable service discovery features in Docker.

Then, we can execute the instruction to spin up the whole infrastructure; it can be done using the following command:

docker-compose -f docker-compose-infra-full.yaml up -d

The following output should appear:



Also, we can execute the following instruction to check the container's execution:

docker-compose -f docker-compose-infra-full.yaml ps

It will list the running containers, as shown in the following screenshot:



All applications are up and running. Well done.

To remove the containers, we can use:

docker-compose -f docker-compose-infra-full.yaml down

It will remove the containers from the stack.

Excellent job, our infrastructure is fully operational in Docker containers. It is a base for starting to create our microservices.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we have built the essential infrastructures services adopting the microservices architectural style. 

We have learned how Spring Framework eliminates the infrastructure code from our microservices and enables us to create these services, using a couple of annotations.

We understand how it works under the hood; it is extremely important to debug and troubleshoot when the application gets some errors in the production stage.

Now, we are ready to create scalable, fault tolerant, and responsive systems. We have built the foundations of our system.

In the next chapter, we will start to build our Airline Ticket System, understand how to connect the new microservices with the whole infrastructure, and enable service discovery and other amazing features.

See you there.





            

            
        
    
        

                            
                    Circuit Breakers and Security

                
            
            
                
In the previous chapter, we configured the microservices that will act in our infrastructure, and we created a Eureka server to work as a service discovery for our solution. Also, we have created a Config Server application that will serve as the configurations for our microservices.

In this chapter, we will create microservices to interact with our previous infrastructure. We will discover how to apply service discovery features for our business microservices and understand how the Circuit Breaker pattern can help us to bring resilience to our applications. 

During the chapter, we will understand how the microservices can communicate with other services through the HTTP asynchronous call powered by the Spring WebFlux client.

By the end of this chapter, we will have learned how to:


	Connect microservices with service discovery

	Pull the configuration from the configuration server

	Understand how Hystrix brings resilience to microservices

	Show the Edge API strategy

	Present the Spring Boot Admin





            

            
        
    
        

                            
                    Understanding the service discovery power

                
            
            
                
We will create our first microservice with business requirements. We will create a planes microservice, which will maintain data about company planes, such as characteristics, model, and some other attributes.

The planes microservice will be used to serve plane characteristics for our second microservice, the flights microservice. It needs to get some plane information to be able to create a flight, such as the number of seats.

The planes microservice is an excellent candidate to start with because there is no business-related dependency to be created.

Our planes microservice will be useful soon. Time to create it. Let's go.



            

            
        
    
        

                            
                    Creating the planes microservice

                
            
            
                
As we have been doing in the previous chapters, we will use the Spring Initializr for that purpose. The following dependencies should be selected, as shown in the following screenshot:



There are some necessary dependencies. The Stream Binder Rabbit and Sleuth Stream dependencies are necessary to enable us to the send data spans, and to enable application trace, across to the RabbitMQ message broker. We will use MongoDB to act as a database for this specific application, so we need Reactive MongoDB for that. Config Client is mandatory for all microservices present in the solution. We will not have any application configuration on the classpath. The Actuator provides production-ready metrics and information about the running application; it's an essential characteristic of the microservice's architectural style. Moreover, Zuul will be essential to enable us to connect the application with our Edge API. We will learn more about it during the course of the chapter.

We can now press the Generate Project button to download the project. Open the project on the IDE.

The planes microservice will be created using the Spring Boot 2 framework because we are interested in implementing the reactive foundation for our plane service.

Also, we need to include one more dependency, and it can be done using the following snippet on our pom.xml:

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

The spring-cloud-starter-netflix-eureka-client enables the service discovery, powered by the Eureka server in our application.



            

            
        
    
        

                            
                    Coding the planes microservice

                
            
            
                
We will add some features on the application. For this specific application, we will create CRUD functionalities with Spring Reactive WebFlux.

The Plane class represents the plane model in our microservices and the class should be like this:

package springfive.airline.airlineplanes.domain;

import com.fasterxml.jackson.annotation.JsonInclude;
import com.fasterxml.jackson.annotation.JsonInclude.Include;
import java.util.Set;
import lombok.Builder;
import lombok.Data;
import lombok.NonNull;
import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;
import springfive.airline.airlineplanes.resource.data.PlaneRequest;

@Data
@Document(collection = "planes")
@JsonInclude(Include.NON_NULL)
public class Plane {

  @Id
  String id;

  String owner;

  PlaneModel model;

  Set<Seat> seats;

  String notes;

  @Builder
  public static Plane newPlane(String owner,PlaneModel planeModel,Set<Seat> seats,String notes){
    Plane plane = new Plane();
    plane.owner = owner;
    plane.model = planeModel;
    plane.seats = seats;
    plane.notes = notes;
    return plane;
  }

  public Plane fromPlaneRequest(@NonNull PlaneRequest planeRequest){
    this.owner = planeRequest.getOwner();
    this.model = planeRequest.getModel();
    this.seats = planeRequest.getSeats();
    this.notes = planeRequest.getNotes();
    return this;
  }

}

The interesting point is the @Document annotation. It enables us to configure the name of  the MongoDB collection for our domain. The @Builder annotation creates an implementation of the Builder pattern using the annotated method. The Project Lombok library provides this feature (https://projectlombok.org). Also, the project has some exciting features, such as @Data, which creates getters/setters, equals, and hashCode implementation automatically for the annotated class.

As we can see, there are some domain models in this class. These models do not need explanation here, and the full source code can be found in the GitHub project at https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-planes.



            

            
        
    
        

                            
                    The reactive repository

                
            
            
                
Our Plane class needs a repository to persist the data to a database. We will use a reactive repository for MongoDB provided by the Spring Reactive MongoDB implementation. We will use the ReactiveCrudRepository as it makes our repositories reactive. Our repository should be like this:

package springfive.airline.airlineplanes.repository;

import org.springframework.data.repository.reactive.ReactiveCrudRepository;
import springfive.airline.airlineplanes.domain.Plane;

public interface PlaneRepository extends ReactiveCrudRepository<Plane,String>{
}

The implementation is the same as it was in the previous Spring Data versions, except for the new reactive interface. Now, we can create our service layer in the next section.



            

            
        
    
        

                            
                    Creating the Plane service

                
            
            
                
Our PlaneService will be responsible for creating a kind of glue between the PlaneRepository and PlaneResource; the latter one we will create in the next section. The implementation should be like this:

package springfive.airline.airlineplanes.service;

import lombok.NonNull;
import org.springframework.stereotype.Service;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import springfive.airline.airlineplanes.domain.Plane;
import springfive.airline.airlineplanes.repository.PlaneRepository;
import springfive.airline.airlineplanes.resource.data.PlaneRequest;

@Service
public class PlaneService {

  private final PlaneRepository planeRepository;

  public PlaneService(PlaneRepository planeRepository) {
    this.planeRepository = planeRepository;
  }

  public Flux<Plane> planes(){
    return this.planeRepository.findAll();
  }

  public Mono<Plane> plane(@NonNull String id){
    return this.planeRepository.findById(id);
  }

  public Mono<Void> deletePlane(@NonNull Plane plane){
    return this.planeRepository.delete(plane);
  }

  public Mono<Plane> create(@NonNull PlaneRequest planeRequest){
    final Plane plane = Plane.builder().owner(planeRequest.getOwner())
        .planeModel(planeRequest.getModel()).seats(planeRequest.getSeats())
        .notes(planeRequest.getNotes()).build();
    return this.planeRepository.save(plane);
  }

  public Mono<Plane> update(@NonNull String id,@NonNull PlaneRequest planeRequest){
    return this.planeRepository.findById(id)
        .flatMap(plane -> Mono.just(plane.fromPlaneRequest(planeRequest)))
        .flatMap(this.planeRepository::save);
  }

}

There is nothing special in this class, and the PlaneService will invoke the PlaneRepository to persist the Plane in a database. As we can see, we have used lambdas extensively. Java 8 is a requirement to run Spring Boot 2 applications.

Take a look at how the Builder pattern enables us to write clean code. It is much easier to read this code; we did it using the chaining method provided by Lombok.



            

            
        
    
        

                            
                    The REST layer

                
            
            
                
We will use Spring WebFlux to expose our REST endpoints, and then we need to return Mono or Flux in our methods. The REST implementation should be like this:

package springfive.airline.airlineplanes.resource;

import java.net.URI;
import javax.validation.Valid;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.util.UriComponentsBuilder;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import springfive.airline.airlineplanes.domain.Plane;
import springfive.airline.airlineplanes.resource.data.PlaneRequest;
import springfive.airline.airlineplanes.service.PlaneService;

@RestController
@RequestMapping("/planes")
public class PlaneResource {

  private final PlaneService planeService;

  public PlaneResource(PlaneService planeService) {
    this.planeService = planeService;
  }

  @GetMapping
  public Flux<Plane> planes() {
    return this.planeService.planes();
  }

  @GetMapping("/{id}")
  public Mono<ResponseEntity<Plane>> plane(@PathVariable("id") String id) {
    return this.planeService.plane(id).map(ResponseEntity::ok)
        .defaultIfEmpty(ResponseEntity.notFound().build());
  }

  @PostMapping
  public Mono<ResponseEntity<Void>> newPlane(
      @Valid @RequestBody PlaneRequest planeRequest, UriComponentsBuilder uriBuilder) {
    return this.planeService.create(planeRequest).map(data -> {
      URI location = uriBuilder.path("/planes/{id}")
          .buildAndExpand(data.getId())
          .toUri();
      return ResponseEntity.created(location).build();
    });
  }

  @DeleteMapping("/{id}")
  public Mono<ResponseEntity<Object>> deletePlane(@PathVariable("id") String id) {
    return this.planeService.plane(id).flatMap(data -> this.planeService.deletePlane(data)
        .then(Mono.just(ResponseEntity.noContent().build())))
        .defaultIfEmpty(new ResponseEntity<>(HttpStatus.NOT_FOUND));
  }

  @PutMapping("/{id}")
  public Mono<ResponseEntity<Object>> updatePlane(@PathVariable("id") String id,@Valid @RequestBody PlaneRequest planeRequest) {
    return this.planeService.update(id,planeRequest)
        .then(Mono.just(ResponseEntity.ok().build()));
  }

}

Take a look at the plane method. When planeService.plane(id) returns the empty Mono, the REST endpoint will return notFound like this implementation: ResponseEntity.notFound().build(). It makes the code extremely easy to understand.

On the newPlane method, we will return the location HTTP header with the new entity ID recently created.



            

            
        
    
        

                            
                    Running the plane microservice

                
            
            
                
Before we run the plane microservice, we will create the plane microservice's main class. It will be responsible for starting the application. To do that, we need to include a couple of Spring Annotations. The class implementation can be like this:

package springfive.airline.airlineplanes;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;

@EnableZuulProxy
@EnableEurekaClient
@SpringBootApplication
public class AirlinePlanesApplication {

 public static void main(String[] args) {
  SpringApplication.run(AirlinePlanesApplication.class, args);
 }

}

The Spring Annotations will be connected with the Zuul proxy. Also, we need to connect the application with the Eureka server and configure the application automatically. These behaviors can be done using @EnableZuulProxy, @EnableEurekaClient, and @SpringBootApplication.

Now, we will create a bootstrap.yaml file to instruct the Spring Framework to search the configuration file on the Config Server, created in the previous chapter. The file should be like this:

spring:
  application:
    name: planes
  cloud:
    config:
      uri: http://localhost:5000
      label: master

We have configured the Config Server address; it was a piece of cake.

Now, we need to add the application.yaml file on the GitHub repository, because the Config Server will try to find the file in the repository.

The file can be found on GitHub at https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/flights.yaml.

We can run the application on the IDE or via the command line; it is up to you. Check that the Config Server, Eureka, MongoDB, and RabbitMQ are up and running before trying to run it.

We can use the Docker compose file located on GitHub (https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter07/docker/docker-compose-infra-full.yaml). It contains RabbitMQ, Config Server, Eureka, MongoDB, MySQL, Redis, and Zipkin containers ready to use. If you are using it, run it using the following command: docker-compose -f docker-compose-infra-full.yaml up -d.

Let's check the output. We can check it in different ways: on a console, and on the Eureka server. Let's do it.

Check the console. Let's try to find a line about DiscoveryClient. The planes microservice is trying to connect to the Eureka server:



There is some important information on the log files here. The first line indicates which application is trying to register with the Eureka server. The next four lines are about Sleuth. The Sleuth framework is registering the RabbitMQ queues and channels.

We need to find the following line:

Started AirlinePlanesApplication in 17.153 seconds (JVM running for 18.25)

Also, we can check the Eureka server, and we can see the PLANES application there, like this:



Awesome, our plane microservice is operational.

We can try our microservices using Postman. This application enables us to call our APIs using the intuitive IDE to interact with our microservice. The application permits us to group some HTTP calls into collections. The planes collection can be found on GitHub at https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/planes.postman_collection. 

We have finished our first microservices. In the next section, we will create our flights microservice, which will consume the plane's data.



            

            
        
    
        

                            
                    Flights microservice

                
            
            
                
Our plane's microservices are up and running. It will be important for now because the flight's microservice needs to get the plane's data to create the flight's entities.

We will introduce the Netflix Ribbon, which will act as a client load balancer for our applications, and we will consume the service discovery to look up the service's address from the service registry.



            

            
        
    
        

                            
                    Cloning the Flight microservice project

                
            
            
                
We did this task many times in the previous chapter. We can download the project source code on GitHub at https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/airline-flights. In the next section, we will dive deep into Ribbon and how it can help us on distributed systems.



            

            
        
    
        

                            
                    Netflix Ribbon

                
            
            
                
The Ribbon is an open source project created and maintained by the Netflix company. The project is licensed under Apache 2.0 and can be used for commercial purposes.

The Ribbon provides a client-side software load balancing algorithm for the IPC (Inter-Process Communication). The project supports most popular protocols, such as TCP, UDP, and HTTP in an asynchronous manner.

There are more interesting features, such as service discovery integration, which enables integration in dynamic and elastic environments such as the cloud. For this purpose, we will look at our Eureka server. Both projects are maintained by the Netflix team. It fits well for our use case.

Another interesting feature is fault tolerance. The Ribbon client can find the live servers on the configured list and send the request. Also, the down servers will not receive any request.

The following diagram explains how the Ribbon works:



As we can see, the Ribbon Client can communicate with Eureka and then redirect the request for the desired microservice. In our case, the flights microservice will use the Ribbon client and get the service registry from Eureka and redirect the call to a live planes microservice instance. It sounds like an amazing solution.



            

            
        
    
        

                            
                    Understanding the discovery client

                
            
            
                
Now, we will learn about service discovery and how it works in complex and dynamic environments. The basic idea of service discovery is to maintain the services repository and provide service addresses for the callers.

It requires some complex tasks to achieve this goal. There are two main behaviors to understand:


	The first one is the register. As we know, the service discovery needs to store the services information, such as the address and name, and then during the service bootstrap, it needs to send the information to the service registry. 

	In the the second operation, the service discovery clients need to query the service registry, asking for the desired service name, for instance. Then the service registry will send the service information to the client.



Now we understand the basics, as illustrated in the following diagram:



As you can see in the preceding diagram:


	The first part is the service registration.

	At the second stage, the service client will get the service address from the Eureka server.

	Then the client can call based on the service information. 



Let's do it in the code.



            

            
        
    
        

                            
                    Service discovery and load balancing in practice

                
            
            
                
Now we will write some code to interact with our service discovery and load balance infrastructure. Now we know how it works, it will help us to understand the source code.

We will create a DiscoveryService class which will discover the addresses from a requested service name. The class code should be like this:

package springfive.airline.airlineflights.service;

import org.springframework.cloud.client.discovery.DiscoveryClient;
import org.springframework.cloud.client.loadbalancer.LoadBalancerClient;
import org.springframework.stereotype.Service;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@Service
public class DiscoveryService {

  private final LoadBalancerClient lbClient;

  private final DiscoveryClient dClient;

  public DiscoveryService(LoadBalancerClient lbClient, DiscoveryClient dClient) {
    this.lbClient = lbClient;
    this.dClient = dClient;
  }

  public Flux<String> serviceAddressFor(String service) {
    return Flux.defer(() ->  Flux.just(this.dClient.getInstances(service)).flatMap(srv ->
        Mono.just(this.lbClient.choose(service))
    ).flatMap(serviceInstance ->
        Mono.just(serviceInstance.getUri().toString())
    ));
  }

}

As we can see, we inject two objects: the LoadBalanceClient, which acts as a client load balancer, that is, Netflix Ribbon; and the DiscoveryClient, which will find the instance from a requested service.

We use the lambda Flux.defer() to organize the flow, and then we will look up the service instances from Eureka server. We use this.dClient.getInstances(service) for that. It will return a list of service names after we look up the service URI from the load balancing. This will be done using this.lbClient.choose(service). Then we will return the Flux of service instances addresses.

It is time to see how the client code can use the DiscoveryService object. The client code can be like this:

public Mono<Plane> plane(String id) {
  return discoveryService.serviceAddressFor(this.planesService).next().flatMap(
      address -> this.webClient.mutate().baseUrl(address + "/" + this.planesServiceApiPath + "/" + id).build().get().exchange()
      .flatMap(clientResponse -> clientResponse.bodyToMono(Plane.class)));
}

This code can be found in the PlaneService class on the project. Remember the serviceAddressFor() method returns a Flux of service addresses. We will get the first one, using the next() method. Then we are able to transform the service address to a valid address to reach the plane microservice.

Now, we will test the service connections. We need to do the following tasks:


	Run the Config Server, Eureka, the planes microservice, and the flights microservice

	Create a plane entity on the planes microservice

	Create a flight entity on the flights microservice



Check whether all services listed previously are up and running. Then we will create a plane entity using the following JSON:

{
  "owner" : "Spring Framework Company",
  "model" : {
    "factory" : "Pivotal",
    "model" : "5.0",
    "name" : "Spring 5.0",
    "reference_name" : "S5.0"
  },
  "seats" : [
    {
      "identity" : "1A",
      "row" : "1",
      "right_side" : { "seat_identity" : "2A"},
      "category" : {
        "id" : "A",
        "name": "First Class"
      }
    },
    {
      "identity" : "2A",
      "row" : "1",
      "left_side" : { "seat_identity" : "1A"},
      "category" : {
        "id" : "A",
        "name": "First Class"
      }
    },
    {
      "identity" : "3A",
      "row" : "1",
      "left_side" :{ "seat_identity" : "2A"},
      "category" : {
        "id" : "A",
        "name": "First Class"
      }
    }
    ],
  "notes": "The best company airplane"
}

We need to call the planes microservice in http://localhost:50001/planes using the HTTP POST method. We can find the request to create planes in the Planes Collection on Postman. When we have called the create plane API, we will get a new plane ID. It can be found in the HTTP response headers, as shown in the following image, on Postman:

Postman is a tool that helps developers to test APIs. Postman provides a friendly GUI ( Graphic User Interface ) to make requests. Also, the tool supports environments and it can be helpful to test different environments, such as development, test, and production.



Take a look at the location HTTP response header. The HTTP status code is important as well. We will use the plane ID 5a6a6c636798a63817bed8b4, created just now, to create a new flight.

We can find the list of HTTP status code at W3 Org (https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html). Keep this in mind, as it is very important to follow the correct status code. It is considered a best practice when we are creating REST APIs.

The Flight Collection can be found on GitHub at https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection. There is a Create Flight request we want to execute, but before that, we need to change our plane ID created previously. Take a look at the following screenshot:



The plane ID has changed to that of our plane previously created. Now we can execute the request. The flights microservices has the same behavior as a planes microservice. It will return the location response with the new flight ID. In my case, the new ID generated is like the following image:



Now, we can find the flight by ID. The request can be found at Flight Collection; the name is Flight by Id. We can execute this request, and the result should be like this:



Take a look at the plane JSON node. We don't have any data about a plane in the flight microservice. This information came in from the planes microservice. We have used service discovery and client load balancing. Well done!

Let's take a look at the debug provided by the IDE. We want to see the plane service address:




On the Variables panel, we can see the address variable. The value came in from service discovery and client load balancing. It is the Service IP or Domain Name. Now we are able to call the requested service transforming the URL.

Awesome, our infrastructure works very well, now we are able to find services using the infrastructure, but there is something important to pay attention to. We will discover it in the next section.





            

            
        
    
        

                            
                    When the services fail, hello Hystrix

                
            
            
                
Sometimes the infrastructure can fail, especially the network. It can cause some problems in microservices architecture because in general there are many connections between services. It means at runtime that the microservices depend on other microservices. Normally these connections are done using the REST APIs through the HTTP protocol.

It can cause a behavior called cascade failure; that is, when one part of the microservices system fails, it can trigger the other microservices failure, because of the dependencies. Let's illustrate this:



If Service Y fails, Service A and Service M potentially can fail as well.

We have a pattern to help us when this happens: the Circuit Breaker.



            

            
        
    
        

                            
                    Hystrix in a nutshell

                
            
            
                
Hystrix is a library that helps developers to manage interactions between services. The project is open source, maintained by the community, and is under the Netflix GitHub.

The Circuit Breaker pattern is a pattern that helps to control the system integrations. The idea is quite simple: we will wrap the remote call in a function or object, and we will monitor these calls to keep track of the failures. If the calls reach the limit, the circuit will open. The behavior is like that of an electrical circuit breaker, and the idea is the same—protect something to avoid breaking the electrical system:



Hystrix implements the Circuit Breaker pattern and has some interesting behaviors, such as fallback options. Hystrix provides resilience for our applications. We are able to provide a fallback, stop cascading failures, and give the operational control.

The library provides high-level configurations and it can be configured through an annotation if we are using Spring Cloud Hystrix.

The Circuit Breaker pattern was described by Martin Fowler. You can find more information about it on Martin Fowler's Page at https://martinfowler.com/bliki/CircuitBreaker.html



            

            
        
    
        

                            
                    Spring Cloud Hystrix

                
            
            
                
As we expected, Spring Boot integrates with Netflix Hystrix. The integration can be done using a couple of annotations and by configuring the annotations with Hystrix properties. We will protect the planes microservice interactions we are coding in the flight service. We now have a method that tries to get the plane's data.

Let's take a look at that method:

@HystrixCommand(commandKey = "plane-by-id",groupKey = "airline-flights",fallbackMethod = "fallback",commandProperties = {
      @HystrixProperty(name="circuitBreaker.requestVolumeThreshold",value="10"),
      @HystrixProperty(name = "circuitBreaker.errorThresholdPercentage", value = "10"),
      @HystrixProperty(name="circuitBreaker.sleepWindowInMilliseconds",value="10000"),
      @HystrixProperty(name = "execution.isolation.thread.timeoutInMilliseconds", value = "800"),
      @HystrixProperty(name = "metrics.rollingStats.timeInMilliseconds", value = "10000")
  })
public Mono<Plane> plane(String id) {
  return discoveryService.serviceAddressFor(this.planesService).next().flatMap(
      address -> this.webClient.mutate().baseUrl(address + "/" + this.planesServiceApiPath + "/" + id).build().get().exchange()
      .flatMap(clientResponse -> clientResponse.bodyToMono(Plane.class)));
}

There are some configurations for this command. The first configuration is commandKey. The basic idea here is to create a name for the command. It will be useful for panel control. The second one, groupKey, is the command used to group the commands. It also helps in grouping commands data together on dashboards. There is the concept of a rolling window. The idea is to group the request in a gap of time; it is used to enable metrics and statistics. 

circuitBreaker.requestVolumeThreshold configures the number of requests in a rolling window that will trip at the circuit. For example, if we have a rolling window configured to be open for 10 seconds, if we have nine requests in a gap of 10 seconds, the circuit will not open because we have configured it to 10 in our command. Another configuration is circuitBreaker.sleepWindowInMilliseconds, where the basic idea is to give an amount of time, after tripping the circuit, to reject requests before trying again to allow attempts.

The last one is execution.isolation.thread.timeoutInMilliseconds. This property configures the timeout for the command. It means that if the time configured is reached, the circuit breaker system will perform a fallback logic and mark the command as a timeout.

The Hystrix library is highly customizable, and there are a lot of properties to use. The full documentation can be found at https://github.com/Netflix/Hystrix/wiki/configuration. We can use these properties for different use cases.



            

            
        
    
        

                            
                    Spring Boot Admin

                
            
            
                
The Spring Boot Admin project is a tool that helps developers in production environments. The tool shows Spring Boot application metrics in an organized dashboard, and it makes it extremely easy to see application metrics and much more information.

The tool uses the data from the Spring Boot Actuator as an information source. The project is open source and has a lot of contributors and is an active project in the community as well.



            

            
        
    
        

                            
                    Running Spring Boot Admin

                
            
            
                
It is a piece of cake to set up the application. We will need a new Spring Boot application, and to connect this new application with our service discovery implementation. Let's do it right now.

We can find the code on GitHub at https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter08/admin. If you want to create a new application, go ahead; the process is similar to what we did in the previous chapters.

The project is a Spring Boot regular application, with two new dependencies:

<dependency>
  <groupId>de.codecentric</groupId>
  <artifactId>spring-boot-admin-server</artifactId>
  <version>1.5.6</version>v
</dependency>

<dependency>
  <groupId>de.codecentric</groupId>
  <artifactId>spring-boot-admin-server-ui</artifactId>
  <version>1.5.6</version>
</dependency>

These dependencies are about admin-server and admin-server-ui. The project does not support Spring Boot 2 yet, but this is not a problem as we do not need reactive stuff for this; it is a monitoring tool.

We have configured our mandatory dependencies. We will need a service discovery because we have one in our infrastructure. We need it to provide the service discovery feature, and minimize the configurations for our Spring Boot Admin application. Let's add the Eureka client dependency:

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

Awesome, our dependencies are configured properly. Then we can create our main class. The main class should be like this:

package springfive.airline.admin;

import de.codecentric.boot.admin.config.EnableAdminServer;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;

@EnableAdminServer
@EnableEurekaClient
@SpringBootApplication
public class AdminApplication {

  public static void main(String[] args) {
    SpringApplication.run(AdminApplication.class, args);
  }

}

The main difference here is that @EnableAdminServer will configure the Spring Boot Admin application and set up the server for us. As we expected, we will use the Config Server application to store our application.yaml. In order to achieve this, we need to create our bootstrap.yaml, which should be like this:

spring:
  application:
    name: admin
  cloud:
    config:
      uri: http://localhost:5000
      label: master

No difference at all,  bootstrap.yaml is configured to look up the configuration file from the Config Server.

Time to create our application.yaml file, to which we need to add some configuration to set the new health check URL, since the actuator on Spring Boot 2 was moved, prefixed by actuator. Our new health check URL should be /actuator/health.

Our configuration file should be like this:

server:
  port: 50015

eureka:
  client:
    serviceUrl:
      defaultZone: http://localhost:8761/eureka/
spring:
  boot:
    admin:
      discovery:
        converter:
          health-endpoint-path: /actuator/health

We have configured the Eureka server address and set the health check URL.

Now we can run our main class called AdminApplication. We can use the Java command line or IDE; there is no difference at all.

Run it!

We should see the following line at the log file:



Awesome, our application is ready to use. Now we can go to the main page. Go to http://localhost:50015/#/ (main page), then we can see the following page:



Look how it is easier to see any outage or strange behaviors in our microservices. Remember the key point in microservices architecture is monitoring. It is really necessary in order to have a good environment.



            

            
        
    
        

                            
                    Spring Cloud Zuul

                
            
            
                
The Spring Cloud Gateway is the natural choice when we adopt the microservices architecture, but nowadays the Spring Cloud Gateway does not have support enabled for service discovery features, such as the Eureka server. It means we will have to configure it route by route. This does not sound good.

We have the Zuul proxy as a gateway for our microservices environment, but keep in mind the Spring Cloud Gateway is the best choice when the project has support for service discovery.

Let's create the Zuul proxy project.



            

            
        
    
        

                            
                    Understanding the EDGE service project

                
            
            
                
The EDGE service is a service that provides dynamic routing, monitoring, resiliency, and security. The basic idea here is to create a reverse proxy for our microservices. 

This service will act as a proxy for our microservices and will be exposed as a central access point. The Spring Cloud Zuul integrates with the Eureka server. It will increase our resiliency because we will use the service discovery feature provided by the Eureka server.

The following image demonstrates how we will use the Edge Service in our architecture:



As we can see, the Zuul Server will connect to the service discovery server, to get the list of available services. After that the Zuul service will redirect to the requested service. 

Look at the diagram. There is no interaction with the clients, that is, Mobile and Browser, and our microservices.

Spring Cloud Zuul also supports interesting features, such as:


	pre: This can be used to set some data inRequestContext; it is executed before the request is routed

	route: This handles the request routing

	post: This filters which one acts after the request is routed

	error: When some errors happen, we can use the error feature to handle the request



We will not use these features, but keep in mind that they can be very useful. Remember, our Zuul server is our gateway to the internet.



            

            
        
    
        

                            
                    Creating the EDGE server

                
            
            
                
We will use the Zuul server to act as an API gateway for our applications. Now it's time to create our project. As there is no relevant difference involved in creating this project, we will take a look at specific Zuul parts.

The dependency required is:

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-netflix-zuul</artifactId>
</dependency>

It will configure for us the Zuul server dependencies.

Now we can add the project's main class. The class should be like this:

package springfive.airline.edge;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;
import org.springframework.stereotype.Controller;

@Controller
@EnableZuulProxy
@EnableEurekaClient
@SpringBootApplication
public class EdgeServerApplication {

  public static void main(String[] args) {
    SpringApplication.run(EdgeServerApplication.class, args);
  }

}

The new thing here is @EnableZuulProxy. It will set up a Zuul server endpoint and configure reverse proxy filters. Then we will be able to forward a request to microservices applications. Zuul integrates with the Eureka server, so we do not need to configure it manually. The auto-configuration will find the services at the time of the discovery client implementation.

We can run the application via the command line or IDE, it is up to you.

Then we can see the routes configured. Go to http://localhost:8888/routes and we will able to see the routes:



We have some routes configured. We did this using the application.yaml file. The file should be like this:

zuul:
  routes:
    planes:
      path: /api/v1/planes/**
      serviceId: planes
    flights:
      path: /api/v1/flights/**
      serviceId: flights
    fares:
      path: /api/v1/fares/**
      serviceId: fares
    passengers:
      path: /api/v1/passengers/**
      serviceId: passengers

Let's understand this configuration. We have created a node called planes. This node configures a path (that is the URI) and configures the service name, by serviceId, registered in the Eureka server.

Let's do a simple test. We will:


	Configure the new URL path for the planes service

	Test the request using the Zuul server



Open the PlaneResource class located in the planes microservice project.

The RequestMapping is configured like this:

@RequestMapping("/planes")

Change it to something like this:

@RequestMapping("/")

Remember we can use the Zuul server as a router, so we do not need this information anymore. With the URI path on the source code, we are able to use the configuration file.

Run the planes microservice again. The following services need to be running:


	Config Server

	Eureka server

	Planes microservice

	API Edge



Then we can call the planes microservices using the Zuul proxy. Let's do it using cURL:

curl http://localhost:8888/api/v1/planes

Let's understand this a little bit. The port 8888 points to the Zuul Server, and we have configured it in application.yaml. When the path is /api/v1/planes/**, the Zuul Server will redirect to the planes microservices. The basic flow is:



The request is coming to the Zuul Server, and then the Zuul Server will redirect it to the requested microservice. The result should be like this; in my case, I have some planes in the database:



Awesome, our API Gateway is fully operational. We will use it for all services in the same port, and only the URI will be changed to point to the desired serviceId.

We can configure the port like in other Spring Boot applications. We chose the 8888 port in this case.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we have learned about some important microservice patterns and how they can help us to deliver a fault-tolerant, resilient, and error-prone application.

We have practiced how to use the service discovery feature provided by the Spring Framework and how it works at the application runtime, and we made some debug tasks to help us to understand how it works under the hood.

The Hystrix project, hosted by Netflix, can increase our application's resilience and fault tolerance. When working with remote calls, in this section, we made some Hystrix commands and understood how Hystrix is a useful implementation of the Circuit Breaker pattern.

At the end of the chapter, we are able to understand the microservices drawbacks and how to solve the common problems in a distributed environment.

Now we know how to solve the common problems of microservices architectural style using the Spring Framework.

In the next chapter, we will finish our Airline Ticket System, using the configured tools to monitoring the microservices' health and look at how it helps developers during the operation time when the microservices are running in the production stage.

See you there.

 



            

            
        
    
        

                            
                    Putting It All Together

                
            
            
                
There are some challenges to face when we adopt the microservices architectural style. The first one handles operational complexity; services such as service discovery and load balancer help us to tackle these points. We solved these challenges in the previous chapters and got to know some important tools while doing so.

There are some other important key points to handle in microservices adoption. The effective way to monitor what happens in our microservices environments is to monitor how many times microservices consume other microservices resources, such as HTTP APIs, and how many times they fail. If we have near real-time statistics, it can save the developer days of troubleshooting and error investigations.

In this chapter, we will create some services which help us monitor the Hystrix commands and aggregate the command's statistics in a distributed environment.

Security is an important characteristic in microservices architecture, especially because of the distributed characteristic adopted by the microservices architecture. There are a lot of microservices in our architecture; we cannot share state between services, so the stateless security fits well for our environment.

The OAuth 2.0 protocol specification has this important characteristic: the stateless implementation. Spring Cloud Security provides support for OAuth 2.0.

Finally, we will Dockerize our microservices to use the images in Docker compose files.

In this chapter, we will learn about:


	Implementing the Turbine server to aggregate Hystrix streams

	Configuring the Hystrix Dashboard to use Turbine and input data

	Creating a mail service that will integrate an email API

	Understanding Spring Cloud Security

	Dockerizing our microservices





            

            
        
    
        

                            
                    The airline Bookings microservice

                
            
            
                
The airline Bookings microservice is a standard Spring Boot Application. There are some interactions with other services, such as the flights microservice.

These interactions were created using Hystrix to bring some desired behaviors, such as fault-tolerance and resilience, to the airline Bookings microservice.

There are some business rules on this service, they are is not important to the learning context now, so we will skip the project creation and execution sections.

The full source code can be found at GitHub (https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-booking); let's check it out and take a look at some code.



            

            
        
    
        

                            
                    The airline Payments microservice

                
            
            
                
The Airline Payments is a microservice that gives payments confirmation for our Airline Ticket System. For learning purposes, we will jump this project because there are some business rules, nothing important in the Spring Framework context.

We can find the full source code on GitHub (https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/airline-payments).



            

            
        
    
        

                            
                    Learning about the Turbine server

                
            
            
                
There are some integrations in our microservices group; the Bookings microservice calls the Fares microservice and the Passengers microservice, these integrations are done using Hystrix to make it more resilient and fault tolerant.

However, in the microservices world, there are several instances of service. This will require us to aggregate the Hystrix command metrics by instance. Managing the instances panel by panel is not a good idea. The Turbine server helps developers in this context.

By default, Turbine pulls metrics from servers run by Hystrix, but it is not recommended for cloud environments because it can consume high values of network bandwidth and it will increase the traffic costs. We will use Spring Cloud Stream RabbitMQ to push metrics to Turbine via the Advanced Message Queuing Protocol (AMQP). Due to this, we will need to configure the RabbitMQ connections and put two more dependencies in our microservices, the dependencies are:

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-netflix-hystrix-stream</artifactId>
</dependency>

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

These dependencies will enable the metrics to be sent to the Turbine server via the AMQP protocol.

The Turbine stream, by default, uses the port 8989 . We will configure it to run at 8010, and we can use the turbine.stream.port property in the application.yaml to customize it.

The Turbine stream will be a Hystrix Dashboard data input to show the commands metrics.

The full source code can be found on GitHub (https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/turbine).

There are many configurations to customize the Turbine server. They make the server extremely adaptable for different use cases.

We can find the Turbine documentation in the Spring Cloud Turbine section (https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_turbine). There is a great deal of information, especially if you need to customize some configurations.



            

            
        
    
        

                            
                    Creating the Turbine server microservice

                
            
            
                
Let's create our Turbine server. We will create a standard Spring Boot Application with a couple of annotations to enable Turbine stream and discovery client, as well.

The main class should be:

package springfive.airline.turbine;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.turbine.stream.EnableTurbineStream;

@EnableEurekaClient
@EnableTurbineStream
@SpringBootApplication
public class AirlineTurbineApplication {

 public static void main(String[] args) {
    SpringApplication.run(AirlineTurbineApplication.class, args);
 }

}

As we can see, @EnableTurbineStream will enable us to push Hystrix commands metrics via the RabbitMQ message broker, which is enough for us.

The Turbine server application.yaml file can be found on GitHub (https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/config-files/turbine.yaml). There are a couple of configurations, such as discovery client and Turbine server configuration.

We can run the application, via the command line or IDE. Run it!

Make some calls to the flights microservice. The Create Flight API will call the planes microservice, which uses the Hystrix command, and will trigger some Hystrix command calls.

We can use the Postman Collection located at GitHub (https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/postman/flights.postman_collection). This collection has a Create Flight request, which will call the planes microservices to get plane details. It is enough to collect metrics.

Now, we can test whether our Turbine server is running correctly. Go to the Turbine stream endpoint and then the JSON data with metrics should be displayed like this:



There are some Hystrix commands information, but as we can see, this information needs to be organized to make it useful for us. Turbine uses the Server-Sent Events (SSE) technology, which was introduced in Chapter 6, Playing with Server-Sent Events.

In the next section, we will introduce the Hystrix Dashboard. It will help us to organize and make this information useful for us.

Let's jump to the next section.



            

            
        
    
        

                            
                    Hystrix Dashboard

                
            
            
                
The Hystrix Dashboard will help us to organize the Turbine stream information. As we saw in the previous section, the Turbine server sends information via SSE. It is done using JSON objects.

The Hystrix stream provides a dashboard for us. Let's create our Hystrix Dashboard microservice. The application is a standard Spring Boot Application annotated with @EnableHystrixDashboard. Let's add the dependency to enable it:

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-netflix-hystrix-dashboard</artifactId>
</dependency>

Good, now we can create the main class for our application. The main class should look like this:

package springfive.airline.hystrix.ui;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.hystrix.dashboard.EnableHystrixDashboard;

@EnableEurekaClient
@SpringBootApplication
@EnableHystrixDashboard
public class HystrixApplication {

  public static void main(String[] args) {
    SpringApplication.run(HystrixApplication.class, args);
  }

}

The full source code can be found at GitHub: https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/hystrix-ui.

As we can see, this is a pretty standard Spring Boot Application annotated with @EnableHystrixDashboard. It will provide the Hystrix Dashboard for us.

Now, we can run the application via IDE or the Java command line. Run it!

The Hystrix Dashboard can be accessed using the following URL : http://localhost:50010/hystrix.

Then, go to the Hystrix Dashboard main page. The following page should be displayed:



Awesome – our Hystrix Dashboard is up and running. On this page, we can point to hystrix.stream or turbine.stream to consume and show the commands' metrics.

Keep this application running, we will use it later in this chapter.

Awesome job, guys, let's move to the next section.



            

            
        
    
        

                            
                    Creating the Mail microservice

                
            
            
                
Now, we will create our Mail microservice. The name is self-explanatory, this component will be responsible for sending emails. We will not configure an SMTP (Simple Mail Transfer Protocol) server, we will use SendGrid.

SendGrid is an SaaS (Software as a Service) service for emails, we will use this service to send emails to our Airline Ticket System. There are some triggers to send email, for example, when the user creates a booking and when the payment is accepted.

Our Mail microservice will listen to a queue. Then the integration will be done using the message broker. We choose this strategy because we do not need the feature that enables us to answer synchronously. Another essential characteristic is the retry policy when the communication is broken. This behavior can be done easily using the message strategy.

We are using RabbitMQ as a message broker. For this project, we will use RabbitMQ Reactor, which is a reactive implementation of RabbitMQ Java client.



            

            
        
    
        

                            
                    Creating the SendGrid account

                
            
            
                
Before we start to code, we need to create a SendGrid account. We will use the trial account which is enough for our tests. Go to the SendGrid portal (https://sendgrid.com/) and click on the Try for Free button.

Fill in the required information and click on the Create Account button.

In the main page, on the left side, click on Settings, then go to the API Key section, follow the image shown here:



Then, we can click on the Create API Key button at the top-right corner. The page should look like this:



Fillin the API Key information and choose Full Access. After that the API Key will appear on your screen. Take a note of it in a safe place, as we will use it as an environment variable soon.

Goob job, our SendGrid account is ready to use, now we can code our Mail microservice.

Let's do it in the next section.



            

            
        
    
        

                            
                    Creating the Mail microservice project

                
            
            
                
As we did in Chapter 8, Circuit Breakers and Security, we will take a look at essential project parts. We will be using Spring Initializr, as we have several times in the previous chapters.

The full source code can be found at GitHub (https://github.com/PacktPublishing/Spring-5.0-By-Example/tree/master/Chapter09/mail-service).



            

            
        
    
        

                            
                    Adding RabbitMQ dependencies

                
            
            
                
Let's add the RabbitMQ required dependencies. The following dependencies should be added:

<dependency>
  <groupId>io.projectreactor.rabbitmq</groupId>
  <artifactId>reactor-rabbitmq</artifactId>
  <version>1.0.0.M1</version>
</dependency>

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

The first one is about the reactive implementation for RabbitMQ and the second one is the starter AMQP, which will set up some configurations automatically.



            

            
        
    
        

                            
                    Configuring some RabbitMQ stuff

                
            
            
                
We want to configure some RabbitMQ exchanges, queues, and bindings. It can be done using the RabbitMQ client library. We will configure our required infrastructure for the Mail microservice.

Our configuration class should look like this:

package springfive.airline.mailservice.infra.rabbitmq;

// imports are omitted

@Configuration
public class RabbitMQConfiguration {

  private final String pass;

  private final String user;

  private final String host;

  private final Integer port;

  private final String mailQueue;

  public RabbitMQConfiguration(@Value("${spring.rabbitmq.password}") String pass,
      @Value("${spring.rabbitmq.username}") String user,
      @Value("${spring.rabbitmq.host}") String host,
      @Value("${spring.rabbitmq.port}") Integer port,
      @Value("${mail.queue}") String mailQueue) {
    this.pass = pass;
    this.user = user;
    this.host = host;
    this.port = port;
    this.mailQueue = mailQueue;
  }

  @Bean("springConnectionFactory")
  public ConnectionFactory connectionFactory() {
    CachingConnectionFactory factory = new CachingConnectionFactory();
    factory.setUsername(this.user);
    factory.setPassword(this.pass);
    factory.setHost(this.host);
    factory.setPort(this.port);
    return factory;
  }

  @Bean
  public AmqpAdmin amqpAdmin(@Qualifier("springConnectionFactory") ConnectionFactory connectionFactory) {
    return new RabbitAdmin(connectionFactory);
  }

  @Bean
  public TopicExchange emailExchange() {
    return new TopicExchange("email", true, false);
  }

  @Bean
  public Queue mailQueue() {
    return new Queue(this.mailQueue, true, false, false);
  }

  @Bean
  public Binding mailExchangeBinding(Queue mailQueue) {
    return BindingBuilder.bind(mailQueue).to(emailExchange()).with("*");
  }

  @Bean
  public Receiver receiver() {
    val options = new ReceiverOptions();
    com.rabbitmq.client.ConnectionFactory connectionFactory = new com.rabbitmq.client.ConnectionFactory();
    connectionFactory.setUsername(this.user);
    connectionFactory.setPassword(this.pass);
    connectionFactory.setPort(this.port);
    connectionFactory.setHost(this.host);
    options.connectionFactory(connectionFactory);
    return ReactorRabbitMq.createReceiver(options);
  }

}

There is interesting stuff here, but all of it is about infrastructure in RabbitMQ. It is important because when our application is in bootstrapping time, it means our application is preparing to run. This code will be executed and create the necessary queues, exchanges, and bindings. Some configurations are provided by the application.yaml file, look at the constructor.



            

            
        
    
        

                            
                    Modeling a Mail message

                
            
            
                
Our Mail service is abstract and can be used for different purposes, so we will create a simple class to represent a mail message in our system. Our Mail class should look like this:

package springfive.airline.mailservice.domain;

import lombok.Data;

@Data
public class Mail {

  String from;

  String to;

  String subject;

  String message;

}

Easy, this class represents an abstract message on our system.



            

            
        
    
        

                            
                    The MailSender class

                
            
            
                
As we can expect, we will integrate with the SendGrid services through the REST APIs. In our case, we will use the reactive WebClient provided by Spring WebFlux.

Now, we will use the SendGrid API Key created in the previous section. Our MailSender class should look like this:

package springfive.airline.mailservice.domain.service;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.http.HttpStatus;
import org.springframework.http.ReactiveHttpOutputMessage;
import org.springframework.stereotype.Service;
import org.springframework.web.reactive.function.BodyInserter;
import org.springframework.web.reactive.function.BodyInserters;
import org.springframework.web.reactive.function.client.WebClient;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import springfive.airline.mailservice.domain.Mail;
import springfive.airline.mailservice.domain.service.data.SendgridMail;

@Service
public class MailSender {

  private final String apiKey;

  private final String url;

  private final WebClient webClient;

  public MailSender(@Value("${sendgrid.apikey}") String apiKey,
      @Value("${sendgrid.url}") String url,
      WebClient webClient) {
    this.apiKey = apiKey;
    this.webClient = webClient;
    this.url = url;
  }

  public Flux<Void> send(Mail mail){
    final BodyInserter<SendgridMail, ReactiveHttpOutputMessage> body = BodyInserters
      .fromObject(SendgridMail.builder().content(mail.getMessage()).from(mail.getFrom()).to(mail.getTo()).subject(mail.getSubject()).build());
    return this.webClient.mutate().baseUrl(this.url).build().post()
        .uri("/v3/mail/send")
        .body(body)
        .header("Authorization","Bearer " + this.apiKey)
        .header("Content-Type","application/json")
        .retrieve()
        .onStatus(HttpStatus::is4xxClientError, clientResponse ->
            Mono.error(new RuntimeException("Error on send email"))
        ).bodyToFlux(Void.class);
  }

}

We received the configurations in the constructor, that is, the sendgrid.apikey and sendgrid.url. They will be configured soon. In the send() method, there are some interesting constructions. Look at BodyInserters.fromObject(): it allows us to send a JSON object in the HTTP body. In our case, we will create a SendGrid mail object.

In the onStatus() function, we can pass a predicate to handle the HTTP errors family. In our case, we are interested in the 4xx error family.

This class will process sending the mail messages, but it is necessary to listen to the RabbbitMQ queue, which we will do in the next section.



            

            
        
    
        

                            
                    Creating the RabbitMQ queue listener

                
            
            
                
Let's create our MailQueueConsumer class, which will listen to the RabbitMQ queue. The class should look like this:

package springfive.airline.mailservice.domain.service;

import com.fasterxml.jackson.databind.ObjectMapper;
import java.io.IOException;
import javax.annotation.PostConstruct;
import lombok.extern.slf4j.Slf4j;
import lombok.val;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import reactor.rabbitmq.Receiver;
import springfive.airline.mailservice.domain.Mail;

@Service
@Slf4j
public class MailQueueConsumer {

  private final MailSender mailSender;

  private final String mailQueue;

  private final Receiver receiver;

  private final ObjectMapper mapper;

  public MailQueueConsumer(MailSender mailSender, @Value("${mail.queue}") String mailQueue,
      Receiver receiver, ObjectMapper mapper) {
    this.mailSender = mailSender;
    this.mailQueue = mailQueue;
    this.receiver = receiver;
    this.mapper = mapper;
  }

  @PostConstruct
  public void startConsume() {
    this.receiver.consumeAutoAck(this.mailQueue).subscribe(message -> {
      try {
        val mail = this.mapper.readValue(new String(message.getBody()), Mail.class);
        this.mailSender.send(mail).subscribe(data ->{
          log.info("Mail sent successfully");
        });
      } catch (IOException e) {
        throw new RuntimeException("error on deserialize object");
      }
    });
  }

}

The method annotated with @PostConstruct will be invoked after MailQueueConsumer is ready, which will mean that the injections are processed. Then Receiver will start to process the messages.



            

            
        
    
        

                            
                    Running the Mail microservice

                
            
            
                
Now, we will run our Mail microservice. Find the MailServiceApplication class, the main class of our project. The main class should look like this:

package springfive.airline.mailservice;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.hystrix.EnableHystrix;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;

@EnableHystrix
@EnableZuulProxy
@EnableEurekaClient
@SpringBootApplication
public class MailServiceApplication {

  public static void main(String[] args) {
    SpringApplication.run(MailServiceApplication.class, args);
  }

}

It is a standard Spring Boot Application.

We can run the application in IDE or via the Java command line.

Run it!

We need to pass ${SENDGRID_APIKEY} and ${SENDGRID_URL} as environment variables. If you are running the application with the Java command line, the -D option allows us to pass environment variables. If you are using the IDE, you can configure in the Run/Debug Configurations.



            

            
        
    
        

                            
                    Creating the Authentication microservice

                
            
            
                
We want to secure our microservices. Security is essential for microservices applications, especially because of the distributed characteristics.

On the microservices architectural style, usually, there is a service that will act as an authentication service. It means this service will authenticate the requests in our microservices group.

Spring Cloud Security provides a declarative model to help developers enable security on applications. There is support for commons patterns such as OAuth 2.0. Also, Spring Boot Security enables Single Sign-On (SSO).

Spring Boot Security also supports relay SSO tokens integrating with Zuul proxy. It means the tokens will be passed to downstream microservices.

For our architecture, we will use the OAuth 2.0 and JWT patterns, both integrate with Zuul proxy.

Before we do so, let's understand the main entities in OAuth 2.0 flow:


	Protected resource: This service will apply security rules; the microservices applications, in our case

	OAuth authorization server: The authentication server is a service between the application, which can be a frontend or a mobile, and a service that applications want to call

	Application: The application that will call the service, the client.

	Resource Owner: The user or machine that will authorize the client application to access their account



Let's draw the basic OAuth flow:



We can observe the following in this diagram:


	The Client requests the authorization

	The Resource Owner sends the authorization grant

	The application client requests the access token from the Authorization Server

	If the authorization grant is valid, the Authorization Server will provide the access token

	The application calls the protected resource and sends the access token

	If the Resource Server recognizes the token, the resource will serve for the application



These are the basics of the OAuth 2.0 authorization flow. We will implement this flow using Spring Cloud Security. Let's do it.



            

            
        
    
        

                            
                    Creating the Auth microservice

                
            
            
                
As we have been doing in this chapter, we will take a look at the important parts. Let's start with our dependencies. We need to put in the following dependencies:

  <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-oauth2</artifactId>
</dependency>

  <dependency>
    <groupId>org.springframework.security</groupId>
    <artifactId>spring-security-core</artifactId>
  </dependency>

  <dependency>
    <groupId>org.springframework.security</groupId>
    <artifactId>spring-security-config</artifactId>
  </dependency>

These dependencies will enable us to use the Spring Cloud Security features. Let's start to code our Authentication microservice.



            

            
        
    
        

                            
                    Configuring the security

                
            
            
                
Let's start coding our Auth microservice. We will start with the authorization and authentication, as we want to protect all resources in our microservices, then we will configure WebSecurityConfigureAdapter. The class should look like this:

package springfive.airline.authservice.infra.security;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.authentication.builders.AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.method.configuration.EnableGlobalMethodSecurity;
import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import org.springframework.security.config.annotation.web.configuration.EnableWebSecurity;
import org.springframework.security.config.annotation.web.configuration.WebSecurityConfigurerAdapter;
import org.springframework.security.crypto.password.PasswordEncoder;
import springfive.airline.authservice.service.CredentialsDetailsService;

@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {

  private final PasswordEncoder passwordEncoder;

  private final CredentialsDetailsService credentialUserDetails;

  public SecurityConfig(PasswordEncoder passwordEncoder,
      CredentialsDetailsService credentialUserDetails) {
    this.passwordEncoder = passwordEncoder;
    this.credentialUserDetails = credentialUserDetails;
  }

  @Override
  @Autowired
  protected void configure(AuthenticationManagerBuilder auth) throws Exception {
    auth.userDetailsService(this.credentialUserDetails).passwordEncoder(this.passwordEncoder);
  }

  @Override
  protected void configure(HttpSecurity http) throws Exception {
    http.csrf().disable()
        .authorizeRequests()
        .antMatchers("/login", "/**/register/**").permitAll()
        .anyRequest().authenticated()
        .and()
        .formLogin().permitAll();
  }

}

There is a lot of stuff here. Let's start with the @EnableWebSecurity, this annotation enables Spring Security integrations with Spring MVC. @EnableGlobalMethodSecurity provides AOP interceptors to enable methods security using the annotations. We can use this feature by annotating the methods on a controller, for instance. The basic idea is to wrap the methods call in AOP interceptors and apply security on the methods.

WebSecurityConfigurerAdapter enables us to configure the secure endpoints and some stuff about how to authenticate users, which can be done using the configure(AuthenticationManagerBuilder auth) method. We have configured our CredentialsDetailsService and our PasswordEncoder to avoid plane password between application layers. In this case, CredentialsDetailsService is the source of our user's data.

In our method, configure(HttpSecurity http), we have configured some HTTP security rules. As we can see, all users can access /login and /**/register/**. It's about Sign In and Sign Up features. All other requests need to be authenticated by the Authorization server.

The CredentialsDetailsService should look like this:

package springfive.airline.authservice.service;

import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.core.userdetails.UsernameNotFoundException;
import org.springframework.stereotype.Component;
import springfive.airline.authservice.domain.Credential;
import springfive.airline.authservice.domain.data.CredentialData;
import springfive.airline.authservice.repository.CredentialRepository;

@Component
public class CredentialsDetailsService implements UserDetailsService {

  private final CredentialRepository credentialRepository;

  public CredentialsDetailsService(CredentialRepository credentialRepository) {
    this.credentialRepository = credentialRepository;
  }

  @Override
  public CredentialData loadUserByUsername(String email) throws UsernameNotFoundException {
    final Credential credential = this.credentialRepository.findByEmail(email);
    return CredentialData.builder().email(credential.getEmail()).password(credential.getPassword()).scopes(credential.getScopes()).build();
  }

}

There is nothing special here. We need to override the loadUserByUsername(String email) method to provide the user data to Spring Security.

Let's configure our token signer and our token store. We will provide these beans using the @Configuration class, as we did in the previous chapters:

package springfive.airline.authservice.infra.oauth;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;
import org.springframework.security.oauth2.provider.token.store.JwtAccessTokenConverter;
import org.springframework.security.oauth2.provider.token.store.JwtTokenStore;

@Configuration
public class OAuthTokenProducer {

    @Value("${config.oauth2.privateKey}")
    private String privateKey;

    @Value("${config.oauth2.publicKey}")
    private String publicKey;

    @Bean
    public JwtTokenStore tokenStore(JwtAccessTokenConverter tokenEnhancer) {
        return new JwtTokenStore(tokenEnhancer);
    }

    @Bean
    public PasswordEncoder passwordEncoder() {
        return new BCryptPasswordEncoder();
    }

    @Bean
    public JwtAccessTokenConverter tokenEnhancer() {
        JwtAccessTokenConverter converter = new JwtAccessTokenConverter();
        converter.setSigningKey(privateKey);
        converter.setVerifierKey(publicKey);
        return converter;
    }

}

We have configured our private and public keys in the application.yaml file. Optionally, we can read the jks files from the classpath as well. Then, we provided our token signer or token enhancer using the JwtAccessTokenConverter class, where we have used the private and public key.

In our token store, Spring Security Framework will use this object to read data from tokens, then set up the JwtAccessTokenConverter on the JwtTokenStore instance.

Finally, we have provided the password encoder class using the BCryptPasswordEncoder class.

Our last class is the Authorization server configuration. The configuration can be done using the following class:

Look at the OAuth2AuthServer class located on GitHub (https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/src/main/java/springfive/airline/authservice/infra/oauth/OAuth2AuthServer.java).

We have used @EnableAuthorizationServer to configure the Authorization server mechanism in our Auth microservice. This class works together with AuthorizationServerConfigurerAdapter to provide some customizations.

On configure(AuthorizationServerSecurityConfigurer oauthServer), we have configured the security for token endpoints.

At configure(AuthorizationServerEndpointsConfigurer endpoints), we have configured the endpoints of the token service such as, /oauth/token and /oauth/authorize.

Finally, on configure (ClientDetailsServiceConfigurer clients), we have configured the client's ID and secrets. We used in-memory data, but we can use JDBC implementations as well.

The Auth microservice main class should be:

package springfive.airline.authservice;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;

@EnableZuulProxy
@EnableEurekaClient
@SpringBootApplication
public class AuthServiceApplication {

 public static void main(String[] args) {
  SpringApplication.run(AuthServiceApplication.class, args);
 }

}

Here, we have created a standard Spring Boot Application with service discovery and Zuul proxy enabled.



            

            
        
    
        

                            
                    Testing the Auth microservice

                
            
            
                
As we can see, the Auth microservice is ready for testing. Our microservice is listening to port 7777, which we configured using the application.yaml file on GitHub.



            

            
        
    
        

                            
                    Client credentials flow

                
            
            
                
Let's start with the client credentials flow.

Our application needs to be up on port 7777, then we can use the following command line to get the token:

curl -s 442cf4015509eda9c03e5ca3aceef752:4f7ec648a48b9d3fa239b497f7b6b4d8019697bd@localhost:7777/oauth/token   -d grant_type=client_credentials  -d scope=trust | jq .

As we can see, this client ID and client secret are from the planes microservice. We did this configuration at the OAuth2AuthServer class. Let's remember the exact point:

....
@Override
public void configure(ClientDetailsServiceConfigurer clients)throws Exception {
  clients
      .inMemory()
      .withClient("ecommerce") // ecommerce microservice
      .secret("9ecc8459ea5f39f9da55cb4d71a70b5d1e0f0b80")
      .authorizedGrantTypes("authorization_code", "refresh_token", "implicit",
          "client_credentials")
      .authorities("maintainer", "owner", "user")
      .scopes("read", "write")
      .accessTokenValiditySeconds(THREE_HOURS)
      .and()
      .withClient("442cf4015509eda9c03e5ca3aceef752") // planes microservice
      .secret("4f7ec648a48b9d3fa239b497f7b6b4d8019697bd")
      .authorizedGrantTypes("authorization_code", "refresh_token", "implicit",
          "client_credentials")
      .authorities("operator")
      .scopes("trust")
      .accessTokenValiditySeconds(ONE_DAY)
    
....

After you call the preceding command, the result should be:



As we can see, the token was obtained with success. Well done, our client credentials flow was configured successfully. Let's move to the implicit flow, which will be covered in the next section.



            

            
        
    
        

                            
                    Implicit grant flow

                
            
            
                
In this section, we will take a look at how to authenticate in our Auth microservice using the implicit flow.

Before we test our flow, let's create a user to enable authentication in the Auth microservice. The following command will create a user in the Auth service:

curl -H "Content-Type: application/json" -X POST -d '{"name":"John Doe","email":"john@doe.com", "password" : "john"}' http://localhost:7777/register

As we can see, the email is john@doe.com and the password is john.

We will use the browser to do this task. Let's go to the following URL:

http://localhost:7777/oauth/authorize?client_id=ecommerce&response_type=token&scope=write&state=8777&redirect_uri=https://httpbin.org/anything

Let's understand the parameters:

The first part is the service address. To use the implicit grant flow, we need the path /oauth/authorize. Also we will use ecommerce as a client ID because we have configured it previously. response_type=token informs the implicit flow, scope is the scope as what we want in our case is write, state is a random variable, and redirect_uri is the URI to go after the oauth login process.

Put the URL in a web browser, and the following page should be displayed:



After typing the User and Password, the following page will be displayed to authorize our protected resources:



Click on the Authorize button. Then we will see the token in the browser URL like this:



The full token can be viewed if we copy the browser URL.

Awesome job, guys, our Auth microservice is fully operational.

In the next sections, we will configure the Auth microservice to protect Zuul proxy downstream microservices, such as the planes microservices. Let's jump to the next section.



            

            
        
    
        

                            
                    Protecting the microservices with OAuth 2.0

                
            
            
                
Now we will configure OAuth 2.0 to protect our microservices; in our case, our microservices are the resource servers. Let's start with the planes microservices. We will add the new dependency and configure the private and public keys. Also, we will configure our JwtTokenStore.

Let's do it.



            

            
        
    
        

                            
                    Adding the security dependency

                
            
            
                
To add the newly required dependency, we will change the pom.xml of the planes microservice. We will add the following dependency:

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-oauth2</artifactId>
</dependency>


A piece of cake – our required dependency is configured properly.

In the next section, we will configure the application.yaml file.



            

            
        
    
        

                            
                    Configuring the application.yaml file

                
            
            
                
To configure our private and public keys, we will use the application.yaml file. We did this configuration in the Auth microservice. The configuration is pretty easy. We need to add the following snippet:

config:
  oauth2:
    privateKey: |
      -----BEGIN RSA PRIVATE KEY-----
      MIICXQIBAAKBgQDNQZKqTlO/+2b4ZdhqGJzGBDltb5PZmBz1ALN2YLvt341pH6i5
      mO1V9cX5Ty1LM70fKfnIoYUP4KCE33dPnC7LkUwE/myh1zM6m8cbL5cYFPyP099t
      hbVxzJkjHWqywvQih/qOOjliomKbM9pxG8Z1dB26hL9dSAZuA8xExjlPmQIDAQAB
      AoGAImnYGU3ApPOVtBf/TOqLfne+2SZX96eVU06myDY3zA4rO3DfbR7CzCLE6qPn
      yDAIiW0UQBs0oBDdWOnOqz5YaePZu/yrLyj6KM6Q2e9ywRDtDh3ywrSfGpjdSvvo
      aeL1WesBWsgWv1vFKKvES7ILFLUxKwyCRC2Lgh7aI9GGZfECQQD84m98Yrehhin3
      fZuRaBNIu348Ci7ZFZmrvyxAIxrV4jBjpACW0RM2BvF5oYM2gOJqIfBOVjmPwUro
      bYEFcHRvAkEAz8jsfmxsZVwh3Y/Y47BzhKIC5FLaads541jNjVWfrPirljyCy1n4
      sg3WQH2IEyap3WTP84+csCtsfNfyK7fQdwJBAJNRyobY74cupJYkW5OK4OkXKQQL
      Hp2iosJV/Y5jpQeC3JO/gARcSmfIBbbI66q9zKjtmpPYUXI4tc3PtUEY8QsCQQCc
      xySyC0sKe6bNzyC+Q8AVvkxiTKWiI5idEr8duhJd589H72Zc2wkMB+a2CEGo+Y5H
      jy5cvuph/pG/7Qw7sljnAkAy/feClt1mUEiAcWrHRwcQ71AoA0+21yC9VkqPNrn3
      w7OEg8gBqPjRlXBNb00QieNeGGSkXOoU6gFschR22Dzy
      -----END RSA PRIVATE KEY-----
    publicKey: |
      -----BEGIN PUBLIC KEY-----
      MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDNQZKqTlO/+2b4ZdhqGJzGBDlt
      b5PZmBz1ALN2YLvt341pH6i5mO1V9cX5Ty1LM70fKfnIoYUP4KCE33dPnC7LkUwE
      /myh1zM6m8cbL5cYFPyP099thbVxzJkjHWqywvQih/qOOjliomKbM9pxG8Z1dB26
      hL9dSAZuA8xExjlPmQIDAQAB
      -----END PUBLIC KEY-----

Moreover, the user info URI will be done using the following configuration in YAML:

  oauth2:
    resource:
      userInfoUri: http://localhost:7777/credential

Awesome – our application is fully configured. Now, we will do the last part: configuring to get the information token.

Let's do that.



            

            
        
    
        

                            
                    Creating the JwtTokenStore Bean

                
            
            
                
We will create the JwtTokenStore, which will be used to get token information. The class should look like this:

package springfive.airline.airlineplanes.infra.oauth;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.oauth2.provider.token.store.JwtAccessTokenConverter;
import org.springframework.security.oauth2.provider.token.store.JwtTokenStore;

@Configuration
public class OAuthTokenConfiguration {

  @Value("${config.oauth2.privateKey}")
  private String privateKey;

  @Value("${config.oauth2.publicKey}")
  private String publicKey;

  @Bean
  public JwtTokenStore tokenStore() throws Exception {
    JwtAccessTokenConverter enhancer = new JwtAccessTokenConverter();
    enhancer.setSigningKey(privateKey);
    enhancer.setVerifierKey(publicKey);
    enhancer.afterPropertiesSet();
    return new JwtTokenStore(enhancer);
  }

}

Awesome – our token signer is configured.

Finally, we will add the following annotation to the main class, which should look like this:

package springfive.airline.airlineplanes;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;
import org.springframework.security.oauth2.config.annotation.web.configuration.EnableResourceServer;

@EnableZuulProxy
@EnableEurekaClient
@EnableResourceServer
@SpringBootApplication
public class AirlinePlanesApplication {

 public static void main(String[] args) {
  SpringApplication.run(AirlinePlanesApplication.class, args);
 }

}

It will protect our application, and it will require the access token to access the application endpoints.

Remember, we need to do the same task for all microservices that we want to protect.



            

            
        
    
        

                            
                    Monitoring the microservices

                
            
            
                
In the microservice architectural style, monitoring is a crucial part. There are a lot of benefits when we adopt this architecture, such as time to market, source maintenance, and an increase of business performance. This is because we can divide the business goals for different teams, and each team will be responsible for some microservices. Another important characteristic is optimization of computational resources, such as cloud computing costs.

As we know, there is no such thing as a free lunch, and this style brings some drawbacks, such as operational complexity. There are a lot of small services to monitor. There are potentially hundreds of different service instances.

We have implemented some of these services in our infrastructure but until now, we did not have the data to analyze our system health. In this section, we will explore our configured services.

Let's analyze right now!



            

            
        
    
        

                            
                    Collecting metrics with Zipkin

                
            
            
                
We have configured our Zipkin server in the previous chapter. Now we will use this server to analyze our microservices data. Let's do it.

Make some calls to create a flight. The Create Flight API will call the Auth Service and the Flight Service. Look at the following diagram:



We will take a look at the flights microservice and the planes microservice communications. Let's analyze it:

Go to the Zipkin main page, http://localhost:9999/, select flights, and then click on Find a trace. The page should look like this:



As we can see, there is some data on our Zipkin server. Click on Span, which has the flights and planes tags, then we will take a look at this specific trace, and we will be redirected to another page with specific span data, like this:



On this page, we can see important information, such as the total request time. Then click on the planes row, where we will be able to see detailed information, as in the following image:



Look at the request information. There are some interesting things, such as mvc.controller.class and mvc.controller.method. These help developers to troubleshoot errors. Also in the first panel, we have the times of the service's interactions. It is very helpful to find microservices network latencies; for example, it makes environment management easier because we have visual tools to understand data better.

Also, the Zipkin server provides others interesting features to find microservices statistics, such as finding requests that have delayed for more than a specific time. It is very helpful for the operations guys.

We can find more information about Spring Cloud Sleuth on the documentation page (http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.0.0.M5/single/spring-cloud-sleuth.html) or in the GitHub (https://github.com/spring-cloud/spring-cloud-sleuth) project page.



            

            
        
    
        

                            
                    Collection commands statistics with Hystrix

                
            
            
                
Now, we want to monitor our Hystrix commands. There are several commands in our microservices and probably the most used will be the OAuth token requester, because we always need to have a token to call any microservice in our system. Our Turbine server and Hystrix UI were configured at the beginning of this chapter and we will use these services right now.

Remember, we are using spring-cloud-netflix-hystrix-stream as an implementation to send Hystrix data to the Turbine server, as it performs better than HTTP and also brings some asynchronous characteristics.

Asynchronous calls can make the microservice more resilient. In this case, we will not use HTTP calls (synchronous calls) to register Hystrix Commands statistics. We will use the RabbitMQ queue to register it. In this case, we will put the message in the queue. Also, asynchronous calls make our application more optimized to use computational resources.

Run the Turbine server application and Hystrix UI application. Turbine will aggregate the metrics from the servers. Optionally, you can run several instances of the same service, such as flights. Turbine will aggregate the statistics properly.

Let's call the Create Flights API; we can use the Postman to do that.

Then we can see the real-time commands statistics. Before that, we will configure turbine.stream in our Hystrix Dashboard.

Go to the Hystrix Dashboard page: http://localhost:50010/hystrix/. The following page will be displayed:



Then we have some work to do. Let's configure our Turbine server stream. Our Turbine stream is running at http://localhost:8010/turbine.stream. Put this information below the Hystrix Dashboard information, and then we can click on the Monitor Stream button.

We will redirect to the Hystrix Commands Dashboard; we called the Create Flights API a few times ago. The commands metrics will be displayed, like the following image:



As we can see, we called the Create Flights API eight times. This API uses some commands, such as flights.plane-by-id, it calls the planes microservice, and the flights.request-token calls the Auth service.

Look how easy it is to monitor the commands. Operation guys like the Zipkin server can use this page.

Awesome job, guys, our services integrations are adequately monitored, which makes our microservices adoption more comfortable because we have useful applications to monitor our services instances.



            

            
        
    
        

                            
                    Dockerizing the microservices

                
            
            
                
In the previous chapters, we have used the Fabric8 Maven Docker plugin to enable us to create Docker images, using the Maven goals.

Now, we need to configure our microservices to use this plugin to easily create images for us. It can be helpful to integrate with some Continuous Integration and Delivery tools, such as Jenkins, because we can call the docker: build goal easily.

Each project has the custom configurations, such as port and image name. We can find the configuration at the GitHub repository. Remember, the configuration is done using the pom.xml.

The following list has the GitHub repository addresses for all projects; the pom.xml has the Maven Docker plugin configuration:


	Flights: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-flights/pom.xml

	Planes: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-planes/pom.xml

	Fares: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-fare/pom.xml

	Bookings: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-booking/pom.xml

	Admin: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/admin/pom.xml

	EDGE: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/api-edge/pom.xml

	Passengers: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-passengers/pom.xml

	Auth: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/auth-service/pom.xml

	Mail: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/mail-service/pom.xml

	Turbine: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/turbine/pom.xml

	Zipkin: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/zipkin-server/pom.xml

	Payments: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/airline-payments/pom.xml

	Hystrix-dashboard: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/hystrix-ui/pom.xml

	Discovery: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/eureka/pom.xml

	Config Server: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/Chapter09/config-server/pom.xml





            

            
        
    
        

                            
                    Running the system

                
            
            
                
Now we can run our Docker containers using our images, which were created in the previous section.

We will split the services into two Docker compose files. The first one is about infrastructure services. The second one is about our microservices.

The stacks must be run on the same Docker network, because the service should be connected by the container hostname.

The Docker compose file for infrastructure can be found at GitHub: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-infra.yaml.

The Docker compose file for microservices can be found at GitHub: https://github.com/PacktPublishing/Spring-5.0-By-Example/blob/master/stacks/docker-compose-micro.yaml.

Now, we can run these files using the docker-compose commands. Type the following commands:

docker-compose -f docker-compose-infra.yaml up -d
docker-compose -f docker-compose-micro.yaml up -d

Then the full application will be up and running.

Well done, guys.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we have learned some important points on microservices architecture.

We were introduced to some important tools for monitoring the microservices environment. We have learned how the Turbine server can help us to monitor our Hystrix commands in distributed environments.

We were also introduced to the Hystrix Dashboard feature, which helps the developers and operations guys provide a rich dashboard with the commands statistics in near real time.

We learned how Spring Cloud Security enables security features for our microservices, and we implemented the OAuth 2 server, using JWT to enable resilience for our security layer.



            

            
        
    
        

                            
                    Other Books You May Enjoy

                
            
            
                
If you enjoyed this book, you may be interested in these other books by Packt:



Mastering Spring 5.0

Ranga Rao Karanam

ISBN: 978-1-78712-317-5


	Explore the new features in Spring Framework 5.0

	Build microservices with Spring Boot

	Get to know the advanced features of Spring Boot in order to effectively develop and monitor applications

	Use Spring Cloud to deploy and manage applications on the Cloud

	Understand Spring Data and Spring Cloud Data Flow

	Understand the basics of reactive programming

	Get to know the best practices when developing applications with the Spring Framework

	Create a new project using Kotlin and implement a couple of basic services with unit and integration testing





Spring 5.0 Microservices - Second Edition

Rajesh R V

ISBN: 978-1-78712-768-5


	Familiarize yourself with the microservices architecture and its benefits

	Find out how to avoid common challenges and pitfalls while developing microservices

	Use Spring Boot and Spring Cloud to develop microservices

	Handle logging and monitoring microservices

	Leverage Reactive Programming in Spring 5.0 to build modern cloud native applications

	Manage internet-scale microservices using Docker, Mesos, and Marathon

	Gain insights into the latest inclusion of Reactive Streams in Spring and make applications more resilient and scalable





            

            
        
    
        

                            
                    Leave a review - let other readers know what you think

                
            
            
                
Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!







            

            
        
    assets/bdedb2b7-8516-4db5-8d80-9677cb87ca6c.png
docker_config_1 /bin/sh -c java -Dspring.p

docker_redis_1 docker-entrypoint.sh redis
docker_zipkin_1 /bin/sh -c java -Dspring.p

Up
docker_discovery_1 /bin/sh -c java -Dspring.p Up
docker_nysql_1 docker-entrypoint.sh mysqld ~ Up
docker_rabbitma 1  docker-entrypoint.sh rabbi Up
Up
up






assets/f34083e9-fde1-47af-af2a-945b3d067aa3.png
root@cc6520b2bdc5:/# 1s -1

total 68
drwxr-xr-x 2 root root 4096 Jan 11 00:11 application
drwxr-xr-x 1 root root 4096 Sep 14 ©4:18 bin





assets/26cfb6de-0d7d-4a13-8611-f9b5a2c373c5.png
Monitoring

Calls
Circuit External
Caller >‘ Breaker System
1






assets/42a34f54-fc7b-4bdd-9152-afafc3242b54.png
gl
Hystrix Stream: http://localhost:8010/turbine.stream fu HYSTRIX
DEFEND YOUR APP
Circuit  Sort: Error then Volume | Alphabetical | Volume | Error | Mean | Median 190199 199.5  Success | Short-Circuited | Bad Request | Timeout | Rejected | Failure | Error %

edge.flights flights.plane-by-id flights.request-token
810/0.0% 8/0/0.0% 8/0/0.0%
00 00 00
0 oo oo
Host: 0.8/s Host: 0.8/s Host: 0.8/s
Cluster: 0.8/s Cluster: 0.8/s Cluster: 0.8/s
Circuit Closed Circuit Closed Circuit Closed
Hosts 1 90th  207ms Hosts 1 90th ims Hosts 1 90th 1ms
Median 140ms 99th  833ms Median ims 99th 2ms Median ims 99th 1ms
Mean 181ms 99.5th 833ms Mean Oms  99.5th 2ms Mean Oms  99.5th 1ms

Thread Pools  Sort: Alphabetical | Volume |

auth-operations airline-flights

Host: 0.8/s Host: 0.8/s

Cluster: 0.8/s Cluster: 0.8/s

Active 0 Max Active 1 Active 0 Max Active 1
Queued 0 Executions 8 Queued 0 Executions 8

Pool Size 10 Queue Size 5 Pool Size 10 Queue Size 5





assets/438c8a02-e527-43ec-ad1c-c769881b21b2.png
I tweet-gathering

Project - (%)
v Iz tweet-gathering ~/packt-repo/Spring-5.0-By-Example/Chapter04/tweet-gathering
> I .idea
> Im.mvn
v Musrc

v I main
v [ kotlin
v b prngive itergathring | <1
» Bm domain
»> Buinfra
(g TweetGatheringApplication
= resources
> B test
»> B target
@ .gitignore
B8 mvnw
& mvnw.cmd
m pom.xml
» [l External Libraries

M Project

=
3
2
3]
=3
=
(7]
<






assets/066d006d-c69c-43aa-a631-fca3b0b82cdc.png
[INFO] DOCKER> [springfivebyexample/tweet_gathering:latest] "tweet_gathering": Created docker-build.tar in 196 milliseconds
[INFO] DOCKER> [springfivebyexample/tweet_gathering:latest] "tweet_gathering": Built image sha256:e1973

[INFO] DOCKER> [springfivebyexample/tweet_gathering:latest] "tweet_gathering": Tag with latest
[INFO]

[INFO]
[INFO]
[INFO] Total time: 13.714 s

[INFO] Finished at: 2018-01-04T22:51:58-02:00
[INFO] Final Memory: 65M/524M






assets/897fd218-a456-46b6-b147-7c58822772b2.png
@ localhost:8010/turbine.stream w H EB & s}

event: message

data:

{"rollingCountFallbackFailure":0,"rollingCountFallbackSuccess":0, "propertyValue_circuitBreakerRequestVolumeThreshold":"20", "propertyValue circuit
BreakerForceOpen":false, "propertyValue_metricsRollingStatisticalWindowInMilliseconds":"10000","latencyTotal mean":0,"type":"HystrixCommand", "roll
ingCountResponsesFromCache":0, "TypeAndName" : "TypeAndName=>HystrixCommand_edge.flights", "rollingCountTimeout":0, "propertyValue_executionIsolationS
trategy":"SEMAPHORE", "instanceId":"edge:8888", "rollingCountFailure":0, "rollingCountExceptionsThrown":0,"latencyExecute mean":0,"isCircuitBreakerO
pen":false, "errorCount":0, "group" : "RibbonCommand", "rollingCountSemaphoreRejected":0, "latencyTotal":
{"0":0,"25":0,"50":0,"75":0,"90":0,"95":0,"99":0,"99.5":0,"100":0}, "requestCount":0, "rollingCountCollapsedRequests":0, "rollingCountShortCircuited
":0,"latencyExecute":

{"0":0,"25":0,"50":0,"75":0,"90":0,"95":0,"99":0,"99.5":0,"100":0}, "propertyValue_circuitBreakerSleepWindowInMilliseconds":"5000", "currentConcurr
entExecutionCount":0, "propertyValue executionIsolationSemaphoreMaxConcurrentRequests":"100","errorPercentage":0,"rollingCountThreadPoolRejected":
0, "propertyValue_circuitBreakerEnabled":true, "propertyValue_executionIsolationThreadInterruptOnTimeout":true, "propertyvValue_ requestCacheEnabled":
true, "rollingCountFallbackRejection":0, "propertyvValue_requestLogEnabled":true, "rollingCountSuccess":0, "propertyValue_fallbackIsolationSemaphoreMa
xConcurrentRequests":"10", "InstanceKey":"InstanceKey=>edge:8888", "propertyValue_circuitBreakerErrorThresholdPercentage":"50", "propertyValue_ circu
itBreakerForceClosed":false, "name":"edge.flights", "reportingHosts":1, "propertyValue_executionIsolationThreadPoolKeyOverride":"null", "propertyVvalu

e_executionIsolationThreadTimeoutInMilliseconds":"2000"}






assets/8523a88d-85c2-483b-a54c-e00dc3f41ebe.png
classes/ generated-sources/ generated-test-sources/ maven-archiver/ maven-status/ surefire-reports/ test-classes/
ubuntu@ubuntu-xenial:/vagrant/cms$ cd target/

ubuntu@ubuntu-xenial: /vagrant/cms/target$ 1s -1

total 20808

drwxr-xr-x 1 ubuntu ubuntu 128 Oct 28 16:44 classes

-rw-r--r-- 1 ubuntu ubuntu 21301788 Oct 28 16:44 cms-0.0.1-SNAPSHOT.jar
-rw-r--r-- 1 ubuntu ubuntu 2745 Oct 28 16:44 cms-0.0.1-SNAPSHOT. jar.original
drwxr-xr-x 1 ubuntu ubuntu 96 Oct 28 16:44 generated-sources

drwxr-xr-x 1 ubuntu ubuntu 96 Oct 28 16:44 generated-test-sources
drwxr-xr-x 1 ubuntu ubuntu 96 Oct 28 16:44 maven-archiver

drwxr-xr-x 1 ubuntu ubuntu 96 Oct 28 16:44 maven-status

drwxr-xr-x 1 ubuntu ubuntu 128 Oct 28 16:44 surefire-reports

drwxr-xr-x 1 ubuntu ubuntu 96 Oct 28 16:44 test-classes

ubuntu@ubuntu-xenial: /vagrant/cms/target$ I





assets/c3e92e86-ea33-4eaa-8516-b7c2bafbbd53.png
Mobile

T

Browser

Eureka
Server






assets/e8f8a66f-921b-49d8-9377-262e0007328f.png
“Campinas”,
"Brazil”

“Gov. André Franco Montoro International Airport (Cumbica)”,
“GRU",

“Sao Paulo",

“Brazil"

1

‘departureAt”: "2018-08-08T08:00:00" ,
"arriveAt": "2018-08-08T09:00:00",






assets/1dd5adeb-ebbf-47b8-a707-d01201e5e74f.png





assets/3b2d7678-19e4-477a-a7b2-5fd6d1ea0a7a.jpg
~anMapt





assets/1c8e76dd-dd5c-41f4-8180-52587573730b.png
INFO
NFO
NFO
NFO
NFO
NFO
NFO
NFO
NFO
NFO
NFO
INFO

19072
19072
19072
19072
19072
19072
19072
19072
19072
19072
19072
19072

main]
main]
main]
IaforepUicstarco]
main]
main]
nfoReplicator—0]
freshExecutor—0]
freshExecutor—0]
main]
main]
main]

com.netflix.discovery.DiscoveryClient
0.5.c.n.e.5. EurekaserviceRegistry

com. netflix.discovery.DiscoveryClient.
com. netfLix.discovery.DiscoveryClient.

d.c.b.a. registry.ApplicationRegistry
d.c.b.a. registry.ApplicationRegistry
com. netfLix.discovery.DiscoveryClient

d.c.b.a.d.ApplicationbiscoveryListener
d.c.b.a. registry.ApplicationRegistry
5.b.c.e.t. ToncatEnbeddedservletContainer

.5.c.n.e. 5. EurekaAutoServiceRegistration
s.airline.admin. AdminApplication

Discovery Client initialized at timestamp 1517077877814 with initial instances count: 2
Registering application admin with eureka with status UP

Saw local status change event StatusChangeEvent [tinestamp=1517077877822, current=UP, previous=STARTING]

DiscoveryClient_ADMIN/192.168.100.101:adnin:50015: registering service.

New Application Application [id=c8f3605d, name=PLANES, managementUrl=nttp://192.168.100.101:50001/, healthUrl=http://192.168.100.101:5¢
New Application Application [1d=97174943, name=ADMIN, managementUrl=nttp://192.168.100.101:50015/, healthUrl=http://192.168.100.101:50¢

DiscoveryClient_ADMIN/192.168.100.101:adnin:50015 — registration status: 204
Application (97174943) missing in DiscoveryClient services

Application Application [id=97174943, name=ADMIN, managementUrl=nttp://192.168.100.101:50015/,

Toncat started on port(s): 50015 (http)

Updating port to 50015
Started AdminApplication in 54.235 seconds (JVM running for 57.099)

healthUrl=http://192.168.100.101:50015/h





assets/989fa49b-7e17-477a-9e57-8afa3d9434d0.png
2018-01-07 14:42:42.602 INFO 11191 — ©0.s.c.support.DefaultLifecycleProcessor : Starting beans in phase @

2018-01-07 14:42:42.662 INFO 11191 — 0.5.C.n.e.5. EurekaserviceRegistry Registering application discovery with eureka with status UP

2018-01-07 14:42:42.605 DEBUG 11191 — 5.c.c.d.h.DiscoveryClientHealthIndicator ¢ Discovery Client has been initialized

2018-01-07 14:42:42.608 INFO 11191 — 0.5.C.n.e.5erver. EurekaServerBootstrap  : Setting the eureka configuration..

2018-01-07 14:42:42.610 INFO 11191 — 0.5.C.n.e.5erver. EurekaserverBootstrap  : Eureka data center value eureka.datacenter is not set, defaulting to default
2018-01-07 14:42:42.611 INFO 11191 — 0.5.c.n.e.5erver. EurekaServerBootstrap  : Eureka enviromment value eureka.environment is not set, defaulting to test
2018-01-07 14:42:42.620 INFO 11191 — 0.5.C.n.e.5erver. EurekaserverBootstrap  : isAws returned false

2018-01-07 14:42:42.622 INFO 11191 — 0.5.c.n.e.5erver. EurekaServersootstrap  : Initialized server context

2018-01-07 14:42:42.622 INFO 11191 — c.n.e.r.PeerivarelnstanceRegistrylnpl ¢ Got 1 instances from neighboring DS node

2018-01-07 14:42:42.622 INFO 11191 — c.n.e.r.PeerAwarelnstanceRegistrylnpl ¢ Renew threshold is: 1

2018-01-07 14:42:42.623 INFO 11191 — c.n.e.r.PeerAwarelnstanceRegistrylnpl ¢ Changing status to UP

2018-01-07 14:42:42.636 INFO 11191 — e.5.EurekaserverInitializerConfiguration : Started Eureka Server

2018-01-07 14:42:42.696 INFO 11191 — 0.5.b.w. enbedded. toncat. ToncatwebServer : Tomcat started on port(s): 8761 (http) with context path

2018-01-07 14:42:42.607 INFO 11191 — .5.c.n.e.5. EurekaAutoServiceRegistration : Updating port to 8761

2018-01-07 14:42:42.762 INFO 11191 — s.airline. eureka. EurekaApplication Started EurekaApplication in 10.862 seconds (JVM running for 11.719)
2018-01-07 14:42:43.067 INFO 11191 — c.c.c.ConfigServicePropertySourceLocator : Fetching config from server at: http://localhost:5600






assets/149f2c98-e8b7-409e-89db-dd70f590dd30.png
‘ Twitter AP }—»{Wwﬂ&nherlng
L J@

@ 6
Tracked Hasht:
HITR | Tr e e 9 @ RabbitMQ Broker anl:pmm
(U] (Y]






assets/dce09e86-356a-46f0-8ad8-bb5d10c3a28b.png
RT @PayperExnet: Bitcoin is going down? GOOD! buy PAX and join the last days of the sale! buy PAX TOKEN NOW!!! @PayperExnet @Bitcoin https..
RT @AtthorldNews: Bitcoin Goes on Wild Journey and it Could Solely Get Crazier #Bitcoin #Blockchain #LengthyIslandIcedTeaCorp https://t.co/.
@KBriankelly #Listen to #Bitcoin #audio #voxpop #BitcoinMadness #LetMeAsk @AmaroufmediaAsk #YouTube.. https://t.co/InaCHHOWDN

The blockchain that wouldn't die #Crypto https://t.co/oVXFngd6rL

RT @rajneeshchhabra: No Place Like Home: The Internet Of Things And Its Promise For Consumers https://t.co/vAwhGoECa #I0T #Internet0fThing..
RT @ltsHooverr: *gets one dollar profit with bitcoimk https://t.co/PEJDVP7ydc

3 Cryptocurrencies to Consider Buying Over Bitcoin @themotleyfool #stocks $SAN, SIBM, SAXP, $BP https://t.co/qfIAVESTwo.

S0 in order to buy 1 bit you’ll need to pay 3500 bits in fees. That sounds like fun! That's what the Core developer.. https://t.co/unsOHfviec
RT @lifeinvestasset: #CryptocurrencyLifelnvest (Change 24h):

~#Bitcoin $15.584,80 (~7,82%).

~#BitcoinCash $3.212,84 (-16,70%).

—#Ether $809..

RT @HealthRanger: What do you think: Do #China and #Russia really have this much control over #Bitcoin ? https://t.co/yiKPZ0GOSH

RT @ToshiDesk: Guys — Next #ICO to watch out fo

https://t.co/VfolorwYce

They already have 10+ courses up on their Educational Site..
RT @Alexandertaxton: One of my favorite ICOs right now: Trade.io is revolutionising the banking industry. Many #IC0's will be launched on T..
RT @VahapErenTR: Dear @Poloniex !

My friend’s account @gurselkaraaslan has been frozen for 10 days.Please respond the #580589 ticket which..

@krios_io Bitcoin Diamond ($8CD) successfully launch mainnet and 28 global exchanges start trades! If you have bala.. https://t.co/06uRaCVDYL
Zum standigen auf und ab der #Bitcoin ein sehr lesenswerter Artikel von GSPIEGELONLINE — danke fir das Interview,.. https://t.co/iVzhRibcS
RT @anesGRickards: OK, let's make this simple. Bitcoin is a multiplayer game dressed up as a real world experience. Enjoy! https://t.co/lLx.
RT @rajneeshchhabra: No Place Like Home: The Internet Of Things And Its Promise For Consumers https://t.co/vAwahGoeCa #10T #Internet0fThing..
Bitcoin value tumbles by 30 per cent as investors face 'reality check' https://t.co/tdSkaTEZrw

Uh what? ¥ guess he forgot to show where the Nasdaq is today @ @@ https://t.co/mChT4uMuaM






assets/6e1a2819-63ac-45c6-a937-04098bee29aa.png
€)>c e @ @ https://httpbin.org/anything#access_token=eyJhbGciOlSUZITNilSInRECCIBIKPXVCJ.eyJleHATOIETMTCZN]Y
JSON  RawData Headers
save Copy






assets/c11c8613-b841-4cc9-af00-52666e07a797.png
ubuntu@ubuntu-xenial:/vagrant/cms/target$ java -jar cms-0.0.1-SNAPSHOT.jar

VANWA _ _ (- I NN NN
(GG ) W S I B B VA AN VA NN
ANV T I U 1 I B B B B N BN G B B IO I 1D |
B DR Do D B D B O NP B A VA4
[ \__/=// /S

:: Spring Boot ::

2017-10-28 16:56:44.189
SNAPSHOT . jar started by
2017-10-28 16:56:44.211

(v1.5.8.RELEASE)
INFO 19419 --- [

INFO 19419 --- [

main] springfive.cms.CmsApplication
ubuntu in /vagrant/cms/target)
main] springfive.cms.CmsApplication

: Starting CmsApplication v@.0.1-SNAPSHOT on ubuntu-xenial with PID 19419 (/vagrant/cms/target/cms-0.0.1-

: No active profile set, falling back to default profiles: default

2017-10-28 16:56:46.074
4553: startup date [Sat
2017-10-28 16:56:50.690
2017-10-28 16:56:50.741
2017-10-28 16:56:50.752
2017-10-28 16:56:51.132
2017-10-28 16:56:51.133
2017-10-28 16:56:51.617
2017-10-28 16:56:51.644
2017-10-28 16:56:51.645
2017-10-28 16:56:51.645
2017-10-28 16:56:51.646
2017-10-28 16:56:52.831
licationContext@5a2e4553:
2017-10-28 16:56:53.266

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

INFO 19419 --- [
Oct 28 16:56:46 UTC 2017]; root of context hierarchy

19419 ---
19419
19419
19419 ---
19419 ---
19419 ---
19419 ---
19419 ---
19419 ---
19419 ---
19419

main]

L main]
L main]
L main]

[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
L main]

startup date [Sat Oct 28 16:56:46 UTC
INFO 19419 --- [

main]

ationConfigEmbeddedWebApplicationContext

s.b.c.e.t.TomcatEmbeddedServletContainer
o.apache.catalina.core.StandardService
org.apache.catalina.core.StandardEngine
.a.c.c.C.[Tomcat].[localhost].[/]
.context.ContextLoader
.w.servlet.ServletRegistrationBean
.servlet.FilterRegistrationBean
.servlet.FilterRegistrationBean
.servlet.FilterRegistrationBean
.servlet.FilterRegistrationBean

© O 0 0 0 O o
“nw unonononon

3 = = = =

S.W.S.

2017]; root of context hierarchy
s.w.s.m.m.a.RequestMappingHandlerMapping

: Refreshing org.springframework.boot.context.embedded.AnnotationConfigEmbeddedWebApplicationContext@Sa2e

. Tomcat initialized with port(s): 8080 (http)

: Starting service [Tomcat]

: Starting Servlet Engine: Apache Tomcat/8.5.23

: Initializing Spring embedded WebApplicationContext

: Root WebApplicationContext: initialization completed in 5061 ms
: Mapping servlet: 'dispatcherServlet' to [/]

: Mapping filter: 'characterEncodingFilter' to: [/*]

: Mapping filter: 'hiddenHttpMethodFilter' to: [/*]

: Mapping filter: 'httpPutFormContentFilter' to: [/*]

: Mapping filter: 'requestContextFilter' to: [/*]
.m.a.RequestMappingHandlerAdapter :

Looking for @ControllerAdvice: org.springframework.boot.context.embedded.AnnotationConfigEmbeddedWebApp

: Mapped "{[/error],produces=[text/html]}" onto public org.springframework.web.servlet.ModelAndView org.s

pringframework.boot.autoconfigure.web.BasicErrorController.errorHtml(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)

2017-10-28 16:56:53.271 INFO 19419 --- [

main]

s.w.s.m.m.a.RequestMappingHandlerMapping

: Mapped "{[/error]}" onto public org.springframework.http.ResponseEntity<java.util.Map<java.lang.String,

java.lang.Object>> org.springframework.boot.autoconfigure.web.BasicErrorController.error(javax.servlet.http.HttpServletRequest)

2017-10-28 16:56:53.334 INFO
urceHttpRequestHandler]
2017-10-28 16:56:53.335 INFO
RequestHandler]

2017-10-28 16:56:53.444 INFO
ResourceHttpRequestHandler]
2017-10-28 16:56:53.554 WARN
configuration)

2017-10-28 16:56:55.272 INFO
2017-10-28 16:56:55.447 INFO
2017-10-28 16:56:55.463 INFO

19419 ---
19419 ---
19419 ---
19419 ---
19419 ---

1941
19419 ---

L main]
L main]
C main]
L main]
L main]
L main]
L main]

0.s.w.s.handler.SimpleUrlHandlerMapping
0.s.w.s.handler.SimpleUrlHandlerMapping
0.s.w.s.handler.SimpleUrlHandlerMapping
.t.AbstractTemplateResolverConfiguration
0.s.j.e.a.AnnotationMBeanExporter

s.b.c.e.t.TomcatEmbeddedServletContainer
springfive.cms.CmsApplication

: Mapped URL path [/webjars/**] onto handler of type [class org.springframework.web.servlet.resource.Reso
: Mapped URL path [/**] onto handler of type [class org.springframework.web.servlet.resource.ResourceHttp
: Mapped URL path [/**/favicon.ico] onto handler of type [class org.springframework.web.servlet.resource.
: Cannot find template location: classpath:/templates/ (please add some templates or check your Thymeleaf
: Registering beans for JMX exposure on startup

: Tomcat started on port(s): 8080 (http)
: Started CmsApplication in 13.255 seconds (JW running for 14.936)





assets/d4083209-d7bd-4c6b-b3cd-40d9a729d7e6.png
Eureka Server

(U]

) Fllgh(s






assets/d99adcbd-ebe3-4e58-a3bb-511982067efb.png
Instances currently registered with Eureka

Application AMIs Availability Zones Status

PLANES n/a(1) (1) UP(1) -





assets/37d49791-5ca9-4f9e-a4ba-42fe9928c9bf.png
100 309 © 309 0 o 26 [

{

% Total % Received % Xferd Average Speed Time  Time Time
Dload Upload Total Spent Left
0:00:01

2H

"name”; "dummy",

"profiles”: [
"default"

]

"label": null,

"version": "bcadbdadsfdd1f853744d7dc2abf92411423e2b1"
"state": null,

'Pl(wertySwmeS'z C

"name”: "https://github. con/PacktPublishing/Spring-5.0-By-Example/config-files/dummy.yaml"
"source": {
"info.message": "Testing my Config Server",
"info.status": "It worked"
}
}
i)
}






assets/6ef52923-37c6-446d-9e6a-371ac525bce9.png
2 updates are security updates.

Last login: Wed Nov 1 00:13:53 2017 from 10.0.2.2
ubuntu@ubuntu-xenial:~$ docker network create cms-application
508485d8da42a4680347635e57041b35d2d09642ac9f5e1194c7334a5e4bfe92
‘ubuntu@ubuntu-xenial:~$ [ |





assets/87230629-9881-4fc9-bd39-fe2636017523.png
planes.http:/5a73a5f1eec7b00a9047b42e: 1.090s
AKA: flights,planes

Date Time Relative Time Annotation Address

2/3/2018, 1:08:28 PM Client Send 192.168.100.100:50005 (flights)
2/3/2018, 1:08:28 PM 36.000ms Server Receive 192.168.100.100:50001 (planes)
2/3/2018, 1:08:28 PM 93.000ms Server Send 192.168.100.100:50001 (planes)
2/3/2018, 1:08:29 PM 1.090s Client Receive 192.168.100.100:50005 (flights)
Key Value

http.host 192.168.100.100

http.method GET

http.path /5a73a5f1eec7b00a9047b42e

http.url http://192.168.100.100:50001/5a73a5f1eec7b00a9047b42e
mvc.controller.class PlaneResource

mvc.controller.method plane

spring.instance_id 192.168.100.100:flights:50005

spring.instance_id 192.168.100.100:planes:50001

More Info





assets/16170417-ad87-4e20-b0a0-083079714775.png
Project Metadata

Artifact coordinates
Group

spring-five
Artifact

s





assets/e3e70570-87ff-4d8a-a157-da89622fc957.png
Name Valie

consumer-key 9upfxwn43NBTAxCDTsHIgMu
consumer-secret PHAUMBLIYxKzfJ7huY RwFbaFXn.
access-token 940015005860290560-mOWwSy...
access-token-secret KSofGBBawDmewceKXLbNBdSC...
+ o

¥ Include parent environment variables Show





assets/3f669b75-6156-4855-a09b-3e2751a0039f.png
SPRING INITIALIZR

<«

Generate @ vaveneroiecrs With and Spring Boot :se

Dependencies

Add Spring Boot Starters and dependencies to your application

Project Metadata

Artifact coordinates
Search for dependencies

Group
Web, Security, JPA, Actuator, Devtools...

com.example

Selected Dependencies

Generate Project % + «

Don't know what to look for? Want more options? Switch to the full version.

Artifact

demo

and

start.spring.io is powered by





assets/c320ffd1-053a-45d3-a6aa-bafa36a77bc8.png
Create an application

Application Details

Name *

Your application name. This is used to attribute the source of a tweet and in user-facing authorization screens. 32 characters max.

Description *

Your application description, which will be shown in user-facing authorization screens. Between 10 and 200 characters max.
Website *
Your application's publicly accessible home page, where users can go to download, make use of, or find out more information about your application. This fully-qualified

URL is used in the source attribution for tweets created by your application and will be shown in user-facing authorization screens.

(If you don't have a URL yet, just put a placeholder here but remember to change it later.)

Callback URL

Where should we return after successfully authenticating? OAuth 1.0a applications should explicitly specify their oauth_callback URL on the request token step, regardless
of the value given here. To restrict your application from using callbacks, leave this field blank.





assets/820f3ed5-dfd1-4004-b1be-db2802b3ad48.png
Eureka Clent

Flights

(Eureka Ciient |
Planes






assets/d2001438-30ed-4cc8-9935-c76d35795176.png
Iz Chapter02 = Bm src -~ Il main ) B java = BN springfive = Bl cms = B domain = BN repository = (& UserRepository 14 | #g CmsApplication v &k »3

8 Project v S = | #- 1 Aindexhtml © NewssService.java @ UserRepository.java x Maven Projects
g v g Chapter02 [ems] ~/packt-repo/Spring-5.0-By-Example/Chapte package springfive.cms.domain.repository; v ol ; + =}
T > I .idea . : :
) v Bmsrc +1n£ort > # cms
2 v I main " esdrvice =
g v [mjava % | public class UserRepository extends AbstractRepository<User>{} ' f
[ v Bx springfive.cms 2
o Vv bm domain é,"- |
»> Em models °
v [ repository
(©) AbstractRepository [}
© CategoryRepository =8
© UserRepository g |
> mresources :’.;
> Du service R
> bmvo
(@ CmsApplication m
v IEresources g
v Pu static ) 1
v BEapp .-_5?
v m components §

v [Pum categories





assets/5d9869f8-daef-42e2-8a4b-9da667060d62.png
APl Keys





assets/bf33f5c5-78ea-4539-896a-37e3236509b2.png
= airline-flights . B src M main ) B java = BN springfive = BN airline = BN airlineflights - Bl domain = BN service = @ PlaneService . }ii | #@ AirlineFlightsApplication v | 3 »& Wl ¥ L [® & [ ¢
g m airline-flights » (3 PlaneServicejava « (@ FlightServicejava » (@ SleuthConfigurationjava » (& FlightResourcejava » (g AirlineFlightsApplicationjava »  #g bootstrap.yaml
Tl 26 this.webClient = webClient; | ]
2157 this.discoveryService = discoveryService;
L5 28 this.planesService = planesService;
29 this.planesServiceApiPath = planesServiceApiPath;
£]30 }
‘g‘ 31
& 32 @HystrixCommand(commandKey = "“plane-by-id",groupKey = "airline-flights",fallbackMethod = "fallback",commandProperties = {
~i| 33 @HystrixProperty(name="circuitBreaker. requestVolumeThreshold",value="10"),
sl 34 @HystrixProperty(name = "circuitBreaker.errorThresholdPercentage", value = "10"), =
35 @HystrixProperty(name="circuitBreaker.sleepWindowInMilliseconds",value="10000"),
36 @HystrixProperty(name = "execution.isolation.thread.timeoutInMilliseconds", value = "800"),
37 @HystrixProperty(name = "metrics.rollingStats.timeInMilliseconds", value = "10000")
38 1
39 public Mono<Plane> plane(String id) { id: "5a833dc30fd3fc0c4683d31c"
40 return discoveryService.serviceAddressFor(this.planesService).next().flatMap( discoveryService:| DiscoveryService@l3209 planesService: "PLANES"
11 ol @ gddressi==lthisiiebClientinutate()ibaseUrl(addressF/ANsid)buitd()Ngeturetrievel) address: "http://mbp-de-claudio:50001" webClient: DefaultWebCldc
42 of .onStatus (HttpStatus: : is4xxClientError, clientResponse —> |
43 Mono.error(new PlaneNotFoundException(id))
a4 of ) .onStatus (HttpStatus: : is5xxServerError, clientResponse —>
45 Mono.error(new PlaneNotFoundException(id)) V|
46 ) .bodyToMono(Plane.class));
47 }
48
49 public Mono<Plane> fallback(String id){
50

PlaneService > plane() > address->{...}
Debug # AirlineFlightsApplication - 2R
Debugger |G Console »° % Endpoints »* k= & M M A g ¥ =

g} Frames +* gE Threads +* = Variables ot =2
‘ 1® "http-nio-50005-exe... v ‘ {4 & Y & > E this = {PlaneService@13201} @
R
........ s » @ address = "http://mbp-de-claudio:50001" P 93317
2 apply:-1, 1162430770 (springfive.airline.airl ., ¢ . giscoveryService = {DiscoveryService@13209} b i
Pg onNext:118, MonoFlatMap$FlatMapMain (re » & this.planesService = "PLANES"
s g i J : cl 92174
& onNext:76, MonoNextSNextSubscriber (¢ o » 4 this.webClient = {DefaultWebClient@13211} © oosac
* tryEmitScalar:432, FluxFlatMap$FlatMapMa !‘ ~
-------- onNext:366, FluxFlatMap$FlatMapMain (re: lf 28642
g = request:1649, Operators$ScalarSubscriptic I 6308
) onSubscribe:332, FluxFlatMap$FlatMapMai Je 16011

» je 2818

2miOiihancihaCanlach A

¥¢ 5:Debug % 6: TODO

LA ChuClathAan /-

Docker I JavaEnterprise 2 9: Version Control ¢ Spring Terminal Graph Database Console () Event Log






assets/e16ec109-87eb-440a-9e6d-18831ce17433.png
+ DiscoveryClient PLANES/192.168.100.101:planes:50001: registering service...
Adding {logging-channel-adapter:_org. springfranework. integration.errorLogger} as a subscriber to the 'errorChannel’
Channel 'planes:50001.errorChannel’ has 1 subscriber(s).

started _org. springframework. integration. errorLogger

started 5leuthstreanSpanReporter. polL. inboundChannelAdapter

Starting beans in phase 2147482647

Starting beans in phase 2147483647
DiscoveryClient_PLANES/192.168.100.101:planes:50001 — registration status: 204
Toncat started on port(s): 50001 (http) with context path '*

Updating port to 50001

Started AirlinePlanesApplication in 17.153 seconds (JWM running for 18.25)

Opened connection [connectionId{localValue:3, serverValue:26}] to localhost:27017

InfoReplicator-] com.netflix.discovery.DiscoveryClient
[ main] o.s. i.endpoint. EventDrivenConsuner

[ main] o.s. 1. channel. PublishSubscribeChannel

[ main] o.s. i.endpoint. EventDrivenConsuner

[ main] o.s.1.e.SourcePollingChanne Adapter

[ main] o.s.c.support.DefaultLifecycleProcessor
[ main] o.s.c.support.DefaultLifecycleProcessor
I

[

[

[

[t

InfoReplicator—0] com.netflix.discovery.DiscoveryClient
main] 0.5.b.w.enbedded. toncat. ToncatWebServer
main] .s.c.n.e.s.EurekaAutoServiceRegistration
main] s.a.a.AirlinePlanesApplication

11 org.mongodb. driver. connection

[on(4)-127.






assets/5a229878-be00-48f8-b602-2408154f73f4.png
"headers™: {
"Accept": "*/*",
"Book": "Spring 5.0 By Example",
"Connection": "close",
"Host": "httpbin.org",
"User-Agent": "curl/7.54.0"





assets/ca8b9aca-8cd4-4077-8617-f34e4e83df0f.png
o Mongo Express Database: cms~ ¥ Collection: category~

Viewing Collection: category

# New Document | ,#" New Index

W Advanced

1 Delete all 2 documents retrieved

_id _class name

5a19a10ce19ddc07297579b0 springfive.cms.domain.models.Category sports

5219a270e19ddc07297579b1 springfive.cms.domain.models.Category travel






assets/49f91e24-a935-420e-81b0-cb11e20051be.png
<« Cc localhost:7777/login

Login with Username and Password

O S—
Password:

Login





assets/b7a66970-55b5-4191-ac93-c06d7acec9c8.png
ubuntu@ubuntu-xenial:~$ docker -v
Docker version 17.10.0-ce, build f4ffd25
ubuntu@ubuntu-xenial:~$ I





assets/32018be4-666f-4285-afd8-a67409a980b1.png
[{"id": "5a633a55679806759€671a5" , "onner": "Spring Framework
irst Class"},"right_side": {"smt_\dum:r
,"left_side":{"seat_identity"
24785.0"}, "seats" : [{"identity"

,"model": {"factory": "Pivotal", "model":"5.0", "name": "Spring 5.0","reference_name":"S5.9"}, "seats" [{"\dum:r "1A", "row":1,"category": {"id": "A", "name": "F
"2, identity"s A", “ron": i1, mmgur d":"A", "name” :"First Class'}, "left_side’ smt_\dum:r rf‘. d":"A", "name"; "First Class"}






assets/917002f4-1c25-4b28-80a2-3994a64c0db5.png
Client
Mobile
Browser

(U]
User/Machine
@ Resource Owner
— @ |
@
Authorization
@ Server
e @& |
®)
[ —
Resource Server
® Microservice






assets/06842b34-47ef-433d-a742-d7961996a368.png
o Mongo Express Database: cms~

Viewing Database: cms

Collections Collection Name = Create collection

S K K ]
View Export e category

Database Stats

Collections (incl. system.namespaces) 1

Data Size 178 Bytes
Storage Size 36.9 KB
Avg Obj Size # 89.0 Bytes
Objects # 2

Extents # 0

Indexes # 1

Index Size 36.9 KB





assets/0f5af854-2b36-4d7d-ac13-044f49d8ad00.png
Zipkin Investigate system behavior Find a trace Dependencies _

flights v || all v | Start time 01-27-2018 13:44
End time 02-03-2018 13:44 Duration (us) >= Limit 10 Find Traces o
Showing: 10 of 10 Sort:| Longest First $

Services: {3

4.193s 3 spans
flights 68%

auth x1 367ms | edge x2 2569ms | flights x2 2516ms

1.090s 1 spans
flights 100%

flights x1 1090ms | planes x1 1090ms

1.041s 3 spans
flights 99%

auth x1 367ms | edge x2 1041ms | flights x2 1038ms

880.000ms 1 spans
flights 100%

flights x1 880ms ] planes x1 880ms





assets/d56c40a7-0a13-4f87-ac89-69bf9f651202.png
M A AAAAAAAAAAAANVVVVVV ¥ % %

TCP_NODELAY set

Connected to localhost (::1) port 8888 (#0)
GET /anything HTTP/1.1

Host: localhost:8888

User-Agent: curl/7.54.0

Accept: */*

access-key: AAA

HTTP/1.1 200 OK

access-key: BBB

Connection: keep-alive

Server: meinheld/0.6.1

Date: Wed, 10 Jan 2018 00:49:29 GMT
Content-Type: application/json
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-Powered-By: Flask
X-Processed-Time: 0.00110197067261
Content-Length: 329

Via: 1.1 vegur

"args": {3},

"data": "",

"files": {3,

"form": {3},

"headers": {
"Accept": "*/*"
"Access-Key": "AAA",
"Connection": "close",
"Host": "httpbin.org",
"User-Agent": "curl/7.54.0"

1,






assets/9378b77e-cf44-41e0-a450-89baa56db7a6.png
Zipkin Investigate system behavior Find a trace Dependencies

Duration: €0 Services: @) Depth: €D Total Spans: €} @
Expand All | Collapse All v
Services 218.000ms 436.000ms 654.000ms 872.000ms 1.090s

1.090s : http:/5a73a5f1 eec7b00a9047b42e





assets/dab7b12b-2cbb-4e31-9c38-b64a7abdaf4f.png
ubuntu@ubuntu-xenial:~$ docker network list

NETWORK ID

d2bb065f5d06
5a8485d8da42
1d4b5dc3ec8b
46b59abc89c2
fb27a7381539

NAME

bridge
cms-application
host

none

twitter

DRIVER
bridge
bridge
host
null
bridge

SCOPE
local
local
local
local
local





assets/4fa12d95-91e4-4a04-a321-d9520ed6e208.png
End User Services Back-Office Services

Ecommerce @J Flights Planes
M M Fere






assets/5d482622-a6d0-46e9-8d6c-a8100da65714.png
& C' | @ localhost:8081/actuator/metrics/http.server.requests

"name": "http.server.requests",
"measurements": [

{
"statistic": "Count",
"value": 8
}
{
"statistic": "TotalTime",
"value": 281213374
}
{
"statistic": "Max",
"value": 281213374
}
1,
"availableTags": [ ..]





assets/09f31f0c-c06b-4f64-a449-958fd0af2308.png
Creating network "docker_airline" with driver "bridge"
Creating docker_zipkin_1
Creating docker_rabbitmq_1
Creating docker_mysql_1
Creating docker_config 1
Creating docker_gateway_1
Creating docker_discovery_1






assets/1d3d89ff-2d73-426b-ad8d-95d5bfb0448a.png
HTTP Persistent Connection

==






assets/c1d5b757-7e90-44de-bae6-ff1548243c96.png
Packh






assets/919e870d-d6b5-4b3a-bd36-93c98a6c546f.png
Spring 5.0
Microservices

Second Edition






assets/19e4c9c0-2dd1-4672-893c-0893ec51560e.png
Parameters

Parameter

Parameter Value Description Type Data Type
category { category body Model  Example Value
"name": "sports"
}
{

"name": "string"

@ }

Parameter content type: application/json

Response Messages





assets/2ff9703d-2e38-4a23-aab0-57e5a83c7a9d.png
2017-12-23 46.362 INFO 1635 — [ctor-http-nio-1] r.ipc.netty.tcp.BlockingNettyContext
2017-12-23 46.363 INFO 1635 — [ main] 0.5.b.web. enbedded. netty.NettyWebServer
2017-12-23 46.369 INFO 1635 — [ main] s.t.TweetGatheringApplicationsCompanion : Started TweetGatheringApplication.Conpanion in 7.812 seconds (JVM running for 7.645)





assets/612df25d-1ee2-4b1e-9242-782e95554648.png
o Mongo Express Database~

Mongo Express

Databases

(]

Server Status

Hostname

Uptime

Current Connections
Active Clients
Clients Reading

Read Lock Queue

admin

cms

local

dd71620d4{76

5820 seconds

12

MongoDB Version

Server Time

Available Connections
Queued Operations
Clients Writing

Write Lock Queue

Database Name

=+ Create Database

(i

3.4.10

Sat, 25 Nov 2017 17:16:39 GMT

838854





assets/1778b765-0f54-4c69-98f8-056a77cb4052.png
Zipkin Investigate system behavior Find a trace Dependencies _

all v v |Starttime 01-09-2018 13:06
End time 01-16-2018 13:06 Duration (ps) >= Limit 10 Find Traces =~ @
Showing: 0 of 0 Sort: | Longest First 7
Services:

Please select the criteria for your trace lookup.





assets/4cd71b3c-c099-4c9b-840b-9ab81ef0b774.png
Dependencies

Add Spring Boot Starters and dependencies to your application

Search for dependencies

Web, Security, JPA, Actuator, Devtools...






assets/6aaa3300-e91e-4e0e-b96a-00849ed0f940.png
redis

docker network

rabbitmq

container container






assets/6236f06f-38ed-46f9-9b97-68d12de94b78.png
& & ‘ ® localhost:8080/api/category

"id": "5a86084b6e34490ec986468e",
"name": "reactive"






assets/a159e216-d108-4936-80b5-757625629a85.png
springfivebyexample

Details Settings Keys and Access Tokens Permissions

Application Settings

Keep the "Consumer Secret" a secret. This key should never be human-readable in your application.
Consumer Key (APl Key)  gupfxwn43NBTdxCD3Tsf1JgMu

Consumer Secret (API Secret) pH4UMS5LIYxKzfJ7huYRwFbaFXn700K01LmqCP69QV9a9kZrHwS
Access Level Read-only (modify app permissions)

Owner springfivebyexa

Owner ID 940015005860290560





assets/693c333b-d14e-40fb-bfdb-66a4297ee0f9.png
main] o.s.c.support.DefaultLifecycleProcessor
Ictnr\-http—nin—ll r.ipc.netty. tcp. BlockingNettyContext Started Httpserver on /0.

main] 0.5.b.web. enbedded. netty.NettyWebserver : Netty started on port(s): 9990
i main] s.t.TrackedHashTagpplicationsConpanion : Started TrackedHashTagApplication.Conpanion in 4.179 seconds (JVM running for 5.059)

: Starting beans in phase 2147483647






assets/bcfef033-e11d-4d1d-9b4b-d9cdb2ac69b3.png
@ hotBehavior 306ms| ©0Picl4922]: Class JavalLaunchHelper is implemented in both /Library/Java/JavaVirtualMachines/jdk1.8
22:45:42.537 [main] DEBUG reactor.util.Loggers$LoggerFactory — Using S1f4j logging framework
Category(id=ce49b83b-2aee-47dd-8f68-e601ebl454da, name=sports)
Category(id=8fb25e99-a25b-4542-94be-ab35a1854104, name=music)

Process finished with exit code 0





assets/4bb29b84-2014-4993-8b77-d956cc33554b.png
AN o (D _NANN

(G QD) W R I S S VAR I W U U
\\V/ __D0 D01ttt )y)D
R DR RO N B U U I D NV BV AV AV s
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v2.0.0.M7)
2018-01-15 23:54:12.282 INFO 5 --- [ main] s.t.TrackedHashTagApplication$Companion : Starting TrackedHashTagApplication.Companion v@.0.1

-SNAPSHOT on c79elbad3528 with PID 5 (/application/tracked_hashtag.jar started by root in /)
2018-01-15 23:54:12.326 INFO 5 --- [ main] s.t.TrackedHashTagApplication$Companion : The following profiles are active: docker





assets/7be8d8e4-c0c9-46b9-8686-8dac3141d1fe.png
&) spring A RIS

System Status

Environment test Current time 2018-01-07T14:55:47 -0200
Data center default Uptime 00:13

Lease expiration enabled true

Renews threshold 1

Renews (last min) 2
DS Replicas

Instances currently registered with Eureka

Application AMIs Availability Zones Status

No instances available





assets/c8203e6b-2c71-488d-973b-8a4117d43d28.png
Creating network "compose_solution" with driver "bridge"
Creating compose_gathering_1 ... done
Creating compose_redis_1 ... done
Creating compose_tracked_1 ... done
Creating compose_rabbitmgq_1 ... done
Creating compose_dispatcher_1 ... done





assets/7cb4f809-352a-4159-87a4-3c27279de042.png
» Create Flight

POST v httpi/iocalhost:5000/fights

Authorization  Headers (1) Body®  PrerequestScript  Tests

formdata  © xwww-form-urlencoded  ® raw  © binary  SON (application/json) v/
1-{

2+ “from

3 “name" : "Viracopos International Airport”,
4 “code”: "VCP"

5 “city":"Canpinas”,

6 “country":"Brazil”

7

8

9

10

1 “city":"Sao Paulo”,

12 “country":"Brazil"

13

14

15 2018-08-08 .

16 ‘plane_id" : "5a606c636798063817bed8b4!,

17-  “prices” :





assets/777e6b4a-0f3e-400b-9859-eb04c5b5172b.png
docker-compose version 1.18.0, build 8dd22a9





assets/8e56bd22-6248-48d4-8e60-d489613bec65.png
[INFO] DOCKER> [springfivebyexample/tweet_dispatcher:latest] "tweet_dispatcher": Created docker-build.tar in 164 milliseconds
[INFO] DOCKER> [springfivebyexample/tweet_dispatcher:latest] "tweet_dispatcher": Built image sha256:19317
[INFO] DOCKER> [springfivebyexample/tweet_dispatcher:latest] "tweet_dispatcher": Tag with latest

[INFO] Total time: 14.020 s
[INFO] Finished at: 2018-01-04T23:07:29-02:00
[INFO] Final Memory: 61M/528M






assets/ce1e287a-6fb3-4da3-bf75-91e9d947abc2.png
ubuntu@ubuntu-xenial:~$ java -version

openjdk version "1.8.0_131"

OpenJDK Runtime Environment (build 1.8.0_131-8ul31-b11-2ubuntul.16.04.3-b11)
OpenJDK 64-Bit Server W (build 25.131-b11, mixed mode)
ubuntu@ubuntu-xenial:~$ ||





assets/fa2019c6-2585-4fdb-aee0-97d8d59cd286.png
CONTAINER ID
4855a23b3acl
e7ff58bcladb
dd71620d4f76

IMAGE
springfivebyexample/cms:latest
mongo-express

mongo

COMMAND

"/bin/sh -c 'java ...
"tini -- node app"
"docker-entrypoint..."

CREATED

22 minutes ago
19 hours ago
20 hours ago

NS

Up 22 minutes
Up 19 hours
Up 20 hours

PORTS
0.0.0.0:8080->8080/tcp
0.0.0.0:8081->8081/tcp
0.0.0.0:27017->27017/tcp

NAMES

cms
friendly_goodall
mongo





assets/a8107950-aaef-4669-9fbc-633d3920c4c8.png
ubuntu@ubuntu-xenial:~$ mvn -version

Apache Maven 3.3.9

Maven home: /usr/share/maven

Java version: 1.8.0_131, vendor: Oracle Corporation

Java home: /usr/lib/jvm/java-8-openjdk-amd64/jre

Default locale: en_US, platform encoding: ANSI_X3.4-1968

0S name: "linux", version: "4.4.0-97-generic", arch: "amd64", family: "unix"
ubuntu@ubuntu-xenial:~$ ||





assets/7b53de5d-bfbf-47e9-b94f-0b4546b704a9.png
Body  Cookies  Headers(@)  TestResults Status: 201 Created  Time: 1502ms

content-length > 0
date> Thu, 25 Jan 2018 23:46:43 GMT

location > http://localnost:50007/planes/5a6a6c636798a63817bed8ba.





assets/9a5582e9-5f54-4a81-ba83-c62808f0787b.png
&

>

C' | ® localhost:8081/actuator/metrics

"names": [

! "jvm.buffer.memory.used",
"jvm.memory.used",
"jvm.buffer.count",
"logback.events",
"process.uptime",
"jvm.memory.committed",
"system.load.average.lm",
"http.server.requests",
"jvm.buffer.total.capacity",
"jvm.memory.max",
"system.cpu.count",
"process.start.time"





assets/884468bd-0dd5-4d53-bb5a-a6db1af4c06a.png
Generate Project alt + &





assets/58ec50d4-5076-45da-b55c-1d0b87f952db.png





assets/3a1de65e-052f-4dd6-be13-97f188a67b43.png
SPRING INITIALIZR

Generate a |vawenerec : With (2= ¢ and Spring Boot 1ss

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
springfive.airline Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

Generate Project % + «

Don't know what to look for? Want more options? Switch to the full version.






assets/13bf0165-4bc6-43a7-a57b-3f314d22a2f2.png
{

"access_token": "eyJhbGci0iJSUzIINiISINRScCI6IkpXVCI9.eylzY29wZSI6WyIOcnVzdCIdLCI1eHALO0jEIMTczNTk4M]jISsImF1dGhveml@aWvzIjpbImOwZXIhdGOyI10sImp@aSI6IjMON2YWYTgSLTgyODMENDC3ZCOSYmYYLT
ZhMTNiYThhYWQ2YyIsImNsaWVudF9pZCI6IjQOMmNmNDAXNTUWOWVKYT1FMDNINWNhM2F jZWVmNzUyIn@. USMLHLEIS3Urx_IMoif7folqUK5X14htzAusdii9D2GsVnxUn21Y1fnwT7341QG50rHQeSGGZA8cOSNOYITYvoYSytBqSifiOdH]
OgLwIN8DQf_I_eSbtpStqqy7T_tP-SkoyGATnkUgAz13n1TmgN1Je-Mb3Iy8-P1ATsn9x5E",

"token_type": "bearer",

"expires_in": 86399,

"scope": "trust",

"jti": "347f0a89-8283-477d-9bf2-6al3ba8aad6c”





assets/f91bfd7e-d7ca-4a5f-9254-3b9028189fc4.png
Dashboard

@) Marketing 2

oo Templates \2

‘_Il Stats v

I

Activity

3 Suppressions

411l Settings v

000]

Account Details

Alert Settings

API Keys

Inbound Parse

IP Access Management

IP Addresses

REQUESTS

0

DELIVERED OPENED CLICKED

N/A N/A N/A

0 0 0

SPAM REPORTS

N/A

0

BOUNCES

N/A

0

Mail Settings 27

22

23 24 25

26

27





assets/92b99972-42e9-4a44-9346-60df700f5518.png
HTTP Persistent Connection @
[ 227117 o]
(727777 o]






assets/0e2ea25e-3922-45d7-b0fc-beddae937856.png
b v @ SimpleReactorExample (spring 323ms| /Library/Java/JavaVirtualMachines/jdk1.8.0_121.jdk/Contents/Home/bin/java ...
) @ coldBehavior 323ms| 0bjcl[4908]: Class JavalLaunchHelper is implemented in both /Library/Java/JavaVirtualMachines/jdk1.8
1l 22:41:58.289 [main] DEBUG reactor.util.Loggers$LoggerFactory — Using S1f4j logging framework

Process finished with exit code 0





assets/5474f4e4-22e9-458b-9f7c-c61a9667268a.png
IntelliJ IDEA

‘ersion 2017.3.4

3 Create New Project
& Import Project
& Open

¥ Check out from Version Control +

# Configure ~  Get Help ~





assets/d6b1b2df-7c96-42c3-b1e0-f55f5ddecc29.png
ubuntu@ubuntu-xenial:~$ docker images

REPOSITORY TAG
redis 4.0.6-alpine
postgres 9.6.6-alpine

mongo 3.4.10

IMAGE ID

ed8544cc83de
e20de7998161
d22888af0ced

CREATED

5 days ago
3 weeks ago
5 weeks ago

SIZE
26.9MB
37.8MB
361MB





assets/78a874e0-1f2d-44cd-a9fc-3b323f458a48.png
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 35 0 35 0 0 1415 Q —-i--i-- —-i--1-- —-i--i-- 1458

C
{

"hashTag": "java",

"queue": "java"
}
1





assets/0c5c8842-0851-44f5-aa01-6694dced52d3.png
REPOSITORY
springfivebyexample/tracked_hashtag
redis

springfivebyexample/cms

TAG

latest
4.0.6-alpine
latest

IMAGE ID

54d51eba299a
ed8544cc83de
a2609f25ded1

CREATED

About an hour ago
8 days ago

2 weeks ago

SIZE
766MB
26.9MB
773MB





assets/50e1605b-4111-45f1-b8aa-93de1ab85ee4.png
2018-01-16 14:37: INFO [zipkin,,,] 3715 — [main] o.s.i.endpoint.EventDrivenConsumer ¢ Adding {message-handler: inbound.sleuth.sleuth} as a subscriber to the 'bridge.sleuth
2018-01-16 14:37: INFO [zipkin,,,] 3715 — [ main] o.s.i.endpoint.EventDrivenConsuner started inbound. sleuth. sleuth

2018-01-16 14:37: INFO [zipkin,,,] 3715 — [ main] o.s.c.support.DefaultLifecycleProcessor : Starting beans in phase 2147483647

2018-01-16 14:37: INFO [zipkin,,,] 3715 — [ main] s.b.c.e. t.ToncatEnbeddedServietContainer : Tomcat started on port(s): 9999 (http)

2018-01-16 14:37: INFO [zipkin,,,] 3715 — [ main] .s.c.n.e.s.EurekaAutoServiceRegistration : Updating port to 9999

2018-01-16 14:37: INFO [zipkin...] 3715 — [ main] s.airline.ZipkinServerApplication Started ZipkinServerApplication in 13.782 seconds (JWM running for 14.868)






assets/0a9eadf3-88e3-4a7c-af0b-f445593eb38f.png
Configuration Repository (SVN, GIT or FileSystem)

\J J Service B UJ Service Y






assets/57bc2578-b33b-401b-8b6d-aa0e113e2c8e.png
SPRING INITIALIZR

<«

Generate a wavenroect ¢ With kein ¢+ @and Spring Boot  zoowm?

Project Metadata Dependencies

Artifact coordinates Add Spring Boot Starters and dependencies to your application

Group Search for dependencies
springfive.twitterdispatcher Web, Security, JPA, Actuator, Devtools...

Artifact Selected Dependencies

tweet-dispatcher ’ Reactive Web
Generate Project % + «

Don't know what to look for? Want more options? Switch to the full version.






assets/07088397-9d6c-4b4c-b869-363fbf29531d.png
. springfive.twittergathering. TweetGath






assets/4f178ddc-af28-4ae0-b1c6-8176be580b95.png
i

S
5

Hystrix Dashboard

http://hostname:port/turbine/turbine.stream
Cluster via Turbine (default cluster): http://turbine-hostname:port/turbine .stream
Cluster via Turbine (custom cluster): http://turbine-hostname:port/turbine.stream?cluster=[clusterName]
Single Hystrix App: http://hystrix-app:port/hystrix.stream

Delay: 2000 ms Title: Example Hystrix App

Monitor Stream





assets/f4911cc2-f8fd-4324-8f8b-59d43bd842be.png





assets/a0251ce5-b76a-4b51-ae10-fdef199f1dc2.png
springfive twittergathering. TweetGatheringApplication

/access-token-secret=KSofGBBalwDmewceKXLbNBd5chvZkZyB31VZa09pNBhLo | | ‘

tweet-gathering v

Defautt (1.8 - SDK of ‘tweet-gathering' module) v





assets/ea0ff23f-16c7-4bd9-835f-e196d6d8487d.png
Application Layer

HTTP, DNS, FTP, SMTP, efc...

Presentation Layer

SSL, SSH, JPEG, GIF, etc..

Session Layer

Sockets, RTP, PPTP, etc.

Transport Layer TCP, UDP, etc...
Network Layer IP, ICMP, etc...
Data Link Layer PPP, Ethernet, etc...

Physical Layer

Ethernet, USB, etc..






assets/95db63ca-5835-4b1b-abf9-15be39543f26.png
2018-01-15 23:54:29.084 INFO 6 --- [cTaskExecutor-1] o.s.a.r.c.CachingConnectionFactory : Created new connection: rabbitConnectionFactory#57d
7f8ca:0/SimpleConnection@5@ecfb4a [delegate=amqp://guest@172.19.0.6:5672/, localPort= 48016]

2018-01-15 23:54:29.088 INFO 6 --- [cTaskExecutor-1] o.s.amgp.rabbit.core.RabbitAdmin : Auto-declaring a non-durable, auto-delete, or exclu
sive Queue (twitter-stream) durable:false, auto-delete:false, exclusive:false. It will be redeclared if the broker stops and is restarted while the
connection factory is alive, but all messages will be lost.

2018-01-15 23:54:29.088 INFO 6 --- [cTaskExecutor-1] o.s.amgp.rabbit.core.RabbitAdmin : Auto-declaring a non-durable, auto-delete, or exclu
sive Queue (twitter-track-hashtag) durable:false, auto-delete:false, exclusive:false. It will be redeclared if the broker stops and is restarted whi
le the connection factory is alive, but all messages will be lost.

2018-01-15 23:54:29.235 INFO 6 --- [ main] r.ipc.netty.tcp.BlockingNettyContext : Started HttpServer on /0.0.0.0:8081
2018-01-15 23:54:29.242 INFO 6 --- [ main] o.s.b.web.embedded.netty.NettyWebServer : Netty started on port(s): 8081
2018-01-15 23:54:29.246 INFO 6 --- [ main] s.t.TweetGatheringApplication$Companion : Started TweetGatheringApplication.Companion in 20.5

99 seconds (JWM running for 21.708)





assets/b4171847-c894-4bc1-a929-c35cbd234983.png
CONTAINER ID

115672->15672/tcp
15720789288

IMAGE

NaES
springfivebyexample/tweet._dispatcher
dispatcher
springfivebyexample/tweet._gathering
gathering
springfivebyexample/tracked_hashtag
tracked
rabbitng:3.7.0-nanagement-alpine
rabbitnq

redi.
redis

.6-alpine

COMMAND

“/bin/sh -c java -D."
“/bin/sh -c java -D."
“/bin/sh -c java -D."
“docker-entrypoint.s.."

“docker-entrypoint.s.."

CREATED
2 seconds ago
14 seconds ago
31 seconds ago
About a minute ago

2 minutes ago

STATUS

Up 3 seconds
Up 16 seconds
Up 32 seconds
Up About a minute

Up 2 minutes

PORTS

0.0.0.0:9099->9099/tcp

0.0.0.0:8081->8081/tcp

0.0.0.0:9090->9090/tcp

4369/tcp, S671/tcp, 0.0.0.0:5672->5672/tcp, 15671/tcp, 25672/tcp, 0.0.0.0
0.0.0.0:6379-56379/tcp





assets/f15ef257-c577-43a0-b97f-2b6a76bca580.png
Iz Chapter02 - /M pom.xm! 1} | #p Cmshpplication v | b e % Q
g EProect - © % | % 1 meoms © ™
£ v Wz Chapter02 [ems] ~/packi-repo/Spring-5.0-£ 1, <packaging-jar</packaging> vz
x> midea 1 2
S Mo 12 <name>cns</nane> s

13 <description>Demo project for Spring Boot</description>
<parent> =
<groupId>org. springframework. boot</groupId> §
<artifactId>spring-boot-starter-parent</artifactId> H
<version>1.5.8.RELEASE</version> °

<relativePath/> <!— lookup parent from repository —>
</parent>

<properties>
<project. build. sourcencoding>UTF-8</project. build. sourceEncoding>
<project. reporting. outputEncoding>UTF-8</project. reporting. outputEncoding>
<java.version>1.8</java.version>

</properties>

‘eseqejeq ydes

<dependencies>

B

<dependency>
<groupId>org. springfranework. boot</groupId>
<artifactId>spring-boot-starter-thyneleaf</artifactId>
</dependency>

1

<dependency>
<groupId>org. springfranework. boot</groupId>
<artifactId>spring-boot-starter—web</artifactld>

uogepileAueeg & S108loid UBABI T

" </dependency>
= <dependency>
w <groupId>org. springframework. boot</groupId>
S <artifactId>spring-boot-starter-test</artifactId

3 # cms.iml a <scope>test</scope>
sg = mvnw 4 </dependency>
§ Do ~ NI

. Mpomaml project - buid  plugins  plugin

B 0:Messages % 6:TODO 7 9: Version Control Graph Databasa Console [1] Terminal & Docker [ Java Enterprise 9 Spring Q) Event Log
[ Compilation completed successfully in 5 678ms (moments ago) 6945 LF: UTF-8 Git:master: & &





assets/c77ce367-0276-46c9-844e-c609c52369f6.png
ER 2@ |an | Lo (%8|

SQL Editor = Graphical Query Builder

O postgres on postgres@localhost:5432

Delete

w

Delete All

Previous queries
select * from category;

QOutput pane
Data Output | Explain | Messages | History
id name
character varying(255)

character varying(255)
efbB6ff5-e33e-4b4d-bbfI-7cc719283493 sports

85bZa7c5-9e@7-4770-8e74-f31cB328a453 movies

Scratch pad

L1l





assets/d6f4c049-3109-4ddf-b08b-88fe1ae2ea19.png
ubuntu@ubuntu-xenial:~$ redis-cli
127.0.0.1:6379> |





assets/0f428b3d-b577-4360-987f-f4a4106206dd.png
SPRING INITIALIZR

Generate @ waenroe - With =2 -Jand Spring Boot 200w 4
Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies

springfive.airline Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

Generate Project % + «

Don't know what to look for? Want more options? Switch to the full version.





assets/ef882dee-d213-488f-83c9-81ff4119644b.png
& (6 ‘ ® localhost:8081/actuator/info

"project": "twitter-gathering",
"kotlin": "1.2.0"






assets/7d7729e9-8590-4edd-bb95-c73b78c437d7.png
¢ C |® localhost:8888/routes

"/api/vl/planes/**": "planes",
"/api/vl/flights/**": "flights",
"/api/vl/fares/**": "fares",
"/api/vl/passengers/**": "passengers",
"/api/vl/payments/**": "payments",
"/api/vl/auth/**": "auth",
"/planes/**": "planes"





assets/34998698-9d77-44ee-8a59-60d7fb1309da.png
OAuth Approval

Do you authorize 'ecommerce’ to access your protected resources?

Authorize

Deny





assets/fe9cc957-3670-4483-8475-6fc0265a1ef2.png
Name
Host
Port

Service
Maintenance DB
Username

Password

Store password

Colour

Group

MNew Server Registration

SSL  SSH Tunnel

localhost-conf
localhost

5432

Advanced

postgres

postgres

<»

Servers

<»





assets/e2b1db6d-1650-42cc-a0c1-c3dd8626220e.png
SPRING INITIALIZR

Generate @ waenpoee - With 2= - and Spring Boot 200w 4

Project Metadata Dependencies

Artifact coordinates Add Spring Boot Starters and dependencies to your application

Group Search for dependencies

springfive.airline Web, Security, JPA, Actuator, Devtools...

Artifact Selected Dependencies

gateway] ’ Reactive Web Config Client

Generate Project % + «

Don't know what to look for? Want more options? Switch to the full version.





assets/da5891f8-5e3f-4cce-bc08-ecf657d48c3c.png
gateway ~/packt-repo/Spring-5.0-By-Example/Chapter07/gateway






assets/d50d157c-7333-4ef6-a67e-e5dac0d957aa.png
il

S
5

Hystrix Dashboard

http://hostname:port/turbine/turbine.stream
Cluster via Turbine (default cluster): http://turbine-hostname:port/turbine .stream
Cluster via Turbine (custom cluster): http://turbine-hostname:port/turbine.stream?cluster=[clusterName]
Single Hystrix App: http://hystrix-app:port/hystrix.stream

Delay: 2000 ms Title: Example Hystrix App

Monitor Stream





assets/13866a16-49b0-441c-aa8b-a7943c54b35c.png
Apache 2.0

category : Category API
/api/category

Implementation Notes
List all categories

Response Class (Status 200)
Categories found

Model Example Value
[

"id": "string",
"name": "string"

}

Response Content Type  */*

Response Messages
HTTP Status Code Reason

Response Model

Show/Hide

List Operations

Expand Operations

List categories

Headers

401 Unauthorized
403 Forbidden
404 Category not found

Try it out!





assets/4e51796d-f765-40b5-9ef2-a4213313e2b6.png
9 Application Management 2-
B e O e . e O .5 s A B 5 e St M 5380

Twitter Apps

You don't currently have any Twitter Apps.

Create New App
e =





assets/677329f9-078d-4ff4-b3d4-fc042251f6aa.png
HTTP Request
- @@

\

Client ‘ Server
- @@

HTTP Response N ———





assets/37d2683d-a4f2-4759-a86c-38c95369a7ae.png
Iz Chapter02 = Bmsrc - B main = B java = M springfive = Ml cms

Project v O = | %1
v g Chapter02 [ems] ~/packt-repo/Spring-5.0-E

1 Project

> I .idea
A\ B
v I main
v B java

2
2
g
£
(2]
4

v Iresources
v [u static
v Bmapp
v m components
»> [m categories
> BEnews
> bmusers
app.js
controllers.js
services.js
% index.html
#p application.properties
> B test
»> B target
@ .gitignore
i cms.iml
B8 mvnw
& mvnw.cmd
m pom.xml

@] Web

Search Everywhere Double 1+
Go to File £+3R

Recent Files 38E

Navigation Bar 8B

Drop files here to open

01
10
o





assets/53c46844-611f-4cd1-87ce-ff858913473b.png
:: Spring Boot ::

2017-10-28 16:20:17.165 INFO 1708
/vagrant/cms)

2017-10-28 16:20:17.169 INFO 1708
2017-10-28 16:20:17.607 INFO 1708

— N\
~V NN
IREREDDDP
IN_, V7777

\__/=// /S
(v1.5.8.RELEASE)

- [

- [

--- [

main] springfive.cms.CmsApplication

main] springfive.cms.CmsApplication
main] ationConfigEmbeddedWebApplicationContext

1bd: startup date [Sat Oct 28 16:20:17 UTC 2017]; root of context hierarchy

2017-10-28 16:20:20.166 INFO 1708 --- [ main] s.b.c.e.t.TomcatEmbeddedServletContainer
2017-10-28 16:20:20.195 1INFO 1708 --- [ main] o.apache.catalina.core.StandardService
2017-10-28 16:20:20.198 INFO 1708 --- [ main] org.apache.catalina.core.StandardEngine
2017-10-28 16:20:20.436 INFO 1708 --- [ost-startStop-1] o.a.c.c.C.[Tomcat].[localhost].[/]
2017-10-28 16:20:20.438 1INFO 1708 --- [ost-startStop-1] o.s.web.context.ContextLoader

2017-10-28 16:20:20.839 INFO 1708 --- [ost-startStop-1] o.s.b.w.servlet.ServletRegistrationBean
2017-10-28 16:20:20.848 INFO 1708 --- [ost-startStop-1] o.s.b.w.servlet.FilterRegistrationBean
2017-10-28 16:20:20.850 INFO 1708 --- [ost-startStop-1] o.s.b.w.servlet.FilterRegistrationBean
2017-10-28 16:20:20.851 INFO 1708 --- [ost-startStop-1] o.s.b.w.servlet.FilterRegistrationBean
2017-10-28 16:20:20.851 INFO 1708 --- [ost-startStop-1] o.s.b.w.servlet.FilterRegistrationBean
2017-10-28 16:20:21.453 1INFO 1708 --- [ main] s.w.s.m.m.a.RequestMappingHandlerAdapter :

icationContext@7c@571bd:

2017-10-28 16:20:21.605 INFO 1708

- [

startup date [Sat Oct 28 16:20:17 UTC 2017]; root of context hierarchy

main] s.w.s.m.m.a.RequestMappingHandlerMapping

: Starting CmsApplication on ubuntu-xenial with PID 1708 (/vagrant/cms/target/classes started by ubuntu in

: No active profile set, falling back to default profiles: default
: Refreshing org.springframework.boot.context.embedded.AnnotationConfigEmbeddedWebApplicationContext@7c@57

. Tomcat initialized with port(s): 8080 (http)

: Starting service [Tomcat]

: Starting Servlet Engine: Apache Tomcat/8.5.23

: Initializing Spring embedded WebApplicationContext

: Root WebApplicationContext: initialization completed in 2831 ms
: Mapping servlet: 'dispatcherServlet' to [/]

: Mapping filter: 'characterEncodingFilter' to: [/*]

: Mapping filter: 'hiddenHttpMethodFilter' to: [/*]

: Mapping filter: 'httpPutFormContentFilter' to: [/*]

: Mapping filter: 'requestContextFilter' to: [/*]

Looking for @ControllerAdvice: org.springframework.boot.context.embedded.AnnotationConfigEmbeddedWebAppl

: Mapped "{[/error],produces=[text/html]}" onto public org.springframework.web.servlet.ModelAndView org.sp

ringframework.boot.autoconfigure.web.BasicErrorController.errorHtml(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServietResponse)

2017-10-28 16:20:21.607 INFO 1708

- T

main] s.w.s.m.m.a.RequestMappingHandlerMapping

: Mapped "{[/error]}" onto public org.springframework.http.ResponseEntity<java.util.Map<java.lang.String,

java.lang.Object>> org.springframework.boot.autoconfigure.web.BasicErrorController.error(javax.servlet.http.HttpServletRequest)

2017-10-28 16:20:21.676 INFO 1708
rceHttpRequestHandler]

2017-10-28 16:20:21.677 INFO 1708
equestHandler]

2017-10-28 16:20:21.760 INFO 1708
esourceHttpRequestHandler]
2017-10-28 16:20:21.854 WARN 1708
configuration)

2017-10-28 16:20:22.630 INFO 1708
2017-10-28 16:20:22.809 1INFO 1708
2017-10-28 16:20:22.819 1INFO 1708

main] o.s.w.s.handler.SimpleUrlHandlerMapping
main] o.s.w.s.handler.SimpleUrlHandlerMapping
main] o.s.w.s.handler.SimpleUrlHandlerMapping
main] .t.AbstractTemplateResolverConfiguration
main] o.s.j.e.a.AnnotationMBeanExporter

main] s.b.c.e.t.TomcatEmbeddedServletContainer
main] springfive.cms.CmsApplication

: Mapped URL path [/webjars/**] onto handler of type [class org.springframework.web.servlet.resource.Resou
: Mapped URL path [/**] onto handler of type [class org.springframework.web.servlet.resource.ResourceHttpR
: Mapped URL path [/**/favicon.ico] onto handler of type [class org.springframework.web.servlet.resource.R
: Cannot find template location: classpath:/templates/ (please add some templates or check your Thymeleaf
: Registering beans for JMX exposure on startup

: Tomcat started on port(s): 8080 (http)
: Started CmsApplication in 6.352 seconds (JW running for 258.31)





assets/7ff01276-091b-44b0-9a56-0ab3096e37b7.png
Spring 5. 0 . .
By Example .






assets/1890e6e7-c0ca-4eb5-a423-dec9beea51ed.png
L J
L JI |

‘ Serviet APl | ‘ ’

Servlet 3.1, Netty, Undertow






assets/ba757251-3e98-4c43-8957-d017f813ea1a.png
SPRING INITIALIZR

<«

Generate @ wvaenpoject: With xeiin ¢ @and Spring Boot zoorc

Dependencies

Add Spring Boot Starters and dependencies to your application

Project Metadata

Artifact coordinates
Search for dependencies

Group
Web, Security, JPA, Actuator, Devtools...

springfive

Selected Dependencies

Artifact
Generate Project % + «

Don't know what to look for? Want more options? Switch to the full version.






assets/3fab23f7-200e-46ed-916d-431284f56b91.png
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06

:38:44.734
138:44.734
138:44.734
138:44.734
138:44.741
138:44.741
138:44.741
138:44.742
138:44.742
138:44.743
138:44.743
138:44.743
:38:44.747
:38:44.748
:38:44.748
:38:44.781
:38:44.781

7815
7815
7815
7815
7815
7815
7815
7815
7815
7815
7815
7815
7815
7815
7815
7815
7815
7815

[ost-startStop-11
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]
[ost-startStop-1]

cCoOOoOULLLLLLLLLLLLOLOL®V

TETVLLLLLLLLLLLOLOLGV

L33 3333333333333

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :
.RequestMappingHandlerMapping :

.handler.SimpleUrlHandlerMapping
.handler.SimpleUrlHandlerMapping
.handler.SimpleUrlHandlerMapping

"{[/decrypt],methods=[POST]}" onto public java.lang.String org.springframework.clot
"{[/encrypt/status],methods=[GET]}" onto public java.util.Map<java.lang.String, ja\
"{[/keyl,methods=[GET]}" onto public java.lang.String org.springframework.cloud. cor
"{[/key/{name}/{profiles}],methods=[GET]}" onto public java.lang.String org.springi
"{[/{name}-{profiles}.yml || /{name}-{profiles}.yaml],methods=[GET]}" onto public ¢
"{[/{name}-{profiles}.properties],methods=[GET]}" onto public org.springframework.!
"{[/{name}/{profiles}/{label:.*}],methods=[GET]}" onto public org.springframework.c
"{[/{label}/{name}-{profiles}.properties],methods=[GET]1}" onto public org.springfre
"{[/{name}-{profiles}.json],methods=[GET]}" onto public org.springframework.http.Re
"{[/{label}/{name}-{profiles}.json],methods=[GET]1}" onto public org.springframework
"{[/{label}/{name}-{profiles}.yml || /{label}/{name}-{profiles}.yaml],methods=[GET]
"{[/{name}/{profiles:.x[*-].x}],methods=[GET]1}" onto public org.springframework.clc
"{[/{name}/{profile}/{label}/*x],methods=[GET], produces=[application/octet-stream]]}
"{[/{name}/{profile}/{label}/*x],methods=[GET]}" onto public java.lang.String org.s
"{[/{name}/{profile}/*x],methods=[GET], params=[useDefaultLabell }" onto public java.
URL path [/webjars/#x] onto handler of type [class org.springframework.web.servlet.
URL path [/#k] onto handler of type [class org.springframework.web.servlet.resource





assets/534b0919-c437-4e2b-b6c9-e608c3a862a8.png
Developer Agreement

Yes, | have read and agree to the Twitter Developer Agreement.

Create your Twitter application





assets/f843a799-fdab-4014-bfe5-b58fb1578a55.png
SPRING INITIALIZR

Generate @ waenroec - With == -Jand Spring Boot 200w 4
Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
springfive.airline Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

Reactive MongoDB Stream Binder Rabbit m

Generate Project % + «

Don't know what to look for? Want more options? Switch to the full version.





assets/fb420ba4-fd31-4f1c-9c8a-f6b3002071b1.png
REPOSITORY

springfivebyexample/cms
mongo-express

mongo

TAG

latest
latest
latest

IMAGE ID

942979082 f
3fe@3c9f9d40
d22888af@ced

CREATED

29 minutes ago
2 weeks ago

3 weeks ago

SIZE

773MB
246MB
361MB





assets/0cdc6303-e961-493a-a1f9-f44de184e3ef.png
& index.html

%
"

e

Iz Chapter02 = Bmsrc - Il main ) Iz resources = Ml static ' A index.html

§ lProject - O = | 8- e
g v Iy Chapter02 [ems] ~/packt-repo/Spring-5.0-By-Example/Chapte -
= > Bu.idea 28
A\ B 29
g v I main g?
E v bujava 32
@ »> Bu springfive.cms 33
o v IEresources 34
v [u static gz
v Dbmapp 37
v m components k]
v Du categories 39
> bm view i?
category-controller.js 42
category-service.js 43
v DBEnews G
news-controller.js 22
news-service.js 47
v Pmusers 48
user-controller.js :Z
user-service.js 51
app.js 52
controllers.js ;31
services.js =

#p application.properties

'eb

56
57

<li class="active'"><a href="#">Home</a></1i>
<li><a href="#users">Users</a></1i>

<li><a href="#categories">Categories</a></1i>
<li><a href="#news">News</a></1i>

</ul>
</div>
</div>

</nav>

<script
<script

<script

<script
<script

<script
<script

<script
<script

<script
<script

T I

#% CmsApplication v b #k »3

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/angular.min.js"></script>
src="https://cdnjs.cloudflare.com/ajax/libs/angular-ui-router/1.0.3/angular-ui-router. js"></script>

type="text/javascript" src="app/app.js"></script>

type="text/javascript"
type="text/javascript"

type="text/javascript"
type="text/javascript"

type="text/javascript"
type="text/javascript"

type="text/javascript"
type="text/javascript"

src="app/controllers.js"></script>
src="app/services.js"></script>

src="app/components/categories/category—controller. js"></script>
src="app/components/categories/category-service. js"></script>

src="app/components/news/news—controller. js"></script>
src="app/components/news/news—service. js"></script>

src="app/components/users/user-controller.js"></script>
src="app/components/users/user-service. js"></script>





assets/f1e43b89-aee2-4e59-9731-eb74a060b52b.png
) soveen soveent

Service T
Consumer N )
Service Y Service B
Senvice U
Consumer (
Senvice






assets/0df399b7-3aba-4bfc-ba86-d1c685e08c1d.png
. Refreshed 2018-01-16 15:29:26 Refresh every 5 seconds
E R a bblt 3.7.0 Erlang 20.1.7 Virtual host Al &)

Cluster rabbit@rabbitmq

User guest
Overview Connections Channels Exchanges m Admin

Queues

+ All queues (1)
Pagination

Page 1 of 1 - Filter: | Regex ? Displaying 1 item , page size up to: 100

Overview Messages Message rates +/-

Name Features State Ready Unacked Total incoming deliver / get ack

sleuth.sleuth D idle 0 0 0

v Add a new queue





assets/39a82733-8ff4-48c2-8304-5a6551a105f9.png
ourl

T 50001
Planes
Microservice






assets/47ec7d59-37b9-4c73-9997-cc6cad4ecc34.png
Run (73] SimpleReactorExample.testHotPublisher

>

L]

PE =z

3 o
v @ SimpleReactorExample (springfive.ci 516ms
@ testHotPublisher s16ms

1 test passed - 516ms
/Library/Java/JavavirtuaWMachines/jdk1.8.8_121. jdk/Contents/Hone/bin/java ...
0bjc[3631]: Class JavaLaunchHelper is implenented in both /Library/Java/JavaVirtualachines/jdk1.8
19:1;

:02.293 [main] DEBUG reactor.util.LoggerssLoggerFactory — Using SLf4j logging framework
subscriber 1: sports
cars.
games
ganes
electronics

Process finished with exit code 0

)_121. jdk/Contents/Hone/bin/java (8x1067d84c0) and /1





assets/593d1a81-a87d-4346-80ae-31c132c2fb09.png
¢} swagger

Api Documentation

Api Documentation

Apache 2.0

category : Category API
news-resource : News Resource

user-resource : User Resource

[ BASE URL: /, API VERSION: 1.0 ]

default (/v2/api-docs) [

Explore

Show/Hide | List Operations | Expand Operations

Show/Hide

Show/Hide

List Operations

List Operations

Expand Operations

Expand Operations






assets/b3453533-4404-4976-b0af-65e2b18aaaec.png
ubuntu@ubuntu-xenial:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
ubuntu@ubuntu-xenial :~$ |





assets/3b9b01fb-bf93-4708-9fee-443e96cb94d9.png
Book(author=Claudio E. de Oliveira, name=Spring
Book(author=Claudio E. de Oliveira, name=Spring

Process finished with exit code 0

5.0
5.0

o o

y Example, deécription:Amazing example of SpringiBootiApps, new=false)
y Example, description=Amazing example of Spring Boot Apps, new=true)





assets/d5a127ca-5b9a-49f7-960a-b608ac3f0022.png
¢} swagger

Apache 2.0

5 Explore

Api Documentation

Api Documentation

category : Category API Show/Hide  List Operations = Expand Operations
(38 /api/category
o538 /api/category Create category

b5 /api/categoryKid} Remove category
38 /api/categoryKid} Find category
20 /api/categoryKid} Update category

news-resource : News Resource Show/Hide | List Operations | Expand Operations

user-resource : User Resource Show/Hide | List Operations | Expand Operations

[ BASE URL: /, API VERSION: 1.0 ]






assets/753b73dc-b3dc-42f9-9a97-d71218b84d8c.png
Microservice Functionalities
Search Buy Passenger
Lo Fighs Tickets Registation
Bookngs e Boaring Soating
Resenvation oardr oardr
Passengers
Passengers Data
Management
Create Search
(LD Fights Fighs
Planes
Planes Data
Management
Process
Payments e
Fare Fare

Calculations






assets/a1d84684-2304-4d27-baec-65b63d1ff099.png
BRabbitMQ
=2

37.0

Channels

Erlang 20.1.7

Exchanges  Queues

Admin

Refreshed 2017-12-17 10:27:06 | Refresh evry 5 seconds [

Virtual host a1
Cluster rabbit@3ebSc73508d8
User guest (NS

Overview

~ Totals

Queued messages last minute 2
Currently idie
Message rates last minute ?

Currently idle
Global counts ?

~ Nodes

Name

rabbit@3eb5c7350848

File descriptors 2

1048576 available

) Ports and contexts
) Export definitions

» Import definitions

‘Socket descriptors ? | Erlang processes

943626 available 1048576 available

Memory 2

800MB high watermarkc

Disk space

48MB low watermark.

Uptime.

Info

Reset stats +/-

wones s e 1 1

HTTPAPI  Server Docs  Tutorials

Community Support  Community Slack

Commercial Support

GitHub

Changelog





assets/4d874e0e-edc0-4f67-b1fb-26d3cc25dbce.png
e ]
iplane/id} >






assets/150fa99d-cf12-40d7-9162-a7eb0e640f09.png
root@cc6520b2bdc5: /# ping redis

PING redis (172.19.0.2): 56 data bytes

64 bytes from 172.19.0.2: icmp_seq=0 ttl=64 time=0.280 ms
64 bytes from 172.19.0.2: icmp_seg=1 ttl=64 time=0.368 ms
64 bytes from 172.19.0.2: icmp_seq=2 ttl=64 time=0.221 ms
64 bytes from 172.19.0.2: icmp_seq=3 ttl=64 time=0.255 ms
64 bytes from 172.19.0.2: icmp_seq=4 ttl=64 time=0.310 ms
AC--- redis ping statistics ---

5 packets transmitted, 5 packets received, @% packet loss
round-trip min/avg/maystddev = 0.221/0.287/0.368/0.050 ms





assets/3d7333e2-00cb-45fe-9240-725b872db110.png
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06
2018-01-06

13:38:46.115
13:38:46.116
13:38:46.117
13:38:46.119
13:38:46.126
13:38:46.133
13:38:46.226

INFO
INFO
INFO
INFO
INFO
INFO
INFO

7815
7815
7815
7815
7815
7815
7815

main]
main]
main]
main]
main]
main]
main]

0O O0OO0OO0O0O0Oo

O e e e e e e

EO®OO®m®mO O

.AnnotationMBeanExporter
.AnnotationMBeanExporter
.AnnotationMBeanExporter
.AnnotationMBeanExporter
.AnnotationMBeanExporter

a
a
a
a
a
a.AnnotationMBeanExporter

.embedded. tomcat. TomcatWebServer

: Bean with name 'configurationPropertiesRebinder' has been autodetected for JMX exposure
: Bean with name 'environmentManager' has been autodetected for JMX exposure

: Bean with name 'refreshScope' has been autodetected for JMX exposure

: Located managed bean 'environmentManager': registering with JMX server as MBean [org.sp
: Located managed bean 'refreshScope': registering with JMX server as MBean [org.springfr
: Located managed bean 'configurationPropertiesRebinder': registering with JMX server as
: Tomcat started on port(s): 5000 (http) with context path ''





assets/fe35b8f6-a74e-48e6-9d9c-389c824e2d8b.png
JOURNAL ABOUT

&) spring @

Spring Boot applications

+ Application A / URL Version

ADMIN (97174943)

w)
D
)
7

PLANES (c8f3605d)

w)
D
)
7

Reference Guide - Sources - Code licensed under Apache License 2.0






assets/c59a3075-c289-48e0-93db-f68ce5d32989.png
[ service Registry Client






assets/4364b1a9-f2a6-4c11-b823-1804bb6ce2a7.png
Body  Cookles  Headers(3)  TestResults

content-length > 0

date> Thu, 25 Jan 2018 23:58:22 GMT

location > http://localhost:50005/flights/5a6a61e6798a638389fb09.





assets/065a670f-fcd5-4050-b27b-f01aaaf076fd.png
Mobile
App

Web
Portal

i

Internal Network

\J Service A

=






assets/ba4406fe-ea05-49d0-b4e8-f229ce72a25b.png
Config Server
@

Gateway

(€]

Eureka Server





assets/d3f75fa4-3ade-4486-8222-12caa4463242.png
Mastering
Spring 5.0

Master reactive programming, microservices,
Cloud Native applications, and more

This book is based on Spring Version 5.0 RC1

1]






assets/6d2e86ae-ec42-42fe-98c6-7b783b332925.png
SPRING INITIALIZR

Generate @ waenpoee - With 2= - and Spring Boot 200w 4

Dependencies

Add Spring Boot Starters and dependencies to your application

Project Metadata

Artifact coordinates
Group Search for dependencies
springfive.airline Web, Security, JPA, Actuator, Devtools...

Selected Dependencies

Artifact
Generate Project % + «

Don't know what to look for? Want more options? Switch to the full version.





assets/82aeb332-a6e7-4c16-b009-4145d35785d2.png
&) spring A RIS

System Status

Environment test Current time 2018-01-07T10:33:09 -0200
Data center default Uptime 00:09
Lease expiration enabled true
Renews threshold 3
Renews (last min) 4
DS Replicas
localhost

Instances currently registered with Eureka

Application AMIs Availability Zones Status

GATEWAY n/a (1) (1) UP (1) - 192.168.100.106:gateway:8888





